• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2020.tde-21122020-155111
Document
Auteur
Nom complet
Leonardo Francisco Cavenaghi
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Sperança, Llohann Dallagnol (Président)
Bettiol, Renato Ghini
Caramello Junior, Francisco Carlos
Melo, Mateus Moreira de
Radeschi, Marco
Titre en portugais
Deformações métricas e aplicações
Mots-clés en portugais
Curvatura escalar prescrita
Curvatura não-negativa
Curvatura positiva
Deformações métricas
Fluxo de curvatura média
Variedades exóticas
Resumé en portugais
Nesta tese estudamos diversas deformações métricas com o intuito de construir novos exemplos e encontrar condições necessárias e suficientes para existência de métricas com propriedades de curvatura (não-negativa e positiva), possivelmente construindo novos exemplos, sendo esses baseados em variedades exóticas. Estudamos também o comportamento limite de fluxos de curvatura média em variedades com folheações riemannianas singulares além do problema de prescrever curvatura escalar em grandes classes de fibrados.
Titre en anglais
On metric deformations and applications
Mots-clés en anglais
Exotic manifolds
Mean Curvature Flow
Metric deformations
Non-negative/positive curvatures
Prescribing scalar curvature
Resumé en anglais
In this thesis we study several metric deformations in order to build new examples and find necessary and sufficient conditions for the existence of metrics with curvature properties (non-negative and positive), possibly building new examples, which are based on exotic manifolds. We also studied the limit behavior of the Mean Curvature Flow on manifolds with Singular Riemannian foliations, in addition to the problem of prescribing scalar curvature in large classes of bundles.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-01-20
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.