• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2018.tde-17122017-094108
Document
Author
Full name
Edwin Gonzalo Murcia Rodriguez
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Siciliano, Gaetano (President)
Figueiredo, Giovany de Jesus Malcher
Nardulli, Stefano
Pava, Jaime Angulo
Santos, Ederson Moreira dos
Title in English
Positive solutions for Schrödinger-Poisson type systems
Keywords in English
Asymptotically cubic nonlinearity
Ljusternick-Schnirelmann category
Schrödinger-Poisson system
Variational methods
Abstract in English
In this thesis we study Schrödinger-Poisson systems and we look for positive solutions. Our work consists in three chapters. Chapter 1 includes some basic facts on critical point theory. In Chapter 2 we consider a fractional Schrödinger-Poisson system in the whole space R^N in presence of a positive potential and depending on a small positive parameter . We show that, for suitably small (i.e. in the "semiclassical limit") the number of positive solutions is estimated below by the Ljusternick-Schnirelmann category of the set of minima of the potential. Finally, in Chapter 3, we analyze a Schrödinger-Poisson system in R^3 under an asymptotically cubic nonlinearity. We prove the existence of positive, radial solutions inside a ball and in an exterior domain.
Title in Portuguese
Soluções positivas para sistemas do tipo Schrödinger-Poisson
Keywords in Portuguese
Categoria de Ljusternick-Schnirelmann
Métodos variacionais
Não linearidade assintoticamente cúbica
Sistema Schrödinger-Poisson
Abstract in Portuguese
Nesta tese nós estudamos sistemas de Schrödinger-Poisson e procuramos soluções positivas. Nosso trabalho consiste em três capítulos. O Capítulo 1 contém alguns fatos básicos sobre a teoria de pontos críticos. No Capítulo 2 nós consideramos um sistema fracionário de Schrödinger-Poisson em todo o espaço R^N em presença de um potencial positivo e que depende de um pequeno parâmetro positivo . Nós mostramos que, para suficentemente pequeno (i.e. no limite semiclássico) o número de soluções positivas é estimado por abaixo pela categoria de Ljusternick-Schnirelmann dos conjuntos onde o potencial é mínimo. Finalmente, no Capítulo 3 nós analisamos um sistema Schrödinger-Poisson em R^3 sob a não linearidade assintoticamente cúbica. Mostramos a existência de soluções radiais positivas dentro de uma bola e em um domínio exterior.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-02-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.