• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2016.tde-22032016-214502
Document
Author
Full name
Marcelo Kodi Inagaki
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Chaves, Rosa Maria dos Santos Barreiro (President)
Garcia, Jose Maria Espinar
Lymberopoulos, Alexandre
Title in Portuguese
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R
Keywords in Portuguese
Hilbert
Liebmann
Superfícies
Abstract in Portuguese
Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.
Title in English
Hilbert and Liebmann type theorems for surfaces in S² X R and H² X R.
Keywords in English
Hilbert
Liebmann
Surfaces
Abstract in English
In this work it will be proved a version of Hilbert and Liebmann theorems for surfaces in S² X R and H² X R, wich are theorems about existence and uniqueness of complete surfaces with constant Gaussian curvature in those ambients. As part of the proof, namely the existence, it will be presented a classication of complete revolution surfaces with constant Gaussian curvature around any axis in S² X R and around a Lorentzian axis in H² X R.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Dissertacao.pdf (678.68 Kbytes)
Publishing Date
2016-05-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.