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Abstract

Rafael Kazuhiro Miyazaki. Arithmetic Progressions in Sumsets of Random Sets.

Dissertation (Master’s). Institute of Mathematics and Statistics, University of São Paulo,

São Paulo, 2023.

Given a set 𝐴, its sumset 𝐴 + 𝐴 is defined as the set of all sums of two elements, not necessarily distinct,

in 𝐴. Given a function 𝑝∶ ℕ → [0, 1], we consider the sequence of independent random sets {𝐴𝑛}𝑛∈ℕ, where

𝐴𝑛 is obtained by choosing independently each integer 1 ≤ 𝑖 ≤ 𝑛 with probability 𝑝(𝑛). We employ the

classical probabilistic tools of the first and second moment methods as well as a recently proven theorem

of Park and Pham, formerly known as the Kahn–Kalai Conjecture, regarding the relationship between the

threshold function and the expectation threshold of increasing properties in order to find lower and upper

bounds for the threshold for the existence of arithmetic progressions of 𝑚(𝑛) elements in the sumset of the

random set 𝐴𝑛.

Keywords: additive combinatorics, number theory, arithmetic progressions, probabilistic method, combi-

natorics, threshold, expectation threshold.





Resumo

Rafael Kazuhiro Miyazaki. Progressões Aritméticas em Conjuntos Soma de Con-
juntos Aleatórios. Dissertação (Mestrado). Instituto de Matemática e Estatística, Uni-

versidade de São Paulo, São Paulo, 2023.

Dado um conjunto 𝐴, seu conjunto soma 𝐴+𝐴 é definido como o conjunto das somas de dois elementos,

não necessariamente distintos, em 𝐴. Dada uma função 𝑝∶ ℕ → [0, 1], consideramos a sequência de

conjuntos aleatórios independentes {𝐴𝑛}𝑛∈ℕ, onde 𝐴𝑛 é obtido pela escolha independente de cada inteiro

1 ≤ 𝑖 ≤ 𝑛 com probabilidade 𝑝(𝑛). Empregamos as ferramentas probabilisticas clássicas dos métodos do

primeiro e do segundo momento tal qual um teorema recentemente provado por Park e Pham, anteriormente

conhecido como a Conjectura de Kahn–Kalai, a respeito da relação entre o limiar e o limiar para a esperança

de propriedades crescentes, a fim de estabelecer cotas inferiores e superiores para o limiar da existência de

progressões aritméticas de 𝑚(𝑛) elementos no conjunto soma do conjunto aleatório 𝐴𝑛.

Palavras-chave: combinatória aditiva, teoria dos números, progressões aritméticas, método probabilístico,

combinatória, limiar, limiar para esperança.
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Chapter 0

Basic Notation and Definitions

Throughout this dissertation, all floor and ceiling symbols are eclipsed whenever the
inclusion is not crucial. All logarithms are taken on the natural base 𝑒, unless otherwise
indicated. We also define some other basic objects that we shall use frequently.

Definition 0.1. Let 𝑛 be a positive integer, we define

[𝑛] = {𝑖 ∈ ℕ ∶ 1 ≤ 𝑖 ≤ 𝑛}.

Definition 0.2 (Sumset). Let 𝐴 and 𝐵 be sets of integer numbers. Then the sumset 𝐴 + 𝐵 is
the following set

𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Definition 0.3 (Arithmetic progressions). The non-trivial arithmetic progression of 𝑚
elements, first element 𝑥 and common difference 𝑑 > 0 is the set

{𝑥 + (𝑖 − 1)𝑑 ∶ 𝑖 ∈ [𝑚]}.

We refer to each of these as an 𝑚-AP of difference 𝑑, or simply an 𝑚-AP from this point on.

Definition 0.4 (Longest AP). Given a finite set 𝑋 ⊆ ℕ, we let 𝐿(𝑋 ) be the largest number
of elements of a non-trivial arithmetic progression in 𝑋 .

Definition 0.5 (a.a.s). Given a sequence of random variables 𝑋 = {𝑋1, 𝑋2,… } and a sequence
of properties 𝑃 = {𝑃1, 𝑃2 … }, we say that 𝑋𝑛 satisfies 𝑃𝑛 asymptoticaly almost surely (a.a.s) if

lim
𝑛→∞

ℙ[𝑋𝑛 satisfies 𝑃𝑛] = 1.

Definition 0.6 (Little o and little omega notation). Let 𝑓 , 𝑔 ∶ ℕ → ℝ. We say that 𝑓 = 𝑜(𝑔)

and 𝑔 = 𝜔(𝑓 ) if

lim
𝑛→∞

𝑓 (𝑛)

𝑔(𝑛)

= 0.

We also sometimes write 𝑓 ≪ 𝑔 or 𝑔 ≫ 𝑓 to denote 𝑓 = 𝑜(𝑔).
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Definition 0.7 (Big O and big Omega notation). Let 𝑓 , 𝑔 ∶ ℕ → ℝ, with both functions
eventually positive. We say that 𝑓 = 𝑂(𝑔) and 𝑔 = Ω(𝑓 ) if

lim sup

𝑛→∞

𝑓 (𝑛)

𝑔(𝑛)

< ∞.

Definition 0.8 (Big Theta notation). Let 𝑓 , 𝑔 ∶ ℕ → ℝ. We say that 𝑓 = Θ(𝑔) if 𝑓 = 𝑂(𝑔)

and 𝑓 = Ω(𝑔).
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Chapter 1

Introduction

In the field of additive combinatorics, an important object of study is the sumset. In such
sets one can look for the existence of certain structures, such as arithmetic progressions.
One early result regarding such search was obtained by Bourgain [2], which we present
here.

Theorem 1.1. Let 𝐴 and 𝐵 be non-empty subsets of [𝑛]. Then,

𝐿(𝐴 + 𝐵) > exp

[

𝑐
(

|𝐴||𝐵| log 𝑛

𝑛
2 )

1/3

− log log 𝑛

]

,

for some positive constant 𝑐.

This result was improved when considering APs and sets on the ciclic group by
Green [4] in the following theorem.

Theorem 1.2. Let 𝐴 and 𝐵 be non-empty subsets of ℤ/𝑛ℤ. Then,

𝐿(𝐴 + 𝐵) > exp

[

𝑐
(

|𝐴||𝐵| log 𝑛

𝑛
2 )

1/2

− log log 𝑛

]

,

for some positive constant 𝑐.

Finally we present the following two Theorems and one Corollary by Croot, Ruzsa and
Schoen [3]. These consider sparser sets, although only finite sized arithmetic progressions
can then be assured in the sumset.

Theorem 1.3. Let 𝐴 be a finite set of integers such that |𝐴 − 𝐴| = 𝐶|𝐴| and |𝐴 − 2𝐴| = 𝐾 |𝐴|.
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Then,
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝐿(𝐴 − 𝐴) ≥ odd
(
2

log|𝐴|

log𝐾

+ 1
)

𝐿(𝐴 + 𝐴) ≥ odd
(
2

log(𝐶
−1
|𝐴|)

log𝐶𝐾

+ 1
)

𝐿(𝐴 + 𝐴) ≥ odd
(

log(𝐶
−1
|𝐴|)

2 log𝐶

+ 1
)
.

Here odd(𝑥) denotes the smallest odd number greater than or equal to 𝑥 .

Corollary 1.4. For every odd number 𝑘 > 1 and 𝑛 sufficiently large, if

𝐴 ⊆ [𝑛], and |𝐴| ≥ (3𝑛)
1−1/(𝑘−1)

,

then 𝐿(𝐴 + 𝐴) ≥ 𝑘.

Also, if
𝐴, 𝐵 ⊆ [𝑛], and |𝐴||𝐵| ≥ 6𝑛

2−2/(𝑘−1)
,

then 𝐿(𝐴 + 𝐵) ≥ 𝑘.

Theorem 1.5. For every 𝜀 > 0, there exists 0 < 𝜃0 ≤ 1 so that if 0 < 𝜃 < 𝜃0 ≤ 1, then there
exist infinitely many integers 𝑛 and sets 𝐴 ⊆ [𝑛] with |𝐴| ≥ 𝑛

1−𝜃, such that

𝐿(𝐴 + 𝐴) < exp(𝑐𝜃
−2/3−𝜀

),

where 𝑐 > 0 is some absolute constant.

All these results pertain to the size of the longest arithmetic progression in the sumset
of deterministic sets, given conditions on the density of the sets themselves or some
function of them, such as 𝐴 − 𝐴 and 𝐴 − 2𝐴.

We investigate whether we can say similar things about the sumset of random sets.
In particular, we shall study the following problem: for a sequence of probabilities given
by a function 𝑝∶ ℕ → [0, 1], we consider the sequence of independent random sets
{𝐴𝑛 ⊆ [𝑛]}𝑛∈ℕ, where

ℙ[𝑖 ∈ 𝐴𝑛] = 𝑝(𝑛) for all 𝑖 ∈ [𝑛], (1.1)

and these events are mutually independent. Formally, for each natural number 𝑛, let 𝑋𝑛 =

(𝑥1,… , 𝑥𝑛) be an independent random variable uniformly distributed on the hypercube
[0, 1]

𝑛 and for every 𝑖 ∈ [𝑛], let 𝑖 ∈ 𝐴𝑛 if, and only if, 𝑥𝑖 ≤ 𝑝(𝑛). We shall study 𝐿(𝐴𝑛 + 𝐴𝑛)

as 𝑛 goes to infinity. We present two related questions.

Question 1.6. Given a function 𝑚∶ ℕ → ℕ, such that 𝑚(𝑛) ≤ 2𝑛 for every natural
number 𝑛, what is the (threshold) probability 𝑡𝑚∶ ℕ → (0, 1) for which there are arithmetic
progressions of 𝑚(𝑛) elements in the sumset 𝐴𝑛 + 𝐴𝑛 with probability 1/2?

Question 1.7. For a probability sequence 𝑝∶ ℕ → (0, 1) what is the typical size of 𝐿(𝐴𝑛 +

𝐴𝑛)?

For the case 𝑚 constant, Theorem 1.8 below answers Question 1.6 up to a constant
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factor.

Theorem 1.8. Let 𝑚 be a positive integer. If 𝑚 ≥ 4, then

𝑡𝑚(𝑛) = Θ(𝑛
−1/2−1/𝑚

). (1.2)

If 𝑚 ≤ 3, then
𝑡𝑚(𝑛) = Θ(𝑛

−1
). (1.3)

Since for each given 𝑛 and 𝑚 the event 𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚 is increasing, Theorem 1.8
combined with a theorem of Bollobás and Thomason [1] tells us that 𝑛1/2−1/𝑚 (𝑚 ≥ 4) is
the usual Erdős–Rényi threshold function for this event.

We now focus on the case 𝑝 ≥ 𝑛
−1/2+𝑜(1). In this regime Question 1.7 leads to more

concise answers than Question 1.6. We present these answers next. Our simplest, general
upper bound result for 𝐿(𝐴𝑛 + 𝐴𝑛) is Theorem 1.9 below.

Theorem 1.9. If 𝑝 = 𝑛
−1/2−𝑜(1), lim sup

𝑛→∞
𝑝
2
𝑛 < 1 and 𝜏 < − log(lim sup

𝑛→∞
𝑝
2
𝑛) is a

positive constant, then

𝐿(𝐴𝑛 + 𝐴𝑛) ≤

2 log 𝑛

− log(𝑝
2
𝑛) − 𝜏

(1.4)

asymptotically almost surely.

Theorem 1.9 has the following corollaries, in which we consider the cases 𝑝 = 𝑜(1/

√

𝑛)

and 𝑝 = Θ(1/

√

𝑛) separately.

Corollary 1.10. If 𝑝 = 𝑛
−1/2−𝑜(1), 𝑝 = 𝑜(

√

1/𝑛), then

𝐿(𝐴𝑛 + 𝐴𝑛) ≤ (−2 + 𝑜(1))

log 𝑛

log(𝑝
2
𝑛)

(1.5)

asymptotically almost surely.

Corollary 1.11. If 𝑝 ∼

√

𝜀/𝑛 for some positive constant 𝜀 < 1, then

𝐿(𝐴𝑛 + 𝐴𝑛) ≤
(

−2

log 𝜀

+ 𝑜(1)
)
log 𝑛 (1.6)

asymptotically almost surely.

We now turn to lower bounds for 𝐿(𝐴𝑛 + 𝐴𝑛). We start with the following result.

Theorem 1.12. If 𝑝(𝑛) ≤
√

(log 𝑛)/𝑛, then

𝐿(𝐴𝑛 + 𝐴𝑛) ≥

2 log 𝑛

log log 𝑛 + 2 log log log 𝑛 − log(𝑝
2
𝑛)

(1.7)

asymptotically almost surely.

We can simplify (1.7) according to which of log log 𝑛 and − log(𝑝
2
𝑛) is the main term

in the denominator of the right-hand side of (1.7). Doing so we may derive the following



6

1 | INTRODUCTION

two corollaries.

Corollary 1.13. If 𝑝 =

√

1/𝑛(log 𝑛)
𝜔(1), then

𝐿(𝐴𝑛 + 𝐴𝑛) ≥ (−2 + 𝑜(1))

log 𝑛

log(𝑝
2
𝑛)

(1.8)

asymptotically almost surely.

Corollary 1.14. If 𝑝 =

√

1/𝑛(log 𝑛)
𝑐+𝑜(1) for some nonnegative constant 𝑐, then

𝐿(𝐴𝑛 + 𝐴𝑛) ≥
(

2

1 + 𝑐

+ 𝑜(1)
)

log 𝑛

log log 𝑛

(1.9)

asymptotically almost surely.

Recall that Theorem 1.12 applies to 𝑝 ≤

√

(log 𝑛)/𝑛. An alternative approach lets us
obtain other lower bounds for 𝐿(𝐴𝑛 + 𝐴𝑛) for 𝑝 ≫

√

1/𝑛.

Theorem 1.15. If 𝑝(𝑛) <
√

2(log 𝑛)/𝑛 and 𝑝 = 𝜔(

√

1/𝑛), then

𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑒
(1/2+𝑜(1))𝑝

2
𝑛 (1.10)

asymptotically almost surely.

Theorem 1.16. If 𝑝(𝑛) =
√

(𝐶 + 𝑜(1))(log 𝑛)/𝑛 for some constant 𝐶 > 2, then

𝐿(𝐴𝑛 + 𝐴𝑛) ≥ (2 − 4/𝐶)𝑛 (1.11)

asymptotically almost surely.

There is an overlap between the ranges of 𝑝 considered in Theorems 1.12 and 1.15. A
straightforward calculation shows that the lower bound in Theorem 1.15 is asymptotically
larger then the one in Theorem 1.12 if 𝑝 > (

√

2 + 𝑜(1))

√

(log log 𝑛 − log log log 𝑛)/𝑛.

Our results above are summarized in Table 1.1. In that table, 𝑘 denotes an integer with
𝑘 ≥ 4, 𝑐 denotes a positive constant, 𝜀 denotes a constant with 0 < 𝜖 < 1 and 𝐶 denotes a
constant with 𝐶 > 2. The functions 𝑚 and 𝑀 are lower and upper bounds for 𝐿(𝐴𝑛 + 𝐴𝑛),
respectively.

Notice that for 𝑝 =

√

1/𝑛(log 𝑛)
𝜔(1) with 𝑝 = 𝑛

−1/2−𝑜(1) and 𝑝 = 𝜔(

√

(log 𝑛)/𝑛), our
results imply that the random variable 𝐿(𝐴𝑛 + 𝐴𝑛) is concentrated in an interval whose
endpoints are asymptotically equal. In other words, we know the value of 𝐿(𝐴𝑛+𝐴𝑛) asymp-
totically for such 𝑝. Notice also that for 𝑝 =

√

1/𝑛(log 𝑛)
𝑐+𝑜(1) and 𝑝 =

√

(𝐶 + 𝑜(1))(log 𝑛)/𝑛,
the random variable 𝐿(𝐴𝑛 + 𝐴𝑛) is concentrated in an interval whose endpoints have a
bounded ratio, that is, we know 𝐿(𝐴𝑛+𝐴𝑛) up to a multiplicative constant for those 𝑝.

Before we proceed, we remark that Theorems 1.8, 1.9, 1.12 above are derived from
Theorems 1.17 and 1.18, which are somewhat more technical and presented below. The
proof of Theorems 1.8, 1.9, 1.12 are shown in the end of this introduction.
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𝑝 𝑚 𝑀 𝑀/𝑚

0 ≤ 𝑝 = 𝑛
−1/2−Ω(1)

0 0 0 –

𝑜(𝑛
−1/2−1/𝑘

) – 𝑘 − 1 –

𝜔(𝑛
−1/2−1/𝑘

) 𝑘 – –

Θ(𝑛
−1/2−1/𝑘

) 𝑘 − 1 𝑘 –

𝑛
−1/2−𝑜(1)

= 𝑝 ≤

√

1/𝑛

𝑜(

√

1/𝑛) – (−2 + 𝑜(1))

log 𝑛

log(𝑝
2
𝑛)

–

√

1/𝑛(log 𝑛)
𝜔(1)

(−2 + 𝑜(1))

log 𝑛

log(𝑝
2
𝑛)

(−2 + 𝑜(1))

log 𝑛

log(𝑝
2
𝑛)

1 + 𝑜(1)

√

1/𝑛(log 𝑛)
𝑐+𝑜(1)

(

2

1 + 𝑐

+ 𝑜(1)
)

log 𝑛

log log 𝑛 (

2

𝑐

+ 𝑜(1)
)

log 𝑛

log log 𝑛

𝑐 + 1

𝑐

+ 𝑜(1)

√

1/𝑛(log 𝑛)
𝑜(1)

(2 + 𝑜(1))

log 𝑛

log log 𝑛

– –

√

𝜀/𝑛 (2 + 𝑜(1))

log 𝑛

log log 𝑛 (

−2

log 𝜀

+ 𝑜(1)
)
log 𝑛

(

−1

log 𝜀

+ 𝑜(1)
)
log log 𝑛

√

1/𝑛 (2 + 𝑜(1))

log 𝑛

log log 𝑛

2𝑛 (1 + 𝑜(1))

𝑛 log log 𝑛

log 𝑛

√

1/𝑛 ≪ 𝑝 ≤ 1

<

√

2(log 𝑛)/𝑛 max
(
(2 + 𝑜(1))

log 𝑛

log log 𝑛

, 𝑒
(1/2+𝑜(1))𝑝

2
𝑛

)
2𝑛 –

√

(𝐶 + 𝑜(1))(log 𝑛)/𝑛
(
2 −

4

𝐶)
𝑛 2𝑛

𝐶

𝐶 − 2

𝜔(

√

(log 𝑛)/𝑛) (2 − 𝑜(1))𝑛 2𝑛 1 + 𝑜(1)

1 2𝑛 2𝑛 1

Table 1.1: Lower & upper bounds for various 𝑝

Theorems 1.17 gives upper bounds for 𝐿(𝐴𝑛 + 𝐴𝑛) while Theorems 1.18 gives lower
bounds for 𝐿(𝐴𝑛 + 𝐴𝑛). Theorems 1.15 and 1.16 are proved in Chapter 5.

Theorem 1.17 (APs are short). Let 𝑔, 𝑚∶ ℕ → ℝ>0 and let 𝑝(𝑛) = 𝑛
−0.5−1/𝑚

𝑔(𝑛). Let the
random set 𝐴𝑛 be defined by (1.1). If either

(a) 𝑚(𝑛) = 𝑐 constant, 𝑐 ≥ 4 and 𝑔(𝑛) = 𝑜(1), or

(b) 1 ≪ 𝑚(𝑛) = 𝑛
𝑜(1) and 𝑔(𝑛) = 1/2,

then 𝐿(𝐴𝑛 + 𝐴𝑛) < 𝑚(𝑛) asymptotically almost surely.

Theorem 1.17 is proved in Chapter 2 using the first moment method as its probabilistic
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tool. We note that for any function 𝑚 satisfying the conditions of Theorem 1.17, the
probability 𝑝 considered are smaller than 𝑛

−0.5.

Theorem 1.18 (There are long APs). Let 𝑔, 𝑚∶ ℕ → ℝ>0 and let 𝑝(𝑛) = 𝑛
−1/2−1/𝑚

𝑔(𝑛). If
either

(a) 3 ≤ 𝑚(𝑛) < 0.48

√

(log 𝑛)/ log log 𝑛 and 𝑔 ≫ log𝑚 or

(b) 0.48

√

(log 𝑛)/ log log 𝑛 ≤ 𝑚(𝑛) < 0.1 log 𝑛 and 𝑔 ≫ 𝑚
1/2

log𝑚,

then 𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚(𝑛) asymptotically almost surely.

Theorems 1.18(a) and 1.18(b) are proved in Chapter 4 using the Park-Pham Theo-
rem [6].

In Chapter 6 we present a tentative approach to finding lower bounds for 𝐿(𝐴𝑛 + 𝐴𝑛)

using the second moment method. We later found that these bounds could be improved
by Theorem 1.15.

As promised we now prove Theorems 1.8, 1.9, 1.12 as a consequence of Theorems 1.17
and 1.18.

Proof of Theorem 1.8. If 𝑚 ≥ 4, Theorems 1.17(a) and 1.18(a) can be applied and yield the
desired result. If 𝑚 ≤ 3, then

ℙ[𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚] =

{

ℙ[|𝐴𝑛| ≥ 2] if 𝑚 ∈ {2, 3}, (1.12)
ℙ[|𝐴𝑛| ≥ 1] if 𝑚 = 1, (1.13)

and Chernoff bounds suffice for the claimed result.

Proof of Theorem 1.9. Let 𝑚 = 2 log 𝑛/(− log(𝑝
2
𝑛)−𝜏). Notice that 𝑚 → ∞ as 𝑝 = 𝑛

−1/2+𝑜(1)

and that
𝑝 = 𝑒

−𝜏/2
𝑛
−1/2−1/𝑚

. (1.14)

Then, by Theorem 1.17, we have 𝐿(𝐴𝑛 + 𝐴𝑛) ≤ 𝑚(𝑛) a.a.s.

Proof of Theorem 1.12. Let 𝑚 = 2 log 𝑛/(log log 𝑛 + 2 log log log 𝑛 − log(𝑝
2
𝑛)). Notice that

log 𝑛

𝑚

=

log log 𝑛

2

+ log log log 𝑛 − log 𝑝 −

log 𝑛

2

, (1.15)

also

log𝑚

2

=

1

2

(log 2 + log log 𝑛 − log(log log 𝑛 + 2 log log log 𝑛 − log(𝑝
2
𝑛))) =

log log 𝑛

2

− 𝜔(1),

(1.16)

since log(𝑝
2
𝑛) < log log 𝑛. Finally

log log𝑚 = log(log 2 + log log 𝑛 − log(log log 𝑛 + 2 log log log 𝑛 − log(𝑝
2
𝑛))) < log log log 𝑛

(1.17)
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for sufficiently large 𝑛. This in turn implies that

√

𝑚(log𝑚)𝑛
−1/2−1/𝑚

= exp
(

log𝑚

2

+ log log𝑚 −

log 𝑛

2

−

log 𝑛

𝑚 )
= 𝑜(𝑝). (1.18)

Then, by Theorem 1.18(b), we have 𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚(𝑛) a.a.s.
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Chapter 2

When are All Arithmetic
Progressions in the Sumset of a
Random Set Short?

In this chapter, we prove Theorem 1.17, which pertains to bounds for the probability
𝑝(𝑛) that almost guarantee the non-existence of long arithmetic progressions in 𝐴𝑛 + 𝐴𝑛,
with 𝐴𝑛 as defined in (1.1).

We prove a more general result stated as Theorem 2.1. Afterwards, we provide a
counting lemma that gives an upper bound on the number of arithmetic progressions on
the support set of 𝐴𝑛+𝐴𝑛 and that allow us to use Theorem 2.1 to prove Theorem 1.17.

Theorem 2.1. Let 𝑔, 𝑚∶ ℕ → ℝ>0 and let 𝑝(𝑛) = min (1, 𝑛
−0.5−1/𝑚

𝑔(𝑛)). Let {𝑛}𝑛∈ℕ be a
sequence of families of 𝑚(𝑛)-subsets of [2𝑛] such that |𝑛| = 𝑂(𝑛

2
/𝑚). Let the random set

𝐴𝑛 be defined by (1.1). If either

(a) 𝑚(𝑛) = 𝑐 constant, 𝑐 ≥ 4 and 𝑔(𝑛) = 𝑜(1), or

(b) 1 ≪ 𝑚(𝑛) = 𝑛
𝑜(1) and 𝑔(𝑛) = 1/2,

then 𝐴𝑛 + 𝐴𝑛 does not contain any member of 𝑛 asymptotically almost surely.

An outline of the proof of Theorem 2.1 is as follows. We will show the existence of a
family  of subsets 𝐵 of [𝑛] such that in order for no members of  to be contained in
𝐴𝑛+𝐴𝑛 it suffices that no members of  are contained in 𝐴𝑛. We then use the first moment
method to show that the expected number of members of  that are subsets of 𝐴𝑛 is close
to 0, thus Theorem 2.1 holds.

The following definitions will be useful in order to avoid the explicit repetition of
conditions used in our proof.

Definition 2.2 (Second order cover). Let 𝑅 ⊆ [2𝑛]. An 𝑅-second order cover (or 𝑅-soc) is
any subset 𝐵 of [𝑛] such that 𝑅 ⊆ 𝐵 + 𝐵.

Definition 2.3 (Modeling graph). Let 𝑅 ⊆ [2𝑛] and 𝐵 ⊆ [𝑛]. Let 𝐺 = (𝑉 , 𝐸) be a multigraph
without parallel edges, but possibly some loops. If there is an injection 𝑟 ∶ 𝐸 → 𝑅 and a
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bijection 𝑏∶ 𝑉 → 𝐵 such that

𝑏(𝑢) + 𝑏(𝑣) = 𝑟(𝑢𝑣), for all 𝑢𝑣 ∈ 𝐸,

we say that 𝐵 has an 𝑅-modeling graph 𝐺 with vertex labeling function 𝑏 and edge labeling
function 𝑟 .

It is important to note that 𝑟 does not need to be a bijection, that is not all elements of
𝑅 need to be represented by edges of 𝐺.

Lemma 2.4. Let 𝑚 ≥ 3 and let 𝐶 be a connected multigraph without parallel edges. Further
suppose that 𝐶 is on 𝑘 vertices and has 𝑎 edges, where 1 ≤ 𝑎 ≤ 𝑚. Define the 𝑚-weight of 𝐶
to be

𝑤𝑚(𝐶) =

{

1/𝑘 + 2𝑎/𝑚𝑘, if 𝐶 is bipartite,
2𝑎/𝑚𝑘, otherwise.

Also define the following multigraphs:

𝐾2

𝐾
∗

2

𝐶4 𝐾
∗

3

Figure 2.1: Heavy connected components

Then

𝑤𝑚(𝐶)

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

> 𝑤𝑚(𝐾2), if 𝐶 ∈ {𝐾
∗

2
} and 𝑚 = 3,

= 𝑤𝑚(𝐾2), if 𝐶 = 𝐾2,

= 𝑤𝑚(𝐾2), if 𝐶 ∈ {𝐶4, 𝐾
∗

2
} and 𝑚 = 4,

= 𝑤𝑚(𝐾2), if 𝐶 = 𝐾
∗

3
and 𝑚 = 6,

< 𝑤𝑚(𝐾2), otherwise.

Proof. It is of our interest to find the connected multigraphs 𝐶 for which the inequality

𝑤𝑚(𝐶) ≤ 𝑤𝑚(𝐾2) =

1

2

+

1

𝑚

is false or yields an equality case. Supposing that 𝐶 is bipartite, 𝑤𝑚(𝐶) ≤ 𝑤𝑚(𝐾2) if, and
only if,

𝑚𝑘 + 2𝑘 ≥ 2𝑚 + 4𝑎,

with the same equality conditions. If 𝑘 ≥ 6, we have

𝑚𝑘 + 2𝑘 > 6𝑚 ≥ 2𝑚 + 4𝑎,
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since 𝑚 ≥ 𝑎. No equality cases exist.

If 𝑘 = 5, then

𝑚𝑘 + 2𝑘 = 5𝑚 + 10 ≥ 2𝑚 + 3𝑎 + 10 > 2𝑚 + 4𝑎,

since 𝑚 ≥ 𝑎 and 𝑎 ≤ 𝑘
2
/4 = 6.25. Again, no equality cases exist.

If 𝑘 = 4, then
𝑚𝑘 + 2𝑘 = 4𝑚 + 8 ≥ 2𝑚 + 2𝑎 + 8 ≥ 2𝑚 + 4𝑎,

since 𝑚 ≥ 𝑎 and 𝑎 ≤ 𝑘
2
/4 = 4. Equality holds when 𝑚 = 𝑎 = 4, i.e., when (𝐶,𝑚) = (𝐶4, 4).

If 𝑘 = 3, then 𝐶 = 𝑃3, the path on 3 vertices, and therefore

𝑚𝑘 + 2𝑘 = 3𝑚 + 6 > 2𝑚 + 𝑎 + 6 = 2𝑚 + 4𝑎,

since 𝑎 = 2 < 3 ≤ 𝑚. No equality cases exist.

If 𝑘 = 2, then 𝐶 = 𝐾2 and 𝑤𝑚(𝐶) = 𝑤𝑚(𝐾2).

Finally, if 𝑘 = 1, then 𝑎 = 0, but 𝑎 ≥ 1.

Supposing now that 𝐶 is not bipartite, 𝑤𝑚(𝐺) ≤ 𝑤𝑚(𝐾2) if, and only if,

𝑚𝑘 + 2𝑘 ≥ 4𝑎,

with the same equality conditions.

If 𝑘 ≥ 4, then
𝑚𝑘 + 2𝑘 > 4𝑚 ≥ 4𝑎,

since 𝑚 ≥ 𝑎. No equality cases exist.

If 𝑘 = 3, then
𝑚𝑘 + 2𝑘 = 3𝑚 + 6 ≥ 3𝑎 + 6 ≥ 4𝑎,

since 𝑚 ≥ 𝑎 and 𝑎 ≤ (
𝑘

2
)+𝑘 = 6. Equality holds when 𝑚 = 𝑎 = 6, i.e., when (𝐶,𝑚) = (𝐾

∗

3
, 6).

If 𝑘 = 2 and 𝑎 ≤ 2, then

𝑚𝑘 + 2𝑘 = 2𝑚 + 4 ≥ 10 > 8 ≥ 4𝑎,

since 𝑚 ≥ 3. No equality cases exist.

If 𝑘 = 2 and 𝑎 ≥ 3, then 𝐶 = 𝐾
∗

2
. Therefore

𝑤𝑚(𝐶)

⎧
⎪
⎪

⎨
⎪
⎪
⎩

> 𝑤𝑚(𝐾2), if 𝑚 = 3,

= 𝑤𝑚(𝐾2), if 𝑚 = 4,

< 𝑤𝑚(𝐾2), if 𝑚 ≥ 5.

Finally, if 𝑘 = 1, then 𝑎 = 1 and

𝑚𝑘 + 2𝑘 = 𝑚 + 2 > 4 = 4𝑎,
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since 𝑚 ≥ 3. No equality cases exist.

Proof of Theorem 2.1(a). For a fixed 𝑅 ∈ 𝑛 and 𝐵 ⊆ [𝑛] a minimal 𝑅-soc, define the
hypergraph 𝐺𝐵 = 𝐺

𝑅

𝐵
= (𝐵, 𝐸) as follows:

𝑥𝑦 ∈ 𝐸 ⟺ (𝑥 + 𝑦 ∈ 𝑅) ∧ (|𝑥 − 𝑦 | = min{|𝑧 − 𝑤| ∶ 𝑧 + 𝑤 = 𝑥 + 𝑦, 𝑧 ∈ 𝐵, 𝑤 ∈ 𝐵}). (2.1)

Further, consider the labeling of edges 𝑟 ∶ 𝐸 → 𝑅, where

𝑟(𝑥𝑦) = 𝑥 + 𝑦, for all 𝑎𝑏 ∈ 𝐸. (2.2)

Notice that 𝑟 is a bijective function and 𝐺𝐵 is an 𝑅-modeling graph with the identity
function as the vertex labeling function.

Observe also that 𝛿(𝐺𝐵) ≥ 1, as otherwise the set of vertices of positive degree corre-
sponds to a proper subset of 𝐵 that is an 𝑅-soc. Finally, notice that 𝐺𝐵 is an hypergraph on
at most 2𝑐 vertices and 𝑐 edges. Let  be the finite family of such multigraphs.

For a fixed 𝐺 ∈  that has 𝑞 bipartite connected components and 𝐾 vertices, we claim
that

ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐺𝐵 = 𝐺] ≤ 𝑐!𝑛
𝑞
𝑝
𝐾
. (2.3)

Indeed there are 𝑐! edge labeling functions 𝑟 for the modeling graph 𝐺. Take a connected
component 𝐻 of 𝐺. If 𝐻 is bipartite, let 𝑇𝐻 be an arbitrary spanning tree of 𝐻 and let 𝑒 be
the edge incident to a leaf that has the least label 𝑟(𝑒). Let 𝑣 be the leaf incident to 𝑒 (if
𝐻 = 𝐾2, choose 𝑣 arbitrarily). Now, if 𝑣𝑒1𝑒2 … 𝑒𝑠𝑤 is a path from 𝑣 to 𝑤, then

𝑏(𝑤) = (−1)
𝑠
𝑏(𝑣) +

𝑠

∑

𝑡=1

𝑟1(𝑒𝑡)(−1)
𝑠−𝑡
. (2.4)

If 𝐻 is not bipartite it must contain a loop or an odd cycle with at least 3 vertices. If there
is a loop 𝑒 on a vertex 𝑣, then 2𝑏(𝑣) = 𝑟(𝑒) and 𝑏(𝑣) is uniquely defined. If 𝑣1𝑣2 … 𝑣2𝑠+1𝑣1 is
an odd cycle in 𝐺, then, 𝑏(𝑣1),… , 𝑏(𝑣2𝑠+1) must satisfy the linear system

𝑏(𝑣𝑖) + 𝑏(𝑣𝑖+1) = 𝑟(𝑣𝑖𝑣𝑖+1),

where the index 𝑖 runs from 1 to 2𝑠 + 1 and we let 𝑣2𝑠+2 = 𝑣1. This system of equations has
a unique rational solution given the edge labeling function 𝑟 , since

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1

1 1

⋱ ⋱

1 1

1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 2 ≠ 0

whenever the order of the matrix is an odd number larger than 2. Then the vertices in the
cycle are uniquely labeled and (2.4) can then be used to find the labels of the remaining
vertices of 𝐻 .
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Therefore, once the 𝑞 leaves connected to the edges with least label in the chosen
spanning trees of the bipartite connected components are selected, all vertices in 𝐺 are
uniquely labeled, if at all possible. There are at most 𝑛𝑞 such choices. Finally notice that
the probability that each 𝐵 is contained in 𝐴 is 𝑝𝐾 , as |𝐵| is the number of vertices of 𝐺.

Now, let (𝐺) be the set of connected components of 𝐺 and 𝐼𝐶 be the indicator function
of the property 𝐶 is bipartite. Finally notice that, because of Lemma 2.4, we have

𝑞 + 2 = ∑

𝐶∈(𝐺)
(
𝐼𝐶 +

2|𝐸(𝐶)|

𝑚 )

= ∑

𝐶∈(𝐺)
(𝑤𝑚(𝐶)|𝑉 (𝐶)|)

≤
(

1

2

+

1

𝑚)

∑

𝐶∈(𝐺)
|𝑉 (𝐶)|

=
(

1

2

+

1

𝑚)
𝐾

and therefore, by (2.3), for fixed 𝑅 ∈ 𝑛 and 𝐺 ∈ , we have

ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐺
𝑅

𝐵
= 𝐺] ≤ 𝑐!𝑛

𝑞
𝑝
𝐾
= 𝑜(𝑛

−2
𝑛
2+𝑞

𝑛
−𝐾(1/2+1/𝑚)

) = 𝑜(1/𝑛
2
),

since 𝑐! is a constant dependent of 𝑐 and 𝑝 = 𝑜(𝑛
−1/2−1/𝑚

) by the Theorem’s conditions.

At last, by the union bound and because every 𝑅-soc contains a minimal 𝑅-soc, we
have

ℙ[(𝐴𝑛 + 𝐴𝑛) ∩𝑛 ≠ ∅] ≤ ∑

𝑅∈𝑛

(

∑

𝐺∈
ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐺

𝑅

𝐵
= 𝐺]

)

= 𝑜(1).

since || is a constant dependent of 𝑐 and |𝑛| = 𝑂(𝑛
2
)

Lemma 2.5. Let 𝑅 ⊆ [2𝑛] be given, with |𝑅| ≥ 64. Let 𝐵 ⊆ [𝑛] be a minimal 𝑅-soc. Then, at
least one of the following statements is true.

1. The set 𝐵 contains a 5-subset 𝐵0 with 𝑅-modeling graph 𝐺0 that has 5 loops as its only
edges.

2. The set 𝐵 contains a 7-subset 𝐵1 with an 𝑅-modeling graph 𝐺1 that is a 7-vertex tree.

3. The set 𝐵 contains a 15-subset 𝐵2 with an 𝑅-modeling graph 𝐺2 that has 5 copies of the
3-vertex path as its connected components.

4. The set 𝐵3 = 𝐵 has an 𝑅-modeling graph 𝐺3 that has |𝑅| edges, has at least |𝑅| − 96

connected components isomorphic to 𝐾2, has no connected component on more than 6

vertices, has at most 4 connected components on between 3 and 6 vertices, and has at
most 4 connected components that are on 2 vertices and have more than one edge or
are on 1 vertex.

Proof. Consider the 𝑅-modeling graph 𝐺 = 𝐺𝐵 = (𝐵, 𝐸) with edge labeling 𝑟 given by
(2.1) and (2.2). Recall that 𝛿(𝐺) ≥ 1, as otherwise the set of vertices of positive degree
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corresponds to a proper subset of 𝐵 that is an 𝑅-soc.

Let 𝑡 be the number of connected components of 𝐺. Let 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑡 > 0 be the
number of vertices in the connected components of 𝐺. Let us consider some cases that 𝐺
might fit.

1. If 𝐺 contains 5 loops, then the labels of the 5 vertices in those loops form a set 𝐵0 as
desired.

2. If 𝑠1 ≥ 7, then there is a 7-vertex tree that is a subgraph of 𝐺, whose set of labels 𝐵1

is as desired.

3. If 𝑡 ≥ 5 and 𝑠5 ≥ 3, then there are at least 5 connected components of at least 3
vertices, and each of those must have a 3-vertex path as a subgraph. Then the set of
labels 𝐵2 of the vertices in these 5 paths is as desired.

4. If 𝐺 does not satisfy any of the previous cases, then 𝐺 has no connected components
with at least 7 vertices, has at most 4 connected components with 3 to 6 vertices,
each having at most (

6

2
) = 15 non-loop edges. Also there are at most 4 connected

components on 1 or 2 vertices that contain loops, and each of those contains at
most 1 non-loop edge. That means that at least |𝑅| − 68 edges of 𝐺 are in connected
components isomorphic to 𝐾2.

Proof of Theorem 2.1(b). Recall that 𝑚 = 𝑛
𝑜(1) and notice that for sufficiently large 𝑛, we

have 𝑔(𝑛) = 1/2 < 𝑚
−34/𝑚 Let 𝑅 ∈ 𝑛 and for each 𝑖 ∈ {0, 1, 2, 3}, let 𝑖(𝑅) be the class of

sets 𝐵𝑖 as in the statement 𝑖 + 1 of Lemma 2.5. We claim that

ℙ[∃𝐵0 ⊆ 𝐴 ∶ 𝐵0 ∈ 0(𝑅)] ≤ 𝑚
5
𝑝
5
= 𝑂

(

𝑚
5

(𝑚
34
𝑛)

5/𝑚
𝑛
2.5)

= 𝑜
(

𝑚

𝑛
2)

.

Indeed, notice that 𝐺0 is uniquely defined, up to isomorphism, and there are (
𝑚

5
) < 𝑚

5

possible edge labeling functions 𝑟0. Once 𝐺0 and 𝑟0 are defined, 𝐵0 is uniquely defined,
since each vertex must be labeled with half of the label of its loop. Finally, the probability
that each 𝐵0 is contained in 𝐴 is 𝑝5. We also claim that

ℙ[∃𝐵1 ⊆ 𝐴 ∶ 𝐵1 ∈ 1(𝑅)] ≤ 11𝑚
6
𝑛𝑝

7
= 𝑂

(

𝑚
6

(𝑚
34
𝑛)

7/𝑚
𝑛
2.5)

= 𝑜
(

𝑚

𝑛
2)

.

Indeed, notice that 𝐺1 can be, up to isomorphism, one of 11 possible trees1, and there are
at most 𝑚6 possible edge labeling functions 𝑟1. Let 𝑒 be the edge incident to a leaf that has
the least label 𝑟1(𝑒). Let 𝑣 be the leaf incident to 𝑒. If 𝑣𝑒1𝑒2 … 𝑒𝑠𝑤 is a path from 𝑣 to 𝑤, then

𝑏(𝑤) = (−1)
𝑠
𝑏(𝑣) +

𝑠

∑

𝑡=1

𝑟1(𝑒𝑡)(−1)
𝑠−𝑡
.

As 𝐺1 is connected, 𝐵1 is uniquely defined by 𝐺1, 𝑟1 and 𝑏(𝑣) ∈ [𝑛]. Finally, the probability

1 There are in fact 11 unlabeled trees on 7 vertices.
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that each 𝐵1 is contained in 𝐴 is 𝑝7. We also claim that

ℙ[∃𝐵2 ⊆ 𝐴 ∶ 𝐵2 ∈ 2(𝑅)] ≤ 𝑚
10
𝑛
5
𝑝
15
= 𝑂

(

𝑚
10

(𝑚
34
𝑛)

15/𝑚
𝑛
2.5)

= 𝑜
(

𝑚

𝑛
2)

.

Indeed, notice that 𝐺2 is uniquely defined, up to isomorphism, and there are (
𝑚

2,2,2,2,2
) < 𝑚

10

possible edge labeling functions 𝑟2. As in the previous case, 𝐵2 is uniquely defined by 𝐺2, 𝑟2,
and the labeling of the leaves incident to the edges with the least label in each of the five
connected components of 𝐺2. There are at most 𝑛5 such labelings. Finally, the probability
that each 𝐵2 is contained in 𝐴 is 𝑝15.

Notice that if 𝐵 ∈ 3(𝑅), then 𝐻
𝑅

𝐵
, the graph obtained by removing the connected

components of 𝐺𝑅

𝐵
isomorphic to 𝐾2, must be a hypergraph on at most 68 edges. Let  be

the finite family of such graphs. Then for fixed 𝐻 ∈ , if 𝐺, obtained by adding connected
components isomorphic to 𝐾2 to 𝐻 so that the final graph has 𝑚 edges, has 𝑞 bipartite
connected components and 𝐾 vertices, we have

ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐵 ∈ 3(𝑅) ∧ 𝐻
𝑅

𝐵
= 𝐻 ] ≤ 𝑚

68
𝑛
𝑞
𝑝
𝐾
, (2.5)

as 𝐺3 is uniquely defined, up to isomorphism, and there are at most 𝑚68 possible edge
labeling functions 𝑟3, as once the edges in 𝐻 are labeled, the labeling of the other edges is
defined up to isomorphism. Similarly to what was done in the proof of Theorem 2.1(a),
once the 𝑞 leaves connected to the edges with least label in the chosen spanning trees of
the bipartite connected components are selected, all vertices in 𝐺 are uniquely labeled, if
at all possible. There are at most 𝑛𝑞 such choices. Finally notice that the probability that
each 𝐵 is contained in 𝐴 is 𝑝𝐾 , as |𝐵| is the number of vertices of 𝐺.

Again, for sufficiently large 𝑛, by Lemma 2.4, 2.5, for fixed 𝑅 ∈ 𝑛 and 𝐻 ∈ , we have

ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐵 ∈ 3(𝑅) ∧ 𝐻
𝑅

𝐵
= 𝐻 ] ≤ 𝑚

68
𝑛
−2
𝑛
2+𝑞

𝑛
−𝐾(1/2+1/𝑚)

𝑚
−34𝐾/𝑚

≤ 𝑚𝑛
−2
𝑚

67−34𝐾/𝑚

≤ 𝑚𝑛
−2
𝑚

67−34(2𝑚−136)/𝑚

= 𝑚𝑛
−2
𝑚

−1+4624/𝑚
= 𝑜(𝑚/𝑛

2
),

since𝐾 ≥ 2(𝑚−68) as there are at least𝑚−68 non-loop edges in the connected components
isomorphic to 𝐾2 and 𝑚 ≫ 1.

With this last inequality and the union bound, we have for a fixed 𝑅 ∈ 𝑛 that

ℙ[∃𝐵3 ⊆ 𝐴𝑛 ∶ 𝐵3 ∈ 3(𝑅)] ≤ ∑

𝐻∈
ℙ[∃𝐵 ⊆ 𝐴 ∶ 𝐵 ∈ 3(𝑅) ∧ 𝐻

𝑅

𝐵
= 𝐻 ] = 𝑜(𝑚/𝑛

2
),

since  is finite.

At last, by Lemma 2.5, the union bound and because every 𝑅-soc contains a minimal
𝑅-soc, we have

ℙ[(𝐴𝑛 + 𝐴𝑛) ∩𝑛 ≠ ∅] ≤ ∑

𝑅∈𝑛

(

3

∑

𝑖=0

ℙ[∃𝐵𝑖 ⊆ 𝐴𝑛 ∶ 𝐵𝑖 ∈ 𝑖(𝑅)]

)

= 𝑜(1).
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We now produce upper bounds to the number of 𝑚-APs in the set [2𝑛].

Lemma 2.6. Let 𝑚 > 1 and 𝑛 be integers. Then there are at most

2𝑛
2
− 𝑛

𝑚 − 1

𝑚-APs that are subsets of [2𝑛].

Proof. Let 𝑎 be the smallest element of an 𝑚-AP that is a subset of [2𝑛]. Then the common
difference 𝑑 must satisfy

𝑎 + (𝑚 − 1)𝑑 ≤ 2𝑛,

which implies that

𝑑 ≤

2𝑛 − 𝑎

𝑚 − 1

,

from where we conclude that there are at most

2𝑛

∑

𝑎=1

2𝑛 − 𝑎

𝑚 − 1

=

(2𝑛 − 1)𝑛

𝑚 − 1

𝑚-APs in [2𝑛].

Finally, we can prove Theorem 1.17.

Proof of Theorem 1.17. Let 𝑛 be the family of 𝑚(𝑛)-APs in [2𝑛]. Because of Lemma 2.6,
we have that |𝑛| = 𝑂(𝑛

2
/𝑚) and the result follows from Theorem 2.1.
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Chapter 3

Theorem of Park and Pham

In this chapter, we introduce the theorem of Park and Pham [6] and the motivations for
its application in our problem. In the next chapter we exhibit a proof of Theorems 1.18(a)
and 1.18(b) using the techniques presented here.

We begin with some definitions used in the main theorem of this chapter.

Definition 3.1 (Increasing family). A family  of subsets of [𝑛] is said to be an increasing
family if all 𝐵 ⊇ 𝐴 ∈  satisfy 𝐵 ∈  . If additionaly  ∉ {∅,([𝑛])}, then  is a non-trivial
increasing family.

Our interest in this definition is rooted in the fact that for a fixed number 𝑚, the family
of sets 𝐴 ⊆ [𝑛] such that 𝐿(𝐴 + 𝐴) ≥ 𝑚 is an increasing family. This is the case as any
added elements in 𝐴 cannot eliminate an 𝑚-AP in the set 𝐴 + 𝐴.

Definition 3.2 (Product measure). Let 𝑝 ∈ [0, 1] and let 𝑛 be a positive integer. Then 𝜇𝑝

denotes the product measure on ([𝑛]), given by

𝜇𝑝(𝐴) = 𝑝
|𝐴|
(1 − 𝑝)

𝑛−|𝐴|
.

Furthermore, if  ⊆ ([𝑛]) is an increasing family, we let

𝜇𝑝() ∶= ∑

𝐴∈
𝜇𝑝(𝐴).

It is of note that for a fixed non-trivial and increasing family  ⊆ ([𝑛]), the product
measure 𝜇𝑝() is strictly increasing in 𝑝. Indeed, let us first note that if 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛)

is a random vector uniformly distributed in [0, 1]
𝑛, then 𝜇𝑝() is the probability that the

random set 𝐴𝑝 = {𝑖 ∈ [𝑛] ∶ 𝑥𝑖 ≤ 𝑝} is in  . Now notice that if 𝑝 < 𝑞, then 𝐴𝑝 ⊆ 𝐴𝑞 . Because
 is an increasing family, we then have

ℙ[𝐴𝑞 ∈ ] = ℙ[𝐴𝑝 ∈ ] + ℙ[𝐴𝑞 ∈  , 𝐴𝑝 ∉ ] ≥ ℙ[𝐴𝑝 ∈ ] + (𝑞 − 𝑝)
𝑛
,

and hence 𝜇𝑝() is strictly increasing in 𝑝, as claimed.

Note furthermore that 𝜇𝑝() is continuous in 𝑝. This motivates the following defini-
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tion.

Definition 3.3 (Threshold). For a non-trivial and increasing family  ⊆ ([𝑛]), let the
threshold 𝑝𝑐() be the unique 𝑝 for which 𝜇𝑝() = 1/2.

Definition 3.4 (Cover). Given an increasing family  ⊆ ([𝑛]), we say that  ⊆ ([𝑛]) is
a cover of  when every member of  contains some member of .

Note that if  is a cover of the increasing family  , then  acts as a kind of proxy to  .
Precisely, instead of looking up if a set 𝐴 is a member of  , one can look up if there are
any members of  contained in 𝐴.

Definition 3.5 (𝑝-small). Given an increasing family  ⊆ ([𝑛]) and 𝑝 ∈ [0, 1], we say
that  is 𝑝-small if there is a cover  of  such that

𝑓(𝑝) = ∑

𝑆∈
𝑝
|𝑆|
≤

1

2

.

Note that if 𝐴 is a random set in the probability space given by the product measure 𝜇𝑝,
then 𝑓(𝑝) denotes the expected number of subsets of 𝐴 in . In particular, by Markov’s
Inequality, if  is 𝑝-small, then 𝑝 ≤ 𝑝𝑐().

Notice also that for a fixed cover  of a non-trivial increasing family  , the function
𝑓(𝑝) is strictly increasing and continuous in 𝑝. This motivates the following defini-
tion.

Definition 3.6 (Expectation threshold). Given a non-trivial increasing family  ⊆ ([𝑛]),
the expectation threshold 𝑞() is the largest 𝑝 such that  is 𝑝-small.

We state a celebrated conjecture posed by Kahn and Kalai [5], which was recently
proved by Park and Pham [6].

Theorem 3.7. There is a universal constant 𝐾 such that

𝑝𝑐() ≤ 𝐾𝑞() log 𝓁()

for every 𝑛 and every increasing family  ⊆ ([𝑛]), where 𝓁() is the largest size of a
minimal element of  .

We extract the following Corollary, which we will use in the next chapter.

Corollary 3.8. For every positive real 𝛿, there is a constant 𝐿 = 𝐿(𝛿) such that if  ⊆ ([𝑛])

is an increasing family, where 𝓁() is the largest size of a minimal element of  and

𝑝 ≥ 𝐿𝑞() log 𝓁(),

then 𝜇𝑝() > 1 − 𝛿.

Proof. Let 𝑠 = ⌈− log
2
(𝛿)⌉ and 𝐿 = 𝐾𝑠. Then, by Bernoulli’s Inequality and Theorem 3.7,

we have
𝑝 ≥ 𝐿𝑞() log 𝓁() ≥ 𝑠𝑝𝑐() ≥ 1 − (1 − 𝑝𝑐())

𝑠
≕ 𝑝

∗
.
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Now let 𝐵 = ⋃
𝑠

𝑖=1
𝐴𝑖, where {𝐴𝑖}

𝑠

𝑖=1
is a sequence of independent random subsets of [𝑛]

whose distribution are given by the product measure 𝜇𝑝𝑐 . Further notice that, by definition
of 𝑝𝑐(), we have

ℙ[𝐵 ∈ ] ≥ ℙ[∃𝑖 ∈ [𝑠] ∶ 𝐴𝑖 ∈ ] = 1 − (1/2)
𝑠
≥ 1 − 𝛿

and that the distribution of the random set 𝐵 is given by the product measure 𝜇𝑝∗, from
which we conclude 𝜇𝑝() ≥ 𝜇𝑝∗() ≥ 1 − 𝛿, as needed.
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Chapter 4

Finding Long Arithmetic
Progressions in the Sumset of a
Random Set Using the Expectation
Threshold

In this chapter we prove Theorem 1.18(a) and 1.18(b), which are restated as Theo-
rem 4.1(a) and 4.1(b) for convenience.

Theorem 4.1. For every positive real 𝛿, there is a constant 𝐿 = 𝐿(𝛿) for which the following
holds. For all functions 𝑚∶ ℕ → ℕ≥3 and 𝑝∶ ℕ → [0, 1] such that either:

(a) 𝑚(𝑛) < 0.48

√

log 𝑛/ log log 𝑛 and 𝑝(𝑛) > 𝐿𝑛
−0.5−1/𝑚(𝑛)

log𝑚(𝑛) or

(b) 𝑚(𝑛) < 0.1 log 𝑛 and 𝑝(𝑛) > 𝐿𝑛
−0.5−1/𝑚(𝑛)

√

𝑚(𝑛) log𝑚(𝑛),

the random set 𝐴𝑛 defined in (1.1) satisfies

𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚(𝑛),

with probability at least 1 − 𝛿.

Similarly to Chapter 2 we prove a counting lemma, this time giving a lower bound on
the number of certain arithmetic progressions.

Lemma 4.2. Let 𝑚∶ ℕ → ℕ≥3, where 𝑚(𝑛) = 𝑂(log 𝑛). There exists an integer 𝑛0 such that
if 𝑛 > 𝑛0 and 𝑚 = 𝑚(𝑛), then there are at least

0.9𝑛
2

𝑚

𝑚-APs that are subsets of [𝑛/2, 3𝑛/2].
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Proof. Let 𝑎 ∈ [𝑛/2, 3𝑛/2]. Then if the common difference 𝑑 satisfies

𝑑 ≤

3𝑛 − 2𝑎

2𝑚 − 2

,

it must also satisfy

𝑎 + (𝑚 − 1)𝑑 ≤

3𝑛

2

,

and therefore {𝑎, 𝑎 + 𝑑,… , 𝑎 + 𝑑(𝑚 − 1)} is an 𝑚-AP in [𝑛/2, 3𝑛/2]. Thus, if 𝑛 is sufficiently
large, then there are at least

3𝑛/2

∑

𝑎=𝑛/2

[

3𝑛 − 2𝑎

2𝑚 − 2

− 1
]
=

𝑛
2
+ 𝑛

𝑚 − 1

− 𝑛 > 0.9

𝑛
2

𝑚

𝑚-APs in [𝑛/2, 3𝑛/2].

Proof of Theorem 4.1. For fixed 𝑛, let 𝑚 = 𝑚(𝑛) and let  be the family of 2𝑚-subsets 𝐶 of
[𝑛] that admits a labeling 𝐶 = {𝑥1, 𝑥2,… , 𝑥𝑚, 𝑦1, 𝑦2,… , 𝑦𝑚} for which there are 𝑎, 𝑑 ∈ [2𝑛]

such that 𝑥𝑖 + 𝑦𝑖 = 𝑎+ 𝑖𝑑 for every 𝑖 ∈ [𝑚]. Note that there could be some sets 𝐶 that admit
multiple labelings that give rise to the same or distinct arithmetic progressions. As we are
considering the family of sets and not labelings, those will be accounted for only once in .

Furthermore, let  ⊆ ([𝑛]) be the family of subsets 𝐵 that contain a subset 𝐶 ∈ .
Observe that  is a cover of  .

Finally, let
𝑞(𝑛) = 𝑟(𝑛)𝑛

−0.5−1/𝑚
,

where the function 𝑟 ∶ ℤ>0 → ℝ is chosen according to the regime covered by 𝑚:

1. If 𝑚 < 0.48

√

log 𝑛/ log log 𝑛, let 𝑟 =
√

228;

2. otherwise, let 𝑟 = 𝑒
9.9
√

𝑚.

Now, because 𝑚 ≥ 3, 𝑟 ≥
√

65 and 𝑚 < 0.1 log 𝑛 we have the following inequalities:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

=

80

9

𝑚
5
5
𝑚

𝑟
2𝑚

< 1,

log 𝑟 ≤

log𝑚

2

+ 9.9 <

log𝑚

2

+

log 𝑛

𝑚

.

(4.1)

(4.2)

These conditions are chosen so as to be possible to prove that  is not 𝑞-small and
therefore we can use Theorem 3.7.

Claim 4.3. We have
∑

𝐶∈
𝑞
|𝐶|

>

9

160

𝑛
2+𝑚

𝑞
2𝑚

𝑚
5
5
𝑚

for sufficiently large 𝑛.



4 | LONG APS IN THE RANDOM SUMSET - EXPECTATION THRESHOLD

25

Proof. Notice that for each 𝐶 ∈  there are at most (2𝑚)4 ways of labeling four elements
of 𝐶 as 𝑥1, 𝑥2, 𝑦1, 𝑦2. For each choice of 𝑥1, 𝑥2, 𝑦1, 𝑦2 there is at most one 𝑚-AP that it
generates (the one whose first two elements are 𝑥1 + 𝑦1 and 𝑥2 + 𝑦2).

Additionally, for each 𝑚-AP 𝑅 = {𝑎, 𝑎 + 𝑑,… , 𝑎 + (𝑚 − 1)𝑑} in [𝑛/2, 3𝑛/2] where
𝑚

2
< 𝑛/40, there are at least (𝑛/5)𝑚 subsets 𝐶 = {𝑥1, 𝑥2,… , 𝑥𝑚, 𝑦1, 𝑦2,… , 𝑦𝑚} of [𝑛] such

that 𝑥𝑖 + 𝑦𝑖 = 𝑎 + 𝑖𝑑 for each 𝑖 ∈ [𝑚] and each pair {𝑥𝑖, 𝑦𝑖} is uniquely defined, if at all, by 𝐶

and 𝑅. One can achieve this count by constructing 𝐶 using the following greedy algorithm:

Let 𝐶0 = ∅ and 𝐴1 = [𝑛]. The sets 𝐶𝑖 will grow to become 𝐶 and the sets 𝐴𝑖 will be the
sets elements that can be added to 𝐶𝑖−1.

On step 𝑖, where 1 ≤ 𝑖 ≤ 𝑚, choose arbitrarily 𝑥𝑖 < 𝑦𝑖 with 𝑥𝑖, 𝑦𝑖 ∈ 𝐴𝑖 such that
𝑥𝑖 + 𝑦𝑖 = 𝑎 + 𝑑(𝑖 − 1), and let

𝐶𝑖 = 𝐶𝑖−1 ∪ {𝑥𝑖, 𝑦𝑖}.

Also let
𝐴𝑖+1 = 𝐴𝑖 ⧵ {𝑧 ∈ [𝑛] ∶ 𝑧 + 𝑥𝑖 ∈ 𝑅 ∨ 𝑧 + 𝑦𝑖 ∈ 𝑅}.

Finally let 𝐶 = 𝐶𝑚.

Notice that at each step of this algorithm, the set 𝐴𝑖 decreases in at most 2𝑚 elements
and for each 𝑟 ∈ 𝑅 there are at least 𝑛/4 pairs {𝑥, 𝑦} ⊆ [𝑛] of different numbers such that
𝑟 = 𝑥 + 𝑦. So at each step there are at least 𝑛/4 − 2𝑚

2
> 𝑛/5 possible choices for {𝑥𝑖, 𝑦𝑖}.

Finally, if 𝑛 is large enough, then, by Lemma 4.2 and because 𝑚 = 𝑜(log 𝑛), there are at
least 0.9𝑛2/𝑚 𝑚-APs in [𝑛/2, 3𝑛/2] and 𝑚

2
< 𝑛/40. Thus,

∑

𝐶∈
𝑞
|𝐶|

≥ ∑

𝑅 is an 𝑚-AP
𝑅⊆[𝑛/2,3𝑛/2]

1

(2𝑚)
4 (

𝑛

5
)

𝑚

𝑞
2𝑚

> 0.9

𝑛
2

𝑚

1

16𝑚
4 (

𝑛𝑞
2

5 )

𝑚

=

9

160

𝑛
2+𝑚

𝑞
2𝑚

𝑚
5
5
𝑚

.

Claim 4.4. The family  is not 𝑞-small for sufficiently large 𝑛.

Proof. Firstly, notice that any cover  of  that contains the empty set satisfies

∑

𝐶∈
𝑞
|𝐶|

≥ 𝑞
0
= 1 >

1

2

.

Suppose that there exists a cover  of  that does not contain the empty set and
satisfies

∑

𝐷∈⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈∩
𝑞
|𝐶|

<

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈
𝑞
|𝐶|
. (4.3)

We may suppose that | ⧵ | is as small as possible. Then, for an arbitrary set 𝐸 =

{𝑒1, 𝑒2,… , 𝑒𝑡} ∈  ⧵  (such a set must exist otherwise inequality (4.3) does not hold), let

𝐸
∶= {𝐶 ∈  ∶ 𝐸 ⊊ 𝐶}
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and
′

∶= ( ∪ 𝐸) ⧵ {𝐸}.

Notice that ′ is a cover of , and therefore a cover of  , and |′
⧵ | = | ⧵ |− 1. Then,

by the definition of ,

∑

𝐷∈⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈∩
𝑞
|𝐶|

<

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈
𝑞
|𝐶|

≤ ∑

𝐷∈′
⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈′
∩
𝑞
|𝐶|
.

Hence

0 <

[

∑

𝐷∈′
⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈′
∩
𝑞
|𝐶|

]

−

[

∑

𝐷∈⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈∩
𝑞
|𝐶|

]

≤

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

|𝐸|−𝑞
𝑡
.

Which in turn implies that

|𝐸| >

9

80

𝑛
2+𝑚

𝑞
𝑡

𝑚
5
5
𝑚
. (4.4)

Notice that if 𝑡 ≥ 2𝑚, then 𝐸 = ∅, as each set in 𝐸 has 2𝑚 elements and is a proper
superset of 𝐸 that also contains 𝑡 elements. This contradicts inequality (4.4). Therefore,
𝑡 ≤ 2𝑚 − 1. Also notice that 𝑡 > 0, by the definition of .

Define functions , ,  ∶ 𝐸 → ([𝑚]) as follows: for each 𝐶 ∈ 𝐸, let 𝐶 =

{𝑥1, 𝑥2,… , 𝑥𝑚, 𝑦1, 𝑦2,… , 𝑦𝑚} be an arbitrary possible element labeling of 𝐶 such that there
exists 𝑎 and 𝑑 in [𝑛] for which

𝑥𝑖 + 𝑦𝑖 = 𝑎 + 𝑖𝑑 ∈ [2𝑛] for all 𝑖 ∈ [𝑚]. (4.5)

Then let
⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

(𝐶) ∶= {𝑖 ∈ [𝑚] ∶ {𝑥𝑖, 𝑦𝑖} ⊆ 𝐸};

(𝐶) ∶= {𝑖 ∈ [𝑚] ∶ |{𝑥𝑖, 𝑦𝑖} ∩ 𝐸| = 1};

(𝐶) ∶= {𝑖 ∈ [𝑚] ∶ {𝑥𝑖, 𝑦𝑖} ∩ 𝐸 = ∅}.

Note that (𝐶), (𝐶), (𝐶) define a partition of [𝑚].

Notice also that it is possible to redefine the labeling of the elements of 𝐶 without
changing the condition given by Equation (4.5) by swapping 𝑥𝑖 and 𝑦𝑖 for any 𝑖 ∈  in
which {𝑥𝑖, 𝑦𝑖} ∩𝐸 = {𝑦𝑖}. We shall only consider element labelings of 𝐶 such that if 𝑖 ∈ (𝐶),
then {𝑥𝑖, 𝑦𝑖} ∩ 𝐸 = {𝑥𝑖}.

Finally define

𝛼(𝐶) ∶= |(𝐶)|, 𝛽(𝐶) ∶= |(𝐶)|, 𝛾(𝐶) ∶= |(𝐶)|.

Notice that {

𝑡 = |𝐸| = 2𝛼 + 𝛽

𝑚 = 𝛼 + 𝛽 + 𝛾,
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which in turn implies that
{

𝛽 = 𝑡 − 2𝛼

𝛾 = 𝑚 − 𝑡 + 𝛼.

Now, for each 𝑖 ∈ {0, 1}, define

𝑖

𝐸
∶= {𝐶 ∈ 𝐸 ∶ 𝛼(𝐶) = 𝑖}.

Also define
≥2

𝐸
∶= {𝐶 ∈ 𝐸 ∶ 𝛼(𝐶) ≥ 2}.

We claim the following estimates of the sizes of sets 0

𝐸
, 1

𝐸
and ≤2

𝐸
, whose proofs involve

some double counting and can be found in the end of this chapter.

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

|0

𝐸
| ≤

2𝑛
2
− 𝑛

𝑚 − 1 (

𝑚

𝑡 )
𝑡!
(

𝑛

2
)

𝑚−𝑡

|1

𝐸
| ≤ 𝑚

(

𝑡

2)

2𝑛

𝑚 − 1(

𝑚 − 1

𝑡 − 2)
(𝑡 − 2)!

(

𝑛

2
)

𝑚−𝑡+1

|≥2

𝐸
| ≤

𝑡/2

∑

𝛼=2

(

𝑚

𝛼)(

𝑡

2, 2, 𝑡 − 4)(

𝑚 − 𝛼

𝑡 − 2𝛼)
(𝑡 − 2𝛼)!

(

𝑛

2
)

𝑚−𝑡+𝛼

(4.6)

(4.7)

(4.8)

Observe that
𝑛
2+𝑚

𝑞
𝑡

𝑚
5
5
𝑚

=

𝑟
𝑡

𝑚
5
5
𝑚
𝑛
2+𝑚−0.5𝑡−𝑡/𝑚

.

Moreover, notice that

[𝑚
𝑡
𝑛
2+𝑚−𝑡

]
[

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
𝑡 ]

= 𝑛
𝑡/𝑚−𝑡/2

𝑚
5+𝑡
5
𝑚

𝑟
𝑡

≤ 𝑛
−𝑡/6

𝑚
5+𝑡
5
𝑚

𝑟
𝑡

< 𝑛
−.166+𝑜(1)+0.161

= 𝑜(1), (4.9)

since 𝑚 ≥ 3, 𝑚/𝑟 = 𝑛
𝑜(1), 𝑡 ≥ 1 and 𝑚 < 0.1 log 𝑛.

Then, Inequalities (4.6) and (4.9) imply that

|0

𝐸
| < 2𝑚

𝑡
𝑛
2+𝑚−𝑡

= 𝑜
(

𝑛
2+𝑚

𝑞
𝑡

𝑚
5
5
𝑚 )

. (4.10)

Also, Inequalities (4.7) and (4.9) imply that

|1

𝐸
| < 2𝑚

𝑡−2
𝑡
2
𝑛
𝑚−𝑡+2

< 8𝑚
𝑡
𝑛
𝑚−𝑡+2

= 𝑜
(

𝑛
2+𝑚

𝑞
𝑡

𝑚
5
5
𝑚 )

. (4.11)

Finally, Inequality (4.8) implies that

|≥2

𝐸
| ≤ 𝑡

4
𝑚

𝑡
𝑛
𝑚−𝑡

𝑡/2

∑

𝛼=2

(

𝑛

𝑚
)

𝛼

< 𝑡
5
𝑛
𝑚−𝑡/2

𝑚
𝑡/2

< 32𝑚
0.5𝑡+5

𝑛
𝑚−𝑡/2

. (4.12)

Let 𝜆 = 288 = 32 ⋅ 9. We analyze two cases



28

4 | LONG APS IN THE RANDOM SUMSET - EXPECTATION THRESHOLD

1. If 𝑚 < 0.48

√

log 𝑛/ log log 𝑛 and 𝑟 =

√

228, then

log 𝑛

𝑚

+ 2𝑚 log 𝑟 > 4.2𝑚 log𝑚 + 2𝑚 log 𝑟 > 𝑚 log 5𝑚 + 9.5 log𝑚 + log 𝜆 + log 𝑟 .

2. If 𝑚 < 0.1 log 𝑛 and 𝑟 = 𝑒
9.9
√

𝑚, then

(2𝑚 − 1) log 𝑟 = 𝑚 log𝑚 + 19.8𝑚 −

log𝑚

2

− 9.9 ≥ 𝑚 log 5𝑚 + 9.5 log𝑚 + log 𝜆.

Either way, we have

log 𝑛

𝑚

+ 2𝑚 log 𝑟 ≥ 𝑚 log 5𝑚 + 9.5 log𝑚 + log 𝜆 + log 𝑟

Which is equivalent to

2 log 𝑛 − 𝑚 log 5 − 10 log𝑚 − log 𝜆 ≥ (2𝑚 − 1)
(

log𝑚

2

+

log 𝑛

𝑚

− log 𝑟
)
.

Then, Condition (4.2) and the fact that 𝑡 ≤ 2𝑚 − 1 yields

𝑡 log 𝑟 +
(
2 −

𝑡

𝑚
)
log 𝑛 ≥ log 𝜆 + 𝑚 log 5 +

(

𝑡

2

+ 10
)
log𝑚.

Finally, recalling Equation(4), this inequality combined with Inequality (4.12) yields

|≥2

𝐸
| < 32𝑚

0.5𝑡+5
𝑛
𝑚−𝑡/2

≤

9

81

𝑛
2+𝑚

𝑞
𝑡

𝑚
5
5
𝑚
. (4.13)

Finally, Inequalities (4.10), (4.11) and (4.13) contradict Inequality (4.4), for sufficiently large
𝑛, which in turn contradicts the existence of .

Therefore, because no such  exists, by Inequality (4.1) and Claim 4.3 we have

∑

𝐶∈′
𝑞
|𝐶|

≥ ∑

𝐷∈′⧵
𝑞
|𝐷|

+

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈′∩
𝑞
|𝐶|

≥

80

9

𝑚
5
5
𝑚

𝑛
2+𝑚

𝑞
2𝑚

∑

𝐶∈
𝑞
|𝐶|

>

1

2

,

for every cover ′ of  that does not contain the empty set. This completes the proof of
Claim 4.4.

The proof of Theorem 4.1 follows from Corollary 3.8 and Claims 4.3 and 4.4, since all
minimal elements of  have size 2𝑚.

We now prove Inequalities (4.6)–(4.8), as promised.

Proof of Inequality (4.6). First, note that, by Lemma 2.6, the 𝑚-𝐴𝑃

{𝑟𝑖 = 𝑥𝑖 + 𝑦𝑖 ∶ 𝑖 ∈ [𝑚]}
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is one of up to (2𝑛
2
− 𝑛)/(𝑚 − 1) possibilities.

Notice also that, since 𝛼 = 0, we have 𝛽 = 𝑡 − 2𝛼 = 𝑡 and therefore  is one of the

(

𝑚

𝑡 )

𝑡-subsets of [𝑚]. Additionaly, since  = ∅ we also have

𝐸 = {𝑥𝑖 ∶ 𝑖 ∈ },

which limits the labeling of the elements of 𝐸 ⊊ 𝐶 to the 𝑡! bijections of 𝐸 to . Given such
a labeling of the elements of 𝐸 and the 𝑚-AP {𝑟𝑖 ∶ 𝑖 ∈ [𝑚]}, there is, for each 𝑖 ∈ , at most
one choice for 𝑦𝑖, that is 𝑟𝑖 − 𝑥𝑖.

Finally observe that for each 𝑖 ∈ , we have 𝑟𝑖 ∈ [2𝑛] and therefore there are at most
𝑛/2 choices of {𝑥, 𝑦} ⊆ [𝑛] such that 𝑥 + 𝑦 = 𝑟𝑖. Since there are 𝑚− 𝑡 + 𝛼 = 𝑚− 𝑡 indices in
, there are at most (𝑛/2)𝑚−𝑡 possible choices for the set {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.

The set 𝐶 can then only be

𝐸 ∪ {𝑦𝑖 ∶ 𝑖 ∈ } ∪ {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.

Therefore

|0

𝐸
| ≤

2𝑛
2
− 𝑛

𝑚 − 1 (

𝑚

𝑡 )
𝑡!
(

𝑛

2
)

𝑚−𝑡

.

Proof of Inequality (4.7). First, note that  has a single element 𝑗 , and is therefore one of
𝑚 possible 1-subsets of [𝑚].

Furthermore {𝑥𝑗 , 𝑦𝑗 } can be any of the (
𝑡

2
) 2-subsets of 𝐸 and there are at most 2𝑛/(𝑚−1)

possible values for the common difference 𝑑. Now, given 𝑗 , 𝑥𝑗 + 𝑦𝑗 and 𝑑, the 𝑚-AP

{𝑟𝑖 = 𝑥𝑖 + 𝑦𝑖 ∶ 𝑖 ∈ [𝑚]}

is uniquely defined, if at all.

Notice also that, since 𝛼 = 1, we have 𝛽 = 𝑡 − 2𝛼 = 𝑡 − 2 and therefore  is one of the

(

𝑚 − 1

𝑡 − 2)

(𝑡 − 2)-subsets of [𝑚] ⧵. Additionally,

𝐸
∗
= 𝐸 ⧵ {𝑥𝑗 , 𝑦𝑗 } = {𝑥𝑖 ∶ 𝑖 ∈ },

which limits the labeling of the elements of 𝐸∗ to the (𝑡 − 2)! bijections of 𝐸∗ to . Given
such a labeling of the elements of 𝐸∗ and the 𝑚-AP {𝑟𝑖 ∶ 𝑖 ∈ [𝑚]}, there is, for each 𝑖 ∈ ,
at most one choice for 𝑦𝑖, that is 𝑟𝑖 − 𝑥𝑖.
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Finally observe that for each 𝑖 ∈ , we have 𝑟𝑖 ∈ [2𝑛] and therefore there are at most
𝑛/2 choices of {𝑥, 𝑦} ⊆ [𝑛] such that 𝑥 + 𝑦 = 𝑟𝑖. Since there are 𝑚− 𝑡 +𝛼 = 𝑚− 𝑡 +1 indices
in , there are at most (𝑛/2)𝑚−𝑡+1 possible choices for the set {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.

The set 𝐶 can then only be

𝐸 ∪ {𝑦𝑖 ∶ 𝑖 ∈ } ∪ {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.

Therefore

|1

𝐸
| ≤ 𝑚

(

𝑡

2)

2𝑛

𝑚 − 1(

𝑚 − 1

𝑡 − 2)
(𝑡 − 2)!

(

𝑛

2
)

𝑚−𝑡+1

.

Proof of Inequality (4.8). First, note that, for a fixed 2 ≤ 𝛼 ≤ 𝑡/2, the set  is one of

(

𝑚

𝛼)

𝛼-subsets of [𝑚].

Furthermore, let 𝑗 < 𝑘 be the least elements of . Then the ordered pair
({𝑥𝑗 , 𝑦𝑗 }, {𝑥𝑘, 𝑦𝑘}) is one of

(

𝑡

2, 2, 𝑡 − 4)

possible elements of (
𝐸

2
)

2

.

Now, given 𝑗 , 𝑘, 𝑥𝑗 + 𝑦𝑗 and 𝑑, the 𝑚-AP

{𝑟𝑖 = 𝑥𝑖 + 𝑦𝑖 ∶ 𝑖 ∈ [𝑚]}

is uniquely defined, if at all. Notice also that, we have 𝛽 = 𝑡 − 2𝛼 and therefore  is one of
the

(

𝑚 − 𝛼

𝑡 − 2𝛼)

(𝑡 − 2𝛼)-subsets of [𝑚] ⧵. Additionally

𝐸
∗∗
= {𝑥𝑖 ∶ 𝑖 ∈ }

is a (𝑡 − 2𝛼)-subset of 𝐸 ⧵ {𝑥𝑗 , 𝑦𝑗 , 𝑥𝑘, 𝑦𝑘} and, for a fixed set 𝐸∗∗, the labeling of the elements
of 𝐸∗∗ is limited to the (𝑡 − 2𝛼)! bijections from 𝐸

∗∗ to .

Given such a labeling of the elements of 𝐸∗∗ and the 𝑚-AP {𝑟𝑖 ∶ 𝑖 ∈ [𝑚]}, there is, for
each 𝑖 ∈ , at most one choice for 𝑦𝑖, that is 𝑟𝑖 − 𝑥𝑖.

Finally observe that for each 𝑖 ∈ , we have 𝑟𝑖 ∈ [2𝑚] and therefore there are at most
𝑛/2 choices of {𝑥, 𝑦} ⊆ [𝑛] such that 𝑥 + 𝑦 = 𝑟𝑖. Since there are 𝑚− 𝑡 + 𝛼 indices in , there
are at most (𝑛/2)𝑚−𝑡+𝛼 possible choices for the set {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.
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The set 𝐶 can then only be

𝐸 ∪ {𝑦𝑖 ∶ 𝑖 ∈ } ∪ {𝑥𝑖 ∶ 𝑖 ∈ } ∪ {𝑦𝑖 ∶ 𝑖 ∈ }.

Therefore

|≥2

𝐸
| ≤

𝑡/2

∑

𝛼=2

(

𝑚

𝛼)(

𝑡

2, 2, 𝑡 − 4)(

𝑚 − 4

𝑡 − 2𝛼)
(𝑡 − 2𝛼)!

(

𝑛

2
)

𝑚−𝑡+𝛼

.
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Chapter 5

Finding Long Arithmetic
Progressions in the Sumset of a
Random Set Using the First
Moment Method

In this chapter we prove Theorems 1.15 and 1.16. An outline of the proof is as follows.
First, sets of consecutive numbers are arithmetic progressions and one can divide an
interval of 𝑘𝑚 integers into 𝑘 disjoint sets of 𝑚 consecutive integers. Hence it suffices that
the number of elements 𝓁 in this run of 𝑘𝑚 integers that misses the set 𝐴𝑛 +𝐴𝑛 is less than
𝑘 in order for an arithmetic progression of 𝑚 elements to be contained in 𝐴𝑛 + 𝐴𝑛. We
show that for a carefully chosen interval of 𝑘𝑚 numbers, the expected value of 𝓁 is 𝑜(𝑘)
and therefore by Markov’s inequality 𝐴𝑛 + 𝐴𝑛 contains an 𝑚-AP.

Proof of Theorems 1.15 and 1.16. For each 𝑖 ∈ [2𝑛], consider the random variable 𝑋𝑖 = 1[𝑖 ∉

𝐴𝑛 + 𝐴𝑛]. Let 𝑡 = 𝛿𝑛, where 𝛿 ∈ (0, 1) will be chosen further down the proof. Define

𝐵 ∶= [𝑡 + 2, 2𝑛 − 𝑡] ⧵ (𝐴𝑛 + 𝐴𝑛), (5.1)

the set of integers in the interval [𝑡 + 2, 2𝑛 − 𝑡] that cannot be represented as a sum of two
elements of 𝐴𝑛.

For 𝑡 + 2 ≤ 𝑖 ≤ 𝑛, one can find upper bounds for 𝔼[𝑋𝑖], namely

𝔼[𝑋𝑖] = 𝔼[𝑋2𝑛+2−𝑖] ≤ (1 − 𝑝
2
)
𝑖/2−1

≤ (1 − 𝑝
2
)
𝑡/2

≤ 𝑒
−𝑝

2
𝑡/2
. (5.2)

Now looking at the random variable

|𝐵| =

2𝑛−𝑡

∑

𝑖=𝑡+2

𝑋𝑖, (5.3)
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we see that
𝔼[|𝐵|] < 2𝑛(1 − 𝛿)𝑒

−𝑝
2
𝛿𝑛/2

. (5.4)

If 𝛿 ∈ (0, 1) and 𝑚 = 𝑚(𝑛) are such that

(2𝑛(1 − 𝛿)/𝑚 ≥ 1) ∧ (𝑚 = 𝑜(𝑒
𝑝
2
𝛿𝑛/2

)), (5.5)

then we can choose 2𝑛(1 − 𝛿)/𝑚 disjoint intervals 𝐼𝑠 of size 𝑚 in the interval [𝑡 + 2, 2𝑛 − 𝑡].
If we let 𝑏 be the number of such intervals that are not disjoint to 𝐵, then 𝑏 is at most |𝐵|.
By Markov’s inequality we also have

ℙ[𝑏 = 2𝑛(1 − 𝛿)/𝑚] ≤ ℙ[|𝐵| ≥ 2𝑛(1 − 𝛿)/𝑚] ≤

𝔼[|𝐵|]

2𝑛(1 − 𝛿)/𝑚

< 𝑚𝑒
−𝑝

2
𝛿𝑛/2

= 𝑜(1). (5.6)

This means that at least one such interval 𝐼𝑠 is a subset of 𝐴𝑛 +𝐴𝑛 with probability 1 − 𝑜(1).
Clearly 𝐼𝑠 is an 𝑚-AP.

Now we choose 𝛿 and 𝑚 appropriate for each case.

If 𝑝(𝑛) <
√

2(log 𝑛)/𝑛, then 𝛿 < 1 and 𝑚 = 𝑒
(𝛿−1/2)𝑝

2
𝑛 satisfy (5.5). Therefore 𝐿(𝐴𝑛 +

𝐴𝑛) ≥ 𝑒
(1/2−𝑜(1))𝑝

2
𝑛.

If 𝑝(𝑛) =
√

(𝐶 + 𝑜(1))(log 𝑛)/𝑛 for some constant 𝐶 > 2, then 𝛿 constant in the interval
(2/𝐶, 1) and 𝑚 = 2𝑛(1 − 𝛿) satisfy (5.5).
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Chapter 6

Finding Long Arithmetic
Progressions in the Sumset of a
Random Set Using the Second
Moment Method

In this chapter we introduce Theorem 6.1 that is proved using the second moment
method. The proof of Theorem 6.1 is inspired by the proof of Theorem 1.3 given by Croot,
Ruzsa and Schoen [3]. We recall that we later found Theorem 6.1 to provide weaker bounds
than Theorem 1.15, which was proved in Chapter 5.

Theorem 6.1. Let 𝑝∶ ℕ → [0, 1] and 𝑚∶ ℕ → ℝ be given, such that 𝑚 = 𝑜(
4

√

𝑛),
𝑚 = 𝑜(

√
𝑝𝑛), 𝑚 = 𝑜(𝑝

2
𝑛) and 𝑚(𝑛) → ∞. Then the random set 𝐴𝑛 defined in (1.1) satisfies

𝐿(𝐴𝑛 + 𝐴𝑛) ≥ 𝑚(𝑛)

asymptotically almost surely.

It is simple to deduce the following corollary of Theorem 6.1

Corollary 6.2. Let 𝑓 , 𝑚∶ ℕ → ℝ>0 be given, such that 𝑓 (𝑛) = 𝑜(log 𝑛), 𝑓 (𝑛) → ∞ and
𝑚(𝑛) = 𝑜(𝑓 (𝑛)). Set 𝑝(𝑛) = min(1,

√

𝑓 (𝑛)/𝑛). Then the random set 𝐴𝑛 defined in (1.1) satisfies

𝐿(𝐴𝑛 + 𝐴𝑛) > 𝑚(𝑛)

asymptotically almost surely.

The outline of the proof of Theorem 6.1 is the following. We show that, asymptotically
almost surely, the fixed arithmetic progression 𝑋 = {𝑛−𝑑, 𝑛−2𝑑,… , 𝑛−𝑚𝑑}, where 𝑑 =

√

𝑛,
is a subset of 𝐴𝑛 +𝐴𝑛. This will done by considering a class  of sets 𝐶 of 2𝑑 elements that
generate 𝑋 (i.e. such that 𝐶 + 𝐶 ⊃ 𝑋 ) that are

(P1) plentiful so as to force the expected number of members of  that are subsets of 𝐴𝑛

to be large and
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(P2) somewhat independent from the other members of  so as to force the standard
deviation of the number of members of  that are subsets of 𝐴𝑛 to be small in
comparison with its expected value.

This allows us to employ the second moment method to achieve what we need. The
following definition will establish , while Lemmas 6.4 and 6.6 will show that  obeys (P1)
and (P2), respectively.

Definition 6.3 ((𝑑, 𝑚, 𝑛)-dsoc). For positive integers 𝑚 < 𝑑 < 𝑛, say that a vector
𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑚) ∈ [𝑛]

𝑚 is a diverse modulo 𝑑 second order cover of an 𝑚-arithmetic
progression in [𝑛] (or (𝑑, 𝑚, 𝑛)-dsoc or, when there are no ambiguities, simply dsoc), if

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑥𝑖 ≢ 𝑥𝑗 (mod 𝑑),

𝑥𝑖 ≢ 𝑛 − 𝑥𝑗 (mod 𝑑),

𝑥𝑖 < 𝑛 − 𝑚𝑑

for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚.

Notice that
𝐶𝑥 = {𝑥𝑖 ∶ 𝑖 ∈ [𝑚]} ∪ {𝑛 − 𝑖𝑑 − 𝑥𝑖 ∶ 𝑖 ∈ [𝑚]}

is a 2𝑚-subset of [𝑛] if 𝑥 is a dsoc and {𝑛−𝑑, 𝑛−2𝑑,… , 𝑛−𝑚𝑑} is an 𝑚-AP in 𝐶𝑥 + 𝐶𝑥 .

𝑥1

𝑥2

𝑥3

⋮

𝑥𝑚−1

𝑥𝑚

𝑛 − 𝑑 − 𝑥1

𝑛 − 2𝑑 − 𝑥2

𝑛 − 3𝑑 − 𝑥3

⋮

𝑛 − (𝑚 − 1)𝑑 − 𝑥𝑚−1

𝑛 − 𝑚𝑑 − 𝑥𝑚

𝑥

𝐶𝑥

𝑛 − 𝑑

𝑛 − 2𝑑

𝑛 − 3𝑑

𝑛 − (𝑚 − 1)𝑑

𝑛 − 𝑚𝑑

Figure 6.1: 𝐶𝑥 covers exactly 2𝑚 classes modulo 𝑑.

Lemma 6.4. There are at least (𝑛/𝑑 − 𝑚 − 1)
𝑚

∏
𝑚

𝑖=1
(𝑑 − 2𝑖 + 2) dsocs.

Proof. For fixed 𝑥1, 𝑥2,… , 𝑥𝑖−1 that can possibly be the first 𝑖− 1 first entries of a dsoc there
are at least 𝑑−2𝑖+2 and 𝑛/𝑑−𝑚−1 possible remainders and quotients of 𝑥𝑖 on its division
by 𝑛, respectively.
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Definition 6.5. Let 𝑥 = (𝑥1,… , 𝑥𝑚) and 𝑦 = (𝑦1,… , 𝑦𝑚) be dsocs. Define

𝛼(𝑥, 𝑦) ∶=
|
|
{𝑖 ∈ [𝑚] ∶ |{𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖} ∩ 𝐶𝑦 | = 2}

|
|

and
𝛽(𝑥, 𝑦) ∶=

|
|
{𝑖 ∈ [𝑚] ∶ |{𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖} ∩ 𝐶𝑦 | = 1}

|
|
.

Notice that, if 𝑥 and 𝑦 are dsocs, then 𝛼(𝑥, 𝑦) counts the indices 𝑖 for which 𝑥𝑖 and
𝑛 − 𝑖𝑑 − 𝑥𝑖 are both in 𝐶𝑦 . Since 𝑦 is a dsoc and 𝑥𝑖 + 𝑛 − 𝑖𝑑 − 𝑥𝑖 ≡ 𝑛 (mod 𝑑), those two
numbers have to be, in some order, 𝑦𝑗 and 𝑛 − 𝑗𝑑 − 𝑦𝑗 for an integer 𝑗 . Therefore

𝑥𝑖 + 𝑛 − 𝑖𝑑 − 𝑥𝑖 = 𝑦𝑗 + 𝑛 − 𝑗𝑑 − 𝑦𝑗 ,

which implies that 𝑖 = 𝑗 . Therefore

𝛼(𝑥, 𝑦) =
|
|
{𝑖 ∈ [𝑚] ∶ 𝑥𝑖 = 𝑦𝑖 ∨ 𝑥𝑖 + 𝑦𝑖 = 𝑛 − 𝑖𝑑}

|
|
= 𝛼(𝑦, 𝑥)

and
𝛽(𝑥, 𝑦) =

|
|
𝐶𝑥 ∩ 𝐶𝑦

|
|
− 2𝛼(𝑥, 𝑦) = 𝛽(𝑦, 𝑥).

Lemma 6.6. Let 𝛼 ≤ 𝑚 and 𝛽 ≤ 𝑚 − 𝛼 be non-negative integers and let 𝑥 be a dsoc. Then
the number of dsocs 𝑦 such that 𝛼(𝑥, 𝑦) = 𝛼 and 𝛽(𝑥, 𝑦) = 𝛽 is at most

(

𝑚

𝛼)(

𝑚 − 𝛼

𝛽 )

2

𝛽!2
𝛼
4
𝛽
𝑛
𝑚−𝛼−𝛽

.

Proof. Given 𝑦 as in the statement of the lemma,

𝑆 = {𝑖 ∈ [𝑚] ∶ 𝑥𝑖 = 𝑦𝑖 ∨ 𝑥𝑖 + 𝑦𝑖 = 𝑛 − 𝑖𝑑}

is an 𝛼-subsets of [𝑚]. For a fixed set 𝑆, the sets

𝑇𝑥 = {𝑖 ∈ [𝑚] ∶ |{𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖} ∩ 𝐶𝑦 | = 1}, 𝑇𝑦 = {𝑖 ∈ [𝑚] ∶ |{𝑦𝑖, 𝑛 − 𝑖𝑑 − 𝑦𝑖} ∩ 𝐶𝑥 | = 1}

are 𝛽-subsets of [𝑚] ⧵ 𝑆.

Observe that there is a natural bijective function 𝑓 ∶ 𝑇𝑥 → 𝑇𝑦 where

|
|
{𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖} ∩ {𝑦𝑓 (𝑖), 𝑛 − 𝑓 (𝑖)𝑑 − 𝑦𝑓 (𝑖)}

|
|
= 1 for all 𝑖 ∈ 𝑇𝑥 ,

and for fixed 𝑇𝑥 and 𝑇𝑦 there are 𝛽! bijective functions 𝑓 ∶ 𝑇𝑥 → 𝑇𝑦 .

Finally notice that
𝑦𝑖 ∈ {𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖} for all 𝑖 ∈ 𝑆

and
𝑦𝑓 (𝑖) ∈ {𝑥𝑖, 𝑛 − 𝑖𝑑 − 𝑥𝑖, 𝑛 − 𝑓 (𝑖)𝑑 − 𝑥𝑖, 𝑥𝑖 + (𝑖 − 𝑓 (𝑖))𝑑} for all 𝑖 ∈ 𝑇𝑥 .

Now, for fixed 𝑥 , 𝑆, 𝑇𝑥 , 𝑇𝑦 and 𝑓 , each of the 𝛼 entries of 𝑦 indexed by elements of 𝑆 is one
of 2 values, each of the 𝛽 entries of 𝑦 indexed by elements of 𝑇𝑦 is one of at most 4 values,
and each of the other 𝑚 − 𝛼 − 𝛽 entries of 𝑦 is one of the 𝑛 elements of [𝑛].



38

6 | LONG APS IN THE RANDOM SUMSET - SECOND MOMENT METHOD

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We will employ the second moment method. Let 𝑑 =

√

𝑛. If 𝑥 is a
dsoc, then

ℙ(𝐶𝑥 ⊆ 𝐴𝑛) = 𝑝
2𝑚
.

Set
𝑋 ∶= ∑

𝑥 dsoc

1[𝐶𝑥 ⊆ 𝐴𝑛].

Notice that 𝑋 ≥ 1 implies that 𝐴𝑛 + 𝐴𝑛 contains the 𝑚-AP {𝑛 − 𝑑, 𝑛 − 2𝑑,… , 𝑛 − 𝑚𝑑}.

Set 𝑇 =
|
|
{𝑥 ∈ [𝑛]

𝑚
∶ 𝑥 dsoc}|

|
. Then, using Lemma 6.4, we have

𝔼 [𝑋 ] = ∑

𝑥 dsoc

𝑝
2𝑚

= 𝑇𝑝
2𝑚

≥ 𝑝
2𝑚

(

𝑛

𝑑

− 𝑚 − 1
)

𝑚
𝑚

∏

𝑖=1

(𝑑 − 2𝑖 + 2)

≥
(
𝑝
2
𝑛
(
1 −

(𝑚 + 1)𝑑

𝑛 )(
1 −

2𝑚 − 2

𝑑 ))

𝑚

→ ∞,

as 𝑝2
𝑛 → ∞, 𝑚 ≥ 1, 𝑚 = 𝑜(𝑑) and 𝑚 = 𝑜(𝑛/𝑑).

Then, using Lemma 6.6, one can estimate the variance as follows:

Var [𝑋 ] = ∑

𝑥 dsoc

∑

𝑦 dsoc

Cov [1(𝐶𝑥 ⊆ 𝐴),1(𝐶𝑦 ⊆ 𝐴)]

≤ ∑

𝑥 dsoc

𝑚

∑

𝛼=0

𝑚−𝛼

∑

𝛽=0

(

𝑚

𝛼)(

𝑚 − 𝛼

𝛽 )

2

𝛽!2
𝛼
4
𝛽
𝑛
𝑚−𝛼−𝛽

(𝑝
4𝑚−2𝛼−𝛽

− 𝑝
4𝑚
)

= ∑

𝑥 dsoc

∑

0≤𝛽≤𝑚−𝛼≤𝑚

(𝛼,𝛽)≠(0,0)

(

𝑚

𝛼)(

𝑚 − 𝛼

𝛽 )

2

𝛽!2
𝛼
4
𝛽
𝑛
𝑚−𝛼−𝛽

(𝑝
4𝑚−2𝛼−𝛽

− 𝑝
4𝑚
)

< 𝑇𝑝
4𝑚

∑

0≤𝛽≤𝑚−𝛼≤𝑚

(𝛼,𝛽)≠(0,0)

(

𝑚

𝛼)(

𝑚 − 𝛼

𝛽 )

2

𝛽!2
𝛼
4
𝛽
𝑛
𝑚−𝛼−𝛽

𝑝
−2𝛼−𝛽

.

Setting

𝜏𝛼,𝛽 =
(

𝑚

𝛼)(

𝑚 − 𝛼

𝛽 )

2

𝛽!2
𝛼
4
𝛽
𝑛
𝑚−𝛼−𝛽

𝑝
−2𝛼−𝛽

,

we have for all 0 ≤ 𝛼 ≤ 𝑚, 0 ≤ 𝛽 ≤ 𝑚 − 𝛼 − 1 and 𝑛 sufficiently large that

𝜏𝛼,𝛽+1

𝜏𝛼,𝛽

=

4(𝑚 − 𝛼 − 𝛽)
2

(𝛽 + 1)𝑛𝑝

≤

4𝑚
2

𝑛𝑝

<

1

2

,

as 𝑚2
= 𝑜(𝑛𝑝).
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Using this geometric behaviour and Lemma 6.4, we have, for some constant 𝐶 > 0, that

Var [𝑋 ]

𝔼 [𝑋 ]
2
≤

1

𝑇 (

𝑚

∑

𝛽=1

𝜏0,𝛽 +

𝑚

∑

𝛼=1

𝑚−𝛼

∑

𝛽=0

𝜏𝛼,𝛽

)

<

2

𝑛
𝑚

(1 −
(𝑚+1)𝑑

𝑛
)

𝑚

(1 −
2𝑚−2

𝑑
)

𝑚

(

𝜏0,1 +

𝑚

∑

𝛼=1

𝜏𝛼,0

)

<

2.01

𝑛
𝑚
(1/𝑒)

(𝑚
2
+𝑚)𝑑/𝑛+2(𝑚

2
−𝑚)/𝑑

(

4𝑚
2
𝑛
𝑚−1

𝑝
−1

+

𝑚

∑

𝛼=1

(

𝑚

𝛼)
𝑛
𝑚−𝛼

2
𝛼
𝑝
−2𝛼

)

<

2.01

𝑛
𝑚
(1/𝑒)

2𝑚
2
(𝑑/𝑛+1/𝑑) (

4𝑚
2
𝑛
𝑚−1

𝑝
−1

+ 𝑛
𝑚

((
1 +

2

𝑝
2
𝑛)

𝑚

− 1
))

<

𝐶𝑚
2

𝑛𝑝

+ 𝐶
((

1 +

2

𝑝
2
𝑛)

𝑚

− 1
)

= 𝑜(1)

for sufficiently large 𝑛, since 𝑚2
= 𝑜(𝑛/𝑑), 𝑚2

= 𝑜(𝑑), 𝑚2
= 𝑜(𝑛𝑝) and 𝑚 = 𝑜(𝑝

2
𝑛). Now, by

Chebyshev’s inequality
ℙ[𝑋 ≥ 1] → 1

as 𝑛 tends to infinity.
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Chapter 7

Concluding Remarks

We begin by comparing Theorem 1.18 in this dissertation with the deterministic
theorems presented in the first chapter. Theorems 1.18 deals with probabilities that are
𝑛
−1/2+𝑜(1), which allows us to use concentration inequalities such as Chernoff’s bounds to

prove that |𝐴𝑛| = (1 + 𝑜(1))𝑝𝑛 asymptotically almost surely. In this regime Theorem 1.2
and Corollary 1.4 can at best guarantee arithmetic progressions of size 3 in the random set
𝐴𝑛 + 𝐴𝑛.

We also offer the following possible generalizations of the problem studied in this
dissertation. We hope to tackle these problems in a near future.

Problem 7.1. Let 𝑝, 𝑞 ∶ ℕ → [0, 1]. We consider the independent sequences of independent
random sets {𝐴𝑛 ⊆ [𝑛]}𝑛∈ℕ and {𝐵𝑛 ⊆ [𝑛]}𝑛∈ℕ, where for all 𝑖 ∈ [𝑛] we have

ℙ[𝑖 ∈ 𝐴𝑛] = 𝑝(𝑛) and ℙ[𝑖 ∈ 𝐵𝑛] = 𝑞(𝑛)

and these 2𝑛 events are mutually independent.

(a) What can we say about the asymptotic behavior of 𝐿(𝐴𝑛 + 𝐵𝑛)?

(b) If 𝑝 = 𝑞 is the asymptotic behavior of 𝐿(𝐴𝑛 + 𝐵𝑛) similar to the one of 𝐿(𝐴𝑛 + 𝐴𝑛)?

(c) What are non-trivial upper bounds for 𝐿(𝐴𝑛 + 𝐴𝑛) if 𝑝 = 1/

√

𝑛?

Problem 7.2. Let 𝑝∶ ℕ → [0, 1]. Consider the sequence of independent random sets {𝐴𝑛 ⊆

[𝑛]}𝑛∈ℕ, where for all 𝑖 ∈ [𝑛] we have

ℙ[𝑖 ∈ 𝐴𝑛] = 𝑝(𝑛)

and these events are mutually independent. What can we say about the asymptotic behavior
of 𝐿(𝑘𝐴𝑛)? Here 𝑘𝐴𝑛 denotes the set of sums of 𝑘 not necessarily distinct elements of 𝐴𝑛.

We feel that in Problems 7.1(a) and 7.1(b) the techniques used in the proofs of the
theorems of this dissertation can be slightly modified to prove similar theorems.

Meanwhile in Problem 7.2 the alterations in the proofs needed to find similar theorems
to the ones in this dissertations should be more sophisticated, specially the ones regarding
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upper bounds for 𝐿(𝑘𝐴𝑛). The case 𝑘 = 3 already seems interesting.

Problem 7.1(c) is motivated by the fact that we could not find upper bounds for 𝐿(𝐴𝑛 +

𝐴𝑛), other than the one given by the fact that 𝐴𝑛 + 𝐴𝑛 ⊆ [2𝑛].
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