• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2020.tde-14082020-141207
Documento
Autor
Nome completo
Julio Cesar Correa Hoyos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2020
Orientador
Banca examinadora
Nardulli, Stefano (Presidente)
Guimarães, Maria Fernanda Elbert
Pimentel, Edgard Almeida
Santos, Walcy
Terra, Glaucio
Título em inglês
Intrinsic geometry of varifolds in Riemannian manifolds: monotonicity and Poincare-Sobolev inequalities
Palavras-chave em inglês
Analysis on manifolds
Calculus of variations
First variation of a varifold
Geometric measure theory
Metric geometry
Michael-Simon inequality
Poincare and Sobolev-type inequalities
Resumo em inglês
We prove a Poincare, and a general Sobolev type inequalities for functions with compact support defined on a $k$-rectifiable varifold $V$ defined on a complete Riemannian manifold with positive injectivity radius and sectional curvature bounded above. Our techniques allow us to consider Riemannian manifolds $(M^n,g)$ with $g$ of class $C^2$ or more regular, avoiding the use of Nash's isometric embedding theorem. Our analysis permits to do some quite important fragments of geometric measure theory also for those Riemannian manifolds carrying a $C^2$ metric $g$, that is not $C^{k+\alpha}$ with $k+\alpha>2$. The class of varifolds we consider are those which first variation $\delta V$ lies in an appropriate Lebesgue space $L^p$ with respect to its weight measure $\|V\|$ with the exponent $p\in\R$ satisfying $p>k$.
Título em português
Geometria intrínsica de varifolds em variedades Riemannianas: monotonia e desigualdades do tipo Poincaré-Sobolev
Palavras-chave em português
Análise em variedades
Cálculo das variações
Desigualdade de Michael-Simon
Desigualdades do tipo Poincaré-Sobolev
Geometria métrica
Primeira variação de uma varifold
Teoria geométrica da medida
Resumo em português
São provadas desigualdades do tipo Poincaré e Sobolev para funções com suporte compacto definidas em uma varifold $k$-rectificavel $V$ definida em uma variedade Riemanniana com raio de injetividade positivo e curvatura secional limitada por cima. As técnicas usadas permitem considerar variedades Riemannianas $(M^n,g)$ com métrica $g$ de classe $C^2$ ou mais regular, evitando o uso do mergulho isométrico de Nash. Dita análise permite refazer alguns fragmentos importantes da teoria geométrica da medida também no caso de variedades Riemannianas que admitem uma métrica $C^2$, que possivelmente não é $C^{k+\alpha}$, com $k+\alpha>2$. A classe de varifolds consideradas, são aquelas em que sua primeira variação $\delta V$ está em um espaço de Labesgue $L^p$ com respeito à sua medida de massa $\|V\|$ com expoente $p\in\R$ satisfazendo $p>k$.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-01-20
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.