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Resumo

CONRADO, J. Superfícies minimamente imersas no fibrado tangente unitário da
esfera Euclidiana que surgem de campos vetoriais unitários minimizantes de área
na S2\{N,S}. 2022. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade
de São Paulo, São Paulo, 2022.

Este trabalho tem dois objetivos. Primeiramente, para todo campo vetorial unitário
sobre S2\{N,S} com índice de Poincaré par diferente de zero e dois, provamos que o fecho
topológico de sua imagem coincide com a imagem de uma garrafa de Klein minimamente
imersa em T 1S2. Em segundo lugar, estabelecemos uma relação entre o Toro de Clifford e
os campos vetoriais unitários Norte-Sul e Sul-Norte. Mais especificamente, provamos que o
fecho topológico da união das imagens dos campos vetoriais Norte-Sul e Sul-Norte em T 1S2

é um Toro de Clifford mergulhado.

Palavras-chave: Garrafa de Klein, toro de Clifford, volume de campos vetoriais unitários,
superfícies mínimas, espaço projetivo redondo, fibrado tangente unitário.
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Abstract

CONRADO, J. Minimally immersed surfaces in the unit tangent bundle of the
2-sphere arising from area-minimizing unit vector fields on S2\{N,S}. 2022. Tese
(Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2022.

The aim of this work is twofold. Firstly, for the unit vector fields on S2\{N,S} with
even Poincaré indexes other than zero or two, we prove that the topological closure of their
image coincides with the image of minimally immersed Klein bottles in T 1S2. Secondly, we
establish a relationship between the Clifford Torus and the North-South and South-North
unit vector field. More specifically, we prove that the topological closure of the union of
the images of the North-South and the South-North vector fields in T 1S2 is an embedded
Clifford Torus.

Keywords: Klein bottle, Clifford Torus, volume of a unit vector field, minimal surface,
round projective space, unit tangent bundle.
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Chapter 1

Introduction

The theory of minimal surfaces has its roots in variational calculus and emerged when
the Plateau Problem was studied by Lagrange in 1760, [Lag62]. Throughout the years, many
renowned mathematicians have contributed to the flowering and ramification of this theory.
Such contributions provided us with several ways to find minimal surfaces in ambient spaces
other than the classical - three-dimensional Euclidean space R3 - such as the round 3-sphere
S3 and the unit tangent bundle of the Euclidean sphere T 1S2 or equivalently the round real
projective space, RP3 = S3(2)/Z2, which are the main ambient spaces of this thesis.

Among the equivalent definitions of minimal surfaces, we highlight the one from the point
of view of variational calculus and differential geometry, respectively.

i) A hypersurface Σ ⊂M is minimal if and only if Σ is a critical point of the functional
area.

ii) Let Σ be a submanifold of a Riemannian manifold (M, g). If the mean curvature H of
Σ vanishes, then Σ is said to be a minimal submanifold.

Recently, old conjectures have been resolved and new and unexpected applications to
other parts of mathematics and physics have been achieved using this theory. In [MN14],
Fernando Codá Marques and André Neves using the min-max theory for minimal surfaces,
proved the Willmore conjecture [Wil65]

"Every compact surface Σ of genus one in R3 must satisfy
∫
Σ
H2dA ≥ 2π2, where dA

stands for the area form of Σ."

The equality is achieved for the torus of revolution whose generating circle has radius 1 and
the distance from its center to the axis of revolution is

√
2. This torus can also be obtained

as the stereographic projection of the Clifford Torus.
In [Bre13], Simon Brendle gave an affirmative answer to the Lawson conjecture, [Law70].

"The Clifford Torus is the only compact embedded minimal surface in S3 of genus 1".

Parallel to the growth of minimal surface theory, Herman Gluck and Wolfgang Ziller
defined the volume of a unit vector field V over an n-dimensional manifold M as the measure

1



2 INTRODUCTION 1.0

of the volume of V (M) in T 1M with respect to the Sasaki metric, [GZ86]. A unit vector
field of minimum volume, if it exists, is to be found among the critical points of the volume
functional restricted to X 1(M), the set of unitary vector fields over M. Also, if a vector field
defines a minimal immersion, it should be a solution of the variational problem restricted
to X 1(M). Intuitively speaking, one hopes that the visually best organized unit vector fields
on M are rewarded with minimum possible volume.

A new way of obtaining minimal surfaces in the tangent bundle of a Riemannian manifold
M was presented by Olga Gil-Medrano and Elise Fuster-Llinhares in [GMLF02]: An element
V ∈ X 1(M) is a critical point of the volume functional restricted to X 1(M) if and only if
V : M → (T 1M, gSas) is a minimal immersion, where gSas is the Sasaki metric. Therefore,
one can find a volume-minimizing vector field V : M → T 1M , that produces a minimal
surface V (M) in the unit tangent bundle T 1M .

In regards to the volume-minimizing unit vector fields, the first closed Riemannian man-
ifold that was successfully studied was the unit round 3-sphere. In that case, the infimum is
attained by the unit Hopf vector fields, i.e., those tangent to the fibers of a Hopf fibration.

In dimension 2, if V (M) is a critical point of the volume functional, then we say that V is
area-minimizing. In 2010, Olga Gil-Medrano and Vincent Borrelli prove that the Pontryagin
vector field (unit vector field with one singularity) is an area-minimizing unit vector field on
the round 2-sphere, and its image is homeomorphic to the projective plane, [BGM10].

If M = S2k+1, the volume of the North-South vector field
−→
NS on M – also known as

the radial field – provides a lower bound for the volume of the unit vector field defined on
odd-dimensional spheres, see [BCN04],

vol
(−→
NS
)
= 4k

(
2k

k

)−1

vol
(
S2k+1

)
.

Hence, for k = 1 we obtain

vol
(−→
NS
)
= 2vol(S3) = 4π2. (1.1)

In [BCJ08], Fabiano Brito, Pablo Chacón and David Johnson established an explicit
relationship between the volume of a unit vector field V on Sn\{N,S}, (n = 2 or 3) and the
absolute values of the Poincaré index around its isolated singularities IV (N) and IV (S), see
the Appendix, Section 5.1, for these definitions. Specifically,

i) for n = 2, vol(V ) ≥ 1
2
(π + |IV (N)|+ |IV (S)| − 2) vol(S2),

ii) for n = 3, vol(V ) ≥ (|IV (N)|+ |IV (S)|) vol(S3).

In this way, they computed

vol
(−→
NS
)
=

1

2
π vol(S2) = 2π2. (1.2)
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If π : T 1S2 → S2 is the projection, one has that

∂
(−→
NS
)
= π−1(p) ∪ π−1(−p); (1.3)

therefore,
−→
NS is a cylinder whose boundary consists of two antipodal fibers of T 1S2.

Recently, we proved the most recent result about area-minimizing unit vector fields on
the antipodally punctured round 2-sphere, [BCGN21]. We concluded that the volume of a
unit vector field V is bounded below by the length of an ellipse naturally associated to it
(see Theorem 2.10). In addition, we exhibit minimizing vector fields Vk,2−k within each index
class and show that they are the only ones whose volume attains the minimum. We provide
a more precise definition of the unit vector fields Vk,2−k in Subsection 2.1.3. For each integer
k other than 0 or 2, the image of Vk,2−k is a minimal surface of T 1S2.

In [BGM10], the authors presented one way to see that the image of the Pontryagin vector
field P is the projective plane RP2. Let D be a disk of S2(1) containing the singularity of
P . Since the Poincaré index of P at the singularity is 2, the image P(∂D) is a closed curve
that surrounds twice the fiber sitting above the singularity. If π : T 1S2 → S2 is the natural
projection, we have that

P ∩ π−1(D) ∼= M, (1.4)

where P is the closure of the image of P and M is a Moebius strip, and as P(S2\D) is a
disk D′, we obtain

P = D′ ∪M ∼= RP2.

We read equation (1.4) as giving us a Moebius strip from a unit vector field with Poincaré
index equal to 2. A natural question to pose is: Can one always find a Moebius strip when
given a vector field with even Poincaré index at its singularities? In search for an answer to
this question, we obtained our first result.

Theorem A. Let Vk,2−k be an area-minimizing unit vector field on S2\ {N,S}. If the
Poincaré index around the singularity N (or S) is k ∈ 2Z\{0, 2}, then the topological closure
of the image of Vk,2−k

(
S2\{N,S}

)
is a minimally immersed Klein bottle in T 1S2(1).

The minimally immersed Klein bottle of Theorem A is obtained by gluing together
two immersed Moebius strips that appear when restricting to each hemisphere along their
common boundary. It is possible to make this collage because the Poincaré index k is even.
In this way, the techniques we employ here cannot be directly applied to get similar results
for odd Poincaré indexes.

The second result we established is a relationship between the Clifford Torus and the
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North-South and South-North unit vector fields. The Clifford Torus in S3(2) is given by

T 2 =
{
(x1, x2, x3, x4) ∈ S3(2) : x21 + x24 = 2 and x22 + x23 = 2

}
.

It is not difficult to parameterize the Clifford Torus T 2 see (4.11), in Section 4.1 to obtain

vol(T 2) = 8π2. (1.5)

In [BCJ08], the authors computed the volume of the North-South unit vector field
−→
NS as

being as given by (1.2); therefore, one sees that

vol
(−→
NS ∪

−→
SN
)
= 4π2. (1.6)

We remark that the volume of the Clifford Torus (1.5) is twice the volume of
−→
NS∪

−→
SN (1.6)

and twice the volume of
−→
NS on S3, (1.1). Moreover, since the image of

−→
NS is a cylinder with

a two-fiber boundary in RP3(2) (see (1.3)), we get that the topological closure of
−→
NS ∪

−→
SN

is a torus in RP3(2) ∼= T1S2. These facts contributed to finding the following result.

Theorem B. Let T 2 be the Clifford Torus in S3(2). If ϕ is a restriction of the Euler para-
metric representation of SO(3), then

ϕ(T 2) = topological closure of
(−→
NS

⋃−→
SN
)
,

where
−→
NS,

−→
SN are the North-South and South-North unit vector fields defined on S2\ {N,S},

respectively. A restriction of the Euler parametric representation of SO(3) is defined in (4.1),
Section 4.1.

The techniques used here open the way for a new class of examples of minimal surfaces
within S3.

We organize this thesis as follows. In the second chapter we recall some results about the
volume of a unit vector field and we report on the most recent result about area-minimizing
unit vector fields on the antipodally punctured round 2-sphere, [BCGN21]. The third and
fourth chapters are devoted to prove Theorem A and B, respectively. The appendices are ded-
icated to recall the necessary background material,including the definitions of the Poincare
index of a vector field and the Poincare-Hopf theorem .



Chapter 2

Preliminaries

In this chapter we lay down some preliminaries to fix the notation used throughout
the manuscript. All concepts and facts presented in this chapter are already present in the
literature and we provide appropriate references for them. We start by defining the volume
of a unit vector field on a closed oriented Riemannian manifold. Then we move on to recall
some results involving area-minimizing unit vector fields, which is the main object of study
in this chapter. In the last subsection, we state the most recent result about area-minimizing
unit vector fields on the antipodally punctured round 2-sphere (see Theorem 2.10).

2.1 The volume of a unit vector field

LetM be a closed oriented Riemannian manifold and V a unit vector field onM . Consider
the unit tangent bundle T 1M equipped with the Sasaki metric. The Sasaki metric is defined
by declaring the orthogonal complement of the vertical distribution to be the horizontal
distribution given by the Levi-Civita connection ∇, more details in [Sas58, KS75, CM12,
DP12]. The volume of a unit vector field V is defined (see [GZ86]) as the volume of the
submanifold V (M), the image of the immersion V :M → T 1M ,

vol(V ) := vol(V (M)).

Let {e1, · · · , en} be an orthonormal local frame on M and denote by νM the volume form
of M written with respect to it. The formula for the volume of the unit vector field V is
given by

vol(V ) =

∫
M

√
det(I + (∇V)(∇V)∗)νM

=

∫
M

(
1 +

n∑
j

||∇ejV ||2 +
∑
j1<j2

||∇e1V ∧∇e1V ||2 + · · · (2.1)

+ · · ·+
∑

j1<···<jn−1

||∇e1V ∧ · · · ∧ ∇ejn−1
V ||2

) 1
2 ,

where I is the identity, and ∇V is considered as an endomorphism of the tangent space with
adjoint operator (∇V )∗, see [Joh88]. Intuitively speaking, one hopes that the visually best

5



6 PRELIMINARIES 2.1

organized unit vector fields on M are rewarded with minimum possible volume. If a unit
vector field is parallel, i.e. ∇V = 0, equation (2.1) implies there is a trivial minimum

vol(V ) = vol(M).

A closed Riemannian manifold does not always admit a globally defined parallel vector field.
In fact, this is often the case because in order for a vector field to be parallel, it needs to
determine two mutually orthogonal complementary totally geodesic foliations. Hence, one
expects that the symmetries of volume-minimizing unit vector fields have interesting prop-
erties. In regards to the volume-minimizing unit vector fields, the first closed Riemannian
manifold that was successfully studied was the unit round 3-sphere. We state this result in
full during Subsection 2.1.1, see Theorem 2.2.

On a Riemannian manifold, the critical points of the volume functional restricted to
vector fields with length one are not always vector fields of minimal volume, on the other
hand, the volume-minimizers are critical points of the volume functional. The upcoming
result appears in the proof of Theorem A below.

Theorem 2.1 (Gil-Medrano and Llinhares-Fuster, [GMLF02]). An element V ∈ X 1(M)

is a critical point of the volume functional restricted to X 1(M) if and only if V : M →
(T 1M, gSas) is a minimal immersion, where gSas is Sasaki mectric.

2.1.1 The Hopf vector field: a volume-minimizing vector field on S3

In 1931, Heinz Hopf discovered several fibrations of spheres by great subspheres [Hop31].
The fibration of S2n+1 by great circles S1 ↪→ S2n+1, the fibration of S4n+3 by great 3-spheres
S3 ↪→ S4n+3, and the fibration of S15 by great 7-spheres S7 ↪→ S15 are all named after Hopf.
The Hopf fibrations have many physical applications, including magnetic monopoles [Nak90],
rigid body mechanics [MR99] and quantum information theory [MD01].

We now recall how to construct the fibration of S2n+1 by great circles, S1 ↪→ S2n+1.
Consider the sphere S2n+1 ⊂ R2n+2 ∼= Cn+1. Although there are different ways to identify
R2n+2 and Cn+1, each one giving a different fibration of the sphere, they are all congruent to
one another. Consider all complex lines in Cn+1 passing through origin. The intersection of a
given complex line with the sphere S2n+1 is called a fiber. Since each point in S2n+1 belongs
to only one of these lines, there is but a single fiber at each point. On the other hand, since
each complex line is a 2-dimensional linear subspace of R2n+2, the fibers are all great circles
and therefore totally geodesic submanifolds of S2n+1. This process defines the Hopf fibration
S1 ↪→ S2n+1. If one denotes by J the complex structure on Cn+1, each complex line defining a
fiber and containing x ∈ S2n+1 has {x, Jx} as a generator set in R2n+2. Note that the vector
Jx is tangent to S2n+1 because x is normal to S2n+1. Hence, for all x ∈ S2n+1, the vector Jx
is tangent to the fiber and the orthogonal distribution (Jx)⊥ is not integrable.

In order to define the Hopf fibration S3 ↪→ S4n+3, consider S4n+3 ⊂ Hn+1, where Hn+1 is
quaternion space. In analogy with the above described fibration, we define the fibers as being
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the intersection of a quaternionic line that contain the origin with the sphere S4n+3. The
quaternionic lines are real subspaces of dimension 4 of R4n+4. The orthogonal distribution
to the distribution defined by the fibers of S3 ↪→ S4n+3 is not integrable.

Do note that the construction of the Hopf fibration S7 ↪→ S15 does not follow along the
same steps as the two other Hopf fibrations presented above. For more details about Hopf
fibrations, we refer the reader to [Hop31, CM12, BGN12].

We call a unit vector field H tangent to the fibres of a Hopf fibration a Hopf vector
field.

Theorem 2.2 (Gluck and Ziller, [GZ86]). The unit vector fields of minimum volume on S3

are precisely the Hopf vector fields and no others.

In fact, for the Hopf fibration S1 ↪→ S2n+1, the volume of the Hopf vector field H is

vol(H) = 2n vol
(
S2n+1

)
, n ∈ N. (2.2)

The method that goes into proving the Theorem 2.2 depends on the so-called calibrated
geometries of Federer and Havey-Lawson ([HL82]), and it does not work in higher dimen-
sions, as remarked [GZ86, p. 180]. For the Hopf vector fields to be minimizers of the volume
functional, a necessary condition is that they be critical and stable. However, David John-
son showed that the Hopf vector fields on S2n+1 are unstable for n > 1 and he proved the
following.

Theorem 2.3 (Johnson, [Joh88]). The Hopf fibration on the round sphere S5 is not local
minimum of the volume functional.

For the instability of Hopf flows on spheres of radius r, see [GMLF01].

2.1.2 The Pontryagin vector field: an area-minimizing vector field on S2\{p}

A Pontryagin field on Sn is any unit vector field P defined on a dense open subset U
such that the closure of P(U) is the n-dimensional generalized Pontryagin cycle of T 1Sn. This
cycle is the set of all unit vectors obtained by parallel translating a given vector v0 ∈ T 1

p0
Sn

along great circles on Sn passing through p0 [Ped93] and [BGM10]. The resulting vector field
has a singularity at −p0 of Poincaré index 0 or 2 depending on the dimension n of the sphere,
see Figure 2.1. Sharon Petersen, in her Ph.D. thesis [Ped93], exhibits a unit vector field of
small volume, converging to a vector field with one singularity on every odd dimensional
sphere. This result suggests the possibility that there exist no unit vector fields of minimum
volume on Sn, for n ≥ 5. She herself conjectured the latter, and moreover, that the limiting
vector field with one singularity is of minimum volume in its homology class in the unit
tangent bundle. More precisely, she showed that P(U) is a minimal submanifold of T 1Sn(1)

and conjectured that, for odd dimensional Sn with n ≥ 5, the infimum is not reached by any
globally defined unit vector field, but does have the volume of the Pontryagin vector fields.
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Figure 2.1: The flow of the Pontryagin vector field V2 on S2\{N} with Poincaré index 2

Consider the stereographic projection centered at the south pole S

φ : Sn\{N} −→ Rn

(x1, · · · , xn+1) 7−→
(

x1
1− xn+1

, · · · , xn
1− xn+1

)
and its inverse

φ−1 : Rn −→ Sn\{N}

(z1, · · · , zn) 7−→
(

2z1∑n
i=1 z

2
i + 1

, · · · , 2zn∑n
i=1 z

2
i + 1

,

∑n
i=1 z

2
i − 1∑n

i=1 z
2
i + 1

)
.

Let {w1, w2, · · · , wk} denote the canonical basis of Rk. Since the stereographic projection φ
preserves angles, one can compute the parallel transport on Rn. Let Pi be the Pontryagin field
obtained from parallel transporting vi = dφ−1

0 (wi) ∈ T 1
SSn. At a point x = (rx1, · · · , rxn+1) ∈

Sn(r), Pi has the following expression

Pi(x) =
dφ−1

φ(x)(wi)

||dφ−1
φ(x)(wi)||

.

Computing the derivatives of φ−1, we obtain

P1(x) =

(
1− x21

1− xn+1

)
w1 +

(
− x1x2
1− xn+1

)
w2 + · · ·+

(
− x1xn
1− xn+1

)
wn + x1wn+1,

P2(x) =

(
− x1x2
1− xn+1

)
w1 +

(
1− x22

1− xn+1

)
w2 +

(
− x2x3
1− xn+1

)
w3 + · · ·

+ · · ·+
(
− x1xn
1− xn+1

)
wn + x2wn+1,

...

Pn(x) =

(
− x1xn
1− xn+1

)
w1 + · · ·+

(
− xn−1xn
1− xn+1

)
wn−1 +

(
1− x2n

1− xn+1

)
wn + xnwn+1.
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In particular, if n = 2, the Pontryagin field P2 at a point (rx1, rx2, rx3) ∈ S2(r) is given by

P2(rx1, rx2, rx3) = − x1x2
1− x3

w1 +

(
1− x22

1− x3

)
w2 + x2w3. (2.3)

In 2010, Vincent Borrelli and Olga Gil-Medrano proved that the Pontryagin vector field
given by (2.3) is area-minimizing on the 2-sphere.

Theorem 2.4 (Borrelli and Gil-Medrano, [BGM10]). Among unit vector fields on S2(r) with
one singularity those of least area are the Pontryagin ones and no others.

Moreover, they proved that any great 2-sphere is a minimal surface in the Berger 3-sphere
and, as a consequence, they obtained that the images of Pontryagin fields are minimal
submanifolds of T 1S2(r).

Theorem 2.5 (Borrelli and Gil-Medrano, [BGM10]). The only minimal surfaces in T 1S2(r)

homeomorphic to the projective plane arising from vector fields without boundary are Pon-
tryagin cycles.

2.1.3 Area-minimizing unit vector fields on S2\{N,S}

In 2008, Fabiano Brito, Pablo Chacón and David Johnson established an explicit rela-
tionship between the volume of a unit vector field and its Poincaré index around isolated
singularities. Throughout, if V is a vector field with an isolated singularity at p, IV (p) stands
for the Poincaré index of V around p.

Theorem 2.6 (Brito, Chacón and Johnson, [BCJ08]). Let M = Sn\ {N,S}, n = 2 or 3, be
the standard Euclidean sphere with two antipodal points N and S removed. Let V be a unit
vector field defined on M . Then,

i) for n = 2, vol(V ) ≥ 1
2
(π + |IV (N)|+ |IV (S)| − 2) vol(S2),

ii) for n = 3, vol(V ) ≥ (|IV (N)|+ |IV (S)|) vol(S3).

Theorem 2.6 has been extended to odd dimensional spheres S2n+1 as follows:

Theorem 2.7 (Brito, Gomes and Gonçalves, [BGG19]). If V is a unit vector field on
S2n+1\{±p}, then

vol(V ) ≥ π

4
vol(S2n)(|IV (p)|+ |IV (−p)|).

Before turning to reporting the most recent result about area-minimizing unit vector
fields on the antipodally punctured round 2-sphere, we exhibit the unit vector fields that are
area-minimizing within each index class.

Let S2\{N,S} be the Euclidean sphere with two antipodal points N and S removed.
Denote by g the usual metric on S2 inherited from R3 and by ∇ the Levi-Civita connection
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associated to g. Consider the following oriented orthonormal frame {e1, e2} on S2\ {N,S},
given by

e1(p) =
1√

x2 + y2
(−y, x, 0), (2.4)

e2(p) =

(
xz√
x2 + y2

,
yz√
x2 + y2

,−
√
x2 + y2

)
, (2.5)

where p = (x, y, z) ∈ S2\ {N,S}. We have that e1 is tangent to the parallels and e2 to the
meridians. Let k be an integer number and define the angle function as

θk : S2\ {N,S} −→ R

p 7−→ θk(p) = (k − 1)t+
π

2
, (2.6)

where t ∈ [0, 2π) is the longitude coordinate of p = (x, y, z) in S2\ {N,S}. Note that if
{e1, e2} is the oriented orthonormal frame defined by (2.4) and (2.5),

dθk(p)(e1) =
k − 1√
x2 + y2

and dθk(p)(e2) = 0. (2.7)

Definition 2.8. For k ∈ Z, define the unit vector field Vk,2−k at p ∈ S2\ {N,S} by

Vk,2−k(p) = cos (θk(p)) e1(p) + sin (θk(p)) e2(p),

where θk is the angle function and {e1, e2} is the oriented orthonormal frame defined by (2.4)
and (2.5).

Remark. Definition 2.8 coincides with the one in [BCGN21]. In either case, the defined
vector fields differ from the Pontryagin fields in that the latter are vector fields with only one
singularity. Throughout, we consider the IVk,2−k

(N) = k ∈ Z+ and IVk,2−k
(S) = 2− k.

Consider the parametrization of the 2-sphere given by spherical coordinates:

(0, π]× [0, 2π) −→ R3

(α, β) 7−→ (cosα cos β, cosα sin β, sinα), (2.8)

where α is the latitude and β is the longitude. Given p = (cosα cos β, cosα sin β, sinα) ∈
S2\{N,S}, we have θk(p) = (k − 1)β and e1(p) = (− sin β, cos β, 0). For a fixed parallel α,
consider the curve µ on S2\{N,S} given by

µ(t) =

(
cos(α) cos

(
t

cos(α)
+ β

)
, cos(α) sin

(
t

cos(α)
+ β

)
, sin(α)

)
.
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Since µ(0) = p, and

µ′(t) =
1

cos(α)

(
− sin

(
t

cos(α)
+ β

)
, cos

(
t

cos(α)
+ β

)
, 0

)
,

one concludes that

µ′(0) =
1

cos(α)
(− sin (β) , cos (β) , 0) =

1

cos(α)
e1(p) ∈ TpS2\{N,S}.

Moreover,

dθp(e1) =
d

dt
(θ ◦ µ)(0) = d

dt

(
(k − 1)t

cos(α)
+ (k − 1)β +

π

2

)
=

k − 1

cos(α)
.

The previous computation shows that θk depends only on the longitude coordinate. The
vector field Vk,2−k winds k − 1 times around the parallel α at a constant angle speed with
respect to the referential {e1, e2}. The function θk defined in (2.6) is the angle between a
given parallel and the unit vector field Vk,2−k. The angle function θk changes as k changes.
For example, the angle θ3 between V3,−1 and a parallel is twice the angle θ2 between V2,0 and
the same parallel. This is to be expected because V3,−1 has a singularity with Poincaré index
3 (i.e., with four petals, see Figure 2.4), whereas V2,0 has a singularity with Poincaré index 2

(i.e., with two petals, see Figure 2.1). Also, V1,1 is the South-North vector field, which forms
an angle θ1 = π/2 with each parallel, see Figure 2.3.

Figure 2.2: Visual representation of some of the unit vector fields Vk,2−k on S2\{N,S}

Let V be a unit vector field tangent to S2\{N,S} and consider the oriented orthonormal
local frame

{
V ⊥, V

}
on S2\{N,S}. Until the end of this chapter, let M = S2\{N,S}. In
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this case, the equation for the volume of V (2.1) reduces to

vol(V ) =

∫
M

√
1 + γ2 + δ2 νM , (2.9)

where γ := g(∇V V, V
⊥) and δ := g(∇V ⊥V ⊥, V ) are the geodesic curvatures associated to V

and V ⊥, respectively.
Let S1

α be the parallel of S2 at latitude α ∈ (−π
2
, π
2
) and S1

β be the meridian of S2 at longitude
β ∈ [0, 2π).

Lemma 2.9. Let θ ∈ [0, π/2] be the oriented angle from e1 to V . If V = (cos θ)e1+(sin θ)e2

and V ⊥ = (− sin θ)e1 + (cos θ)e2, then along a parallel S1
α, it holds the following

1 + γ2 + δ2 = 1 + (tanα + dθ(e1))
2 + dθ(e2)

2.

Lemma 2.9 allows us to rewrite the volume functional as an integral depending on the
latitude α and the derivatives of θ

vol(V ) =

∫
M

√
1 + (tanα + dθ(e1))

2 + dθ(e2)2 νM . (2.10)

We now turn to report the result in [BCGN21]. It says that the volume of a unit vector field
V is bounded below by the length of an ellipse naturally associated to it.

Theorem 2.10. Let V be a unit vector field on S2\ {N,S}. If k = max {IV (N), IV (S)},
k ∈ Z\{0, 2}, then

vol(V ) ≥ πL(εk),

where L(εk) is the length of the ellipse x2

k2
+ y2

(k−2)2
= 1.

For proving the Theorem 2.10, we use Lemma 2.9 and equation (2.10), more details see
[BCGN21].

Corollary 2.11. For k ∈ Z\{0, 2}, the unit vector field Vk,2−k on S2\ {N,S} is area-
minimizing if

vol(Vk,2−k) = πL(εk),

where L(εk) is the length of the ellipse x2

k2
+ y2

(k−2)2
= 1.

Proof. In the case when k > 2, the ellipse εk can be parametrized by µ(t) = (k cos t, (k −
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2) sin t). We use this parametrization to compute the length of εk,

L(εk) =

∫ 2π

0

∥µ′(t)∥
1
2 dt

=

∫ 2π

0

√
k2 sin2(t) + (k − 2)2 cos2(t)dt

=

∫ 2π

0

√
k2 sin2(t) + (k − 2)2(1− sin2(t))dt

=

∫ 2π

0

√
(k − 2)2 + (k2 − (k − 2)2) sin2(t)dt

=

∫ 2π

0

√
(k − 2)2 + 4(k − 1) sin2(t)dt

= 4

∫ π
2

0

√
(k − 2)2 + 4(k − 1) sin2(t)dt. (2.11)

Using Lemma 2.9 and (2.7), we compute

vol(Vk,2−k) =

∫
M

√
1 + (tanα + dθ(e1))

2 + dθ(e2)2 νM

=

∫
M

√
1 +

(
tanα +

k − 1

cosα

)2

νM

=

∫
M

√
1 +

(
sinα + k − 1

cosα

)2

νM

=

∫
M

√
1 + (k − 1)2 + 2(k − 1) sinα

cos2 α
νM

= lim
α0→−π

2

∫ π
2

α0

∫ 2π

0

√
1 + (k − 1)2 + 2(k − 1) sin

(
α
2
+ π

4

)
cos2 α

cosαdβdα

= 2π

∫ π
2

−π
2

√
1 + (k − 1)2 + 2(k − 1) sin

(α
2
+
π

4

)
dα.

Letting t := α
2
+ π

4
, we obtain

vol(Vk,2−k) = 4π

∫ π
2

0

√
(k − 2)2 + 4(k − 1) sin2 t dt = πL(εk),

where L(εk) is the length of the ellipse
x2

k2
+

y2

(k − 2)2
= 1 obtained in (2.11).

Combining these results with Theorem 2.1, we conclude:

Corollary 2.12. For k ∈ 2Z\{0, 2}, the image of the unit vector field Vk,2−k on S2\ {N,S}
is minimal surface in T 1S2.
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Example 2.1. The South-North
−→
SN unit vector field on S2\{N,S} has the Poincaré index

1 at both the singularities N and S.

Figure 2.3: The flow of the unit vector field V1,1 on S2\{N,S}, i.e., k = 1

From Theorem 2.10,

vol(V1,1) = π

∫ 2π

0

dt = 2π2 =
1

2
π vol(S2).

Example 2.2. Consider the unit vector field V3,−1 on S2\{N,S}.

Figure 2.4: The flow of the unit vector field V3,−1 on S2\{N,S}, i.e., k = 3

From Theorem 2.10,

vol(V3,−1) ≥ 4π

∫ π
2

0

√
1 + 8 sin2 t dt ∼ 1

3
π2 vol(S2)

Example 2.3. Consider the unit vector field V4,−2 on S2\{N,S}.
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Figure 2.5: The flow of the unit vector field V4,−2 on S2\{N,S}, i.e., k = 4

From Theorem 2.10,

vol(V4,−2) ≥ 4π

∫ π
2

0

√
4 + 12 sin2 t dt ∼ 3

2
π vol(S2)



Chapter 3

Minimally immersed Klein bottles in T 1S2

In this chapter we prove that the topological closure of the area-minimizing unit vector
field Vk,2−k of Definition 2.8 is the image of an immersed Klein bottle in T 1S2. The minimally
immersed Klein bottle is obtained by gluing together two immersed Moebius strips that
appear when restricting to each hemisphere along their boundary. The techniques we employ
here cannot be directly be applied to get similar results for odd Poincaré indexes.

3.1 Minimally immersed Moebius strips

Consider the oriented orthonormal frame {u1, u2} on S2\{N,S} given by the rotation
of the frame {e1, e2} defined in (2.4) and (2.5) by the angle corresponding to the longitude
coordinate t ∈ [0, 2π). Specifically, if p ∈ S2\{N,S},

u1(p) = sin(t)e1(p) + cos(t)e2(p) (3.1)

u2(p) = − cos(t)e1(p) + sin(t)e2(p). (3.2)

Recall from Definition 2.8 that

Vk,2−k(p) = cos
(
(k − 1)t+

π

2

)
e1(p) + sin

(
(k − 1)t+

π

2

)
e2(p).

Using the trigonometric identitiescos
(
(k − 1)t+ π

2

)
e1(p) = − sin((k − 1)t)e1(p) = cos(kt) sin(t)e1(p)− cos(t) sin(kt)e1(p)

sin
(
(k − 1)t+ π

2

)
e2(p) = cos((k − 1)t)e2(p) = cos(kt) cos(t)e2(p) + sin(kt) sin(t)e2(p),

we deduce

Vk,2−k(p) = cos(kt) (sin(t)e1(p) + cos(t)e2(p)) + sin(kt) (− cos(t)e1(p) + sin(t)e2(p))

= cos(kt)u1(p) + sin(kt)u2(p), (3.3)

for all p ∈ S2\ {N,S}. The vector field Vk,2−k winds k times around the parallel α at a
constant angle speed with respect to the referential {u1, u2}.
The next definition is an alternative to Definition 2.8 that exploits (3.3).

16
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Definition 3.1. Let D2
r be the disk of radius r centered at the origin in C. Define the unit

vector field v⃗k as

v⃗k(z) =
zk

||zk||
,

where k ∈ Z and z ∈ D2
r\{0}.

Given z ∈ D2
r\{0}, one can write it as z = r cos(t) + ir sin(t), where t ∈ [0, 2π). In polar

coordinates, Definition 3.1 becomes

v⃗k(z) = cos(kt) + i sin(kt).

Let T 1D2
π/2 be the unit tangent bundle of D2

π/2 equipped with the Sasaki metric. In this case,
T 1D2

π/2 is the total space of a Riemannian S1
1 -fibration over a D2

π/2, where S1
1 is the circle

of radius 1. The unit vector field v⃗k is a section of the unit tangent bundle T 1D2
π/2\{0}, the

image of which can be explicitly written as

v⃗k
(
D2

π/2\{0}
)
=
{
(r cos t, r sin t, cos(kt), sin(kt)) ∈ D2

π/2 × S1
1 : 0 < r ≤ π

2
, 0 ≤ t < 2π

}
.

(3.4)

The topological closure of v⃗k
(
D2

π/2\{0}
)

is by definition

v⃗k
(
D2

π/2\{0}
)
= v⃗k

(
D2

π/2\{0}
)⋃

∂
(
v⃗k(D

2
π/2\{0})

)
,

where
∂
(
v⃗k(D

2
π/2\{0})

)
=
{
(0, 0, cos(kt), sin(kt)) : 0 ≤ t ≤ 2π

}
.

Lemma 3.2. If k ∈ 2Z\{0}, then v⃗k(D
2
π/2\{0}) is a ruled surface in R4.

Proof. Define the following sets

At :=
{(

−π
2
cos(t),−π

2
sin(t), cos(kt), sin(kt)

)
∈ R4 : −π ≤ t ≤ π

}
,

Bt :=
{(π

2
cos(t),

π

2
sin(t), cos(kt), sin(kt)

)
∈ R4 : −π ≤ t ≤ π

}
,

Ot :=
{
(0, 0, cos(kt), sin(kt)) ∈ R4 : −π ≤ t ≤ π

}
.

We are going to show that

v⃗k(D
2
π/2\{0}) = AtOt

⋃
OtBt,
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where

AtOt :=
{
(0, 0, cos(kt), sin(kt)) + a

(
−π
2
cos(t),−π

2
sin(t), cos(kt), sin(kt)

)
: t ∈ [−π, π], a ∈ [0, 1]

}
,

OtBt :=
{(π

2
cos(t),

π

2
sin(t), cos(kt), sin(kt)

)
+ b (0, 0, cos(kt), sin(kt)) : −π ≤ t ≤ π, b ∈ [0, 1]

}
.

Given q ∈ v⃗k(D
2
π/2\{0}), there exist (r, t) ∈

(
0, π

2

]
× [0, 2π) such that

q =
(
r cos(t), r sin(t), cos(kt), sin(kt)

)
= (0, 0, cos(kt), sin(kt)) +

(
−2r

π

)(
−π
2
cos(t),−π

2
sin(t), cos(kt), sin(kt)

)
.

Letting a :=
−2r

π
, we clearly see that q ∈ AtOt, and hence, we get the inclusion

v⃗k(D
2
π/2\{0}) ⊂ AtOt

⋃
OtBt.

We now show that AtOt and OtBt are subsets of v⃗k(D2
π/2\{0}). A point q1 belongs to AtOt

if and only if there exists an a ∈ [0, 1] such that

q1 = (0, 0, cos(kt), sin(kt)) + a
(
−π
2
cos(t),−π

2
sin(t), cos(kt), sin(kt)

)
= a

(
−π
2
cos(t),−π

2
sin(t), cos(kt), sin(kt)

)
+ (1− a) (0, 0, cos(kt), sin(kt)) .

We observe that (
−π
2
cos(t),−π

2
sin(t)

)
=
(π
2
cos(π + t),

π

2
sin(π + t)

)
. (3.5)

Since k is even, k = 2n for some n ∈ Z, and we have

(
cos
(
k(π + t)

)
, sin

(
k(π + t)

))
= (cos(2nπ + kt), sin(2nπ + kt)) = (cos(kt), sin(kt)) . (3.6)

From equations (3.5) and (3.6), it follows that

q1 =
(aπ

2
cos(π + t),

aπ

2
sin(π + t), cos

(
k(π + t)

)
, sin

(
k(π + t)

))
. (3.7)

Note that 0 ≤ a ≤ 1 implies 0 ≤ aπ

2
≤ π

2
, and consequently, letting r′ :=

aπ

2
, we get

0 ≤ r′ ≤ π

2
. Thus q1 gets rewritten as

q1 =
(
r′ cos(π + t), r′ sin(π + t), cos

(
k(π + t)

)
, sin

(
k(π + t)

))
.
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Further letting t′ := π + t, since −π ≤ t ≤ π,

−π ≤ t′ − π ≤ π =⇒ 0 ≤ t′ ≤ 2π. (3.8)

Therefore, q1 = (r′ cos(t′), r′ sin(t′), cos(kt′), sin(kt′)) ∈ v⃗k(D
2
π/2\{0}), andAtOt ⊂ v⃗k(D

2
π/2\{0}),

as desired. An analogous computation shows that if q2 ∈ OtBt, q2 ∈ v⃗k(D
2
π/2\{0}), thereby

implying

BtOt

⋃
OtAt ⊂ v⃗k(D

2
π/2\{0}). (3.9)

Note however, that the union is not disjoint as, e.g.,
(
−π

4
, 0, 1, 0

)
belongs to the intersection

when taking a = 1/2, b = −a and t = 0.

One can realize v⃗k
(
D2

π/2\{0}
)

geometrically as a surface in R3 given by the image of

f : [0, π/2]× [0, 2π] −→ R3 (3.10)

(r, t) 7−→ (r sin(t), 2 cos(kt) + r cos(t) cos(kt), 2 sin(kt) + r cos(t) sin(kt)).

As an example, fix k = 4. In order to draw v⃗k
(
D2

π/2\{0}
)
, we split the interval [0, 2π] in

four quarters and draw them successively in four separate steps (see Figures 3.1, 3.2, 3.3
and 3.4). The visualization of this construction is also available at https://www.geogebra.
org/m/cm28qe5k.

Figure 3.1: Visualizing v⃗4
(
D2

π/2\{0}
)
, the image of (3.10) restricted to 0 ≤ t ≤ π/2.

https://www.geogebra.org/m/cm28qe5k
https://www.geogebra.org/m/cm28qe5k
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Figure 3.2: Visualizing v⃗4
(
D2

π/2\{0}
)
, the image of (3.10) restricted to π/2 ≤ t ≤ π.

Figure 3.3: Visualizing v⃗4
(
D2

π/2\{0}
)
, the image of (3.10) restricted to π ≤ t ≤ 3π/2.



3.1 MINIMALLY IMMERSED MOEBIUS STRIPS 21

Figure 3.4: Visualizing v⃗4
(
D2

π/2\{0}
)
, the image of (3.10) restricted to 3π/2 ≤ t ≤ 2π.

Ultimately, the full image of (3.10) with 0 ≤ t ≤ 2π glues together an immersed Moe-
bius strip in R4 plotted in Figure 3.5, where the four Figures 3.1, 3.2, 3.3, and 3.4 appear
simultaneously, glued along the white central circle.

Figure 3.5: An immersed Moebius strip in R4 given by the image of (3.10) when k = 4.

In fact, the following lemma shows that the image of (3.10) is an immersed Moebius strip,
regardless of the value of k.

Lemma 3.3. If k ∈ 2Z\{0}, then the topological closure of v⃗k
(
D2

π/2\{0}
)

is the image of
an immersed smooth Moebius strip with boundary v⃗k

(
∂(D2

π/2\{0})
)
.
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Proof. Fix k ∈ 2Z\{0} and consider the smooth immersion

φ :
[
−π
2
,
π

2

]
× [0, π] −→ R4

(ρ, t) 7−→ (ρ cos(t), ρ sin(t), cos(kt), sin(kt)).

In order to prove the result, we verify the following conditions:

i) The image of φ is the topological closure of v⃗k
(
D2

π/2\{0}
)
, i.e., Imφ = v⃗k

(
D2

π/2\{0}
)
.

Indeed, the topological closure of v⃗k
(
D2

π/2\{0}
)

is a subset of the image of φ, see (3.4).
Conversely, let p ∈ Imφ, that is, there are (ρ, t) ∈ [−π

2
, π
2
]× [0, π] such that

p = (ρ cos t, ρ sin t, cos(kt), sin(kt)).

If ρ ∈ [0, π
2
], φ shares the same formula as vk, thus implying p ∈ v⃗k

(
D2

π/2\{0}
)

trivially.
On the other hand, if ρ ∈ [−π

2
, 0), by letting r := −ρ, we get r ∈ (0, π

2
]. If ϑ := t+ π,

then ϑ ∈ [π, 2π], and

ρ cos t = −r cos t = −r cos(ϑ− π) = −r cosϑ cosπ + r sinϑ sin π = r cosϑ,

ρ sin t = −r sin t = −r sin(ϑ− π) = −r cosϑ sin π − r cos π sinϑ = r sinϑ.

Moreover, if k = 2n,

cos(kt) = cos(2n(ϑ− π)) = cos(kϑ) cos(2nπ) + sin(kϑ) sin(2nπ) = cos(kϑ),

sin(kt) = sin(2n(ϑ− π)) = sin(kϑ) cos(2nπ)− cos(kϑ) sin(2nπ) = sin(kϑ).

Therefore, Imφ ⊂ v⃗k
(
D2

π/2\{0}
)
, as claimed.

ii) The image of the smooth immersion φ is a Moebius strip in R4.

The reverse identification of the two opposite edges of the domain of φ is given by the
relation φ(ρ, π) = φ(−ρ, 0) that holds for all ρ ∈ [−π

2
, π
2
].

iii) The boundary of the smoothly immersed Moebius strip is v⃗k
(
∂(D2

π/2\{0})
)
. Indeed,

∂(Imφ) = {(0, 0, cos(kt), sin(kt)) : 0 ≤ t ≤ π} = ∂(v⃗k(D
2
π/2\{0})).

Since v⃗k is a section of the unit tangent bundle ofD2
π/2\{0}, we have that v⃗k

(
∂(D2

π/2\{0})
)
=

∂
(
v⃗k(D

2
π/2\{0})

)
.

Remark 3.4. A minimally embedded Moebius strip appears when restricting to Lemma 3.3
for k = ±2.
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Consider the decomposition S2 = S2
+ ∪ S2

−, where S2
+ and S2

− are respectively the northern
and southern hemispheres. The next propositions establish a relationship between the unit
vector fields v⃗k and Vk,2−k, when k ∈ 2N\{0, 2}.

Proposition 3.5. If the Poincaré index k at the singularity N ∈ S2
+ is an even number

greater than 2, then the topological closure of Vk,2−k(S2
+\{N}) in T 1S2

+ is the image of an
immersed Moebius strip with boundary Vk,2−k

(
∂(S2

+\{N})
)
.

Proof. At the singularity of the North pole N , assume the canonical identification TNS2
+
∼=

R2. Let D2
π/2 be the disk of radius π

2
centered at the origin in R2. The map

ψ : D2
π/2 × S1 → T 1S2

+, (X, σ) 7→
(
expN(X),

d expN(σ)

||d expN(σ)||

)
,

where expN : T 1
NS2

+ → S2
+ is the exponential map, defines a diffeomorphism between the

unit tangent bundles T 1D2
π/2 and T 1S2

+. Hence, the result follows from Lemma 3.3.

An analogous statement holds for the southern hemisphere.

Proposition 3.6. If Poincaré index 2−k at the singularity S ∈ S2
− is a strictly negative even

number, then the topological closure of Vk,2−k(S2
−\{S}) in T 1S2

− is the image of an immersed
Moebius strip with boundary Vk,2−k

(
∂(S2

−\{S})
)
.

The intersection of these Moebius strips is given by the central circle as in Figure 3.5.

Proof of Theorem A. A smooth immersed Klein bottle in T 1S2(1) is obtained by gluing
together the two Moebius strips of Proposition 3.5 and Proposition 3.6 along their respective
boundaries. It follows from Theorem 2.10 that Vk,2−k is an area-minimizing unit vector field
in its topological conjugation class. It follows from Corollary 2.12, the section seen as a
surface in T 1S2(1) is geometrically minimal, i.e., it has zero mean curvature. Therefore, the
topological closure of Vk,2−k is a minimal surface in T 1S2(1).



Chapter 4

Minimally embedded Clifford Torus in T 1S2

In this chapter we establish a relationship between the North-South and South-North
unit vector fields and a Clifford Torus. More specifically, we prove that the closure of the
union of the images of the North-South and the South-North vector fields in T 1S2(1) is an
embedded Clifford Torus.

4.1 The closure of the North-South and South-North union

In 1975, W. Klingenberg and S. Sasaki showed that the unit tangent bundle T 1S2(r) is
isometric to the projective space RP3 via the Euler parametric representation (4.1) of SO(3).
The complete proof can be found in [BGM10, KS75]. At this point, we recall the maps and
isometries that will be needed throughout this section. Let SO(3) be the special orthogonal
group equipped with the metric 1

2
⟨·, ·⟩ given by

⟨A,B⟩ = tr(AtB),

where A,B ∈ so(3) := TISO(3), and I is the identity matrix.
Let g denote the standard metric on Rn, and consider the Euler parametric representation
of SO(3)

Φ :
(
S3(2), g

)
−→

(
SO(3),

1

2
⟨·, ·⟩

)

(x1, x2, x3, x4) 7−→
1

4

x
2
1 + x22 − x23 − x24 2x1x4 + 2x2x3 −2x1x3 + 2x2x4

−2x1x4 + 2x2x3 x21 − x22 + x23 − x24 2x1x2 + 2x3x4

2x1x3 + 2x2x4 −2x1x2 + 2x3x4 x21 − x22 − x23 + x24

 , (4.1)

and the diffeomorphism

ψ :
(
T 1S2(1), gSas

)
−→

(
SO(3),

1

2
⟨·, ·⟩

)
(x, v) 7−→ (x, v, x ∧ v).

The projective space can be defined as RP3(2) = S3(2)/Z2. The map Φ induces an isometry
Φ between (RP3(2), g) and

(
SO(3), 1

2
⟨·, ·⟩

)
. Ultimately, the desired isometry is given by

24
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(RP3(2), g)
ψ−1 ◦ Φ

//

Φ ((

(
T 1S2(1), gSas

)
(
SO(3), 1

2
⟨·, ·⟩

) ψ−1

66
(4.2)

Define the following functions that are the first and second columns of the Euler parametric
representation (4.1)

x : R4 −→ R3

x(x1, x2, x3, x4) =
1

4
(x21 + x22 − x23 − x24, −2x1x4 + 2x2x3, 2x1x3 + 2x2x4), (4.3)

v : R4 −→ R3

v(x1, x2, x3, x4) =
1

4
(2x1x4 + 2x2x3, x

2
1 − x22 + x23 − x24, −2x1x2 + 2x3x4). (4.4)

Note that the third column in (4.1) is the cross product of the vectors x and v, that is,

(x× v)(x1, x2, x3, x4) =
1

4
(−2x1x3 + 2x2x4, 2x1x2 + 2x3x4, x

2
1 − x22 − x23 + x24). (4.5)

Moreover, in the case when (x1, x2, x3, x4) ∈ S3(2), the vectors x(x1, x2, x3, x4), v(x1, x2, x3, x4),
and x× v(x1, x2, x3, x4) are unit vectors since they land in SO(3).

Definition 4.1. The restriction of the Euler parametric representation of SO(3) is

ϕ : S3(2) −→ M3×2(R)

(x1, x2, x3, x4) 7−→
(
x(x1, x2, x3, x4)

T v(x1, x2, x3, x4)
T
)
. (4.6)

Consider T 1S2 seen as the set of matrices

x1 x4

x2 x5

x3 x6

 ∈M3×2(R) such that

x21 + x22 + x23 = x24 + x25 + x26 = 1 and x1x4 + x2x5 + x3x6 = 0. (4.7)

Proposition 4.2. If ϕ is the restriction of Euler parametric representation of SO(3) of
Definition 4.1, then ϕ

(
S3(2)

)
is a subset of T 1S2.

Proof. It follows from the fact that the Euler parametric representation (4.1) takes values
in SO(3).
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The Clifford Torus in S3(2) is given by

T 2 =
{
(x1, x2, x3, x4) ∈ S3(2) : x21 + x24 = 2 and x22 + x23 = 2

}
. (4.8)

It follows from Proposition 4.2 that ϕ
(
T 2
)
⊂ T 1S2.

The image of the North-South and South-North unit vector fields on S2(1)\{N,S} in T 1S2

considered as above are respectively

−→
NS =



x

zx√
1− z2

y
zy√
1− z2

z −
√
1− z2

 ∈M3×2(R) : x2 + y2 + z2 = 1 and z ̸= ±1

 ,

−→
SN =




x

−zx√
1− z2

y
−zy√
1− z2

z
√
1− z2

 ∈M3×2(R) : x2 + y2 + z2 = 1 and z ̸= ±1

 .

Moreover, in the topological closure of their union

−→
NS

⋃−→
SN =

(−→
NS

⋃−→
SN
)⋃

∂
(−→
NS

⋃−→
SN
)
,

we have that

∂
(−→
NS

⋃−→
SN
)
= ∂

(−→
NS
)⋃

∂
(−→
SN
)
=


 0 cos(v)

0 sin(v)

∓1 0

 : v ∈ [0, 2π]

 .

Theorem B. Let T 2 be the Clifford Torus in S3(2) (4.8). If ϕ is the restriction (4.1) of the
Euler parametric representation of SO(3), then

ϕ
(
T 2
)
= topological closure of

(−→
NS

⋃−→
SN
)
, (4.9)

where
−→
NS,

−→
SN are, respectively, the images of the North-South and South-North unit vector

fields on S2\ {N,S} in T 1S2.

Proof. For the first inclusion in (4.9), ϕ
(
T 2
)
⊂

−→
NS

⋃−→
SN , we just need to prove that v

defined in (4.4) is a multiple of
−→
NS or

−→
SN . Note that the cross product between the vector

fields
−→
SN or

−→
NS and any position vector on the sphere is parallel to the xy-plane, that is,

its z-coordinate is zero (see Figure 4.1).
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Figure 4.1: In blue, the cross product between the vector field pointing north and the position vector.

Indeed, let p = (x, y, z) ∈ S2(1), and
−→
OP = (x, y, z) be its corresponding position vector in

R3. The cross product between the vectors
−→
OP and

−→
SN at p is given by

−→
OP ×

−→
SN =

(
y
√
1− z2 +

yz2√
1− z2

,
−xz2√
1− z2

− x
√
1− z2, 0

)
.

For each (x1, x2, x3, x4) ∈ T 2, we have that

Φ(x1, x2, x3, x4) =

x
2
1 + x22 − x23 − x24 2x1x4 + 2x2x3 −2x1x3 + 2x2x4

−2x1x4 + 2x2x3 x21 − x22 + x23 − x24 2x1x2 + 2x3x4

2x1x3 + 2x2x4 −2x1x2 + 2x3x4 0

 ∈ SO(3).

In particular,

(x× v)(x1, x2, x3, x4) = (−2x1x3 + 2x2x4, 2x1x2 + 2x3x4, 0) ∈ R3.

Therefore, v is parallel to the vector field
−→
SN , thus implying

ϕ
(
T 2
)
⊂

−→
SN

⋃−→
NS. (4.10)

For the converse inclusion in (4.9), we restrict our attention to prove that
(−→
SN ∪ ∂

(−→
SN
))

⊂
ϕ
(
T 2
)
, because the North-South part will follow from a similar argument. We start by

proving that the topological closure of
−→
SN is a subset of ϕ(T 2). Consider the following

parametrization of the Clifford Torus T 2 (4.8),

Υ : [−π, π]× [−π, π] −→ T 2

(a, b) 7−→
(√

2 cos a,
√
2 cos b,

√
2 sin b,

√
2 sin a

)
. (4.11)
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Thus, letting p =
(√

2 cos(a),
√
2 cos(b),

√
2 sin(b),

√
2 sin(a)

)
∈ T 2 for some (a, b) ∈ [−π, π]×

[−π, π], we compute

ϕ(p) =
1

4

2(cos2(a) + cos2(b)− sin2(b)− sin2(a)) 4 cos(a) sin(a) + 4 cos(b) sin(b)

−4 cos(a) sin(a) + 4 cos(b) sin(b) 2(cos2(a)− cos2(b) + sin2(b)− sin2(a))

4(cos(a) sin(b) + cos(b) sin(a)) −4 cos(a) cos(b) + 4 sin(b) sin(a)



=
1

2

cos(2a) + cos(2b) sin(2a) + sin(2b)

sin(2b)− sin(2a) cos(2a)− cos(2b)

2 sin(a+ b) −2 cos(a+ b)

 . (4.12)

Picking values in [0, π/4] and (x, y, z) ∈ S2(1), set

a :=
1

2
arccos

(
x+

yz√
1− z2

)
=

1

2
arcsin

(
−y + xz√

1− z2

)
, (4.13)

b :=
1

2
arcsin

(
x− yz√

1− z2

)
=

1

2
arcsin

(
y +

xz√
1− z2

)
. (4.14)

It follows then from (4.13) and (4.14) that

cos(2a) = x+
yz√
1− z2

, sin(2a) = −y + xz√
1− z2

,

cos(2b) = x− yz√
1− z2

, sin(2b) = y +
xz√
1− z2

;

therefore,

cos(2a) + cos(2b)

2
= x and

sin(2b)− sin(2a)

2
= y.

In so, for each (x, y, z) ∈ S2(1), we have that

1− z2 =

(
cos(2a) + cos(2b)

2

)2

+

(
sin(2b)− sin(2a)

2

)2

=
1 + cos(2(a+ b))

2
= cos2(a+ b),

which, in order, implies z2 = sin2(a + b). Hence, there are two possible values for z. If
z = − sin(a + b), then we would have points in ϕ(T 2) that are not in

−→
SN

⋃−→
NS, which

cannot be due to our first inclusion (4.10). Consequently, z = sin(a+ b), and

−→
SN ⊂ ϕ

(
T 2
)
.

It remains to be seen that the set ∂
(−→
SN
)
=


0 cos(v)

0 sin(v)

1 0

 : v ∈ [0, 2π]

 is also a subset
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of ϕ(T 2). It is enough to consider a := π
2
− b, for then

sin(2a) = sin(π − 2b) = sin(π) cos(2b)− sin(2b) cos(π) = sin(2b),

cos(2a) = cos(π − 2b) = cos(π) cos(2b) + sin(2b) sin(π) = − cos(2b).

One thus concludes that there exists p ∈ T 2 such that

ϕ(p) =
1

2

cos(2a) + cos(2b) sin(2a) + sin(2b)

sin(2b)− sin(2a) cos(2a)− cos(2b)

2 sin(a+ b) −2 cos(a+ b)

 =

0 sin(2a)

0 cos(2a)

1 0

 =

0 cos(π
2
− 2a)

0 sin(π
2
− 2a)

1 0

 .

By the same line of reasoning, one can prove that the closure of
−→
NS is subset ϕ (T 2) and

the result follows.

Using the isometry (4.2), we can identify the antipodal points of ϕ(T 2). Therefore, the
topological closure of

−→
NS

⋃−→
SN is an embedded Clifford Torus in T 1S2(1), which is the

content of the following corollary.

Corollary 4.3. If
−→
NS,

−→
SN are the North-South and South-North unit vector fields defined

on S2\ {N,S}, then the topological closure of the union of their images in T 1S2(1) is an
embedded Clifford Torus.

One can use the matrix (4.12) to locate the points in the domain of the Clifford Torus
parametrization, in the 2-sphere, and in the unit tangent bundle of the 2-sphere. We sum-
marize this location in the following Table 1 and Figure 4.2.

Table 1. Location of the points in T 2, S2(1) and T 1S2(1).
Values in [−π, π]× [−π, π] Points in S2(1), zx = sin(a+ b) Points in T 1S2, zv = − cos(a+ b)

a+ b = 2π Equator
−−→
NS (North-South )

a+ b = 3π/2 Singularity S ∂(
−−→
NS) (Boundary of North-South)

a+ b = π Equator
−−→
SN (South-North)

a+ b = π/2 Singularity N ∂(
−−→
SN) (Boundary of South-North)

a+ b = 0 Equator
−−→
NS (North-South )

a+ b = −π/2 Singularity S ∂(
−−→
NS) (Boundary of North-South)

a+ b = −π Equator
−−→
SN (South-North)

a+ b = −3π/2 Singularity N ∂(
−−→
SN) (Boundary of South-North)

a+ b = −2π Equator
−−→
NS (North-South )
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Figure 4.2: Location of the points in T 2, S2(1) and T 1S2(1).



Chapter 5

Appendices

The main objective of this chapter is defining two topological invariants: the Poincaré
index of a vector field and the Euler characteristic of a manifoldM , and to state the Poincaré-
Hopf Theorem that relates them.

5.1 Appendix A: The Poincaré index of a vector field

Let M be a smooth manifold and V a vector field on M . A point p ∈ M is said to be
a singular point or a singularity of V if V (p) = 0, and a regular point, otherwise. If
there is r > 0 such that V (y) ̸= 0 for all y ∈ Br(p)\{p}, where Br(p) is a ball of radius r in
a coordinate chart centered at p, we say that p is an isolated singularity of V .

From a local point of view, it is interesting to see how V behaves around its singularities.
Indeed, if we try and draw a vector field on some compact surface, one first needs to determine
patterns around the singularities and then smoothly interpolate the rest of the field. Locally
each singularity can be of the type: sink, source, spiral or circulation, see Figures 5.3, 5.2, 5.6
and 5.9, respectively. However, as one tries and interpolate them, one quickly discovers that
the topology of the manifold limits the possibilities. For example, we defined the Pontryagin
vector field on the round 2-sphere in (2.3) (see Figure 2.1), which is a vector field with
only one singularity. This cannot be done on the torus, which, in contrast, has a vector
field without singularities, an object that cannot be built on the round 2-sphere due to
the Hairy ball Theorem. On the other hand, one can construct vector fields with exactly
two singularities on both surfaces, but one needs to be careful as certain patterns around
these singularities such as a saddle (Figure 5.9) plus a source (Figure 5.2) cannot exist
on the sphere due to the Poincaré-Hopf theorem that we state in the next subsection (see
Theorem 5.8.

In order to investigate the relation between V and the topology of M , we must quantify
the directional change of V around its singularities. First, assume that M = Rn and V has
an isolated singularity at the origin. The directional variation of V around 0 is measured by

31
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the Gauss map

G : Sr −→ Sn

p 7−→ V (p)

||V (p)||

where Sr is small sphere of radius r around at the origin. The Gauss map takes the vector
given by the field V at a given point p into a unit vector in Rn+1. Here, we choose a
small enough radius r such that V has no singularities inside Sr, except at the origin. The
Poincaré index of a vector field V at 0 is defined as the degree of the Gauss map and

is denoted by IV (0). Note that if there is a different suitable r′ other than r, then
V (p)

||V (p)||
extends to the annulus bounded by the two spheres, ultimately implying that the definition
of the Poincaré index does not depend on the choice of radius.

In the two-dimensional case, IV (0) counts the number of times V rotates completely
while going once around the circle counterclockwise. One counterclockwise rotation of V has
positive direction and counts +1, whereas a clockwise rotation is negative and counts
−1, see figure below.

Figure 5.1: The positive and negative direction on S1, respectively.

In the upcoming examples, let {c1, c2} be the orthomormal canonical base of R2. Below,
we present the flow of certain vector fields with one singularity.

Example 5.1. Let V be the vector field on R2 defined by V (x, y) := xc1+yc2. The Poincaré
index of V at the origin is 1.
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Figure 5.2: The flow of the vector field V (x, y) = xc1 + yc2 on R2

Example 5.2. Let V be the vector field on R2 defined by V (x, y) := −xc1−yc2. The Poincaré
index of V at the origin is 1.

Figure 5.3: The flow of the vector field V (x, y) = −xc1 − yc2 on R2

Example 5.3. Let V be the vector field on R2 defined by V (x, y) := xc1+2yc2. The Poincaré
index of V at the origin is 1.

Figure 5.4: The flow of the vector field V (x, y) = xc1 + 2yc2 on R2
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Example 5.4. Let V be the vector field on R2 defined by V (x, y) := xc1−yc2. The Poincaré
index of V at the origin is 1.

Figure 5.5: The flow of the vector field V (x, y) = xc1 − yc2 on R2

Example 5.5. Let V be the vector field on R2 defined by V (x, y) := (y − x)c1 − (y + x)c2.
The Poincaré index of V at the origin is 1.

Figure 5.6: The flow of the vector field V (x, y) = (y − x)c1 − (y + x)c2 on R2

Example 5.6. Let V be the vector field on R2 defined by V (x, y) := x2c1−y2c2. The Poincaré
index of V at the origin is −1.
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Figure 5.7: The flow of the vector field V (x, y) = x2c1 − y2c2 on R2

Example 5.7. Let V be the magnetic vector field on R2. The Poincaré index of V at the
origin is 2.

Figure 5.8: The flow of the magnetic vector field V on R2

Example 5.8. Let V be the vector field on R2 such that the integral lines of V are given by
r = cos(2θ). The Poincaré index of V at the origin is 3.

Figure 5.9: The flow of the vector field V such that the integral lines are given by r = cos(2θ)
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In order to define the Poincaré index of a vector field at an isolated singularity on
an arbitrary oriented manifold, one uses a local parametrization. Locally a differentiable
manifold of dimension n is a piece of Euclidean space Rn, so we simply see the Poincaré
index as though the vector field is defined over the Euclidean space Rn. Explicitly, consider
φ : U ⊂ Rn −→ M is a local parametrization centered at the origin and such that φ(0) =
p ∈ M . For each u ∈ U the derivative dφu is an isomorphism of Rn and the tangent space
of M at φ(u). We define the pullback vector field of V by

φ∗V (u) := dφ−1V (φ(u)).

Now, if V has an isolated singularity at p, then φ∗V has an isolated singularity at the origin
and we define

IV (p) := Iφ∗V (0).

If the reader is interestd in seeing why this definition does not depend on the choice of
parametrization, we suggest the references [GP74, dC76]. Some examples of Poincaré indices
of unit vector fields on the round 2-sphere were presented in Chapter 2.

5.2 Appendix B: The Euler characteristic

In this subsection we define the Euler characteristic of a smooth, compact and orientable
manifold M and we state the Poincaré-Hopf theorem, which was demonstrated in dimension
2 by Henri Poincaré in 1885, and generalized to higher dimensions by Heinz Hopf in 1927,
[Hop27].

Leonhard Euler was the first to consider the number V −A+ F associated to a given a
2-dimensional polyhedron P ⊂ R3, where V is its number of vertices of P , A its number of
edges of P and F its number of faces. Thus defined,

χ(P ) := V − A+ F (5.1)

is called the Euler characteristic of the polyhedron P .

Definition 5.1. A finite n-dimensional polyhedron P in Rn is a finite collection of n
simplices in Rn such that:

i) If S is a simplex of P , then every face of S is also a simplex;

ii) If S, and T are simplices of P , then the intersection S ∩T is a common face to S and
T , or is empty.

We denote by |P | is the topological space given by the set P with its induced topology from
the ambient space.
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Definition 5.2. Let P be a finite n-dimensional polyhedron and denote by ni its number of
i-dimensional simplices. The Euler characteristic of the polyhedron P is defined by

χ(P ) :=
∑
i

(−1)ini (5.2)

Equation (5.2) is clearly a generalization of equation (5.1) for polyhedra of dimension
greater than or equal to 2. Given a topological space X, under what conditions can we define
its Euler characteristic? To answer this question, we need the following definition.

Definition 5.3. Let X be a topological space, we say that X is triangularizable if there is a
homeomorphism h : |K| −→ X, for some polyhedron K. In this case, (K,h) is said to be a
triangulation of X.

Not every topological space X is triangularizable; however, if X is a smooth manifold, a
sufficient condition for X to admit a triangulation is to be compact.

Theorem 5.4. Let M be a compact smooth manifold, then there is a triangulation (K,h)

of M .

In the case where M is a surface, that is, a smooth manifold of dimension 2, the above
result was demonstrated by Whitehead in 1940 and can be found in [Whi40]. For the general
case, see [BG05].

Given two different triangulations of the same topological space X, it is reasonable to
wonder whether the Euler characteristics of the associated polyhedra are the same. The
theorem below, due to Henri Poincaré, shows just that.

Theorem 5.5. Let (K,h) and (K ′, h′) be two triangulations of the same topological space
X. Then, χ(K) = χ(K ′).

Definition 5.6. Let X be a triangularizable topological space and fix (K,h) a triangulation
of X. The Euler characteristic of X, χ(X), is defined as χ(K).

Theorem 5.7. Let X and Y be triangularizable topological spaces, if the space X is home-
omorphic to the space Y , then χ(X) = χ(Y ).

It follows from Theorem 5.7 that the Euler characteristic is a topological invariant.

Example 5.9. It is known that there is a homeomorphism between the round sphere S2 and
the cube ∂([0, 1]× [0, 1]× [0, 1]). Consider the triangulation of the cube schematically given
in figure 5.10.
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Figure 5.10: Triangulation of round 2-sphere

Then,

χ(S2) = 8− 18 + 12 = 2.

Example 5.10. Consider the triangulation of the torus T obtained by identifying the seg-
ments of the same name in figure 5.11.

Figure 5.11: Triangulation of torus T

Then,

χ(T ) = 1− 3 + 2 = 0.

Given M a compact oriented smooth manifold, its Euler characteristic χ(M) measures
an “obstruction” for us to construct a continuous vector field on M without singularities.
More precisely, we have that there is a continuous vector field V on M , without singularities
if and only if χ(M) = 0. This result is a consequence of the Poincaré-Hopf Theorem that we
proceed to state.

Theorem 5.8 (Poincaré-Hopf). Let M be a compact orientable smooth manifold and let
V : M −→ TM be a vector field such that its singularities are isolated. Then the Euler
characteristic of M equals the sum of the Poincaré indices of all the singularities of V , that
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is,

χ(M) =
∑
i

IV (pi),

where pi ∈M are the isolated singularities of V .

A proof of Poincaré-Hopf Theorem can be found in [GP74, p. 134]. Remarkably, note that
the vector field V in Theorem 5.8 is arbitrary as long as its singularities are isolated.
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