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Resumo

ROBERTO, K. M. A. Estruturas multi-algébricas e aplicagoes em teorias abstratas de for-
mas quadraticas e anéis graduados. 2023. 214 f. Tese (Doutorado) - Instituto de Matematica
e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2023.

O objetivo deste trabalho é iniciar a investigacao de possiveis relagoes matematicas que con-
figurem um ”novo quadro adjunto” entre grupos especiais, anéis graduados, 2-grupos e 2-grupos
profinitos. Nods focamos na primeira parte deste programa, i.e. nas relagoes entre anéis graduados
e grupos especiais. Em nossas investigacoes, a teoria dos multi anéis/hipercorpos desempenhou
um papel central, e obtivemos um resultado interessante: uma ampla extensao (para todos os gru-
pos/hipercorpos especiais) da validade do Arason-Pfister Hauptsatz ([7]) - uma resposta positiva
para uma questao formulada por J. Milnor no cléssico artigo de 1970 ([52]) - e aplicamos este
resultado na obtencao de propriedades associadas aos anéis graduados provenientes de hipercorpos
especiais ([30], [18]).

Palavras-chave: grupo especial, anéis graduados, 2-grupos profinitos, multi anéis, hipercorpos,

formas quadraticas, Arason-Pfister hauptsatz.
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Abstract

ROBERTO, K. M. A. Multialgebraic structures and applications in abstract theories of
quadratic forms and graded rings. 2023. 214 f. Tese (Doutorado) - Instituto de Matematica
e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2023.

The aim of this work is to initiate the investigation of the precise mathematical relationships so
that possible configuring a “new adjoint” situation between special groups, graded rings, 2-groups
and profinite 2-groups. We focused in the first part of this program, i,e, in the relations between
graded rings and special groups. In our investigations, the theory of multirings/hyperrings played
a central role, and we got an interesting result: we have obtained an wide extension (to all special
hyperfields, or special groups) of the validity of the Arason-Pfister Hauptsatz ([7]) - a positive
answer to a question posed by J. Milnor in a classical paper of 1970 ([52])- and applied that to
obtain interesting properties of graded rings associated to special hyperfields ([30], [18]).

Keywords: special groups, graded rings, profinite 2-group, multirings, hyperfield, quadratic forms,

Arason-Pfister hauptsatz.
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Introduction

It can be said that the Algebraic Theory of Quadratic Forms (ATQF) was founded in 1937 by
E. Witt, with the introduction of the Witt ring concept of a given field, constructed from quadratic
forms with coefficients in the field: given F', an arbitrary field of characteristic # 2, W (F'), the
Witt Ring of F, classifies the quadratic forms on F' that are regular and anisotropic. Moreover,
this ring establishes a strong connection between quadratic forms and orderings in a field F: the
set of orderings in F' is in one-to-one correspondence with the set of minimal prime ideals of the
Witt ring of F', and more, the set of orderings in F' equipped with the Harrison’s topology is a
Boolean topological space and that by the bijection above, it is identified with a subspace of the
Zariski spectrum of W (F).

Further questions about Witt’s ring structure W (F') could only be answered about three decades
after the original idea of Witt, through the introduction and analysis of the concept of Pfister form.
The Pfister forms of degree n € N, in turn, are additive generators of the n-th power I"(F') of the
fundamental ideal I(F) C W (F') (the ideal determined by the anisotropic forms of even dimension).

In the early 1970s, J. Milnor, in his celebrated article [52], established deep functorial relation-
ships, such as illustrated in the diagram below:

Milnor’s
K-Theory

Galois Quadratic
Cohomology Forms
More specifically, Milnor determines a graded ring k.(F) (of reduced K-theory mod 2) associ-

ated to the field F', that interpolates, through morphisms of graded rings

ha(F) : ko(F) — H*(F) and s,(F) : k. (F) — W.(F),

Where
@ In /In+1 )
neN
H*(F) := @ H"(Gal(F*|F), {+1})
neN

are, respectively, the graded Witt ring of F' and the graded cohomology ring of F' (here, F'* denotes
the separable closure of F).

In this context, two fundamental questions are posed by Milnor:

1
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i- Is true that (), oy I"(F) = {0}7?

ii - Are the morphisms h.(F), s.(F') isomorphisms of graded rings, for all field F of characteristic
not 27

The question (i) was answered positively a few years later in a celebrated article by Arason and
Pfister ([7]). Question (ii) resisted much longer until it was solved positively around the 2000s by
V. Voevodsky and co-authors ([42]), results that earned to the first the Fields medal.

The absolute Galois group of F', Galg(F*®), detects the ordenability of F': F' is formally real if
and only if there is a non-trivial involution, i.e, an element o € Galp(F*), o # 1 such that o2 = 1.
But the Galois group detects more: the ordering space X := Sper(F) is homeomorphic to the set

{lg] : g is a non-trivial involution of Galp(F*)},

where [g] := {07 'go : 0 € Galp(F*)}.

We can see that, via the established functors, the Galois cohomology also describes orderings via
the encoding of (graded) Witt rings. In fact, by Milnor’s triangle, W, (F') = H*(Galp(F*),Z) and,
keeping in mind that also W, (F') determines W (F), we get a connection between the classic Witt
ring W (F') and Galois cohomology. Moreover, since the space of orderings X is in natural bijection
with Hom(W (F'),Z), we obtain (again) a connection between orderings and Galois cohomology.

From the proof of Milnor’s conjectures by Voevodski and the development of the theory of
special groups - an abstract (first-order) theory of ATQF, introduced by M. Dickmann and F.
Miraglia in the 1990s, — it was possible to demonstrate Conjectures on signatures put forward by
M. Marshall and T. Lam in the mid-1970s ([27], [29]). We present below these two cases that
exemplify the success of the application of instruments developed by the theory of the special
groups:

Let G be a special group, X¢ = Homgsg(G, Z2) the ordering space of G and W(G) the Witt
ring associated to G. Denote I"(G) by the n-th power of the fundamental ideal (the ideal of forms
of even dimension) in W(G) and Wi, (G) denote the torsion subgroup of W(G). Consider the
following statements:

a - For all G-form 1, if sgn, (1)) =0 mod 2" for all 0 € X, then ¢ € I(G).
b - For all G-form 9, if sgny (1) = 0 mod 2" for all 0 € X¢, then ¢ € I(G) + Wi (G).

The Marshall’s signature Conjecture (|[MC]), originally stated in the (dual) context of
abstract ordering spaces (see [48]), is that the statement (a) above is true for all reduced special
group G. The Lam’s Conjecture ([LC]), originally stated in the traditional context of formally
real fields (see [43]), is that the statement (b) above is true for all formally real special group G.
Note that both reverses of the above implications are true.

The fundamental stone for the solutions of Marshall’s signature conjecture and Lam’s conjecture
for Pythagorean and formally real fields the introduction of the Boolean hull functor in SG-theory
mainly through the definition of Horn-Tarski and Stiefel-Whitney invariants for isometry (see [28]).
These encoding allows to rewrite [MC] in terms of information about the graded Witt ring and,
through Voevodsky’s results, switch these information in terms of the cohomology graded ring of
a field, where the question is finally solved by the application of cohomological methods.

Entering in the “cohomology realm”, in 1970’s was established the first relations between
quadratic forms and Galois cohomology, via the absolute Galois group Galp(F*) ([52]). These
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relations was improved, first via the quadratic closure F9|F in the 1980’s, and in the late 1990’s
via a certain quotient

Galp(F7) — Galp(F®))
called the W-group of F' (see [53]). Moreover, the induced arrow
H*(Gal(F*|F),{£1}) = H*(Gal(F®)|F),{£1})

is a monomorphism whose image is the subgraded ring of H*(Gal(F®)|F), {#1}) generated by cup
products of level 1 members. However, only after 2010 the studies of this settingﬂ have established
that F(3)|F is the minimal extension that determines (and is determined by) W (F).

All that was exposed above compose an amount of evidences so that we propose a new diagram

new-intro

Special
Groups

Graded
Rings

Profinite
2-Groups

Our proposal is to investigate the precise mathematical relationships so that the above diagram
will be true, possible configuring a “new adjoint” situation for these theories, obviously with the
intention of exploring the possible transport of information from this. It is important to point out
that the current paradigm in abstract quadratic forms theories is that of equivalence (or duality) of
categories, which is a relatively rigid connection. The context of adjunction allows more flexibility
in attacking problems from one theory encoded in another.

In Chapter 1 we present the theory of multirings and multifields/hyperfields, closely to the per-
spective of Marshall’s paper [47]. Roughly speaking, multirings are just “rings with a multivalued
addition”. In fact, many ideas of the ring theory can be imported. The main references are [47],
[24], [23], [45] and [58], and we follow [47] closely. In fact, the main proofs concerning orderings
over hyperfields are easier than the field case, and we got an Artin-Schreier Theory very similar
to the field one (see for instance, Propositions and . We also characterize real reduced
hyperfields (Corollary and real reduced multirings (Proposition , which are respectively
dual to Marshall’s abstract ordering spaces and abstract real spectra.

In Chapter 2 we connect the theory of Chapter 1 with the with the most significant theories
of quadratic forms, via two main motivations: 1) to describe interesting pairs (A,T) where A is a
(multi)ring and 7' C A is a certain multiplicative subset in such a way to obtain models of abstract
theories of quadratic forms (special groups and real semigroups) via natural quotients - Marshall’s
quotient construction; and 2) use this construction to motivate a "non reduced” expansion of
the theory of real semigroups to deal the formally real case, isolating axioms over pairs involving
multirings and a subset with some properties. The main results are Theorem [2.3.4] [2.3.7], [2.3.10] and
which characterize precisely the necessary conditions for a hyperfield/multiring come from a

!Carried out mainly by I. Minac and co-authors.
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special group/real semigroup. Proposition deals with a question posed by the authors of [37].
We also got a new and interesting Example of real semigroup : A/ T for A=C(X,R) and
T = A2 Nnzd(A), where X is a Ty topological space.

In Chapter 3 we introduce the theory of superrings. They are important in order to obtain
the quadratic extension available for special groups. The concept of superring first appears in
([6]). There are many important advances and results in hyperring theory, and for instance, we
recommend for example, the following papers: [3], [5], [6], [4], [49], [54], [51], [50]. Surprisingly
we have obtained an interesting theory of matrices, linear systems, vector spaces and algebraic
extensions available for a certain subclass of superfields. If R is a full superring, then M, «,(R)
and R[X] are superrings (Theorem [3.2.6| and [3.4.2]). We also obtained a kind of simple algebraic
extension for a superfield F' (Theorem , which culminate in the existence and unicity of
a full algebraic extension of a superfield F' (Theorems [3.7.3| and [3.7.4). If F' is a linearly closed
superfield (the system Ax = 0 always have a non trivial solution), then we have a well defined
dimension theory for the vector spaces over F' (Theorem . The main examples of linearly
closed superfields are hyperbolic hyperfields and simple full algebraic extensions over a
linearly closed superfield . The linearly closed interpreted in the context of special groups
leads to interesting Isotropic (Corollary and Hyperbolic (Corollary interpolations.
We finish this Chapter with a quantifier elimination procedure for superfields (Theorem ,
which is a direct generalization of a result obtained in [19].

In Chapter 4 we we provide some new steps towards the development of tools of algebraic theory
of quadratic forms in this multiring setting: we have defined and explored K-theory and graded
rings in the context of hyperfields that, in particular, provides a generalization and unification
of Milnor’s K-theory ([52]) and special groups K-theory ([30]). We develop some properties of
this generalized K-theory, that can be seen as a free inductive graded ring. The main results
are Theorems [4.5.6] and its Corollaries, which provides interchanging formulas between the three
K-theories considered here.

In Chapter 5 we deal with the category IGR. Theorem [4.5.6] gives a hint that the category
of Igr is a good abstract environment for studying questions of ”quadratic flavour”. So a better
understanding of Igr’s is at least desirable and this is the main purpose of this Chapter. We develop
the general properties valid for Igr’s and the main results here are Theorem providing an
adjunction between the categories of pre-special groups and (a subcategory of) inductive graded
rings. We also characterize the Special and Weak Marshall Conjecture in the context of inductive
graded rings (Section [5.6)).

In Chapter 6 we develop the theory of quadratic extensions for hyperfields/superfields, through
the development of results concerning the superrings of polynomials, envisaging some applications
to algebraic theory of quadratic forms and Real Algebraic Geometry. The main results here are
the Arason-Pfister Hauptsatz for all special groups (Theorem and its consequences.

The Igr’s functors Wi, k, were extended by M. Dickmann and F.Miraglia from the category of
fields of characteristic # 2 to the category of special groups (equivalently, the category of special
hyperfields). Another relevant Igr functor, the graded cohomology ring, H*(Gal(F*|F),{£1})
remains defined only on the field setting. Chapter 7 constitutes an attempt to provide an Igr
functor associated to a (Galois) cohomology theory for special groups, based on the work of J.
Minac and M. Spira [53]: we will define - by ”generator and relations”, Gal(G), the Galois Group
of an SG G, and provide some properties of this construction, as the encoding of the orderings
on G. However, since deeper results will depend of a description of Gal(G) ”from below”, and it
still unavailable a complete theory of algebraic extension of (super)hyperfields, we will not pursue
a more complete development of this cohomology theory in this thesis, reserving it for a future
research. The main results are Theorem [7.3.13] and [7.3.15], which recover for the abstract context
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the characterization of orderings in terms of the involutions in the Galois group of a field.
In Chapter 8 we finish the work indicating some possibilities of future research connected with
this thesis.
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Chapter 1

Multirings and Hyperfields

Here, we present the theory of multirings and multifields/hyperfields, closely to the perspective
of Marshall’s paper [47]. Roughly speaking, multirings are just “rings with a multivalued addition”.
In fact, many ideas of the ring theory can be imported. The main references are [47], [24], [23],
[45] and [58], and we follow [47] closely.

In fact, the main proofs concerning orderings over hyperfields are easier than the field case, and
we got an Artin-Schreier Theory very similar to the field one (see for instance, Propositions m

and [L.6.3).
We also characterize real reduced hyperfields (Corollary [1.5.3) and real reduced multirings

(Proposition[1.8.4), which are respectively dual to Marshall’s abstract ordering spaces and abstract
real spectra.

1.1 On Multialgebras

There are several Definitions of multialgebra on the literature, considering that each multialge-
bra application in a specific area of Mathematics (mainly Algebra and Logic) requires a particular
adaptation. Here, we adapt the notion of multialgebra used in [10]; the identity theory here pre-
sented is close to the exposed in [55].

Definition 1.1.1. A multialgebraic signature is a sequence of pairwise disjoint sets

= (Zn)neNa

where ¥, = S, U M,, which S, is the set of strict multi-operation symbols and M, is the set of
multioperation symbols. In particular, X9 = So U My, Fy is the set of symbols for constants and
My is the set of symbols for multi-constants. We also denote

Y = ((Sn)n>0, (Myn)n>0)-

Definition 1.1.2. Let A be any set.

i - A multi-operation of arity n € N over a set A is a function
A" — P*(A) :=P(A)\ {0}.

it - A multi-operation of arity n € N over a set A, A™ — P*(A), is strict, whenever it factors
through the singleton function sa : A — P*(A), a — sa(a) := {a}. Thus it can be naturally
identified with an ordinary n-ary operation A™ — A.

7



8 CHAPTER 1. MULTIRINGS AND HYPERFIELDS

A 0-ary multi-operation (respectively strict multi-operation) on A can be identified with a
non-empty subset of A (respectively a singleton subset of A).

Definition 1.1.3. A multialgebra over a signature ¥ = ((Sp)n>0, (Mn)n>0), is a set A endowed
with a family of n-ary multioperations

ol A" — P*(A), 0, € Sp UM, n €N,
such that: if o, € Sy, then oft : A™ — P*(A) is a strict n-ary multioperation.
Remark 1.1.4.

i - Every algebraic signature ¥ = (F),)nen is a multialgebraic signature where M, = (0, for all
n € N. Fach algebra

n 4
(A, ((A" = A)fan)neN)
over the algebraic signature ¥ can be naturally identified with a multi-algebra
n 14 SA
(4, ((A" = A= P*(A)) reF, Jnen)
over the same signature.

ii - Every multialgebraic signature ¥ = ((Sp)nen, (Mn)nen) induces naturally a first-order lan-
guage
L(X) = ((Fa)nen, (Bnt1)nen)

where F,, := S, is the set of n-ary operation symbols and Ry4+1 := M, is the set of (n+1)-ary
relation symbols. In this way, multi-algebras

(A, (A" %> P*(A))es,int, nen)

over a multialgebraic signature ¥ = (S, U My )nen can be naturally identified with the first-
order structures over the language L(X) that satisfies the L(X)-sentences:

Vo - Vep—13zn(on(xo, -+ s Xn—1,2y)), for each oy, € Ryy1 = M,,n € N.

Now we focus our attention into a more syntactic aspect of this multi-algebras theory. We start
with a (recursive) definition of multi-terms:

Definition 1.1.5. A (multi-)term on a multialgebra A of signature
Y= ((Sn)n207 (Mn)nZO)
1s defined recursively as:
i - Variables x;,v € N are terms.
it - If to, -+ ,tp—1 are terms and o € Sy, U M, then o(tg, -+ ,tn—1) is a term.

We will call a multi-term t strict, whenever it is composed only by combination of strict multi-
operations and variables. The notion of occurrence of a variable in a term is as the usual. We
will denote var(t) as the (finite set of variables) that occurs in the term t.
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To define an interpretation for terms, we need a preliminary step. Given
o€ S, UM,,
we “extend” o4 : A" — P*(A) to a n-ary operation in P*(A),
oP A pr A = PF(A),

by the rule:
O'P*(A)(AO,"' 7An—1) = U U O'A((l()a"' ,an_l).

aoer CLn—leAn—l

Definition 1.1.6. The interpretation of a term t on a multialgebra A over a signature

Y= ((Sn)@o, (Mn)nZO)
is a function t4 : Aver(t) P*(A) and is defined recursively as follows:

1 - The interpretation of a variable x;, xf‘ : Atwid P*(A) is essentially the singleton function
of A:
a s Al > A PH(A), is given by the rule (a: {x;} — A) — {a}.

it - If t =0o(tg, - ,tn—1) is a term and o € S, U M, denote T'= var(t) and T; = var(t;). Then
T =U;cn Ti- Consider ti# : AT — P*(A) the composition

projz, A
AT " AT 5 pr(A),
where proj%_ 18 the canomnical projection induced by the inclusion T; — T. Then
th: AT — P*(A)
s the composition
0P (A)

LAY
AT i gy TS p ),

Definition 1.1.7. Let A be a multialgebra A over a signature ¥ = ((Sp)n>0, (Mp)n>0) and let
t1,to be X-terms. We say that A realize that t1 is contained in to, (notation: A =t C t3)
whenever t(a) C t5(a), for each tuple @ : var(t;) Uvar(ty) — A.

Apart from the notion of atomic formulas the definition of X-formulas for multi-algebraic the-
ories is similar to the (recursive) definition of first-order L(X)-formulas:

Definition 1.1.8. The formulas of 3 are defined as follows:

i- Atomic formulas are the formulas of type t T t', where t,t' are terms.

1i- If ¢, are formulas, then =¢ and ¢V Y, AN, p — Y, ¢ <> ) are formulas.
wi- If ¢ is a formula and x; is a variable, then Vx;¢, Jx;¢ are formulas.

The notion of occurrence (respectively free occurrence) of a variable in a formula is as the usual.
We will denote fu(¢) as the (finite) set of variables that occurs free in the formula ¢.

We use t1 =5 to to abbreviate the formula (t1 C t2) A (t2 T t1): this means that t1 and ty are
7strongly equal terms”.
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Definition 1.1.9. The definition of interpretation of formulas ¢(Z) where

fu(g) C

&Kl

- {sz 11 € N}
under a valuation of variables v: T — A (or we will denote simply by v =a) is:
i- Ay t(z) CH(2) iff t'(a) C ¢ (a)

ii- The case of complex formulas (given by the connectives =, V, N\, —, <>, and quantifiers ¥, 3)
is as satisfaction of first-order L(X)-formulas in L(X)-structure on a valuation v.

Remark 1.1.10.

i- The theory of multi-algebras entails that for each term t, and each strict term t/,
tCt ifft=,t.

ii- In [55] contains a development of the identity theory for multialgebras, with another primitive
notion: t(T) =, t'(Z); a X-multialgebra A satisfies the "weak identity” above iff there is some
a € Avar@®var(t) guch that t4(a) Nt (@) # 0. This will not play any role in this work but is
useful for applications of multi-algebraic semantics for complex logical systems ([3§]).

There are many ways of define morphism for multialgebras. Follow below our choice:

Definition 1.1.11. Let A and B be multialgebras of signature ¥ = ((Sp)n>0, (Myn)n>0) and
w: A — B be a function.

i - @ is a partial morphism if for every n > 0, every o € S, and every ay, ...,a, € A, we have
oo (a1, ...,an)) C oB(p(ar), ..., p(an)).

i1 - @ is a morphism if for every n > 0, every o € S, U M, and every ay,...,an, € A, we have
p(04 (a1, ..., an)) € P (p(ar), ..., p(an)).

i - @ is a strong morphism if for everyn > 0, every o € S, U M,, and every ai,...,a, € A, we
have
A _ B
p(o?(ar, ... an)) = 07 (p(a1), .., p(an)).
translation-rem
Remark 1.1.12.

i - Let A, B be X-multialgebras. If B is a strict multilagebra (i.e. oB(b) is unitary subset of B,
for each o € ¥ and each tuple b in B), then the morphisms A — B coincide with the strong
morphisms A — B.

1 - There is a full and faithful concrete embedding of the category of ordinary algebraic structures
over a signature ¥ and homomorphisms into the category of Y-multialgebras and (strong)
morphisms: the image of this embedding is the class of strict multialgebras over X.

iii - The correspondence ¥ — L(X) induces a concrete isomorphism between the category of -
multialgebras and the category of L(X)- first order structures satisfying suitable V3 axioms. It
1s ease to see that this correspondence induces a bijection between injective strong embedding
of X-multialgebras and L(X)-monomorphisms of first-order structures.
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We finish this subsection with two illustrative examples of multialgebras derived from an alge-
braic structure and from a first-order structure.

Example 1.1.13. Let (R,+,-,0,1) be a commutative ring with 1 # 0. Given n > 1, define an
(n + 1)-ary multioperation x,, by the rule:

d € ag *p, a1 *p, A2 *qy ... %, an < there is some t € R such that

d=aog+ ait+ a2t2 + ...+ a,t".

The idea here, is that ag *y, a1 *p, Q2 %y ... %y Ay “analyze” the values taken in R by the polynomial
p(X)=ap+a1X +asX?+...+a, X" € R[X]. *, will be called The streching multialgebra of
degree n over R.

ordermulti

Example 1.1.14. Let £ ={0,1,+,-, <} the language of ordered fields. Consider R as an ordered
field. We can look at the ordering relation as a multioperation of arity 1. In agreement with our
notation, we have

<(a):={xeR:a<z}=a,+00).

From now on, all multi-algebras considered in this work will contain only operations of arities
0,1,2. They will have strict constants and strict unary operations; the binary operations maybe
strict or multivalued.

1.2 Multigroups, Multirings and Multifields

Multigroups are a generalization of groups. We can think that a multigroup is a group with a

multivalued operation:
defn:multigroupl

Definition 1.2.1. A multigroup is a quadruple (G,*,r,1), where G is a non-empty set, functions
x:GXxG—=PG)\{0} andr: G — G and 1 is an element of G satisfying:

i-Ifz€exxythenx € zxr(y) andy € r(x) * z.
n-yelxziffr=uy.

i1t - With the convention x * (y*xz) = |J x*w and (x*xy)*xz= |J tx*z,
WEY*Z tex*xy

xx(y*z)=(rxy)*zforalz,y,z€Qq.

A multigroup is said to be commutative if

- xxy=yx*xz forallz,y € G. The structure (G, -, 1) is a commutative multimonoid (with
unity) if satisfy M3 and M/ and the condition a € 1-a for all a € G.
mgmorphl
Definition 1.2.2. A morphism of multigroups is a function f : G — H between multigroups such
that f(1g) = 1 and for all a,b € G, f(a*xb) C f(a)* f(b). Of course, composition of morphisms
18 a morphism and the category of multigroups with their morphisms will be denoted by M Grp.

There is another definition (due to Marshall in [47]) with a first order theoretic flavour.
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defn:multigroupll
Definition 1.2.3 (Adapted from Definition 1.1 in [47]). A multigroup is a quadruple (G,II,r,1i)
where G is a non-empty set, Il is a subset of G Xx G X G, r : G — G is a function and i is an
element of G satisfying:

I- If (x,y,2) €I then (z,r(y),x) € II and (r(x), z,y) € IL.
II- (z,i,y) el iff z =vy.

IIT - If there exist p € G such that (u,v,p) € Il and (p,w,x) € II then there exist ¢ € G such that

A multigroup is said to be commutative if

IV - (z,y,z) € Il iff (y,z,2) € II.

In fact, these Definitions describes the same object, and that connection is established by the

following Lemma:
Lemma:1.2

Lemma 1.2.4 (Lemma 1.3 of [47]). For any multigroup G as in the second version[1.2.5, we have:
a-r()=i.

b-r(r(z)) =x.

c- (x,y,2) € Il iff (r(y),r(z),r(2)) € IL.

d- (z,y) el iff x =y.

e - If there exist ¢ € G such that (v,w,q) € II and (u,q,z) € Il then there exist p € G such that
(u,v,p) € II and (p,w,x) € II.

f- For each a,b € G, there exists c € G such that (a,b,c) € I1.
Proof.

a - Since i = i, by II we have (i,4,7) € II. By I, (r(i),4,¢) € IT and by II, (i) = 1.

b-r=2Z (z,i,2) U3 (r(z),z,i) €12 (r(r(z)),i,z) € I & r(r(z)) = 2.

1 1 (

c- (z,y,2) & (z,7(y),x) eI & (r(z),x,r(y) e & (r(y),r(x),r(z)) € IL.

d - Let (i,z,y) € II. Then
(,2,9) €M (y,r(x),i) €T S (r(y),i,r(x) €11
I b
L) =r@) Ly =r(r(y) = r(r(2)) =
Conversely, suppose z = 3. Then

r=y=r()=ry) = (rly),iLr(x) cll
I-;(}b) (y,r(x),i) € II L (i,z,y) € IL.
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e - Note that
(u,q,7) € 1 (2,7(q),u) € 1D (g,7(x), r(w)) € IL

Then, (v,w,q) € II and (q,7(z),r(u)) € II, so by axiom III, there exists ¢ € G such that
(w,r(z),t) € Il and (v,t,r(u)) € I
(w,r(z),) € TR (z,r(w),t) € T & (+(t), w, z) € TI, and

(v,t,r(u)) € II @ (r(t),r(v),u) € 11 A (u,v,r(t) €II.

Hence defining p = r(t), we have (u,v,p) € Il and (p, w,z) € II.

f - Since (b,7(b),i) € II and (a,i,a) € II, by (e), there exists ¢ € G such that (a,b,c) € II and
(¢,r(b),a) € II.

U
mgmorph?2

Definition 1.2.5. A morphism of multigroups (in the sense of Deﬁnitionm s a function
[+ G — H between multigroups (G,lq,rq,iq) and (H, g, rmg,ig) such that f(1g) = f(1g)
and for all a,b,c € G if (a,b,c) € Ilg then (f(a), f(b), f(c)) € Uy. Of course, composition of
morphisms is a morphism and the category of multigroups with their morphisms will be denoted by
MGrpgor. |I|

Theorem 1.2.6. The categories MGrp and MGrpys, are equivalent.

Proof. Let (G,*,r,1) be an object of MGrp. Define a multigroup Go := (G, 11, 7,1) taking i = 1
and I, = {(a,b,c) : ¢ € a*b}. The validity of axioms LII, III (and IV) for Gy, are direct
consequence of axioms i,ii, iii (and iv) for (G, *,r,1), so Gy is an object in MGrpyo.

Conversely, let (G, 11, 7,1) be an object in M Grpyo. By (f), we have a well-defined function
xi1: A x A — P(A)\ {0}, given by the rule

xm1(a,b) =axnb:={ceG:(a,b,c) €1l}.

Let Gy := (G, *y,1) with 1 = i. Then, the validate of the axioms i,ii (and iv) for Gj; are direct
consequence of LII (and IV) for (G,II,7,1). For the axiom iii, let € a*p (b*¢). Then z € axq
for some g € b =g c. Since (b,c,q) € Il and (a,q,z) € II, by [L.2.4(e), there exists p € II such that
(a,b,p) € Il and (p,c,z) € II and then, = € p 1 ¢ with p € a 1 b that imply = € (a *1 b) *17 C.
Finally, let y € (a*1b)*c. Soy € pxpyc for some p € axrb, then and (a,b,p) € Il and (p, ¢, y) € 1L
By III, there exists ¢ € II such that (b,¢,q) € IT and (a,q,y) € II. Hence y € a*1 ¢ and ¢q € by c,
that imply y € a 11 (b *11 ¢). Therefore, G/ is an object in M Grp.

Using the above arguments, we have the equivalence of these categories witnessed by the func-
tors F : MGrp — MGrpyq and G : MGrpsy — MGrp defined respectively on the objects by
F(G) = Gy and G(G) = Gp; and on the morphisms f € MGrp(G,H) and g : MGrpy, (K, L)
by F(f) = f and G(g) = g. 0

Now we deal with multirings.
defn:multiring

Definition 1.2.7 (Adapted from Definition 2.1 in [47)). A multiring is a sextuple (R,+,-,—,0,1)
where R is a non-empty set, +: Rx R — P(R)\ {0}, -: Rx R — R and — : R — R are functions,
0 and 1 are elements of R satisfying:

1Here the subscript ”fol” is to indicate that we are thinking in the first order theory associated to multigroups.
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i- (R,+,—,0) is a commutative multigroup;
ii - (R,-,1) is a monoid;
15 - a0 =0 for all a € R;

iw- Ifc € a+b, then cd € ad + bd and dc € da + db. Or equivalently, (a + b)d C ab+ bd and
d(a+b) C da + db.

v - If the equalities holds, i.e, (a 4+ b)d = ab+ bd and d(a + b) = da + db, we said that R is a
hyperring.

A multiring is commutative if (R, -, 1) is a commutative monoid. A zero-divisor of a multiring
R is a non-zero element a € R such that ab = 0 for another non-zero element b € R. The multiring
R is said to be a multidomain if do not have zero divisors, and R will be a multifield if 1 # 0 and
every non-zero element of R has multiplicative inverse.

Remark 1.2.8. It is straightforward to realize that every multifield F' is in fact a hyperfield, i.e,

for all a,b,d € F, d(a+ b) = da + db.
ex:1.3
Example 1.2.9.

a - Suppose (G,-,1) is a group. Defining x(a,b) = {c € G :c=a-b} and r(g) = g~ !

(G, *,7,1) is a multigroup.

, we have that

b - In the same way of item (a), every ring, domain and field is a multiring, multidomain and
multifield respectively.

c-Qy = {—1,0,1}E| s a multifield with the usual product and the multivalued sum defined by
relations
O+x=2+4+0=u=z, for every x € Q2

1+1=1, (=1) 4 (-1) = -1
1+ (=1) = (1) +1={-1,0,1}

d - Let K = {0,1} with the usual product and the sum defined by relations x +0 = 0 + =z = =z,
x€ K and 1+ 1=1{0,1}. This is a multifield called Krasner’s multifield [{1].

Example 1.2.10 (Example 2.5 of [47]). Let be V' C R™ an algebraic set and A as the coordinate
ring of V, i.e, the ring R[V] of polynomial functions f : V — R. Define an equivalence relation ~
on A by f ~ g iff f(x) and g(x) has the same sign for all x € V. Thus, Q,q(A) = A/ ~ is called
the real reduced multiring. The operations are defined by:

fegt+he3f,gd W eA

such that f' =g + W, f'=f, ¢ =7, and W =h

gﬁ:gihv _?:?f? 0:67 1:T

Taking n = 1, we have a counter-example to show that ad + bd C (a + b)d in general:

2 +a3ezr+71 but 22+ 23 ¢ T(T + 1),

and this not happen because x> + 3 > 0 and x(x + 1) < 0 for x near to 0 with x # 0.

2 According Marshall’s notation in [47].
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Example 1.2.11. In the set Ry of positive real numbers, we define
ayb:={ceRy:|la—b <c<a+b}

We have that Ry with the usual product and 7 multivalued sum is a multifield, called (real) triangle
multifield [58]. We denote this multifield by TR .

Note that a7 0 = {a} and a7 a = {x € Ry : |z| < a}.

We have some different ways to generalize this construction. If (F,<) is an ordered field, we
define the triangle multifield TF = (Fy,</,-,0,1), by the same prescription,

avb={ceF;:|la—b <c<a+b}.

Here, Fy ={a € F :a>0}. If (R, P) is an ordered ring with supp(P) = {0} (for example, Z), we
define the triangle multiring TR = (R4,</,,0,1),

avb={ceRi:|la—b <c<a+b}

Again, Ry ={z € R:x > 0}.

kaleid
Example 1.2.12 (Kaleidoscope). Let n € N and define X, = {—n,...,0,...,n} C Z. We define the
n-kaleidoscope multiring by (X,,,+,-,—,0,1), where — : X, — X,, is restriction of the opposite
map inZ, + : Xp X Xy, — P(Xy) \ {0} is given by the rules:

{a}, if b# —a and |b] < |a|
{b}, if b# —a and|a| <|b]
{—a,...,0,....a} if b= —a

a+b=

and - : X, x X;, — X, is is given by the rules:

b sgn(ab) max{|al, |b|} if a,b #0
a-b=
0Oifa=0o0rb=0

. In this sense, Xo = {0} and X1 = {—1,0,1} = Q2. For Xa, we have the following "multiop-
eration” table for the sum:

+ | =2 -1 0 1 2
-2 | {-2} -2} {-2} | {—-2} {-2,-1,0,1,2}
-1 {-2} {-1} {1} | {-1.0,1} | {2}
0 | {-2} {=1} {0y | {1} {2}
1 {2} {=1.0,1} | {1} | {1} {2}
2 {-2,-1,0,1,2} | {2} {2} {2} {2}
and the following operation table for the product:

. 2| -=-1]01|1 2

-2 |2 2 0] -2 -2

-1 |2 1 0] —-11] -2

0 0 0 00 0

1 2| -1]0(1 2

2 2| -2]0|2 2
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Clearly (Xp, -, 1) is a commutative monoid and a -0 =0 for all a € X,.
Now, we will verify that (X,,+,-,—,0,1) is a multiring.

i - By construction, a +b=b+a, a+0={a} and 0 € a —a for all a,b € X,,.

ii-de€a+bsbed—a: We divide the proof in cases. Let a # —b and suppose without loss of
generality that |a| < |b]. Thus a+b={b}. Hence d € a+0b impliesd =b. Sob € b—a = {b}.
By symmetry, the same proof applies to the implication b € d —a = d € a +b. The case
|b| = |a| is immediate.

iii - (a+b)+c=a+ (b+c): Again we divide in cases. We suppose without loss of generality that
a,byc #£0. If a # —b, b# —c, and |a| < [b] < ¢,
(a+b)+c=a+ (b+c) ={c}.

Similarly, (a +0b) + ¢ =a+ (b+c) for the cases |a] < |c| < |b|, [b] < |a] < el [b] < || < al,
le] <la| < |b] and |c| < |b] < |a| (under the hypothesis a # —b, b # —c).

Now let a = —b. We want to prove that (a —a)+c=a+ (—a+c). If |a| < ¢,
(a—a)+c=Xg+c={c} anda+ (—a+c)=a+c={c}.

If |e| < |al, then
(a—a)+c=Xg+c=X,anda+ (—a+c)=a—a=X,

The case b = —c s analogous.

iv - d(a+b) Cda+db: If d =0 there is nothing to prove. Let d # 0. If a # —b, suppose without
loss of generality that |a| < |b]. Then a+ b= {b} and d(a+ b) = {db} = db + db.

Now let a = —b. We have two cases:

(a) |d| < |a|: since da = sgn(da)|a|, we have da —da = X4, = X, and d(a—a) = dX, C X,.
(b) |d| > |a|: since da = sgn(da)|d|, we have da —da = X4, = Xgq and d(a —a) = dX, C Xg.

Thus X, is a multiring.
H-multi

Example 1.2.13 (H-multifield, Example 2.8 in [24]). Let p > 1 be a prime integer and H, :=
{0,1,...,p— 1} C N. Now, define the binary multioperation and operation in Hy as follow:

H,ifa=b,a,b#0

{a,b} ifa # b, a,b#0

{a} ifb=0

{b} ifa=0
a-b=Fk where 0 < k <p and k = ab mod p.

a+b=

(Hp,+,-,—,0,1) is a hyperfield such that for all a € Hy, —a = a. In fact, these Hy is a kind of
generalization of K, in the sense that Ho = K.
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We have to treat sums with some care when we are working with multirings. In order to use
the multivalued sum without danger, we define recursively for n > 2:

ai+...+ap = U a1 +d.
d€az+...+an

In particular, for a multiring A, with aq,...,a, € A and o € S,,, we have
a1 +az + ...+ ap = Ag(1) T Ag(2) + oo T Qg (n)-

We also use two conventions: if ZW C Randz € R, Z+W = {z+y:2€ Z,yec W}
and Z +z:=Z+{z} =U{z+2:2¢€ Z}. We work freely with the immediate consequences of
these conventions. For example, from commutativity and associativity is immediate that for all
XY, ZCR X+Y =Y+Xand (X+Y)+2Z =27+ (X+Y). We return further to these
conventions, in the general case of superfields (see for instance Lemma .

Lemma:1.4

Lemma 1.2.14. Let F' be a multifield. Then (a + b)d = ad + bd for every a,b,d € F.

Proof. We have (a + b)d C ad + bd already. For the other inclusion, if d = 0, it is done. If d # 0,
we have:

(ad + bd)d™* C (ad)d™" + (bd)d~' = ad + bd =
ad + bd = [(ad + bd)d*]d C (a + b)d.

O]

Then every multifield is in fact a hyperfield, and we use "hyperfield” from now on since it is

the prevailing terminology. Now we treat about morphism.
defn:morphism

Definition 1.2.15. Let A and B multirings. A function f : A — B is a morphism if for all
a,bce A:

i-c€a+b= f(c) € f(a)+ f(b); v - f(ab) = f(a)f(b);
it - f(—a) =—f(a);
iii - f(0) =0; v- f(1)=1.

The category of multirings with their morphisms will be denoted by M Ring.

For multirings, there are types of morphisms that can be considered. Let f: A — B a multiring
morphism.

e fisastrong morphism if for alla,b,c € A, if f(c) € f(a)+f(b), then there exist a’, b, ¢’ € A
with f(a') = f(a), f(') = f(b), f() = f(c) such that ¢ € a’ + V.

e [ is an ideal morphism if for all a,b,c € A, if f(c) € f(a) + f(b), then exists ¢ € A with
f(d) = f(c) such that ¢ € a + b. In other words, f(a +b) = (f(a) + f(b)) N Im(f).

e We say that f is a full morphism if it is a strong morphism for all a,b € A and all d € B,
d e f(a)+ f(b) = exists ¢ € a+ b such that d = f(c).

In other words, f(a+0b) = f(a) + f(b).
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o We say that f is a strong embedding if f is injective and it is a strong morphism. In this
case, A is a submultiring of B if A C B and the canonical inclusion ¢ : A < B is a strong
embedding.

e We say that f is a full embedding if it is a strong embedding and a full morphismlﬂ

The different notions of morphisms are related by the following:
Full Morphism = Ideal Morphism =- Strong Morphism

Full Embedding = Strong Embedding < Ideal Embedding

The category of hyperfields (respectively multirings) and theirs morphisms will be denoted by
MUF (respectively MR).
Some of the properties of rings morphisms are not extend to multirings morphisms. Next, are
some counterexamples:
ex:2.1
Example 1.2.16.

a - Let f: A— B be a multiring morphism. Define
Ker(f):={a€ A: f(a) =0}.
Ker(f) is a submultiring of A.

b- Let f: A — B be a multiring morphism. If f is injective, them Im(f) := {f(a) : a € A}
is embedded in B, but is not a strong embedding and Im(f) is not a submultiring of B in
general. For example, let R be a ring and define a very trivial multioperation * by a x0 = {a}
foralla € R and axb = R if a,b # 0. (R,*,-,0,1) is a multiring, and considering R as a
multiring, the embedding (R,+,-,1,0) < (R, *,-,0,1) is a bijective multiring morphism that is
a strong embedding but (R,+,-,1,0) is not a submultiring of (R, *,-,0,1). If we consider K as
n (b), the inclusion K — (R,*,-,0,1) is a multiring morphism that is an embedded and
is not a strong embedding.

c-Let f: R — Q2 be f(x) = sgn(x), (with convention that sgn(0) = 0). f is a multiring
morphism, but f is not injective and Kerf = {0}. Also R/Kerf is not isomorphic to Q2.

d - The inclusions functions Q2 — R and TRy — R are not multiring morphisms.

e - The inclusion function v : K — Q2 (K as in (b)) s not a multiring morphism.

1.3 Commutative Multialgebra

In the sequel, we extend some terminology of commutative algebra from multirings and hyper-
fields that could appear throughout this text. Of course, we are not intend to exhaust the theme
and for a more detailed exposition, we recommend H. Ribeiro’s ph.D Thesis, [23] (in portuguese)
or [24].

3There is no consensus on the definition ”submultiring”: here we do adopted one of intermediary strength that
coincides with the notion of substructure in relational structures; in [47], submultiring means an inclusion of multirings
that is strong and full.
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defn:ideal
Definition 1.3.1 (Definition 2.11 of [24]). An ideal of a multiring A is a non-empty subset of
A such that a4+ a C a and Aa = a. An ideal p of A is said to be prime if 1 ¢ p and ab € p = a € p
orb e p. An ideal m is mazximal if for all ideals a withm Ca C A=, thena=m ora=A. We
will denote Spec(A) = {p C A :p is a prime ideal}.

If a is an ideal of A, note that 0 € a and —a C a. With the notion of ideal, we define some new

multirings structures with the language of commutative algebra in mind:
terminology

Definition 1.3.2 (Definition 2.12 of [24]).

a - If {A;}ier is a family of multirings, then the product M;crA; is a multiring in the natural
(component wise) way.

b - Let a C A be an ideal. Elements of A/a are cosetsa =a+ a, a € A. More explicitly,
a =b mod I if and only if b € @, if and only if (b—a) Na # (.

This is the multialgebra analogous of the usual congruence relation in commutative algebra. We
define a multiring structure on Aja by a+b = {¢:c € a+ b}, —a = —a, the zero and the
unit element of A/a are 0 =0 and 1 = 1 respectively and multiplication on A/a is defined by
ab = ab. Note that if ¢ € @ + b, then exists ¢ € a + b such that ¢ = ¢. The natural arrow
w: A— Ala is a strong morphism and as in the ring case it is easily proved that given another
multiring morphism f : A — B with f(a) = {0}, there is a unique morphism f : A/a — B
such that f = fom.

c - Let S be a multiplicative set in A. Elements of S~'A have the form a/s, a € A, s € S,
a/s = b/t if and only if atu = bsu for some uw € S. 0 =0/1, 1 = 1/1 and the operations are
defined by (a/s) - (b/t) = ab/st, and c/v € a/s+ b/t if and only if cstv € atuv + bsuv for some
v € S. The natural arrow p: A — S™'A is a strong morphism and given a multirng morphism
f: A— B with f(S) C B*, then exists a unique morphism f: S~'A — B such that f = f o p.

d - If D is a multidomain, we define the multifield of fractions ff(D) := (D \ {0})~!D.

Let X be a subset of a multiring A. We define the ideal generated by X by
(X) = m{a CA:X Ca,a is an ideal}.

If X # (0, we have that (X) = J{Mz1+ -+ Maxn:n>1, N € Ajx; € X, foralli =1,...,n}.
In particular

(a) = ZAa = ZAja ‘M, Ay €A, 0> 1.
j=1

If A is a hyperring then ) Aa = Aa.

lem:iso
Proposition 1.3.3 (Proposition 2.13 of [24]). Let A and B be multirings and ¢ : A — B a
surjective morphism. Consider @ : A/Ker(¢) — B the induced morphism. Then the following are
equivalent:

i- @ is a strong morphism and if ¢(a) = ¢(d’) for a,a’ € A, then (a — a’) N ker(p) # 0.

1i- @ 1s an ideal morphism.
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ii- P 4s an isomorphism.

Proof. i) = ii): Assume that ¢(a) € ¢(b) 4+ ¢(c). Since ¢ is a strong morphism, exists a/,0’, ¢ € A
with p(a’) = p(a), p(b") = p(b), p(c') = p(c) such that a’ € b’ 4+ /. By hypothesis, exists b’ € b+
and ¢ € ¢+ j such that i,j € ker(p). Then o/ € b/ + ¢ C (b+¢) + (i + j) and so exists
x €1+ j C ker(p) such that a’ € b+ ¢+ z. Thus exist a” € o/ — x with a” € b+ ¢ and note that
p(a") = ¢(d’) = p(a). -

i1) = 4ii): Let a,b € A such that p(a) = @(a) = @(b) = ¢(b). By hypothesis exist x € a—b such
that = € ker(p) and so @ = b in A/ker(ip), proving the injectivity of ¢. Since ¢ is a strong morphism,
if p(@) € p(b) + P(c), then exists a/,V',c € A with p(a’) = p(a), (b)) = ©(b), p(c') = ¢(c) such
that a’ € v/ + ¢/. By hypothesis, it is easy to see that «’ = @,b/ = b, =¢candsoa € b+ ¢ in
A/ker(yp). Thus @ is an isomorphism.

iii) = i): Assume that ¢(a) = @(a') for a,a’ € A. Then B(a) = p(@) and hence @ = d/,
which means that (a — a’) Nker(¢) # 0. Therefore 0 = ¢(0) € p(a) — ¢(a’), and by hypothesis
there exist i € a — a’ such that ¢(i) = ¢(0) = 0. On the other hand, we have ¢ = @ o m, where
m: A — A/ker(¢). Then ¢ is a composition of strong morphisms and so ¢ is strong itself. O

teo:iso
Theorem 1.3.4 (Isomorphism Theorem, 2.14 of [24]). Let A and B be multirings and ¢ : A — B
an ideal morphism. Then Im(p) is a multiring (contained in B) with the structure induced by the
domain A, and the induced morphism @ : A/ Ker(p) — Im(p) is an isomorphism.

Proof. By the previous Proposition, it is enough to prove that Im(y) is a multiring and this is
accomplished by proving the associativity property for Im(y). Assume that ¢(z) € ¢(p) + o(w)
with ¢(p) € p(u) + ¢(v). Since ¢ is an ideal morphism, exists 2’ € p+ w and p’ € u+ v such that
o(2') = p(z) and p(p’) = ¢(p). Then, by the same argument as the previous Lemma, it should
exist ¢ € Ker(p) such that p € i +p/. Then p € i + (u+v) C (i + u) + v and thus exist v’ € i +u
such that p € v/ +v. Then exist ¢ € v+w with x € v/ +q. Thus p(z) € p(u')+¢(q) = p(u) +v(q)
and ¢(q) € ¢(v) + p(w). O

Lemma:1.1
Lemma 1.3.5 (Lemma 2.16 of [24]). Let A be a multiring. Then:
a - an ideal p of A is prime if and only if A/p is a multidomain.
b - An ideal m is maximal if and only if for all a # 0 in A/m, exists t1,...,t, such that
1€aty+ -+ aty.

In particular, mazximal ideals are prime and if A is a hyperring, an ideal m is mazimal if and
only if A/m is a multifield.

Proof.
a - The same of the ring case.

b - =: Let @ € A/m non-zero, that is, a ¢ m. Since m is maximal, the ideal generated by mU{a},
namely
I:U{m+at1+-'-+atn: n>1andt; € A},

is improper. Then exists m € m and t1,--- ,t, € A such that 1 € m + aty + - -+ + at, and so
lTeat; +---+at,.

<: Let a ¢ m. By the property valid in A/m, exists m € m and t1,---,t, € A such that
1 € m+at; +-- -+ at, and so the ideal generated by mU {a} is improper. Then m is maximal.
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Proposition 1.3.6 (Proposition 2.17 of [24]).

a- Let A be a multiring, I C A an ideal and S C A be a multiplicative subset of A. Then
(S/1)"YA/T= S~ 1A/S7!I.

b - Let {A;}ier be a family of multirings and a; C A; be an ideal of A; for every i € I. Then

icl iel icl

Proof. For the item (a), consider the morphism f : S~'A — (S/I)~'A/I given by f(a/s) = @/
and apply the Theorem m For the item (b), the same strategy holds with the morphism
g: Hie[ A — Hie[ A;f Hie] a; given by g(ai)ier = (@i)icr- O

Now, we present the main construction related to quadratic forms, that we baptize ” Marshall’s
quotient”. This kind of quotient appears naturally in the context of abstract theories of quadratic

forms, as we will have the opportunity to see later in the text.
defn:strangeloc

Definition 1.3.7 (Example 2.6 of [47]). Fiz a multiring A and a multiplicative subset S of A.
Define an equivalence relation ~ on A by a ~ b iff as = bt for some s,t € S. Denote by a the
equivalence class of a and set A/,,S = {@: a € A}. Defining —a = —a, ab = ab and

+b={¢:cv € as+bt, for some s,t,v € S},

S|

we have that (A/mS,+, -, —,0,1) is a multiring, called the Marshall’s quotient of A by S.

Let S be a non-empty subset of a multiring A. We define the ideal generated by S by
(S) :==({aC Aideal: S Ca}. If S={ay,...,a,}, we have that

(a1, .ccyapn) = ZAal +..+ ZA”’ where ZACL = U {a+...+a}.

n=l o, times
If A is a hyperring, then ) Aa = Aa.

Proposition 1.3.8 (Proposition 2.19 of [24]). Let A, B be a multiring and S C A a multiplicative
subset of A. Then for every morphism f : A — B such that f[S] = {1}, there exist a unique
morphism f : A/mS — B such that the following diagram commute:

A—"A/mS

RNE

B

where m: A — A/S is the canonical projection w(a) = a.

Proposition 1.3.9 (Proposition 2.20 of [24]). Let A be a multiring, I C A an ideal and S C A a
multiplicative subset such that I C S. Define S/I ={s:s € S} (modulo I). Then

(A/1)/(S/T) = A/ 5.

Proof. Define ® : A/T — A/,,S given by ®(a') = @° and use the previous Proposition. O
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Proposition 1.3.10 (Proposition 2.21 of [24]). Let A be a multiring and P,S C A multiplicative
subsets of A such that P C S. Then

AfmS =P A/, PTIS.

1.4 Ordering Structures and Artin-Schreier Theorem
defn:mfordering
Definition 1.4.1 (Page 8 of [47]). Let F' be a hyperfield. A subset P of F' is called an ordering if
P+P=CP,P-PCP,PU—P=F and PN —P = {0}. The real spectrum of a hyperfield F,
denoted Sper(F), is defined to be the set of all orderings of F'.
defn:mfpreordering
Definition 1.4.2 (Page 8 of [47]). A preordering of a hyperfield F is defined to be a subset T of
F satisfying T+T CT, T-T CT and F? CT. Here, F? := {a®:a € F}. A hyperfield F is said
to be real if —1 ¢ S_F2. If F is real, then —1 # 1. A preordering T of F is said to be proper if

—1¢T.
lem:3.2marshall

Lemma 1.4.3 (Lemma 3.2 of [47]). Suppose F' is a hyperfield with —1 # 1. For a preordering T
of F, the following are equivalent:

1 - T s proper.
ii-T#F.

Proof. (i) = (i) is just the definition. For (i7) = (i), suppose that —1 € T'and let a € F.. If a =0
then a € T. Suppose a #0 . Fixb€ 14+a. Thenb®> € 1 +a+a+a’ sob> €l +u+a?, u € a+a.
Then u € > —1—a?> €T. u/a €1+ 1,s0u/a € T. Since —1#1,u+#0and T is a subgroup of
F, then a/u = (u/a)~" € T. Hence a = (a/u)u € T. O

lem:3.3marshall
Lemma 1.4.4 (Lemma 3.3 of [47]).

a - A preordering which is maximal and proper is an ordering.
b - F has ordering if and only if F is real.

Proof. a - Let P be a preordering of the hyperfield F' which is maximal and proper. If a € F', then
P —aP is also a preordering. If —1 € P—aP, then there exists s,t € P such that —1 € s—at. If
t =0, then —1 = s € P, a contradiction. Thus ¢t # 0. Then at € 1+s,s0a € 1/t+s/t C P. If
—1 ¢ P—aP, then by maximality of P, —a € P. This proves that PU—P = F. If s € PN—P,
s # 0, then s = —t € P, so —1 = s/t € P, contradiction. This proves that P N —P = {0}.

b - By Zorn’s Lemma, every preordering is containing in an ordering. This fact with the item (a)

proves the desired.
O

For a preordering T" of F', we denote by Xr the set of all orderings of F' with T' C F.
prop:3.4marshall
Proposition 1.4.5 (Generalized Artin-Schreier Theorem (Proposition 3.4 of [47])). Let F' be an
hyperfield and T' a proper preordering of F'. Then T'= () P, where Xp = {P € Sper(F):T C
PeXr
P}.
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Proof. The inclusion “C” is immediate. For the inclusion “2” fix a € F, a ¢ T. Then T'—aT is a
proper preordering of F' (the argument is the same of [1.4.4)). By the Zorn’s Lemma, there exists a
maximal and proper preordering P such that T'—aT C P. By P is an ordering, and —a € P,
soa ¢ P. O

1.5 Real Reduced hyperfields

Consider the hyperfield Q2. {0,1} is an ordering on (3. For any ordering P on a hyperfield
F, Qp(F) = F/mP = Q2 by a unique isomorphism. Orderings of a hyperfield F' correspond
bijectively to a multiring homomorphism o : F — Q2 via P = ¢~ ({0,1}).
prop:4.1marshall
Proposition 1.5.1 (Proposition 4.1 of [47]). For a real hyperfield F are equivalent:

a - The multiring morphism F — Qeq(F) is an isomorphism;

b- Y F*={0,1};
c- Forallac F,a®=aand (a€1+1)= (a=1).

Proof. (a)<(b) Is just the general fact that if 0 : F — K is a morphism of real hyperfields, then
o (X F?) C Y K? and that Y Qeq(F)* = {0,1}.

(a)=(c) Qreq(F) already satisfy a®> = a for all @ and 1+ 1 = {1}.

(c)=(b) We have a®> = 1 for all @ # 0 and 1+ 1+ ... + 1 = {1} by induction on n. It follows

n
that >° F? = F? = {0,1}. O
defn:mfrealreduced
Definition 1.5.2. A hyperfield F' is said to be real reduced if satisfies the equivalent conditions of
Proposition [1.5.1].
A morphism of real reduced hyperfield is just a morphism of hyperfields. The category of real
reduced hyperfields will be denoted by MF eq.

cor:4.2marshall

Corollary 1.5.3 (Corollary 4.2 of [47]). A hyperfield F is real reduced if and only if a® = a for all
aceFandacl+1=a=1.

Proof. (=) is already done. For (<), by Proposition is suffice to prove that F' is real.
Therefore, suppose that a® = a for alla € Fand a € 1 +1 = a = 1. Then Y F? = {0,1}. If
—1€{0,1}, then —1=0,s0 1=00r —1=1,s00€ 141 = {1}. In both cases, we conclude that
1 = 0, contradiction. Thus —1 ¢ > F?, then F is real. O

For any proper preordering T of a real reduced hyperfield F'; Q7 (F') is a real reduced hyperfield.

In particular, Qeq(F') is a real reduced hyperfield. If p : F; — F» is a multiring homomorphism

of real hyperfields, then p induces a morphism Qcq(F1) = Qreq(F2). In this way, Q.q defines a

functor (a reflection) from the category of real hyperfields onto the subcategory of real reduced
hyperfields.

lem:4.3marshall

Proposition 1.5.4 (Lemma 4.3 of [47]). Let F be a real reduced hyperfield, T = > F?. For any
a,beF,

(a+b)*=(Ta+Th)* ={cc F:VYoc Sper(F), o(c) = o(a), or o(c) = a(b)}.
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Proof. Since F is a real reduced hyperfield, T'= {0, 1}, so Ta+Tb = {0,a,b}U(a+b). In particular,
F=T-T={0,1,-1}U(1—1). To prove (a+b)* = (T'a+Tb)*, it remains to show a,b € a+b. By
symmetry, it suffices to show a € a+b. If a # +b, then b/a # £1sob/a € 1—1,i.e,b € a—a and so
a€atb Ifa=blel+l=ac€ata=a+b,andifa=—-b, —be —-b—-b=>ac€a—b=aca+tb.
Therefore (a + b)* = (T'a + Th)*.

If c € Ta+Tb, then o(a) = o(b) implies that o(c) = o(a). Thus o(c) = o(a) or o(c) = o(b) for
any o € Sper(F'). Conversely suppose this holds for any o. Then o(b/a) = 1 implies o(c/a) =1
for any o, so by Proposition c¢/a € T+ T(b/a). Multiplying by a, this yields ¢ € T'a + Tb as
required. ]

Real reduced hyperfields have a natural representation in terms of functions:
cor:4.4marshall

Theorem 1.5.5 (Local-Global principle, Corollary 4.4 of [47]). For any real reduced hyperfield F,

the natural embedding F' — Q;S’per(F) s a strong embedding.

Proof. Let F be a real reduced hyperfield and T = 5" F? = {0, 1}. By Proposition m

{071}: m P,

PeXr

or in other words, 1 is the unique element that is positive in all orderings. Hence, if o(a) = o(b) for
all ¢ € X7, then ab is positive in all orderings, so ab = 1 and as a® = 1, we have a = b. Therefore,

the multiring morphism from F' to Qgper(F) defined by a +— (G(a))oeSper(F) is injective.

It remains to show that if o(c) € o(a) 4+ o(b) for all o € Sper(F') then ¢ € a +b. If a = 0, then
o(c) = o(b) for all 0 € X7, so by the argument above. b = ¢. Similarly, if b = 0 then ¢ = a and if
¢ =0, then b = —a. Suppose now that a, b, ¢ are not zero. Then ¢ € a+ b by Proposition O

In particular, for any real reduced hyperfield, Sper(F') separate points of F' and c € a+b C F
if and only if, for every o : F — @2, o(c) € o(a) + o(b).

1.6 The Positivstellensatz

Let A be a multiring. A subset P of A is an ordering if P+ P C P, PPC P, PU-P=A
and PN —P is a prime ideal of A (called the support of A). Orderings of a multiring A correspond
bijectively to multiring homomorphisms o : A — Qo via P = 0=1({0,1}). For a prime ideal p of
A, orderings on A having support contained in p (resp., containing p, resp., equal to p) correspond
bijectively to orderings on the localization of A (resp., on A/p, on ff(A/p)). The real spectrum of
A, denoted Sper(A), is the set of all orderings of A.

A preordering of a multiring A is a subset T of A satisfying T+ T C T, TT C T and A2 C T.
A preordering T of A is said to be proper if —1 ¢ T. Every ordering is a proper preordering. _ A2
us a preordering, and is the unique smallest preordering of A. A multiring A is said to be semi
real if —1 ¢ > A2

Fix a preordering T" of A. Define X7 := {0 € Sper(A) : o(T) = {0,1}}. A T-module in A is

defined to be a subset M of A satisfying M + M C M, TM C M,and 1 € M (so T C M).
prop:5.2marshall

Proposition 1.6.1 (Proposition 5.2 of [47]). Suppose T is a preordering of A and M is a T-
module in A which is mazimal subject to —1 ¢ M. Then M N (—M) is a prime ideal of A, and
MU(-M)=A.
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Proof. First we show that p = M N —M is an ideal. Let M’ = {a € A: (a+a)N M # 0}. Then
M’ D M and M’ is a T-module. If —1 € M’, then (-1 —1)NM # 0, say a € (-1 —1) N M.
Then —1 € 1 +a C M, a contradiction. Thus —1 ¢ M’. By maximality of M, M = M’'. By
construction, we have p+p C p, —p = p and Tp C p. Suppose a € A, b € p are given. Fix
ce€l+4a Thenc?e€l+a+a+a? soc®>cl+d+a?forsomedéea+a Thende ®—1—a?,
sodb € c?b—b—a’h CpC M. At same time, db € (a + a)b C ab + ab. This proves ab € M’ = M.
A similar argument shows that ab € —M. Thus ab € M N —M = p. This proves that p is an ideal
of A.

Next we show that p is prime. Suppose ab € p, a ¢ p, b ¢ p. Replacing a by —a and b by —b
if necessary, we can assume a ¢ M, b ¢ M. Thus —1 lies in the T-module M + " aT and also in
the T-module M + Y bT. Then —b? € Mb?+ > ab®T C M (using the fact that ab € p), so b* € p.
Writing —1 € ¢4+¢, g€ M, c€ > bt;, t; € T, we have —c € 1 +¢q, s0 2 € 1 +q+ q+ ¢> on the
other hand, ¢ € ZbZtitj C p. This implies —1 € —c? + g + ¢+ ¢*> C M, a contradiction. This
proves that p is a prime ideal.

Finally, we prove that A = M U —M. Suppose a € A with a ¢ M and a ¢ —M. Then
~1€ M+ > aT and —1 € M — Y aT. Multiplying by a?, and noting that a (3" aT) C T, this
yields —a?> € M +tia—a® and —a? € M —tya, for some t1,ty € T. Then —tia € a>+ M C M, and
toa € a> + M C M, so titaa € p. This is not possible. If either of ¢; or to is in p, then —a® € M,
so—1leM+>Y al =a€-M+>(—a®)T,and -1 € M — > aT = —a € M + > _(—a?®)T, then
a€yp. Ifa€p,then a € M (and also a € —M), which contradiction our assumption. This proves
A=MU-M. O

cor:5.3marshall
Corollary 1.6.2 (Corollary 5.3 of [47]). Sper(A) # 0 if and only if —1 ¢ > A%. For a preordering
T of A, X7 # 0 if and only if T is proper.

Proof. The first assertion follows from the second. If X7 # () then clearly T is proper. Suppose
now that T is proper. Use Zorn’s Lemma to choose a maximal proper preordering P in A with
T C P, and a P-module M of A maximal subject to —1 ¢ M. If P # M then for any a € M \ P,
P + > aP is a preordering and P + Y aP C M, so P+ > aP is proper. This contradicts the
maximality of P. It follows that P = M. Proposition implies that P is an ordering. ]

For a fixed preordering T' of A we have a multiring homomorphism A — Qg( T (the product
multiring), given by a — @, where @ is defined by a(c) = o(a) for all 0 € Xp.
prop:5.4marshall
Proposition 1.6.3 (Proposition 5.4 of [47]). Suppose c,d € A. Then ¢ > 0= d =0 holds on X
(i.e, o(c) > 0= o(d) =0) if and only if —d?* € T+ A%c for some integer k > 0.

Proof. (=) Let B = S7'A, T' = S7IT, where S := {d?) : k > 0}, and consider the T-module
T + " A%c and the T'"-module T’ + > B2%c. If =S N (T + Y. A%c) = (), then —1 ¢ T’ + " B?c,
so there is a T'-module M in B containing 7" + > B2c¢ and maximal subject to —1 ¢ M. By
Proposition p:=MnN—M is a prime ideal. Also, T C M, so (T"+p)N(=T"+p) =p. It
follows that the preordering 7" := {(a+p)/(b+p) : a,b € T', b ¢ p} is a proper preordering in the
hyperfield F' := ff(A/p). Since d ¢ p (d is invertible in B), it follows from our assumption that
c+p €¢ P for all orderings P of F containing T”. According to Proposition this implies
that ¢ +p € —T”. This yields elements s,t € T' + p with s,¢t ¢ p such that —sc = ¢. Then
steT' +pC M and —st =s?ce . B> C M, so st € MN—M = p, a contradiction.

(<) We already know that o(d?*) > 0 for all ¢ € Xp. If —d?* € T+ 3" A%c, then —o(d**) >0
for all ¢ € X7. Hence o(d?*) = —o(d?*) = 0 for all ¢ € X7, and this implies that o(d) = 0 for all
o€ Xr. ]
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cor:5.bmarshall

Corollary 1.6.4 (Corollary 5.5 of [47]).

a-a=0 on Xp if and only if —a®* € T for some k > 0.

b-a=1on Xr if and only if -1 € T - A%a.

c-a>0 on X7 if and only if —a** € T — " A%a for some k > 0.

d- Fizacb®>+c% Thenb=¢ on Xr if and only if —a®* € T — " A?bc for some k > 0.

Proof. Apply Proposition as follows: (a) take ¢ =0, d = a. (b) Take ¢ = —a, d = 1. (c) Take
¢=—a,d=a. (d) Take ¢ = —be, d = a. O

1.7 Real Ideals

We indicate briefly how the theory of real ideals and real prime ideals extends to multirings.
An ideal a in a multiring A is said to be real if (3. a?) Na # ) = a; € a for each i. Every real
ideal is radical in the sense that a®> € a = a € a, i.e, a is the intersection of prime ideals of A. The

converse is not true.
prop:6.1marshall

Proposition 1.7.1 (Proposition 6.1 of [47]). For a prime ideal p in a multiring A, the following
are equivalent:

a - p is real.
b - The residue hyperfield ff(A/p) is real.
¢ - p is the support of some ordering of A.

Proof. (a)=(b) If —1+p e > a?+p,then 0€ 1+ > a?+p, and (1+ > a?)Np # 0. As p is real,
1 € p, contradiction. Then —1 & Y (A/p)?, and therefore —1 ¢ fo(fl/p)?
(b)=(c) By Proposition ff(A/p) has an ordering P. Let P = {a;,b; : a;/b; € P} and

Q = ¢ [P, where ¢ : A — A/p is the canonical projection. Then @ is the desired ordering.
(c)=>(a) Is just the fact that an ordering P contains Y A2. O

defn:multirealradical

Definition 1.7.2. The real radical of an ideal a in A is

Ya = {aEA:HbiGAandeOSUChthat <a2k+2b?)ﬁa7ﬁ@}.

prop:6.2marshall
Proposition 1.7.3 (Proposition 6.2 of [47]). {/a is the intersection of all real prime ideals of A
containing a.

Proof. The inclusion C is immediate because {/a is real. For D, we use Corollary (a). Suppose
that a € p for each real prime ideal p with a C p. Consider T' = > A% 4 a (the preordering in A
generated by a). Then @ = 0 on Xp so, by Corollary (a)7 —a% € T for some k > 0. Then
(a®* +>"b?) Na # 0 for some bj, and a € {a. O

prop:6.3marshall
Proposition 1.7.4 (Proposition 6.3 of [47]). For an ideal a of a multiring A, the following are
equivalent:

a - a is real.
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b- Ya=a.
¢ - a 18 the intersection of real prime ideals.

d - a is radical and every minimal prime ideal over a is real.

Proof. We already have (a)<(b), and (b)<(c) is consequence of Proposition If a is radical,
then a is the intersection of the minimal prime ideals over a, so (d)=-(3). It remains to show that
(¢)=(d). Suppose ¢ is a minimal prime ideal over a which is not real. Thus, for every real prime
ideal p of A which a C p, there exists a, € p such that a, ¢ q. By the compactness of Sper(A4) in
the patch topology, there exist finitely many elements aq, ...,a, of A such that a; ¢ q for each 1,
and for each real prime ideal p with a C p, a; € p for some i. Let a = aj - ... - ay. Then a € p for
each real prime ideal p containing a so, by (c), a € a. This contradicts a ¢ q. O

defn:multiringreal

Definition 1.7.5. A multiring A (with 1 # 0) is said to be real if the ideal {0} is real.

If a is a real proper ideal of A, then A/a is real. In particular, if —1 ¢ >~ A2, then A/ §¥/{0} is
real.

1.8 Real Reduced Multirings

We assume that A is a multiring with —1 ¢ > A% and T is a proper preordering of A. We
use the notation of section 8.4, where we define the multiring homomorphism A — Qg( T given by
a +— a, where @ is defined by a(c) = o(a) for all ¢ € X7. We want to prove that the image of A
in Qg( T is a multiring which is strongly embedded in Qg( 7. Now, we will introduce some notation:

defn:multivalue

Definition 1.8.1. For ay,...,a, € A, we define the value set of ¢ = (ay,...,a,) to be
D(¢) = D(ay,...,a,) = {B tbeY Tay+ ..+ ZTan} .

We say that b is represented by ¢ if b € D(¢).
lem:7.1marshall

Lemma 1.8.2 (Lemma 7.1 of [47]).

i-D@={ba:bcA={fa:teAi>0}=
{b: for each o € Xr either b(c) =0 or a(c)b(c) > 0}.

ii - D(a,b) = {c: for each o0 € Xr, either ¢(c) =0 or a(c)c(a) > 0 or b(o)e(a) > 0}.

it - If n >3, D(ay,...,a,) = U D(ay,¢).
ceD(az,....aGn)

iv - D(ay,...,ay) depends only on @y, ...,a, (not on the particular representatives ay, ..., an).
Proof.
i- Is immediate from definition of D(a).

ii-Ifce) Ta+ Tb, then c2 € Y. Tac+ " The. Follow this, that for any o € X7, ¢(o) = 0 or
one of a(o)¢(0),b(0)¢(o) is strictly positive, so ¢ belongs to the second set. Now pick ¢ such
that ¢ belongs to the second set. Denote by A’ the localization of A and the multiplicative
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set S = {c?|k > 0} and let T be the preordering in A’ defined by 7" = {t/2%" : k > 0}. Let
a/ = ac, b’ =be. On Xp_s~prgr, b > 0, so by Corollary M(b),

—1eT — ZT'a' — ZA’%’.

Multiplying by ¢™*1 m sufficiently large, —c*™*1 € Tc — 3" Ta — Y. Th. This yields

c1 € (ZTa+ZTb) N (™ 4 Te).

It follows that ¢ = ¢; € D(a,b).

iii - This follows from (ii) by induction. Note that D(a,¢) depends only on ¢, not on the particular
representative of c.

iv - For n = 1 and 2, this is immediate from (i) and (ii). For n > 3, it follows by induction on n
using (iii).
H
lem:7.2marshall
Lemma 1.8.3 (Lemma 7.2 of [47]). For ag, ...,a, € A, the following are equivalent:

i - There exists a, € A such that a; =a; and 0 € ap+ ... +al,.
- —a; € D(al, ey Q—1, Aj41, ...,an) fori=0,...,n.

Proof. (i)=(ii) By symmetry, it is suffice to show —ay € D(ai,...,@,). Since 0 € ag + ... + aj,,
—ag € aj + ... +ay, s0 g = d'p € D(d'1,...,a'n) = D(@y, ..., ay), using Lemma m(iii).
(i)=(i) We have a; with a; = @; such that 0 € a; +>_,,; >~ Ta;. Then

0€0+..40C ) (aj+> Y Taj)=> (aj+ Y Tay),
i=0 i#j i=0

so there exist a € a; + > Ta; such that 0 € aj + ... + a,. Hence o’; = a;. O

Denote the image of A in Q?T by Qr(A). Addition on Q7(A) is defined by a+b := {¢ : ¢ € a+b},
@b := ab, —a := —a. The zero element of Q7 (A) is 0.
prop:7.3marshall
Proposition 1.8.4 (Local-Global principle, Proposition 7.3 of [47]). Let A be a multiring with
~1¢ > A% and T a proper preordering of A. Then:

i - Qr(A) is a multiring.
it - Qr(A) is strong embedded in Q?T.
Proof.

i - Everything is straightforward calculations except the associativity. Let x,u,v,w,p € A such
that p € u+7v and T € p+w. Then T € D(p,w) and p € D(u,v), so T € D(u,v,w). Also
—wW € —T+p,so —w € D(—x,p), i.e, —w € D(—=,u,v). Also —u € —p+7 and —p € —T + 1w,
so —u € D(—p,v) and —p € D(—z,w) i.e., —u € D(—7,v,w). According to L&mmam
this implies there exist z/,u’,v’,w’ € A such that 2/ = 7, v = w, v = 7, w' = w and
¥ eu +v +w'. Pick ¢ € v +w' such that 2’ € ' +¢q. Thengev+w and T € u +q.
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ii - Let a,b,c € A. According to Lemma [1.8.3, ¢ € @ + b iff ¢ € D(a@,b), —a € D(—¢,b) and
—b € D(—¢,a). According to Lemma [1.8.2(ii), this occurs iff for all o € X7, ¢(o)a(o) > 0
or ¢(o)b(o) > 0 or a(o)b(c) < 0 or a(c) = b(o) = (o) = 0, ie., iff for all ¢ € X,
c(o) € a(o) + b(o).

O]

The real spectrum of Q7 (A) is naturally identified with Xp. Now that we know that addition is
a well-defined associative operation on subsets of Q7(A), we have another more intrinsic description

of value sets:
cor:7.4marshall

Corollary 1.8.5 (Corollary 7.4 of [47]). Let T ={t:t €T} ={t:t€ A, 1> 0}. Then:
i-Tay+.+Ta,={b:be> Tay+..+> Ta,}.

ii-0€a+..+a, & —a; € Zﬁél i, fori =0,..,n < there exists a,...,a, such that
0€a)+..a, anda, =a;, i =0, ...,n.
Proof. (i) is direct consequence of Lemma and (ii) is direct consequence of O

We restrict our attention now to the case where T' = Y A2 and consider the multiring morphism

a — @ from A into QSper(A). We denote Qs> 42(A) by Qreq(A) which we refer to as the real
reduced multiring associated to A. The multirings A such that the morphism A — @Q,cq(A) is an

isomorphism are obviously of special interest.
prop:7.5marshall

Proposition 1.8.6 (Proposition 7.5 of [47]). For a multiring A with —1 ¢ > A2, the map a — @
from A onto Qreq(A) is an isomorphism if and only if A satisfies the following properties:

a—a3:a.

b - a+ab® = {a}.
c - a® + b? contains a unique element.

Proof. (=) By construction we have (a) and (b) (since a+a = @ and ?=Tord =0in Qrea(A)).
For (c), if ¢ € a2 +b?, then ¢ € (a? +b?)(a? +b?) C a +a?b? + a?b? +b* = (a® + a?b?) + (b? + a?b?).
Since a? + a?b? = {a?} and b? + a?b? = {b?}, this implies ¢ € a® + b?. Consequently, ¢? = c,
i.e., the unique element of a? + b? is necessarily a square. It follows by induction that, for any
a1, ..., an € A, a2+ ...+ a2 contains a unique element, which is a square. In particular, > A? = A2

(<) Let T = Y A% = A2, suppose that @ = b. Let ¢ € a® + b?. Thus —c?* € A2 — Y A%ab.
Since ¢ = ¢, ¢?* = ¢2. Thus, there exists d € > A%ab with d € ¢? + A%. Hence

ac € a(a® +b%) C a® + ab® = a + ab® = q,
so ac = a. Similarly, bc = b and ¢d = ¢. Thus, ad = (ac)d = a(cd) = ac = a and, similarly,
bd = b. Say d € Y eZab. Then ab = abd € Y e?a*b* C A?. This implies ab € A2, so ab = a?b?.
Thus, a? = a?d € Y e?a®b = 3" e?ab = Y e2a?b? and, similarly, v* € 3" e?a?b?. Since Y e?a?b? is
a singleton set, this implies a®> = ab = b?. Finally,

a=a® = aa® + ab® = a(ab) + ab® = a*b + ab® = (ab)b + ab® = (ab)b = b*b = b* = b,

as required. O
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defn:mrrealreduced
Definition 1.8.7. A multiring satisfying —1 ¢ >_ A% and the equivalent conditions of Proposition
will be called real reduced multiring. A morphism of real reduced multirings is just a morphism

of multirings. The category of real reduced multirings will be denoted by MR eq-
cor:7.6marshall

Corollary 1.8.8 (Corollary 7.6 of [47]). A multiring A is real reduced if and only if the following
properties holds for all a,b,c,d € F':
i-140;
i - a® =a;
iii - c€a+ab’®=c=a;
i - ¢ € a®+b? and d € a® + b* implies c = d.

Proof. As noted above, (ii),(iii) and (iv) imply > A% = A2, If =1 € 3_ A2, then —1 = a? for some
a,s0 0 € 1+ a?. By (iii), 0 = 1 and this contradicts (i). Thus —1 ¢ >~ A%. Now apply Proposition
to conclude that A is a real reduced multiring. The converse is immediate. O



Chapter 2

Hyperfields, Special Groups and
Quadratic Forms

There are many of abstract theories of quadratic forms. The first ones (abstract Witt rings,
quaternionic structures and Cordes schemes [46]) have appeared in the late 70s, by the hands of
M. Marshall and C. M. Cordes, with the following central target: analyze the existence (or not)
of fields with certain properties relating to quadratic forms. In the decade of 80’s, appears the
Marshall’s abstract space of orderings (AOS) [48]: they are important because generalize both
theory of orderings on fields and the reduced theory of quadratic forms. But only in the early 90’s
that arise a (finitary) first-order theory that generalizes the reduced and non-reduced theory of
quadratic forms simultaneously. This theory is the special groups of F. Miraglia and M. Dickmann
[28]. At that moment, the focus was to look at generalizations for the theory of quadratic forms
with invertibles coefficients (fields, von Neumman rings, semi-local rings..., in general, rings with a
good amount of invertibles). In the mid 90’s, Marshall generalizes the abstract ordering spaces to
rings, and called his new theory by “abstract real spectra” (ARS), in a first attempt to develop a
theory of quadratic forms over (general) coefficients on rings. The ring-theoretic case is much more
difficult to deal than the field one, the isometry is not well behaved and an algebraic counterpart
of the abstract real spectra just appears in years 2000, with the real semigroups (RS) of Dickmann
and Petrovich.

Following the work of professors F. Miraglia and M. Dickmann, through a fruitful and successful
partnership between IME-USP and IMJ-PRG (Paris 6,7), which began in the 1990s, the three
authors of this paper continue to expand the boundaries of abstract theories of quadratic forms,
carrying forward the ideas of Dickmann-Miraglia’s works, making the IME-USP a center for the
development of such theories.

All those abstract theories constitute categories that are equivalent, or dually equivalent to
full subcategories of each other. Also, each one has a particular motivation and advantage. In
particular, some of them are categories of first-order theories and the corresponding language
homomorphisms, thus allowing the application of model-theoretical notions and methods in this
subject of algebra.

In [28], [32] and [33] are considered special groups and real semigroups. The former treats
simultaneously reduced and non-reduced theories but focuses on rings with a good amount of
invertible coefficients to quadratic forms. The latter has the advantage of potentially consider
general coefficients of a ring, but only addresses the reduced case. Both are first-order theory, thus
they allow the use of model theoretic methods.

M. Marshall in [47] introduced an approach to (reduced) theory of quadratic forms trough the
concept of multiring: this seems more intuitive for an algebraist, encompassing some techniques of

31
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ordinary commutative algebra, encodes copies of special groups and real semigroups (see [24]), but
still allows the use of model-theoretic tools.

In this Chapter we study the relations between special groups, real semigroups and multivalued
structures. The main results are Theorem [2.3.4], 2.3.7] [2.3.10|and [2.5.4], which characterize precisely
the necessary conditions for a hyperfield/multiring come from a special group/real semigroup.
Proposition [2.4.3] “ 3| deals with a question posed by the authors of [37]. We also got a new and
interesting Example of real semigroup (| m A/mT for A = C(X,R) and T = A? Nnzd(A),
where X is a Ty topological space.

2.1 Special Groups

extrel
Definition 2.1.1 (Extension of a Relation). Let A be a set and = a binary relation on Ax A. We
extend = to a binary relation =, on A™, by induction on n > 1, as follows:

i - =1 1is the diagonal relation Ay C Ax A
" - =9==.
it - if n >3, (a1, ...,an) =p (b1,...,bn) if and only there are x,y, 23, ..., z, € A such that

<a1>$> = <blvy>
(a9, ..., an) =n—1 (T, 23, ..., 2n) and

<b27 ceey bn> =n—1 <y7 23y eeey zn>

Whenever clear from the context, we frequently abuse notation and indicate the aforedescribed

extension = by the same symbol.
defn:sg

Definition 2.1.2 (Special Group, 1.2 of [28]). A special group is an tuple (G,—1,=), where
G is a group of exponent 2, i.e, g> = 1 for all g € G; —1 is a distinguished element of G, and
=C G x G x G x G is a relation (the special relation), satisfying the following azioms for all
a,b,c,d,x € G:

SG 0 = is an equivalence relation on G?;
a,b) = (b,a);

SG 1 (
(@, —a) = (1, =1);
(
(

SG 2

SG 3 (a,b) = (c,d) = ab = cd;

< =) > <a7 _C> = <_b’ d>;
SG 5 (a,b) = (c,d) = (ga, gb) = (gc,gd), for all g € G.

SG 4 (a,b)

SG 6 (3-transitivity) the extension of = for a binary relation on G3 (as in s a transitive
relation.

A group of exponent 2, with a distinguished element —1, satisfying the axioms SG0-SG3 and
SGH5 is called a proto special group; a pre special group is a proto special group that also
satisfies SG4. Thus a special group is a pre-special group that satisfies SG6 (or, equivalently, for
each n > 1, =, is an equivalence relation on G™.)
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A n-form (or form of dimension n > 1) is an n-tuple of elements of a pre-special group G. An
element b € G is represented on G by the form ¢ = (ay,...,a,), in symbols b € Dg(p), if there
exists by, ..., b, € G such that (b, ba, ..., b,) = .

A pre-special group (or special group) (G, —1,=) is:

o formally real if —1 ¢ J, .y Da(n(1)) ;
e reduced if it is formally real and, for each a € G, a € Dg((1,1)) iff a = 1.

Now, some examples:
ex2.2

Example 2.1.3 (The trivial special relation, 1.9 of [28]). Let G be a group of exponent 2 and
take —1 as any element of G different of 1. For a,b,c,d € G, define {(a,b) =; (c,d) if and only if
ab = cd. Then Gy = (G,=¢,—1) is a special group ([28]). In particular 2 = {—1,1} is a reduced
special group.
ex2.3

Example 2.1.4 (Special group of a field, Theorem 1.32 of [28]). For F be a field, denote
F=F\{0}, F?={a2?:x € F} and 2F? = {3 icrx? : 1 is finite and x; € F?}. Let G(F) = F/F2.
In the case of F is be formally real, we have SE? is a subgroup of F, then we take Greg(F) =
F/SE2. Note that G(F) and G eq(F') are groups of erponent 2. In [28] they prove that G(F')
and Gred(F) are special groups with the special relation given by usual notion of isometry (see for
instance, [43]), and G .q4(F) is always reduced.

defnmorph
Definition 2.1.5 (1.1 of [28]). A map (G,=qg,—1) A (H,=p,—1) between pre-special groups
1s a morphism of pre-special groups or PSG-morphism if f : G — H is a homomorphism
of groups, f(—1) = —1 and for all a,b,c,d € G

(a,b) =¢ (¢, d) = (f(a), f(b)) =u (f(c), [(d))

A morphism of special groups or SG-morphism is a pSG-morphism between the correspon-
dents pre-special groups. f will be an isomorphism if is bijective and f, f~' are PSG-morphisms.

It can be verified that a special group G is formally real iff it admits some SG-morphism
f:G—2.

The category of special groups (respectively reduced special groups) and theirs morphisms will
be denoted by SG (respectively RSG). Now, we will analyze the connections between the SG and
MF. For this, we need more results about special groups and their characterization. For this,
we use the results proved in Lira’s thesis [22]. Consider these axioms concerns about a group of
exponent 2 with a distinguished element:

SG 7 VaVa' Y ViVt Vy[(a,d) = (z,t) A (¢, 1) = (1,y)]
= Ja” 3s3s'[(a,a”) = (y,5) A (s,5") = (1, 2)].

An equivalent statement for SG7 is

U Dg(l',t) = U DG(y7S)

tEDG(l,y) SEDg(l,x)
for all z,y € G.

SG 8 For all forms fi, ..., f, of dimension 3 and for all a, as, as, bs,bs € G,

<(1, a27a3> = fl =...= fn = <a7b27b3> = <CL2,0,3> = <b27b3>'
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SG 9 VaVbVeVd[{a,b,ab) = (c,d,cd) = (a,b,ab) = (d, c, cd)]

sgbmoreasy
Proposition 2.1.6 (A. de Lima, [22]). Let (G,—1,=) be a pre-special group. The following are
equivalent:

i- Gk SG6
ii - G |= SGTASGS

iit - G = SG9
1.23chico
Theorem 2.1.7. Let (G,=,—1) be a pre-special group. The following are equivalent:
a - = is 3-transitive (i.e, transitive for 3-forms, and hence G is a special group).
b - = is transitive (i.e, transitive for n-forms for alln > 2).
¢ - For all n > 2, for all n-forms ¢, over G and all 0 € Sy,
w =1 implies ¢ = 7.
d - For alln > 2, for all n-forms p, ¥ over G,
e =0 iff o=
e - For all 3-forms ¢ and all by, b2, b3 € G,
¢ = (b1, b2, b3) implies ¢ = (b2, b1, b3).
1.24chico

Corollary 2.1.8. Let (G,=,—1) be a pre-special group, ¢ and ) be forms over G and a,b,z,y € G.
The following are equivalent:

a - G is a special group.

b - For all forms @,y over G and all a,b,z,y € G
¢ =(a,b) ® ¢ and {a,b) = (z,y) = ¢ = (z,y) S V.
¢ - For all 3-forms p,v over G and all a,b,c,x,y € G

¢ = (a,b,¢) and (a,b) = (x,y) = ¢ = (2,y, ).
2.3chico
Definition 2.1.9 (2.3 of [28]). Let G be a special group and let A C G be a subgroup. We say that
A is saturated if for all a € G,

a€ A= Dg(l,a) CA. (sat)

Note that if, in addition, —1 € A, then A = G. Thus we will reserve the noun saturated for those
subgroups satisfying [sat] such that —1 ¢ A, while G will be called the improper saturated subgroup
of itself.

2.4chico
Lemma 2.1.10 (2.4 of [28]). Let G be a special group and A a subgroup of G.
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a - The intersection of any family of saturated subgroups is saturated. The union of an upward
directed family of saturated subgroup is saturated.

b - The following are equivalent:

1 - A is saturated.

1 - For any Pfister forms p,v over A and any b,c € A
Da(¢), Da(v) € A= Da(bp & cip) C A.

i1i - For any Pfister form ¢ over A, Dg(p) C A.

2.2 Special Hyperfields

sg.to.mf
Proposition 2.2.1. Let (G,=,—1) be a special group and M(G) := GU{0} where 0 := {G}. Then
(M(G),+,—,-,0,1) with operations

Oifa=0o0rb=0
e a-b=
a - b otherwise

{b}ifa=0

{a}ifb=0

M(G)ifa= —b, and a #0
D¢(a,b) otherwise

e at+b=

s a hyperfield.
Proof. Firstly, note that + is well-defined. Then, we verify the conditions of Definition [1.2.7]
i- For this, we check the conditions of definition [1.2.1

a-dea+0={a} imply d =a, and then a € d+ (—0) and 0 € (—a) +d. Let a = —b and
d€a+(—a)=M(G). Ifd=0, thena € d+(—(—a)) =0+a and —a € (—a)+0. If d # 0,
then a € Dg(d,a) and —a € Dg(—a,d) so a € d+ (—(—a)) =d+a and —a € (—a) + d.
Finally, let a,b # 0 with a # —b, and d € a+b. Then there exist g € M(G)\ {0} such that
(d,g) = (a,b). By SG4, (d, —a) = (—g,b) (and (b, —g) = (—a,d) by SG1). So a € d+ (—b)
and b € (—a) + d.

b- (y € x +0) < (z = y) is an immediate consequence of the definition of sum.

c-a+0=0+aand a+ (—a) = M(G) = (—a) +a. Let a,b € M(G), a,b # 0 and a # —b.

Since Dg(a,b) = Dg(b,a), we have a + b = b+ a proving the commutativity. Observe
that if a,b # 0 with a # —b, then 0 ¢ a + b.

d - Now we prove the associativity. Let a = 0 (the cases b = 0 and ¢ = 0 are analogous).
Then 0+ (b+¢)={0+g:g€b+ct=b+cand (0+b)+c= ({b})+c=b+c
Now, let a,b,c # 0 with a = —c.

(a—l—b)—l—(—a):U{g—I—(—a):gEa—i—b}zM(G)(I)
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because a € a + b, and
+ b+ (—a) = J{a+h:heb+ (—a)} = M(G) (IT)

because —a € b+ (—a). So (I) = (II) and (a 4+ b) + (—a) = a+ (b+ (—a)). For the case
a,b,c # 0, a = —b (the cases b # —c is analogous) we have

(a+(—a)) +e=|J{g+c:ge MG} =M(G) ()

and
a+((—a)+c)=|J{a+h:he(—a)+c} =M(G)IV)

because —a € (—a) + ¢. So (III) = (IV) and (a + (—a)) + ¢ =a + ((—a) + ¢). Finally, let
a,b,c#0,a# —b, b# —c and a # —c.

(a+b)+c:c+(a+b):U{c+g:g€a+b}: U D¢(c,g) (V)

g€D¢g(a,b)
and
++o)=|J{h+ta:heb+ct= |J Da(ha) (V)
hEDG(b,C)
By SG7 (applying SG5) we have (V) = (VI). Then (a +b) + ¢ = a + (b + ¢) for all
a,b,c e M(G).

ii - We conclude that (M(G),-,1) is a commutative monoid as consequence of (G, -, 1) being an
abelian group and the extended definition of - to M(G). Beyond this, we have that every
nonzero element of M(G) has an inverse.

fii- a-0 =0 for all a € M(G) is a consequence of the extended definition of multiplication to
M(G).

iv- Ifa=0or a# —b, then (d € a+b) = Vg(gd € ga+ gb) is direct consequence of the definition
of sum. Next this, let a,b # 0 with a # —b and d € a +b. By SG5 gd € ga + bg. Thus we
have g(a + b) C ga + gb for all a,b,g € M(G).

O
cor:equivl

Corollary 2.2.2. The correspondence G — M(G) defines a full and faithful functor
M:SG — MF.

Proof. Let f: G — H be a SG-morphism. We extend f to M(f): M(G) — M(H) by M(f)1a=f
and M (f)(0) = 0. By the definition of SG-morphism we have M(f)(1) =1, M(f)(—a) = —a and

M(f)(ab) = M(f)(a)M(f)(b). Since d € Dg(a,b) implies f(d) € Dy (f(a), f(b)) we have
d € a+bimply M(f)(d) € M(f)(a)+ M(f)(b) for all a,b e M(G),

so M(f) is a multiring morphism. Now, let f: G — H and g : H — K be SG-morphisms. Since
M(fog) lg= fog= M(f) lg oM(g) 1g and M(f o g)(0) = 0 = M(f) o M(g)(0), we have
M(fog)=M(f)oM(g). Then M : SG — MF is a functor. This functor is faithful, because if G
and H are special groups and f,g: G — H are SG-morphisms such that
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M(f),M(g) : M(G) — M(H) are equal, then

M(f)lam@engoy = M (9| oy
and therefore f = g, since M(G) \ {0} = G. O
prop:missues
Proposition 2.2.3. Let G be an SG and M(G) as above. Then:
i-a?=1 forallac M(G)\ {0};
it-1€l+a foralae M(G);
i1t - 1+ a is closed by multiplication for all a € M(G);

w - If there exists x,y,z € M(G) such that

axr = cy a€c+y
a=xz and<bex+z

d=yz cey+z
then there exists t,v,w € M(G) such that

bt = cv bec+w
b=tw and{actt+w
c=vw dev+w
Proof.
i- Is just the fact of G be a group of exponent 2.
ii - Follow immediately.

iii-If a =0o0ra= —1itis trivial. If a # 0,—1, given xz,y € 1+ a = Dg(1,a), we have
(x,za) = (1,a) and (y,ya) = (1,a). Multiplying the first equality by 1, we get

(ry, zya) = (y,ya) = (1,a)
and then zy € Dg(1,a) =1+ a =g.

iv - Follow from 3-transitivity.

O]

defn:special.mf
Definition 2.2.4. A hyperfield F satisfying the properties i-iv of Proposition [2.2.5 will be called a
special hyperfield (SMF). Note that, if G is a SG, then M(G) is a SMF.

mf.to.special
Theorem 2.2.5. If F is a special hyperfield the (F \ {0},=, —1) is a special group where

(a,b) = (c,d) iff ab=cd and a € c+d

Proof. By (i), we have that (F'\ {0}, 1) is a group of exponent 2. Now, we check each axiom of
Definition [2.1.2)
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SGO - By (ii) 1 € 1+ ab, so ab € 1 + ab and a € b+ a. Since ab = ab, then (a,b) = (a,b), i.e, the
relation = is reflexive. If (a,b) = (¢, d), then ab = ¢d and a € ¢+ d. Then ab € ¢b + db, so
by ab = cd, we have cd € ad + db and then ¢ € a +b. So (¢,d) = (a,b) and = is symmetric.
Finally, suppose that (a,b) = (¢,d) and (c,d) = (e, f). First, ab = ¢d and cd = ef implies
ab = ef. Second, in order to show that a € e+ f, notethat a € c+d=ace€ l+cd=1+ef
and ¢ € e+ f = ce € 1 + ef; then by (iii), we have ae € 1 + ef and so a € e + f. Therefore

(a,b) = (e, f)-

SG1 - As F'is a hyperfield, ab = ba. By (ii), 1 € 1+ ab, then ab € 1+ ba and b € a + b. Therefore
(a,b) = (b,a).

SG2 - Since 1 € 1 — a, we have a € 1 — 1. Therefore (a, —a) = (1,—1).
SG3 - Follow by definition.
SG4 - (a,b) = (c,d) = ab=cd and a € c+d.

ab = c¢d = —abbc = —bced = —ac = —bd fflj}l

acc+d=adcl+cd=1+ab=>dca+b=ac-b+d f@?%l

so by [2.1] and [2.2] follow that (a, —c) = (=b, d).
SG5 - (a,b) = (¢,d) = ab = cd and a € c+d EQ (ga)(gb) = (gc)(gd) and ga € gc + gd =
(ga, gb) = (gc, gd).

SG6 - We use the equivalences in Theorem (a,b,ab) = (c,d,cd) = there exists z,y,t €
F'\ {0} such that

(a,z) = {(c,y) ar=cyanda€c+y
(b,aby = (x,z) = qa=zzandbe€x+z2
(d,cd) = (y, z) c=yzanddey+z

then by (v) there exists t,v,w € F'\ {0} such that

bt=cvand bec+v (b,t) = (c,v)
b=twandact+w = 1 (a,ab) = (t,w)
d=vwanddev+w (d, cd)y = (v, w)

this implies (b, a, ab) = (¢, d, cd).
]
cor:equiv2

Corollary 2.2.6. There is a functor S : SMF — SG.

Proof. In the objects of SMF, we define S(F) = F'\ {0} since the special group as stated in
Theorem Now, let o : F' — K be a SMF-morphism. Define S(0) = o|p\0;- We have that
S(o) is a group homomorphism with S(o)(—1) = —1. If a,b # 0 and ¢ € a + b, ¢ # 0, then there
exists d € F'\ {0} such that (a,b) =g(r) (c,d), and as ¢ € a + b — o(c) € o(a) + o(b), we have
(0(a),a (b)) =s(k) (o(c),0(d)). Therefore:

(c€a+b—o(c)€a(a)+a(b) = (c€ Dg(a,b) = a(c) € Dgxy(o(a),a(b)))
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And S(o) is a SG-morphism. Applying the same argument, we proof that S(o7) = S(0)S(7).
Hence, S is a morphism. O
teo:sgsmfequiv

Theorem 2.2.7. There exist an equivalence of categories between SG and SMF'.

Proof. By the Corollaries and we have functors M : SG — SMF and S : SMF — SG.
We will proof that M oS = Idgpyp and So M = Idgg.

i- MoS = Idsyr. Let F bea SMF. How S(F) = F\ {0} and M(S(F)) = S(F)U{0}, we have
M(S(F)) = F. Next, let 0 : F'— K be a SMF-morphism. We have that S(o) = o|p\ o, and
M(S(0)) is defined with the extension S(o)(0) = 0. Therefore M (S(c)) = 0 and M o S =
Idspr.

ii- SoM = Idsg. Let G be a SG. Again, M(G) = G U {0} and S(M(G)) = M(G) \ {0}.
Hence S(M(G)) = G. Next, let f: G — H be a SG-morphism. How M(f) is deﬁned with
the extension f(0) = 0 and S(M(f)) = M(f)lm)\{o}, we have that S(M(f)) = f and
S oM = Idgq, finalizing the proof.

O
psgpsmfhell

Theorem 2.2.8. Let G be a pre-special group and consider (M(G),+,—,0,1), with operations
defined by

v b{OifGZOOTbZO {BYifa=0
a - b otherwise «atbo {a}ifb=0
M(G)ifa=—b, anda #0

e —(a)=(-1)-a D¢ (a,b) otherwise

Then M(G) is a pre-special multifield. Conversely, if F' is a pre-special multifield then (F, =r
,—1) is a pre-special group, where

(a,b) =F (¢,d) iff ab=cd and a € ¢+ d.

To prove it we will need a result from [2§].
1.21chico

Lemma 2.2.9 (Lemma 1.21 of [28]). Let (G,=,—1) be a pre-special group. Let a,b,c,x,y be
elements of G and ¢, be forms over G. Assume that (a,b) = (x,y). Then

i - If o = {(a,b) then ¢ = (x,y).

it - For all 0 € S3, (a,b,c) = (x,y,c)?, where
(,y,0)7 := (o(e1),0(e2),0(e3)) with ey =z, e2 =y, e3 = c.

Proof of Theorem[2.2.8, Let F be a pre-special hyperfield. The argument to proof that (F, +1,=)
is a pre-special group is the same of the proof of Theorem 3.18 in [24].

Now let (G,-,1,=) be a pre-special group an M(G) as above. Firstly, note that by SG2 and
the fact that = is an equivalence relation we have a —a =1—1= M(G) for all a € G. Moreover
if z,y € 14+ a= Dg(1,a) with a # —1, we have (x,za) = (1,a) and (y,ya) = (1,a). Using SG5
(and the fact that = is an equivalence relation) we get that (1,a) = (z,za) imply

((@y)1, (zy)a) = ((zy)z, (ry)ra) = (y,ya) = (1, a),
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proving that zy € Dg(1,a) =1+ a.

Therefore, once we verify the conditions of Definition we get that (M(G),+,-,0,1) is a
pre-special hyperfield.

The verification of the conditions in Definition is quite straightforward except perhaps by
associativity, which we will prove here. We want to show that for all a,b,c € M(G),

(a+b)+c=a+ (b+c).
If 0 € {a,b,c} we are done. Now let 0 ¢ {a,b,c}. We prove that
a+ (b+c¢) = Dgl(a,b,c).
In fact, if z € a + (b+ ¢) then x € a + y for some y € b+ ¢. Then we have v,w € G with
(2, v) = {a,y) and (y,w) = (b,0).

These isometries imply that (x,v,w) = (a,b,c) and then x € Dg(a,b,c). Conversely, let = €
D¢(a,b,c). Then
<CC,2,’2,Z3> = <CL, b7 C)

for some z9, z3 € (G, and hence, there are t1,ts,t3 € G with
(x,t1) = (a,ta), (22,23) = (t1,t3) and (b, c) = (ta,t3).
Therefore x € a + to with to € b+ ¢, so x € a+ (b + ¢). In particular, if (a,b, c) = (z,y, z), then
a+(b+c)=z+ (y+2).
Since a,b € (a,b) and (a,b) = (b, ), using Lemma [2.2.9 we have
(a,b,¢c) = (c,a,b) =a+ (b+c)=c+(a+b)=(a+b)+ec

Then, (M(G),+,—,-,0,1) is a pre-special hyperfield. O

2.3 A Special Group associated to domains via Marshall quotient

Let F be a field. There is an almost canonical way to associate a special group to F' (described
in Example : consider G := I / F? with the isometry given by the usual isometry provide by
the algebraic theory of quadratic forms. As we have already seen, G is the multiplicative group
of units of a special hyperfield, and in this sense,

MFIGFU{O}gF/mFQ.

In other words, we put in correspondence special groups and special hyperfields just adding (or
erasing) a zero element.

One of the main purposes of this work is extend the above situation, M4 = A/, T, where A
is a commutative ring with unit and M4 is a formally real semigroup. This section deals with the
case where A is a domain, i.e, rings without zero divisors. Of course, we fatally need to impose
some conditions to our structures:

Definition 2.3.1. An hyperbolic multiring is a multiring R such that 1 —1 = R.
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Note that if R is hyperbolic and a € R*, then R = a — a. For a ring R (i.e, the sum is
univalorated), R never is hyperbolic, since 1 —1 = {0}. However, this is not a problem, since
the inclusion functor Rings < M Rings is not the most natural to be considered in the quadratic
forms context. Considering the special group of a field G(F) = F /F 2 and its special hyperfield
associated, M(G(F')) = G(F)U{0}, we get that M (G(F')) is hyperbolic. Hence, the desired functor
to keep in mind is M o G : Fieldsys — SMF'.

Let R be a ring without zero divisors. The main goal of this section is to describe conditions
for a subset T C R\ {0} of R in such a way that R/,,T is a special hyperfield and therefore,
(essentially) a special group. Of course, here is an abuse of notation: when we say that “R/,,,T is
a special group” we mean that “the induced structure in (R/,,,T") \ {0} provides a special group
strucuture”.

We we seek for inspiration in the analogous conditions for the field case (see for instance,
Definition 1.28 of [28], and in particular, the “completing squares” Lemma 1.29). After months of
hard work, we obtained the following Definition:

Definition 2.3.2. A Dickmann-Miraglia multiring (or DM-multiring for short) E| S a
pair (R,T) such that R is a multiring, T C R is a multiplicative subset of R\ {0}, and (R,T
satisfy the following properties:

DMO R/, T is hyperbolic.

DM1 Ifa # 0 in R/nT, then @ = 1 in R/, T. In other words, for all a € R\ {0}, there are
r,s €T such that ar = s.

DM2 Foralla€ R, (1—a)(1—a)C (1—a) in R/nT.

{

then exist v € T + Z such that @ € 5+ v and vb € Ty + az in R/,T.

DM3 For all a,b,z,y,z € R\ {0}, if

<

Sl

S
* in R/nT,
cy+

> Q)
<
Y

If R is a ring, we just say that (R,T) is a DM-ring, or R is a DM-ring. A Dickmann-Miraglia
hyperfield (or DM-hyperfield) F is a hyperfield such that (F,{1}) is a DM-multiring (satisfy DMO-
DM3). In other words, F' is a DM-hyperfield if F is hyperbolic and for all a,b,v,z,y,z € F*,

i-a%=1.

it- (1—a)(1—a)C(1l—a).
€ b
wi - If {a T then exist v € x + z such that a € y + v and vb € xy + az.

Remark 2.3.3. These Azioms above deserves some explanation:
i - Since R is a domain and 0 ¢ T, a=0 in R/, T iff a = 0.

it - DM1 entails that R/ T is a hyperfield.

'The name “Dickmann-Miraglia” is given in honor to professors Maximo Dickmann and Francisco Miraglia, the
creators of the special group theory.
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iit - In DM2, the expression (1 — a)(1 — a) means multiplication of sets, i.e,

(1-a)(l—a):={z-y:z,ycl—a}l.

iv - Looking at the expression in DMS3, from

)
ISy,

> S

S
cy+ in R/mTa
€T+

g <l
o N

IS]

and the properties of multiring, we obtain
v ETY+ (TE+YE+Z) DTG+ ET+ Y+ 2) in R/pT

and

aeT+bCT+Yy+7Z in R/pT.
Hence, we can interpret the condition vb € Ty + az in R/,,T as a way of “controlling” the
product vb to “not escape so much” under the set T + 7 + Z. In the field case (when we

can “change” € by =), under the Marshall’s quotient the condition M3 is not necessary (see
Theorem 1.32 of [28]).

v - In DM3, if 0 € {a,b,x,y, 2z} the aziom is trivially valid.
teopmf

Theorem 2.3.4. Let (R,T) be a DM-multiring and denote Sm(R,T) = (R/»T'). Then Sm(R) is
a special hyperfield (thus Sm(R,T)* is a special group).

Remember that a special hyperfield is a hyperfield F' satisfying:
SMF1 a2 =1 for all a € F;
SMF2 1 €1+4a forall a € F,
SMF3 1 + a is closed by multiplication for all a € F;

SMF4 For all a,b,c € F,

a €cHcp a €d+dl
If 3pe Fsuch that {b €p+ap then 31 € Fsuchthat {b €l+al
d €p+cp. c €l+dl.

Proof of Theorem[2.3.7] The properties [SMF1]-[SMF3] are imediately consequence of the axioms
of sum in a multiring and [MO0]-[M2] in the Definition of DM-multirings. Then, we shall prove
[SMF 4]: we will rewrite de argument of Theorem 1.32 in [2§]. In order to do this, we use the
language of special groups. If we prove that R/,,,T is a special group, then we prove that it is a
special hyperfield (since [SMF 4] is precisely the translation of the axiom [SG9] for special groups
to the language of hyperfields).

Here, the special relation in R/,,T is defined by the rule

(a,b) = (¢,d) < [ab=cd and @ € ¢+ d] (in R/,,T).
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Translating this to a condition with coefficients in R, we have

(a,b) = (¢,d) < [abv = cdw and ar € cs + dt] for some 7,5,t,v,w € R.

Using [SMF1]-[SMF3] and the multirings properties we obtain the validity of [SGO-SG5] (for more
details, see Theorem 3.18 of [24]).

Hence by [2.1.6] we only need to deal with [SGY] (see condition (5) in Theorem 1.23 of [28]), and
it is enough to show that

|

<67 b? E> = (Ea Y, E> imphes <a7 Ba E> <y7 z, >

Z,7,z). Then, there exist «a, 3,7 such that

(@.a) = (#.8), (0,0 = (@7) and (7,%) = (8,7). *%(Z3)

Suppose (@, b,¢) = (

Then, there exists pq, qa,7a,Pg,qs, 73 € T such that

apa € 14 + Bra. %% 5

Bpg € yqs + zrp. eq('2?.53|
Therefore @ € T + b and b € § + z. Applying [DM3], exists
TET+7Z, Y7 6
such that
GET+T. %7
We discuss two cases.

Case I: v =0 . Then, from equation we have @ = y. Consequently, the third isometry in
equation can be written as (@,z) = (f,7). This isometry, the first one in equation
and [SG4] yield _

<Ta _a> = <a, _B> = <_§7 i>7
and so (7, —a) = (—%,7%). Another application of [SG4] yields (7,z) = (@, %), which together
with the second isometry in equation gives (7,z) = (b,¢). Then, we have
(a,7) = (a,z), (b,e) = (7,%), and (T,%) = (T, %),
which shows that (a,b,¢) = (@, 7, %), as required.
Case II: v # 0 . Equation 2.7 implies @ € § + 7, while equation [2.0] yields © € T + z. Therefore,

(a,vay) = (y,v) and (v,v72) = (T, Z).

These isometries imply that, in order to prove that (@, b,¢) = (y,7, %), it is enough to verify
that (vay,vzz) = (b,¢). From the isometries in equation we get @ = axf, ¥ = yzf and
(b,¢) = (@, 7). Then, we have (b,¢) = (azxf3, z).

Hence, what is needed is equivalent to (azf3,23) = (vay,vzz). Since the discriminants are
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the same, it is enough to prove az( € vay + vTz.

axf € vay + Tz < axPfaxrv € Vayaxrv + VTZaTv < vPB € TY + az.

then, it is enough verify that v3 € 7y + @z. Moreover, axiom [DM3], already gave to us that
©B3 € Ty + @z, which finalize the verification of [SG6].

O

Example 2.3.5. Let X, be the kaleidoscope multiring (as defined in . Of course, if n > 2,
X, is never a DM-hyperfield. However, considering T = X2\ {0}, since X2 = {0,1,2,....,n} we
get

K = Xo/mT = X1 = {~1,0,1}.

Since X1 is a special hyperfield, (X,,T) is a DM-multiring.

Example 2.3.6. Let p be a prime integer and consider the Hy, as defined in and T =
S HX\{0}. Then (Hy,T) is a DM-hyperfield since Hy/mT is a real reduced hyperfield.

The above Theorem says that our DM-hyperfields are compatible with the special group struc-
ture obtained using Theorem 1.32 of [2§].
sgf
Theorem 2.3.7. Let A be a domain with2 # 0. Consider T C A be a proper preordering or T = A?
and denote T* = T\{0}. Then A/, T* is a special hyperfield, and therefore Gp(A) := (A/mT*)\{0}
18 a spectal group with representation given by

D¢, (a,b) =a+b={¢:cr=as+bt for somer,s,t €T*}.

Moreover, Gr(A) is reduced if and only if T is a proper preordering.

Proof. By Theorem we only need to proof that A/,,T* is a DM-hyperfield. First of all, note
that

For all a,b € A*, @a,bca+b. lefuf.%&

If a = £b is immediate (for example, a(5a)? = a(4a)? + a(3a)? or a(3a)? = a(5a)? — a(4a)?, in the
case where 3,5 # 0). If a # +b, then

ala+b)? = ala — b)? + b(2a)?

and a® + b2, (a — b)?,2a? € T*. Hence @ € @ + b. Similarly we conclude b € @ + b.
Now, we verify the axioms [DMO0]-[DM3].

DMO Of course, 0 € 1 — 1. If a # 0, and a # &1, then
4a=(a+1)%—(a—1)>2%
and hencea€1—1. Ifa =1 or a = —1, then
9=5>-4%and —9=4>-5
testimony that 1,—1 € 1 — 1. Therefore A/,,T* is hyperbolic.

DM1 Let @ # 0 in A/,,T. Then a? € T, hence a> = 1.



2.3. A SPECIAL GROUP ASSOCIATED TO DOMAINS VIA MARSHALL QUOTIENT 45
DM2 Suppose without loss of generality that a € A*, a ¢ T (and hence @ ¢ {—1,0,1}). Now, let
@, €1+a, with ar = r + as, By =t + aw, for some x,y,r,s,t,w € T*. Then

(r + as)(t + aw) = (rt + a®sw) + (st + rw)a.
If Tisa preordering, then rt + a?sw € T* and st +rw € T*. If T = A?, then r = r%, s = s%,
t =12, w = w? for some 71, s1,t1,w; € A*. Therefore
(r + as)(t + aw) = (rt + a*sw) + (st + rw)a
= a’sw + rt — 2rysytywia + 2r1sit wia + (st 4+ rw)a
= (a*sw — 2r1s1tywia + rt) + (st + 2rys1tiwy + rw)a
= (a®s2w? — 2ris1tywia + r283) + (5383 4 2risitwy + riwda
(aslwl — 7“1251) + (81t1 + 7“1101)2&.
If (asywy —rit1)? = (s1t1 +71w1)? = 0 we have 7 + at = 0 or s + aw = 0, and hence r = —at

or s = —aw, and both cases imply —a = 1. If (asyw; — rit1)?, (s1t1 + r1w1)? # 0 then
(asywy — r1t1)?, (s1t1 + riwy)? € T* and we are done. If (asyw; — r1t1)? = 0, using

(r +as)(t + aw) = (s1t; + mwy)?a=>af =ac1+a.
If (s1t1 + m1w1)? = 0, using
(r +as)(t + aw) = (asyw; —rt1)* =af =1¢€1+a,

completing the proof.

DM3 Let

|

8 \

+ in A/, T,
+

0~\ @\
@\
Y

th

with @, b,Z,7,% # 0. Then, there exists pa, ¢a, Ta, Pb, @b, 7 € T such that

apg = Tqq + bry. eqz(’éz.g%l

bpy = yab + 21y, %5 11
Therefore
apaPy = TPbda + bpsra = TPpda + (Yqb + 270)Ta = TPbda + Y@oTa + 2TaTp.
Now, consider
V= XIPpqa + 2TaTb- eq&:ﬁ.ﬁl
Note that v € T 4+ z and

apaPy = YqpTra + v, eq@:ﬁ??l

with @ € 7+ 7. In order to complete the proof, we only need to verify that vb € 7y + @z. In
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fact,

vbpy = (Tppqa + 2rams) (Y + 274)
= TYPpGaly + T2PLGaT + YZQTaTy + 22TarE
= TYPbdads + 2(TPeaTs + YQoTaTs + 2Tar})
= 2YPpqaQs + 2(TPpqars + (Yqb + 276)7aTs)
= TYPqaQy + 2(TPyqaTy + bPsTaTs)
= 2YPpqadp + (2qa + bra)zpyrs
= TYDPbGaqp + APaZPbTh
= ZYPpqaqb + AZPaDbTb,

and hence, vb € T7 + @z.

O

Corollary 2.3.8. Let D be a domain with 2 # 0 and consider the polynomial ring D[x1, ..., xy].
Let T C Dlxy, ..., x,] be a preordering or T = (D[z1, ...,x,])%. Then D[zy, ..., x,]/mT* is a special
group.

Theorem 2.3.9. Let F' be a hyperfield satisfying DMO-DM2. Then F satisfy DM3 if and only if
satisfy SMF4. In other words, F' is a DM-hyperfield if and only if is a special hyperfield.

Proof. After Theorem [2.3.4] we only need to prove that if F' is a special hyperfield then F' satisfy
DM3. Let a € x + b and b € y 4+ z. Then by definition, a € x 4+ y + 2z, and then, there exist some
v € x + z such that a € y + v. We need to prove that vb € xy 4+ az. We discuss two cases.

Case I: v =0 . Then a =y and z = —x. Moreover

0=vb€ar —ax =xy+ az.

Case II: v # 0 . Here we consider the special group structure in F*. Moreover, for all a,b € F™*,
a,b € a+b. Considering a € x + b and b € y 4 z, we get the above isometries

(byz,x) = (z,byz), (axb,a) = (x,b) and (y, z) = (byz, b).

Then by definition (byz, axb,a) = (x,y, z).

Moreover, considering a € y + v and v € x + z, we get the above isometries
(va2,9) = (y, vaz), (ayv,a) = (y,0) and (z,2) = (vaz, v).

Then by definition (vzz,ayv,a) = (y,z,z). Since F* is a special group, (z,y,z) = (y,z, 2)
and the isometry relation is 3-transitive. Then

(byz,axdb,a) = (x,y,2) = (y,x, 2) = (vrz,ayv,a),

and hence, (byz,axb,a) = (vrz,ayv,a). Using Witt’s Cancellation, (byz, axb) = (vrz, ayv).
Then,

vz € byz + axb = vbrz € yz + ax = vb € xy + az,

completing the proof.
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Theorem 2.3.10. Let (G,=,1,—1) be a pre-special group. Are equivalent:

1. G is special, i.e, satisfy (for example) SG6.
2. M(G) (the hyperfield associated to G) satisfy DMS3.
3. G satisfy the following condition for all a,b,z,y,z € G:

If a € Dg(x,b) and b € Dg(y, z) then there exist v € Dg(x, z)
such that a € Dg(y,v) and vb € Dg(zy, az).

2.4 DM-multirings and Quadratically presentable fields

Let (R,T) be a DM-multiring and G(R,T) := (R/»T) \ {0}. Since G(R,T) is a special group,
we can provide a theory of quadratic forms for R inherited from G(R,T): Let = be the isometry
relation on G(R,T)? given by (a,b) = (c,d) iff ab= cd in G(R,T) and a € ¢+ d \ {0}. We extend
= to a binary relation =,, on G(R,T)", by induction on n > 2, as follows:

1- =o==.
ii- (ai,...,an) =, (b1,...,b,) if and only there are x,y, 23, ..., 2, € A such that (a1,z) = (b1,y),
(a9, ..., apn) =p—1 (T, 23, ..., 2n) and (ba, ..., bn) =n—1 (Y, 23, .., Zn)-

Since G(R,T) is a special group, =, is transitive for all n > 2 (in fact, this is the content
of axiom SG6). Whenever clear from the context, we frequently abuse notation and indicate the
aforedescribed extension = by the same symbol.

A form ¢ on G(R,T) is an n-tuple (ay, ..., a,) of elements of G(R, T); n is called the dimension
of ¢, dim(p). We also call ¢ a n-form.

By convention, two forms of dimension 1 are isometric if and only if they have the same
coefficients. If p = (ay,...,ay) is a form on G(R,T'), define

a - The set of elements represented by ¢ as

Derry(p) :={b€ G(R,T):322,...,2, € G(R,T) such that ¢ = (b, 22, ..., 25) }

—

b - The discriminant of ¢ as d(¢) = [] a;.

i=1

¢ - Direct sum as ¢ & 0 = (a1, ...,an, b1, ..., bp).
d - Tensor product as ¢ ® 0 = (aiby, ..., a;bj, ..., anby,). If a € G(R,T), (a) ® ¢ is written ap.

A form ¢ on G(R,T) is isotropic if there is a form ¢ over G(R,T) such that ¢ = (1, —1) ® 1);
otherwise it is said to be anisotropic. We say that ¢ is universal if Dg(g 1) (p) = G(R,T).

In this sense, Witt Ring W (R, T) of (R, T) is defined as the Witt ring W (G (R, T')) of G(R,T).
We can go further, and define a form ¢ = (ay,...,a,) on (R,T) by considering the form @ :=
(@i, ...,an) on G(R,T) and so on.

Moreover, this quadratic form theory inherited from G(R,T) is compatible with the more
general Witt rings described by P. Gladik and K. Worytkiewicz in [37]:
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Definition 2.4.1 (Presentable monoid, group, ring [37]). Let (A, <,0) be a pointed poset (i.e, a
poset with a distinguished element 0 € A).

a- (A,<,0,4) is a presentable monoid if the distinguished element 0 is supercompact and + :
M x M — M is a suprema-preserving binary operation such that for all a,b,c € M

(a) a+ (b+c)=(a+b)+¢c;
(b) a+0=04+a=a;
(c) a+b=b+a.

b- (A <,0,+,—) is a presentable group if (A, <,0,+) is a presentable monoid and — : G — G
is a suprema preserving involutive homomorphism (called inversion) such that s < t+u imply
t <s+(—u) forall s,t,u € Sg (here Sg denote the set of G’s minimal elements).

c-(A,<,0,1,+,—,) is a presentable ring if (A, <,0,+,—) is a presentable group, (A,1,-) is
a commutative monoid such that the element 1 is supercompact, - is compatible with < and —
(i.e, a <bimplya-c<b-canda-(=b) =—(a-b) for all a,b,c € A), - is distributive with
respect to +, 0-a =0 for all a € R and - satisfy

Sap={s-t:5€ 8yt €S}
Here S, ;=L aNS4 foralla € A, i.e, S, is the set of all minimal elements below a € A.

d- (A,<,0,1,+,—,) is a presentable field if is a presentable ring such that every non-zero
element is invertible.

Now we recall the concept of quadratically presentable fields (in the sense of Definitions 5.1,
5.5 and 5.7 of [37]). A presentable field (A, <,0,1,+,—,-) is pre-quadratically presentable
whenever

i-a<a+bforallac Sy, be Su;
ii-a<l4+band a<1+cimply a <1-—bcforalla,b,céeSau;
iii - a2 =1 for all a € Sy \ {0}.

A form on a pre-quadratically presentable field A is an n-tuple (ay, ..., a,) of elements of S%.

The relation 2 of isometry of forms of the same dimension is given by induction: (i) (a) = (b) iff
a = b; (ii) <a1, a2> = <b1, b2> iff arag = b1by and by < aq + asg; (iii) finally, for n > 3

(a1, ...,an) = (b1, ...,by) iff there exists x,y, cs, ..., c, € S such that (a1, z) = (b1, y)
(a2, ..oy n) = (X, €3y ey Cr)y (Apy ooy b)) = (Y, Cay oy C).
A pre-quadratically presentable field is quadratically presentable whenever the isometry relation
defined above is an equivalence relation on the set of all forms of the same dimension.
Let (R,T) be a DM-multiring. Let K := R/,,,T and consider P*(K), the pierced powerset of
the set K (that is, its set of nonempty subsets). Then (P*(K), C, {0}, {1},+, —,-) is a presentable
field ([37], Example 4.5), where the operations in P*(K) are defined for A, B € P*(K) by

~A:=|J{-a}, A+B:= |J a+bandA-B:= [J {a-0}.

acA a€A,beEB a€A,beEB

Following 5.18 [37], we obtain:
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gladkiadapted
Theorem 2.4.2. Let (R,T) be a DM-multiring. Let K := R/,,T and (P*(K),C,{0},{1},+,—,-)
be the induced presentable field. Then:

1. P*(K) is a quadratically presentable field.
2. W(P*(K))=W(K)=W(R,T), where W(P*(K)) is the Witt ring defined in 5.13[37).

Proof. (1) This follows, essentially, from the same argument of since K is a special hyperfield.
(2) Just repeat the arguments used in 7.1, 7.2 and 7.3 of [37].
For the readers comfortable with theory of special groups, the proof of this Theorem is just a
translation of axiom SG6. U

In 7.4 of [37] is asked:
“It is an open question when the resulting pre-quadratically presentable field is quadratically
presentable.”

We finish this section arguing that such question is, in principle, non void. More precisely:
qgladik

Proposition 2.4.3. There exists a pre-quadratically presentable field that is not quadratically pre-
sentable.

Proof. We show that pQPF is a cocomplete category but QPF is not a cocomplete category.

e In 5.18 of [37] are established equivalences of categories:
quadratically presentable fields (QPF’) «~ special groups (SG);
pre-quadratically presentable fields (pQPF’) «~ pre-special groups (pSG).

e pQPF ( ~ pSG) is a cocomplete category. According the Definition of pre-special group
(Definition 1.2 in [28]), it is axiomatized by a universal Horn Theory (Definition 5.10 in [I])
thus it is a limit theory (Definition 5.7 in [I]). By Theorem 5.9 in [I], pSG is a finitely locally
presentable category, (Definition 1.9 in [1I]), thus it is a cocomplete category.

e QPF (~ SG) is not a cocomplete category.

* Consider RSG the full subcategory of SG of all reduced special groups, i.e. a special group
G such that for each a € G, (a,a) = (1,1) iff a = 1. This is a slightly variation on the
notion of reduced special group (Definition 1.2 in [28]) since we not exclude the case where
G = {1} (equivalently, we not impose —1 # 1). Following the proofs of the results in Chapter
10, Section 3, in [2§], the category RSG of all reduced special groups (including the trivial
special group {1})) misses some binary coproducts, thus is not cocomplete (see for instance,
Proposition 10.11 of [2§]).

* The full subcategory ¢ : RSG < SG is reflexive, i.e. it has a left adjoint S : SG — RSG,
G € Obj(SG) — G/Sat(G) € Obj(RSG), where the unity of adjunction is (G 9 S(G) =
G/Sat(G))geonj(sa)- This follows from a combination of results in [28]: Remark (iii) just
below Definition 2.7; Remark 2.16 and Proposition 2.21.

*Let I' : T — RSG be a small diagram that does not have a colimit in RSG. Suppose
that o' : 7 — SG has a colimit (v; : ['(i) = Goo)icobjiz) in SG. Then it is easy to check
that (gg., 07i : I'(i) = S(G))iconj(z) satisfies the universal property of being the colimit of
I': 7 — RSG in RSG, a contradiction.

O]
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2.5 Quadratic Multirings and (Formally) Real Semigroup associ-
ated to Semi real rings via Marshall quotient

Paraphrasing M. Marshall, “when we change fields for rings, we are in deep water” ([4§])! For
example, let R be a generic commutative ring and 7" C R be a multiplicative set containing 1.
From now on, we denote

zd(R) :={a € R: a is a zero divisor}
nzd(R) :== R\ zd(R) = {a € R : a is not a zero divisor}.

If a,b € T\ {0} with ab = 0 (i.e, a,b are zero-divisors), then R/, T* = {0}: in fact for all
x € R, z(ab) = 0-1 with ab,1 € T, and hence T = 0. Even in the case T' C nzd(R), if a € zd(R),
say ab = 0 for some b € zd(R) then @b = 0, so (ab)? = 0 # 1, and in particular, R/,,T is not a
hyperfield.

Then, if zd(R) # 0, R/mT* will never be a special group, since will never be a hyperfield.
Because this, we seek for conditions for a pair (R,T) with R a ring and 7' C nzd(R) multiplicative
provide a (formally) real semigroup structure in R/,,T.

In this context we christen the following Definition:
qring
Definition 2.5.1. Let R be a multiring and T C nzd(R) be a multiplicative subset containing 1.
We say that (R,T) is a quadratic pair if

Q1 R/,T is semi real.

Q2 Ifa € R and a® ¢ zd(R), then a®> € T.

Q3 For alla € R, thena® =a in R/,,T.

Q4 For all a,b € R, there exists r,s,t € T such that ar € a®s + a’bt.

Let’s look closely to the axioms in Definition In this sense, Q1 is a kind of generalization

of the semireal condition and Q2 is a weakness of A2 C T. The following Theorem is immediate:
qringteo

Theorem 2.5.2. Let (R, T) be a quadratic pair and define for all a,b,c € R the following relations:

¢c D'(a,b) if and only ifcca+b
¢ € D(a,b) if and only if ¢ € D'(¢a,cb).

Then (R/mT, D, DY) is a formally real semigroup. Conversely, if (G,D,D') is a formally real
semigroup such that a® is a zero divisor or > = 1. Define

c € a+bif and only if c € D'(a,b).

Then (G,{1}) is a quadratic pair.

Proof. Let (R,T) be a quadratic pair. Axiom RS7b is consequence of Q1 and axiom RS1 is
consequence of Q4. The other axioms of formally realsemigroup are consequence of basic properties
of multiring and so on.

Conversely, if (G, D, D?) is a formally real semigroup such that a? is a zero divisor or a? = 1,
we automatically have Q2. Q1 is consequence of RS7b, Q3 is consequence of G be a ternary
semigroup and Q4 is consequence of RS1. The fact of (G,+,-,0,1) be a multiring is consequence
of the another axioms of formally realsemigroup (and ternary semigroup). O
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Now is time to deal with the real semigroup case. We define the following:

Definition 2.5.3. A Dickmann-Petrovich multiring (or DP-multiring for shortf] s a
quadratic pair (R, T) satisfy the following properties:

DP1 14+TCT.
DP2 For all a € R, existt € T such that 1+ a*t € T.

DP3 For all a,b € R, @ —i—EQ is a singleton set in R/, T.

teopmr
Theorem 2.5.4. Let (R,T') be a DP-ring and denote Rs(R) = (R/mT'). Then Rs(R) is a real
reduced multiring (thus it is a real semigroup).

Proof. Since T C nzd(R), T # 0 in Rs(R). Moreover, by (Q4) we get a3 = @ in Rs(R).
Note that since T" is multiplicative, [Q0] and [DP1] imply 7'-T'= T and

T+T=T+T7-T=T-1+T)CT-T=T,

then we have that 7'+ T C T which imply that @ + a = {a} for all @ € Rs(R).

From (DP2) we get 1+ b= {1} for all b € R, which imply @ + ab? = {a} for all a,b € R.
Finally, [DP3] says that a® + b is a singleton set in R/, T, completing the proof that R/,,T is a
real semigroup. O

Example 2.5.5. Let (R,T) be a DM-multiring. Then (R, T) is also a quadratic pair.
Example 2.5.6. Let (R,T) be a DM-ring such that T +T CT. Then (R,T) is also a DP-ring.

With Definition and Theorem we generalize the real reduced multirings:

quadraticring

Definition 2.5.7. A multiring A is said to be quadratic if satisfy the following properties:
QMO —1¢ Y A2

QM1 forallace A, a el —1.

QM2 for alla € A, a® = a.

QM3 for all a,b € A, a € a + a®b.

Example 2.5.8. Let p be a prime integer and consider Hy, as in . Since a®> =1 and a = —a
forall a € Hy, and a + a = H), for all a # 0, we have that H), is not a quadratic multiring.

But Hy satisfy QM1, QM2 and QM3. Then, consider the product multiring R = X1 x Hy,, where
X1 ={-1,0,1}. Since X1 is a DM-hyperfield (and hence a DP-multiring) and the operations and
multioperation in R is defined coordinatewise, we have that R satisfy QM1, QM2 and QMS3. Since
(a,b) € R? if and only if a € {0,1} and b € H,, we have —1gr = (—1,1) ¢ R% Hence R is a
quadratic multiring.

Example 2.5.9 (Constructions).

2The name “Dickmann-Petrovich” is given in honor to professors Max Dickmann and Alejandro Petrovich, who
are the creators of realsemigroup theory.
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i - (Products) Let {R;}icr be a class of quadratic multiring and let R = [[,c; R;. Since the
operations and multioperation in R is defined coordinatewise, we have that R is a quadratic
multiring. More generally, suppose that R; satisfy QM1, QM2 and QM3 for alli € 1. If there
s an index ig € I such that R;, is a quadratic multiring, then R is a quadratic multiring.

it - (Directed Colimits) If (I, <) is an upward directed poset and (fij : R; — Rj)i<j is a diagram
of quadratic multirings, then colim;ciR; is a quadratic multiring. More generally, if (fi; :
R; — Rj)i<; is an upward directed diagram of multirings such that {i € I : R; is a quadratic
multiring} is a cofinal subset of I, then colim;crR; is a quadratic multiring.

it - (Reduced Products and Ultraproducts) The class of quadratic multirings can be axiomatized
by certain kind of first-order formulas (in a convenient relational language) that shows that
this subclass of the class of multirings is closed under reduced products (and ultraproducts, in
particular). This result can be achieved more directly by the description of reduced product of
a family of (quadratic) multirings, modulo some filter on the index set, as the directed colimit
of products of the members of the family indexed by some member of the filter: [[;c; Ri/F =
colimjer [[;c; Ri. ’
sSgqring
Example 2.5.10 (Special Groups). Let G be a special group, and consider F' = M(G) :== GU{0}
its special hyperfield associated. Of course, F satisfy conditions QMI1-QM3 in [2.5.7 F satisfy
DMO iff F is formally real, i.e, if —1 ¢ > F2, which occurs iff G is formally real, i.e,

—1¢ Dg(n® (1)) for alln > 1.

Example 2.5.11. Let A be a von Neumann regular semi-real ring such that 2 € A*. Then A/, A*?
1 a quadratic multiring. In fact, first observe that

i) If F is a field with 2 € F*, then F/,,F*? is a multiring that satisfies QM1-QMS3 as indicate
Examples2.1.4 and[2.5.10|. This means that F satisfies the following Horn-geometric sentences:

o Yadz,y, o'y (xa' = yy =1 ANa=2%—y?).
o Yadz,y, o',y (x2' = yy' = 1 A a®2? = ay?).
o Ya,b3x,y, 2,2y, 2 (xx' = yy' = 22/ = 1 N ax® = ay?® + a®bz?).

ii) The Proposition 5.6 of [31|] shows that the von Neumann regular ring A is the ring of global
sections over a Boolean space where the sheaf has fields with 2 invertible as stalks.

Thus, the Proposition 3.2-(d), [31], applied to the sheaf of item ii) above implies that formulas
of item i) are valid in A. Therefore A/, A*? is a quadratic multiring.

Example 2.5.12 (Faithfully Quadratic Rings). Now, we relate our DM-multirings, DP-multirings
and quadratic multirings with faithfully quadratic rings as presented in [32]: let A be a semi-real
ring with 2 € A, T bea preordering of A orT = A?. A T-subgroup of A is a multiplicative subset
S of A containing {—1}UT. For a,b € S, denote

D§r(a,b) :={c€ S:c=as+bt for some s, t € T}.

ngT(a,b) ={ce S:c=as+bt for some s, t € T}.

The triple (A, T, S) is faithfully quadratic if (among other things) satisfy Dg’T(a, b) = ngT(a, b)
for all a,b € S (see for instance, Definition 3.1 in [32]). Denote

ol =0T iffabe T iff b= at for some t,
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and consider Gr(S) = {aT : a € S}. Define the binary isometry =3. by
(@, 0"y = (", d") iff "0 = c"d" and DY (a,b) = D% p(c,d).

In general, (Gp(S),=5,—1T) is a proto-special group. If (A,T,S) is faithfully quadratic, then
Dickmann and Miraglia showed (see Theorem 3.5[32]) that Gr(S) is a special group.

Now, consider (A,T,S) and let R = A/ (T Nnzd(A)). Then Dg,T(a, b) Ca+b foralla,b € A.
Moreover, if A?> C nzd(A), or more generally, if (A,T) is a quadratic ring, then R is a quadratic
multiring containing the proto special group Gp(S). This is particularly useful given that (A, T,S)
1s not necessarily faithfully quadratic.

Definition 2.5.13. Let (X, 7) be a topological space. The topology T is called perfectly normal if it
is normal and every closed set is Gg-set. The topology T is called Ty if it is Hausdorff and perfectly
normal.

Example 2.5.14.

e A Ty topological space X is perfectly normal if, and only if, for every closed set F exists a
continuous function f: X — R such that F = f~1(0) (Theorem 1.5.19 of [35]).

o Every metric space is Tg (Corollary 4.1.13 of [35]).
contf

Example 2.5.15 (The ring of continuous functions). Let X be Tg topological space and consider
A = C(X,R), the ring of continuous functions f : X — R. Let T = A’Nnzd(A). In the following,
is proved that C(X,R) /T is a real reduced multiring (in particular, a quadratic multiring). Before
that, consider the remarks:

o Since X is perfectly normal, given a open set U C X there is a continuous function g: X — R
such that g‘U is strictly positive and Z(g) = U°.

o f e C(X,R) is zero divisor if, and only if, Z(f) has non-empty interior. In fact, if U C Z(f)
is non-empty interior, then exists g € C(X,R) such that Z(g) = U€; thus g is a non-zero
function and fg = 0. Reciprocally, if Z(f) has empty interior and g € C(X,R) satisfies
fg =0, then Z(f) is open and dense while Z(f)¢ C Z(g). Since g is continuous, g =0 and
so f is non-zero divisor.

e By the preceding item,

T ={f e C(X,R): f is non-negative and Z(f) has empty interior}.
Before proceeding with the proof, a notation: given h € C(X,R), denote by pp, € C(X,R) any
function satisfying:
e Z(pp) has empty interior (i.e. py is a non-zero divisor).
e py, is non-negative over Z(h).
o Forallx ¢ Z(h), pp(x) = h(x).

A possible construction is to consider a positive function p € C(X,R) with Z(p) = (int(Z(h)))¢
and set py, := h + p.

Claim. Let f,g € C(X,R) be two functions and D C X a dense subset such that for all x € D,
sgn(f (x)) = sgn(g(x)). Then [ =g in C(X,R)/mT.



54

CHAPTER 2. HYPERFIELDS, SPECIAL GROUPS AND QUADRATIC FORMS

Proof. Assume that for all x € D, sgn(f(z)) = sgn(g(z)). Then for all x € D we have f(x)-pjy(x) =
g(x) - pg(w) (¥). Since D is a dense subset of X, the equality (%) is true for all real number. Thus,

since p|r|,pg € T', we have f=gin A/, T. O

To finalize this Example, we have to prove the axioms of real reduced multiring:

Since 0 ¢ T, we have 1 #0 in A/, T.
For all x € R, we have sgn(f3(x)) = sgn(f(x)). Thus by the above claim ?3 =fin A/,T.

Let f,g € Aandh € f+fg* in A/nT. Then exists s1,s2,s3 € T such that hs; = fsa+fg®ss.
Thus, for all x € Z(s1)° N Z(s2)¢ N Z(s3)¢, we have

. if f(x) =0, then h(z) = 0;
. if f(z) >0, then h(x) > 0;
.if f(x) <0, then h(z) <0

Since Z(s1)¢ N Z(s2) N Z(s3)¢ is a dense subset, by above claim, h = f.

Let f,g € A and hy,hy € f +7 in A/ T. By an argument similar of the preceding item, the
signals of hi, ha are equal in dense subset and thus hi = hs.



Chapter 3

From Multirings to Superrings

The concept of superring first appears in ([6]). The very first advantage of considering superrings
instead of hyperrings is the possibility of built a theory of polynomials and matrices, available for
hyperrings but only closed by constructions in superrings. There are many important advances
and results in superring theory, and for instance, we recommend for example, the following papers:
31, [51, 6], [, 9], [54], [51], [50].

Surprisingly we have obtained an interesting theory of matrices, linear systems, vector spaces
and algebraic extensions available for a certain subclass of superfields. If R is a full superring, then
My xn(R) and R[X] are superrings (Theorem and [3.4.2)). We also obtained a kind of simple
algebraic extension for a superfield F' (Theorem , which culminate in the existence and
unicity of a full algebraic extension of a superfield F' (Theorems and [3.7.4). If F is a linearly
closed superfield (the system Ax = 0 always have a non trivial solution), then we have a well defined
dimension theory for the vector spaces over F' (Theorem . The main examples of linearly
closed superfields are hyperbolic hyperfields (3.8.23) and simple full algebraic extensions over a
linearly closed superfield . The linearly closed interpreted in the context of special groups
leads to interesting Isotropic (Corollary and Hyperbolic (Corollary interpolations.

We finish this Chapter with a quantifier elimination procedure for superfields (Theorem ,
which is a direct generalization of a result obtained in [19].

3.1 Superrings, Superfields

superring
Definition 3.1.1 (Definition 5 in [6]). An associative superring is a structure (S, +,-, —,0,1) such
that:

i- (S,+,—,0) is a commutative multigroup.
it - (S,-,1) is a multimonoid.
iti - 0 is an absorbing element: a-0={0} =0-a, foralla € S.

iv - The weak/semi distributive law holds: if d € c.(a +b) and e € (a4 b)c then d € ca+ cb and
e € ac+ be, for all a,b,c,d,e € S.

v - The rule of signals holds: —(ab) = (—a)b = a(-b), for all a,b € S.
A superdomain is a non-trivial superring without zero-divisors in this new context, i.e. whenever

Oca-biffa=0o0rb=0

95
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A quasi-superfield is a non-trivial superring such that every nonzero element is invertible in this
new contexﬂ i.e. whenever

For all a # 0 exists b such that 1 € a - b.

A superfield is a quasi-superfield which is also a superdomain. A superring is full if for all a,b,c,d €
S,dec-(a+Db)iffd € ca+ ch.

A superring, superdomain or superfield is commutative (associative) if (S,-,1) is respectively
commutative (associative).

From now on, all superrings will be commutative (with exceptions sinalized).

Example 3.1.2. Fvery multiring can be seen as a superring, in the very same fashion of(a).
Our main example of superring is the superring of multipolynomials R[X| over a multiring R. The
construction will be presented in short in Section[3.4 For more details, see [15], [6] or [11].

Now we treat about morphisms.

Definition 3.1.3. Let A and B superrings. A map f : A — B is a morphism if for all a,b,c € A:

i - f(0)=0; iw-cea+b= f(c) € fla)+ f(b);
i - f(1) =1,
iii - f(—a) =—f(a); v-c€a-b= f(c) € f(a)- f(b).

A morphism f is a full morphism if for all a,b € A,
fla+b) = f(a)+ f(b) and f(a-b) = f(a)+ f(b).

From now on, we use the following conventions: Let (R, +,-,—,0,1) be a superring, p € N and
consider a p-tuple @ = (ao, a1, ..., ap—1). We define the finite sum by:

xEZaiiﬁ"m:O,

i<0
xEZaiiffxEerap,lforsomeyE Zai,iprI.
i<p i<p—1

and the finite product by:

:UEHa,-iffle,

i<0
xEHaiiﬁxEy-ap_1forsomey€ H ag,if p> 1.
i<p i<p—1

Thus, if (do,dr,...,dp—1) is a p-tuple of tuples @; = (aio, @i, ..., Gim, ), then we have the finite

'For a quasi-superfield F', we are not imposing that (S \ {0},-,1) will be a commutative multigroup, i.e, that
ifdc€a-bthenb ' €a-d".
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sum of finite products:

xez H a;j iff x =0,

1<0 j<m;
xGZHanﬂ?mey—i—zforsomeye Z Haijandze H ap—1,4,if p > 1.
i<p j<m; i<p—1j<m; J<mp_1

Remark 3.1.4. Note that, in this sense, we have (for example) that

4
H aj = ((alag)ag)a4.
j=1

lembasicl
Lemma 3.1.5 (Basic Facts). Let A be a superring.

a - Forallm € N and all aq,...,a, € A, the sum a1 + ... + a, does not depends on the order of the
entries, and if is A is associative, the product ay - ... - a, also does not depends on the order of
the entries.

b - If A is a full superdomain, then ax = ay for some a # 0 imply x = y.
¢ - If A is full, then for all d,aq,...,a, € A

dla; + ... + ap) = day + ... + da,.

d - Suppose A is a full superdomain and let a € A\ {0}. If 1 € (a-b)N(a-c) then b= c.

e - (Newton’s Binom Formula) For n > 1 and X C A denote

n
nX = Z X.
i=1
Then for A,B C A,
n
n . .
A+ B)" C <.>AJB"_].
aspred (|
j=
Proof.
a - It is an immediate consequence of associativity and induction.

b - Let az = ay for some a # 0. Then az — ay = ay — ay. Since A is full, a(z — y) = ay — ay, and
then,
0€ay—ay=alx—y).

Moreover, 0 € az for some z € x — y. Since A is a superdomain and a # 0, z = 0. Then
0 € x — y, which imply z = y.

¢ - By induction, we only need to proof the case n = 2. Let a,b,c,d € A. We already know
that d(a + b+ ¢) C da + db + dc. Now consider x € da + db + de. Then x € e + dc for some
e €da+db=d(a+Db). Then e € de’ with ¢’ € a+b and = € e+ dc C de’ + dc = d(€' + ¢).
Hence
red +c)Cdla+b+ec).
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d- Let 1€ (a-b)N(a-c). Then
0el—1C(a-b)—(a-c)=a-(b—c).
Since 0 € a - (b — ¢) and a # 0 we have 0 € b — ¢, which imply b = ¢.
e - By induction is enough to prove the case n = 2. We have

(A+B)?*:=(A+B)(A+B)C A(A+B)+ B(A+ B) C A* + AB+ BA + B?
2
— A2+ AB + AB+ B> = A% + 2AB + B? ::Z(@)AJ’BM.
j=0
O
factstrong?2

Lemma 3.1.6 (Facts about full morphisms of superrings). Let f : A — B be a full morphism of
superrings. Then

a - Forall ay,...,an € A,
flar+ ...+ an) = flar) + ... + f(an).

b - For all ay,...,an,by, ..., by € A,
fl(ar +b1)(az + b2)...(an + bp)] = (f(a1) + f(b1))(f(az) + f(b2))-..(f (an) + £(bn))-
¢ - Forallcy,....cp,dy,....dy € A,
flerdy + cady + oo 4 cadyn) = f(c1) f(dr) + F(ca) f(da) + .. + f(cn) f(dy).
d - For all ag, ..., an, o € A,

flao+ara+ ...+ ana™) = f(ao) + f(a1) f(@) + ... + flan) f(a)".
Here we always interpret ab™ := a(b"™), unless stated contrary.

e - Let Ay, Aa, A be superrings with injective morphisms (embeddings) i1z : Ay — Aa, i13 1 A1 —
A3 and i23 : AQ — Ag.

A, 112 A,

Suppose that 113 = 193 0 412 1S a full embedding. If 123 is a full embedding then i12 is a full

embedding.
char

Definition 3.1.7.
i - The characteristic of a superring is the smaller integer n > 1 such that

0ed 1,

<n
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otherwise the characteristic is zero. For full superdomains, this is equivalent to say that n is
the smaller integer such that
For all a, 0 € Za.
<n

11 - An ideal of a superring A is a non-empty subset a of A such that a+a C a and Aa Ca. We

denote
J(A)={I C A: 1 is an ideal}.

1 - Let S be a subset of a superring A. We define the ideal generated by S as

(S) = ﬂ{a C Aideal: S C a}.
If S ={ay,...,an}, we easily check that

(a1, ...,an) = ZAal + ...+ ZAan, where ZAa = U {Aa + ...+ Aa}.

n=1 n times

Note that if A is a full superring, then >  Aa = Aa.

v - An ideal p of A is said to be prime if 1 ¢ p and ab Cp = a €p orb € p. We denote

Spec(A) = {p C A :p is a prime ideal}.

v - An ideal p of A is said to be strongly prime if 1 ¢ p andabNp#D=acporbep We

denote
Spec,(A) = {p C A:p is a strongly prime ideal}.

Note that every strongly prime ideal is prime.

vi - An ideal m is mazimal if it is proper and for all ideals a with m C a C A then a = m or

a=A.

vii - For an ideal I C A, we define operations in the quotient A/I = {x+1:x € A} ={T:z € A},

by the rules

1S]
+
<
Y,

tz€x+y}
1z € xy}

—_

]

forallT,ye A/I.

Remark 3.1.8.

a -

b -

C -

If A is a multiring, then every prime ideal is strongly prime. We do not know if this is the case
for general superrings.

If A is a multiring, then every mazimal ideal is prime (Proposition 1.7 of [23]). For a general
superring A, we do not know if a maximal ideal is prime.

In his Ph.D Thesis [23], H. Ribeiro deals with elements weakly invertible on a multiring A.
This could be an alternative in dealing with the above questions.

With all conventions and notations above, we obtain the following Lemma, which recover for

superrings some properties holding for rings (and multirings).
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leml
Lemma 3.1.9. Let A be an associative superring and I an ideal.
i-1=Aifand only if 1 € I.
it - A/I is a superring. Moreover, if A is full then A/I is also full.
iii - I is strongly prime if and only if A/I is a superdomain.
If A is full, then

- I =Aifand only if 1 € I, which occurs if and only if A*NI # O (in other words, if and only
if I contains an invertible element).

v - A is a superfield if and only if 3(A) = {0, A}.
vi - I is mazximal if and only if A/I is a superfield.
Proposition 3.1.10. Let A be an associative superring and I an ideal.
i - If I is a mazimal ideal, then it is prime.
it - The ideal I is prime if, and only if, A/I is quasi—superdomaz’rﬂ

iit - (Prime Ideal Theorem) Let S C A be a multiplicative set (1 € S and S-S C S). Suppose that
SNI=0. Then there is a prime ideal p such that I Cp and SNp = 0.

Proof.

i- Let a,b € A with ab C I. Assume that a ¢ I and consider the ideal J = I + (a). Then there
arex € I,t1,...,t, € Asuch that 1 € x+aty +---+at,. Thus b € bx +bat; + - -+ bat, C I.

ii - If I is prime and @ - b= {0} in A/I, then a-b C I. Therefore, by primality, a € I or b € I.
Thus@a=0orb=0in A/I. Reciprocally, assume A/I a quasi-superdomain and let a,b € A
with ab C I. Then @- b = {0} and by hypothesis follows a € I or b € I, as desired.

iii - Consider the partial order X = {J C A: J is an ideal and S N J = (} ordered by inclusion.
Since the directed union of ideals is again an ideal, we have by Zorn’s Lemma that X has
a maximal element p. Suppose that p is not prime, that it, there is a,b € with ab C p and
a,b ¢ p. Now notice that J, = p+(a) and J, = p+ (b) are ideals that proper extend p. Hence,
by maximality, there are s,v € S,z,y € p,t1,...,tn, w1,...,w; € A with

scx+aty+ -+ aty
v Ey+bw + -+ bwg.

These equations implies that

svQxy+:nbw1+---+:Ubwk+yat1+---+yatn—|—2abtiwjQSﬂp,
,J

a contradiction. Then p is prime.

2A superring B is called quasi-superdomain if given a,b € B with ab = {0}, thena=0o0r b=0
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3.2 Matrices and determinants over commutative superrings

Definition 3.2.1. Let m,n be positive integers. A m X n matriz over a commutative superring
R is a double sequence A of elements of I, distributed in m rows and n columns. The set of m xn
matrices is denoted by My, xn(R). When m = n, we denote n X n matrices by M, (R).

A matrix A € My, (R) is represented simply by A = (a;;) (with m and n subscript if necessary)
or by a table as below:

ail a12 Q1n

az1 a22 Q2n
A= .

Aml1 Qm2 ... Amn

For A,B € Myuxm(R) and A € R with A = (a;;) and B = (b;;) we define —A = (—a;;) and
(multi) operations
A+ B := {(dlj) : dij € ajj + bij for all Z,]} ?é 0

and
AN = {(dlj) : d@'j S )\aij for all Z,j}

If A€ Myxm(R) with A = (a;;) and B € My,x,(R) with B = (a;;), we define
A-B=AB C M,x,(R)
by

AB = {(d;j) : di; € Zaikbkj = a;1b1; + aiobaj + ... + ainbyy for all 4,5} # 0.
k=1

We denote 0 = (0;;) € Mymxn(R) and 1 = (8;5)ij € M, (R) the usual zero and identity matrices
respectively.

We say that A € M, (R) is invertible iff there exist B € M, (R) with 1 € AB and 1 € BA.

Of course, we adopt freely the usual simplified notation from commutative algebra. For example
for A = (a;j) and B = (b;;) we simply write

a1 a2 ... Qin b1 b2 ... bin ai1 +b11 ap+bia ... am+biy

a1 a2 ... G2 ba1  baa ... Do, a1 +ba1  as+bao ... agy+bo,
+ . . . ) = . . )

Aml Am2 ... Amn bml bm2 cee bmn am1 + bml am2 + bm2 e Qmp T bmn

with the analogous simplifications for AA and AB.

Example 3.2.2. Consider X9 = {—2,—1,0,1,2} as in Ezample and matrices A, B,C €

Ms(X3) given by
1 1 -1 1 2 0
A_<O 1>,B—<0 _1) andC-(_l 2).
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With our notations we have

C(1-1 141\
A+B_G+01—J_

G200 ()6 260616 26 o))
wome (G N (3 ) -

SO 0t
)G A ()

1-24+1-(-1) 1-04+1-2 2—1 2 2 2
A-C= = = .
0-24+1-(-1) 0-0+1-2 -1 2 -1 2
Here we will ”export” the usual terminology of diagonal, triangular, block and elementary
matrices available for fields to superfields.

With these, using the fact that (R, +, —,0) is a commutative multigroup we immediately have
the following Theorem.

matrixil

Theorem 3.2.3. Let R be a superring. Then (Mpy,xn(R),+,—,0) is a commutative multigroup.

For a general associative superring R, the matrix product in M,,(R) is not associative in general
(and of course, M, (R) is not an associative superring in general).

Example 3.2.4. Let R = X5 as in Fxample[1.2.19. Of course, R is not full because, for example,
21-1)={-2,0,2} and2—-2=R.

Now, consider the matrices

In fact we have

and

Then we have (AB)C # A(BC).
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Despite the fact that M, (R) is not an associative superring in general, it is a structure of

interest (as we will see, for example, in Theorem [3.6.12)) and in the following Lemma we collect the
properties holding for the product in the general case.

matrix?2

Lemma 3.2.5. Let R be a superring and A, B,C matrices in M, (R). Then:
a-A-0=0-A={0}.

b-Ifm=n,then A-1=1-A={A}.

c- If A(B+C)C AB + AC, with equality if R is full.

d- (B+C)AC BA+ CA, with equality if R is full.

e - If R is associative and full, then (AB)C = A(BC).

Firstly, let us explicit the notation for AB: we write

Dy Dip ... Dy

Doy Doy ... Dy
AB = . . .

Dml Dm2 o Dmn

or AB = (D;j) where for all 7, j, D;; is the set
n
D;j = Z aikbr; = ai1bij + aiobaj + ... + ainbpi (of course, this is an equality of sets).
k=1

Alternatively, we can proceed more directly, simply writing

n n n
Y1 0kber Y pqakbre ... D op_q aikbin
n n n
Y ohe1 G2kbrr Y op_q aokbre .. D p_ askbin
AB = ) ) )
n n n
Dbt Omkbrl Y g @mkbre o Do p_q Gmkbin

Now we proceed with the proof of the Lemma.

Proof of Lemma|3.2.5 The argument here is in fact very similar to those one used in linear algebra
over fields.

a- Let A-0= (D;j) (as explained above). For all 7, j we have
Dij = Zaikokj = Zaik 0= ZO =0.
k k k

Then A -0 = {0}. The same reasoning provide 0- A = {0}.

b- Let A-1= (D, ). Since 1 = (8; ;) with §; ; € {0,1} and ¢; ; = 1 iff i = j, we have
Di,j = Zai7k5k,j = a4 1= {CLZ"]‘}.
k

Thus, A-1={A}. Similarly, 1- A = {A}.
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A(B+C) = (aij)ij - (bij+cij)ij

= (Z ai,k(bkd + Ck,j))
3v)

k

’

c (Z a; kb ; + ai,k%,j)
i,

k

)

= (Z ai,kbkd') + (Z ai7k0k7]’> = AB + AC.
k ij k i,j

When R is full, it is immediate from above that A(B+ C) = AB + AC.
d - Similar argument as above.

e - Assume that R is associative and full. Then

- Zai,kbk,]) ~(€ij)ig
2%
Z (Z alkbkl> -Cw)
Zzazkbklcl,j>
i,J
= (> aix- (Zbszag))
i,

),

(as) (Zblcl]> = A(BQC).

1]

O]

In fact, with Theorem and Lemma [3.2.5| we conclude the following.

matrix3
Theorem 3.2.6. For a superring R, if R is associative and full then M, (R) is a full superring,
that is non-commutative if n > 2.

We also have a generalized version of Lemma (with the proof similar to the one given
there).

matrix4
Lemma 3.2.7. Let R be a superring and A, B,C, D, E, F matrices with A € My,«xn(R), B,C €
Myxp(R), D, E € Myym(R) and F € Myy4(R). Then:
a - A . 0n><p == {OmX])} and Oan . A == {Oan}.

b— A‘lanzlme’A:{A}.
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c- A(B+C)C AB+ AC, with equality if R is full.
d- (D+ E)AC DA+ EA, with equality if R is full.
e - If R is associative and full, then (AB)F = A(BF).

Despite the fact that full associativity do not hold in M, (R) for a general superring R, we have
the following useful results. We start with a technical Definition:

Definition 3.2.8. Let R be a superring. We say that R is proto-full if for all a,b,c,d € R
[(ab + ac)d] N [a(bd + cd)] # 0.

Lemma 3.2.9. Let R be an associative and proto-full superring. Then for all a,by,...,by,d € R
we have
[(aby + ... + aby)d] N [a(brd + ... + byd)] # 0.

Then rewriting the proof of Lemma [3.2.7|(e) we get the following.
matrixb

Lemma 3.2.10. Let R be an associative and proto full superring and A, B,C matrices with A €
Mpyxn(R), B € Myxp(R) and C € Mpyyxq(R). Then

[(AB)C]N[A(BC)] # 0.
determinant

Definition 3.2.11. Let A C M, (R). We define the determinant of A as the subset det(A) C R
given by the rule

det(A) = [ $ D sgn(o) [] ajois)
j=1

AcA | oSy

If A= {A} we simply write det(A) for the above formula.

Lemma 3.2.12 (Properties of Determinant). Let R be associative and A, B € My(R), A = (a;;),
B = (bij) and A € R. Then:

a - det(ANA) C A" det(A), with equality if R is full;

b - if there is an entire row or column of zeros in A then det(A) = {0}.

c - if A = (asj) is a triangular matriz (and in particular, diagonal matriz) then det(A) = ai1a22...ann.
Proof.

a - Using the very Definition we get

det(AA) = Y sgn(o) [ [(A\ajory) = D sen(@)A" [T ajoqy)
j=1 j=1

UGSn O'ESn

c A" Z sgn(o) H ajo(j) | = A" det(A)

oESy 7j=1
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b - In this case we have 0 € {a14(1), @25(2)s -+> Gno(n) } for all n € Sp,. Then

ajg(jy = {0} for all o € S,
1

n
J]=

implying det(A) = {0}.

¢ - Follow immediately from Definition [3.2.11

3.3 Linear systems over superfields

Throughout this entire Section fix a superfield F'.
lin-equation
Definition 3.3.1. A linear equation is an equation (term in the language of superfields) of type

Ax C B

where A € Mixn(F) (n € N), x is a n x 1 vector of variables and B C F.

Remark 3.3.2. We are defining "linear equations” (and more lately, ”linear systems”) in terms of
matrices. We do this because for superfields we cannot agglutinate scalars and variables as we do in
general linear algebra. For example, there is no reason for "ajx1+bix1” be equal to ”(ai +by)r1 ’ﬂ.

Despite this Remark, given a linear equation Ax C B, we can ”colloquially” write
a1x1 + asxs + ... + anxy C B,
with aq,...,a, € F. Of course, we could consider the equation
ai1x1 +asxo + ... +apxr, 2 B

as a linear one and proceed with two types of linear equations. But the type considered in [3.3.]]
seems to be (at first sight) more "natural”.

We can use to this ”coloquial” to write our equations (and further, systems), and while we are
dealing with one equation (system), we will proceed with this ”coloquial” language. But in order
to get more general proofs and Definitions, we will always proceed with matrices.

Definition 3.3.3. A solution (weak solution) of a linear equation Az C B, is a matriz d €
M1 (F) such that Ad C B (AdN B #0).

Definition 3.3.4. A linear system is a conjunction of equations (term in the language of super-

fields) of type
Ax C B

where A € Mywn(F) (n € N), x is a n x 1 vector of variables and B C M,x1(F).

30r saying in another words, in order to obtain aixz1 + biz1 = (a1 + b1)z1 we should Define what would be a
?full” variable, which is not a standard procedure in logic.
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In this sense, a Linear system can be colloquially represented as usual

a11x1 + a19x2 + ... + a1y C By
a1 + asexs + ... + aspry C By

Am1T1 + amaT2 + ... + AmnTn € By,

A (weak) solution of a Linear system is a tuple (di,...,d,) such that Ad C B (AdN B #0).
Definition 3.3.5. A Linear system Ax C B is scaled if A is a upper triangular matriz.

In the usual representation, a scaled linear system has the form:

air, T1 + . Faipnrn, € B
a2, T2 + o Faipr, € B
QAnr, Tk + o T Oty C Bk

with r; > 1, and ajr;, # 0, 7 = 1,..,k ey <rg < .. <r For a scaled system we have three
situations:

I - The last equation is of type
0z1 + ...+ 0z, C B, with 0 ¢ B,,.

In this case S is impossible.
IT - There is no equation of type (I) and p = n.

III - There is no equation of type (I) and p < n.
Suppose S of type (II). Then we have a situation

a1z + wo FaT, € By
G233 + wo t+aopx, C By

. t apnrn € B,

with ay # 0 for all i = 1, ...,n. Getting x1, ..., T, recursively by suitable choices

fr con et

-1 -1 -1
Ty € ayy, B — [ag, apes1) T — o — gy rnlTn for k=n—1,..,1

we have a weak solution of the system S (this solution is weak basically because a,;klakn is not a
singleton in general). The same reasoning shows that for a scaled system of type (III), we can find

a parametric weak solution for the system.
sistem-solved

Example 3.3.6. Consider n =2 and the system over an associative superfield F,

(62 ()< (z)
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or in our "coloquial” representation, the system

by C D
{MH_ v=a with a,c # 0.

cy € Do
Since Dy C c(c_ng), for all dy € Dy there exist z € ¢~ Dy with dy € cz. Pick yo = z. So we have
cyo C c(c Do) with cyg N Dy # 0.
Hence we get yo € ¢~ Dy and we can choose xg € a~ Dy — byg in order to obtain
azo + byo C a(a™ Dy — byo) + byo € aa” Dy — aa”tbyy + by and axg + by N Dy # 0.

Of course, linear systems over superfields yields to more flexibility than linear systems over
fields. It is "easier” to get a weak solution of a linear systems over superfields than over a field as
we see in the Example below.

Example 3.3.7. Let F = Q/,,Q*2. We have 2,5 ¢ D({1,1)), because 2 = 1-12 +1-12 and
5=1-22+1-12. Then 2,5 €1+1 and the system

z+y C {1}
y € {5}
over ' has at least a weak solution x =y = 1.

Definition 3.3.8 (Elementary Operations). Let A € My,«xn(F'). The elementary operations
are:

I - Permute lines i e j; which will be indicated by L; <+ L;;

II - Multiply each coefficient of a line i by an element A # 0 in F; which will be indicated by
Li — )\Li,'

IIT - Sum line i with line j and keep the result in line i; which will be indicated by L; <— L; + L;.

Of course, given a linear system Az C B, we generate more than one system after the application
of a sequence of elementary operations on the matrices A and B. We denote the systems obtained
by a set of systems Az C B (with A C My,xn(F), B C Myx1(F)) after the sequence of elementary
operations O = {0y, ...,0,} by (Az C B)°.

The elementary operations defined above could be described in terms of matrix multiplication
(as we usually do for fields). For example, considering the matrix A € Mayo(F) given by

A=)
G o) a)=07)

If R is a proto-full superfield, to realize an elementary operation on the system Az C B is

the application of Ly <+ Lo is just
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equivalent to multiply A and B by an elementary matrixﬁ E € My,«m(F) in order to obtain the
system (EA)x C (EB).
element-sol

Lemma 3.3.9. Let Ax C B be a set of Linear systems and O = {o01,...,0,}. Then every solution
of a system in Ax C B is a solution in some system in (Ax C B)C. If F is full, then every weak
solution of a system in Ax C B is a weak solution in some system in (Ax C B)°.

Proof. We only need to deal with the elementary operations. Consider a system

a a a 1 By
11 12 ... a1
" T2 Bo
C
ami dma ... a ’ :

We already know that operations (I) and (II) preserves solutions. Now consider without loss of
generalization the elementary operation L1 < Li 4+ Lo. Then we arrive at the set of systems

1 By + By
ai] +ag1 arjp+as ... ain -+ asy . B,
am1 dmg e Amn .CI? B
n n
If we get dy, ....,d, with
a a a dl Bl
11 12 e 1n d2 B2
-
Am1 dm2 ... Gmn dn Bn

in particular
(a11dy + ... + dipdy) + (a21dy + ... + dopdy) € By + Ba,

and
d B+ B
a1 + a1 a2 +az ... aip+az, dl 1B 2
2 2
C .
am1 dm2 e Amn, d, B,

proving (after induction) that every solution of Az C B is a solution (Az C B)?. For the weak
solution part, suppose F' is full and dy, ....,d, with

d1 Bl
aill (A e A1n d2 B2
N # 0
am1 dm2 ... Qmn d B
n n

4Elementary matrices are a standard topic in many Linear Algebra books, but for a quick reference, consult
https://en.wikipedia.org/wiki/Elementary_matrix.
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In particular

[(a11 + a21)dy + ... + (a1 + a2p)dy) = (a11dy + ... + dindy) + (a21d1 + ... + dopdy,) N (B1 + Ba) # 0,

and
ajl +azr ai2+azp ... ap+ap Z; Bll;;BQ
N : + 0.
Am1 dm2 - Amn dn Bn

proving (after induction) that every weak solution of Az C B is weak a solution (Az C B)°?. O

Given a system Az C B, we can obtain a set of scaled systems (Az C B)*“@¢d  after a finite
sequence of elementary operations in the same way as usual. Unfortunately, despite the result
obtained in Lemma we do not know if solutions of (Ax C B)*¢@€d are solutions of Az C B.

From now on, given a system Ax C B, to solve Ax C B will have the meaning to find a
weak solution of Ax C B, and a n x n system will mean a system Az C B with A € M, «,(F)
(and B € Mpx1(F)).

Definition 3.3.10. Let A = (a;j) € M, (F) and denote A; = (a1, ..., ain) the i-th row and A7 =
(@1, ..., Gnj) the j-th column We say that A; is a linear combination of {A1, ..., Ai—1, Aiy1,..., Ap}
if there exist ay,...,0;—1, Qit1, ..., an € F such that

71 Ti—1 Ti+1 Tn
AN Z A1 | AL+ .+ Z >‘j(i71) A + Z )‘j(iJrl) Aig1+ ..+ Z Nin | An| # 0.
J=1 Jj=1 Jj=1 Jj=1
scal4d
Lemma 3.3.11. Let F be a superfield and A € M,(F) a upper triangular matriz. Then A is
invertible iff 0 ¢ det(A).

Proof. Let
aip a2 ... Qinp
0 ago ... Qa92p
A =
0 0 ... apn

We already know that det(A) = a11a22...any,. Then, we need to prove that A is invertible iff a;; # 0
foralli=1,2,...,n.
Now, let B € M, (F') be another upper triangular matrix, saying

0 by ... by
B=| . ] )
0 0 ... b
We also know that
anbin  anbiz +aisbay  anbiz + aisbaz +aisbszs ... > p_; aikben

0 a2boo a22ba3 + a23bsz e heo Q2kbg
AB = . . 2=z 2kbin
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and
bitair briaiz + bizage biiaiz + bizags +bisass ... D p_q bikGkn
0 baoao baoasos + bagass - heo bopag,
BA= . . 2=z Dok in
0 0 0 . bnnGnn

Then, if a;; = 0 for some i € {1,2,...,n}, we have I, ¢ ABNBA for all B € M,,(F). This is enough
to prove that A cannot be invertible.
Now, suppose a; # 0 for all i = 1,2,...,n. We will choose the elements b;; in order to get

I, € ABN BA.

First, choose b; = ai_il. Then, considering AB = (FP;;) and BA = (Q;;), we want to get 0 € P;;
and 0 € Q;; for all i # j. We need to choose b, _1), in order to get

0 € a(n-1)(n-1)0(n-1)n + A(n—1)nbnn and

0 € bin-1)(n-1)%n-1)n + b(n—1)nnn-

Then (remember that b; = a;; 1) we need

-1 -1
b(n—l)n € — [a(n—l)na(nfl)(nfl)]ann .

Then we choose by, b(y—1)(n—1) and b, _1), (i,e, we complete the process for the n-th and (n—1)-th
rows of B).
Now, we need to choose b, _2)(,—1) and b, _g), in order to get

0 € a(n-2)(n-2)0(n-2)(n-1) + An-2)(n-1)0(n-1)(n-1) + An—2)nbnn-1) and
0 € a(n—2)(n-2)0(n-2)n + An-2)(n-1)0(n-1)n + A(n—2)nbnn

and

0 € b(n—2)(n-2)4(n-2)(n-1) + b(n-2)(n-1)4(n-1)(n-1) T b(n—2)nn(n-1) and
0 € b(n—2)(n—2)4n-2)n + b(n=2)(n—1)(n—1)n t O(n—2)nGnn

Picking b(,,—2)(n—1) and b(,_2), such that

b(n—2)n € *[a@l_g)(n_g)a(n—Z)(n—l)]b(n—l)n - [a(inl_g ( Q)a(n—2)n]bnn and

)(n—
-1 -1
b(n—-2)(n—1) € ~[0(_2)(n—2)Un-2)(n-1)10(n-1)(n—1) ~ [A(_ ) (n—2)@n—2)n]On(n-1)

we complete the process for the n-th, (n — 1)-th and (n — 2)-th rows of B. Repeating this process
more n — 3 times we arrive at a matrix B such that I,, € AB N BA, as desired. O

3.4 Multipolynomials
secpol
Even if the rings-like multi-algebraic structure have been studied for more than 70 years, the
developments of notions of polynomials in the ring-like multialgebraic structure seems to have a
more significant development only from the last decade: for instance in [4I] some notion of multi
polynomials is introduced to obtain some applications to algebraic and tropical geometry, in [6] a
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more detailed account of variants of concept of multipolynomials over hyperrings is applied to get
a form of Hilbert’s Basissatz.
Here we will stay close to the perspective in [6]: let (R, +,—,,0,1) be a superring and set

R[X] :={(an)new € R : ItVn(n >t — a, =0)}.

Of course, we define the degree of (a,)ncw # 0 to be the smallest ¢ such that a,, = 0 for all n > ¢.
Now define the binary multioperations +,- : R[X]| x R[X] — P*(R[X]), a unary operation
—: R[X] — R[X] and elements 0,1 € R[X] by

(cn)new € (an)new + (bn)new iff Vn(cn € an + by)
(cn)new € ((an)new * (bn)new IV n(c, € ag by + a1 - bp—1 + ... + an - bo)
—(an)new = (—an)new
0:= (0)new
1:=(1,0,...,0,...)

For convenience, we denote elements of R[X]| by @ = (an)nen- Beside this, we denote

1:=(1,0,0,...),
X :=(0,1,0,...),
X?:=(0,0,1,0,...)
etc. In this sense, our “monomial” a; X’ is denoted by (0,...0,a;,0, ...), where a; is in the i-th
position; in particular, we will denote b = (b, 0,0, ...) and we frequently identify b € R «~ b € R[X].
The properties stated in the Lemma below immediately follows from the definitions involving
RIX]:
lemperm
Lemma 3.4.1. Let R be a superring and R[X] as above and n,m € N.
a- {Xntm} = Xx". xm,
b- Foralla€e R, {aX"}=a-X".
¢ - Given a = (ag,ay,...,an,0,0,...) € R[X], with with dega < n and m > 1, we have

aX™ = (0,0,...,0,ag,a1, ...,an, 0,0, ...) = aoX™ + a1 X" + .. + a, X"

d - For a = (ap)new € R[X], with dega =t,
{ay=ag-14+a1- X +..+a- X' =ag+ X(a1 +axX + ... +a, X' 1).
e - R[X] is a non-associative superring. If R is associative and full then R[X] is an associative
Superring.
[ - R[X] is a superdomain iff R is a superdomain.
g- The map a € R+ a = (a,0,---,0,---) defines a full embedding R — R[X].

h - For an ordinary ring R (identified with a strict superring), the superring R[X] is naturally
isomorphic to (the superring associated to) the ordinary ring of polynomials in one variable
over R.
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Lemma allow us to deal with the superring R[X] as usual. In other words, we can assume
that for o € R[x], there exists ag,a1,...,a, € R such that « = ap + a1 X + ... + a, X", and then,
we can work simply denoting o = f(X), as usual. For example, combining the definitions and all
facts above we get

(x—a)(z—D) =2+ (a—b)x+ab={2>+dr+e:dca—bandec ab}.

Here we have a situation similar to the matrix case: the general structure R[X] will be asso-

ciative only if R is full.
teo-rxfull

Theorem 3.4.2. Let R be an associative proto-full superring. Then R[X] is a proto-full superring.
Moreover, if R is full then R[X] is an associative superring.

Proof. In fact, we already know that R[X] is a non-associative superring. To prove the desired
affirmations, we deal with elements in R[X] as sequences: we denote a = (ag, a1, ...., an, ...) € R[X],
and for n > 0, [al],, := a,. We extend this notation for the operations + and - over R[X]:

[a+ b, = an + by
[ab], = Z a;bp—;
=0

With these notations, for all a,b,c € R[X] and all n > 0 we get

[(ab)ln =D [labliden =D | apbip | cn

i=0 i=0 |p=0
[a(b)]n =D ai((beln—i] =Y ai [ > bpen—iyp
i=0 i=0 p=0

If R is full (proto-full), then (after some reindexation) we get [(ab)c], = [a(bc)], ([[(ab)c]n] N
[[a(be)]n] # 0) for all n > 0, and then, (ab)e = a(be). O

Remark 3.4.3. If R is a full superdomain, does not hold in general that R[X] is also a full
superdomain. In fact, even if R is a hyperfield, there are examples, e.q. R = K,Q2, such that
R[X] is not a full superdomain (see [0]).

Definition 3.4.4. The structure R[X| will be called polynomials in one variable over R. The
elements of R[X| will be called polynomials. We denote R[ X1, ..., Xy] :== (R[X1, ..., Xp—1])[X5].
degreelemma
Lemma 3.4.5 (Adapted from Theorem 5 of [6]). Let R be a superring and f,g € R[X]\ {0}.
i- Ift(X) € f(X)+g(X) and f # —g then
min{deg(f), deg(g)} < deg(t) < max{deg(f), deg(g)}-

it - If R is a superdomain and t(X) € f(X)g(X), then deg(t) = deg(f) + deg(g). In particular,
iffl(X)va(X)a 7fn(X) 7& 0 and t(X) S fl(X)fQ(X)fn(X)’ then

deg(t) = deg(f1) + deg(fa) + ... + deg(fn)-
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iii - (Partial Factorization) Let R be a superdomain, deg(f) =mn and f € (X —a1)(X —ay)...(X —
ap). Then p =n.

Let f(X) =ap+ ... +apX™ and g(X) = by + ... + b, X™ with ay, by, # 0. We establish the
following notation: for k € N with & < deg(f) we define (f)r := a (the k-th coefficient of f).

Proof of Lemma[3.4.5 For item (i), we have
J(X) 4+ 9(X) = (a0 + bo) X + ... + (an + bm) X™.

Since f(X) # —g(X), 0 ¢ ay, + by, establishing item (i).
Now, suppose without loss of generality that m > n and in this case, write

f(X)=ao+ ...+ an X™

with a = 0 for n < k < m. We have (fg)m+n € anby, and since R is a superdomain, (fg)m4n 7 0.
This and induction proves item (ii).
For item (iii), let g € (X — a1)(X — ap)...(X — ap). By item (ii) and induction, deg(g) = p.
Then n = deg(f) = p. O
Despite the fact that R[X] is not full in general, we have a powerful Lemma to get around this
situation.
lemfator
Lemma 3.4.6. Let R be a superring and f € R[X] with f(X) = ap X" + ... + a1 X + ag. Then:
i- Forallb,ce R, (b+cX)f(X)=bf(X)+ cXf(X).
1 - For all b,c € R and all p,q € w with p < gq,

(bXP + cX) f(X) = bXPf(X) + cXPf(X).

1t - For allb,c,d € R and all p,q,7 € w withp < g <,

(bXP + X9+ dX") f(X) = bXPf(X) 4+ cXPf(X) + dX" f(X).

w - For all by, ....,by, € R,
(bo+ 01X + b X2+ .+ b, X™)f(X) =
bof(X) + (1 X + b2 X* + ...+ b X™) f(X).
v - For all by, ....,b,, € R,
(bo + 01X + 0o X2+ . 4+ by 1 X4 b, X™) F(X) =
(bo+ 01X + b2 X2+ .+ by 1 XY f(X) 4+ b X f(X).
vi - For all by, ....,by, € R,

(bo + 01X + oo 40, X7+ by X L b X F(X) =
(bo +b1X + o + b, X7) F(X) + (b1 X 4+ b X f(X),
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In particular, if d € R, g(X) € R[X] and r > deg(g(X)), then

(9(X) +dX") f(X) = g(X) f(X) 4 dX" f(X).

Proof.

i-

ii -

iii -

v -

We can suppose without loss of generality that b, ¢ # 0. Here is convenient keep in mind that
an element in R[X] is a sequence of elements in R. Denote b+ c¢X = (bp)new € R[X] with
bo = b, by = c and b, = 0 for all n > 2. By definition, for an element h(X) € R[X], say

MX)=eo+e1 X + ...+ enp1 X" = (en)new € RIX],

we have

p
h(X) € (b+cX)f(X)iff ey €Y ajbpj, p € w.
7=0

Since a; = 0 for all j > n and b; = 0 for all j > 2, we have e, = 0 for all p > n+ 1. Moreover,
by the same reason we have that eg € agbg, en+1 € arb; and for 0 < p < n + 1, that

p
ep € Zajbp,j = apbo + ap,lbl.
=0

Summarizing, we conclude that

h(X) € (b+cX)f(X) iff eg € apbo, ent1 € anby and ey € ayby + ap—1by for 0 <p <n+ 1.
(*)
On the other hand, we have that

bf(X)+cXf(X)=0blan X"+ ...+ a1 X + ag] + cX[an X" + ... + a1.X + ag]
= (anbX™ + ... + a1bX + agb) + (ancX™ M + .+ a1cX? + apX)

= a,cX" ! + (anb+ an—1¢)X™ + ... + (a2b + alc)X2 + (a1b + apc) X + agb.
(**)

Joining (%) and () we conclude that

h(X) € (b+ cX)f(X) iff h(X) € bf(X) + cX f(X).

Just use the same reasoning of item (i).
Using distributivity, item (i) and (ii) we conclude that

(0XP + X+ dX") f(X) CbXPf(X) + cXPf(X) +dX"f(X) = (bXP + cXP) f(X) + dX" f(X).
(***)

Now with (x*x*) on hand, just proceed with the same reasoning of (%) and (**) to obtain the
desired.

This is an immediate consequence of item (iii) and a convenient induction.

This is an immediate consequence of item (iii) and a convenient induction.
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vi - This is just the combination of previous items.

O

euclid
Theorem 3.4.7 (Euclid’s Division Algorithm (3.4 in [11])). Let K be a superfield. Given poly-
nomials f(X),g(X) € K[X] with g(X) # 0, there exists q(X),r(X) € K[X] such that f(X) €
¢(X)g(X) 4+ r(X), with degr(X) < degg(X) orr(X) =0.

Proof. This is a generalized version of Theorem 3.4 in [I1], which states Euclid’s Algorithm for
hyperfields. Write

f(X)=a, X"+ - +a1X +ap
g(X) = b X™ 4+ b1 X + bo

with an, by, # 0 and let b, € K be an element satisfying 1 € by, - b}

We proceed by induction on n. Note that if m > n, then is sufficient take ¢(X) = 0 and
r(X) = f(X), so we can suppose m < n. If m =n =0, then f(X) = ag and g(X) = by are both
non zero constants, so is sufficient take ¢(X) € ag - by * and r(X) = 0.

Now, suppose n > 1. Then, since 0 € a — a, there exist some t(X) € f(X) — apb,,} X" ™g(X)
with deg¢(X) < n. So, by induction hypothesis,

t(X) € q(X)g(X) + r(X) for some ¢(X),r(X) € R[X] with degr(X) < degg(X) or r(X) = 0.
Therefore, degt(X) = degq(X) + m and since f(X) € t(X) + anb,,' X" ™g(X), we have

F(X) € t(X) + anby,! X" g(X)

S

C q(X)g(X) + anby, X" " g(X) + r(X).

But since deg ¢(X) = degt(X) — m < n — m, we have (see Lemma [3.4.6] (vi)) that
[4(X) + anby X" ™]g(X) = ¢(X)g(X) + anby,' X" "g(X).

So there exist some ¢'(X) € ¢(X) + apb,,} X"™™ with f(X) € ¢'(X)g(X) + r(X) and degr(X) <
deg g(X) or r(X) = 0, completing the proof. O

Remark 3.4.8.

i - Note that the polynomials q¢ and v of Theorem[3.4.7] are not unique in general: if f € gq+ 7,
then f € gl¢q+1—1)+7 and f € g9+ (r+1—1), then, if {0} # 1 — 1, we have many q’s
and r’s.

ii - However, if R is a ring, then Theorem provide the usual Euclid Algorithm, with the

uniqueness of the quotient and remainder.
teoPID

Theorem 3.4.9 (Adapted from Theorem 6 of [6]). Let F' be a full associative superfield. Then
F[X] is a principal ideal superdomain.

Proof. Let I be a ideal of F[X]. If I =0 then I = (0) and if there is some a € F'\ {0} with a € I,
then I = F[X] = (1) (because F is full).

Now let p(X) € I be a polynomial with minimal degree m > 1. Let f(X) € I be another
polynomial. By Euclid’s Algorithm, there exists ¢(X), r(X) € F[X] with f(X) € p(X)q¢(X)+7r(X)
and r(X) = 0 or deg(r) < deg(p) = m. Since f,p € I and r(X) € f(X) — p(X)q(X), we have
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r € I. Note that by the minimality of m, all nonzero polynomial in f(X) — p(X)g(X) has degree
at least m. If r # 0 then

min{deg f,deg(p) + deg(q)} < degr < max{deg f,deg(p) + deg(q)}.

In particular deg(r) > m (because deg(f) < m), contradicting deg(r) < m. Hence r = 0 and
I = (p). In particular, I = F[X] - p(X). O

3.5 Evaluation and Roots

Let R, S be superrings and h : R — S be a morphism. Then h extends naturally to a morphism
in the proto-superrings multipolynomials A~ : R[X] — S[X]:

(an)nen € RIX] = (h(an))nen € S[X]

Now let s € S. We define the h-evaluation of s at f(X) € R[X] with f(X) =ao+ a1 X +...+
an,X™ by

fi(s) = ev’(s, f) :={s' € S : 5" € h(ag) + h(a1)s + h(az)(s?) + ... + h(an)(s™)}.

In order to easy our presentation, we just denote ab™ := a(b™). We define the h-evaluation for a
subset I C S by
@) =J ")

sel

In particular if S O R are superrings and « € S, we have the evaluation of « at f(X) € R[X]
by
fla,S) =ev(a, f,S)={be S:becayg+aa+ax®+..+a,a"} C8S.

Note that the evaluation depends on the choice of S. When S = R we just denote f(«, R) by
fla).

A root of f in S is an element o € S such that 0 € ev(a, f,S). In this case we say that a is
S-algebraic over R. An effective root of f in S is an element o € S such that f € (X —a)-g(X)
for some ¢g(X) € R[X]. A superring R is algebraically closed if every non constant polynomial
in R[X] has a root in R.

Observe that, if F' is a field, the evaluation of F'[X] as a ring coincide with the usual evaluation,
and, of course, root and effective roots are the same thing. Therefore, if F' is algebraically closed
as hyperfield and superfield, then will be algebraically closed in the usual sense.

unexpected-rem
Remark 3.5.1. The expansion of the above field-theoretical concepts to the multialgebraic theory
of superfields (hyperfields, in particular) brings new phenomena:

i- (Polynomials can have infinite roots): Let F' be a infinite pre-special hyperfield ([24)]). Then F
has characteristic 0, a®> = 1 fgr all a # 0 so the polynomial f(X) = X2 — 1 has infinite roots
(i.e, 0 € ev(f,a) for alla € F).

ii- (Finite hyperfields can be algebraically closed). The hyperfield K = {0,1} is algebraically
closed. In fact, if p(X) = ap + a1 X + aaX? + ... + a, X" € K[X], with a,, # 0, then 0 € p(0)
(if ap =0) or p(1) = K, since 1 +1 ={0,1}.
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We have good results concerning irreducibly (see for instance, Theorem 4| below). These
results are the key to the development of superfields extensions, which leads us to some kind of
algebraic closure.

Definition 3.5.2 (Irreducibility). Let R be a superfield and f,d € R[X]. We say that d divides
fif and only if f € (d), and denote d|f. We say that f is irreducible if deg f > 1 and u|f for
some u € R[X] (i.e, f € (u)), then (f) = (u).

lemquadext2
Theorem 3.5.3. Let F be a full associative superfield and p(X) € F[X] be an irreducible polyno-
mial. Then (p(X)) is a mazimal ideal.

Proof. Let p(X) be irreducible and I C F[X] an ideal with (p(X)) C I. By Theorem

for some f(X) € F[X]. Since p(X) € I = (f(X)), then p(X) = f(X)g(X) for some g(X) € F[X].
Since p(X) is irreducible, either f(X) or g(X) is a constant polynomial. If f(X) is constant, then
I = F[X], and if g(X) is constant, I = (p(X)), which proves that (p(X)) is maximal. O

If F' is not full, we cannot prove that (p(X)) is a maximal ideal. But we still have that F[X]/(p)
is a superfield.
lemquadext
Theorem 3.5.4. Let F be a superfield and p € F[X] be an irreducible polynomial. Then F[X]/(p)
is a superfield.

Proof. Let p(X) =do+ a1 X + ... + a1 X" 1. Note that

F(p(X)) := F[z]/(p) = {lao + a1 X + ... + ax, X""] : ag, ..., an, € F'}
={lf(X)]: f(X)=ap+ a1 X + ... + a, X" with ag,...,a, € F, r <n}. &C%I

Let f(X)=ao+ a1 X +...+a, X" and g(X) =by+ b1 X + ... + bsX*® with and suppose

[0] € [f(X))g(X)]-

There exist
h(X) € (f(X)g(X)) N (p(X)).

Since F' is a superdomain, every nonzero polynomial in (p) has degree at least n+1 = deg(p). Now
get a nonzero element in [t(z)] € [f(X)][g(X)]. Using Equation we have t(X) € f(X)g(X)
with deg(¢t) < n. Then h(X) =0 and 0 € f(X)g(X), which imply f(X) =0 or g(X) = 0 (because
F[X] is a superdomain). Then [F(X)] = 0 or [g(X)] = [0], proving that F[p(X)] is a superdomain
(and then, (p(X)) is strongly prime).

Now we prove that F[p(X)] is a superfield, i.e, that for all nonzero [f(X)] € F[p(X)], there exist
a nonzero [g(X)] € F[p(X)] with [1] € [f(X)][g(X)]. We proceed by induction on n = deg(f(X)).

If n =0, then f(X) = a for some a € F, and there exist a™! € with 1 € a-a™', and then
1] € [f(X)][a™!]. Ifn =1, then f(X)=aX +b, a,b € F (a # 0). By Euclid’s Algorithm, there
exists ¢(X),r(X) with p(X) € f(X)g(X) +r(X) with r(X) = 0 or deg(r (X)) < deg(f(X)). Since
p(X) is irreducible, 7(X) # 0 and r(X) = d € F. Moreover for some d~' € F with 1 € d-d~!

50f course, not necessarily unique.
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have

p(X) € f(X)g(X) +d = [0] € [f(X)][g(X)] + [d] = —[d] € [f(X)][g(X)]
= [dd™"] C [f(X)](=1d7[a(X)]) = [1] € [F(X)](~1d"][a(X)]),

and then, there exist [t(X)] € —[d~!][¢(X)] with [1] € [f(X)][t(X)].

Now, suppose by induction that all polynomial of degree at most n has an inverse and let
f(X) € F[X] with deg(f(X)) = n + 1. By Euclid’s Algorithm, there exists ¢(X),r(X) with
p(X) € f(X)g(X)+r(X) with r(X) = 0 or deg(r(X)) < deg(f(X)) and since p(X) is irreducible,
we have r(X) # 0. By induction hypothesis, there exist g(X) € F[X] with [1] € [r(X)][g(X)].
Then

p(X) € f(X)q(X) +r(X) = [0] € [F(X)][g(X)] + [r(X)]
= [r(X)] € =[f(X)][g(X)]
= [r(X)]g(X)] € =[f(X)][g(X)][g(X)]
= 1€ [r(X)]lg(X)] < [F(X)N(=[g(X)][g(X)]),

then there exist [t(X)] € —[q¢(X)][g(X)] with [1] € [f(X)][t(X)], completing the proof. O

Using Theorem we obtain an algorithm to determine the invertible elements in F[p(X)]
particularly useful in the field case:
lemquadext3
Corollary 3.5.5. Let F be a field and p(X) € F[X] be an irreducible polynomial. If f(X) # 0
and p(X) = f(X)q(X) +r(X) with r(X) # 0, then

[FEOI™! = ~[g(O))[r (X)) € Fp(X)].

Definition 3.5.6. Let F' be a superfield and p(X) € F[X] be an irreducible polynomial. We denote
F(p) := F(p(X)) = F[X]/{p(X)).

lemfator2
Lemma 3.5.7. Let F be a superfield and p(X) € F[X] be an irreducible polynomial. Denote X = \
and let f € F(p) with f =@, \" + ... + a1\ +ag. Then:

i- Forallbjc€ F, (b+¢\)f =bf +c\f.
1 - For all by, ....,by, € F,
(Do + bIA + oo + DN + by A N T L+ b AT f =
(o + b1 A+ oo F 0N f 4 (b N+ DA™ S
In particular, if d € F, g € F(p) with g = by + b\ + boA> + ... + b, ™ and v > m, then
(g+d\")f =gf +d\'f.
Proof. Similar to Lemma [3.4.6 O
rootl
Theorem 3.5.8. Let F' be a superfield and p(X) € F[X] be a polynomial of degree greater or equal

to 1. Then there exist a superfield L such that F C L, F is a sub superfield of L (i.e, the inclusion
F — L is a full morphism) and p(X) has a root.
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Proof. Tt is enough to show the result for p(X) irreducible. In this case, the ideal (p(X)) C F[X]
is maximal and K’ = F[X]/(p(X)) is a superfield. If we consider the canonical injection ¢ : F' —
F[X]/(p) given by a +— @, we have a full morphism (basically because F' — F[X] is full). Putting
F’' = (F) we have that FF = F', F/ < L is a full morphism and the polynomial p* (given by the
application of ¢ in each coefficient) has a root .

Next, let K = F U X for some X of cardinality K’ \ F’. We construct a bijection ¢ : K — K’
which restrict ton F' is equal to ¢. This bijection transport the structure of superfield for K (in the
obvious way), in order to get an extension K|F such that f has a root ¢ ~1(z). O

Corollary 3.5.9. Let F be a superfield and f € F[X] be a polynomial with n = deg(f) > 1. Then
there exist a non-associative superfield L such that F C L and f has at least n roots.

Corollary 3.5.10. Let F' be a superfield and fi, ..., fn € F[X] be polynomials with 1 < deg(f;) =
rj, j =1,...,n. Then there exist a superfield L such that F' C L and each f; has at least rj roots.

3.6 Extensions

We have some possibilities to consider in order to define the notion of extension for superfields:
extension

Definition 3.6.1 (Extensions). Let F' and K be superfields.

i - We say that K is a proto superfield extension (or just a proto extension) of F,
notation K|,F, if F C K.

it - We say that K is a superfield extension (or just an extension) of F', notation K|F if
F C K and the inclusion map F — K is a superfield morphism.

iit - We say that K is a full superfield extension (or just a full extension) of F, notation
K|fF if F C K and the inclusion map F — K s a full superfield morphism.

Example 3.6.2.
i - Of course, all full extension is an extension and all extension is a proto extension.

1 - We have K C Q2 but the inclusion map K < Q9 is not a morphism. Then we have a proto
extension Qa2|,K that is not an extension.

it - For p,q prime integers with ¢ > p we have an inclusion morphism H, — H,, but this
morphism is not full. Then we have an extension Hy|H), that is not a full extension.

iv - Let F be a superfield, p € F[X] an irreducible polynomial and F(p) = F[X]/(p) be the
superfield built in Theorem . Then we have a full morphism F — F(p) so we have a full
extension F(p)|F.

v - Let F, K be fields such that F C K. Then the field extension K|F satisfy all conditions in
Definition [3.6.1].

The result below justify a deeper look at full superfield extensions.
unicityext
Theorem 3.6.3. Let K|;F and K| F be full superfield extensions and suppose that vy € K1NKs.
Then
Flv, K1) = Flv, K.
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Proof. Suppose first that Ko| ;K is a full extension. Then for all f € F[X], ev(f, K1) = ev(f, K2),
so Fly, Ki| = Fly, Ka].
Now, for the general case just note that Ki|y(K1 N K>) and Ka|f(K1 N K3). Then

Fly, K] = Fly, Ki N Ky] = Fly, K».
]

Definition 3.6.4 (Algebraic Extensions). We say that a proto extension K|,F is algebraic if all
element a € K is K-algebraic over F'. We denote the same for extensions and full extensions.

Definition 3.6.5 (Linear Independency, Basis, Degree). Let K|,F be a proto extension and I C K.
We say that I is F-linearly independent if for all distinct \i,...,\p, € I, n € N, the following
hold:

Ifo€ea A +...+ap\y thenay =...=a, =0

and I is F-linearly dependent if it is not F-linearly independent. We say that I is a F'-basis
of K if I is linearly independent and K is generated by I, i.e,

n

K= U{ aiXi:a; € F, )\Z-EI}.
n>0 =0

In this case, we write K = F[I|. We define the degree of K|,F, notation [K : F|, by the following

[K : F]:= o0 or [K : F] := max{n : the set {1,\,\?, ..., \"} is linearly independent for all \ € K}.
reml
Remark 3.6.6. There are these immediate consequences of the above definitions:

a - If I C K 1is linearly independent and J C I then J is also linearly independent.
b - An element o € K is F-algebraic if and only if {o” : k € N} is F-linearly dependent.
c- If[K: F] <oo then all a € K is F-algebraic.

d - Let F be a superfield and p € F[X] an irreducible polynomial, say p(X) = ap + a1 X + ... +
an X"+ X", Then {1,X,.... X" '} is a F-basis of F(p).

Now, let K|,F be a proto extension and v € K algebraic. Then there exist an irreducible poly-
nomial f(X) such that 0 € f(v, K). Let Irrp(, K) be the minimum degree irreducible polynomial
f(X) such that 0 € f(v, K). Let F[y, K] C K be the set

Flyv,K]:= ] ev(f7,K)CK,
feF[X]

and I, g C Fv, K] the set

Iy g = U ev(f,v,K) C K.
f€<1rrF('YvK)>

Note that for all g € F[X] and all ag, ..., a,, € F, applying the “Newton’s binom formula” we get

ev(g, (ap + a1y + aay* + ... + an_1y"" ' + apy™), K) C Fly, K.
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Remark 3.6.7.
i - If K|F is a field extension then our Fv, K| coincide with the usual simple extension F(7).

it - If K|F is a superfield extension and v € K, then F[y, K] depends on the choice of K. For
example, consider Hs|Hy and Hs|Hy and the element 2 € Hs (and of course, in Hs). Then

Ho[2, Hy) = | ev(f,, H3) = H,
fEH[X]

Hy[2,Hs)= | ) ev(f, v, Hs) = Hs,
feH2[X]

and then, H2[2,H3] 7& HQ[Q,Hg,].

iii - For a proto extension K|,F the set F|y, K| may not be a superfield! Let F' = Hy, K =R and
v =2. Then
Hy[2,R] = 27

which is not a superfield.

At this point, our goal is to obtain an appropriate notion for simple extensions of superfields.
In other words, given a full extension K|;F and a € K algebraic, it is highly desirable to obtain a
superfield F'(«) that:

1. FU{a} C F(a);
2. F(«) is the minimal superfield (with respect to inclusion) satisfying (1);

3. F(«) is "computable” in some way (or saying it in a more realistic manner, we want that

F(a) = F(p) with p(X) = Irrp(a))ﬁ

For general superfields there are some obstacles to achieve this goal. The very first one is
the fact that R[X] is not full in general. However, we have an interesting property valid for all
a,be RIX]:

a(l+X)=a+aX and (a+b)X =aX + bX.

This property is the inspiration for the following definition.
almostfull

Definition 3.6.8. Let K|,F be a proto superfield extension and v € K. Suppose that K is F-
generated by {1,72,...,7"}. We say that K is F-almost full relative to v (or just almost
full) if for all a,b,c € F, and all p,q,r € N distinct

(ay? + b7 + ")y = ayP T 4 by Tt 4 ey

Here are some immediate consequences of Definition [3.6.8}
lemfator3d

Lemma 3.6.9. Let K|¢F be a full extension F-almost full relative to v and let A = ag + a1y +
a3 + ... + apxy". Then:

i- Forallb,ce F, (b+cy)A =bA+ cyA.

5As we will see later, simple calculations with superfield are highly demanding...
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it - For all by, .....;by € F,
(bo +biy+ ...+ bj’yj + bj+1’7j+1 =+ ...+ bm’)/m)A =
(bo + b1y + oo + by ) A+ (bjp17V T+ o+ bpy™) A
In particular, ifd € F, B C K with B = by + b1y + bay? + ... + by Y™ and v > m, then

(B+dy")A = AB + dv" A.

Proof. Similar to Lemma [3.4.6 O
almostfact

Lemma 3.6.10. Let K|;F' be a full extension F-almost full relative to . Then:
i- K=FlyK];
i - If K|fF and L|sK are almost full then L|F is almost full;

iii - If L|¢F is another full extension and m: K — L is a full surjective morphism, then L|;F' is
F-almost full relative to mw(vy);

w - For all ag,...,an, by, ...,b, € F,

(a0 + a1y + ay® + . + a1y + any™)(bo + b1y + bay® + o b1+ bpy™) C

1 2n—1 2n
aobo + | D agbij | v+t | D aibonny—y | 7| D agbig | 4"
=0 =0 =0

with the convention a; = b; = 0 if j > n.

Let K|¢F be a full extension and a € K algebraic over F. Our aim is to provide an almost
full algebraic extension F'(cv)|sF containing F' and «. The key to that is to find a way to describe
algebraic elements of K. Here we have a first result in this direction.

Theorem 3.6.11 (Almost Full Newton’s Binom). Let K|F be an almost full superfield extension
F-generated by {1,v,...,7"}, v € K. Then for all a,b € F,

@i =3 (M

J=0

Proof. By induction is enough to prove the case n = 2. We have
2 ._ B5a _ 2 2
(a+by)*:=(a+by)(a+by) =" ala+by) +by(a+ by) = a* + aby + bya + (by)

2
= a® + aby + aby + (by)? = a® + 2aby + (by)? := Z <;l> a’ (by)" ™.
=0

O]

In the sequence, we have a key result, which states that our ”best candidate for simple exten-

sion”, F(p), is an full algebraic and almost full extension of F'.
teohell2

Theorem 3.6.12. Let F' be a superfield and p € F[X] be an irreducible polynomial. Then F(p)|¢F
is an algebraic extension. Moreover, if degp =n + 1 then [F(p): F] <n+ 1.
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Proof. Remember that F(p) is generated by {1,7,...,7"} with v = X, n € N. Also, we can consider
n as the minimal integer such that there exist ao, ..., an+1 with

0€ap+ary+ ...+ apy™ .

Now let by + b1y + ... + bpy™ € F(p)*. Since x -y # () for all z,y € F(P), for all k =0, ..., n,
there exist
dyo + di1y + o+ diny" € (bo + b1y + oo + buy™)"

for suitable d;; € F'. Writing this in matrix notation, we have

1 (bo + b1y + ... + bpy™)°
bo + b1y + ... + bpy™)!
D 7 c (bo 1Y . ")
o (bo + b1y + o + bpy™)"
with
dio din ... din
D=1 . .. )
an dnl ce dnn

The fact that F(p) is almost full enable us to scale the matrix D, saying

€ €01 --- €ln
0 €11 ... €ln
Dscated = . .
0 0 ... eun
and getting
e €01 --- €ln 1 Z?:() ng(bO +biy+ ...+ bn’)/n)J
0 ey ... ein v Z?:O glj(b() +biy+ ...+ bn"}/n)j
o . | € : (%)

0 0 ... ewm) N > =0 9nj(bo + b1y + ... + by

for suitable g;; € F.

If Dgcqieq is not invertible then 0 € det(Dseqred) = €11€22..-€nn and then, e; = 0 for some
i € {1,...,n} (see Lemma |3.3.11)), which imply (by the very scalation process) that there exist a
row ¢ with L; being a linear combination of the others. Suppose without loss of generality that

T1 Tn
Lyt N Z)\jl Li+..+ Z)\jn L, 750
p =1

This means

0€ 204 21(bg + b1y + .. + by + oo+ 2, (Do + b1y + .. + by™)" " — (bg + b1y + ... + bpy™)M T,
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for suitable 2, ..., 2, € F, and then, for f(X) = 20 + 21X + ... + 2, X" — X! we have
0€ f(bo+ b1y + ... +bp7"),

which means by + b1y + ... + b,y" is algebraic. If Dgcqieq is invertible, since F'(p)|¢F is almost full

we get
1 1

€ D_l Dscaled

scaled

n n

Y Y

After multiplying the equation (x) by D;:}lle 4 We arrive at a system

1 1 > i=090(bo + b1y + ... + bn’y")Ji
€ Dyvatea | Dscaled ’Y C Dpied Zimotnilho bﬁ oy
7" o Z?:o Gnj(bo + b'l'Y + oA bpy™)d
then our situation is
1 ZZ:O goj(bo + b1y + ... + bn'y”)]:
. n
7 € Dgegiea oot 5217 Foe bty (%)
o S (b0 + b1y + o+ by

Let Dy, .= (hij). From (xx), after calculating the matrix product we get (remember the almost
fullness)

70 € 300 gojhoj(bo + bry + .. + by
M € 35 g1jh1;(bo + b1y + .. 4 bpy")

V€ D0 gnjhng(bo 4 by + o + Dy
which imply
agy’ € > j=0a0(g0jho;)(bo + b1y + ... + byy"™)?
a1y € Z?:o a1(gijh1;)(bo + b1y + ... + byy™)

any™ € 3250 an(gnjhng) (bo + b1y + ... + bpy™)

Then

n n

arany™ S| ar(gihag) (bo + 01y + o+ by | | Y an(gnghng) (bo + b1y + o 4 bpy™)
=0 =0
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and

0O€ap+ary+...+a +17”+1

n n

Z Z ap(gpihps) (bo + b1y + ..+ bny™) | +

=0 | j=0
Z aq gl]hlj bO + bl'Y + ...+ bn'Y ) an(gnjhnj)(b(] + bl'}/ + ...+ bnfyn)j
J=0 j=0

Now, thinking with polynomials, we have

n n n n
= 1 aplgpihp)) X7 | + | D ar(grjhag) X7 an(Gnjhng) X7 | =
p=0 [ 5=0 j=0 =0
D aplgpitg) | X7+ | D ar(grihi) X7 | (D an(gnihng) X7 | =
p=0 j=0 j=0 §=0

— P(X) + S(X)T(X),

with
Z Z ap(9pjlps)
p=0 57=0
X)=>ai(gijh1;) X’
=0
X) = an(gnjhnj) X
j=0
Then

0€ev(AX), bo+biy+ ...+ b7");
which means that there exists at least a polynomial f(X) € A(X) = P(X) + S(X)T(X) with

0 € f(b(] + b1y + .+ oY)

Then by + by + ... + byy™ is algebraic. Of course, this also imply that [F(p) : F] <n+ 1. O

Keeping on hands the Theorem [3.6.12) we work in order to legitimate F(p) as the simple
extension of F' by a. But before we do that, lets make some considerations about general almost

full extensions.
The proof of Theorem [3.6.12| strongly rely in the fact that ag + a1w + ... + a,—1w™ ! is unitary.
It is a special property of F'(p), and is not necessarily valid for a general almost full full extension.

For an almost full extension K|¢F denote
Alg(K,F) = {a € K : « is algebraic over F'}.

We do not know if Alg(K, F') is a superfield in general. The difficult here is that despite the fact
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that Theorem [3.6.12] is still available, we cannot use it to conclude that all elements in af and
«a + [ are algebraic if @ and (8 are algebraic.
It is time to define a notion of simple extension.

Definition 3.6.13 (Simple Extension). Let K|¢F be a full extension and o € K algebraic. We
define the simple extension F(«o, K) by

F(a,K) :=({L: L|F is full and Flo] € L}.

Note that we have a full extension F(o, K)|¢F. If Mi,...,\p € K are algebraic, we define
F,y s Ay K) i= FOM ooy A1, K) O, K.

By Theorem we can simply write F(«) to indicate F (o, K)

Theorem 3.6.14.

i - Let K|tF be a full extension with o € K algebraic. Let p(X) = Irrp(a, K). Then F(o) =
E(p).

ii - Let K|¢F be a full extension and o, f € K algebraic such that F(o)(B)|sF(a) and F(B)(c)| s F(B)
are almost full extensions relative to o and [ respectively. Then

F(a)(8) = F(8)(a).
iii - Let K|¢F be a full extension. For all oy, ...,c, € K and all o € S,, we have
F(at, .., an) 2 Fag), - Qan))-

Proof.

i- We have that F(p)|;F' is a full extension containing F'[a, K| (see Theorem [3.5.8)), so F'(c)
F(p). Moreover, F(p) is generated by {1,a,...,a" '}, where n = deg(p). Then Fla]
F[{1,a,...,a" '} already is a superfield and

1N

F(p) = F[{1,a,...,a" 1} = F(a).
ii - By construction, ev(p, o, F(a)[X]) C F(B)(«c) for all p € F(«)[X]. Then F(a)(8) C F(8)(«).
Reverting the argument we conclude F(8)(a) C F(a)(B).
iii - Just use previous item and induction.
O

Corollary 3.6.15. Let K|¢F be a full extension with o € K algebraic and deg(Irrp(a)) = n.
Then
F(a) = {ao+a1a+ ... + apa” : ag, ...,an € F},

with operations in the set on the right inherited from F[X].

Of course, deal with F(p) is much easier to deal with the general expression

(L : L|yF is full and Flo] C L}
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in the sense of make calculations. But the task of determining F'(p) "by hand” was already difficult
in the field case. In the superfield case this difficult is accentuate, even for low degree polynomials.

extlex

Example 3.6.16 (Quadratic Extensions of Hs). Of course, the only irreducible polynomial of
degree 2 over Hy is f(X) = X2+ 2. We want to describe some possibilities for H3(v/2, K) (even
in the case of non full extensions).

We first use Theorem . Let Irrg,(V/2) = p(X) = X2 + 2 and consider K = Hs(p). Lets
look closely at the operations on K. Denote an element in K by [f] € K, f € H3[X]|. We have

K ={[0],[1],[2], [X],[2X],[1 + X],[2 + X],[1 + 2X], [2 + 2X]}.
By definition, for [f],[g] € K we have
f1+ 19l :=A{[h] - h e f+g} and [f]-[g] :={[h] : h € fg}.

With these rules is easy to show that K|Hs is an algebraic full extension (for example, [1 + X] is
a root of f(X) = X2+1). In fact, K = H3(\/2). Moreover K is not a hyperfield because

M+ X1+ X]) =K.

Now let L = H3 X, Hs. Note that |L| = (3—1)(5—1)+1=2-4+1=9. Moreover, we have
a morphism i : Hy < Hy given by the rule i(z) = (1,22). Denoting w = (1,2), we have

w?=1(1,2)2=(1,2)-(1,2) = (1,2%) = (1,4) = i(2).

More explicitly, doing the following identifications

(L,1) =1, (2,1) = a,
(1,2) = w, (2,2) = b,
(1,3) — 2w, (2,3) — ¢,
(1,4) — 2, (2,4) — d,

we have that
L={0,1,2,w,2w,a,b,c,d}

with the following table of operations:

+ H w ‘ 2w ‘ a ‘ b ‘ c ‘ d ‘
1 {l,w,a,b} | {1,2w,a,c} K\ {0} {l,w,a,b} | {1,2w,a,c} | {1,2,a,d}
2

{2,w,b,d} | {2,2w,c,d} | {1,2,a,d} | {2,w,b,d} | {2,2w,c,d} K\ {0}

K {w,2w,b,c} | {1,w,a,b} K\ {0} {w,2w,b,c} | {2,w,b,d}
2w || {w,2w,b,c} K {1,2w,a,c} | {w,2w,b,c} K\ {0} {2,2w,c,d}
a {l,w,a,b} | {1,2w,a,c} K {1l,w,a,b} | {1,2w,a,c} | {1,2,a,d}
b K\ {0} {w,2w,b,c} | {1,w,a,b} K {w,2w,b,c} | {2,w,b,d}
¢ || {w,2w,b,c} K\ {0} {1,2w,a,c} | {w,2w,b,c} K {2,2w,c,d}
d {2,w,b,d} | {2,2w,c,d} | {1,2,a,d} | {2,w,b,d} | {2,2w,c,d} K
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[ 2]w]w[al[b]ec]d]

2 1 | 2w | w d c b a
2w | 2 1 b d | a c

2w || w 1 2 c a d b
a d b c 1 w | 2w | 2
b c d a | w 2 1 | 2w

c b a d | 2w ]| 1 2

d a c b 2 | 2w | w 1

and of course, 1 +1=2+2=L, 0+xz={z},l- e =2 and0-2 =0 for all x € L. With these
calculations we immediately have that L is an algebraic extension of Hs.

Now Let q be an odd prime integer greater than 3. The same calculations (withw = (1,2)) proves
that H3 <, Hy is another algebraic extension of Hs. Of course, we clearly have H3 xy, Hs 22 H3 x ), H,
for g > 7. And since all these H3 xp, H, are hyperfields and K is a superfield that is not a hyperfield
we have K 2 H3 xp, Hy for all prime ¢ > 5. Conclusion: we have infinite non isomorphic algebraic
(and non full) hyperfield extensions of Hs.

3.7 Algebraic Closure

As expected, there are some generalizations to the classic notion of algebraic closure for fields.
alg-closure

Definition 3.7.1 (Algebraic Closures). Let F' and K be superfields.

i - We say that K is a proto algebraic closure of F' if K is algebraically closed and K|,F' is
algebraic.

it - We say that K is an algebraic closure of F' if K is algebraically closed and K|F is algebraic.

i - We say that K is a full algebraic closure of F if K is algebraically closed and K|;F is
algebraic.

Of course, all these notions coincide if we choose a field F'.

lemuingl
Lemma 3.7.2. Let F' be a superfield and K|;F' be an algebraic extension. If K is a full algebraic
closure of F then K|¢F is a mazimal full algebraic extension.

Proof. If K|¢F is not maximal, there is a nontrivial full algebraic extension L|¢K. In particular,
there is a nontrivial simple extension K ()| s/, then K is not an algebraic closure. O

Here we achieve the main result of this present paper.
algclos
Theorem 3.7.3 (Existence of the full Algebraic Closure). Let F' be a superfield. Then exists a full
superfield extension K|;F such that K is algebraically closed (and then, a full algebraic closure of
F). Moreover, we can choose K in order that K|;F is algebraic.

Proof. Let F be a superfield. Consider the following set

A:={wl: fe FIX], deg(f) > 1,i=1,...,deg(f)}.
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In other words, for each f of degree greater or equal to 1, we are choosing elements w{ s e wéceg( f
to represent ”some possible roots for f”. For each a € F, a is the root of f,(X) = X — a, and
hence there is an element w;* € A. Let

0= (P(A)\ U {wla}) UF.

[

Then F C Q. Now, consider all the possible superfields that can be defined on elements of €.
Denote the set of all such superfields by €. Since £ C 2, it is in fact a set, and since F' € £, it is a
non-empty set.

Let E|fF be an almost full algebraic extension of F-generated by {1,7,...,7"} where y € E\ F
is a root of f in F[X]. In other words, we have F = F(y). Let w € Q\ F. We can "make the
variable change” v — w and choose distinct elements for all elements in F'(y) in order to get a field
F(w) = F(v), such that F C F(w) C Q.

Then, for all almost full algebraic extension F; C (2 obtained by the above process, we can take
the set

S = {Ej rjed }

We have F' € S and S is partially ordered by inclusion.
Let T'= {E}y; : k € K} be a chain in S and

W= E.
keK

Since W is an algebraic extension of F', we get W € S. By Zorn’s Lemma, there exist some maximal
element F € S. We prove that F is an algebraic closure of F.

In fact, suppose that exists f(X) € F[X] such that f has no roots in F[X]. Then, take w €
such that w ¢ F and w is a root of f(X). Consider the field F(w) as we did above. Then F(w)
is an algebraic extension with F' C F(w), contradicting the maximality of F, which complete the
proof. O

We are surprisingly able to prove the uniqueness of full algebraic closures.
uniq
Theorem 3.7.4 (Uniqueness of the full Algebraic Closure). Let F' be a superfield. Let Ky, Ko be
two full algebraic closures of F. Then K1 = K.

To prove Theorem we need two Lemmas. Let L|¢F be a full superfield extension and N

be another superfield. An F-embedding is a full embedding ¢ : L — N such that «(a) = a,a € F.

uniql

Lemma 3.7.5. Let L|fF be an algebraic full extension and N|¢L another algebraic full extension,

and F some full algebraic closure of F. There is a F-embedding i : L — F and once i is picked
there exists a F-embedding N — F extending i.

Proof. Since a full embedding i : L — F realizes the full algebraically closed F as an algebraic
extension of L (and hence as a full algebraic closure of L), by renaming the base superfield as L it
suffices to just prove the first part: any strong algebraic extension admits a full embedding into a
specified full algebraic closure.

Let X to be the set of pairs (K, i) such that K|;F, L|K and the inclusion map i : K — F is
a F-embedding. Of course, (F,i) € X, and using the partial order defined by

(Kl,il) S (KQ,iQ) iff K2|fK1, L|fK2 and 7:2|k1 = il,
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we obtain that every chain has an upper bound (the superfield obtained by directed union). Then
we are under the hypothesis of Zorn’s Lemma and there exists a maximal element (N, i) € X.

We just have to show N = L. Pick a € L, so « is algebraic over N (as it is algebraic over
F). We have N(a)|sN and F|fN(a). In other words, the inclusion map i : N(a) — F is a full
N-embedding. By maximality of N we get N(«) = N for all « € L, which imply N = L. O

uniq2
Lemma 3.7.6. Let F be a superfield and F be some full algebraic closure of F. If ¢ : F — F is a
F-embedding then ¢ is an isomorphism.

Proof. We only need to show that ¢ is surjective. Let v € F. Then there exist p(X) € F[X],
saying p(X) = X" +a, 1 X" '+ ...+ a1 X + ag with 0 € p(v). Since ¢ is a F-embedding, we have

P?(X) = X"+ ¢lan—1) X" '+ ..+ d(a) X + ¢lag) = X" + a1 X"+ o+ a1 X + ag = p(X).
Then ¢(7) is a root of p(X) because

0€any" 4+ an V" 4+ ... +a1y+ap = #(0) € p(apy™ + 1Y P ay + ap) =
0 € and()" + an-10(7)" ! + ... + a16(y) + ao.

Since ¢ is a full embedding, we have a full embedding ¢(F) < F. Then F|;¢(F). Since F is
algebraically closed, every non-constant polynomial p(X) € F[X] has a root v € F, and then, a
root ¢(y) € ¢(F). If ¢(F) # F, we have a contradiction with the maximality of ¢(F') obtained in

Lemma [3.7.2 O

Proof of Theorem|3.7.4) By Lemma applied to L = K; and F' = K3 (a full algebraic closed
superfield equipped with a structure of algebraic extension of F'), there exists a F-embedding
11 : K1 — Ko. By the very same argument, there also exists a F-embedding iy : Ko — Kj.
Moreover, i1 0is : K1 — K and ig0i; : Ky — Ky are F-embeddings. By Lemma [3.7.6] both i 0 iy
and 49 0 71 are isomorphisms, implying that i; and 2 are also isomorphisms. O

ext2ex

Example 3.7.7. Lets look at Hg again. Consider Lhn = H3 X}, Hs and Lo = Hs X, H7. We do not
know precisely the relations between the full algebraic closures Hz, L1 and Lo.

Of course, since L1|Hs and La|Hs are algebraic extensions of Hs, we have that L1 and Ly are
algebraic closures of H3. Since Lo is an algebraic extension of L1, we know that Lo is an algebraic
closure of L1. But we do not know if H3, L1 and Ly are isomorphic (or not).

It is desirable to achieve explicit calculations of F' for some cases: F (reduced) special hy-
perfields/groups, in particular F' = {—1,0,1} and F' the special hyperfield/group associated to a
Boolean algebra, etc.

3.8 Vector Spaces

Since we already have available matrices and polynomials for superrings, a natural extension
for the theory is a sort of ”vector space” and some linear algebra methods. We start this program
here, proceeding in a very similar fashion of Hofmann’s and Kunze’s Linear Algebra Book ([39]).

Throughout this Section, all superfields will be considered associative.
mvec

Definition 3.8.1. A (multi) vector space over a superfield F is a tuple (V,+,-,0) such that
(V,+,0) is an abelian multigroup and - : F x V. — P*(V) is a function (which image denoted by
«(\,v) 1= Mv) satisfying the following properties for all \,p € F and all v,w € V:
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MVO - 1v = {v} and 0-v = {0};
MV1 - Auv) = (A\p)v.

Here we adopt the following convention: if AC F and v € V, we set
Av = U{)\v t A€ A}

MV2 - Av+w) C Av + dw;
MV3 - (A4 p)v € Av + po.
The vector space (V,+,0) is full if the equality holds in MV2 and MV3.

We proceed similarly to the practice used with polynomials and matrices: we omit the word
"multi” and just say ”vector spaces” over superfields.

Of course, we stick to vectors spaces here but it is available the Definition for ”modules”, just
replacing superfields in Definition for superring.

Here are some natural examples of vector spaces.
extvec

Proposition 3.8.2. Let K|F be a superfield extension with K and F associative. Then K is a
F-vector space, which s full iff the extension is full.

Proof. Here - : F' — K — P*(K) is just the restriction of multiplication to F on the first coordinate.
MO is immediate and M1-M3 are consequences of the axioms of superrings. It is immediate that
K is a full vector space iff K|;F. O

fnvec
Theorem 3.8.3. Let F'™ be the usual n-folded cartesian product F' x ... x F. We already know that
F"™ with the induced sum is a multigroup. Now, for A € F and v = (x1,...,z,) € F™ define

A= (Azq, ey Ay = U{(al,ag, e lp) taj € Az, j > 1}

Then (F™,+,-,0) is a vector space. Moreover F™ is full iff F' is full.

Proof. We already have that F™ is commutative a superring. By the very Definition of scalar
product we get 1v = v. Now let v,w € F", v = (x1,...,Zpn), w = (y1,...,yn) and A\, u € F. We have

A+ o= (A + a1,y A+ p)an)
- ()‘ml + pry, 7/\3371 + an)
= (AZ1, ..o, Azp) + (px1, .oy ) = A0 + paw.

Similarly we conclude that (A + p)v C v + po.
Then F™ is a vector space which is full if F is full.
Now suppose F"™ full. Then for a, A\, € F and v = (a0, ...,0) we have

A+ pa, 0,...,0) = v+ Av = (A + p)v = (A + p)a, 0, ..., 0);
which means (A + p)a = Aa + pa. Similarly we conclude that a(X + p) = aX + ap. O

Theorem 3.8.4. Let F be a superfield and m,n > 1. Then My, «n(F) is a vector space which is
full off F is full.

Proof. This is consequence of Lemma identifying F' with M1 (F). O
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Theorem 3.8.5. Let F be a superfield and n > 1. Then F[Xy,..., X,,] is a vector space which is
full iff F is full.

Proof. The argument here is similar to the one in Theorem [3.8.3] O

Definition 3.8.6 (Subspace). Let V' be a F-vector space and W C V. We say that W is a
subspace if 0 € W and for all wy,wy € W and all X € F we have w1 +wes C W and Adw; C W.

Theorem 3.8.7. Let F' be a full superfield and consider a system Ax =0, A € Myxm(F). Then
Sol[Az = 0] :={v € Mpx1(F) : 0 € Av}
is a subspace of My (F).

Proof. This is another consequence of Lemma We need F' full in order to conclude that if
0 € Av and 0 € Aw then 0 € A(v+ w) = Av + Aw. O

Definition 3.8.8 (Spanned Subspace). Let V' be a F-vector space and A C V. The subspace
generated by A is defined by

(A) = ﬂ{W CV:W is a subspace and A C W}.

Definition 3.8.9 (Linear Combination). Let V' be a F-vector space, ACV and w € V. We say
that w is a linear combination of elements in A if there exist {v1,...,v,} C A with

1 Tn
w e Z )\jlvl + ...+ Z)\jnvn
j=1 j=1

for some X\ € F'. We denote the set of linear combinations of V' by

T1 Tn
CL(A) = U Z)\jlm + Z)\jnvn v, v} CA N €F . €N
j=1 j=1

If V is full, then

CLA) == Mo+ .+ dvn i €A, N €F i =1,.,n,n > 1}.
genl
Theorem 3.8.10. Let V be a F-vector space and A C V. Then (A) = CL(A).

Proof. We have that CL(A) is a subspace, which provide (4) C CL(A). f W C V and A C W,
by the very Definition of subspace (and induction) we have CL(A) C W, which provide CL(A) C
(A). O

gen2
Lemma 3.8.11. Let V be a F-vector space and A,B C V. Then

ii - if A C B then (A) is a subspace of (B);

iti - if AC B and for allv € B, v € (A) then (A) = (B).
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Definition 3.8.12 (Linear Independence). Let V' be a F-vector space and A CV. We say that A
is F-linearly independent if for all distinct vy, ...,v, € A, n € N, the following hold:

T1 Tn T1
If0 e Z()\jlvl) +..+ Z(Ajnvn) then 0 € Z)‘ﬁ foralli=1,..,n.
j=1 j=1 j=1

and I is F-linearly dependent if it is not F'-linearly independent.

Definition 3.8.13 (Base). Let V' be a F-vector space and B C'V. We say that B is a F-basis if
B is linear independent and V = (B).

Definition 3.8.14. We say that a F-vector space is finitely generated if V = (S) for some
S CV finite.

basisl
Theorem 3.8.15. Let F' be a hyperfield and V' be a finitely generated F-vector. If V is full then
V' has a basis.

Proof. Let F be a hyperfield and V be a finitely generated F-vector space with V' = (vy,...,v,)
(v, .oy vy € V). If {01, ..., v, } is LI we are done. If not, after a rearrangement of indexes if necessary,
we can suppose without loss of generality that v; € CL({vg,...,vn}). Then (using Theorem [3.8.10

and Lemma [3.8.11]) we have
V =CLHv1,...,vn}) = CLHW, ..., v }).

If {vg,...,vn} we are done. If not, suppose without loss of generality that vo € CL({vs,..., v }).
Then we have

V =CLH{v1,...,von}) = CLHw2, ..., vn}) = CLEwS, ..., vn}).

Repeating this process, after a number finite of steps we arrive at a basis {vg, vg11, ..., vn} of V for
some k with 1 < k <n. O

Unfortunately, we do not know if, for general superfields F', all basis in a finitely generated F-
vector spaces has the same dimension. In order to deal with this question, we propose the following
concept.

linearly-closed
Definition 3.8.16. Let F' be superfield. We say that F' is linearly closed if the system Ax =0
has at least a non trivial solution weak solution for all A € Myxm(F) with m > n.

Of course, every field is a linearly closed superfield. As we will see later (Theorem [3.8.23)), this
is also the case for hyperbolic and double distributive hyperfields. The concept of linearly closeness
is useful to get the notion of dimension for a subclass of finitely generated F-vector spaces.

Definition 3.8.17. Let F be a linearly closed superfield and V' be a full F-vector space with
V = (A). We say that V is rigidly generated by A if for all w € V there exists v;,,...,v;, € A
and A, ..., \p, € F with
{w} = )\11)2'1 + ...+ )\nvin.
basis2
Theorem 3.8.18. Let F' be a linearly closed superfield and V' be a full and finitely generated F -
vector space with V- = (v, ...,vn) (v1,...,0n € V). If V is rigidly generated by {v1,....,v,} then
every linear independent subset of V' has at most n elements.
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Proof. We just need to prove that if S C V and |S| > n then S is linearly dependent.
Let S be such set with S = {wy, ..., wy}, m > n. Since V' = (v1, ..., vy,), then there exists scalars
aij € F with
wj = a1v1 + ... + apjvp, j =1,...,m.

Then for all Ay, ..., \,, € F we get

m n n

Awy + ... + Apwy, = Z Ajw; = Z Aj (Z aijvi> = Z (Ajaij)vy = Z Z Ajaij | vi
7=1 =1 j=1

j=1 = = j=1i=1 i=1

Then 0 € AMqwy + ... + A wy, il

Oezn: i)\jaij (R

=1 | j=1
providing
a1l a21 ... Qami1 /\1
asy a9 ... Gm2 A9
0 e
Aln A2n ... amn )\m
Let
ail a1 oo Qm
asr a22 ... Qm2
A =
A1, A2 ... Amn

Since F is linearly closed, the system Az = 0 has a weak solution if m > n, and we have that S is
linear dependent if m > n. O

Definition 3.8.19. Let F' be a linearly closed superfield and V be a full F-vector space. We say
that {v1,...,vn} s a rigid basis of V if {v1,...,vn} is LI and V' is rigidly generated by {vi, ..., vn}.

Example 3.8.20. For a hyperfield F', the F-vector spaces F™, My, xn(F) and F[X1, ..., X,,] are all
rigidly generated by the analogous canonical basis. In fact, the respective canonical basis is a Tigid

basis for those spaces.
basis4

Theorem 3.8.21. Let F' be a linearly closed superfield and V' be a F-vector space. If By and Bs
are rigid basis of V' then |Bi| = |Ba].

Proof. Let By = {v1,...,v,} and By = {wy, ..., w,, }. Since V' = (Bj) and By is linearly independent,
by Theorem [3.8.18| we get m < n. Since V = (Bs) and B is linearly independent, by Theorem
3.8.18 we get n < m. Then m = n. O

Definition 3.8.22. Let F' be a linearly closed superfield and V' be a F'-vector space finitely generated
with a rigid basis. We define the dimension of V' by dim(V') := |B| where B C V is any rigid
basis of V.

Of course, it is not clear whether or not a superfield is linearly closed. In the sequence we
provide some surprisingly examples, provenient from the structures which we were working until
now: hyperbolic hyperfields, which arise naturally in the context of abstract theories of quadratic
forms. In particular, there is available the machinery of K-theory for hyperbolic hyperfields ([18]).



96 CHAPTER 3. FROM MULTIRINGS TO SUPERRINGS

basisb

Theorem 3.8.23. Every hyperbolic hyperfield is a linearly closed superfield.

Proof. First, remember that every hyperfield is full. Now, let A € M, s, (F) with m > n. Second,
since F' is a hyperfield, considering the vector space F™, we have a full F-vector space such that
for all A € F and all v € F™, \v is a singleton set.

Keeping this in mind, we will construct a weak solution b € M,,x1(F') dividing the proof in
some cases.

Case I - n =1 (which imply m > 2). In this case, let A € M (F) with

A= (a1 as ... am)
We need to find z1, ...,z € F' (not all zero) such that
0€aix1+ asxg + ... + amxo,.

If a; = 0 for some i, just choose x; = 1 and z; = 0 for all j # ¢. Otherwise, choose x; = 0 for all
i1>3,x9=1and z; = —al_lag. Then

a1r] + asT2 + a3r3 + ... + amTm = a1 + a2xe = al[—al_lag] + a9 = as — as with 0 € as — as.

. . —I-method
We further refer to this tactic to find x1, xo, ..., z,, as "the Case I method”[ 257 TR0

X 3k Xk X 3k % % k%

Case II - n =2 (which imply m > 3). In this case, let A € Moy, (F) with

(a1 az ... am
4= <b1 by ... bm>
We need to find x4, ...,x,, € F' (not all zero) such that

0€aix1+asxe + ... + amx;,
_01_ - -
0 € bix1 +boxo + ... + by ed sye Cas&%.%%l

We have some cases here. If a; = b; = 0 for some j, just choose x; = 1 and x; = 0 for all i # j.
Now let 0 € {ay,...,am,b1,...,by}, saying by = 0 and a; # 0. Then we are reduced to

0€aixy +asxs+ ... + amxm,

0 € by + .. + b earo2-sysTeaspr

Now find some dg, ..., d,, € F (not all zero) with 0 € bads + ... + by dy, (as in the Case I method)
and choose d; in order to get dy € —al_l[agdg + ... + amdp]. So (di,...,dy) is a non trivial weak
solution of the reduced system Now, let 0 ¢ {a1, ..., Qm, b1, ..., b }. I {(a1,...,am), (b1, ....;bm)}
is LD, saying (b1, ..., b)) = A(aq, ..., am), we just need to choose dy,ds, ...,d,, € F not all zero (as
in case I) such that 0 € a1dy + agds + ... + apmdy, in order to get a solution of for this case.

Now, suppose 0 & {aq, ..., am, b1, ..., by, } and {(a1, ..., ap,), (b1, ..., by, ) } LI Since F is a hyperfield,
to find a non trivial weak solution of [3.3]is equivalent to find a non trivial weak solution of

0z + al_lazxg +...+ al_lamxm
0 € m1 + by bowo + oo + b7 by,
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Then we can suppose without loss of generality that a; = b; = 1, and we need to find a weak
solution of

0€x+agxs+ ... +amarm

_03_ — —
0 € 21 + baza + .. + b °q-03-sys-casgz L,
Now, consider the set of systems obtained after the elementary operation Lo <— Lo — Lq:

0€xi+asxs+ ... + amTm,
0e (1 — 1)1’1 + (bQ — ag)l’g + ...+ (bm — am)xm

eq—04—sys—cas€—%5
3.6)
As in Case I, let dg, ..., d,, € F' (not all zero) with

0e (bg — ag)dg + ...+ (bm — am)dm
In particular, there exist z € F with

S (a2d2 =+ ...+ amdm) N (deQ —+ ...+ bmdm)

Let x1 = —z. Then (—z,ds,ds, ...,dy,) is a weak solution of both and Cc&rgpll%t_ié}agdtlgg proof
for Case II. We further refer to this tactic to find z as "the Case II method”l.

) 3k % % k% % % 3k %k

Case IIT - n = 3 (which imply m > 4). In this case, let A € M3y, (F') with

a; ag ... Qm
A=1|b by .. by
cCl1T C2 ... Cmjy

We need to find z1, ..., 2, € F (not all zero) such that

0 € ajx1 + asxs + ... + amxm
0€bix1 +boxo+ ... + by,

eq-01-sys-caser-
0€cixy+ o+ ... +cmTm 1 y (g%l

Choosing x; = 0 for j > 5, we are reduced to the system

0 € a1x1 + asxa + aszxs + asxy
0 € byx1 + boxg + b3xg + byxy

_02_ - -
0 € c1x1 + coxg + c3x3 + c4xg q sys Case(al.%ﬁ

We have some subcases to deal with:

If a; = bj = ¢; = 0 for some j, just choose z; =1 and x; = 0 for all ¢ # j.

* % %

The second subcase is the one with two elements in {a;,bj,c;} are equal to zero for some j.
Say for instance that j = 1 and a1 # 0, b = ¢; = 0 (the other cases are analogous). Our situation
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here is

0 € a1x1 + asxs + azxs + asxy
0 € boxo + bgws + baxy

0 € cozg + c373 + Cc474

Then we just apply the Case 11 methodto get a solution (da, ..., d,,) of the last two equations
and for
di € faflang — aflagdg — = aflamdg

we have that (dy,ds,...,dy,) is a solution of

X %k 3k

The third subcase is the one with for all j, only one element in {a;, b;,c;} is equal to zero. By
the pigeon hole principle, one of the sets {ai, a2, as,as}, {b1,b2,b3,bs} and {c1,ca,c3, ¢4} has two
elements equal to zero. For instance, say that a; = a4 = 0, bo = 0 and ¢3 = 0 (the other cases are
analogous). Our situation here is

0 € asxs + azxs
0 € bixy + byxs + byxy
0 € iz + o9 + cyx4

with all these coefficients different from zero. Then, multiplying the first, second and third equation
by ay ', by " and ¢; ! respectively, we get

0€xo+ a2_1a3.733
0€ex + bl_lbgwg + bl_lb4a;4

0€ex + cl_lcQacg + 01_1043:4
Then we can suppose without loss of generality that ao = b; = ¢; = 1, and our situation is now

0 € x9 + asxs
0 € xq+ b33+ byxy

0 € x1+ coxs + caxy

Pick d1 =1, dy = —cgl, ds = aglcgl and dy = —b;laglbgcgl. We have (using the fact that F' is
hyperbolic) that

d2+a3d3:—02_1+a3(a§102_1) =l - =F
and

dy + bads + bady = 1+ bz(az ey ) + ba(—by tag tbscy )

=1+4a3'b3c; ' —ag'bze,' = F
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and finally

di + codg + cady = 1+ ca(—cy ') + ca(—by taz bsey )

=1—-1-— a?:lbgb;lc;lczl =F.
Then,

0€ F =dy+ asds
0€ F =d; + bsds + bydy
0 € F =d; + coda + c4dy,

which prove that (dy,ds,ds, dy) is a solution for this case.

k 3k 3k

Then fourth subcase is the one where 0 ¢ {a;,bj,c;} for some j. Suppose without loss of
generality that 0 ¢ {a1,b1,c1}. Since F' is a hyperfield, to find a non trivial weak solution of 3.8]is
equivalent to find a non trivial weak solution of

0€ex + al_lagxg + al_lagxg + al_la4a:4
0€x + bl_lngg + b1_1b3$3 + bl_lb4$4

—1 -1 —1
0 €x+ ¢ comg + ¢y c3w3 + €] Camy

Then we can suppose without loss of generality that a; = by = ¢; = 1 and only deal with the new
system

0 €z + asxs + azrs + aszy
0 € x1 4 boxo + b3z + byxy

_03_ - -
0 € x1 + coxo + c373 + c424 °q sy® Case(é[']éljl

Note that, even in this reduced system we can suppose that for j = 2,3,4 we have at most one
element in {a;,b;,c;} equal to zero (because if one of the sets {as, b2, c2}, {as, b3, cs}, {as, b, ca}
has two elements equal to zero, we are in the subcase two of the case III!). Then suppose without
loss of generality that as # 0, b3 # 0 and ¢4 # 0.

Here we use again the fact that F' is hyperbolic: more specifically, we use that every hyperbolic
hyperfield is rooted, in the sense that {a,b} C a+b for all a,b € F*. Choose dy = —ag_l, ds = —bgl
and dy = —c; . Since —1 = asdy = bzds = bydy we have

—1 € asdy + asds + aqdy
—1 € bady + bsds + bsdy
—1 € cody + c3d3 + cady

Picking now d; = 1, we have

1 —1Cdy + asds + azd3 + asdy
1 —1C dy + bady + b3dz + bady
1—1Cdy + cads + c3ds + cqdy
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and then, (dj,ds,ds,d4) is a non-trivial solution of the systems which complete thgaggch)fI {Qﬁl othod
Case III. We further refer to this tactic to find (di,da, ds,ds) as ”"the Case III method”l.

X %k 3k Xk 3k % 3k 3k

Case IV - the general case m > n (and n > 3). Just proceed by induction on m. The base
cases are Case I and II and the induction step is an argument similar to the the Case III method

(3-8)- u

As application of these fragment of linear algebra for superfields, we get the following Theo-
rem, which is a consequence of combining Theorem [3.6.12] Proposition [3.8:2 Theorem [3.8.18| and
Theorem [3.8.23]

Theorem 3.8.24. Let F' be a linearly closed superfield and p € F[X] be an irreducible polynomial
with degp = n+ 1. Then F(p) is a full F-vector space and dim(F(p)) =n + 1.

teolnc
Theorem 3.8.25. Let F is a linearly closed superfield and p € F[X] be an irreducible polynomial
with degp =n+ 1. Then F(p) is also linearly closed.

Proof. Remember that F(p) is generated by {1,7,...,7"} with v = X, n € N. Also, we can consider
n as the minimal integer such that there exist ag, ..., ap4+1 with

0e do%—d17-+...+—dn+17n+l.
Let A € Myxq(F(p)), saying, A = (a;j). We can write each «;; as
oij = aoij + a1y + - + ani;y"

for suitable ay;; € F. Then a system Az = 0 over F'(p) can be split into n 4 1 systems Apx = 0
over F, where Ay, = (ay;;) for each k = 0,1, ...,n (in fact, Az = 0 means Apz +yA 12+~ Aoz +...+
v Apx = 0). Since F is linearly closed, each Az = 0 has at least a non-trivial solution, providing
a non-trivial solution for Az = 0. O

As we can see, we had a lot of effort in order to prove Theorem [3.8:23] In this sense, we propose
the following questions.

As we can see, we had a lot of effort in order to prove Theorem [3.8.23] In this sense, we propose
the following questions.

Question 3.8.26.
1. Is every hyperfield F' a linearly closed superfield?
2. Is every full superfield F' a linearly closed superfield?
3. What are the necessary conditions for a superfield F' be a linearly closed one?

In the context of algebraic and abstract theories of quadratic forms, there are at least two
interesting Corollaries obtained applying Theorem to the hyperfield M (F) := F/,,(F?\{0})
where F'is a field of characteristic not 2, or more generally, M (G) for a formally real special group
G (for a deeper understanding of M (F) and M (G), the reader can consult [47], [24], [23], [12], [17]
or [45]).
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cor-01
Corollary 3.8.27 (Isotropy Interpolation). Let K = M(F) := F/n(F?\ {0}) for a field F (of
characteristic not 2) or K = M(G) for a formally real special group G. Consider a matriz A €
Mpym(K), saying A = (a;j). If m > n, there exists d,...,dn, € F, not all zero, such that all the
forms {p1, ..., on} with

i = (aj1d1, aiady, ..., Gimdm)

are isotropic.
cor-02

Corollary 3.8.28 (Hyperbolic Interpolation). Let K = M(F)/m(M(F)?\ {0}) where M(F) :=
F/m(F?\ {0}) for a field F (of characteristic not 2) or K = M(G) for a formally real reduced
special group G. Consider a matric A € Myym(K), saying A = (a;5). If m > n is even, there
exists dy, ...,d, € F, not all zero, such that all the forms {1, ..., on} with

@i = (andy, ands, ..., Aimdm)
are hyperbolic.

Also in the context of abstract theories of quadratic forms, Isotropic and Hyperbolic Interpo-
lations (3.8.27 and [3.8.28)) suggests interesting questions:

Question 3.8.29.

1. In Corollaries |3.8.271 and [3.8.28, are we able to get dy, ...,d, € F, not all zero, such that all
the Pfister forms {1, ..., pn} with

@i = ((airdy, aipdz, ..., aimdpy))
are hyperbolic?

2. Are we able to get Corollary|3.8.28 for general fields or general special-groups (not necessarily
reduced)?

As application of these fragment of linear algebra for superfields, we get the following Theo-
rem, which is a consequence of combining Theorem [3.6.12] Proposition [3.8:2] Theorem and
Theorem [3.8.23]

Theorem 3.8.30. Let F' be a linearly closed superfield and p € F[X] be an irreducible polynomial
with degp = n+ 1. Then F(p) is a full F-vector space, with a rigid basis {1,7,..,7y"} (v :=[X] €
FIX]/(p(X))) and dim(F(p)) =n+ 1.

3.9 A quantifier elimination procedure

We also have a quantifier elimination procedure for any infinite algebraically closed associative
superfield. This is a variation of Theorem 9.2.1 in [36] and a generalization of the results in [19].

Throughout this Section, all superfields will be considered associative.
leml.1

Lemma 3.9.1 (Lemma 1.27 of [19]). Let A be a superring.

1 - For all n € N and all ag,...,a,_1 € A, the sum ag + ... + ap,_1 and product ag - ... - a,_1 does
not depends on the order of the entries.
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i - For every term t(yi,...,yn) on the 2-ring language, exists variables x;; such that A satisfies

the formula

1<p j<m;

Moreover, if A is a full 2-ring, it satisfies the formula

t(yl,...,yn) s Z H Iij.

i<p j<my;
reduc

Lemma 3.9.2 (Lemma 3.2 of [19]). Let A be a superring, t1(x),t2(Z) be terms on the full superring
language and letv=a:Z — A

i - t(a) Ct5(a) iff 0 € (ta — t1)(a).
ii - Given any atomic formula, t1(z) C to(Z), there is a polynomial term p(z) € R[x] such that

A=, (t1(Z) Cte(x)) < (0 C p(x)).

Let £ be the language of superrings. For each superring R, let £(R) be the language extending
L by adding all elements of R as strict constant symbols. Let I be the superring axioms. Let
extend I by (in)equalities and relations of the form

ag # bo; c1 = ai.bi; c2 € ag +bo; a;,bi,c; € R

that are true in R ("the diagram of R”). Denote the set of formulas obtained by I'(R). A model
of I"(R) is a superring that contains a subset R = {@ : @ € R} and R is an isomomorphic copy
of R inside this model. If R = K is a superfield and T" is the superfield axioms, then a model of
I'(K) is a superfield that contains a subset K = {@: a € K} and K is a superfield isomorphic to
K. Then a model of I'(K) is (up to a isomorphism) a superfield containing K. Now, we extend
I'(K) to a new set of axioms I'(K) adding axioms to obtain an algebraic closure superfield

V20..Y 2, 320 € 20 + 212 + o + 2p_12™ 27, n > 1 (AC)

We add also the family of axioms Jzg...32z,—1 V [z # 25|, n > 2.
<j<n
A model F of I'(K) is also a model of I'(K) iff ' is infinite and algebraically closed. Our aim is
to describe a quantifier elimination procedure for I'(F’). By the reduction Lemma F regards
every atomic formula as equivalent modulo I'(K) to a polynomial “equation” 0 € f(Xj, ..., X,).
m

Since K[X] is a superdomain, a conjunction of inequations A [0 # ¢;(X)] is equivalent to the
i=1

“inequation” 0 ¢ g1(X)...gn(X). Then, to obtain a quantifier elimination for T'(K) is sufficient

eliminate Y from the formula

3Y[0 € /X, Y) A ADE fin(X,Y)AO ¢ g(X,Y)] 330)

with fi,..., fm,9 € R[X1,..., X, Y].

quantfield
Theorem 3.9.3 (Quantifier Elimination Procedure, Adapted from Theorem 3.3 of [19]). Let K be
an infinite superfield and (X1, ..., Xn,Y) the formula in[3.10. Then p(X1, ..., Xpn,Y) is equivalent
modulo T(R) to a Boolean combination of atomic formulas (X1, ..., X,), r > n.
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Proof. The proof consists in three parts:

A - Reduction to the case that only one of fi, ..., fi, involves Y. Move each conjunction that
appears in and that does not involve Y to the left of 3Y according to the rule “IY[p A )] =
@AY ] if Y does not appear in ¢”. Thus we assume degy (fi(X,Y)) > 1,i = 1,....,m and m > 2.
We now perform an induction on 3~ degy (fi(X,Y)): Let p(X,Y) and ¢(X,Y) be multipolynomials
with coefficients in R such that 0 < degy p(X,Y) < degy q(X,Y) = d. Write p(X,Y) in the form

P(X,Y) = ap(X)Y* + apr ()Y 4 o 4 ao(X) 339
with a; € R[X]. For each j with 0 < j <k let
pj(X,Y) = a;(X)Y7 + a;1(X)Y7 1 + ..+ ap(X)
If 0 ¢ a;(X), division of ¢(X,Y’) by p;(X,Y) produces ¢;(X,Y) and r;(X,Y) in R[X, Y] for which
a;(X)q(X,Y) € ;(X,Y)p;(X.Y) + (X, Y), (335

and degy (rj) < degy(p;) < d. Let F' be a model of I'(K). If x1, ..., 25,y are elements of F' such
that 0 € q;(z) for [ = j+1,....,k and 0 ¢ a;(Z), then [0 € p(Z,y) A0 € ¢(Z,y)] is equivalent in F’
to [0 € pj(Z,y) NO € rj(Z, y)] Therefore, the formula [0 € p(X,Y) A0 € ¢(X,Y)] is equivalent
modulo I'(K) to the formula

k
(\/06% YA A0 Eaj1(X)AN0¢aj(X)A0E€p;(X,Y)A0€r(X,Y)]
7=0

V

0€an(X)A .. AOEag(X) A0 € g(X,Y)]. 3355

Apply the outcome of to f1(X,Y) and f,(X,Y) (of. With the rule “3Y[p V] =
FY o Vv3Yy” we have replaced by disjunction of statements of form in each which the
sum corresponding to 3 degy (f;(X,Y)) is smaller. Using the induction assumption, we conclude
that m may be taken to be at most 1.

B - Reduction to the case that m = 0. Continue the notation of part A which left us at the
point of considering how to eliminate Y from p(X,Y) in

AY[0 e p(X,Y)A0 ¢ g(X,Y)]. 337

Consider a model F of I'(K) and elements z,...,z, € F. If 0 ¢ p(Z,Y) then (since F is alge-
bralcally closed) the statement " F' = 3Y[0 € p(2,Y) A0 ¢ g(2,Y)]” is equivalent to the statement
'p(Z, Y) does not divide g(z,Y)" in F X]”. Therefore, with (X

z,Y)]”
(X,Y) =g(X Y)* and in the nota-
tion of (3 D and - formula 1 14)) is equivalent modulo I'(K) to the formula

k
V0 €ar(X)A .. A0 E a1 (X)A0 ¢ a;(X)ATY[€ r;(X,Y)]]
j=0
V[0 € ap(X) A ... AD € ag(X) ATY[0 € g(X,Y)]]

a disjunction of statements of form (3.10) with m = 0.
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C - Completion of the proof. By part B we are in the point of removing Y from a statement
of the form 3Y[0 ¢ a;(X)Y' + a;_1(X)Y'""! + ... + ao(X)]. Since models of T'(K) are infinite

superfields, this formula is equivalent modulo I'(K) to 0 ¢ a;(X) V... V0 ¢ ao(X), completing the
O

quantifier elimination procedure.



Chapter 4

K-theories: the rise of (universal)
Inductive Graded Rings

Concerning Abstract Theories of Quadratic forms (in particular special groups and real semi-
groups), the references [28], [32] and [33] are central. The theory of special groups deals simul-
taneously reduced and non-reduced theories but focuses on rings with an “expressive amount” of
invertible coefficients to quadratic forms and the theory of real semigroups consider general coeffi-
cients of a ring, but only addresses the reduced case. Both are first-order theory, thus they allow
the use of model theoretic methods.

M. Marshall in [47] introduced an approach to (reduced) theory of quadratic forms through the
concept of multiringﬂ this seems more intuitive for an algebraist since it encompasses (generalizes,
in fact) some techniques of ordinary Commutative Algebra. Moreover, the multirings encode copies
of special groups and real semigroups (see [24]) and still allows the use of model-theoretic tools,
since multirings (hyperrings) endowed with convenient notion of morphisms constitutes a category
that is isomorphic to a category of appropriate first-order structures.

In the recent work [I7]: (i) we have considered interesting pairs (A,T) where A is a multiring
and T C A is a certain multiplicative subset in such a way to obtain models of abstract theories of
quadratic forms (special groups and real semigroups) via natural quotients - Marshall’s quotient
construction and (ii) we have used this new setting to motivate a "non reduced” expansion of
the theory of real semigroups to deal the formally real case, isolating axioms over pairs involving
multirings and a multiplicative subset with some properties.

The uses of K-theoretic (and Boolean) methods in abstract theories of quadratic forms has been
proved a very successful method, see for instance, these two papers of Dickmann and Miraglia: [27]
where they give an affirmative answer to Marshall’s Conjecture, and [29], where they give an
affirmative answer to Lam’s Conjecture.

These two central papers makes us take a deeper look at the theory of Special Groups by itself.
This is not mere exercise in abstraction: from Marshall’s and Lam’s Conjecture many questions
arise in the abstract and concrete context of quadratic forms. Even in the algebraic theory of
quadratic forms, there are simple (and unsolved questions), some of them solved just in the last
decade, as showed by [40)].

With these two paragraphs in mind, the purpose of this Chapter is to prepare the land for
further generalizations (with applications) of the “Milnor’s triangle K-theory — quadratic forms

!The main terminology in the literature is “hyperring”. Moreover, M. Marshall makes a distinction between
"multiring” and ”hyperrings” which is important in the context of quadratic forms. But throughout this entire work,
we deal essentially with multifields/hyperfields and then, the main terminology here will be "hyperfield”.

105
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— Galois cohomology”. The main results are Theorems and its Corollaries, which provides
interchanging formulas between the three K-theories considered here.

4.1 Milnor’s K-theory

For further references, in this section we get some definitions and results about Milnor’s K-
theory, as developed in [52]. Before deal with Milnor’s K-theory, lets make a brief summary on
graded rings.

Definition 4.1.1 (Graded Ring [9]). Let (G,-) be a monoid. A ring A is said to be G-graded if
its additive group (A,+) admits a decomposition in direct sum of abelian groups

A=A,

geG
satisfying Ay - Ay, C Ag.p, for all g,h € G, or in other words,
ag € Ag, ap € Ap = agap € Agn (9, h € G).

The elements ag € Ay C A are called homogeneous of degree g. Then, every element of A
can be written uniquely as a sum a = deG ag of homogeneous elements ay € Ag. We call ay of
homogeneous component of degree g of the element a.

A morphism of G-graded rings is a ring homomorphism ¢ : A — B that respect the graduation,
i.e, such that for all g € G, p(Ay) C By. The category of G-graded rings and its morphisms will
be denoted by Gradg.

The most important cases are those when G = Z or G = N. Since a N-graded ring can be seen
as a Z-graded ring with components of negative degree equal to zero, unless we mention, we call
the Z-graded rings just by graded rings and we will denote grad := grad,.

Example 4.1.2. Let A be a ring. The “canonical” example of graded ring is Alzxy,...,xy,|, that
admits a graduation
Alzy, .y xy) = @A[wl, ey Tnld
d>0

€1 .62

with basis given by the monomials x7' x5*...x5"

n+g—1) &

when Alx1, ..., Ty q is the free A-module of rank (
of degree d = e1 + ... + e,.

Definition 4.1.3 (Homogeneous Ideal). Let A be a G-graded ring. An ideal I C A is said to be
an homogeneous ideal if (I,4) admits a decomposition
I=unAa,).

geG

Lemma 4.1.4. Let (G,+) be an abelian group, A = GBgeG Ay a G-graded ring and I C A an
ideal. For each element a € A, denotes by ay, € Ay its homogeneous component of degree g. Are
equivalent:

i - I is an homogeneous ideal;

it - for alla e A,
aclsagel forall ge G,
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i1 - I is generated by homogeneous elements (possibly of different degrees).

Proof. (i)<(ii) and (ii)=-(iii) are direct consequences of the definitions involved in. For (iii)=-(ii),
suppose that I is generated by homogeneous elements a; (i in some set of index A) and let a € I.

Then we can write a = bya;, + ... + bpa;, with b; € A = @geG Ay. Expanding each b; = deG big
as sum of its homogeneous components in b;; € A, the degree g term of a is
ag = bl(g—deg(ail)ail + e+ bng—deg(ay, ) Bin € 1
O

Lemma 4.1.5 (Generating Homogeneous Ideals). Let A =D, - An be a graded ring. Let a € Ay.
Consider the following recursive construction:

Iy := (a) C A (the ideal generated by a on Ap)
I o=(x-y:xelp,ycly withp+qg=n) CA,.

Then I = (In)n>0 is an homogeneous ideal of A, called the homogeneous ideal generated by
a.

So lets present the basic definitions and properties of Milnor’s K-theory (as described in [52]).
milkt
Definition 4.1.6 (The Milnor’s K-theory of a Field [52]). For a field F (of characteristic not 2),
K. F is the graded ring
K.F = (KoF, K\ F, K,F, ...)

defined by the following rules: KoF = 7Z. K1 F is the multiplicative group F written additively.
With this purpose, we fix the canonical “logarithm” isomorphism

l:F— K\F,
where [(ab) = l(a) + 1(b). Then K, F is defined to be the quotient of the tensor algebra
KiF® K1F ® ... K1F (n times)
by the (homogeneous) ideal generated by all l(a) @1(1 —a), with a # 0,1. We also have the reduced
K-theory graded ring k. F = (koF, k1 F, ..., k, F, ...), which is defined by the rule k,F := K, F/2K,F
for alln > 0.
With these definitions, the K-theory structure gives us the following three basic Lemmas:
Lemma 4.1.7 (1.1 [52]). For every £ € K, ' and n € K, F, the identity
né = (=1)""¢n
1s valid in Ky F.

Lemma 4.1.8 (1.2 [52]). The identity l(a) ® l(a) = l(a) ® I(—1) is valid for every l(a) € K1 F.

Lemma 4.1.9 (1.3 [52]). If the sum a1 + ... + an, of non-zero field elements is equal to either 0 or
1, then l(a1) ® ... ® l(ay) = 0.
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Theorem 4.1.10 (Theorem 4.1 of [52]). there is only one morphism
Sp ko F — I"F/T"TF

which carries each product l(ay)...l(an) in K F/2K,F to the product ({(a1) — (1))...({an) — (1))
modulo "1 F.
These morphisms determines a surjective Sy : ks F' — Wg(F), where

Wy(F) = (WF/IF,IF/I*F, ..., I"F/T""F, ...).
For a field F, let Fs be the a separable closure of F' and Gp = Gal(Fs). Then, the exact

sequence
2

1 {+1} F, F, 1

is taken to the following exact sequence
HY(Gp, E,) —2= H(Gp, F,) —>= HY(Gp, {+1}) —= HY(GF, )

of cohomology groups. Identifying the two first groups with F, and {1} with Z/27Z and applying

Hilbert’s 90, we have

F—2-F . HY(Gp,Z/2Z) —=0.

The quotient F'/F? is identified with ki F.

Theorem 4.1.11 (Lemma 6.1 of [52]). The isomorphism I(a) + §(a) from K1F/2K1F to HY (G, Z/27)
admits a unique extension to a graded ring morphism

hf c ko F — H*(GF,Z/2Z).

Milnor’s Conjecture consists to say that s and h are graded rings isomorphisms, which makes
the fuctors K. F/2K, F,Wy(F), H*(G,Z/27Z) isomorphic.

4.2 Dickmann-Miraglia K-theory for Special Groups

There are some generalizations of Milnor’s K-theory. In the quadratic forms context, maybe
the most significant one is the Dickmann-Miraglia K-theory of Special Groups. It is a main tool in
the proof of Marshall’s and Lam’s Conjecture. In this section, we get some definitions and results
from [28] and [30].

defn:ksg
Definition 4.2.1 (The Dickmann-Miraglia K-theory [30]). For each special group G (written mul-
tiplicatively) we associate a graded ring

kG = (koG k1G, ..., knG, ...)

as follow: koG := Fy and k1G := G written additively. With this purpose, we fix the canonical
“logarithm” isomorphism X\ : G — k1G, A(ab) = A(a) + A(b). Observe that A\(1) is the zero of kiG
and k1G has exponent 2, i.e, A(a) = —A(a) for all a € G. In the sequel, we define k.G by the
quotient of the Fo-graded algebra

(Fg, kG, kG Ry kG, kG QR kG (24 k1G, )
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by the (graded) ideal generated by {\(a) ® A(ab), a € Dg(1,b)}. In other words, for each n > 2,
kG :=T"(k1G)/Q"(G),
where
Tn(le) = kG Ry kG QFy - QFy kG

and Q™ (G) is the subgroup generated by all expressions of type X a1) @ AM(az) ® ... @ A(ay,) such that
for some i with 1 < i < n, there exist b € G such that a; € Dg(1,b) and a; = aj+1b, which in
symbols, means

Q"(G) := ({Ma1) ® AM(a2) ® ... @ Nay,) : ezists 1 <i<mnand be G
such that a; = a;41b and a; € Dg(1,0)}).

Since A(a) + A(a) = 0 for all a € k1G, follow that n +n = 0 for all 5 € k,G, so this is a group
of exponent 2. Moreover, for all a,b € G,

Aa) @ A(ab) = Aa) @ [Ma) + A(D)] = AMa) @ Ma) + AMa) @ A(b) = A(a) @ A(a) + A(a) @ A(b),

hence
a € Dg(1,b) = AMa) ® A(ab) =0 in koG,

or equivalently, A(a) ® A(a) = A(a) ® A(b) in k2G.

Before we proceed, lets make some abbreviations/simplifications to make the reading of this
work more easy and comfortable. Firstly, whenever possible, we will omit the over line that
indicates the equivalence classes. For example, the affirmation “A(a) ® A(a) = A(a) ® A(b) in koG”
will be expressible in the simplified manner by “A(a) ® A(a) = A(a) @ A(b) in kaG”.

Moreover, we will denote “A(a1) ® A(a2) ® ... ® A(ay)” simply by “A(ai)A(ag)...A(a,)”. Sure,
k.(G) is a graded ring, and in particular, a ring, so that we are able to multiply elements n € k,G,
7 € knG. Whenever we want to do this, we will denote n - 7, in order to avoid confusion with the
simplifications described above.

Finally, since we only take tensorial products with parameters in Fo, we abbreviate “A ®p, B”
simply by “A ® B”. In this way, T"(k1G) we will be denoted simply by

Tn(kilG) =kGRKG®..QkKG.

Next, we have a result that approximate Dickmann-Miraglia’s K-theory with the Milnor’s re-

duced K-theory:
2.1kt

Proposition 4.2.2 (2.1 [30]). Let G be a special group, x,y, a1, ...,an, € G and o be a permutation
on n elements.

a - In koG, XNa)? = Ma)X\(=1). Hence in kyG, Ma)™ = Aa)X\(=1)""1, m > 2;

b - In koG, Ma)\(—a) = \(a)? = 0;

¢ - In k,G, Mai)A(az)...A(an) = Aas1)A(ag2)...Aagn);

d- Forn>1 and ¢ € k,G, €2 = \(—=1)"¢;

e - If G is a reduced special group, then x € Dg(1,y) and A(y)A(a1)...A(an) = 0 implies

Az)A(a1)A(az2)...A(an) = 0.
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An element a € G induces a graded morphism of degree 1, w® = {w?},>1 : k«G — k.G, where
w? 1 k,G — k,G is the multiplication by A(—a). When a = —1, we write

w = {wp}nz1 = {w, Iz =w .

The Lemma below generalizes Proposition 5.10 of [59]. Firstly, lets establish some no-
tation. For n > 0 denote P(n) := P({0,...,n — 1}) \ {0} and for 0 < i < n — 1, denote
P(n,i) == {X € P(n) : i € X}. Now, let G be a pre-special group and {ag,...,an—1} C G
[Fy-linearly independent. If S € P(n) we denote

. €0 En—1
as ‘— aO ...anfl s

where gg € {0,1} for all i =0,..,n — 1 and ¢; = 1 if and only if i € S. Remember that by the very
definition of k,(G),
kn(G) = [k1(G) ®@ k1 (G)]/M,

where M is the subgroup of k1(G) ® k1(G) generated by

{AMa)A(b) : a € Dg(1,b), a,b € G}.
fixsg2-ktheory
Lemma 4.2.3. Let G be a pre-special group and {ay, ...,an—1} € G Fa-linearly independent. Are
equivalent:

i - There exists {bg,...,bn—1} € G such that

> Mar)A(be) =0 in ky(G).

k<n
ii - There exists subsets {co, ...,cm—1},{do,...,dn—1} of G with m > n such that

(a) {co,...,cm—1} is linearly independent and c¢; = a; for all i < n;
(b) di ="0b; foralli <n andd; =1 fori=mn,...,m—1.
(c) For all x € C :=[cy, ..., cm—1], there is some 1, € Dg(1,x) such that for each i < m
di = H Ty
zeC;

where

Ciz{Hci’“:EkG{O,l} andsizl}.

k<m
In other words, C; is ”counting” all products cp’...c}...c; 7. Since for all x € C := [cg, ..., Cp—1]
there exist S € P(m) such that
r = H C; ‘= C§.

i€S
Denoting r, by rg we can rewrite

d; = Hrl«: H rg.

z€C; SeP(m)
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Proof of Lemmd{.2.3 (i) = (ii). Let

Z)\ ag)A(bg) =0 in k2(G).

k<n
Then there exist ug, ..., up—1, o, ..., Up—1 € G such that v; € Dg(1,u;) for i =0,...,p — 1 and

D Mar)Abe) = Mur)A(v) in k1(G) @ ka(G).

k<n k<p

Enlarge the set {ao, ..., an—1} to a base {co, ..., ¢m—1} of [{ao, ..., an—1,u0, ..., up—1 }], with ¢; = a; for
all i <n. For all z € C := [cg, ..., tm—1] there exist an unique S € P(m) such that

T = Hci ‘= cg.
€S

Moreover, since {cy, ..., cm—1} is a basis, for each i = 0,...,p — 1 there is only one S; € P(m) such
that
U; = Cg;-

rs = H Vy.

those j with
S;=8

For each S € P(m), set

If no S; =S, set rg = 1. Note that if there is an index j with S = S;, this index must be unique
(because the expression u; = cg; is unique). Then by construction rg € Dg(1,¢s) and in ka(G) we
get

D Maw)Abr) =D Mew)Mdi) =) Muw) Mvg)

k<m k<n k<p

Z A H Cj )\(Uj)
SeP(m) those j with
=

SN Me)Aawy)
SeP(m) those j with
=

Z Aes)A H Vg

SeP(m those j with

S]—S
- 5 o= ¥ S
SeP(m SeP(m) kesS

=> AMewr | I rs

k<m SeP(n)
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Since {cp, ..., cm—1} is a basis, it follows that

di: H rs

SeP(n)

as desired.
(ii)=(i). Under the hypothesis of (ii) we get

D AMap)Abe) = > Mew)Adr) = > MeA | [ rs

k<n k<m k<m SeP(n)
= Z AaArs) = 3, 3 Me)
k<m SeP(m SeP(m) k<m
Z )\CS
SeP(m)
O
2.4kt

Definition 4.2.4 (2.4 [30]).

a - A reduced special group is [MC] if for alln <1 and all form ¢ over G,

For all o € Xg, if o(p) = 0mod 2" then ¢ € I"G.

b - A reduced special group is [SMC] if for all n > 1, the multiplication by A(—1) is an injection
of knG in kni1G.

An useful criteria for a reduced special group be [SMC] is given by:
2.5kt

Proposition 4.2.5 (2.5 [30]). Let G be a reduced special group. Are equivalent:
a- G is SMC;
b- Foralln>1, eq: knG — Bg is injective.

Then, if G is SMC, then eg is an isomorphism between k,G and the subgroup Bg(n) of Bg, for

allm > 1.
2.6kt

Proposition 4.2.6 (2.6 [30]). Let G be a formally real special group and f : H — G a complete
embedding. If H is [SMC], then f. is a graded ring monomorphism such that, for all n >0, f, is
mjective.

An inductive system of special groups
G=(Gi{fij:i<jel}),
provides an inductive system of graded ring, which nodes are k,G; and morphisms are

(flj)* s kG — ]C*Gj, for ¢ <jin I
4.5kt
Theorem 4.2.7 (4.5 [30]). Let G = (Gi;{fij : 4,5 € 1,1 < j}) an inductive system of special
groups over a directed poset I and (G;{f;:i € I}) = limG. Then k.G = lim k. G;.
iel
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4.6kt
Corollary 4.2.8 (4.6 [30]). The inductive limit of SMC groups is SMC.

If S, T are Fy-graded algebras with So = Ty = Fo, the direct sum, S ® T, is the sequence of
groups
(S@T)o =I5 and (S@T)n =5,0T,, n>1,

with the product defined by the rule (z,y) - (u,v) = (zu,yv). The Fy-action on S, & T}, is the usual

action of Fy-modules.
5.1kt

Theorem 4.2.9 (5.1 [30]). Let Gy, ...,Gp, be special groups and [];%; Gi. Then there exists a
graded morphism

v kP — ék*Gi,
=1

defined on the generators by the rule

Y (A(ar)...A\(an)) = (A(m1(a1))..A(m1(ap))... ANwm(a1))... A(mm(an)))

where m; : P — G; s the canonical projection, i = 1,...,m. Moreover, v send the multiplication by
A(—1,...,—1) on P in the product \(—1)..A\(—1) in B, k:G;.
5.4kt

Corollary 4.2.10 (5.4 [30]). The finite product of SMC groups is SMC.
5.6kt

Definition 4.2.11 (5.6 [30]). Let {Gi}icr be a family of special groups. Denote by @;c; Gi the
following pre-special subgroup of G = [];c; Gi-

@Gi ={z € G: exists J C I finite such that x; = £1,Vie I\ J}

i€l
with the special relation induced by the relation on G and —1 = —1¢q. Such pre-special group will
be called the SG-sum of the family {G;}icr.

In general, we do not have a canonical SG-embedding from G into G x H. On the other side, if
we introduce a Zs factor we can get around this situation. Let I C J be finite sets and G, j € J
be formally real special groups. Consider

Gy =[G Gr=]]G:

jeJ el

Let {G,}icr be a family of formally real special groups. For each subset A C I, let G4 =
[LicaG x Zy. If A,B C I are finite subsets with A C B, we have a complete embedding a4p :
G A — Gp. Since the set Pp;,(I) of finite parts of I with the inclusion order is up direct, we have
the following inductive system of formally real special groups:

G =(Ga;{aap: A, B € Pprin(I), AC B}).
5.7kt
Theorem 4.2.12 (5.7 [30]). Let {G;}icr be an infinite family of formally real special groups.
Denote S = @:el G;. With the above notations, we have S = ligng. Moreover:

a- k.S = ligng, where K is the inductive system of the K-theory rings associated to G;
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b - The SG-sum of SMC groups is SMC.
6.8kt

Proposition 4.2.13 (6.8 [30]). Every extension of a SMC-group is SMC.
6.10kt

Theorem 4.2.14 (6.10 [30]). Let G be a special group and A a group of exponent 2 finite or
countable, of dimension d > 1 where considered as a Fo-vector space. For each n > 1

d d
@(knG)(j), if d is finite;
§=0

é <G§ kn—jG>

Jj=1 \d>1

knG[A] =
knG @

, if d is countable infinite.

4.3 The K-theory for Multifields/Hyperfields

In this Section we introduce the notion of K-theory of a hyperfield essentially repeating the
construction in replacing the word “field” by “hyperfield” and explore some of this basic
properties. In particular, Theorem is an extension of a result [59], that gives us some evidence,
that apart from the obvious resemblance, more technical aspects of this new theory can be developed
(but with other proofs) in multi-structure setting in parallel with classical K-theory.

Definition 4.3.1 (The K-theory of a Hyperfield). For a hyperfield F', K, F is the graded ring

K.F = (KoF, K\ F, KyF, ...)

defined by the following rules: KoF := Z. K\F is the multiplicative group F written additively.
With this purpose, we fix the canonical “logarithm” isomorphism

p: F— K|F,
where p(ab) = p(a) + p(b). Then K, F is defined to be the quotient of the tensor algebra
K\F K\F®..® K F(n times)

by the (homogeneous) ideal generated by all p(a) ® p(b), with a # 0,1 and b € 1 — a.
In other words, for each n > 2,
where
Tn(KlF) =K1 FQy Ki\F®yp..Q0z KiF

and Q" (K1(F)) is the subgroup generated by all expressions of type p(a1) ® p(az) ® ... ® p(a,) such
that a; € 1 — a; for some 4,5 with 1 <14, j < n.

To avoid carrying the over line symbol, we will adopt all the conventions used in Dickmann-
Miraglia’s K-theory (as explained in above Definition . Just as it happens with the previous
K-theories, a generic element n € K, F' has the pattern

n = plar) ® plaz) @ ... ® p(an)

for some ar,...,a, € F, with a; € 1 — a;;1 for some 1 < i < n. Note that if F is a field, then
“be1—a” just means b =1 — a, and the hyperfield and Milnor’s K-theory for F' coincide.
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The very first task, is to extend the basic properties valid in Milnor’s and Dickmann-Miraglia’s

K-theory to ours. Here we already need to restrict our attention to hyperbolic hyperfields:
bpl

Lemma 4.3.2 (Basic Properties I). Let F' be an hyperbolic hyperfield. Then ’
a- p(1)=0.
b- ForallacF, p(a)p(—a) =0 in KyF.
¢ - Foralla,be F, p(a)p(b) = —p(b)p(a) in KyF.
d - For every ay,...,a, € F and every permutation o € Sy,

p(ay)...p(a;)...p(an) = sgn(o)p(ay)...p(ay) in K,F.

e - For every £ € K, F andn € K, F, n§ = (—=1)""¢n in KypynF.

f- ForallacF, pla)?> = p(a)p(—1).

Proof.

a - Is an immediate consequence of the fact that p is an isomorphism.

b - Since F hyperbolic, 1 —1 = F. Then —a~' € 1 —1 for all a € F, and hence, —1 € —1 +a~".
Multiplying this by —a, we get a € 1 — a. By definition, this imply p(a)p(—a) = 0.

¢ - By item (b), p(ab)p(—ab) = 0 in KoF'. But
plab)p(—ab) = p(a)p((=a)b) + p(b)p((—~b)a)

p
pla)p(—a) + p(a)p(b) + p(b)p(—b) + p(b)p(a)
p(a)p(b) + p(b)p(a).

From p(a)p(b) + p(b)p(a) = p(ab)p(—ab) = 0, we get the desired result p(a)p(b) = —p(a)p(b) in
KyF.

d - This is a consequence of item (c) and an inductive argument.

e - This is a consequence of item (d) and an inductive argument, using the fact that an element
in K, F has pattern

n = pla1) ® plaz) @ ... ® p(an)

for some aq, ...,a, € F, with a; € 1 — a; for some 1 <1i < j < n.
f - Follow from the fact that F' is hyperbolic i.e, for all a € F, a € 1 — 1.

O]

An element a € F induces a morphism of graded rings w® = {wltn>1: Ko F — K, F of degree
1, where wf : KpF' — K41 F is the multiplication by A(—a). When a = —1, we write

w = {wptn>1 = {wy Iz =w .
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3.3ktmultiadap
Proposition 4.3.3 (Adapted from 3.3 of [30]). Let F, K be hyperbolic hyperfields and ¢ : F — L
be a morphism. Then ¢ induces a morphism of graded rings

o« ={pn:n>0}: K,F — K,L,
where oo = Idy and for all n > 1, p, is given by the following rule on generators

en(p(ar)...p(an)) = p(e(ar))...p(e(an)).
Moreover if ¢ is surjective then @, is also surjective, and if ¢ : L — M is another morphism then
a- (Vo) =1.0¢, and Id, = Id.
b - For alla € F the following diagram commute:

a
Wn

K, F

Kn+1F

Pn Pn+1

KnL—— > K, L

wﬁ(a)

c- If p(1) =1 then for all n > 1 the following diagram commute:

wﬁl

K, F K1 F

$n Pn+1

KnL ———— Knii L
Wn

Proof. Firstly, note that ¢ extends to a function ¢, : K1 F — KL given by the rule

Certainly ¢ is a morphism because
©1(0) = ¢1(p(1)) = p(p(1)) = p(1) =0,
and for all p(a), p(b) € K1 F,
p1(p(a) + p(b)) = p1(p(ab)) = p(p(ab)) = p(p(a)p(b)) = p(p(a)) + p(p(D)).

Proceeding inductively, for all n > 1 we extend ¢ to a function ¢, : [[;-; K1 F — KL given by
the rule
e(p(ai), ..., plan)) == @1(p(ar))...e1(plan)) = p(e(a1))...p(e(an)).
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Then if i = 1,...,n and b; € k1 F' we have

en(plar), ... p(ai) + p(bi), ..., plan)) = on(par); ..., p(aibi), ..., plan)) =
p(p(ar))...o(@(aibi)...p(¢(an)) = p(p(ar))...o(w(ai)p(bi))...o(¢(an)) =
ple(ar)...[p(p(ai) + o(b:)]...p(p(an)) =
p(p(ar) ) (a1))-..p(e(bi))...p(p(an)) =

) (

p(a1)).-p(p(ai))...p(¢lan)) + p(p(ar)
@n(p(al) '7p(aiv'”7p(an))'+’¢n(p al)’"')p(bav'“vp(an)%

then for each n, ¢, : [[;, K1F — K,L is multilinear and by the universal property of tensor
product there is an unique morphism

n
B ® KiF - K, L
j=1

extending ¢,. By construction (and using the fact that ¢ is a morphism), Ker(¢,) = Q"(K1F),
which provides an unique morphism @, : T"(K1F)/Q"(K1(F) — K,L such that ¢, = @, o mp,
where m, is the canonical projection T (K F) in Q"(k1F). Then taking ¢o = Idz, we get a
morphism ¢, : K, F — K. L, given by ¢, = {®, : n > 0}.

For items (a) and (b), it is enough to note that these properties holds for ¢,,, n > 0, and after
the application of projection, we get the validity for @,, = 7, o @y,

Item (c) follows by the same argument of items (a) and (b), noting that ¢(1) = 1 imply
¢(—1) = —1. By abuse of notation, we denote

ps = {Pp:n >0} = {pn:n >0}

O

We also have the reduced K-theory graded ring k. F = (koF, k1 F, ..., k,F,...) in the hyperfield
context, which is defined by the rule k, F' := K, F/2K,F for all n > 0. Of course for all n > 0 we
have an epimorphism ¢ : K,,F' — k,F simply denoted by ¢(a) := [a], a € K, F. It is immediate
that k,F is additively generated by {[p(a1)]..[p(an)] : a1,...,an € F'}. We simply denote such a
generator by p(aq)...p(a,) or even p(aq)...p(a,) whenever the context allows it.

We also have some basic properties of the reduced K-theory, which proof is just a translation
of 2.1 of [30]:

2.1ktmulti
Lemma 4.3.4 (Adapted from 2.1 [30]). Let F be a hyperbolic hyperfield, z,y, ay, ..., an € F and o
be a permutation on n elements.

a- InkoF, p(a)® = p(a)p(—1). Hence in k, F, p(a)™ = p(a)p(=1)""1, m > 2;

b- InkoF, p(a)p(—a) = p(a)? = 0;

¢ - InknF, p(ai)p(az)...p(an) = plas1)p(ac2)...p(aon);

d- Forn>1and¢ € k,F, €2 = p(—1)"¢;

e - If F is a real reduced hyperfield, then x € 1 +vy and p(y)p(ay)...p(an) = 0 implies

p(x)p(ai)p(az)...p(an) = 0.
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Moreover the results in Proposition continue to hold if we took ¢, = {¢, : n > 0} :
ko' — ki L.

ktmarshalll

Proposition 4.3.5. Let F' be a hyperfield and T C F be a multiplicative subset such that F C T.
Then, for each n > 1
K, (F/mT*) 2 ky(F/T7).

Proof. Since F2 C T, for all a € F/,,T* we have
0= p(a®) = p(a) + p(a).
Then 2K (F/,T%) = 0 and we get K, (F/nT*) = kn(F/pnT*),n > 1. O

ktmarshall?2

Theorem 4.3.6. Let F' be a hyperbolic hyperfield and T C F be a multiplicative subset such that
F CT. Then there is a surjective morphism

k(F) = k(F/mT").

Moreover, for eachn > 1, . .
kn(F) 2 K (F/mF?) 2 ky(F/mF?).

Before we prove it, we need a Lemma:
lemktmultil
Lemma 4.3.7. Let F' be a hyperfield and n > 1. Then

p
2K, (F) = Zp(ajl)...p(ajn) : for all j there is an index k such that a;p = b7, b; € F
j=1
Proof. Let n € 2K, F. Then

p p
n= Zp(ajl)'-ﬁ(ajn) + Zp(aﬂ)...p(ajn) s dij c F.
j=1 j=1

By induction, we only need to consider the case p = 1, so

plar)-..p(an) + p(ar)...p(an) = p(a7)p(az)...p(an).

and we get C. The reverse inclusion follow by the same calculation. O

Proof of Theorem[[.5.0, Let © : F — F/,,T* denote the canonical projection. By Proposition
there is a morphism 7, : K(F) — K(F/,,T*). Since 7 is surjective, 7, is surjective.

Now, let 7 : F — F/,,F? and ¢ : K(F) — k(F) the canonical projections. Denote elements in
F/mF?by [a] € F/mF?, a € F and elements in k,(F) by p(a1)...5(a,). For all n > 1 we have an
induced morphism G, : K (F/mEF?) = k,(F) given by the rule

Gn(p(la1])--p(lan])) == plar)...p(an).
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This morphism 7,, makes the following diagram commute

Ky (F) —

kn(F)

Kp(F/mF?)

and then, g, is surjective. Finally, if ¢,(p([a1])...p([an])) = 0, then p(ai)...p(a,) = 0, and hence
p(ar)...p(an) € 2K, (F). By Lemma [4.3.7]

p(ar)..p(an) =Y pldj)...p(djn), dij € F

J=1

and for all 7 there is an index k such that a;; = b?, b; € F. Therefore

mn(plar)...p(an)) =7 | Y p(dj1).p(djn)
j=1

= wnlp(djn)..p(djn)) = p(ldja))---p([djn)])
J=1 =1
= > _ldj])-p([1])-p([djn)] = 0

Then Ker(g,) = [0], proving that g, is injective. Then @, is an isomorphism, and composing all
the isomorphisms obtained here we get

k(F) 2= K(F/mE?) = k(F/nF?),

The Theorem below generalizes Proposition 5.10 of [59]: this constitutes a fundamental
technical step to build profinite (Galois) groups associated to a pre-special hyperfield in [20].

Lets establish some notation: for n > 0 we denote
P(n) =P{0,...,n—1})\ {0}
and for 0 <7 <n — 1, denote
P(n,i)={X € P(n):ie X}.

For a be a pre-special hyperfield F' and {ag, ..., an—1} C F* Fa-linearly independent, if S € P(n)
we denote

. €0 En—1
ags ‘= CLO ...an_l 5

where g9 € {0,1} for all i =0,..,n — 1 and ¢; = 1 if and only if i € S.



120CHAPTER 4. K-THEORIES: THE RISE OF (UNIVERSAL) INDUCTIVE GRADED RINGS

Remember that by the very Definition of &, (F'),
ko (F) = [k1(G) @ k1 (G)]/M,
where M is the subgroup of k1(G) ® k1(G) generated by

{p(a)p(b) : a € Dg(1, =b)}.
fixsg3-ktheory

Theorem 4.3.8. Let F' be a pre-special hyperfield and {ag, ..., an—1} C F* Fy-linearly independent.
The following conditions are equivalent:

i - There ezists {bo,...,bn—1} C F* such that

S plar)p(by) = 0 in Ja(F).

k<n
it - There exist subsets {co,...,cm—1},{do,...,dn—1} of F* with m > n such that

(a) {co,...,cm—1} is linearly independent and ¢; = a; for all i < n;
(b) di ="0b; foralli <n andd; =1 fori=mn,...,m—1.
(c) For all x € C :=[cg, ..., cy—1], there is some 1, € (1 —x) \ {0} such that for each i < m
di: II?}
zeC;

where

Ci:{Hci’“:ekE{O,l} andsizl}.

k<m

In other words, C; is ”counting” all products cg’...c; ..

there exist S € P(m) such that
QTZZIICiF:CS.

€S

.. Since for all € C := [cg, ..., Cp—1]

Denoting r, by rg we can rewrite

d; = HT;E: H rg.

veC; SeP(m)
Proof of Theorem[].3.8 (i) = (ii). Let

> plar)p(br) = 0 in ks(F).

k<n

Then there exist ug, ..., up—1,v0, ..., vp—1 € F'* such that v; € 1 +u; for i =0,...,p — 1 and

> plar)p(be) =D plar)p(bi) in ki (F) @ ki (F).

k<n k<n

Enlarge the set {ao, ..., an—1} to a base {co, ..., ¢m—1} of [{ao, ..., an—1, w0, ..., up—1}], with ¢; = a; for
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all i <n. For all z € C := [cg, ..., tm—1] there exist S € P(m) such that
T = Hci = cs.
€S

Moreover, since {cp, ..., cm—1} is a basis, for each i = 0,...,p — 1 there is only one S; € P(m) such
that u; = cg,. For each S € P(m), set

rg = H vj.

those j with
S;=8

If no S; =S, set rg = 1. Note that if there is an index j with § = S, this index must be unique
(because the expression u; = c¢g, is unique). Then by construction rs € 1+ ¢g \ {0} and in ko(F')
we get

> plar)pbr) = pler)p(di) = plur)p(vr)

k<m k<n k<p

= > o 11 ¢ |e
SeP(m) those j with
=S

= > > ple)plvy)
SeP(m) those j with
S;=8

= Y ples)p| JI ws

SeP(m) those j with
;=5
= ples)p(rs) =Y Y plew)p(rs)
SeP(m) SeP(m) kesS

=> plewp| I rs

k<m SeP(n)

Since {co, ..., cm—-1} is a basis, it follows that d; = [[gcp(,,) s as desired.
(ii)=(i). Under the hypotheses of (ii) we get

> pla)plbr) = Y pler)pldi) = D pler)p | ] s

k<n k<m k<m SeP(n)
=2 Z = 2 D sl
k<m SeP(m SeP(m) k<m
-y esitrs) =0,
SeP(m)
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4.4 Inductive Graded Rings: An Abstract Approach

After the three K-theories defined in the above sections, it is desirable (or, at least, suggestive)
the rise of an abstract environment that encapsule all them, and of course, provide an axiomatic
approach to guide new extensions of the concept of K-theory in the context of the algebraic and
abstract theories of quadratic forms. The inductive graded rings fits this purpose. Here we will
present three versions. The first one is:

igril
Definition 4.4.1 (Inductive Graded Rings First Version (adapted from Definition 9.7 of [28])).
An inductive graded ring (or Igr for short) is a structure R = ((Rp)n>0, (hn)n>0, *nm) where

i - Ry = TFs.

it - Ry has a group structure (R,,+,0, T,) of exponent 2 with a distinguished element T,,.
iii - hy : Ry — Ryy1 is a group homomorphism such that hy(Ty) = Ty
iv - Forallm > 1, hy = *1,(T1, ).

v - The binary operations *pm : Ry X Ry — Rptm, n, m € N induces a commutative ring structure
on the abelian group
R=R,
n>0

with 1 = TQ.

vi - For 0 < s <t define

® ht_lo...0h8+10h5 Zf8<t

o {IdRS if s =t

Then if p>n and q > m, for all x € R, and y € R,,,

B2 (z) % hd (y) = hPHY (2% ).

n+m

A morphism between Igr’s R and S is a pair f = (f,(fn)n>0) where fy, : Ry — Sy, is a morphism
of pointed groups and

f=f:R-S

n>0

is a morphism of commutative rings with unity. The category of inductive graded rings (in first
version) and their morphisms will be denoted by Igr.

A first consequence of these definitions is that: if
f : ((RH)TLZOa (hn)n20> *nm) — ((Sn)n207 (ln)nZOa *nm)
is a morphism of Igr’s then f,110h, =1, 0 fy.

ho hn—1 hn hnii

Ry

Rn+1

fo fi fa fn Sfrt1

ln+1

In
Sn Sn—i—l
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In fact, since Ry = Fy = Sy and f(1) = 1, then fy : Ry — Sp is the unique abelian group
isomorphism and fi o hg =lgo fy. If n > 1, for all a,, € R, holds

fn-‘rl o hn(an) = fn-‘rl o (*171(—'—17 an)) = fl(Tl) *1n fn(an)
= T1*1p fn(an) = ln(fn(a’VL)) =lpo fn(an)'

exl

Example 4.4.2.

a - Let F be a field of characteristic not 2. The main actors here are W', the Witt ring of F' and
IF, the fundamental ideal of WF. Is well know that I"F, the n-th power of IF is additively
generated by n-fold Pfister forms over F. Now, let Ry = WF/IF = Fy and R, = I"F/I"T'F.
Finally, let h, = -® (1,1), n > 1. With these prescriptions we have an inductive graded ring
R associated to F: W, (F), the graded Witt ring of the field F.

b - The previous example still works if we change the Witt ring of a field F for the Witt ring of a
(formally real) special group G.

¢ - An inductive graded ring can be seen as a graded Fa-algebra R with Ry = Fy and a distinguished
element Ty in R;.

There is an alternative definition for Igr with a first-order theoretic flavor. It is a technical
framework that allows achieving some model-theoretic results.

Before define it, we need some preparation. First of all, we set up the language. Here, we will
work with the poli-sorted framework (as established in chapter 5 of [I]), which means the following:

Let S be a set (of sorts). For each s € S assume a countable set Varg of variables of sort s
(with the convention if s # t then Varg N Var; = ). For each sort s € S an equality symbol =, (or
just =); the connectives —, A, V, — (not, and, or, implies); the quantifiers V, 3 (for all, there exists).

A finitary S-sorted language (or signature) is a set £ = (C, F, R) where:

i- C is the set of constant symbols. For each ¢ € C we assign an element s € S, the sort of ¢;

ii - F is the set of functional symbols. For each f € F we assign elements s, s1,...,8, € 5,
we say that f has arity s; X ... X s, and s is the value sort of f; and we use the notation
fis1 X .. X8, = s.

iii - R is the set of relation symbols. ¢ € C we assign elements s, ..., s, € S, the arity of R; and
we say that R has arity s; X ... X sp.

A L-structure M is, in this sense, prescribed by the following data:
i- The domain or universe of M, which is an S-sorted set |M| := (Mj)ses.
ii- For each constant symbol ¢ € C of arity s, an element ¢M € M;.
iii- For each functional symbol f € F, f : s1 X ... X s, — s, a function fM : Mg, x...x My, — M.
iv- For each relation symbol R € R of arity s; X...x s, arelation, i.e. a subset RM C Mg, x...x Mg, .
A L-morphism ¢ : M — N is a sequence of functions ¢ = (ps)s : M| = |N| such that
i - for all ¢ € C of arity s, p,(cM) =&V,

ii- for all f: 85 X ... x 8, — s, if (a1,...,a,) € Mg, x ... x My, , then @ (fM(a1,...,an)) =
fN((p51(a1),...,<psn(an));
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iii - for all R of arity s1 X ... X sy, if (a1, ...,an) € RM then (¢(ay), ..., p(an)) € RV.

The category of L-structures and L£-morphism in the poli-sorted language £ will be denoted by
Strs(L).

The terms, formulas, occurrence and free variables definitions for the poli-sorted case are similar
to the usual (single-sorted) first order ones. For example, the terms are defined as follows:

i- variables x € Vars and constants ¢ € Cs are terms of value sort s;

i - if §= (51,...,80,5) € "ML f € F with f:s1 x ... X8, = s, and 71, ..., 7, are terms of value
sorts si, ..., Sy, respectively, then f(71,...,7,) is a term of sort s.

As usual, we may write 7 : s to indicate that the term 7 has value sort s.
For the formulas:

i- if x,y € Varg then = y is a formula; if §= (s1,...,s,) € S™, R € R of arity s; x ... X s, and
T1, .., Tn are terms of sort s, ..., s, respectively, then R(7y,...,7,) is a formula. These are the
atomic formulas.

ii - If o1, @9 are formulas, then =1, 1 A @2, @1 V w2 and @1 — @2 are formulas.
iii - If ¢ is a formula and = € Var, (s € ), then Yz and Jzp are formulas.

In our particular case, the set of sorts will be just N. Then, for each n,m > 0, we set the
following data:

i- 0p, T, are constant symbols of arity n. We use 0p = 0 and To = 1.
ii - 45 :n Xn — nis a binary operation symbol.
ili - hp:n— (n+1) and %, : 0 X m — (n +m) are functional symbols.

The (first order) language of inductive graded rings L;,, is just the following language
(in the poli-sorted sense):

['igr = {OnyTn7+n7hn7 *pm 1M, M > 0}

The (first order) theory of inductive graded rings T'(Lq,) is the L;g-theory axiomatized
by the following L;4--sentences, where we use -, : 0 X n — n as an abbreviation for *gy,:

i- For n > 0, sentences saying that “+4,,0,, T,, induces a pointed left Fs-module”:

Ve:nVy:nVz:n((z+ny) tnz=2+n (y+n2))
Vo:n(z+y,0,=1)
Ve:nVy:n(x+,y=y+n )

Vo :n(z+,x=0,)

Ve:n(l,z=u1)
Ve:nVy:nVa:0(ay (x+,y) =anx+nany)
Vz:nVa:0Vb:0((a+0b) nxr=apnx+,bpnx)
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ii - For n > 0, sentences saying that “h,, is a pointed Fs-morphism”:

Vae:nVy :n(hp(@ +ny) = hn(x) +np1 hn(y))
Vaz:nVa:0(hy(anz)=a-h,(z))
hn(Tn) - Tn+1

iii - Sentences saying that “Rg = Fo”:
0o # To

Vez:n(z=0Vax=Tp)

iv - Using the abbreviation sy, (z,y) = @ *pm y, we write for n,m > 0 sentences saying that
“xpm is a biadditive function compatible with h,”:

Ve :nVy:nVz:m(((x+ny) *nm 2) = (T *mn 2 Fntm Y *nm 2))
Vo :nVy:mVz:m(x *mn (Y +m 2)) = (T %m Y Fntm T *nm 2))
Va:nVy: m(hptm (T *nm y) = hn(2) *pm b (y))

v - Sentences describing “the induced ring with product induced by *y, ,,, n,m > 0":

Vo :nVy:mvVz:p((z*mmy) *(mn)p 2 = T Fp (m4p) (Y *mp 2))
Va:nVy: m(T snmy =Y *mn )
vi - For n > 1, sentences saying that “h,, = Tq %1, ”:

Va:n(hy(z)=T1 *1p )

Now we are in a position to define another version of Igr:
igr3
Definition 4.4.3 (Inductive Graded Rings Second Version). An inductive graded ring (or (Igr)

for short) is a model for T(Lig), or in other words, a Ly -structure R such that R t=,,, T(Ligr).
We denote by Igry the category of Lig--structures and Lig.-morphisms.
Again, after some straightforward calculations we can check:
Theorem 4.4.4. The categories Igr, Igry are equivalent.
igr-re

Remark 4.4.5. Following a well-known procedure, it is possible to correspond theories on poly-
sorted first-order languages with theories on traditional (single-sorted) first-order languages in such
a way that the corresponding categories of models are equivalent. This allows a useful interchanging
between model-theoretic results, in both directions. In particular, in the following, we will freely
interchange the three notions of Igr indicated in this section.

4.5 Interchanging K-theories

We finalize this chapter with an use of Igr’s to interchanging the three K-theory notions pre-
sented before in a functorial fashion. Lets first, look more carefully at theorem [£.5.1] We make the
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following distinctions between K-theories:

K will denote the Milnor’s K-Theory,
K% will denote the Dickmann-Miraglia’s K-Theory,
K™ will denote the K-Theory of Hyperfields.

Of course, we need the following theorem:

Theorem 4.5.1.
a - Let F be a field. Then kK™'F (the reduced Milnor K-theory) is an inductive graded ring.

b - Let G be a special group. Then k™G (the Dickmann-Miraglia K-theory of G) is an inductive
graded ring.

¢ - Let F be a hyperfield. Then k™ F (our reduced K-theory) is an inductive graded ring.

Proof. Ttem (a) is the content of Lemma 9.11 in [28], and item (b) is the content of Lemma 9.12
in [28]. We prove item (c) and items (a) and (b) will proceed by the same argument.

Let kT F = (koF, ki F, ..., k,F, ...) be the reduced K-theory of a hyperfield F. Let To = 1 and
for each n > 1, we set T,, = [(—1)" as the distinguished element of m — n. For each n > 0, let

) Km“”F — @I KL E given by the rule

On(p(ar), ..., plan)) == p(=1)p(a1)...p(an).

We have for each i € {1,...,n} and each ay, ..., an,b; € F* that

On(p(ar), ...p(a;) + p(bi), ..., plan)) = On(p(ar), ...p(aibi), ..., plan)) :=
p(=1)p(ar)...p(aibi)...p(an) = p(=1)p(ar)...[p(a:) + (b)] plan) =
p(=1)p(ar)...p(a;)...p(an) + p(=1)p(a1)...p(b;)...p(an) =
On(p(ar), ... p(ai), -, p(an)) + On(p(ar)...p(bi)...p(an)),

then 6,, is multilinear. By the universal property of tensor product, we have a group homomorphism
O« KU P — KU given by the ruld]

~— —

On(p(ar)...p(an)) = p(=1)p(ar)...p(an).

In order to make distinctions between reduced and non-reduced K-theories, we punctually denote an
element in kM F .= KMt E /2 KM E Yy 5(ayq)...p(ay). Lets also denote the canonical projection
by 0, : KUF — kM E. We define wy, : kT F — kMU F by the following rule (on generators):

for a1, ...,an € F,
n(5(01) - 5(an)) = F(—1)(a1)--(n)-
In fact, if p(a1)...0(bn) — p(b1)...0(b,) € 2K F then

p(=1)p(ar)...p(bn) — p(=1)p(b1)...p(bn) = p(=1)[p(ar)...p(bn) — p(b1)...p(bn)] € 2K F,

2Remember that we are using the simplified notation for elements in K™% F (and all other K-theories), which is
plar)...p(an) = p(a1) ® ... ® p(an).
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which proves that w,, is in fact a group homomorphism making the following diagram commute

7]
mult n mult
Kmultp 2t gmultp

Tn Tn+1
mult mult
Rt it |

With these rules, we already have the properties (i)-(iv) of Definition [4.4.1 holding in k. F, remain-
ing only property (v). Note that w! = p(—1)!"% for 0 < s < .

Now let m,n,p,q € N, p > n, ¢ > m and consider z € k™ F and y € k™“*F. Note that
wh(z) = p(—=1)P™" -z and wi(y) = p(—=1)2"™ - y. Then

wh(x) - wh(y) = (A(=1)P " - 2)(B(=1)1" - y) = H(=1)P " (2 y) = b (),
completing the proof. O

Using this Theorem (in addition with the argument of Lemma 3.3 in [30]) we obtain the fol-
lowing.

km2

Corollary 4.5.2. We have a functor and k : Fieldy — Igr induced by K-theory and Milnor’s

reduced K-theory.
km3

Corollary 4.5.3. We have a functor k™" : M Fieldy — Igr induced by our reduced K-theory.
km4

Theorem 4.5.4 (Theorem 2.5 in [29]). Let F' be a field. The functor G : Fields — SG provides
a functor k3™ : Fieldy — Igr (the special group K-theory functor) given on the objects by k3™ (F) :
kdm(G(F)) and on the morphisms f : F — K by k3™ (f) := G(f)+ (in the sense of Lemma 3.3
of [30]). Moreover, this functor commutes with the functors G and k, i.e, for all F € Field,
K(G(F)) & ko (F).

kmb5
Theorem 4.5.5. Let G be a special group. The equivalence of categories M : SG — SMF induces
a functor KT . SG — Igr given on the objects by k™ (G) := k™ (M (G)) and on the morphisms
f:G — H by kM™U(f) := k™ (M(f)). Moreover, this functor commutes with M and k%™, i.e,
for all G € SG, k™ (M(G)) =2 k9™(G).

Proof. The only part requiring proof is that for all G € SG, k™ (M (G)) = k™ (G). The very first
observation is that: since G is an exponent 2 group, the reduced and non-reduced K™"*-theory of
M (G) coincide.

Following the argument of Theorem 2.5 in [29], it is enough to show the following two statements:

i- Foralla,be G,ifbel—ain M(G) then \(b)A(a) = 0;
ii - For all a,b € G, if b € Dg(1,a) then p(b)p(a) = 0.
For (i),if b€ 1 —a in M(G) then b € Dg(1,—a) and then, A(b)A(—a) = 0. Hence
(D)2 = X(B)A(—a) = Ab)A(a) + A(D)A(—1).

Since A(b)A(—1) = A(b)?, we get A(b)A(a) = 0.
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For (ii) we just use the same argument: if b € Dg(1,a) then b € 1+ a in M(G) and then,
p(b)p(—a) = 0. Hence

p(b)* = p(b)p(—a) = p(b)p(a) + p(b)p(—1).
Since p(b)p(—1) = p(b)?, we get p(b)p(a) = 0. O

Combining Theorems [£.5.1] [£.5.4] [£.5.5] [£.3.6] and Corollaries [£.5.2] and [£.5.3] we obtain the

following Theorem, that unify in some sense all three K-theories:

Theorem 4.5.6 (Interchanging K-theories Formulas). Let F' € Fields. Then et
RMU(E) 2 (G(E)) 2 K (M (G(F)).
If F is formally real and T is a preordering of F', then
K (Gr(F)) 2 k™ (M (Gr(F)))-
Moreover, since M(G(F)) = F/nF? and M(Gp(F)) =2 F/,T*, we get
EmMYF) = 4YG(F)) =2 k™ F/ W F?) and
K™ (Gr(F)) 2 K™ (F/mT™).
resl
Corollary 4.5.7. Let F be a field. Then
K™ E) 2 kN F ) F2).
Proof. Using the previous Corollary, we already have
kMR = gI(G(F)) =2 k™M (G(F))).
Now, is enough to observe that M(G(F)) & F/,, 2. O

Combining Theorem Corollary and Theorem we get the following Corollaries.

res2
Corollary 4.5.8. Let F' be a formally real field and T be a preordering. Then we have a surjective
map
kmil(F) N k,mult(F/mT*) )
res3
Corollary 4.5.9. Let G be a pre-special group and H C G be a subgroup of G. Let M(G) be the
pre-special multifield associated to G and M(H) = H U{0} C M(G). Then

G/H = M(G)/, M(H)"

Moreover, M(H) C M(G) is a preordering if and only if H is saturated.
res4

Corollary 4.5.10. Let G be a special group and H be a saturated subgroup. Then we have a
surjective map
E™MG) — K™ G/ H) = k"™ (G/H).



Chapter 5

Inductive Graded Rings: A Deeper
Look at Marshall’s Signature
Conjecture

Theorem gives a hint that the category of Igr is a good abstract environment for studying
questions of ”quadratic flavour”. So a better understanding of Igr’s is at least desirable and this is
the main purpose of this Chapter.

We develop the general properties valid for Igr’s and the main results here are Theorem [5.5.4]
providing an adjunction between the categories of pre-special groups and (a subcategory of) induc-
tive graded rings. We also characterize the Special and Weak Marshall Conjecture in the context
of inductive graded rings (Section .

5.1 Some Categorical Facts

In order to easy the presentation, in this section there are some categorical results concerning

adjunctions. Mostly are based on [§], but the reader could also consult [44].
3.1.1borceux

Definition 5.1.1 (3.1.1 of [§]). Let F': A — B be a functor and B an object of B. A reflection
of B along F is a pair (Rp,np) where

1. Rp is an object of A and np : B — F(Rp) is a morphism of B.

2. If A € A is another object and b : B — F(A) is a morphism of B, there exists a unique

morphism a : Rg — A in A such that F(a) ong = b.
3.1.2borceux

Proposition 5.1.2 (3.1.2 of [§]). Let F : A — B be a functor and B an object of B. When the

reflection of B along F' exists, it is unique up to isomorphism.
3.1.4borceux

Definition 5.1.3 (3.1.4 of [8]). A functor R : B — A is left adjoint to the functor F : A — B
when there exists a natural transformation

n:lp=FoR
such that for every B € B, (R(B),ng) is a reflection of B along F'.
3.1.5borceux

Theorem 5.1.4 (3.1.5 of [§]). Consider two functors F : A — B and G : B — A. The following
conditions are equivalent.

129
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1. G is left adjoint of F.
2. There exist a natural transformation n:1g = F oG and e : G — F = 14 such that

(Fxe)o(nsF)=1p, (exG)o(Gxn) = lg.

3. There exist bijections
0ap : A(G(B),A) = B(B, F(A))

for every objects A and B, and those bijections are natural both in A and B.

4. F is right adjoint of G.
3.2.2borceux
Proposition 5.1.5 (3.2.2 of [§]). If the functor F: A — B has a left adjoint then F' preserves all

limits which turn out to exist in A.
3.4.1borceux

Proposition 5.1.6 (3.4.1 of [§]). Consider two functors F : A — B, G : B — A with G left adjoint
to F withn:1g= FoG ande:GoF = 14 the two corresponding natural transformations. The
following conditions are equivalent.

1. F is full and faithfull.
2. € is an isomorphism.

Under these conditions, nx F' and G *n are isomorphisms as well.
3.4.3borceux

Proposition 5.1.7 (3.4.3 of [§]). Given a functor F': A — B, the following conditions are equiv-
alent:

1. F is full and faithfull and has a full and faithfull left adjoint G.

2. F has a left adjoint G and the two canonical natural transformations of the adjunction n :
1= FoG ande: G — F = 14 are isomorphisms.

3. There exists a functor G : B — A and two arbitrary natural isomorphisms 1g =2 F o G,
GoF =1y.

4. F s full and faithfull and each object B € B is isomorphic to an object of the form F(A),
for some A € A.

5. The dual condition of (1).

6. The dual condition of (2).

3.4.4borceux
Definition 5.1.8 (3.4.4 of [8]). The categories A,B are equivalent if there exist a functor F :
A — B satisfying the conditions of Proposition [5.1.7]

5.2 The First Properties of Igr

In this section we discuss the theory of Igr’s. Constructions like products, limits, colimits,
ideals, quotients, kernel and image are not new and are obtained in a very straightforward manner
(basically, putting those structures available for rings in a ”coordinatewise” fashion), then in order
to gain speed, we will present these facts leaving more detailed proofs to the reader.
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Denote: plFo — mod the category of pointed Fs-modules, Ring the category of commutative
rings with unity and morphism that preserves these units and Ring, the full subcategory of the
associative Fy-algebras. We have a functorial correspondence Ring, — Igr, given by the following
diagram:

A F, ! A g id o id g id
f — idt f f !
B F, ! p_id p_id _ _id _p_ id

Here A is a pFy — mod where T, =1,n>1and Tg=1 € Fs.
trivialigr
Definition 5.2.1. The trivial graded ring functor T : Ringy, — Igr is the functor defined for
f:A—= BbyT(A):=Fa, T(f)o:=1idr, and for alln > 1 we set T(A), = A and T'(f)n := f.
f2alg

Definition 5.2.2. We define the associated Fa-algebra functor A : Igr — Ring, is the functor
defined for f: R — S by

A(R) := Ry = lim R, and A(f) = fy := lim f.

n>0 n>0
More explicitly, A(R) = (Ra,0,1,44,-), where

i- Ry =lig Ry,
n>0

ii- 0=1(0,0)] and 1 = [(1,0)],
iii - given [(an,n)], [(bm, m)] € Ra and setting d > m,n we have

[(an> n)] + [(bma m)] = [(hnd(a’n) + hmd(bm)a d)]
iv - given [(an,n)], [(bm, m)] € Ra, we have

[(@n, )] - [(bm, m)] = [(@n *nm bm, n +m)].

propadjl
Proposition 5.2.3.

i - The functor A is the left adjunct to T.
11 - The functor T is full and faithful.
1i - The composite functor A o T is naturally isomorphic to the functor 1ng2.
Proof. Let R € Igr. We have
T(A(R)) =T (hﬂ Rm> .

m>0
In other words, for all n > 1

T (hﬂ Rm> = hg Ry,

m>0 m>0
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Then, for all n > 1 we have a canonical embedding

N(R)yn : Rp — ligan:T(h%MRm) )

m>0 m>0

providing a morphism
n(R):R— lim Ry, =T | lim Ry, | -

For f € Igr(R, S), taking n > 1 we have a commutative diagram

fn

R, Sn

n(R)n n(S)n

i fom iy 7, 1 S
m>0 m0 m>0
with the convention that n(R)o = idp,. Then it is legitimate the definition of a natural transfor-

mation 7 : 1Igr — T o A given by the rule R — n(R).

Now let A € Rings and g € Ring2(R,T(A)). Then for each n > 0, there is a morphism
gn : Ry — T(A), = A and by the universal property of inductive limit we get a morphism

liﬂgnzling—M‘L

m>0 m2>0

In fact, hﬂ gn = A(g).

m>0

Now, using the fact that n(R),, is the morphism induced by the inductive limit we have for all
n > 0 the following commutative diagram

n(B) .
Ry - hgn Ry,
m>0
lim gn
gn m>0



5.2. THE FIRST PROPERTIES OF IGR 133

In other words, n(B), is the canonical morphism commuting the diagram
B)n
Ry —"2" - T(A(R))

T(A(gn))

T(A)

and hence, A is the left adjoint of T, proving item (i). By the very definition of A and T we get
item (iii), and using Proposition we get item (ii). O

Using Proposition (and its dual version) we get the following Corollary.
Corollary 5.2.4.
i - T : Ringy, — Igr preserves all projective limits.

it - If I is such that Igr is I-inductively complete then for {A;}ier in Igr we have

@Ai =~ A (@T(AQ) .
icl icl
111 - Fo € Ringy ts the initial object in Rings.
i - 0 € Ringy s the terminal object in Rings.
v - T(F9) is the initial object in Igr.

vi - T(0) is the terminal object in Igr.

Now we discuss (essentially) the limits and colimits in Igr. Fix a non-empty set I and let
{(Ri, T4, hi) }icr be a family of Igr’s. We start with the construction of the Igr-product

R=]]R:
iel

For this, we define Ry = F9 and for all n > 1, we define

R, = H(R’>” and T, := H(Tl>”

i€l il

In the sequel, we define hg : Fo — R; as the only possible morphism and for n > 1, we define
hn: Ry — Rpy1 by

boohull-df

Definition 5.2.5.
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i- The space of orderings, Xpg, of the Igr R, is the set of Igr-morphisms Igr(R,T(Fs). By
the Proposition [5.2.3 (i), we have a natural bijection Igr(R,T(F2) = Rings(A(R),Fs), thus
considering the discrete topologies on the Fo-algebras A(R),Fy) and transporting the boolean
topology in Ringa(A(R),F2), we obtain a boolean topology on the space of orderings Xr =
Igr(R,T(F3)).

ii- The boolean hull, B(R), of the Igr R, is the boolean ring canonically associated to the space
of orderings of R by Stone duality: B(R) := C(Xg,Fa).

iii- A Igr R is called formally real if Xp # 0 (or, equivalently, if B(R) #0).
fixigril
Proposition 5.2.6. Let I be a non-empty set and {(R;, h;)}ier be a family of Igr’s. Then

R:HRi

el
with the above rules is an Igr. Moreover it is the product in the category Igr.

Proof. Using Definition is straightforward to verify that (R, T, hy) is an Igr. Note that for
each i € I, we have an epimorphism 7; : R — R; given by the following rules: for each n > 0 and
each (z;)ier € Ry, we define
(mi)n((@)ier) = ;.

Now, let (Q,{¢}icr) be another pair with @ being an Igr and ¢; : @ — R; being a morphism for
each i € I. Giveni € I and n > 0, since R,, := [[;c;(R;)x is the product in the category of pointed
Fy-modules, we have an unique morphism (q), : (Q)n — (R), such that (m;)n o (¢)n = (gi)n. Set
qn = ((¢i)icr)n. By construction, ¢ is the unique Igr-morphism such that m; o ¢ = ¢;, completing
the proof that R is in fact the product in the category Igr. O

Proposition 5.2.7.
i- Let R be an Igr and let X C R = € R,. Then there exists the inductive graded subring
neN
generated by X (notation : [X] & R): this is the least inductive graded subring of R such
that Vn € N, X N R,, C [X],,.

1i- Let T be a small category and R : R — Igr be a diagram. Then there exists T&liez R in the
category Igr.

Proof.

i- It is enough consider Sy , the Fa-subalgebra of (€B,cy Rn,*) generated by X U {T1} C
D, Bn and set Vn € N, [X], := 5, N R,.

ii- Just define @iez R; as the inductive graded subring of HiEObj(I) R; generated by Xp =
D,.cny Xn and X, := l&nzez(RZ)n (projective limit of pointed Fo-algebras).

Now we construct the Igr-tensor product of a finite family of Igr’s, {R; : i € I}

R=@Q) R

el
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For this, we define Ry = F9 and for all n > 1, we define

Rn = ®<Rz)n7
iel
(®icra:) *n ke (Qierbi) == Ricr(a; k4 bi)
and T, := ®Qicr(Ti)n-

In particular, if I = (), then R,, = {0},n > 1. In the sequel, we define hg : F; — R; as the only
possible morphism and for n > 1, we define h,, : R, = R,+1 by

hi = Q) (hi)n-

i€l

In other words, for a generator &), ; z; € R,, we have

b (®ierz;) = ®(hi)n($i)~
i€l
fixigr2
Proposition 5.2.8. Let I be a finite set and {(R;, h;)}ier be a family of Igr’s. Then

R=Q)R:

el
with the above rules is an Igr. Moreover it is the coproduct in the category Igr.

Now suppose that (/, <) is an upward directed poset and that ((R;, hs), ij)i<jer is an inductive
system of Igr’s. We define the inductive limit

R=limR,
el

by the following: for all n > 0 define

Note that
RO = hﬂ(Rz)O = hglFQ = FQ.
el il

In the sequel, for n > 1 we define h,, : R, = R,4+1 by

iy 2= limg (i),
el
fixigrd
Proposition 5.2.9. Let (I, <) is an upward directed poset and ((R;, h;), pij)icr be a directed family
of Igr’s. Then
R = liHmRi
el

with the above rules is an Igr. Moreover, it is the inductive limit in the category Igr.

Proposition 5.2.10. The general coproduct (general tensor product) of a family {R; : i € I} in
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the category Igr is given by the combination of constructions:

®RZ~ = lim ®RZ-.

iel I'ePpin(I) il

After discussing directed inductive colimits and coproducts, we will deal with ideals, quotients,
and coequalizers.

Definition 5.2.11. Given R € Igr and (Jp)n>0 where J, C Ry, for alln > 0. We say that J is a

graded ideal of R where
=@ P,

n>0 n>0
is an ideal of (R, *).

In particular, for alln > 0, J, C R, is a graded Fa-submodule of (R,,, +,0,). For each X C R,
there exists the ideal generated by X, denoted by (X). It is the smaller graded ideal of R such
that for all n > 0, (X N R,) C [X],. For this, just consider (X), the ideal of (R, *) generated by
X C R and define (X),, := (X) N R,.

Definition 5.2.12. Let R, S be Igr’s and f : R — S be a morphism. We define the kernel of f,
notation Ker(f) by
Ker(f)n :={x € Ry, : fn(x) =0}

and image of f, notation Im(f) by
Im(f)n :={fn(z) €Sy :2 € R,}.

Of course, Ker(f) C R is an ideal and Im(f) C S is an Igr.

Given R € Igr and J = (J,)n>0 a graded ideal of R, we define R/J € Igr, the quotient
inductive graded ring of R by J: for all n > 0, (R/J), := Ry/J,, where the distinguished
element is T, +, J,. We have a canonical projection ¢; : R — R/J, “coordinatewise surjective”
and therefore, an Igr-epimorphism.

Proposition 5.2.13 (Homomorphism Theorem). Let R, S be Igr’s and f : R — S be a morphism.
Then there exist an unique monomorphism f : R/Ker(f) — S commuting the following diagram:

f

R S

|

R/Ker(f)

where q is the canonical projection. In particular R/ Ker(f) = Im(f).

f
Proposition 5.2.14. Let R = S be Igr-morphisms and consider q; : S — S/J the quotient

g
morphism where J := (X) is the graded ideal generated by X,, := {fn(a) — gn(a) : a € Ry}, nzinN.
Then qy is the coequalizer of f,g.

Proposition 5.2.15. Given R, S € Igr and f € Igr(R,S5).
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i- f is a Igr-monomorphism whenever for alln > 0 f, : R, — S, is a monomorphism of
pointed Fo-modules iff for allm >0, f, : R, — Sy is an injective homomorphism of pointed
Fo-modules.

1 - f is a Igr-epimorphism whenever for alln >0 f, : R, — Sy is a epimorphism of pointed Fo-
modules iff for alln >0, f,: R, — Sy is a surjective homomorphism of pointed Fa-modules.

1 - f is a Igr-isomorphism iff for alln >0 f, : R, — Sy is a isomorphism of pointed Fo-modules
iff for alln >0, f,: R, — Sy is a bijective homomorphism of pointed Fo-modules.

Definition 5.2.16. We denote Igry;,, the full subcategory of Igr such that
Obj(Igrs;,) = {R € Obj(Igr) : |Ry| < w for alln > 1}.
Remark 5.2.17. Of course,

R € Obj(Igr) : @Rn <w o # Obj(Igryy),

n>1

for example, inl.4.9(a), if F is a Euclidian field (for instance, any real closed field), then @ I"F/I""1F
neN

= Fylz], thus the graded Witt ring of F (see deﬁm’tian W.(F) € Obj(Igry;y,) but Fo[z] is not
finite.

5.3 Relevant subcategories of Igr

The aim of this Section is to define subcategories of Igr that mimetize the following two central
aspects of K-theories:

1. The K-theory graded ring is ”generated” by Kj;

2. The K-theory graded ring is defined by some convenient quotient of a graded tensor algebra.

Our desired category will be the intersection of two subcategories. The first one is obtained after
we define the graded subring generated by the level 1 functor

1:Igr — Igr.
We define it as follow: for an object R = ((Ryn)n>0, (hn)n>0s *nm)s
i~ 1(R)o := Ry = Ty,
i - 1(R)1 = Ry,
iii - for n > 2,

'
I(R)p,:={z€R,:z= Zalj K11 oee *11 Qs
j=1

with a;; € R1, 1 <i<n,1<j<r for some r > 1}.

Note that for all n > 2, R, is generated by the expressions of type

di *11dg %11 ... %11 dp, d; € Ry, 1=1,...,n.
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Of course, 1(R) provides an inclusion ¢y(g) : 1(R) — R in the obvious way.
On the morphisms, for f € Igr(R,S), we define 1(f) € Igr(1(R),1(S)) by the restriction
1(f) = f 1u(r)- In other words, 1(f) is the only Igr-morphisms that makes the following diagram

commute:
L1(R)

1(R) R
1(f) i
1(S) — g

levell
Definition 5.3.1. We denote Igry the full subcategory of Igr such that

Obj(Igry) = {R € Igr: 1y(g) : 1(R) — R is an isomorphism}.
Example 5.3.2.
i - If A is a Fa-algebra, then T(A) € obj(Igry).
ii - If F is an hyperbolic hyperfield, then k.(F) € obj(Igry).

iit - If F' is a special hyperfield (equivalently, G = F \ {0} is a special group), then the graduate
Witt ring of F (definition[5.4.9) W.(F) € obj(Igry).

i - If F is a field with char(F') # 2, then, by a known result of Viadimir Voevodski,
H*(Gal(F°|F),{£1}) € obj(Igry).
Proposition 5.3.3.
i - For each R € Igr we have that 11 (g)) : 1(1(R)) — 1(R) is the identity arrow.
w-1lol=1.
s - The functor 1 : Igr — Igry is the right adjoint of the inclusion functor jy : Igry — Igr.

w - g1 ¢ Igry — Igr creates inductive limits and to obtain the projective limits in Igry is sufficient
restrict the projective limits obtained in Igr:

lim j1 (R;)
Hm R; = <@J1(Rz')> S lim i (Ry)-
il iel 1 icl
Proof. Similar to Proposition [5.2.3 O
Now we define the second subcategory. We define the quotient graded ring functor
Q : Igr — Igr

as follow: for a object R = ((Rp)n>0s (hn)n>0, *nm), Q(R) := R/T, where T = (T},),>0 is the ideal
generated by {(T1 41 a) %11 a € Ry : a € R1}. More explicit,
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i- To:={00} C Ro,
ii- Ty :={01} C Ry,
iii - for n > 2, T;, C R,, is the pointed Fs-submodule generated by

{r e Ry :x=y *n (T1+1a1) %11 a1 *1r 2,
with a1 € Ry, y1 € Ry, 2z € Ry, I +r =n—2}.

Of course, Q(R) provides a projection 7 : R — Q(R) in the obvious way.

On the morphisms, for f € Igr(R,S), we define Q(f) € Igr(Q(R), Q(S)) by the only Igr-
morphisms that makes the following diagram commute:

R ik Q(R)
f o(f)
S = Q(S)

quotop
Definition 5.3.4. We denote Igr;, the full subcategory of Igr such that

Obj(Igry,) ={R € Igr: g : R — Q(R) is an isomorphism}.

Remark 5.3.5. Note that R € obj(Igry) iff for each a € Ry, a*11 T1 = a %11 a € Re. FEach
R satisfying this condition is, in some sense, “hyperbolic” (see Proposition : this s the
motivation of the index “h”.

Example 5.3.6. - Let A be a Fa-algebra. Then T(A) € obj(Igry,) iff A is a boolean ring (i.e.,
Va € A,a® =a).

ii- If F is an hyperbolic hyperfield, then k.(F') € obj(Igry,).
iti- If F is a special hyperfield (equivalently, G = F \ {0} is a special group), then W.(F) €
obj(Igry,).
iv- If F is a field with char(F) # 2, then H*(Gal(F*|F),{£1}) € obj(Igry).
Proposition 5.3.7.
i - For each R € Igr we have that mg(p) : Q(R) — Q(Q(R)) is an isomorphism.
- Qo Q= Q.
iii - The functor Q : Igr — Igry, is the left adjoint of the inclusion functor jq : Igrg — Igr.

W - jg : Igry, — Igr creates projective limits and to obtain the inductive limits in Igry, is sufficient
restrict the inductive limits obtained in Igr:

limg jq (R:)
hﬂjq(Ri) E (@Jq(Rz)> = @Rz
Q

iel el il
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Moreover, j, : Igr, — Igr creates filtered inductive limits and quotients by graded ideals.

Are examples of inductive graded rings in Igry: (i) T(A), where A is a boolean ring; (ii)
k.«(F), where F' is an hyperbolic hyperfield; (iii) W, (F'), where F' is an special hyperfield; (iv)
H*(Gal(F*|F),{£1}), where F is a field with char(F) # 2.

igr+

Definition 5.3.8 (The Category Igr, ). We denote by Igr, the full subcategory of Igr such that
Obj(Igry.) = Obj(Igry) N Obj(Igry,).
We denote by jy : Igr, — Igr the inclusion functor.

Remark 5.3.9. - Note that the notion of an Igr, R, be in the subcategory Igry can be axiom-
atized by a first-order (finitary) sentence in L, the polysorted language for Igr’s described in
the previous Chapter: (VYa : 1,a %11 a = T1 %11 a). On the other hand, the concepts R € Igry
and R € Igry are axiomatized by L, .,-sentences.

ii- Note that the subcategory Igry — Igr is closed by filtered inductive limits.

In order to think of an object in Igr, as a graded ring of ”K-theoretic type”, we make the
following convention.
igrlog
Definition 5.3.10 (Exponential and Logarithm of an Igr). Let R € Igr, and write Ry multi-
plicatively by (T'(R),-,1,—1), i.e, fir an isomorphism er : Ry — I'(R) in order that eg(T) = —1
and eg(a +b) = a-b. Such isomorphism egr is called exponential of R and lgp = e}_zl is called
logarithm of R. In this sense, we can write Ry = {l(a) : a € I'(R)}. We also denote l(a) *11 (D)
simply by 1(a)l(b), a,b € T'(R). We drop the superscript and write just e,l when the context allows
it.

Using Definitions 5.3.10| (and of course, Definitions [5.3.1| and |5.3.4] with an argument
similar to the used in Lemma |4.3.2)) we have the following properties.

igr_+first

Lemma 5.3.11 (First Properties). Let R € Igr, .

i-1(1) = 0.

it - For alln > 1, n € R, is generated by l(ay)...l(ay) with a1, ...,an € I'(R).
iii - l(a)l(—a) =0 and l(a)l(a) = I(=1)l(a) for all a € T'(R).

iv - 1(a)l(b) = 1(b)l(a) for all a,b € T(R).

v - For every ay, ...,an € I'(R) and every permutation o € Sy,

l(ar)...1(a;)...l(an) = sgn(o)l(ac1)...l(agn) in Ry.
vi - Forall £ € Ry, n € Ry,
&n = n¢.

vii - For allm > 1,
hon(l(a1)...l(ay)) = 1(=1)l(a1)...l(ay).
igr_+prop
Proposition 5.3.12. Let R € Igr,
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i- For eachn € N and each x € R,,, x ¥ppnx = Ty *pn T € Rop.
ii- A(R) = lim B is a boolean ring (or, equivalently, T(A(R)) € Igr, ).
Proof.

i- The property is clear if n = 0. If n > 1, then the property can be verified by induction on the
number of generators k > 1,x = Zle @1, *1,1 G %11 -+ *¥1,1 Gn; € Ry if kK =1, then note
that

Tkpp @ = (a1 *ag*---*ap)* (ag *xag*---*ay)
= (a1 *a1)*(ag*xaz)* - (an*ay) = (Trxar)*(Trxaz) - *(T1*ay)

= (Tn) x (a1 xag * -+ *xay);
if k> 1, write x = y + z, where y, z € R,, are have < k generator and then, by induction,

Trknn = Y+2)knn(Y+2) =Yknn U+ Yknn 2+ 2% 0 Y+ 2 %pp 2
:y*n,ny+z*n,nz = Tn*n,ny_'_—rn*n,nz
=Thn#pn(Y+2)=Thxpna

ii- This follows directly from item (i) and the definition of the ring structure in A(R) = lim .

O]

By the previous Proposition and the universal property of the boolean hull of an Igr (Definition

[5.2.5](ii)), we obtain:

Corollary 5.3.13. Let R € Igr,. Then:

igr+co

1- X’]F(A(R)) ~ XR.
ii- A(R) = B(R).
Lemma 5.3.14.

i- Given R € Igry, S € Igr and f : S — j1(R), we have: f is coordinatewise surjective iff
f1:51 = Ry is a surjective morphism of pointed Fo-modules.

it - Given R € Igry, S € Igr and f,h € Igr(j1(R),S), we have f = h if and only if fi = hy.

Let R, S € Igr. The inclusion function tg : 1(R) — R and projection function 7r : R — Q(R)
induces respective natural transformations ¢ : 1 = 174 and 7 : 174 = Q. Moreover, we have
a natural transformation can : Q1 = 1Q given by the rule can,(l(a1)...l(an)) = l(a1)...l(an),
n > 1. (cany, is well defined and is an isomorphism basically because both Q1(R) and 19(R) are
generated in level 1 by R; and both graded rings satisfies the relation /(a)l(—a) = 0).

We have another immediate consequence of the previous results (and adjunctions):

Lemma 5.3.15.
i - For all R € Igry, 1(R) € Igr, and cang is an isomorphism.

ii - For all R € Igry, Q(R) € Igr, and cang is an isomorphism.
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itt - To get projective limits in Igr, is enough to restrict the projective limits obtained in Igr:
lim R; = 1 (@MR») .
iel iel
i - To get inductive limits in Igr, is enough to restrict the inductive limits obtained in Igr:

lim R; = Q (hg]Jr(Rz)) .

i€l i€l

5.4 Examples and Constructions of Quadratic Interest
Definition 5.4.1. A filtered ring is a tuple A = (A, (Jn)n>0,+,,0,1) where:

i- (A,+,-,0,1) is a commutative ring with unit.

it - Jo=A and for allm > 1, J, C A is an ideal.
1w - Foralln,m >0, n<m= J, D Jy.

w - For alln,m >0, Jy - Jom, C Jpgm.-

v- Jo/J1 2Fy (then2=1+1¢€ J;).

vi - For allm >0, J,/Jn+1 is a group of exponent 2 (then 2 - J, C Jpi1 and 2™ € Jy, ).

A morphism f : A — A’ of filtered rings is a ring homomorphism such that f(J,) C J. The

category of filtered rings will be denoted by FRing.
gradfilt

Definition 5.4.2. We define the inductive graded ring associated functor
Grad : FRing — Igr
for f: FRing(A, B) as follow: Grad(A) := ((Grad(A)n)n>0, (tn)n>0,*) € Igr is the igr where

i - For alln >0, Grad(A), := (Jn/JIn+1, +n,0n, Tn) is the exponent 2 group with distinguished
element Ty :=2" 4+ Jp41.

it - For alln >0, t, : Grad(A), — Grad(A),+1 is defined by t,, :=2- _, i.e,
For all a4 Jpt1 € Jn/JIn+1, tn(a+ Jny1) =2 a+ Jnia € Jny1/JInto.

Observe that t,(T,) = Tpt1, i€, ty is a morphism of pointed Fo-modules.

iii - For all n,m > 0 the biadditive function ., : Grad(A), X Grad(A)y — Grad(A)nim is
defined by the rule

(an + Jn+1) *mn (bm + Jm+1) = Qp - bm + Jn—i—m—i—l S Jn—i—m/Jn-i—m—i-l-

The group Aq := @,,>o Grad(A), of exponent 2 and the induced application x : Agx Ag — Ay
are such that (Ag,*) is a commutative ring with unit T1 = (24 Ja) € J1/Ja.

w- Foralln>1,t,=T1 %1y _.
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The morphism Grad(f) € Igr(Grad(A),Grad(A")) is defined by the following rules: for all
n >0, fn:Grad(A), — Grad(A'), is given by

fnla+ Jnt1) = fula) + J;L+1'

Note that f, a homomorphism of Fa-pointed modules and @, > fn : (Ag,*) = (Ag, *) is a homo-
morphism of graded rings with unit.
igrcont

Definition 5.4.3. The functor of graded ring of continuous functions over a space X
C(X,.): Igr— Igr
is the functor defined for f : R — S by
i- C(X,R)p:= Ry = Fy,
it - for alln>1, C(X,R), :=C(X,R,,) as a pointed Fa-module,

ii - for allm,m >0, %, : C(X, Ry) xC(X, Rpm) — C(X, Rntm) is given by (aun, Bm) = Qi *ic, Brms
where for x € X,
Qn *fL{m Bm(x) = O‘n(x) *nm /Bm(x) € Ryym-

v - C(X, f)o := fo as an homomorphism of pointed Fo-modules Ry — Sp.
v- foralln > 1, C(X, f)n :=C(X, fn) := fno_- € pFa —mod(C(X, Ry,),C(X,Sy)).

Remark 5.4.4. Let X be a topological space and let R € Igr;. Note that if X is compact or
R € Igrgip, then C(X,R) € Igry.

sgfilt
Definition 5.4.5. We define the continuous function filtered ring functor

C:SG — FRing

as follow: first, consider the functor C(X_,Z) : SG — Ring, composition of the (contravariant)
functors “associated ordering space” X_: SG — Top° and “continuous functions in 7, ring”
C(.,Z) : Top®® — Ring (here Z is endowed with the discrete topology).

Now we define the functor C : SG — FRing: given a special group G € SG, we define

C(G) = (R(G)v (‘]n(G))n207 +,-,0, 1)
where

i- (R(G),+,-,0,1) is the subring of C(Xq,Z) of continuous functions of constant parity, i.e,

R(G) := Jp(G) l@), C(Xg,Z) is the image of the monomorphism of rings with unit

jo(G) :C(Xaq, 2Z) U C(X(;, 2Z+1) = C(Xg, Z).
it - For allm > 1, J,(G) (@), Jo(G) is the ideal of R(G) (and also of C(Xg,Z)) that is the
image of the monomorphism of abelian groups

in(G) : C(Xa,2"Z) — C(Xq, 2Z) UC(Xg, 2Z + 1).
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We also have Jo(G)/Ji(G) = Fy and for all n,m > 0:
a - If n>m then J,(G) 2 Jn(G);
b - Jn(G) - Im(G) € Jnim(G);
¢ - 2J,(G) = Jnt1(G) = Jn(GQ) )/ Jnt1(G) is an exponent 2 group.
On the morphisms, for f € SG(G,G’), we define C(f) € FRing(C(G),C(G")) by
C(f)(h) = C(Xy, Z)(h)
for h € C(G). C(f) is well-defined because C(f) € Ring(C(G),C(G")) and for all n > 0,
C(f)(n(G)) C Ju(G).
Definition 5.4.6. We define the continuous function graded ring functor by
GradoC : SG = Igr.
For convenience, we describe this functor now: given G € SG,
Grad(C(G)) := ((Grad(C(G))n)n>0, (tn)n>0, ")
where:

i- Grad(C(G))n := (Jn(G)/Jns1(G),+,0 - Jpnt1(G), 2" Jn41(G)), where 2 € C(Xg,Z) is the con-
stant function of value 2 € 27 C Z.
ii - For all n > 0, Ju(G)/Jni1(G) 2225 J1s1(G) [ Tnsa(G).

iii - For all n,m > 0, *pp, : Jo(G)/Jnt1(G) X Jn(G) /) Im41(G) = Jnam(G)/ Tnsm+1(G) is given
by
(hn + Jn41(G)) #nm (km + Im41(G)) = hnkp + Jngm41(G).

On the morphisms, given f € SG(G,G’), we have that
Grad(C(f)) = (Grad(C(f))n)n>0 € Igr(Grad(C(G), Grad(C(G")),
where for all n > 0, Grad(C(f))n : Grad(C(G)), — Grad(C(G"))y is such that
Grad(C(f))n(h+ Jus1(G)) = C(f)(h) + Jp 11 (G).
Proposition 5.4.7.

o

a - There is a natural isomorphism 0 : Grad o C — T o C(X_,F3). In particular, for oll G € SG,
Grad(C(G)) € Igr,.

b- Forall0<n<m<w, 2™ " _: Jo(GQ))Jnt1(G) = Jn/Im+1(G) is an isomorphism of groups
of exponent 2.

¢ - For alln > 1, there is an isomorphism of groups of exponent 2

0n(G) : Jn(G)/Jns1(G) = C(Xe, Fa),
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given by the rule
On(h+ Jo(G))(0) := hp(0)/2" € C(XG, Z/27).

d - For all 0 <n <m < w the following diagram commute:

In(G)/ Tns1(G) — 2 T (G) ) Tni1(G)

Gn(G) Gm(G)

C(Xg,Fy)
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filtered Witt ring functor

Definition 5.4.8. We define the filtered Witt ring functor
W : SG — FRing
for f € SG(G, H) as follow: given a special group G € SG, we define
W(G) := (W(G), I"(G)nz0,8,®, (), (1))
where for all m > 0, I"(Q) is the n-th power of the fundamental ideal
1(G) = {p € W(G) : dims(p) = 0}.
We define W(f) € FRingW(G), W(H)) by the rule W(f)(p) := f * ¢.
W(G) is a filtered commutative ring with unit because:
i- (W(G),®,®,(), (1)) € Ring.
ii - For all n >0, I"(G) C W(Q) is an ideal.
iii - For all n,m >0, n <m= I"(G) 2 I"(G).
iv - For all n,m > 0, I"'(G) ® I(G) C I""™™(G).
v- I°(G) == W(G).

vi - I9(G)/ITYG) = F,.

vii - For all n > 0, (I"(G)/I""(Q),®, () is a group of exponent 2 with distinguished element
1

2" + ["TH(@), where 2" = ®;.,(1,1).

graded Witt ring functor

Definition 5.4.9. We define the graded Witt ring functor
GradoW : SG — Igr.

We register, again, the following result:

Proposition 5.4.10. For each G € SG we have Grad W(G)) € Igr, .
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For each commutative ring with unit A, we have
t(A)={a€ A: existsn >0 withn-a=0}C A

is an ideal (the torsion ideal of A). The association A — A/t(A) is the component on the objects
of an endofunctor of Ring.

For each G € SG we have a ring homomorphism with unit sgng : W(G) — C(X¢,Z) given by
the rule

—_

n—

sgng((ag, ..., an_1))(0) := Za(ai).

=0

~

The Pfister Local-Global principle says that sgn. induces a monomorphism
rsgng : W(GQ)/t(W(G)) — C(Xa, Z).

For each G € SG we have sgng(W(G)) C C(Xq,2Z) UC(X¢,2Z + 1) (since the signatures of
classes of forms has the same parity of its dimension) and for all n > 1, sgn,(I"(G)) C C(X¢,2"Z)
(since I™(G) is the abelian subgroup of W (G) generated by classes of Pfister forms of dimension
2m).

sgn : W — C (respectively rsgn : W/t(W) — C) is the natural transformation between functors

w
SG :;C FRing

that provide natural transformations between functors SG —= Igr :

Grad - sgn : Grad o W — Grad o C, respectively
Grad - rsgn : Grad o (W/t(W)) — Grad o C.

Remember that [MC] ([LC]) and [WMC] ([WLC]) are conjectures about these natural transforma-
tions.
C is a particular case of W in the following sense: C : SG — FRing is naturally isomorphic to

the composition of functors SG MALNY T RRAN FRing.

5.5 The adjunction between PSG and Igr,,

By the very definition of the K-theory of hyperfields (with the notations in Theorem 4.3.3) we
define the following functor.

Definition 5.5.1 (K-theories Functors). With the notations of Theorem we have a functors
k:HMF — Igr,, k: PSMF — Igr, induced by the reduced K-theory for hyperfields.

Now, let R € Igr,. We define a hyperfield (I'(R),+, —.-,0,1) by the following: firstly, fix an
exponential isomorphism eg : (R1,+1,01,T1) — (G(R),-,1,—1) (in agreement with Definition
5.3.10). This isomorphism makes, for example, an element a %17 (T1 + b) € Re, a,b € Ry take
the form (Igr(z)) *11 (Ir((—=1) - y)) € Re, x,y € G(R). By an abuse of notation, we simply write
lr(x)lr(—y) € Ra, x,y € G(R). In this sense, an element in Q2 has the form [r(z)lr(—x),
x € T'(R), and we can extend this terminology for all @, n > 2 (see Definition and Lemma

FE).
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Now, let I'(R) := G(R) U {0} and for a,b € I'(R) we define

—a:=(-1)-a,
a-0=0-a:=0,
a+0=0+a={a},
a+ (—a) =T(R),
for a,b # 0,a # —b define
a+b:={ceI'(R) : there exist d € G(R) such that
a-b=c-de G(R) and lp(a)lp(b) = lp(c)ip(d) € Ro}.  E™BTY
prespechf
Proposition 5.5.2. With the above rules, (I'(R), 4+, —.-,0,1) is a pre-special hyperfield.

Proof. We will verify the conditions of Definition Note that by the definition of multivalued
sum once we proof that I'(R) is an hyperfield, it will be hyperbolic. In order to prove that
(T'(R),+,—.-,0,1) is a multigroup we follow the steps below. Here we use freely the properties in

Lemma B.3.171

i - Commutativity and (a € b+ 0) < (a = b) are direct consequence of the definition of multi-
valuated sum and the fact that [r(a)lr(b) = lg(b)lr(a).

ii - We will prove that if c€ a + b, thena€c—band b € c—a.

Ifa=0 (or b=0) or a = —b, then ¢ € a + b means ¢ = a or ¢ € a — a. In both cases we get
ac€c—bandb€c—a.

Now suppose a,b # 0 with a # —b. Let ¢ € a+b. Then a-b = ¢-d and lg(a)lr(b) =
lr(c)lr(d) € Ry for some d € G(R). Since G(R) is a multiplicative group of exponent 2, we
have a-d =b-c (and hence a - (—d) = c¢- (=b)). Note that

ZR(a)lR(—d) = lR(a)lR(—abc) = ZR(a)lR(bc) = lR(a)lR(b) + ZR(a)lR(c)
= lR(C)lR(d> + lR(a)lR(c) = ZR(C)ZR(CZ) + ZR(C)ZR(G,) = lR(c)lR(ad).

Similarly,
IR(D)R(—¢) = Lr(b)lr(—abd) = lr(b)lg(ad) = Lr(b)lr(a) + Lr(b)lR(d)
Ir(a)lr(b) + lr(b)Ir(d) = lr(c)lRr(d) + IR (D)IR(d)
= lR(bC)lR(d) = lR(ad)lR(d).
Then

(@)l —d) — Ln(®)la(~c) = Ln(c)ln(ad) — La(ad)ln(d) =
=Ir(c)lr(ad) — lr(d)lr(ad) = lr(—cd)lr(ad).

But

Ir(—cd)lr(ad) = lr(—cd)lr(a) + Ir(— Cd)lR(d)
= Ir(—cd)lr(a) + Ir(c)lr(d) = lr(a)lr(—cd) + lr(a)lr(b)
— Ln(@)lr(=bed) = Ln(a)ln(—a) = 0.
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iii -

v -

vi -

vii -
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Then
ZR(CL)ZR(—d> = lR(b)lR(—C),

proving that a € b — ¢. Similarly we prove that b € —c + a.

Since (G(R),-, 1) is an abelian group, we conclude that (I'(R),-, 1) is a commutative monoid.
Beyond this, every nonzero element a € I'(R) is such that a? = 1.

a-0=0 for all a € I'(R) is direct from definition.

For the distributive property, let a,b,d € I'(R) and consider = € d(a + b). We need to prove
that

zed-a+d-b. ()

It is the case if 0 € {a,b,d} or if b = —a. Now suppose a,b,d # 0 with b # —a. Then there
exist y € G(R) such that z = dy and y € a + b. Moreover, there exist some z € G(R) such
that y -z =a-b and lr(y)lr(2) = lg(a)lg(b).

If 0 € {a,b,d} or if b = —a there is nothing to prove. Now suppose a,b,d # 0 with b # —a.
Therefore (dy) - (dz) = (da) - (db) and

lr(dy)lr(dz) = lr(d)Ir(d) + lr(d)IR(2) + IR(D)IR(Y) + lrR(Y)IR(2)
= lr(d)Ir(d) + IrR(D)[Ir(2) + Ir(Y)] + Ir(Y)IR(2)
= Ir(d)Ir(d) + lr(d)Ir(yz) + Ir(Y)IR(2)
= Ir(d)lr(d) + Ir(d)lr(ab) + lg(a)lr(b)
= lR(d)lR(d) Ir(d)lr(a) + Ir(d)IR(D) + Ir(a)lr(D)
lr(da)lg(d

so lr(dy)lr(dz) = lr(da)lr(db). Hence we have z =dy € d-a+d - b.

_l’_
_l’_
b),

Using distributivity we have that for all a,b,c,d € T'(R)
d[(a+b) + ¢] = (da + db) + dc and dla + (b+ ¢)] = da + (db + dc).
In fact, if z € (a +b) + ¢, then z € y + ¢ for y € a + b. Hence
dzx € dy + dc C d(a + b) + dc = (da + db) + de.

Conversely, if z € (da + db) + dc, then z = w + de, for some w € da + db = d(a + b). But in
this case, w = dt for some t € a +b. Then

zedt+dc=d[t+c] Cd[(a+b)+c]
Similarly we prove that d[a + (b + ¢)] = da + (db + dc).

Let a € I'(R) and 2,y € 1 —a. If a =0 or a = 1 then we automatically have -y € 1 — a, so
let @ # 0 and a # 1. Then z,y € G(R) and there exist p,q € I'(R) such that

z-p=1-aand lr(z)lr(p) =1 (1)l (a)=0
y-q=1-a and lr(y)lr(q) = lr
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Then (zy) - (pga) =1-a and

lr(zy)lr(p) + lr(zY)lR(q) + IR(7Y)IR(0)

= lr(Y)Ir(p) + Ir(2)IR(q) + Ir(2)IR(a) + IR(Y)IR(a)
= lr(y)Ir(pa) + lr(x)lr(ga)

= lr(y)lr(z) + [r(x)lr(y) = 0.

Ir(zy)lr(pga) =

Then zy € 1 — a, proving that (1 —a)(1 —a) C (1 —a). In particular, since 1 € 1 — a, we have
(1-a)(l—a)=(1-a).

viii - Finally, to prove associativity, we use Theorem Let (a,b) = (c,d) the relation defined
for a,b,c,d e I'(R) \ {0} by

(a,b) = (c,d) iff ab = cd and lg(a)lr(b) = Ir(c)lr(d).
For 0 ¢ {a,b,c,d}, a # —b and ab = cd, we have
a+b=c+diff (a,b) = (c,d).
Using items (i)-(vii) we get that (I'(R)\{0},=, 1, —1) is a pre-special group. Then by Theorem

we have that M(I'(R)\ {0}) =2 I'(R) is a pre-special hyperfield, and in particular, (I'(R)

is associative.

O

Definition 5.5.3. With the notations of Proposition we have a functor I' : Igr, — PSMF
defined by the following rules: for R € Igr,, T'(R) is the special hyperfield obtained in Proposition
and for f € Igr, (R, S), I'(f) : T(R) — I'(S) is the unique morphism such that the following
diagram commute

R L T(R)
f r'(f)

S—=T(9)

€s

In other words, for x € R we have

L(f)(z) = (es o fiolr)(x) = es(f1(lr(x))).
psgadj
Theorem 5.5.4. The functor k : PSMF — Igr, is the left adjoint of I' : Igr, — PSMUF. The
unity of the adjoint is the natural transformation ¢ : lpspmr — I o k defined for F € PSMF by

PF = eg(r) © PF-

Proof. We show that for all f € PSMF(F,T(R)) there is an unique f* : Igr, (k(F), R) such that
F(fﬁ) o¢r = f. Note that ¢ = ey(p) o pr is a group isomorphism (because ex(r) and pp are group
isomorphisms).

Let fi: 1g, : Fo — Fy and ff = lgo f o (¢r) " oexp : ki(F) — Ri. For n > 2, define
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by [1i2, k1(F) — Ry, by the rule

hn(p(ar), .- plan)) := lr(f(a1)) * ... x [r(f(an))-

We have that h,, is multilinear and by the Universal Property of tensor products we have an induced
morphism @) ; kn(F) — R, defined on the generators by

hn(p(@1) @ oo ® plan)) = L(F(ar)) * .. % Lr(f(an)).

Now let n € Qn(F'). Suppose without loss of generalities that n = p(a1)®...®p(ay,) with a; € 1—as.
Then f(a1) € 1 — f(ag) which imply lg(f(a1)) € 1 —Ig(f(az2)). Since R, € Igr,,

hn(n) == hn(p(a1) ® ... ® plan)) = lr(f(a1)) = ... x Ir(f(an)) = 0 € Rn.

Then h,, factors through Q,,, and we have an induced morphism h,, : k,(F) — R,,. We set ffl = hy,.
In other words, f,ﬁl is defined on the generators by

Filp(ar)-plan)) = Lr(f(a1)) * ... ¥ IR(f (an)-

Finally, we have

(%) 0 dr = er o (ff) 0 €] © leniry 0 pr] = er o (f) 0 pr
=erollgo fo(pr) " oeym]opr
= fo(¢r)~" o enir) o pr]
= fol(pr) todr ="

For the unicity, let u,v € Igr, (k(F), R) such that I'(u) o ¢p = I'(v) 0 ¢p. Since ¢p is an
isomorphism we have u; = v and since k(F') € Igr, we have u = v. O

As we have already seen in Theorem there natural transformation ¢ : F' — I'(k(F)) is
a group isomorphism. Now let a,c,d € F with a € ¢+ d. Then ¢r(a) € ¢r(c) + ¢r(d), ie, ¢F is
a morphism of hyperfields. In fact, if 0 € {a, ¢, d} there is nothing to prove. Let 0 ¢ {a,c,d}. To
prove that ¢r(a) € ¢p(c)+ ¢r(d) we need to show that pr(a)pr(acd) = pr(c)pr(d). In fact, from
a € c+d we get ac € 1 + ad, and then pp(ac)pr(ad) = 0. Moreover

pr(a)pr(acd) + pp(c)pr(d) = pr(a)pr(acd) + pr(c)pr(d) + pr(ac)pr(ad)
= pr(a)pr(ac) + pr(a)pr(d) + pr(c)pr(d) + pr(ac)pr(ad)
= [pr(a)pr(ac) + pr(ac)pr(ad)] + [pr(a)pr(d) + pr(c)pr(d)]
= pr(d)pr(ac) + pr(d)pr(ac) =0,

proving that ¢r(a) € ¢r(c) + ¢r(d). Unfortunately we do not now if or where ¢p is a strong
morphism. Then we propose the following definition.

kstable-def
Definition 5.5.5 (The k stability). Let F' be a pre-special hyperfield. We say that F is k-stable
if pp : F — T(F(Q)) is a full morphism. Alternatively, F is k-stable if for all a,b,c,d € F, if
ab = cd then

pr(a)ps(b) = pr(c)pr(d) imply ac € 1+ cd.

Proposition 5.5.6. Every PSG G has a k-stable hull G that satisfies the corresponding universal
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property . This is just given by
Gy = hg(l“ o k)"(G).
neN
Thus the inclusion functor PSG ) — PSG has a left adjoint (k) : PSG — PSG .

We emphasize that if G is AP(3) special group, then G is k-stable. In particular, every reduced
special group is k-stable, and if F' is a field of characteristic not 2, then G(F') is also k-stable.

In the next Chapter, it is established the Arason-Pfister Hauptsatz (Theorem for every
special group G, (i.e., G satisfies AP(n) for each n € N.)

Proposition 5.5.7.
i - For each G € SG, I'(sq) : I'(K(G)) — I'(GradW(G))) is a PSG-isomorphism.
it - For each G € RSG, kg : G — I'(K(Q)) is a PSG-isomorphism.
i1t - For each G € RSG, wg : G — I'(GradW(Q))) is a PSG-isomorphism.
Proposition 5.5.8. Let G be a PSG. Are equivalent:
i- GePSGrin.
i - K(G) € Igryy,-
Proposition 5.5.9. Let G be a SG. Are equivalent:
i- G € SGyip.
i - K(G) € Igry,.
i1 - (Grado W)(G) € Igr,.

Proposition 5.5.10. The canonical arrow

el el

can : ligrllC(Gi) — K (hg Gi)

is an Igr,-isomorphism as long as the I-colimits above exists.

Proposition 5.5.11. The canonical arrow

can : K (m Gi) — @K(Gi)

il il
is an Igr, -morphism pointwise surjective, as long as the I-colimits above exists.

Remark 5.5.12. In [27] there is an interesting analysis identifying the boolean hull of a special
group G (or special hyperfield F = G U {0} ) with the boolean hull of the inductive graded rings
ki(F),W.(F) € Igry (see the above Corollary[5.3.13). It could be interesting to compare the space
of orderings of R € Igr, and of I'(R) € PSMF.
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5.6 Igr and Marshall’s Conjecture
igrmarshall
Using the Boolean hull functor, M. Dickmann and F. Miraglia provide an encoding of Marshall’s
signature conjecture ([MC]) for reduced special groups by the condition

(L1)®—: I"(G)/I"HG) = I"THG) /T (@)
to be injective, for each n € N. In fact they introduce the notion of a [SMC] reduced special group:
I(—1)® — : kn(G) = kpt1(G)

is injective, for each n € N. They establish that, [SMC] imply [MC], for every reduced special
group G. Moreover (see 5.1 and 5.4 in [30]):

e The inductive limit of [SMC] groups is [SMC].

e The finite product of [SMC] groups is [SMC].

e G(F) is [SMC], for every Pythagorean field F' (with (char(F') # 2).
Proposition 5.6.1.

i-s:k— GradoW is a “surjective” natural transformation, where for each G € SG and all
n>1, s,(G) : Kp(G) = I'(G)/I"Y(G) is given by the rule

s—1 s
Q) (Z Ug1i) ® .. @ Ugni) + Qn(G)> = ®i201[<1, —01.)]®..B[(1, —gn.)|RITHG).
=0

it-r: Grado W — k is a natural transformation, where for each G € SG and all n > 1,
% ING) [ I"2(G) — kay—1(G) is given by the rule

m(G) (@0 (1, 91,018 B, —gn,m@f”“(c:)) =

Zl 12" (g i) @ . ®@U(gnyi) + Qan—1(G)

201 - FOT all n 2 17 T’n(G> o Sn(G) — l(_1)2n 1*n®7

W - We have an isomorphism of pointed Fo-modules: s : k1(G) =N ING)/IA(G), s : kao(G) =

I*(G)/IP(G).
v- If G is [SMC] Then sq : k(G) — Grado W(G) is an isomorphism.

We finish this chapter considering a general setting for “Marshall’s conjectures”, that includes
the previous case of the Igr’s W, (F'), k«(F') for special hyperfields F'.

Let R € Igry. The ideal, nil(R), in the ring € R,,, formed by all of its nilpotent elements,
neN
determines N(R) a Igr-ideal of R, where (N(R)), := nil(R) N R,, Yn € N. Note that, by

Proposition (nil(R))n = {a € Ry : 3k € N\ {0H(Tkn *kn,n @ = Ogpg1yn) } » V0 € N,



5.6. IGR AND MARSHALL’S CONJECTURE 153

Remark 5.6.2. Let p : N — N be an increasing function and define (N,(R)), = {a € R, :
k€ N(Tpn) *p(n)in @ = Opny4n)} » ¥n € N. Then (Ny(R))n is a subgroup of R, and, since
p(n + k) > p(n), we have (Npy(R))n *ni R C (Np(R))ntk- Summing up, (N,(R))n)nen is an
Igr-ideal.

The following result is straightforward consequence of the Definitions and
Proposition 5.6.3. For each R € Igr, are equivalent:
i - Foralln <m €N, ker(hpm) = {0} € Ry.
it - The canonical morphism R — T(A(R)) is pointwise injective.

i1i - There exists a boolean ring B and a pointwise injective Igr-morphism R — T(B).

Moreover, if R € 1gr;y, these are equivalent to
iv - N(R) 2 T(0) € Igr.

Motivated by item (i), we use the abbreviation MC(R) to say that R satisfies one (and hence all)
of the above conditions.

In the following, we fix a category of L-structures A that is closed under directed inductive
limits and a functor F} : A — Igry be a functor that preserves directed inductive limits. Examples
of such kind of functors are k, : HMF — Igry and W, : HMF — Igry, since such hyperfields can
be conveniently described in the first-order relational language for multirings and it is closed under
directed inductive limits. Related examples are the functors k. : SG — Igry and W, : SG — Igry;
note that SG is a full subcategory of Lgg — Str that is closed under directed inductive limits and
under arbitrary products.

Proposition 5.6.4. If (I,<) is an upward directed poset and " : (I,<) — A is such that:
MC(F(T'(3))), for alli € I, then MC(F*(ligiel I'(7))).

Proof. The hypothesis on F and the fact that the directed inductive limits in Igr, are pointwise,
give us immediately that the mappings h,, : Fn(hgle ;@) — F’nﬂ(ligiE ; 1'(4)) are isomorphic to
flhidinjective maps lim, hé lim, F,(T(i) — lim, F,+1(T'(7)), for each n € N. Therefore it
olds
MC(F.(lmy T(0)))
el
O

Corollary 5.6.5. Let ' C P(I) be a filter and let {M; : i € I} be a family of (non-empty) L-
structures in A. Suppose that A is closed under products and suppose that holds MC(Fy(][;c; M;)),
for each J € F. Then holds MC(Fy(][;c; Mi/F)).

Proof. This follows from the preceding result since, by a well-known model-theoretic result due
to D. Ellerman ([34]), any reduced product of a family of (non-empty) L-structures, {M; : i €
I}, module a filter ' C P(I), is canonically isomorphic to an upward directed inductive limit,

lim | (Ilies Mi) = (Ties Mi)/ F. O

Proposition 5.6.6. Let F, : A — Igry preserves pure embeddings. More precisely, if M, M' € A
and j : M — M' is a pure L-embedding, then Fy(j) : Fx(M) — F.(M') is a pure morphism of Igr’s
(described in the first-order polysorted language for Igr’s).
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Proof. This follows from the well known characterization result:
Fact: Let L' be a first-order language and f : A — B be an L’-homomorphism. Then are
equivalent

e f: A— Bis a pure L'-embedding.

e There exists an elementary L’-embedding ¢ : A — C and a L’-homomorphism h : B — C,
such that e = h o f.

e There exists an ultrapower A’ /U and a L'-homomorphism g : B — A’ /U, such that 51(4[’(]) =

g o f, where (51(4[’[]) : A — A'/U is the diagonal (elementary) L'-embedding.

Since the morphism j : M — M’ is a pure embedding, by the Fact there exists an ultrapower
M?'/U and a L-homomorphism g : M’ — M?' /U, such that (55\41’[]) = goj, where (55\2’(]) : M — MU
is the diagonal (elementary) L-embedding.

Since we have a canonical isomorphism can : h%m Jeu M7 5 M! /U, applying the functor Fj,
we obtain F,(M!/U) = F*(ligJeU M) = lim F*(M7) — ligJeU(F*(M))J =~ (F.(M)!/U.

Keeping track, we obtain that the above morphism t : F,(M?!/U) — (F.(M))! /U establishes a
comparison between F*((Sg\}[’U)) : Fo(M) — F(M'/U) and SZ*Z(JA)/[)) c Fo(M) — F. (M) JU

Fo.(M
5(1}1)5 =to F.(00f ).

Since F*(é(]\/[LU)) = F.(g) o Fx(j), combining the equations we obtain

(5F*(M)) =toFy(g)o F.(j).

Applying again the Fact, we conclude that F.(j) : F.(M) — F.(M’) is a pure morphism of
Igr’s. O

Corollary 5.6.7. For each n € N, the functor F,, : A — pFy — mod preserves pure embeddings.
More precisely, if M,M' € A and j : M — M’ is a pure L-embedding, then F,(j) : F,(M) —
kn(M') is a pure morphism of pointed Fa-modules (described in the first-order single sorted language
adequate). In particular F,(j) : F,(M) — F,(M’) is an injective morphism of pointed Fy-modules.

Corollary 5.6.8. Let M,M' € A and j : M — M’ is a pure L-embedding. If MC(F.(M")), then

Proof. This follows directly from the previous Corollary. Indeed, suppose that holds M C(Fy(M')).
Since h), : F,(M') — Fpp1(M’) and F,(j) : F,,(M) — F,(M') are injective morphisms, then, by a
diagram chase, hy, : F,(M) — F,41(M) is an injective morphism too, thus holds M C(F.(M)).

FnM fin Fn+1M
Fn(]) F'n+1(.7)
Fn(M/) Fn+1(M)
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Chapter 6

Quadratic Extensions of Special
Groups, Hauptsatz and Consequences

In this Chapter we develop the theory of quadratic extensions for hyperfields/superfields,
through the development of results concerning the superrings of polynomials, envisaging some ap-
plications to algebraic theory of quadratic forms and Real Algebraic Geometry. The main results
here are the Arason-Pfister Hauptsatz for all special groups (Theorem and its consequences.

The use of hyperfields/hyperrings/multirings in connection with Real Algebraic Geometry
started 15 years ago, in [47].

The significance of these multivalued methods - as addition of roots to a superfield (Theorem
and Marshall’s quotient of a superring (Theorem [6.1.5)-to (univalent) Commutative Alge-
bra is indicated by applying these results to algebraic theory of quadratic forms: (i) obtaining
new relevant constructions in the category of special groups (or its equivalent category special
hyperfields, as in Theorems (ii) extending to all special hyperfields the validity of the
Arason-Pfister Hauptsatz (Theorem [6.3.2)- a positive answer ([7]) to a question posed by Milnor in
a classical paper of 1970 ([52], [7])- and established by Dickmann-Miraglia to the realm of reduced
special groups (or its equivalent category real reduced hyperfields) in 2000 ([28]); and applied that
to obtain interesting properties of graded rings associated to special hyperfields ([30], [18]).

Throughout this Chapter, all superrings will be considered associative.

6.1 Marshall’s Quotient of Superfields

quotient-section

In the realm of multirings, the notion of the so called ”Marshall’s quotient”, introduced in [47]

and further developed in [24], is a quotient multiring defined for pair (A, S) where A is a multiring
and S C A is a multiplicative subset: given a,b € A,

a =g b iff there are x,y € S such that ax = by.

Now we introduce the following:

Definition 6.1.1. Let A be a superring and S C A. The set S is called Marshall’s coherent if
it is multiplicative (1 € S and S-S C S) and given x,a € A with x € as for some s € S, there are
P,Q C S such that xP = aQ. We say that S is nontrivial Marshall’s coherent if 0 ¢ S.

Let A be a superring with S C A Marshall’s coherent. For a,b € A, define

a ~g b iff there are non-empty subsets X, Y C S with a X = bY.

157
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Fact 6.1.2. If A is a multiring viewed as a superring, then every multiplicative subset S C A is
Marshall’s coherent and the above quotient notion coincides with the original Marshall’s quotient,
i.€. ~g=nrvg.

Lemma 6.1.3.
i- Fora,be A, the following are equivalent:

a) a~b.
b) There exists s,t € S such that as N bt # ().
c) There are s,t,p,q € S with a(st) = b(pq).

11 - The relation ~ is an equivalence relation.
Proof. we only need to deal with the case S nontrivial.

i - The implication ¢) = a) is straightforward. For a) = b), let X, Y C S such that a X = bY.
Then there are s € X and ¢ € Y such that as N bt # (). On the other hand, for b) = ¢), let
x € as N bt. Thus, by Marshall’s coherence, there are M, N, P,Q C S such that M = aP
and zN = bQ. Therefore,
a(PN) = z(MN) = b(QM).

ii - Let a,b,c € A.
e Since a- {1} =a-{1} and 1 € S, we have a ~ a.
e If a ~ b, then aX = bY for some X, Y C 5. So bY =aX and b ~ a.
e Let a~band b~ c. Then aX =bY and bZ = cW for some X,Y, Z, W C S. Hence
a(XZ)=bYZ)=c(WY)
and so a ~ c.

O]

Now, let A/,,S be the set of equivalence classes of ~. We want to prescribe a superring structure

for A/, S.
For a € A, let [a] be the equivalence class of a in A/,,S. Define for [a],[b] € A/nS the
congruence relations:
[c] € [a] + [b] iff there exist ¢/, a’,b' € A with ¢ € ' + b and ¢/ ~ ¢,a’ ~ a,V/ ~b.
[c] € [a][b] iff there exist ¢,a’, b/ € A with ¢ € a’-b and ¢ ~¢,d’ ~ a,V ~b.
[—a] := —][a].
lemsuml
Lemma 6.1.4. Let A be a superring and S C A a Marshall’s coherent subset. Let a,b,c € A.
i - [c] € [a] + [b] iff there is s € S such that cs C aS + bS.
ii - [c] € [a] - [b] iff there is s € S such that cs C abS.

Proof. we only need to deal with the case S nontrivial.
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i- (=): Let ¢,d,b € Asuch that ¢ € a’ + ¥ and ¢ ~ ¢,a’ ~ a,b' ~b. Then
X' =cX,dY' =aY,b'Z' = bZ for some X,Y, Z, X'\ Y',Z' C S
and so
o(XY'Z') = d(X'Y'Z) e d(X'Y'Z)+V(X'Y'Z) = a(X'YZ') + b(X'Y'Z) C aS + bS.

Therefore, for any s € XY'Z' C S, we have cs C aS + bS.
(<): By hypothesis, there is ¢ € csNat + bv for some t,v € S. Therefore there exists a’ € at
and b € bv with ¢ € o/ + /. Lastly, Marshall’s coherence implies that ¢ ~ ¢,a’ ~ a and

b~ b.
ii- (=): Let ¢,d,b/ € Asuch that ¢ €@ -V and ¢ ~¢,d’ ~ a,b ~b. Then
dX' =cX,dY' =aY,b'Z' =bZ for some X,Y,Z, X'\ Y',Z' CS
and so
(XY'Z') = d(X'Y'Z") € d (X'Y'Z)W(X'Y'Z) = a(X'Y Z)b(X'Y'Z) C beS.
Therefore, for any s € XY'Z' C S, we have cs C abS.

O]

marshallquo-teo

Theorem 6.1.5. Let A be a superring and S C A a Marshall’s coherent subset.

i - The structure (A/mS,+,-,—,[0],[1]) is a superring.

ii - The projection map m: A — A/mS is a universal morphism satisfying w(S) = {1}, that is,
given a morphism f: A — B with f(S) = {1}, there is an unique morphism f: A/,,S — B
such that f = fom. In other words, for every morphism f : A — B such that f[S] = {1},
there exist a unique morphism f : A/mS — B such that the following diagram commute:

A—" A/pnS

RN

B

where m: A — A/yS is the canonical projection w(a) = a.

Proof. we only need to deal with the case S nontrivial.
i - Firstly, we prove that A/,,S is a superring.
o (A/nS,+,—,[0]) is a multigroup.
The commutativity of 4 is straightforward. Let a,b,c € A.

— [c] € [a] + [b] = —[a] € —[b] + [c].
Let ¢,a',b' € Awithd € '+ and ¢ ~ c,a’ ~ a,b ~b. Then —a’ € — +b' and
so —[a] € —[b] + [c].
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= la] + [0] = {[a]}-
Let [z] € [a] + [0]. Then there is s € S such that s C aS. So, by Marshall’s

coherence, [z] = [a].
= (la] + [b]) + [d] < [a] + ([b] + [])-

Let [z] € [y] + [¢], with [y] € [a] + [b]. Then there are s,t € S such that zs C

yS + ¢S, yt C aS + bS. Thus

xzst C (aS +bS) 4+ ¢S C aS+ (bS + c5).

It follows by Marshall’s coherence that [z] € [a] + [1], [I] € [b] + [¢]-

o (A/S, - [1]) is a multimonoid.
The commutativity of - is straightforward too. So let a,b,c € A.
= ([al - [0]) - [e] < [a] - ([0] - [¢]).
Let [z] € [y]-[c] with [y] € [a][b]. Then there are s,t € S such that xs C ycS, yt C abs.
Thus
xst C (ab)cS C a(be)S

and by Marshall’s coherence [z] € [a][l], [I] € [b][c].
= la] - [1] = {la]}.

Let [z] € [a] - [1]. Then there is s € S with zs C aS. By Marshall’s coherence

The verification of axioms %, 7v and v of Definition [3.1.1] are straightforward.

ii - It follows immediately from Marshall’s quotient definition that 7: A — A/,,S is a morphism
satisfying 7(S) = {1}. Now let f: A — B be a morphism with f(S) = {1}. Note that if
a ~ b, then as = bt for some s,t € S and so for any = € asNbt we have f(z) € f(as)N f(bt) C
{f(a)} N {f(b)}. Thus f(a) = f(b). Then we can define f: A/,,S — B by f([a]) = f(a).

Since the multioperations are defined by congruence relations, we have that f is a superring
morphism.

O]

As an immediate consequence, note that if S, T are Marshall coherent subsets of A and S C T,
then we have a canonical surjective morphism of superrings:

A/mS — A/ T.
Corollary 6.1.6. Let A be a superring and S C A be a non-trivial Marshall coherent subset of A.
i- If A is full then A/,S is full.
it - If A is a superdomain then A/,S is a superdomain.

iit - If A is a superfield then A/,S is a superfield.

gextl
Theorem 6.1.7. Let A be a superdomain and S C A\ {0} such that1 € S,0¢ S, S-S CS and
A%\ {0} C S. Then S is a Marshall coherent subset of S. Moreover A/,,S is a hyperfield, i.e, for
all [a], [b] € A/mS, [a][b] is a singleton set.
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Proof. Let a € A, s € S and x € as. Suppose without loss of generality that z # 0 (because if
x = 0 then a = 0 because A is a superdomain). Then za C a?s C S and since

z(za) = ax?® with za and z* contained in S,

we have that S is a Marshall coherent subset. Now let [c],[d] € [a].[b] # (). Then cs; C abS and
dsy C abS for some s1,52 € S (see Lemma [6.1.4)).
If c=0or d=0 then 0 € abS which imply a = 0 or b = 0 and [a][b] = {[0]}. Let ¢,d # 0. Then

cds1sy C a’b®S - S C 8.
Using this fact we get
c(cdsysg) = d(628182) with cdsyse and ¢?sqsy contained in S.

Moreover ¢ ~ d, thus [a].[b] is a singleton.

We already know that A/,,S is a superdomain. To show that A/,,S is a superfield, it suffices
to note that for each a € A such that [a] # [0], [1] € [a].[a], or, equivalently, there is s € S such
that 1s C aS.aS, but a®> € S and 1.a®> C (a.1).(a.1). Thus A/,,S is superfield with single-valued
products, i.e., A/,,S is an hyperfield. O

From Theorem we have many examples of Marshall coherent sets for superdomains A (of
course, after removing zero):

e the squares

A% .= U a?;

a€A

e the sum of squares
ZAQ = U a%—l—a%—l—...—i—a%;

at,...,an€A, neEN

e preorderings, that are subsets T C A with T+ T CT,T-T CT and A2CT.

6.2 Special Hyperfields and Quadratic Extensions

quadrapre-keasnen
Theorem 6.2.1. Let F' be a hyperbolic hyperfield such that 1 +1 = {0,1} and 1 = —1. Then
F ={0,1} (the Krasner hyperfield). In particular, F is a DM-hyperfield.

Proof. Just observe that
F=1-1=1+1={0,1}.

O]

Throughout this section we establish the following notation: Let G be a formally real pre-special
group and F' its special multifield associated. In particular, if « € F, a # 0,1, the polynomial
f(X) € F[X], f(X) = X? —  has no roots in F' (basically because o = 1 for all o € F*).

Then, let w € F, such that 0 € f(w) (i.e, 0 € w? — a) and Irr(F,w) = f. Note that this imply
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o = w?. Next, consider the superfield extension F(w) = F(Irr(F,w)) and let

Sr(w) = (F(w))/m(F(w)*\ {0})
S w) = (F(w)/m (D Fw)* \ {0})
We denote w = y/a.
propl
Proposition 6.2.2. Let F be a formally real special hyperfield and Sp(w) as above.
a - Let ai,a9,...,an,b1,b9,....,b, € F'. Then
(a1 + blw)2 + (ag + bow)? + ... + (an, + bow)? C (1 4+ «) + 2[arby + agbs + ... + apby|w,
where 2X = X + X.
b- Y Fw?\{0}=1+a)+F - w.
¢ - Denote (2)F =\{z +z:2 € F}. Then

Fl)?=01+a)+ (2)F -w.

d- F(w)? =3 F(w)* iff 2)F = F.

e-—1¢Y Fw?iff -1¢1+a.

f-wé Fw)?

g - The morphism F — Sp(w) is full and not injective.

h-If-1¢1+aanda,bea+b foralla,be F then Sp(w) is a real reduced hyperfield (and then,
a reduced special group).

Proof.
a - In fact, if n = 2, then

(a1 4 biw)? + (ag + bow)? = a3 4 arbyw + a1biw + b3w? + a3 + asbow + asbow + biw?
=14 [a1b1 + aibi]w + a + 1 + [agbe + agbo]w + «
=[1+a+1+a]+[arbs + aiby + agby + azbs]w
C (14 «a) 4 2[a1by + agbs]w.

Here, we use the fact 1 +a+1+a=(14+a)(1+a)C1+a.

Now, suppose true for n and let a1, a9, ..., ayn, Gni1,b1,02, ..., 00, b1 € F.

(a1 4+ biw)? + (ag + baw)? + ... + (an + bpw)? + (@ng1 + bppiw)?

[(a1 + biw)? + (ag + baw)? + ... + (@n + byw)?] + (@ny1 + bpy1w)?
(14 «) +2[arby + ... + apbp]w + 1 4 2ap41bp11w + @

(14 «) 4+ 2[ar1by + ... + anby + apt1bpt1]w,

as desired.
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b - Using the previous item, we get
1-w?+1+w?=10+a)+2l-1lw=>0+a)+ F-w.
Moreover, (1 +a)+ F-w C Y. Sp(w)? \ {0}, completing the proof.
c- Let a,b € F. Then
(a+bw)? = a® + abw + abw + b*w? = (1 + a) + 2abw.

Then F(w)? C (1+a)+ (2)F -w. Conversely, let t € (1+a)+ (2)F-w. Then t € (1+ a) + 2aw
for some a € F'. Since
(1+a)+2aw = (1+aw)?,

we get t € (1 + aw)? C F(w)?, completing the proof.
d - Just use items (a), (b) and (c).

e-If -1 € F(w)?, then —1 €  + 22w for some 7 € 1 + a and z € F. If 2 = 0 then —1 = 1 + q,
contradiction. If z # 0, then

0el—-1Cl+zrz+22wC1+14+a+2zw.

Then 0 € y + zw for some y € 1 + 1+ «, and then, 0 € ev(g9(X),w), for g(X) = y + 2X,
contradicting the fact that f(X) = X? — a = Irr(F,w).

f - Just use the same argument of item (d).

g - Let t € a+ b for some t € x + 2yw, with y £ 0. Then
—bea—-tCa—x—2yw,
and then,
0eb—-0Cb+a—z—2yw.

Therefore exists some d € b+ a — z such that 0 € d — 2yw, which imply that 0 € ev(g(X),w)
for g(X) =d — zX for some z € 2y with z # 0, contradiction. This morphism is not injective
because if a € 1 + « then [a] = [1] in Sp(w).

h-Ifa,b€a+bforall abec F,then (2)F = F. Hence F(w)? = . F(w)?, which imply Sr(w)
real reduced (1 +1 = {1}).

O]

Remark 6.2.3. [t is not an easy task to find the description of Sp(w) in the language/theory of
special groups. Also, it is not clear if such description provides an advantage in terms of compre-
hension of the following results.

If p = (ai,...,ay) is a form on F', we denote the form [p] on Sp(w) simply by [¢] := ([a1], ..., [an])-
We say that [¢] is the equivalence class of ¢ in Sp(w). Of course, if ¢ = 1D w2 (or ¢ = Y1 RP2)
then [¢] = [p1]®[p2] (or [¢] = [p1]®[p2]). We have the following useful consequences of Proposition

(which we will use freely):
Remark 6.2.4.
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a- If o =1 on F then [¢] = [¢] on Sp(w);
b - if ¢ is isotropic on F then [¢] is isotropic on Sp(w);
¢ - if [p] is anisotropic on Sp(w) then if ¢ is anisotropic on F.
Definition 6.2.5 (Rooted Superfield). A superfield F is rooted if

{a,b} Ca+b forall a,be F\{0}.

teol150

Theorem 6.2.6. Let F be a formally real pre-special hyperfield and w € F \ F be a root of
f(X) = X2 —a € F[X]. Suppose that —1 ¢ 1+ «. Then Sp(w) is a formally real pre-special

hyperfield. Moreover if F is rooted then Sp(w) = St (w), and in particular, Sp(w) is a real
reduced hyperfield.

Proof. We already know (using Theorem and item (e) of Proposition [6.2.2) that Sp(w) is a
formally real pre-special hyperfield. If F' is rooted, then by item (h) of Proposition we have

the desired. 0
exquadl

Example 6.2.7 (Quadratic Field Extensions and Quadratic Hyperfield Extensions). Let F' be a
formally real field and p € F* such that £?> — p has no roots in F. Consider K = F(p). Of
course, we have two special multifields (and special groups) G(K) := K/m(K?)* and Greq(K) =
K/m(>" K?)*. Note that if a+b\/p € K, then

(a+by/p)® = a® +pb® +2aby/p € Dp((L,p)) + Vb - F,
where Dp((1,p)) is the usual set of representatives of the F-quadratic form (1,p):
Dr((L,p) = {a® +y*p: z,y € F}.

In other words,
K2\ {0} C Dp((1,p)) + /b F.

Moreover,

(a+byp)? + (c+ dyp)? = (a* + pb® + 2pab\/p) + (¢* + pd* + 2cd /p)
= (a® + pb* + 2 + pd?) + 2(ab + cd)/p.

Using the fact that Dp((1,p)) - Drp((1,p)) C Dp({1,p)) and for a,b,c,d # 0,
a® +pb® + ¢ + pd® € Dp((1,p,1,p)) = Dr((1,p) ® (1,p)) = Dr((1,p)) - Dr({1,p)),
we conclude by induction (and a case analysis involving 0 € {a, b, c,d}) that
> K*\{0} € Dr((1,p) + VP F.

So, let Qp := D ((1,p)) + /D - F. Then Q, - Qp is a multiplicative set containing S"K2. Define
G p(K) = K/mQp. Then G 5(K) is a reduced special group such that

G(K) - Gred(K) - G\/ﬁ(K) (*)

Moreover,

G\/;B(K) = SK/m(Kz)*(\/i)),
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i.e, the hyperfield of Theorem . We say that K is p-special if G 5(K) = Grea(K).

exquad?2

Example 6.2.8 (The Special Group of a quadratic extension). Let F' be a formally real field and
p € F* such that > — p has no roots in F. Consider K = F(\/p). Using the calculations of
Ezample|6.2.71 we have

K* = Dp(Lp) +{2” + b +2yp ey # F and z = (2 +9)* — (2* + )}
= {a:2 +y62+z\/]5:a:,y # F are not both 0 and z = (x+y)2 - (ﬂU2 +y2)}-

In this sense, for a,b,c,d € K, what means (a,b) =k (c,d) in terms of the isometry relation on
F?

By Lemma 1.5(a) of [28] we have
(a,b) =k (c,d) iff ab = cd and ac € Dk (1,cd).
Lets first understand what means 8 € D (1, «) for o, € K. By definition,
B € Di(1,a) iff =2+ ay? =,y € K.
Write o = a1 + aa\/p, B = p1 + Ba/D, © = x1 + T2y/D and y = y1 + y2/p. Then
B=2+ay® <
B1 + Ban/P = (w1 + 294/D)* + (a1 + aa/D) (Y1 + ¥2/D)* &
Bi + Bor/p = (27 + pa3 + 2m122/D) + (01 + a2y/D) (U7 + Y5 + 20192v/D) ©

B1+ Bay/p = (2} + pr3 + a1yl + aipys + 2pasy1y2) + (22172 + 200192 + oyt + aopy3)V/p

- B1 = 3 + pr3 + ary? + ca1pys + 2pasy1ye
B2 = 2w129 + 2019192 + @2y} + 2pys

Bi+ B2 = (z1+x2)* + (a1 + a2p)(y1 +y2)* + (p — 1) (23 + a19y5 — aay?)
B1— Ba = (z1 — x2)® + (a1 — aop)(y1 — y2)* + (p — 1)(23 + a1v3 + aoy?)

Then

B=z?ta o Bi+ B2 = (z1 +12)% + (a1 + a2p)(y1 + v2)* + (p — 1) (23 + a193 — asy?)
B1— B2 = (z1 — 22)* + (a1 — agp)(y1 — y2)? + (p — 1) (23 + @193 + azy})

CIFERY

For the discriminant part, let a,b,c,d € K with a = a1 + az\/p, b =01+ ba\/p, c = c1 + c2,/p
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and d = dy + da/p for suitable a;,b;,c;,d; € F' (i =1,2). We have
ab=cd & ((11 + ag\/];)(bl + bQ\/];) = (Cl + CQ\/];)(dl + dg\/};)
& (a1b1 + pazbe) + (a1bz + agb1)\/p = (c1d1 + peadz) + (c1dz + cadi)/p

a1b1 + pagbs = c1di + pcada
a1ba + azb1 = c1da + cadq

{ (a1b1 + pagba) + (a1be + azb1) = (c1d1 + peada) + (c1da + c2dy)

i3

i3

arby + pazba) — (a1by + azb1) = (c1dy + peada) — (c1d2 + cady)

i3

( (
(a1 + az) (b1 + b2) + (p — L)agby = (c1 + c2)(d1 + d2) + (p — 1)cad2
( ) +

a; — (I2 b1 —by) + ( — 1)a2b2 = (Cl — CQ)(dl — dg) + (p — 1)02d2

Then

b b — 1Dagby = d d — 1)ead

b od o (a1 + a2)(by + b2) + (p — 1)agby = (c1 + c2)(dy + d2) + (p — 1)cads eqkirg%l
(a1 — ag)(b1 — bg) + (p — 1)@2[)2 = (61 — CQ)(dl — dg) + (p — 1)62d2

Now, since ac = (aic1 + pagcz) + (a1ca + azcr)/p and ad = (ardy + pasds) + (a1c2 + azdy ) /p,

using Equations and (with B = ac and o = ad in Equation , we have the following
characterization:

(a,b) =k (c,d) if and only if there exists x1,x2,y1,y2 € F such that (z1,%2), (y1,y2) # (0,0) and

(a1 + ag)(b1 + bz) ( — 1)&262 = (Cl + 62)(d1 + dz) ( — 1)02d2
(a1 —az)(by —b2) + (p — 1)a2b2 c1 —c2)(dy —da) + (p— 1)cady

(
(a1 +az)(c1 + c2) + (p — Dager = (21 + 22)* + [p(ar + a2)(di + d2) — (p — Vardi](y1 + y2)?
+(p D[a3 + (a1dy + pasda)ys — (aicz + azd1)y7]
(a1 — ag)(c1 — e2) + (p — )agey = (21 — x2)* + [p(ar — a2)(d1 — da) — (p — V)ardi](y1 — y2)?
+(p — 1)[23 + (ardy + pagda)ys + (a1c + azdy)yi]

\

Manipulating Equatz'on we get a very similar system to describe when @ = b in K/mKQ, a,be K.

In the sequel, we want to iterate de construction Sp(w). Let a, 8 € F'\ {—1}. The properties
of Proposition are valid if we change F' by Sp(v/a)(v/B) (or Sp(v/B)(V@)).

sextl

Theorem 6.2.9. Let F be a special hyperfield and o, B € F \ {£1}. Then

Ssp(va)(VB) = Ss. (/3 (V).
Proof. We already know that

F(Va)(v/B) = F(v/B)(Va)

and

F(Va)(v/B) = F+ Fya+ F\/B+ Fyay/B.

Let ¢ : F(y/a)(v/B) = F(v/B)(y/a) be an isomorphism and denote ¢; : F(y/a)(v/B) = Sr(v/a)(v/B)
and ¢ : F(v/B)(va) = Sp(v/B)(/a) the natural projections. For instance, ¢ is given by the rule

q1(ao + a1va + as\/B + agv/ar/B) = ag + a1v/a] + [az + azv/aly/B € Sr(va)(v/B).



6.2. SPECIAL HYPERFIELDS AND QUADRATIC EXTENSIONS 167

Similarly for gs.
Now, let 71 : Sp(v/a)(VB) = Sg,.(ya)(VB) and 72 : Sp(vVB)(Va) = Ss,.(/ (Va) be the quo-

tient morphisms. Since ¢[F(va)(vB)?] = F(vB)(va)? and a[F(v/B)(va)] C (Sr(vB) @)
we have that 73 0 g2 0 ¢ : F(y/a)(v/B) = Sg,.(/5) (V@) is a morphism such that

0 g2 0 p[F(Va)(v/B)] = {1}.

By the universal property there is an unique morphism ¢qg : SSF(\/&)(\/B) — SSF(\/B)(\/E).
Using the same argument, there is an unique morphism g, : Sg,( ﬂ)(\/a) = S5 \/a)(\fﬁ) The
universal property forces ¢, 0 @go = id and g, © Pz = id. O

With Theorem we are able to properly iterate the construction Sp(w). For aq,...,a, € F,
we define recursively:

SF(yat,yaz) = Sse(yan) (Va2);
SE( A fGTT) 7= DSt s/am) (V0 t1)-
cor333
Corollary 6.2.10. Let F' be a special hyperfield, a1, as,...,an € F, and 0 € S,,. Then

SF(JE,...M@) = SF(\/W,..,,\/W)-

It is important to comprehend the distinction between Sp(, /ar..... /an) (vVan+1) and Sk /ay, ..., JanT)’

SF(/at,..., \/@)(,/anﬂ) is an algebraic extension of Sg( /a1,..../ay) from which \/an11 is algebraic.
On the other hand,

SE(arsyariT) = SE(/ar,yam) (Vani1) /m((Se(ar,..van) (Vani1)? \ {0}).

We want to describe the isometry relation =g, (. in Sp(w) in terms of isometry relation =p in
F'. We begin this investigation with some general results.
iso0
Theorem 6.2.11. Let a,b € F. Then [a] = [b] in Sp(w) iff there is s,t € 1 + a with as = bt (or
a = bst).

Proof. (=) Suppose that [a] = [b] in Sp(w). Then there exist X,Y C F(w)?\ {0} with aX = bY.
Let r1 + sjw € X, with r € 1 + a. Then

a(ry + s1w) = ary + asjw € bY,
and there exist ro + sow € Y with
0 # (ar1 + asiw) N (b(r2 + sow)).

But b(rg + sow) = {bra + bsaw}. Then ar; + asjw = brg + bsew, which imply ar; = bre and
as; = bss.
(<) Immediate since 1+ a C F(w)?\ {0}. O
teo32
Theorem 6.2.12. Leta,b € F'. Then [a] = [b] in Sp( jar,..../ay) iff thereis s,t € Dp({(a1, a2, ..., an)))
|I| such that as = bt (or a = bst or even ab € Dp({((a1, a2, ...,an)))).

"Here ({(a1, a2, ..., an)) denotes the Pfister form (1, 1) @ (1, 2) ® ... ® (1, an).
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Proof. Since Sp( ar,..../a) 18 a real reduced hyperfield and in Sp( /ar..... /@) {laals - [anl} = {[1]}
we only need to prove (=).

Let a,b € F. If [a] = [b] in Sp(/ar, /az) = SSF(M)(q/OéQ), then by Theorem (changing F
by Sp(yar)) we have [ab] € [1] + [a2] (in Sp(/ap)). Then there exist s € 1+ a; such that

abs € (1+aq) +az(l+ 1) = Dp((1, a1, a2, a102)) = Dp(({(aq, a2))).

This means abs € Dp({{(a1, a2))).
Now suppose the desired valid for n. By induction hypothesis [a] = [b] in

SE(fat/aim) = S(Sp(/a) (VazaTi)]
iff
[ab] € Dg(yan) (({[az], [az], ..., [an]))).
This imply
ab € DF(<<Q2, a9, ..., an)>) . (1 + 041) g DF(<<041,042, ceny an+1>>).

J
cor33

Corollary 6.2.13. Let F be a special hyperfield and oy, a, ..., an € F\{£1}. Then SFE(J/at,...y/an)
is formally real iff =1 ¢ Dp(({a1, a2, ...;am))).

Proof. Since Sp( /ay,...,/ay) 18 @ real reduced hyperfield, we have Sp( /... /&) formally real iff

1

[1] # [—1], which by Theorem [6.2.12 occurs iff —1 ¢ D({{a, g, ..., an))). O

iso2
Theorem 6.2.14. Let a,b,c,d € F. Then ([a],[b]) =sp(w) ([, [d]) iff {ar,bs) =F (c,dt) for some
r,s,t €14 a.

Proof. (=) Let ([al, [b]) =g, () {[¢], [d]). Then [a][b] = [c][d] and [a][c] € 1+ [c][d]. Hence, there are
v,w€l+aandz €S = F(w)?\ {0} with abv = cdw (or abvw = cd) and acx € S + cdS. Write
T = x1 + zow. We have

avwexiz € v (S + edS) C xS + cdvr S C S + cdS.

Then
avwexy(xy + xow) € (y1 + yow) + cd(21 + zow)

for some y1,21 € 1 + « and yo, 25 € F'. This means
avwe + avwezr row € (Y1 + cdzy) + (y2 + cdza)w,

and then, avwc € y1 + cdz1 and avwczixe € Y2 + cdze. Then avwey, € 1+ cdyiz1 or equivalently,
(avwyr)c € 1+ ¢(dy12z1). Therefore (avwyy)(bz1) = c(dy1z1) with (avwyi)c € 1 4 ¢(dyy21), which
means (avwyi, bz1) = (¢, dy1z1). Putting r = vwy;, s = 21 and t = y;21 we get the desired.

(<) Immediate. O

Then for all a,b,c,d € F are equivalent:

i- ([a], [b]) =) (lc], [d]);

ii- (ar,bs) =p (ct,d) for some r,s,t € 1+ .

2We are doing a convenient use of Corollary [6.2.10
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ili- (ar,bs) =f (c,dt) for some r,s,t € 1 + a.
iv- (a,br) =r (cs,dt) for some r,s,t € 1 + a.

v- (ar,b) =f (cs,dt) for some r,s,t € 1+ a.

6.3 Expanding the Arason-Pfister Hauptsatz and consequences
Hauptsatz-section

As an application of the former developed results, we reserve this section to expand one of the
more emblematic questions/results in algebraic theory of quadratic forms: the so-called Arason
Pfister Hauptsatz (APH).

In the sequel we present a brief historic of APH.

In [52], a 1970 paper of John Milnor seminal to the algebraic theory of quadratic forms over
fields, the author poses two questions concerning the class of fields of characteristic # 2 (positively
solved in the paper in many instances). One of the question was concerning the so called ”Milnor’s
conjectures for the graded cohomology ring and for the graded Witt ring” that Voevodsky et al.
solved around 2000. The other question asked if for every such field F', the intersection [,y 1™ (F)
contains only 0 € W (F'), where I"™(F') is the n-th power of the fundamental ideal I(F") of the Witt
ring of F' (I(F) = {even dimensional anisotropic forms over F'}).

In the subsequent year, J. Arason and A. Pfister solved this question as an immediate corollary
of the nowadays called ” Arason-Pfister Hauptsatz” (APH):

([7)Let ¢ # O be an anisotropic form. If ¢ € I"(F), then dim(¢) > 2™.

The theory of special groups, an abstract (first-order) theory of quadratic forms developed by
Dickmann-Miraglia since the middle of the 1990s, allows a functorial encoding of the algebraic
theory of quadratic forms of fields (with char # 2). In [28], Dickmann-Miraglia, restated the APH
to the setting of special groups and, employing boolean theoretic methods to define and calculate
the Stiefel-Whitney and the Horn-Tarski invariants of a special group, establish a generalization
of the APH to the setting of reduced special groups, in particular proving a different proof of the
APH for formally real pythagorian fields.

Now, as an application of the previous developed constructions of quadratic extensions in the
category of hyperfields, we expand the validity of the Arason-Pfister Hauptsatz for all special
hyperfields.

We start establishing the following:

Notations:

e Let G be a special group and F = GU{0} its special hyperfield associated. In particular, if
a € F, a # 0,1, the polynomial f(X) € F[X], f(X) = X? — « has no roots in F (basically
because o? = 1 for all a € F*).

e Let , 1 be forms on a special hyperfield F'. We say that ¢ and ¢ are Witt equivalent, notation
@ ~w,p ¢ iff there exist non negative integers &, such that k(1,—1) ® ¢ =p I[(1,—1) & 7.
By Witt’s Decomposition, if ¢ is a form on F, there are unique forms @an, @hip, o (up to
isometry) with ¢ = Yun ® @hip ® Yo, Pan anisotropic, p)y, hyperbolic and g totally isotropic.
We define dimyy, r(¢) := dim(pan).

e Let F' be a special hyperfield. For each n € N consider the statement: .
APr(n) For each ¢ = (a1,--- ,ax), a non-empty (k > 1), regular (a; € F') and anisotropic
form, if p € I"(F'), then dim(p) > 2™.
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Remark 6.3.1. Let G be an special group. Recall that (see [28]):
a - A Pfister form of degree n > 1, with coefficients ay,--- ,an € G is ((a1,- -+ ,an)) = Q11 (1, a;).

b - Let 1 be a Pfister form. Then 1 is hyperbolic iff it is isotropic. Moreover, if G is reduced and
—1 € Dg(), then 1 is hyperbolic.

c - I"(G) C W(G) is additively generated by the Pfister forms of degree n.

d- If ¢ € I"(G) \ {0}, then ¢ = e1p1 + ... + €p¢pr, where v > 1 and €; = £1 for all j =1, ..., r.
Moreover, if ¢ is anisotropic, we suppose without loss of generality thate; = 1 for allj =1, ...,7.

haup
Theorem 6.3.2 (Arason-Pfister Hauptsatz). Let F' be a special hyperfield, then it holds APr(n),
for allm > 0. In more details: for each n > 0 and For each ¢ = (a1,--- ,ax), a non-empty (k> 1),

reqular (a; € F) and anisotropic form, if ¢ € I™(F), then dim(p) > 2" ¢ € I"(F), if ¢ # 0 is
anisotropic, then dimy p(yp) > 2".

Proof. An equivalent way to state this result is the following: if a form ¢ belongs to I"F and
dim g < 2" then ¢ must be a hyperbolic form.

Since @ is an anisotropic form such that ¢ € I"F \ {0} and I"F is additively generated by
the Pfister forms, then there exists r > 1 and Pfister forms of degree n, ¢, - ¢, such that
o ==2(p1+ ... + ¢r).

Since ¢ is anisotropic, we can suppose without loss of generality that ¢ = ¢1 + ... + ¢, and
proceed by induction on 7.

If r =1, then ¢ = 1, with dim(p) = dim(y;) = 2".

Let r > 2. If p; is isotropic for all j = 1,...,r then ¢ is isotropic (hyperbolic, in fact): this
fallows from Witt’s cancellation law since ¢ @ k(1, —1) = (21 +m)(1, —1). So we can suppose
without loss of generality that ¢1 = ((a1,...,ay)) is anisotropic.

Suppose —1 ¢ Dp(p1). By Corollary [6.2.13 Let Sr(¢1) := Sr(ar,..../an)- Then equivalence
class of ¢ on Sp(¢1) is

(0] = [o1 + o + @r] = [p1] + oo + o] = 27(1) + [02] + .. + [i24].
We already know that dimw,r () > dimyy,g,.(,,)[¢]. Then we have three cases:
I - [¢] is hyperbolic. Then ([w2] + ... + [©r])an =54 (p1) 2"(—1). Then

dimW,F(SD) > dimW,F(SD2+---+<Pr) > dimW,F(@Q“‘---""@T)an > dimW,F([SD2]+---+[SDT])an = 2",

IT - [¢] is not hyperbolic and [¢3] + ... 4+ [¢r] is anisotropic. Then @9 + ... 4+ ¢, is anisotropic. By
induction hypothesis we have dimw g(p2 + ... + ¢,) > 2". Then

dimw, r(p) > dimw (2 + ... + @) > 27,

IIT - [¢] is not hyperbolic and [p2] + ... + [¢,] is isotropic.

Since [¢] is not hyperbolic, we can assume that [¢3] is anisotropic (otherwise, if [¢;] is isotropic
for all j = 2,...,r then [¢] is an isotropic Pfister form and then, is also hyperbolic). Denote
Fy := Sp(e1). In SE, ([¢2]) (which is a special hyperfield) look at

P = [lpa] + o+ [r]] = 2°(1) + [3] + - + [r] € Sr ([ip2])-
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For 19 € I"(SF, ([p2])) we have

dimw,r () > dimW,SF(@l)[SO] 2 dimW,SFl([%])[wQ]

and the same cases I, IT and III for 1. Suppose without loss of generality that we are in
case III, i.e, that [p3] + ... + [¢,] is isotropic in Sp, ([¢2]). If [p;] is isotropic in Sk ([p2])
for all j > 3, then we are in case I. Now suppose [¢3] anisotropic in Sp ([¢2]) and denote
F5 := Sk ([p2])- In Sk, ([s]) (which is a special hyperfield) look at

¥3 = [lpa] + - + [pr]]l = 2°(1) + [pal-. + [r] € SE, ([3))-

For 45 € I"(Sp,([¢3])) we have

dimy, () > dimyy s, (o) [@] = dimys, (o)) [Y2] = dimp s, (o) [3]-

and the same cases I, IT and III for 3. Repeating this process more r — 3 times, we get at
[¢r] in Sk, ([pr-1]) and

dimy () = dimyy, s, (o) [] = dimy, s, (o) (V2]

= dimyy sy, (oo W3] = - = dimwsy, (g, - [¥r-1]-

Now, if [p,] is isotropic in S, , ([¢r—1]) then [¢,] is hyperbolic in SF, ,([¢r—1]), which by
case L imply dimy g, (o, ) [¥r—1] = 2. If [pr] is anisotropic in Sp,_, ([pr—1]) we are in
case II and also dimW,SFT,Q([w_z])[wr—l] > 2",

Now suppose —1 € Dp(p). Then Sp(p1) = {0,1} (see Theorem [6.2.1]), which imply [¢]
is hyperbolic, enabling us to use the very an adapted version argument in Case (I) above: the
equivalence class of ¢ on Sp(p1) still is given by

[l = [p1+ ... +or] = 1] + . + [00] = 27(1) + [@2] + ... + [ior]-
Then we have [pa] + ... + [¢r] =g,(4,) 2" (1), implying that
dlmWVF(go) > dimW7F(¢2 + ...+ (PT) > dlmWFngQ] + ...+ [(pr]) = 2",

O]

Now, we turn our attention to graded rings associated to abstract quadratic forms theories
(special hyperfields, or equivalently, special groups): we will apply the above established Theorem
APH to obtain information on the inductive graded rings (Definition 3.1 in [27]) of a special group
G: the graded Witt ring of G,

W.(G) = (IG)/I"(G) ST (@) () e,

and on the graded ring of k-theory of G,
ki(G) = (kn(G) " — kn41(G))nen.

The uses of k-theoretic (and Boolean) methods in abstract theories of quadratic forms has been
proved a very successful method, see for instance, these two papers of Dickmann and Miraglia:
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[27] where they give an affirmative answer to Marshall’s Signature Conjecture, and [29], where
they give an affirmative answer to Lam’s Conjecture (previously both conjecture have kept open
for almost three decades). These two central papers makes us take a deeper look at the theory of
special groups (and hence, hyperbolic/pre-special hyperfields) by itself. This is not mere exercise
in abstraction: from Marshall’s and Lam’s Conjecture many questions arise in the abstract and
concrete context of quadratic forms.

We will freely permute between a special group G and a special hyperfield F since the associ-
ations G — Fg := GU{0} and F — Gp := F \ {0} are part of an equivalence of categories ([24],
[17]). The graded Witt ring of a special group is studied in [27] and [28]; [30] is the reference for
the k-theory of special groups; in [I8] is developed a k-theory for all hyperbolic hyperfields (that
includes all pre-special hyperfields).

For the reader’s convenience we recall below some relevant definitions.

defn:ksg-aph
Definition 6.3.3 (The Dickmann-Miraglia k-theory [30]). For each special group G (written mul-
tiplicatively) we associate a (inductive) graded ring

kG = (koG k1 G, ..., knG, ..

as follows: koG := Fy and k1G := G written additively. With this purpose, we fix the canonical
“logarithm” isomorphism X\ : G — k1G, A(ab) = A(a) + A(b). Observe that A(1) is the zero of k1G
and kiG has exponent 2, i.e, AMa) = —A(a) for all a € G. In the sequel, we define k.G by the
quotient of the Fo-graded algebra

(Fa, k1G, k1G ©x, k1G, k1G ©r, k1G O, k1G, ...)
by the (graded) ideal generated by {\(a) ® A(ab), a € Dg(1,b)}. In other words, for each n > 2,
knG = T"(k1G)/Q™(G),
where
T"(k,G) := k1G ®r, k1G @, ... OF, k1G

and Q" (G) is the subgroup generated by all expressions of type Ma1) @ AM(az) ® ... ® A(ay,) such that
for some i with 1 < i < n, there exist b € G such that a; € Dg(1,b) and a; = aj+1b, which in
symbols, means

Q"(G) == ({Ma1) @ AM(a2) ® ... @ AM(ay,) : exists 1 <i<n and be G
such that a; = aj+1b and a; € Dg(1,b)}).
2.4kt-aph
Definition 6.3.4 ([27], [30]). Let G be a formally real special group.

a - It holds [MC(G)] (i.e., G satisfies "Marshall’s conjecture”) if for all n > 1 and all forms ¢
over G,
For allo € Xq, if o(p) = 0mod 2" then ¢ € I"G.

b - It holds [WMC(G)] (i.e., G satisfies ”Weak Marshall’s conjecture”) if for all n > 1, the multi-
plication by (1,1) is an injection of I"(G)/I"1(G) into I"TH(G)/I"2(G).

¢ - It holds [SMC(G)] (i.e., G satisfies ”Strong Marshall’s conjecture”) if for all n > 1, the multi-
plication by X\(—1) is an injection of k,(G) into kn+1(G).
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It follows from Proposition 4.6.(e) in [27] that [MC(G)] = [WMC(G)]; in Proposition 4.4 in
[29] is established [SMC(G)] = [MC(G)], for all reduced special group G. Now we apply Theorem
APH to obtain the following;:

MC-aph
Proposition 6.3.5. Let G be a formally real special group. Then G satisfy Marshall [MC] (i.e.,
Marshall’s signature congecture holds in G) iff G satisfy [WMC] (i.e., Weak Marshall’s conjecture
holds in G).

Proof. In the theorem 5.3 of [27] is established the equivalence of [MC| and [WMC] for all formally

real special groups G such that 2% = (1,1)* ¢ I*+1(Q)for all k > 1. But, it follows from Theorem

APH that all formally real special groups automatically satisfies that property: otherwise (1, 1>k

will be hyperbolic and thus —1 € Sat(G) = ey Da(2F), contradicting that G is a formally real

special group. ]
igri-aph

Definition 6.3.6. An inductive graded ring (or Igr for short) is a structure R = ((Rpn)n>0, (An)n>0, *nm)

where

i - Ry 2 TF,.

1 - Ry is a group of exponent 2 with a distinguished element T,,.
i1l - hyp @ Ry — Rp41 is a group homomorphism such that hp(Typ) = Tpy1.
i - Forallm >0, hy = *1,(T1, ).

v - The ring

R:@Rn

n>0

1s a commutative graded Ting.

vi - For 0 < s <t define
. {IdRs ifs=t

® ht,IO...Ohs+1Oh5 ?;f8<t.

Then if p > mn and ¢ > m, for all x € R, and y € R,

hE () * hi, (y) = Ay (2 x ).

n—+m
A morphism between Igr’s R and R’ is a morphism of pointed groups and

f=Pf:R->F

n>0

is a morphism of commutative rings with unity (thus apq1 0 hy = hj, 4 o ay). The category of
inductive graded rings (in first version) and their morphisms will be denoted by IGR.

In [18] are considered some full subcategories of IGR and [21] deals with limits and colimits
of IGR and these subcategories. A particularly useful subcategories is IG Ry, the full subcategory
of Igr’s R where for each a € Ry, T1 %11 a = a*11 a € Ry. Proposition 4.18 and Definition 4.19
therein describes a functor I' : IGR;, — pSG (the category of pre-special groups, that is equivalent
to the category of pre-special hyperfields).
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Now, let R € IGRy. We have a pre-special group I'(R) = (G(R), +, —.-,0, 1) by the following:
firstly, fix an isomorphism eg : (R1,+1,01, T1) = (G(R),+,1,—1). This isomorphism makes, for
example, an element a *11 (T1 +b) € Ra, a,b € Ry take the form (' (z)) *11 (e ((=1) - y)) € Ro,
z,y € G(R).

Now, let I'(R) := G(R) and for a,b,c,d € R; we have (er(a),er(b)) = (er(c),er(d)) iff
at+b=c+de Ry and ax*x11b=c*11d € Ry

If « = (an)nen : R = R’ is a IGR-morphism, then I'(«) : G(R) — G(R’) is the unique function
(that turns out to be a pSG-morphism) such that I'(a) = err 0 g 0 ejp' .

For each G € pSG, the Igr's W, (G) and k.(G) belongs to the subcategory IGR), (Lemma 3.2
n [27], [30] and Lemma 9.12 in [28]) is defined a IGR-morphism sg : ki« (G) — W, (G) such that:
(sc)n(Aa1) ® -+ @ AMay)) = (1,—a1) ® --- @ (1, —ap) (Theorem 4.1 in [29]). In general (sg)n
kn(G) — I™(G)/I"TY(G) is a surjective homomorphism of pointed 2-groups and if n = 0, 1,2, then
(sg)n is an isomorphism of pointed 2-groups.

Theorem 4.20 in [I8] establishes that the functor k, : pSG — IG R, is left adjoint to the functor
I' and the natural transformation that is the unity of this adjunction, £ = (k@)agepsa, is such that
for each G € pSG, kg : G — I'(k«(G)), g — A(g) is a pSG-morphism that is an isomorphism of
the underlying pointed 2-groups.

In [46] M. Marshall proved that wg : G — I(G)/I*(G) g — (1, —g) + I*(G) is an isomorphism
of pointed groups such that for each a,b,c,d € G:

(a,b) =g (¢, d) = (1, —a) @ (1, =b) + I*(G) = (1, —¢) @ (1, —d) + I3}(G).

Thus, for each special group G, we have the following commutative diagram of pre-special
groups and pSG-morphisms

FEE)

(G = T(Wu(G))) = (G T(k(Q)) I'(W.(G)))

that is, moreover, natural in G. Now we are in position to state the:
k-stable-aph

Proposition 6.3.7. Let G be a special group. Then
i- I'(sq) : T'(k«(G)) = T(Wi(G))) is a pSG-isomorphism.
il - wg : G = T(WL(G)) is a pSG-isomorphism.

iii - kg 1 G = T'(k«(Q)) is a pSG-isomorphism.

In particular, T'(k«(G)) and T'(W.(Q)) are special groups.

Proof. This is essentially contained in the proof of Lemma 3.5 in [30], but for convince the reader
we provide some details:

First observe that, from axiom [SG4] is enough to show that for =,y € G are equivalent:
(1) z € Da(l,y);
(2) A(x) € Dr o) (ML), AW));
(3) (1,—2) + (@) € Dy (L —1) + P(G), (1, —g) + X(G)
) = (2): is clear from the definition of k.(G), just note that condition (2) is equivalent to
(zy) = 0 € k2(G)
2) = (3): this follows directly from sq : k«(G) = Wi(G) be a IGRj-morphism

(3) = (1): note that condition (3) is equivalent to (1, —z) ® (1, —zy) + I3(Q)) = 0+ I3(Q)).
This means that (1, —z) ® (1, —zy) € I*(G). Since dim((1, —z) ® (1, —xy)) = 4 < 8 = 23, then by
Theorem APH, (1,—x) ® (1, —zy) is an isotropic Pfister form. Thus it is an hyperbolic form, and
then, by Proposition 2.2.(k) in [28], x € Dg(1,y). O

1,—
1
Alx)A

{
(
)
(
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The notion of k-stable hyperbolic hyperfield F', i.e. those such that canonical morphism kg :
F — T'(k«(F))U{0} is an isomorphism of hyperfields, it is fundamental in [I4]. Thus the previous

result establishes the:
k-stable-co

Corollary 6.3.8. Every special hyperfield F is k-stable.

The following result shows that the k-theory construction provides a very good encoding of the —
neither complete neither cocomplete — category of special groups into the complete and cocomplete
category of inductive graded rings.

epiK-aph
Proposition 6.3.9. The functor ky : SG — IGR is full and faithful.

Proof. We have to show that for each special groups Gy and Gy and any S : k.Gg — k.G1 be an
inductive graded ring morphism between the associated inductive graded rings of k-theory, then
there exist unique SG-morphism f : Gy — G; such that 5 = k.(f).

Proposition 3.6 in [30] establishes (from Lemma 3.5) that: for each special groups Go and G
and any f : k«(Gp) — k«(G1) be a graded ring morphism between the induced k-theory graded
rings, such that gy = idp, and G; is a AP(3) special group, then there exist a qSG-morphism
f: G — H such that 8 = k.(f). Moreover, this f is uniquely determined since 1 o Ag, = Ag, o f
and A\g, : G; — k1(G}) is an isomorphism of groups of exponent 2 that preserves the distinguished
elements (—1¢g, — Mg, (—1a,))-

Thus the result follows since any special group G satisfies is AP(3) (by Theorem APH), and
since f is a IGR-morphism then automatically Sy = idp, and 1 = ki (f) implies that f(—1¢g,) =
—1¢,, thus f the gSG-morphism f is a SG-morphism. O

Remark 6.3.10. The previous result can be derived, alternatively from Corollary[6.3.8 and Theo-
rem 4.20 in [18]: from an well known result on adjoint functors, a left adjoint is a full and faithful
functor iff the unity of the adjunction is an isomorphism. Thus k. : SG — IGRy, is a full and
faithful functor and, since IGRy, C IGR is a full subcategory, then k. : SG — IGR is full and
faithful.
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Chapter 7

The Galois group of a Special Group

The Igr’s functors W, k. were extended by M. Dickmann and F.Miraglia from the category of
fields of characteristic # 2 to the category of special groups (equivalently, the category of special
hyperfields). Another relevant Igr functor, the graded cohomology ring, H*(Gal(F*|F),{£1})
remains defined only on the field setting. This chapter constitutes an attempt to provide an Igr
functor associated to a (Galois) cohomology theory for special groups, based on the work of J.
Minac and M. Spira [53]. We will define - by ”generator and relations”, Gal(G), the Galois Group
of an SG G (Definition , and provide some properties of this construction, as the encoding
of the orderings on G. However, since deeper results will depend of a description of Gal(G) ”from
below”, and it still unavailable a complete theory of algebraic extension of (super)hyperfields, we
will not pursue a more complete development of this cohomology theory in this thesis, reserving
it for a future research. The main results here, established for the “standard pre-special groups”,
are Theorems [7.3.12] [7.3.13] and [7.3.15] that recover for the abstract context the characterization
of orderings in terms of the involutions in the Galois group of a field. These results provide a clue
that this profinite group Gal(G), defined by generators and relations, is not -at this moment- a
legitimate Galois group (since a characterization of it from quadratic subextensions is still missing),
but it works in some aspects as a Galois group of a field in the sense that it can encode faithfully
some relevant information on the structure of G.

We will work in the category of pro-2-groups, and take, as usual, the conventions: ”subgroup”
means "closed subgroup”; ”subgroup generated by a subset” means ”the closure of the abstract
group generated by the subset”; "morphism” means ”continuous homomorphism”.

7.1 The motivation: W-groups

The context that we will keep in mind is essentially that of the results developed in sections 1
and 2 of [53]. In this Section we will reproduce (and expand the details of) part of these results.

Consider a field F. In [53], J. Minac and M. Spira define a special Galois extension of the
base field F', and determine its structure and its Galois group through the behavior of quaternions
algebras over F. As they developed in [53], this extension contain essentially all the information
need to understand the behavior of quadratic forms over F'.

Recall that the quadratic closure of F', denoted by Fy, is the smallest extension of F' which is
closed under taking of square roots (or more explicit, the compositum of all 2-towers over F' inside
a fixed algebraic closure of F'). The group Galp(Fy) will be denoted by G%..

Let {a; : i € I} be a basis of F / F? (as Minac and Spira did in their paper, we will assume
that 1,2,..,n € I with 1 < 2 < ... < n in order to easy our presentation). We define F@ =

177
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F(ya:a € F) (note that F® = F(\/a; i € I), £ = {y € F® . FA(/y)|F is Galois} and
FG) = F(Q)(\/gj y € £) if F; if F is quadratically closed we set F(?) = FG) = F.

Minac and Spira built a strong connection between F®) and the Witt ring of F. They named
F®) as Witt closure of F. The group G := Galp(F?|F) is called the W-group of F. Our
goal here is to describe a way to factor Gr as Gp = W(I)/V(I), with W(I) and V(I) interesting
profinite groups. This procedure will reveal how to generalize G in the context of abstract theories
of quadratic forms, and in particular, describe what would be a Galois group associated to a special
group. The first step is to describe W(I).

For an arbitrary group G, define G = G* [G?,G], i.e, the (closed) subgroup generated by fourth
powers and by commutators of the form [¢2, h] for g,h € G. Let t*[¢g% h] € G. Then, for each
z € G:

[P b))z = 2 P bz = (2 (2 g e

with 27142 = (27 M2)* € G* and 27 '[¢?, h]z € [G?, G], because

Hence G is a normal subgroup of G, and we define G = G/ G. Let C denote the class of profinite
2-groups G such that G = {1}.

The main example (and the motivation to consider this full subcategory of pro-2-groups) is the
following fact: If char(F) # 2 then G = Gal(F®)|F) satisfies this condition G = {1}, since, by
Proposition 2.1 in [53], G = G,/G*.[G,?,G,], where G, = Gal(F,|F) and F is a quadratic closure
of F' .

A pro-C-group will be called just C-group, and C-group on [ if it has a minimal set of generators
of cardinality ||.

Let I be a well-ordered set. The next step is to describe a canonical way to represent the
elements of S where S is the free pro-2-group on a nonempty set I. Let

W(I) =] 22 x [] Z2 x [[ 2/22.
i€l ijel i€l
1<j
Here we are considering Zo multiplicatively, i.e, Zo = {1,—1}. A typical element of W; will be
written as (tq")(t%j)(m‘zi), where o, ;5,7 € {0,1} and t; = t;; = x; = —1 for all 4,5 € I.

(2

Let g,h € W(I)

g = (t2)(t) (2]

h= (5 (1) @],

ij )\ i
We define Bii4Bl+
bl bty Pt Bl el

where the exponents are taken modulo 2.

Lemma 7.1.1. With the notation described above, W(I) is a group.
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Proof. Let
g = ()00 (@)
b= () @)
k= ()t @)
1= (19)(t2)(2?)

First of all,

i+047;-0y (B +0+0-7; i+0
g-1=(t] ! )(tijj %)(mz ) =9,

04-a;4-0-; 0+Bi+7:-0 0+
Log=("" Py)(tij a )z; ") =g,

1

hence 1 is in fact the neutral element of W(I). In order to find g~, we need to solve a system of

modulo 2 congruences.

ctal =0 (=
gh=1= 0 8ij + B + 77 =20 = Bj; =2 Bij + 77
Vi + 7 =50 o =g i+

Then, taking
- i+i (4B TVivs i
gt =TT ()

(2 7

1 1

we obtain g-g~" =g " -g=1.

Finally, for associativity, we have

it iy PP o i)
(g-h)-k=[t"" 1)(tz‘j N e )] -k
ta,ﬂ%+ay+%yﬂxw+ﬁpyg tﬁq+ﬂ%+ﬂ%+ﬁkm+ﬁ!hﬁ+ﬁ) Yoty
B e AN R tﬁﬁ+ﬂg+ﬁg+vhg+%“ﬁ+wﬁﬁ Yty

and
oA+ BBV A
g (h-k) =g [(t G €
e o+ Y (VA )y Bt Bl B YA (Y i

aiFad ol Ayl vy ) t/Bij +B7 B+ ViV i v ) (x'wr'y; +v£’)
i ij i :

= (t
= (t
Thus (¢-h) -k =g-(h-k) completing the proof. O
Remark 7.1.2. 1. Note that, if |I| = n, then
W(I)| = HZ2 % H Zao X HZQ _ o(n?+3n)/2.

i€l ijel il
1<j

2. The example above is the free C in n-generators. In fact: for each n € N, let F'(n) be the free
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group in n-generators, then W(n) = F(n)/F(n).

3. It follows that the category of finite (discrete) groups G with G = {1} is a category of Zo-
modules that is closed by homomorphic images, subgroups and finite products. In particular,
Lo =1)27,74 = ZJAZ and Dy = Zo X Zy (the 8-element dihedral group), are finite C-groups.

Lets denote, for k,l € I,

t = (1)) (155)(15)
i 2= (1) (£ ) (1)
oy = (15)(Lig) (z]*)

where for all 4, j,k,l € I, ;z = 1 if ¢ = k and &;x = 0 otherwise; and d;;ry = 1if ¢ =k and j =1,
and d(;;) (k1) = 0 otherwise. After some straightforward calculations we obtain the following results.
fixms1
Lemma 7.1.3. Consider ty,ty, xp as above. Then for all g,h € W(I), with g = (tf‘l)(tg”)(x;”),
b (P (o o
h = (t?l)(tij])(xz ) and z = (t; )(tij”

1 -t -ty =1.

)(x;-/’{/), we have the following:

W- X T = tg.

iii - If k <1 then [zk, x| = ti.

; — i+Yiy (4Bii TVivs i
w- gt = (] o )(tijj 77])(1'3 )-

v- g% = ()57 (L)

' Y iy /
?Z)<tf;] ’YZV]—FV’L’YJ)(.%ZZ).

vi - h9 = ghg™' = (t

.. Yiv§ i

vii - [g,h] = (li)(ti]’ ! J)(lj)-
viii - gt = [g%, h] = 1.

iz - [[z,w],h] = 1.
Remark 7.1.4. In [55)], they simply denote

205 i i
9= (@7 ([wi, 25)%9) ().

But we are not going to use this simplification here.

Now, for each i, 5 € I, consider the following three sets:
M; = {g = (t2)(t07) (@))€ W) s = o},
Sii={g = ()W) @]) € W(I) s i =7 = 0},
Dij = {9 = (t?i)(tffj)(ﬂfzi) EWW): fij=ri== 0}-
Now, consider the following families

M) ={M;:iel}, S(I)={Si:iel}, DU):={D;j:4,j€1,i<j},
V:=M(I)US(I)uD(I).
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fixms?2

Proposition 7.1.5. Leti,j € 1.

a - M; is a mazimal normal subgroup of W(I) such that W(I)/M; = Zs.

b - S; is a normal subgroup of W(I) such that S; C M; and W(I)/S; = Zy.

¢ - Djj; is a normal subgroup of W(I) such that Dij € M; N M; and W(I)/D;; = Dy.
d- NV =A{1}.

Proof. We establish the following notation: let g € W(I). Then g = (tf‘l)(tf;”)(:ﬁ’) for suitable
a;, Bij,vi € {0,1}. We denote

a;(9) == o, Bij(g) := Bi; and vi(g) == V.
In this sense, if g, h € W(I) then

(£ (9)+ai(h)+7i(9)vi(h) ) (tﬁ?j (9)+Biz (R)+~i(h)v; (9) ) (xyi(9)+%- (h) ).

gh = i %

Moreover, using the formulas in Lemma we obtain that for all ¢,5 € I, M;, S; and D;;
are proper normal subgroups of W(I).

a- Let 7,0 € W(I) \ M;. Then ~;(17) =~;(#) =1 and
(07 7) = 7i(0) + (1) = 0.
Therefore ~'7 € M; which imply
W) /M; = {1,7} = Zs.
b - Note that S; C M;. Now, let 7,60 € M; \ S;. Then a;(7) = ;(6) = 1 and
@i (0717) = [i(8) +7i(8)] + ci(r) +7i(0)yi(r) = 0.
Hence 8~ '7 € S;, and M; /Si = Zy. So we have an exact sequence
1— M;/S; S W)/S; = WI)/M; — 1,
where ¢ and 7 are respectively the canonical inclusion and canonical projection. Moreover
W(I)/S; = M;/S; x W(I)/M; or W(I)/S; =ZW(I)/M; x M;/S;.

In both cases,

Now let 0 € M\ M;. We have o* =1 € S; with

Then &2 # 1 in W(I)/S;, which proves that W(I)/S; has an element of order 4. Then

W(I)/S; = Zs.



182 CHAPTER 7. THE GALOIS GROUP OF A SPECIAL GROUP

¢ - Remember that
Dy := (r,s: 7t = 5% = (s7)? = 1).

Using the same argument of item (b), we get (M; N M;)/D;j = Zo and W(I)/(M; N M;)| =4
with
IW(I)/Dij| = |(M; 0 Mj)/Dij x W(I)/(M; 0 Mj)| = 8.

More specifically, if we get 71 € (M; N M;) \ Dij, 12,62 € M; \ Mj, 13,05 € M; \ M; and
4,04 € W(I) \ (Mz U Mj), with

Bij(12) = Bij(3) = Bij(14) = 1
Bij(02) = 0;(03) = 0;5(14) =0

then the following equations hold in W(I)/D;;

=1

—1 —1 1 _
T, Oy=73 O03=1, O=T1
Then
W(I)/D;j = {1,717, 72,73, Ta, 7172, T173, 174},

with the following table of multiplication:

. | T2 |73 | T4 | Ti1T2 | T17T3 | T1T4
T |1 |7 | T | T | T2 | T3 | T4
™ | mn|l |mm |7 T |7 | Tt
T3 | T3 |Ta |1 | T |TiTa | T1 | T2
Ti | TiTa | TiT3 | T2 |71 |73 | T2 |1
TiT2 |72 |71 | Ta | 7T |1 TI74 | T3
TiT3 |73 | Tima |71 |72 | T |1 TIT2
TiTa |7 |73 |mm |l AT |7

Then denoting r = 74 and s = 75 we get 74 = 52 = (sr)?2 = 1 and

T=s=7r4
=17
57
= sr,
?4:7"7
ﬁ:’r. 87

witnessing the desired isomorphism.

d - By the very definition

mV = {g = (t?l)(tf]”)@;“) eWWU):pij=a;=v =7 =0foralli,je I} = {1}.
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O

Let V' as in Proposition and let Pf;, (V) be the set of finite subsets of V' and for A €
Ptin,(V'), denote
Xa=Wr/[A
Note that Pg;, (V) is a directed poset with the partial ordering induced by inclusion. If B C A,
denote by map : X4 — Xp the canonical projection. Then (Xa,7aB, Ptin(V)) is a projective
system, in the sense that mq4 = idx, and, if E C B C A, then map = g o maB.
fixms3
Proposition 7.1.6. The canonical “diagonal” function

W(I) — Wm X, which is given by the rule g — (Q/XA)Aeme(V)
A€Psin (V)

is an abstract group isomorphism, so, by transport, W(I) is a (topological) profinite 2-group with
Ptin (V) as fundamental system of clopen neighborhoods of {1}.

Proof. Let X = HAeme(V) Xy and 74 : X — X 4 be the canonical projection. Denote A : W(I) —
X the morphism given by the rule A(g) := (Q/XA>Aeme(V)' This morphism A is injective since

Ker(A)= (] ={1}

AEPfin (V)

Now, let g = (g/XA)Aeme(V) € Im(A). If BC A, we get

95 =9/Xp = (9/Xa)/XB = (7aB(9))/X5-

Moreover Im(A) C @1 APy (V) X 4. To prove the surjectivity of A, consider the morphism

ma : W(I) — X4 given by the canonical projection. Then (W(I),74) is a compatible sys-
tem of surjective morphisms where A is the exact morphism induced by (W(I),74). Then
Im(A) is a dense subset of @AEPJ«- W) X4 (for instance, see Lemma 1.1.7 of [56]) which is also

closed. If @4 : 1&1 AP (V) X4 — X4 denote the projection, we have a new projective system
(goA(Im(A),WAB\W(Im(A)). Then (using Corollary 1.1.8 of [56]) we get

Im(A) = Jim vA(Im(A) =Im(A) = m Xy

A€Ppin (V) AEP;i (V)
Moreover
{Ker(ma) : W(I) = Xa}acp,,(v) = Prin(V)
is a fundamental system of neighborhoods of {1}. O

Lets invoke some terminology from the theory of profinite groups:

Definition 7.1.7. Let G be a profinite group.

i - We say that X generates G as a profinite group if G = (G). In that case, we call X a
set of topological generators of G.

11 - We say that X C G converges to 1 if every open subgroup U of G contains all but a finite
number of the elements in X.
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iit - Let G be a profinite group. The Frattini subgroup of G, notation ®(G), is the intersection
of all its maximal open subgroups.

Fact 7.1.8. Let G be a profinite group.
i - G is compact, Hausdorff and totally disconnected (has a topological basis of clopens).
it - A subgroup U is open if and only if is closed of finite index (Lemma 2.1.2 of [56]).

1t - A closed subgroup H of a profinite group G is the intersection of all open subgroups of G
containing H. If H is normal, then H is the intersection of all open normal subgroups of G
containing H (Proposition 2.1.4 of [56]).

w - A maximal closed subgroup is necessarily open.

v - ®(G) is a characteristic subgroup of G: for every automorphism ¢ : G — G of G we have
Y[(G)] = 2(G).

vi - If h: H— G is a continuous homomorphism of pro-2-groups then h|®(H)] C ®[G].
rz2.8.7
Lemma 7.1.9 (Lemma 2.8.7 of [56]). Let p be a prime number and let G be a pro-p group.

a - Every mazimal closed subgroup M of G has index p.

b - The Frattini quotient G/®(G) is a p-elementary abelian profinite group and hence a vector
space of the field F), with p elements.

c - ®(GQ) = GP|G,G], where GP = {a2P : x € G} and [G, G| denotes the commutator subgroup of G.

lifting-le
Lemma 7.1.10. Let G;, i = 0,1 be projectives profinite groups and V; C G; be normal closed
subgroups such that V; C ®(G;). If f : Go/Vo — Gi/V1 is an epimorphism (respectively an
isomorphism) then there is some continuous homomorphism f :Go — G1 such that gy o f = foqo
where the q; are the projections on quotient; besides any such lifting f is an epimorphism (resp.
an isomorphism,).

f

g04>g1

Go/Vo —F Gi1/V1
In [53] is established the main categorical property of W(I):

fixms4
Theorem 7.1.11 (Universal Property of W(I), Theorem 1.1 of [53]). The group W(I) is the C-
free group on I-generators. In other words, I C W(I) is a generator set converging to 1 and if
f I — G is any function to a C-group G such that f[I] C G converges to 1 then there is an
(unique) continuous homomorphism f: W(I) — G such that f|1 = f. Moreover, if H is any
C-group then H has a generator set converging to 1 of cardinality |I| if and only if there is an
epimorphism W(I) — H with kernel V' contained in ®(I), the Frattini subgroup of W(I).
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Corollary 7.1.12. Let X = {z; : i € I} C W(I). Then X is a set of generators of W(I)
converging to 1.

fixmsb
Proposition 7.1.13. We have ®(I) = W2, and ®(I) has {z;,t;; : i < j € I} as a minimal set of
generators converging to 1. Moreover

O(I) = Wi = M(I)
= {g = (tf‘l)(tfj”)(xzz) eEW():v =0 forallie I}
= {g € W(I) : there exists g1, g2, 93 € W(I) such that g = gigags}.
We have some kind of duality theorems for ®(7) and W(I).

fixms6

Proposition 7.1.14. Consider the Zy-module of homogeneous quadratic polynomials in I variables
{Zi}z‘el
PQ(I) = {q S ZQ[I] g = Zaizf + Z bijzizj} = @ZQ D @ Zo.
il i<jel icl i<jel
Then we have a topological group isomorphism
O(I) = Hom(Py(I), Zo) = [ [ Za x ] Zo,
icl i<jel
with the associated “perfect pairing”

(L) () x Py(I) — Zo.

Proof. First of all, note that P(I) is generated (as Zg-vector space) by the set of monomials
B = {22, zizjticjer- In fact, this is a Zo-basis of P>(I). Let B* be the dual basis

B* == {pij}i<jer
where @;; : Py(I) — Zg is given by

lifi=kandj=1I

0 otherwise

%’j(zkzl) = {

Now we define a function X : {t;,t;; : i < j € I} — B* by the rules t; — ¢; and t;; — 4.
Since {t;,t;; : i < j € I} is a set of generators of ®(I), this function A induces a continuous group
homomorphism A : ®(I) — Hom(P(I),Zs) by the following: let g = (t?l)(t'f]”)(lz) € (1) (see
Proposition [7.1.13)). Define A(g) : Py(I) — Zy for q = Sier @izt + >icjer bijziz; € Po(I) by
Ag)(g) == Zaiai + Z bijBi-
i€l i<jel
We immediately have that ) is a continuous injective group homomorphism. Since A is bijective
and B* is a Zg-basis of Hom(P,(I),Zz), we have that A is an isomorphism. O

fixms7

Proposition 7.1.15. Consider the Zy-module of homogeneous linear polynomials in I variables
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{zitier
P(I)={q€Zl]:q= Zcm} = @Zz-
iel iel
Then we have a topological group isomorphism
W(I)/®(I) = Hom(Pi(I), Zy) = [ | Z2,
i€l
with the associated “perfect pairing”

() W(I)/B(I) x Py(I) — Zo.

Proof. First of all, note that P;(I) is generated (as Zg-vector space) by the set of monomials
B = {z;}ics. In fact, this is a Zs-basis of P;(I). Let B* be the dual basis

B* := {pitier,

where ; : P1(I) — Z2 is given by

liti=j
%(ZJ)Z{

0 otherwise

Now we define 6 : W(I) — Hom(P;([),Zs2) by the following: for g = (tf‘l)(tg”)(x;*’) e W(I), let
0(g) : Pi(I) — Zy be the morphism defined by the rule

For g = Zcizi € Pi(1), 0(g)(q) = Zci%’-

il i€l

Then 6 is a surjective morphism (because B* C Im(¢)) and by Proposition [7.1.13| Ker(6) = ®(I).
Hence

W) /®(I) =W(I)/Ker(0) = Hom(Pi (1), Zs).
0

Now, is time to return to our first goal: present the description of Gp := Galp(F®) by
Gr2=WU)/VI).

Proposition 7.1.16 (2.1 in [53]). Gp = F%.

Then G is a C-group on B, where B = {a; : i € I} is an well-ordered basis of F'/F2, so,
using Theorem there exists an epimorphism 7 : W(B) — Gp. Then we simply take
V(B) := Ker(mp).

Moreover, J. Minac and M. Spira (again, in [53]) gave a nice explicit description to V(B). Let
Quat(F') be the subgroup of Br(F'), the Brauer group of F, generated by the quaternion algebras
of F. By Merkurjev’s Theorem ([59]), we have

Quat(F) = BI‘Q(F) = k’g(F),

where Bra(F) is the subgroup of Br(F') generated by elements of order 2 and k. (F') is the graded
ring of Milnor’s mod 2 reduced K-theory.
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Consider ¢p : Po(B) — ko(F) as the epimorphism defined by the rule

Zaizf—i- Z Bijzizj | — Zail(ai)l(@i)+ Z Bijl(ai)l(aj)

iel i<jel i€l i<jel
Let Qp := Ker(¢p).

Fact 7.1.17 (Essentially 2.20 in [53]). V(B) = Q3, where Qf = {v € ®(B) : (v,Qp) = 0} and
(, ) is the perfect pairing described in Proposition|7.1.14].

Let a F be a field with char(F) # 2. By “Pontryaguin duality”, let Mp denotes the unique
maximal clopen subgroup of Fr = Galp(F®)) corresponding to —1 € SG(F) = F/F? (Proposition

(ANE)

Fact 7.1.18 (Essentially 3.3, 3.5, 3.6, 3.7 in [53]). Let F, L € Fields. Then are equivalent:
a- (W(F),F/F?) = (W(L),L/L?) as abstract Witt rings.

b- SG(F) = SG(L) as special groups.

¢ - (Gp,Mp) = (G, Mp) as pointed profinite-C-groups.

Our next step, is use all these facts to obtain a group associated to a (pre)-special group.

7.2 The Galois Group of a Pre Special Group

Lets deal first, with a special group G. Let B = {a; : i € I} be a well ordered Zg-basis of G
and consider the C-free group in B-generators YWW(B). Define an epimorphism 75 : P2(B) — k2(G)
by the rule

ZO@'Z’EJF Z Bijzizj | — Zall(az)l(az)qL Z ﬂ”l(al)l(a])

il i<jel il i<jel

with kernel Q(B). Take V(B) := Q(B)* C ®(B) C W(B). Since ®(B) is the center of W(B)
then V(B) C W(B) is a (closed) normal subgroup of W(B) and we can consider the C-group
W(B)/V(B).

defn:gall
Definition 7.2.1 (Galois Group - base dependent version). Let G be a special group and B, W(DB)
and V(B) as above. We define the Galois group of G with respect to B by

Gal(G, B) := W(B)/V(B)

The most essential information of our Galois group is encoded by Q(B) = Ker(wg). We have
a useful description by generators that generalizes the one described by J. Minac and M. Spira:
fixsgl
Proposition 7.2.2. Let G be a special group and B,W(B) and V(B) as above. Consider a finite
subset B' C B, B' = {a;y, ..., ai, ,} (i0 < ... <in—1), and a,b in the linear span of B, say

i Biy,
a= H ai’“ and b = H a; ", ai, Bi, € {0,1}.

k<n k<n
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Consider the polynomial qffb € P»(B) given by

0y =Y i Bz + > (0B + i Bi)zi 2
k<n k<l<n
Note that qf(bo-...-bn_n = hen quk. Moreover we have the following properties.
i - T(q),) = 1(a)l(b) € k2(G).

i - qﬁb does not depend on the particular choice of the finite subset B’ C B.

iii - Q(B) is generated by {qu :l(a)l(b) = 0}.

Proof.
i - Note that
l(a) = Z aikl(aik) and l(b) = Zﬁikl(aik)‘
k<n k<n
Then
(a)l(b) = <Z Oéikl(az‘k)> (Z 5ikl(aik)> =Y aiBilai)l(as,)
k<n k<n k<np<n

= Z alkﬁlkl(alk)l(alk) + Z Z aikﬁipl(aik)l(aip) + Z Z aikﬁipl(aik)l(aip)
k<n k<n k<p<n k<n p<k<n

= Z iy, Bi U ai, ) (ai,) + Z Z (aikﬁip + aipﬁik)l(aik)l(aip)
k<n k<n k<p<n

On the other hand, by definition of 7p we get

7]—B(ch?ib) = Z alklglkl(alk)l(alk) + Z (aikﬁip + aipﬁik)l(aik)l(aip)7

k<n k<p<n
completing the proof.

ii - It is an immediate consequence of previous item: if By, Bs are finite subsets of B and a, b are
elements in the linear span of B; and in the linear span of Bs, then

Qo = Qui-
iii - Of course, qu € Q(B) if and only if I(a)l(b) = 0 in k2(G) and hence

{asy : la)l(b) = 0}] € Q(B).
To get the reverse inclusion, let ¢ = Z,Kn aikz?k + Zk7p<n BiyipZiy %, € Q. Then
> i dlai)lai) + Y Bi,lai)lai,) = 0 in ka(G).
k<n k,p<n

Now, for each k < n let

Y Bigip
by := a;, H a; "
k<p
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Then g =3, _, qik’bi and

k

> Uai)l(bi,) =0 in ky(G).

We are under the hypothesis of Lemma Thus, according Theorem there exists
subsets {co, ..., ¢m—1}, {do, ..., dn—1} of G with m > n such that

(a) {co,...;cm—1} is linearly independent and ¢, = a;, for all k < n;
(b) di =b;, forall k <nand dy =1 for k=n,...m—1.
(c) For all z € [co, ..., ¢m—1], there is some r, € Dg(1, —x) such that for each k < m
dk = H Ty
zeCy

where

Ck:{Hcf,":spe{(),l}andskzl}.

p<m

It follows that

— B _ B _ B
7= Z qaik»bik - Z qck’dk - Z quvaECk Tz

k<n k<m k<m
_ B
=2 D o

k<m x€eCly

Denoting C' := [cg, ..., ¢m—1], we have C = CyU ... U Cj,—1. Then

a=>_ > dl,.=> d..

k<m x€C} zeC

Since 1, € Dg(1, —x), we have [(x)l(r,) = 0 in ko(G). Then

4= dpr, € l{aly: Ua)l(b) = 0}].

zeC
O]

Now, we will generalize the Galois group for pre-special groups. The K-theory developed by M.
Dickmann and F. Miraglia in [30] is available for pre-special groups. Then we can take the same
B,W(B) and V(B) we are considering until now.

Let G be a special group and B = {v; }ier, C = {w; }ier, D = {2 }ier be ordered Zg-basis of G.
Then, for all ¢ € I we have an expression

w; = [J o, ma € {0,1} for all i,k € I, paserchangeTpE
kel

where the above product has finite support (i.e, [{i,k € I : m;; # 0}| < 00). In other words, for
all ¢ € I, there exist unique sequence in [ ig < i1 < --- < 1, such that

base-ch
Wi = Vi - Vjy = et ’Uz‘n(i). © FFF§3|
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By abuse of notation, let C' = {z; : i € I} CW(C). We define a function upc : C — W(B) by the
rule

. base—chang?—%
Ti > Tig - Tiy e Ly, 1 Wi =0 05y g, 3

This function is well-defined because both B and C are basis, so the expression [7.2]is unique.
fixsg2

Lemma 7.2.3. Let G be a pre-special group and B, C, upc as above. There is a unique continuous

homomorphism upc : W(C) — W(B) that extends upc. Also ppc[®(C)] C ®(B).

Proof. By abuse of notation, let B ={z;:i €I} CW(B) and C = {z;:i € I} CW(C). We have
B and C as a set of generators converging to 1 in W(B) and W(C') respectively.

Let X = upc[C] € W(B). Since (X) = (B) and W(B) = (B), we have that X is a set of
generators of W(B).

Let U C W(B) be an open subgroup. Since B is a set of generators converging to 1, there is a
finite subset Y = {z;,,...,z;,,} € B with U NY = (). Since the set of Fy-linear combinations of a
finite set is finite, there is a finite quantity of elements in ppc[C] not belonging to U.

The existence and continuity of upc is an immediate consequence of the Universal Property
of W(I) (Theorem 7.1.11)). An explicit formula for ppc is given by the following rule: for g =

(t9)(£7) (") we set

upc(g) == (ti(aizkelmik)> (tz(fw Z'r,s€[mirmjs)) (xi(wzkel mm)) .

Since @(W(C)) = W(C)? and ®W(B)) = W(B)?, we get upc|[®(C)] C ®(B). O

change-rem

Remark 7.2.4. A direct calculation show for all a,b € G that
Mg (dab) = ap -
Denote ug)B, : ®(B') — ®(B) the restriction of pp p to the Frattini’s subgroups and ,ug)B, :
)

W(B')/®(B’) N W(B)/®(B) the quotient of pp . Then, from the isomorphism in Proposition
7.1.14| ®(B) =2 Hom(Py(B),Z2), we have:

@(B) X PQ(B) — ZQ < ,LLlB,B/—, — >p=< —,mlB’B/— >p/
so , for all o' € ®(B')

2 / B / 2 B 1 B
< pp p(0), quy >B=< 0’ ;Mm% pi(qay) >p=<0" 43 >p

B’AH

and then ;1% 5 [(q7)) :

= (a2)
fixsg3
Lemma 7.2.5. The morphism upc is an isomorphism, upp = idyy(p), ,uglc = ucp and

KUBD = UBC © HCD-

Proof. The fact that upp = idyy(p) and u;é = pcp is an immediate consequence of Lemma 7.2.3l
For the other part, let B = {v;}icr, C = {w;}icr and D = {z;}ier be Fa-basis of G. Then for all
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iel,
I CEEE) | CORE 08
kel kel kel
such that all these products has finite support. Then
Nik
S TR (1 I 101 R 11 CR | O
kel kel \rel kel rel rel kel rel

Moreover

Z Znik’mkr = Z Znikmkr = Zpir.

kel rel rel kel rel

Then for all g = (£7)(t)(z]") € W(D),

)

ppc © pep(g) = pee(pep(9) =

. <(t;1¢(zk€1nik)> (tz(]ﬁ” Z,,’selmrnjs)) (:EZ(ViZkelnik))) _

<t§w(2k€, nzk) (Zrez mw)) <th13 (ZT,SGI mrnjs) (Zc,fel mremsf)> (sz(Zkel nzk) (Zr€] mkr)

v

% iJ %

<t?i(zrelp”)> <tf]§j(ze,felpie7’jf)) <$Zi(zrelpiT)> — MBD(Q)-

Then we get upp = piBc © pep-

191

>:

<tqi(zr61 ket nikmkr)) (tﬁlﬂ (ZT,SEI Ze,fel(””m’"e)(”jsmsf))> <x’.ﬁ(zre1 2ker ”ka’")> —

O]

Now, consider the Equation This expression induce isomorphisms mk, : Pi(B) — Pi(C)

and m%, : Py(B) — P»(C) given by the rules

i (Se) - e ()

icl el kel

mie (a2t Y byaz | =Y a (ka> 2403 b, [(Zm) (Zm]-s

el i<jel iel kel i<jel rel sel

where all these sums has finite support.

Lemma 7.2.6. We have

1 _ 1 1 2 _ 2 2
mpp = Mpo ©Mcop and mpp = Mpoc ©Meop-

fixsgd

Proof. Lets recover the calculations in the proof of Lemma let B = {v;}icr, C = {w;bier

and D = {z;}ier be Fa-basis of G. Then for all i € I,

TR CORE | EORS 1 C 2

kel kel kel
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such that all these products has finite support. Then

Nik
SV V(Y I 1V R 1 Y R 1 €8

kel kel \rel kel rel rel kel rel
Moreover
E E N My = E E NiEMEr = E Dir-
kel rel rel kel rel
Then

rel
— |
= (Zpir> Zi =Mpp (Z Ck%)
rel kel

and hence m}g D= m}gc o mlc p- In the same reasoning,

2 2 2
mzc | mep Zaizi + Z bijzizj =

i€l i<jel
2 . , 2 b , . DU
mpo a; ik | %; + iJ Nir n]s Z’LZ] -
iel kel i<jel rel sel

;ai (m?gc <<§ nik> z?)) +mpe gélbij K; n) (; n]>] wr | =

S (S (o) )+ 3 | (o) (D) (S ) ()| -
i€l kel rel i<jel rel sel ecl fel
Z(M (( ZNzkmkr> Z?) + Z bij (ZZnirmm) ZZnJ’Smsf 225 =
el rel kel i<jel ecl rel fel sel
S (m) 2% b <zpie> S o || 2 =
iel rel i<jel | \e€l fel
m2BD aiZiQ -+ Z bijzizj
i€l i<jel
: 2 _ 2 2
provide that m%, = mp- ome . O

Note that m}gc, mQBC induces respectively the isomorphisms

mbe : Hom(Py(C), Zy) — Hom(Py(B), Zs)
m% : Hom(Py(C), Zy) — Hom(Py(B), Zs).
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given by the respective rules: if f: P(C) — Zg and ¢ = > ._; ¢;z; € P1(B) then

i€l
mleC(f)(Q) = f(mlec(Q)) =f (Z G (Z m,k) zi> .
i€l kel

In the same reasoning, if f: P»(C) — Zy and ¢ = Y, a;z? + >icjer bijzizj € Po(B) then

mbe (@) = f(mpe() = f (Z (Z mik> d Y by KZ m> (Z m]>] ])

iel kel i<jel rel sel

Now denote
ppe s W(C)/®(C) — W(B)/®(B)

the quotient of upc and
phe : ®(C) — @(B)

the restriction of upc to the Frattini’s subgroups. Also consider the isomorphisms

0 : W(I)/®(I)
A (D)

HOII](Pl (I), Zg)
HOHKIBCU,ZQ)

Qe e

of Propositions [7.1.14] and [7.1.15]

fixsgb

Lemma 7.2.7. Denote np : W(B) — W(B)/®(B) the canonical projection, with the same for mc.
Then we have a commutative diagram

w(C)

Hom(P1 (C), Zg)

HBC Mpo
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which induces a commutative diagram

W(C)
Oc
WI(C)/®(C) — 2 Hom(P\(C), Z)

W(B)/®(B) — 2~ Hom(P,(B), Z)

B
0p

W(B)

Proof. Let g = (to”)(tﬁ”)(x;“) e W(C) and ¢ =) ;s ciz; € Pi(B). Then

(mpe 0 0)(9)(q) = mpa(9(9)(a) = 0(g)(mpe(a))

= 0(g) (Z ¢ (Z mk) zi> =Y <Z mk) Vi

iel kel iel kel
:E E CiTig"i-
iel kel

On the other hand,

(0o upc)(9)(q) = 0(upc(9))(q)

o () () () (z )

= Z Ci (%’ (Z mzk)) = Z Z cimiy; = (mpe 0 0)(9)()-

el kel iel kel

Then m}gc 00 =0opupc. Since O = 0p omp and O = O¢ o e we have the desired commutative
diagram. O

fixsgbb

Lemma 7.2.8. We have a commutative diagram
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o(C) Ac Hom(Py(C), Zs)
Nch szc
o(B) - Hom(Ps(B), Z)

Proof. Let g = (tf")(ti“)(ll) € ®(C) and Y,  aiz? + > icjer bijziz; € Po(B). We have

(mBe 0 Ae)(9)(9) = Ac(9)(mbe(a) =

olo) | Sa (ka> 240y szm) (zmﬁ)]zizj _

i€l kel i<jel rel sel
E a; (E mzk) o + Z bi; [(Z mir) (E mjs)] Bij
iel kel i<jel rel sel

On the other hand,

(A8 © 1Be)(9)() = Mupe(9)(q))

=g <<t?i(2k61mik)> <tgij(zr’sejmirmjs)> (1i)> Zaiz? + Z bijzizj | =

icl i<jel
Zai (ai (Z mzk)) + Z bij | Bij Z M Myjs
iel kel i<jel r,s€l
proving that mQBC oAc = Apo /LQBC. 0

fixsg6
Lemma 7.2.9. With the notations of Lemmas we have the following.

1 - The arrows M}BC and /J,%C are isomorphisms. Moreover, for all well-ordered basis B,C, D we
have ppp = id, pp = id, ppp = ppe © fop and php = Phe © W p-

it - The isomorphism ppc : W(C) — W(B) restricts to an isomorphism V(C) — V(B) so we get
quotient isomorphism
fipc = W(C)/V(C) = W(B)/V(B).
1 - If B,C, D are well-ordered base of G, then ficc = id and fipp = jipc © ficD-
Proof.

i - Just use the same calculations made in Lemma [7.2.5]

ii - By Proposition we have
mpo(Q(B)) = Q(O).
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Since V(B) = Q(B)*, we have an induced isomorphism psclys) : V(B) = V(C), legitimat-
ing the quotient isomorphism

fipc : W(C)/V(C) = W(B)/V(B).

iii - It is an immediate consequence of item (i).

O
defn:gal2
Definition 7.2.10 (Galois Group - base independent version). Let G be a pre-special group. Take

Eq ={B: B is a well-ordered Fy-basis of G}.

Consider the set Eg endowed with the trivial groupoid operation of concatenation of pairs (i.e., the
arrows are Eg x Eg) and take the functor Gal : Eq — C, (where C is the category of C-groups)
given by the following rules: for an object B € Eg, Gal(B) := W(B)/V(B) and for an arrow
(B,C) € EZ,

Gal(B,C) = ppc : W(C)/V(C) — W(B)/V(B).

We define the Galois group of G, notation Gal(G) by

Gal(G) := lim W(B)/V(B).
BEEg

Remark 7.2.11. Keeping the notation above, note that

751 Gal(G) := lim W(B)/V(B) — W(B)/V(B)
BEEq

is an isomorphism, for each B € Eg. This holds because
Gal(B,C) = ppc : W(C)/V(C) — W(B)/V(B)
is an isomorphism for each arrow (B,C) € EZ,.

It is desirable to achieve explicit calculations of Gal(G) for finite reduced special groups and
boolean algebras.

7.3 On the structure of Galois Groups of Pre Special Groups

As occurs with fields, the Galois group of a pre-special groups (in a certain subclass) is able to
encode many relevant quadratic information.

All pre-special groups occurring is this section will be assumed k-stable.

We start this Section, by providing more details on the structure of C-groups.
Let G be a C-group on I-minimal generators. By Theorem There is an epimorphism
A W(I) — G with kernel V C ®(I), and then, we have an isomorphism A : W(I)/V — G.
fixhugo2
Proposition 7.3.1. With the above notation, we have the following.
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We have a natural bijection

{M C G: M is a maximal open subgroup} =
{M CW() : M is a maximal open subgroup}.

Then ®(G) = ®(1)/V and G/®(G) = W(I)/®(1).

The mazimal closed subgroups of W(I) are precisely the clopen (normal) subgroups with quo-
tient Zo. Moreover, we have a natural bijection

{M C G : M is a mazimal open subgroup} = Pp;, (1) \ {0}.
and that extends to a natural bijection

{N C G: N is an open subgroup with index < 2} = Py, (I).

We have a natural isomorphism of Zs-modules
Homcont(G,Z9) = fsFunc(l,Zs)

where fsFunc(1,Zz) is the set of all function f : 1 — Zo with finite support.

Proof.

i-

ii -

The desired bijection follows by the bijection

{M CW(I)/V: M is a maximal open subgroup}
{M CW(I): M is a maximal open subgroup}.

given by the following rule: lets ¢ : W(I) — W(I)/V denote the canonical projection. We
have a function g : POV(I)/V) — P(W(I)) given by the rule

G(X) := ¢ '[X] (the inverse image).

This function g induces the desired bijection. Since the Frattini subgroup of G is the in-
tersection of all open normal subgroups we have (via A and the bijection) ®(G) = ®(I)/V.
Then

G/6(G) = WI)/V)/(2(I)/V) =W(I)/2(1).
For {ig,...,in} C I denote
Cr(t0y eoyin) == {0 € W) : viy(0) + ... + i, (o) = 0}.

We have that (i, ..., i) is a subgroup of W(I). Now let 7,0 € W(I) \ (;(io, .., n). Then
for all ¢ € I,

i (0717) = 3 (0) + i (7).
Therefore

n

Z%‘p (9*17-) = Z[%‘p () + i, (7)] = Z%p(ﬁ) + Z%p (t)=1+1=0.
p=1 p=1 p=1

p=1
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Then 017 € (;(ig, ..., i) Which imply

W(I)/Ci(io, oy in) = {1, 7} = Zo.
To verify that (7 (o, ..., i) is clopen, note that

Yio(0) + . +7i,,_,(0) =0 and v;,(0) =0 or
1

Yio(0) + - 4 i (0) = 0 ifF {%0(0) + o 4 Yin 1 (0) = Land 7y, (0) =

In other words,
C[(io, c Zn) = [C[(’L'o, . Z'nfl) N Mzn] U [C[(’io, c Z'nfl)c N Mzcn]

So, in order to verify that (;(ig, ..., i) is clopen is enough to deal with the case n = 0. But
Cr(ip) = M, is in fact a clopen, which provide (by induction) that (7 (i, ..., ) is clopen for
all ig,...,7, € I. Then (;(ig, ..., in) is a maximal clopen subgroup of W(I), and we have a
well-defined injective function

Cr:Prin(I)\ {0} — {M CW(I): M is a maximal open subgroup}

given by the rule {ig, ..., in} > Cr(i0, wrs in)-

For surjectivity, let M be a maximal open subgroup. Then M is closed of finite index and by

Lemma [7.1.9(a), M has index 2 in G. Using Propositions and and the compacity
of W(I), there exists i1, ...,n, J1, --s Jm, K1, ..., kp € I with

M; N...0nM;, N Sj1 n...N Sjm NDk, N...N ka C M.
Note that we have
M N0 M, NS5 NN Sy, N Dy NN Dy, C© Cr(in, ey iy Jis oy Jms K1y ooy Bp).

Lets denote Cr(i1, ..., In, J1s -5 Jm, K1, s kp) 1= CI(;J: E) and H := M N Cj(f,f, E) Suppose
H # M and let 7,0 € M \ H. The same calculations made for injectivity shows that §~'r €
¢1(7, 7, k) which imply

M/H ={1,7} ¥ Z,.

Moreover, using the same calculations made in Proposition (b) we have that I has index
Zy4 in W(I). Since H C M and H C C[(Z, 7, E) with both maximal clopen subgroups, by
Lemma [7.3.7(i) we have M = (;(4, 7, k), contradicting the assumption H # M. Then H = M
and we have M = ( 1(;, 7, E) Therefore we have bijections

Prin(I)\ {0} = {M C W(I) : M is a maximal open subgroup}
=~ {M C G: M is a maximal open subgroup}.

Therefore
{N C G : N is an open subgroup with index < 2} = Py, (I).

iii - Since G = W(I)/V and

V()= ﬂ{ker(cp) : ¢ € Homeont(W(I),Zz2)},
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then the natural epimorphism W(I) — W(I)/V induces the isomorphism
Homcont(G,Z2) = Homcont(W(I), Zs).

Since Zs is a finite/discrete C-group, then the universal property of W(I) (Theorem [7.1.11))
gives a natural isomorphism Homcont(W(I),Zs) = fsFunc(1,Zs).

Alternatively, the result follows also from the item (ii) above and the (obvious) natural bijec-
tions
Homcont(G,Z2) = {N C G: N is an open subgroup with index < 2}

Ppin(I) =2 fsFunc(1,Zs).

O
fixhugo3
Proposition 7.3.2 (Prontryagin duality). Let G = Gal(G) for some pre-special group G. Then

1 - There is a canonical bijection

M:GS {M CG: M is a (closed, normal) subgroup of index less or equal to 2}
a — M, such that it induces a canonical bijection
G\ {1} =2 {M C G : M is a mazimal subgroup}.
1 - There is a canonical isomorphism of Zs-modules g : G = Homcont(G,Z2), a — pqa, where
ta : G — Zg is the unique continuous homomorphism such that ker(u,) = M,.
i1i - There is a canonical isomorphism of pro-2-groups ¢ : G/P(G) — Hom(G, Zs).
Proof.

i - This follows directly from Proposition m since g : Gal(Q) 5 W(B)/V(B) and V(B) C
®(B), for every well orderd basis B of G.

ii - By Proposition M(iii)7 for each well ordered basis B in GG, we have a natural isomorphism
of Zo-modules.
Homecont(W(B)/V(B),Z2) = fsFunc(B,Z2)

This is, in fact, an isomorphism of Zo-modules. Taking into account the isomorphisms of
”change of base”, we glue the above isomorphisms to obtain the natural isomorphism

Homcont(Gal(G), Z2) = Homcont( Jim W(B)/V(B),Zs) = Jim fSFunc(B,Zs) = G
BeEg BeEg

iii - Note that 7g : G — G/®(G) induces a Zsy-isomorphism

o

75+ Homeont(G/®(G), Za) — Homcont(G, Zs).

By Lemma the isomorphisms described in Proposition [7.1.15] namely

W(B)/®(B) = Hom(Pi(B), Z2),
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are natural. Thus we obtain a natural isomorphism

G/®(G) = Hom(G, Zs)

O

Remark 7.3.3. Note that combining items (iii), (ii) of the Proposition above, we obtain the
Pontryagin duality:

G/®(G) = Hom(G,Z9) = Hom(Homecont(G/®(G), Z2), Z2)

G = Homceont(G/®(G), Z2) = Homcont(Hom(G, Zs), Z2)

This induces a canonical duality between the pointed Zo-module (G, —1) and the "pointed” pro-
2-group (Gal(G), M), where M C Gal(G) is an open subgroup of index < 2.

Let G be a k-stable special group. Write G = Gal(G).
~ The isomorphism of pro-2-groups ¢¢ : G /®(G) — Hom(G,Z2), determines a ”perfect pairing”
oG : G/P(G) x G — Zy given by the rule

6c(@,g) = (@ g) = ¢c(@)(g).

We will denote ( )+, generically, both the correspondences between subsets of G/®(G) and

subsets of G. .
pairing-prop

Proposition 7.3.4. The perfect pairing ¢c : G/®(G) x G — Zy gives an anti-isomorphism of
complete lattices between the poset

{RCG/®(G): R is a closed subgroup of G/®(G)} =

{m(T) CG/P(G) : T is a closed subgroup of G},
with m: G — G/®(G) being the canonical projection, and the poset

{ACG:A isa subgroup of G}.
These anti-isomorphisms are given by the rules

m(T) = n(T)* == {a € G: ¢g(0/®(G),a) = Ofor all 0 € T}
H— HY = {0/®(G) : ¢c(c/®(G),a) =0 for all a € H}.

From this we get:

i - An anti-isomorphism of complete lattices between the posets
{A CG: A is a subgroup of G}

and
{T CG:T is a closed subgroup and ®(G) C T'}.

i1 - A bijection between the sets

{A C G : A is a mazimal subgroup of G}
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and
{m(T) C G/®(G) : T is a discrete subgroup with order 2} =

{m(T) CG/P(G) : T is a closed subgroup with =(T) = {id,o/®}, for some o € G\ ®(G)}.

Proof. All items are immediate consequences of the isomorphism.

Since G is a compact Hausdorff group and ®(G) C G is a closed normal subgroup, note that
then the quotient map G — G/®(G) gives an isomorphism of complete lattices between the poset
of closed subgroups of G which contains ®(G) and the poset of closed subgroups of G/®(G).

O

Remark 7.3.5. Let 0 € G\ ®(G). It follows from the definition of pairing that:
e Foranyx € G—{l1}: 0 € M, iff < o/®(G),x >=0 iff x € {®(G),0.9(G)}*.
o [f there is an involution in 0.®(G) then of all element in 0.®(G) are involutions.

To obtain quadratic information from the Galois groups, we will need develop deeper group

theoretic results. Zd-1e

Lemma 7.3.6. Let B an well ordered basis of G and consider ng = 5" : W(B)/V(B) — Gal(G).

i- Let a # 1, choose B = {a; : i € I} an well ordered basis of G such that a € B, say a = a;.
Then ng[M]/V(B)] = M,.

ii- Let a,b#1,a+#b so{a,b} is a Za-li. subset of G, choose B = {a; :i € I} an well ordered
basis of G such that a,b € B, say a = a;, b=a; , i < j € 1. Let {M], M, M'} be the three
mazimal subgroups of W(B) above M] N M;. Then ng[M]/V(B)] = Ma, ns[M;/V(B)] = M,
and np[M'/V(B)] = Myp.

iti-  Let {My, Mo, M3} C Gal(G) maximal subgroups that are pairwise distinct. Then are equiva-
lent:

o { My, My, M3} are independent, which means that for each of 3 enumerations {u,v,w} of
{1,2,3}, Myn M, ¢ M,.

e There is some enumeration {u,v,w} of {1,2,3} with M, N M, € M,.
e Gal(G)/(M1 N My N Ms) = Zo X Zo X Lo
Proof.
i- Recall that V(B) C ®(B) € M,,Vk € I, M] = {oc € W(B) : 7;(¢) = 0}. The ”isomorphic”
perfect pairings,
<,>p:W(B)/®(B) x Pi(B) = Zs
<,>: Gal(G)/P(Gal(GR)) x G — Zo

provides M!/®(B) = {z}* and M,,/®(Gal(G)) = {a;}*. Since the pairings are “compat-
ible”, i.e., the dual of the isomorphism P;(B) — G : z; +— ai, k € I corresponds to the
isomorphism

1R

W(B)/®(B) = (W(B)/V(B))/((W(B)/V(B)))

5w

Gal(@)/®(Gal(G)),

we have 7jp o can[M]/®(B)] = M,,/®(Gal(G)). Therefore, as the Frattini subgroups are
contained in all maximal open subgroups, we get ng[M/!/V(B)| = M,,.
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ii- M’ ={o € W(B) : vi(c) +vj(0) = 0}. The ”isomorphic” perfect pairings,
W(B)/®(B) x Pi(B) = Z3 and Gal(G)/®(Gal(G)) x G — Z»
provides M,/®(Gal(G)) = {a}* and M;/®(Gal(G)) = {b}*, so

Moy /®(Gal(G)) = {ab}* = {0/®(Gal(G)) :< 0/B(Gal(G)), ab >= 0}
C (Ma)/®(Gal(G)) N My)/@(Gal(G))) = (Ma N M)/ 2(Gal(G))

Therefore {M,, My, My} are the three mazimal subgroups of Gal(G) above M, N My. Since
{M], M}, M'} are the three maximal subgroups of W(B) above M; N M} and

np[M;/V(B)] = M, and np[M;/V(B)] = M,,
we must have ng[M’'/V(B)] = My,

iii- We have uniquely determined {a,b,c} C G\ {1}, with My = M,, My = My, M5 = M, and,
from the hypothesis, a, b, ¢ are pairwise distinct so the result follows from (ii) since if {z,y}
is a Zo-li set then {x,zy} and {y, xy} are Zo-li sets and those 3 sets are Zo-basis of the group

{1,z,y, zy}.

O
ZgDg-1le
Lemma 7.3.7. Let G be a k-stable pre-special group and denote G := Gal(G).

i - Let S C G a normal closed of with G/S = 74 then there is a unique mazimal subgroup H C G
such that S C H.

it - Let D C G a normal closed of with G/S = Dy then there is a unique set {Hy, Ho} with
H, # Hy, H; C G mazimal subgroups such that D C HyNHy and if {H, Hy, Ha} are the three
mazximal subgroups above Hy N Hy then H/D = 7.

Proof.

i - For the existential part take r € G\ S such that 72 ¢ S and G/S = {1.5,7.5,72.5,r3.5} = Z,4
and take the maximal subgroup H = 1S Ur2S. Then S C H and the canonical epimorphism
G/S — G/H corresponds to the epimorphism Z4 — Zg. This maximal H 2 S is unique
because if S C Hy, Hy with Hy # Hs, then S C H; N Hs and there will be an epimorphism
Z4=G/S — G/Hy N Hy = Zy X Zg, however there is no element in Zg X Zsg of order 4.

ii - For the existential part let r,s € G\ D be such that 72 ¢ D, s?> € D and then
Dy, =2 G/D = {1.D,r.D,r%.D,r>.D,s.D, sr.D, sr>.D, sr3.D}

Then each one of the maximal subgroups above D is a reunion of four classes so they must
contain 1D,72D. they are three:

1DUrDUrDUrD
1DUr’DUsDUsr’D
1DUr2DUsrD U sr*D
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Then take

{H,,Hy} ={1DUDUsDUsr’D,1DUr?*D U srD U sr3D} and
H=1DUr?*DUrDUr*D.
Then D C Hy N Hy = 1DUr?D C H,Hy, Hy. Then the canonical epimorphism G/D —»
G/H; N Hy corresponds to the epimorphism Dy — Zg x Zg and H/D = Z, . This pair of
maximals Hy, Hy O D is unique because if H3 is a maximal S C Hs with Hs # H;, Ho, then

D C Hiy N Hy N Hg and we have two to consider:
e HyN Hy C Hs: in this case H3 = H = 1D Ur2D UrD Ur3D, then

1D=Ur’D=H,NHy=HNH, = HN H,

so D C H N Hy, but we see directly that Ho/D 2 Z4; similarly D C H N Hy but also
Hi/D % Zs;

e HiNHs {(Z Hjs then Hj 75 H,Hy, Hy, also Hi N Hs SZ Ho (because if Hy N Hy C Hy, then
Hy N Hy ¢ Hs, see the previous Lemma) and similarly Hy N Hs ¢ Hy, then {H;, Ho, H3}
are independent, so in this case, the epimorphism G/D — G/H; N Hy N H3 corresponds to an
epimorphism D4 —» Zo X Zgy X Zs but there is no element in Zo X Zo X Zs of order 4.

O]

standardteo

Theorem 7.3.8.

i- Letae G\ {l}.
l(a)l(a) =0 € ko(G) =

There is S C Gal(G), a normal clopen subgroup such that Gal(G)/S = Zy and S C M,.
ii - Let a,b e G\ {1} such that a # b

[(a).(b) = 0 € ks(G) =

There is D C Gal(G), a normal clopen subgroup such that Gal(G)/D = D4 and D C M,NM,,
Mgyy/D = 7.
Proof.

i- Since {a} C G is a l.i. subset, take an well ordered basis B = {a; : ¢ € I} C G such that
a € B, say a = a;. Then ng : W(B)/V(B) 5 Gal(G) with V(B) C ®(B) and V(B) = Q(B)*
where Q(B) = ker(Pa2(B) — ka(G)), then, by Proposition Q(B) = {4k, : l(z)l(y) = 0}]

V(B) = ({(an)" : Ua)lly) = 0} = ({lam)" : 2,y # LU(2)l(y) = 0}

Denote M/ = {o € W(B) : vi(0) = 0} and S} = {oc € W(B) : aj(0) = vi(c) = 0} then, by
Proposition [7.1.5((1), S; € M/ C W(B) are clopen normal subgroups with W(B)/M/ = Z,
W(B)/S! = Z4. We have V(B) C ®(B) C M/, and we state the

Claim: V(B) C S.
This entails that M, = ng[M]/V(B)] C Gal(G), Gal(G) /M, = Zy and

S :=np[S;/V(B)] € Gal(G)
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is a clopen normal subgroup of Gal(G) with Gal(G)/S = Z4 and S C M,, as we need.

Proof of the Claim: We will see that S, N ®(B) = (¢2,,)* then as a = a; and l(a)l(a) = 0 we
get V(B) C (¢8,.)* so V(B) C SIN®(B). Since 1 # a = a; it follows that ¢, = 2? € P,(B)
is such that (qz’,,)* C ®(B) has inder 2 and we will proof that S} N ®(B) C ®(B) has also
indez 2 and S/ N ®(B) C (¢f,)*" so we get S, N ®(B) = (¢2, )" Firstly we show that
O(B)/S! N B(B) = Zy: as B(B) < M! then &(B)/S! N ®(B) — M!/S! and M!/S! = Z so
®(B)/S;N®(B) has 1 or 2 elements. However, it cannot has 1 element: if S; N ®(B) = ®(B)
then, by Proposition

(M} :jel}=oB)CS;

but W(B) is a compact space and S; C W(B) is open subset , M C W(B) is a closed subset
j € I so there is a finite subset {jo,...,jn} C I such that M; N...NM; C S, choose n € N
mintmum with this property so for each m < n , ﬂ{M]’l cl#m} € MJ’-m then we have an
isomorphism

Gal(G)/ (M, : 1 < n} 5 [ Gal(G)/M],

<n

so the epimorphim Gal(G)/({Mj : 1 < n} — Gal(G)/S] corresponds to an epimorphism
ngn Zo — Z4, but the two elements of order 4 in Z4 cannot be in the image of the homo-
morphism. Now we prove that 5] N ®(B) C (¢Z,)*: we have (¢5, )+ = {27} and

SiN®(B) ={oc € W) : a;(c) =0 and vj(oc) = 0 for each j € I}

and it follows from of the group operation and the definition of the pairing <, >: ®(B) x
PQ(B) — Zo that

{xkxl:k<l€I}U{x?:i7§j€I}g (Sgﬂq)(B))ﬁ{z?}J‘

Since S N ®(B),{z2}+ C ®(B) are closed subgroups,
closure([{zpz; : k<lel}U {x? ri#£jel}]) C(Sin®(B))N {223+

Now we will prove that S N ®(B) C closure([{zyz; : k <l € I} U {ZL‘? 21 #£ j € 1}]); it is
enough find for each o € S; N ®(B) and each basic neighborhood T" of 1 € W(B) two finite
sets {j1,...Jn} C I — {i} and {(k1,01),... (km,lm) : ku < Iy € I,1 < u < m} such that
(z2..... T Tk Ty Tk, -x1,,) € 0.T : let T = (U where

UCpin V=AMj:jel}U{S;:jel}U{Dy k<lel}
and take

{1, dnt={je€l:S;eUajo)=1} C I\ {i} and
{k1 <l,...km <lp}={k<le€l:DyeU,Ppyc)=1}

(i, dnt={i€l:8;€Uaqajo) =1} CI\{i} and {k1 <li,...km <In}={k<lel:
D;, € U, Bri(o) = 1} then, since v;(o) = 0, for all j € I, we get

2
X5 Tk LYy Tk

m*
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ii - Since {a,b} C G is a Li. subset, take an well ordered basis B = {a; : ¢ € I} C G such that
a,be€ B, say a=a;,b=a;,i<jcI. Wedenote

M ={oc € W(B) : vi(oc) =0}

M; = {o € W(B) : vj(0) = 0}

M' = {0 e W(B) : yi(co) +v;(0) = 0}

D;; = {0 € W(B) : Bij(0) = vi(0) = vj(0) = 0}

By Proposition(7.1.5(ii), Dj; € M], M; C W(B) are clopen normal subgroups with W(B)/M;N
M} = 7o x Zs, W(B)/D;; = Dy. Besides V(B) C ®(B) C M/ N M; and we stat the

Claim: V(B) C D;;.

This entails that M, = np[M]/V(B)] C Gal(G), My = np[M;/V(B)], Mo, = np[M'/V(B)] ,
Gal(G) /M, = Zy = Gal(G) /My and D = ng[S./V(B )] Q ( ) is a clopen normal subgroup
of Gal(G) with Gal(G)/D = Dy such that D C M, N My, and My,/D = Z4, as we need.

Proof of the Claim: We will see that Dj; N ®(B) = (qfiaj)J— then as a = a;,b = a; and
l(a)l(b) = 0 we get V(B) C (qﬁaj)L so V(B) C Dj;N®(B). As1#a=a;and 1 #b=aq;
with i < j € I, it follows that qfa = z;2j € P»(B) is such that (q,fia].)l C ®(B) has indez 2
and we will proof that D;; N ®(B) C ®(B) has also inder 2 and Dj; N ®(B) C (ql]fiaj)L S0 we
get Dj; N ®(B) = (qaiaj)*

Firstly, we will prove that ®(B)/Dj; N ®(B) = Zy: since ®(B) < M; N M; then
®(B)/Dl; N ®(B) — M/ N M}/Dl; and M} "M,/ Dj; = Zs

so ®(B)/D;; N ®(B) has 1 or 2 elements. However it cannot has 1 element: if D;; N ®(B) =
®(B) then (\{M}, : k € I} = ®(B) C D;; but W(B) is a compact space and D;; C W(B) is
open subset , M; C W(B) is a closed subset k € I so there is a finite subset {ko,...,kn} C I
such that M ,;O Nn...nM ,’ﬁn C D, ;» choose n € N minimum with this property so for each m <n
s M, 1 1#m} &€ Mj,  then we have an isomorphism

Gal(G)/ (M, -1 <n} 5 ] Gal(G) /M,
I<n

so the epimorphism Gal(G)/({My, : | < n} — Gal(G)/Dj; corresponds to an epimorphism
ngn Zo — Dy, but the two elements of order 4 in D4 cannot be in the image of the homo-
morphism.

Now we prove that D;; N ®(B) C (qgaj)J-: we have (aniaj)J_ = {ziz;}+ and
Di;N®(B) = {0 € W(I) : Bij(0) = 0 and y,(c) = 0 for each k € I}

and it follows from of the group operation and the definition of the pairing

<, >: (I)(B) X PQ(B) — 2o
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that
{wpay 1k < 1€, (k1) # (i,5) U{ap : k € I} C (Dj; N ®(B)) N {ziz}+

then, since Dj; N ®(B), {2zj}+ C ®(B) are closed subgroups,
closure([{zpxy : k <1€1,(k,1) # (i,5)}U{as ke T}]) C (Di; N®(B)) N {ziz;}*

Now we will prove that Dj;N®(B) C closure([{zyx; 1 k <l € I, (k1) # (i,7)}U{z? : k € I}));
it is enough find for each o € Dj; N ®(B) and each basic neighborhood T' of 1 € W(B) two
finite sets {j1,...,Jn} C I and {(k1,01),... (km,lm) : ku < ly € I, (ky,ly) # (i,7),1 <u <m}
such that (z7..... T Thy Tl zg,, - x1,,) € 0.1 : let T = (U where

UCpin V=AMj:jel}U{S;:jel}U{Dy:k<lel}
and take

{1, dny={jel:S;e€Uajo)=1} C I and
{ky <li,...km <lpy={k<le€Il:Dj, €UPBulc)=1yCIxI\{(i5)}

then, since v (o) = 0, for all k € I, we get

2
Tj Ty Ty Tk, X1,,) € 0.T.

O

The above proposition suggests the following:
prop &8 & pSGstandard-def

Definition 7.3.9. A pre-special group G is said to be standard if it is a k-stable pre-special group
and holds both the reverse implications in the Theorem [7.3.8 above.

Remark 7.3.10. Lemma|7.5.7 determines (injective) maps

J1:{S CG:S is anormal subgroup of index Zs} —
{M C G: M is a mazimal subgroup};
jo:{D C G : D is a normal subgroup of index Dy} —
{{My, My} : My, My C G, My # Ms are maximal subgroups}.

By the canonical bijection M : G \ {1} 5 {M C Gal(G) : M is a mazimal clopen subgroup },
it is natural to ask:
(1) Which subset of {a € G : a # 1} corresponds bijectively with image(j1)?
(2) Which subset of {{a,b} C G :a,b# 1,a # b} corresponds bijectively with image(j2)?

The concept of standard pre-special group provides a full answer to these questions:
(1) The set {{a} C G :{a}l.i.,l(a)l(a) =0 € ka(G)} corresponds bijectively with image(j1).
(2) The set {{a,b} C G :{a,b}l.i.,l(a)l(b) =0 € ko(G)} corresponds bijectively with image(j2).

It follows from Propositions 2.3 and 2.4 in [53] that SG(F') is a standard special group, for
every field F' with char(F) # 2.

We have already established that every special group G is k-stable (see Proposition m(m))
These suggest the following:
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Question 7.3.11. Is every special group G standard.ﬂ

In the sequel, we will see the relevance of the subclass of standard pre-special groups. We invite

the reader to recall Proposition [7.3.4
encoding-teo

Theorem 7.3.12. Let G be a k-stable pre-special group and denote G := Gal(G).

i- Let o € G\ ®(G) be such that 0® = id. Then {®(G),0.®(G)}* C G is a mazimal saturated
subgroup of G.

ii- Suppose that G is a standard pre-special group. Let o € G\ ®(G) be such that o # id (so
ot =id). Then {®(G),0.9(G)}* C G is not a saturated subgroup of G.

11i- Suppose that G is a standard special group. The set of all classes of conjugacy of involutions
o€ G\ ®(G) corresponds to the set of all orderings (= mazimal saturated subgroups) of G.

w- Suppose that G is a standard pre-special group. Then we have an anti-isomorphism of com-
plete lattices between the posets

{A C G: A is a saturated subgroups of G'}
and

{T CG:T is a closed subgroup of G (topologically) generated by involutions such that ®(G) C T'}

Proof.

i- Let T = {®(G),0®(G)}.

Claim: To have that T+ C G is a saturated subgroup it is enough to prove the following:
Vo,y € Gif <z,y >=<1,zy >, thenz € T+ ory € T+ .

Proof of Claim: Firstly we prove that —1 ¢ T: take any « ¢ T (there is some z, as T+ C G
has index 2) then as < z,—x >=< 1,—1 > it follows from assumption in the claim that
—x € T+ soif —1 € T+ then x = —1.(—x) € T, a contradiction. Now let us prove that T
is saturated: take any a,b € G such that b € Dg(< 1,a >), assume a € T then we have to
prove that b € T+: as (—a).a = —1 ¢ T+ then —a ¢ T+ and as < b,ba >=< 1,a > we have
<b,—a >=<1,—ba > so, by the assumption in the claim, we get b € T,

Now we will prove that ¢? = id entails Va,y € G if < z,y >=< 1,2y > then € T+ or
(NS T+

We have three cases:

x x (or y) is 1;

*x=yF#1;

*x,y #1and x # y.

There is nothing to proof in the first case. Now consider x € G \ {1} such that < z,x >=<
1,1 >: we must prove that = € T*. Since G is k-stable, we have [(z)l(x) = [(1)I(1) = 0 then,
by Theorem (i), there is a S C G a clopen normal subgroup such that G/S = Z, and

"We are unable to solve this question with the methods so far developed. We believe that to address this question,
we will have to develop the theory of quadratic extensions of pre-special hyperfields.
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S C M,. Consider the quotient map pg : G — G/S and write G/S = {1/8,r/S,r%/S,r3/S}
then as 02 = id we must have o/S € {1/5,7?/S}. If /S = 1/S then 0 € S C M, i..
<0/®(G),r >=0s0x € {®(G),0®(G)}*. If 0/S =1r2/S then 0.’ = o.r 2 € S C M, i.e.
< (0.7?)/®(G),x >= 0 but

< (6.7%)/®(G),z >=< 0/P(G),z > + <r/®(G),z > + < r/P(G),z >=< 0 /P(G), x >

then < o/®(G),z >= 0 so v € {®(G),c®(G)}*. Now take z,y € G\ {1} with x # y and
< z,y >=< 1,2y > and supose = ¢ T+ then we must prove that y € T+. As {z,y} is a two
element Li. set and I(z)I(y) = I(1)l(zy) = 0 we have, by Theorem [7.3.§[ii), some D C G a
clopen normal subgroup such that G/D = Dy, D C M, N M, and M,,/D = Z4. Consider
the quotient morphism pp : G — G/D and write

G/D ={1/D,r/D,r*/D,r*/D,s/D,sr/D,sr*/D,sr®/D}

then, as 02 = id, we have o/D ¢ {r/D,r3/D}. Let us prove that o/D ¢ {1/D,r?/D}: as
< 1/®(G),xz >=< r2/®(G),x >= 0 we have {id,r?} C M, and as we selected z ¢ {®,cP}+
we have o ¢ M, then if /D = r%/D then o.r=2 € D C M, so

o= (or ?).r*e D.M, C M,.M, C M,,

a contradiction; similarly o/D # 1/D. So we have o/D € {s/D, sr/D,sr?/D, sr®/D}. Now,
as My, /D = Z4 we have My, = 1D Ur*D UrD U7r3D (see the proof of Theorem [7.3.8(ii))
and

{M,,M,} = {1DUr*DUsDUsr*D,1DUr*DUsrD UsrD}.

If M, =1DUr?DUsD Usr?D then as o ¢ M, we have o/D ¢ {s/D,sr?/D} so
o/D € {sr/D,sr*/D} C M,/D

then o € M, that is y € {®(G),o0®(G)}*; similarly if M, = 1D U 72D U srD U sr3D then
y € {2(G),02(G)}".

Let T = {®(G),0®(G)}.

Claim: To have that T+ C G is not a saturated subgroup it is enough to prove the following:
Jz,c € G\ T such that < z,¢c >=< 1,zc >.

Proof of Claim: If —1 € T+ then T+ € Gso G = Dg < 1,1 >¢ T+ so T+ is not a saturated
subgroup. If —1 ¢ T+ then take z,¢ € G \ T+ such that < z,¢ >=< 1,z¢ > so we have
<e¢,—xe>=<1,—x >, thatisc€ Dg <1,—xz >and —x € T+: if —ox ¢ T+ thenas T+ C G
has index 2 —1.7+ = —2.T+ so ¢ = —1. — 2 € T'; that is we established that there are
a(= —z) € T+ and ¢ € Dg < 1,a > with ¢ ¢ T+: this means that T is not saturated.

Now we will prove that o2 # id entails 3x,c € G \ T such that < z,¢c >=< 1, zc >:

Take B any well ordered base of G and consider the composition

W(B) = W(B)/V(B)>6

and, by Lemma [7.1.10, choose any lifting ¢ € W(B) of o € G. Since 0% # id € G we get
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52 € ®(B) \ V(B). Since
V(B) = Q5 = [{4s) € P2(B) : L(a)l(b) = 0 € k2(G)}]*
=({(¢h)" € ®(B):a,b+#1,1(a)l(b) =0}

we get a,b # 1 with l(a)l(b) = 0 € k2(G) and 52 € ®(B) \ (¢5)+. There are two cases to
consider: @ = b and a # b. In the first case {a} is a singleton l.i. set and in the second
{a,b} is a two element li. set: consider any well ordered basis B’ = {a, : i € I} such
that a = a; for some i € I in the first case and, a = a;,b = a; for some 7 < j € I in the
second case. Now consider the isomorphism of change of basis pup g : W(B) 5 W(B') (see
Lemma [7.2.3))) and take o’ = pupp(6) € W(B'). Then ¢’ € W(B') is a lifting of 0 € G
with respect to the epimorphism W(B') - W(B')/V(B') = G (Lemma again) and
o € ®(B) \,uB/B[(qf’b)ﬂ =®(B’)\ (qf,;))L (see Remark. As l(a)l(b) = 0, by the proof
of the Theorem we have (¢2 ,)* = S/N®(B’) in first case and (qf’;a],)L = D;;Ne(B)
in the second case, then 0’ € ®(B’) \ S (resp. o € ®(B')\ D;i;). A straightforward
calculation with the group operation in W(B') gives o/ ¢ M/ C W(B’) in the first case and
o' ¢ M;UM; CW(B') in the second case, then applying W(B') - G we have o ¢ M,, € G
(resp. o ¢ M,, U M,, € G). Now recall that for each y € G\ {1} and each 6 € G\ ®(G),
0 ¢ M, iff < {®(G),0.9(G)},y >=1iffy ¢ {®(G),0.9(G)}*+. Then, since G is a standard pre-
special group we have, in both cases, 1 # a,b , I(a)l(b) = 0 € ko(G), a,b ¢ {®(G),0.D(G)}+
and, in particular, since G is a k-stable pre-special group, 1 € Dg(< a,b >) or, equivalently,
<a,b>=<1,ab>.

Recall that for special groups the maximal saturated subgroups are precisely the index 2
saturated subgroups so the result follows from items (i) and (ii).

Let A C G be a saturated subgroup: as G is a special group A = [{E C G : ¥ € XA} where
XA ={¥ CG: ¥ is a maximal saturated subgroup and A C ¥}

then, by Proposition
At =\/{Z' CG/®(G): T € Xa};

by item (iii) ¥+ = {®(G),0®(G)} for some o € G\ ®(G), 0? = id; take Tx = ®(G) U 0 ®(G)
then T, C G is a closed (normal) subgroup such that ®(G) C Ty, and all elements of T, \ {1}
are involutions so

\/{Tg 1Y € Xa} =closure([{Tx : ¥ € Xa}])

is a closed subgroup of G that contains ®(G) and is (topologically) generated by involutions.
Now note that Ts/®(G) = {®(G),c®(G)} = X+ and then

AL =\/{Zt CG/2(G): T € Xa} = \/{T/®(G) CG/P(G) : ¥ € Xa}
= (\/{Ts CG: T e Xa})/2(9)

as ¢ : G - G/®(G) gives an isomorphism of complete lattices between the set of closed
subgroups of G which contains ®(G) and the set of closed subgroups of G/®(G).

Now take T' C G a closed subgroup of G such that ®(G) C T and T is topologically generated
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by involutions. Write I7 = {c € T : 0 € G\ ®(G), 0 = id} then, for each o € Iy, c®(G) C T
, Ty, = ®(G) Uo®(G) is a closed (normal) subgroup of G and

T= closure([U{Tg co € Ir}]) = \/{To' co€lr},

also T,/®(G) = {®(G),0®(G)} and, by item (iv), (T,/®(G))* C G is a maximal saturated
subgroup of G. Then we have

(T/®(6))" = (\/{Ts: 0 € IT)/<I> = (\{Z,/2(G) : 0 € Ir})*
:ﬂ{ (T, /(G :aeIT}

which is a saturated subgroup of G.

O

reduced-teo

Theorem 7.3.13. Let G be a standard special group. Are equivalent
i - G is "Pythagorean” or "almost reduced’ﬂ.
it - Gal(Q) is generated by involutions.

Proof. Note that the unique non-formally real Pythagorean special group (equivalently, —1 # 1)
is G = {1} and thus Gal(G) = {1}.

(7) = (7i): The hypothesis means that {1} C G is a saturated subset of G, then by item (iv) of
the previous Proposition, Gal(G) is generated by involutions.

(ii) = (i): It follows the hypothesis that there is no continuous epimorphism G/®(G) — Zj4.
Since G is standard SG, for all a € G\ {1}, l(a)l(a) # 0 = 1(1)I(1) and, since G is in particular
k-stable, then for all a € G\ {1}, is not the case < a,a >=< 1,1 >, that is: G is Pythagorean.

[

Remark 7.3.14. Another Galois theoretic characterization of the Pythagoreaness of G is

B(Gal(G)) = [Gal(G), Gal(G)].
teomain?

Theorem 7.3.15. Let G be a standard special group. Consider the following

i- G is not formally real.
ii- Bvery involution is is ®(Gal(Q)).

iii- Every involution in Gal(G) is central.

Then (i) = (it) = (i17) and if card(Gal(G)) > 2, then all are equivalent.

Proof. By Theorem [7.3.12[(iii) G is formally real iff there is an involution o € Gal(G) \ <I>(Gal (@))
so we get (i) = (ii). As Gal(G) is a C-group we have [02,7] = 1 and, since ®(Gal(G)) = Gal(G)
(pro-2-group), then ®(Gal(G)) C center(Gal(G)) so (ii) = (iii). Now suppose card(Gal(G)) > 2:
to prove (iii) = (i) let us assume G formally real and note that any involution ¢ ®(Gal(G)) is not
in the center of Gal(G). O

[\

Le. foralla € G, < a,a >=< 1,1 > iff a = 1, but eventually —1 = 1.
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7.4 The functorial behavior of Gal and SG-cohomology

We have developed the theme ”basis change induced isomorphisms” in the general context of
pre-Special Groups, as the fundamental step to get a single Galois group of a pre-special group. In
this final section, we analyze some functorial behavior of the Gal construction of SG-theory and
provide the first steps to a (profinite) ”Galoisian” cohomology for the SG-theory, in an attempt
to complete the ”Milnor scenario” of Igr’s ([52]) in abstract theories of quadratic forms.

7.4.1 From PSG to Galois groups
construPSGGAL-ct

7.4.1. Construction:

Let f : G — G' a pSG-homomorphism of pre-special groups.

Let BY = {a}, : k € I{} be an well ordered basis of f|G] and extends it to B’ = {a}, : k € I'}, an
well ordered basis of G'. Now select ay, € f~[{a}}],k € I{. Then the set By ={a;:i € I}} C G is
linearly independent, now complete this to basis of G, B = {a; : i € I}: we just need to glue a well
ordered basis of ker(f).

We have some induced functions:

(0) f]%,B' : B" — W(B) is such that f%’B,(a;C) = ay, ifaj, € B} and f%B,(a;C) =1, ifa) € B'\B].

(1) f](Sl,)B/ : B — Py(B') is such that f}13,B'(ak7) =a}, ifar € By and f}B,B'(ak) =0, ifa € B\B;.

(2) fg,)B' :{(ai,a;) € Bx B :1,j € 1,i <j} — Po(B') is such that f%yB,(ai,aj) = aj.a, if
(ai,aj) € By x By and féB,(ai,aj) =0, if (a;,a;) € Bx B\ By x By.

Keeping the notation above, we have
GaltoSG-pr

Proposition 7.4.2. The function f}%,B' : B' = W(B) induces a continuous homomorphism fp p :
W(B')/V(B') = W(B)/V(B).

Proof. Tt follows from Proposition and the definition of f%’ g+ B' = W(B), that its image
converges to 1 € W(B). Thus, by the universal property W(B’) (Theorem |7.1.11)), f%B, extends
uniquely to a continuous homomorphism of pro-2-groups fg g W(B') = W(B).

Now, f : G — G’ also induces a Zs-module homomorphism fg)B, : Py(B) — Py(B’): this is
just the unique Zo-linear extension of the induced map f1(92)B/ : {(aj,a;) € Bx B :i,j € 1,i <
j} — Pa(B’). Moreover, since k.(f) : k«.(G) — k«(G’) is an Igr-morphism, then for each a,b € G
such that I(a)l(b) = 0 € kyo(G), we have I(fa).l(fb) = 0 € ko(G’). From this we obtain that
fgg,(qu) = q%,fb (see Proposition |7.2.2]) and, therefore, fg’g, [Q(B)] C Q(B).

For each a,b € G and ¢’ € W(B'), we have

< fg{g,(a’),ng >=< a’,fg)B,(qu >=<o,qF 5>
Thus fg]g,[V(B/)] C VY(B) and then, fg,B, : W(B') — W(B) induces a unique continuous
homomorphism of pro-2-groups fp 5 : W(B')/V(B') — W(B)/V(B).
0

Proposition 7.4.3. Let f : G — G’ be an injective pSG-morphism.

i - Then f%,B’ : W(B') = W(B) and fgp : W(B')/V(B') = W(B)/V(B) are surjective mor-
phisms of pro-2-groups (thus they can be identified with projections).
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it - Let f': G" — G is an injective pSG-morphism. If B’ is an well ordered basis of G' obtained
by successive extensions of an well ordered basis B, of f o f'[G"] to By, an well ordered basis
of fIG] 2 fo f'|G"], then applying the construction above described, we obtain

f%”,B’ = f%”,B © f%,B/ : W(B') = W(B") and fg”,B’ = f%”,B © floa,B/ t W(B')/V(B') —
W(B")/V(B")
Proof.

i - By the injectivity hypothesis, we have f% 5, [B'] = BU {1} € W(B), thus f% 5, : W(B') —
W(B) is a continuous function with dense image from a compact space into a Hausdorff space.
Therefore f2 5, and f2 g are surjective continuous homomorphisms.

ii - It follows from a straightforward calculation that f%,, B = f%,, B © f]% - Therefore, the
uniqueness of extensions and the homomorphism theorem guarantees that f%// B = fg,, B ©
f%,B’ and f%/',B' = fJ(E)?”,B © f%,B"

O]

7.4.2 From Galois Groups to PSG

Let G be a pre-special group an denote G = Gal(G). We have seen in Proposition

that there is a canonical isomorphism ¢g : G/P(G) 5 H om(G, Zs) so we get a “perfect pairing”
bc : G/®B(G) X G — Zy and there is also a canonical bijection G = {T' C G : T is a closed normal
subgroup of index < 2}.

We will explain now the term “canonical” employed, starting with the following

Lemma 7.4.4.

i - Let G,G" be pre-special groups Then each continuous homomorphism 6 : Gal(G") — Gal(G)
induces a Zs-module homomorphism 0 : G — G'.

i - The association above, 0 — 6, determines a contravariant functor from the category from all
pairs (G,Gal(Q)), G a pre-special group, and continuous homomorphisms, into the category
of Zo-modules.

Proof.

i - We have a Zs-homomorphism 6* : Homcont(Gal(G), Zs) — Homcont(Gal(G'), Z3), jn — pob.
By Proposition [7.3.2(iii), we have Za-isomorphisms ¢, ¢¥¢/. Combining the informations we
define the Zo-homomorphism 6 := wé,l of*otpg: G — G

ii - Note that id; = id, thus idg = idg. Let @' : Gal(G") — Gal(G") be a continuous homomor-
phism. Then we have (6 0 6')* = 6" 0 6*, thus (f o 0’y =60 0.

O

Remark 7.4.5. Note that for any surjective continuous homomorphism 0 : G' — G, we have that
0 : G — G’ is an injective Zo-homomorphism.

This suggest that the (sub)category of Galois groups and continuous epimorphisms is the “right”
domain category of Galois groups. We have the following:
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Proposition 7.4.6. The functor described in the Lemma above restricts to a functor from the
subcategory of Galois groups of standard pre-special groups (Definition above and continuous
epimorphisms to the category of standard pre-special groups and injective ¢SG-morphisms (i.e., the
group homomorphisms that preserves =, but that eventually does not preserves -1).

Proof. Assume that G is a k-stable pre-special group and that G’ is a standard pre-special group,
we will prove that 6 is a injective ¢SG-homomorphism from G to G.

Since # : G — G’ is a group homomorphism, it is enough to show that, for each a,b € G \ {1},
1€ Dg < a,b>=1 € Dg < 6(a),f(b) > and, since G, G’ are k-stable pre-special group, this is
equivalent to show 1(a)l(b) = 0 € kao(G) = 1(6(a))l(B(b)) = 0 € kz(G'). Now we have 2 cases to
consider:

a=2>b: Since G is a k-stable pre-special group then, by Theorem m(l), there exists S C G
a closed normal subgroup with G/S = Z, and S C M,. As 0 : G’ — G is an surjective continuous
homomorphism we have that the quotient map g : G'/071[S] — G/S is an isomorphism so §~1[S] C
G' is a closed normal subgroup such that G'/671[S] = G/S = Z, and 071[S] C 671 [M,] = Mé*(a),
where this last equality holds by the bijections in items (ii) and (iii) in Proposition and the
definition of . Now, since G’ is a standard pre-special group, we have 1(6(a))l(8(a)) = 0 € ko(G")

a#b: As 6 is an injective Zy-homomorphism, 6(a) # 6(b). Since G is a k-stable pre-special
group then, by Theorem m(ii), there exists D C G a closed normal subgroup with G/D = Dy,
D C M,N M, and My,/D = Zy. As 0 : G’ — G is an surjective continuous homomorphism we
have that the quotient map 0p : G’'/0~1[D] — G/D is an isomorphism so 0~'[D] C G’ is a closed

normal subgroup such that G'/6~1[D] = G/D = Dy and §~[D] C 6~ [M, N M) = Mé(a) N Mé(b)'

Now we check that Mé(a)é(b)/O_I[D] >~ 74: as 0 is an epimorphism O[theta™'[My)] = My, so, as
(ad)

M. . = M.
6(a)0(b) 0
Mé(a) N Mé(b)), we have an epimorphism 0, : Mé(ab) —» Mgy, thus ker(0)) = 6=1[D] C Mé(ab) and the
quotient map 6|p : Mé(ab)/O_l[D] — M/ D is an isomorphism so Mé(ab)/é_l[D] >~ Muy/D = Zy.

Now, since G’ is a standard pre-special group, we have [(0(a))l(6(D)) =0 € k2(G").

—= 0~ [My) (because 6(a) # O(b) and there are exactly three maximal above

O]

7.4.3 Towards a galoisian cohomology for SG-theory

Let G be a standard pre-special group. Since § = Gal(G) is a profinite group, the Galois
Cohomology is available for this subclass of pre-special groups. In particular, there is the graded
cohomology ring H*(G) := H*(G,{£1}) where G act trivially on Fy = Z/2Z. Therefore, at least
some parts of Milnor’s scenario for containing 3 graded rings related to quadratic forms theory of
fields (with char # 2) is available for (standard) special groups: W, (G), k«(G), and H*(G).

The result above just provides the initial step to establish cohomological methods in SG-theory.

Theorem 7.4.7. As in the field case, consider Zy = {£1} as a discrete Gal(G)-module en-
dowed with the trivial action, i.e., o0.a = a, for all 0 € Gal(G) and a € Zs. Then H.(G) :=

H,(Gal(G),Z3), is an Igr, endowed with the cup product. Moreover, there is a canonical isomor-
phism of pointed 2-groups (G, —1) = (HY(G), (-1)).

Proof. We write G := Gal(G). Just recall that:
HY(G,Zs) = (Zg)g = Fix(Za) = Zs, since G is acting trivially on Zs.
For HY(G,Zs) := CrossedHom(G, Zs) /principal CrossedHom(G, Zs), since G is acting trivially
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on Zs, we get

principalCrossedHom(G, Zs) := Im(91)
:={2:G — Zs : v = d1a for some a € Fy}
={x:G — Zy : there exist Fy € Fy such that z(0) = ca — a for all o € G}
={x:G — Zs : there exist a € Fy such that z(c) =0 for all o € G}

= {0};
and

CrossedHom(G,Zs) := Ker(ds)
:={x:G — Zy: x is continuous and z(o7) = ox(7) + x(0) for all 0,7 € G}
={z:G — Zs : z is continuous and x(o7) = z(7) + (o) for all 0,7 € G}
= Homcont(G,Zs).

Therefore H'(G, Z2) = Homcont(G, Z3)/{0} = Homcont(G, Zy) = Homcont(Gal(G), Zs).

On the other hand, by Proposition (iii) Ve G Homcont(Gal(G),Zs) as Za-modules
and, —1 € G corresponds to a open subgroup of Gal(G) with index < 2, that corresponds to (—1)
in Homcont(Gal(G),Zz2)

]

It is natural ask if the Igr H*(Gal(G),{£1}) is in the subcategory Igry: this depends of an
analysis and more explicit description of H?(Gal(G), {£1}). In particular, we will need to analyze
the relationship between the equations I(a)l(b) = 0 € k2(G) and (a) U (b) = 0 € H*(Gal(G), Zs),
for a,b € G, in a standard pre-special group . Related to this question is the existence of a
Milnor like canonical arrow from the mod 2 k-theory graduated ring of G to the graduated ring of
cohomology of G: h(G) : k.(G) — H*(G).

These generalizes some results in [2] to the context of (pre)special groups where they prove
that the cohomology ring H*(Gal(F®)|F),Zs) contains the cohomology ring H*(Gal(F*|F), Zs)
as its subring generated by cup products of level 1 elements. Therefore, it could be interesting
also analyze the properties of the sublgr generated in level 1 of the Igr H*(Gal(G),{£1}), that is
possibly a member of the subclass Igr, .



Chapter 8

Conclusion and Further Works

After all, we return to our initial diagram

new—-conclusion

Special
Groups

Graded
Rings

Profinite
2-Groups

In this present work, our main results concerns to the relation between special groups and graded
rings, with much contribution of the theory of multirings/hyperfields. In fact, we established the
result of Arason-Pfister Hauptsatz for every special group (Theorem , as an application of
“multialgebraic methods” here introduced.

In Chapter 7 we started the investigation of the relations between special groups and profinite
2-groups, towards completing the initial diagram above.

After that, we glance at these roads to follow:

1. We intend to analyze further the introduced notions of formally real semigroups, formally
real multirings and quadratic multirings.

2. With Example as a prototype, specialize the study of quadratic multirings where every
element is the product of a non-zero divisor and an idempotent. This could give some hint
about the structure of invertible elements in real semigroups, which until today is not known
to be a reduced special group in general.

3. In [25] is constructed a von Neumann hull functor from multiring category and that, when
restricted to in semi-real rings, it commutes with real semigroup functor. This allows us to
obtain some quadratic forms properties of a semi-real ring by looking to its von Neumann
regular hull. It would be interesting to determine what kind of property in the von Neumann
hull of a quadratic multiring return to the original structure.

215
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10.

11.

12.

13.

CHAPTER 8. CONCLUSION AND FURTHER WORKS

. The definition and analysis of the structure of Witt ring of more general quadratic structures

(non only obtained from special groups): this subject have already appeared in Section 4 of
Chapter 2, in connection with [37].

. Extension of the K-theory framework to more general multirings (for example, to VN-

multirings) with quadratic flavour.

. Compare graded K-theory with graded Witt ring for VN-real semigroups as in the field case

(Milnor [52]) and special groups (Dickmann-Miraglia [28§]).

In the hyperfield case, investigate the extension of the concept of Galois group to hyperfields,
comparing the Galois cohomology ring and analyse the existence of some canonical arrow
from K-theory to this cohomology ring, in an attempt to recover the Milnor’s Conjecture
available in the classic algebraic quadratic forms context ([57], [20], [21]).

. The next steps in the program of study algebraic extensions of superfields are a development

of Galois theory and Galois cohomology theory, envisaging application to other mathematical
theories as abstract structures of quadratic forms and real algebraic geometry ([24],[17],[18]):
some parts of this program are under development in [16] and [14].

In the vein of the previous item, we will pursue, in particular, further developments of the
theory of quadratic extensions of hyperfields and superfields, envisaging the description of
Galois groups of special hyperfields ”from below”. We intend apply this description to obtain
further information on the graded cohomology ring of a special group and provide a more
complete development of cohomological methods in SG-theory, applying this to obtain a
possible obstruction for every reduced SG to satisfy Marshall’s conjecture.

Since the theory of superfields/hyperfields and the abstract theories of quadratic forms of
Special Groups [28] and of Real Semigroups [33] are (or can be seen as) first-order theories,
we wonder about other possible model-theoretic results in these theories. In connection with
this, we plan to develop an order theory of superfields and analyze some candidates for notions
of real closed superfields in such a way that we may address the questions: (i) the class of
real closed superfields admits quantifiers elimination or is model-complete (according to a
convenient choice of language)?; (ii) any reasonably ordered superfield admits an essentially
unique real closure?

It could be interesting describe and explore an alternative notion of algebraically closed
multifield based on an alternative notion of of root of a polynomial, taking in account fac-
torizations, for example, if p(z) € (z — b)g(x) for some ¢(z), then b can be seem as a root of
p(x): by Theorem 7 in [6], this in fact coincide with the other notion of root of a polynomial
p(z) € F[z] whenever F is a hyperfield.

In [55] was started the development of a identity theory and a universal algebra like theory
for multi structures. However, a full model theory of multi structures, in the vein of Chapter
1 of [26], should be an object of interest (as the present work suggests) and it is seems to be
unknown.

Examples [3.6.16] and [3.7.7] reveals the necessity of some computational implementation in
order to ease and accelerate the calculations with algebraic extensions of superfields: in [13],
we start a proposal towards this subject.
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