• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2021.tde-13122021-192156
Document
Author
Full name
Lorena Soriano Hernandez
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2021
Supervisor
Committee
Siciliano, Gaetano (President)
Marrocos, Marcus Antonio Mendonça
Moreira Neto, Sandra Imaculada
Piccione, Paolo
Pimenta, Marcos Tadeu de Oliveira
 
Title in English
Eigenvalue problems for Schrödinger-Bopp-Podolsky systems
Keywords in English
Bi-Laplacian operator
Genus theory
Lagrange multipliers
PS-condition
Regularity
Abstract in English
This work is framed in the study of a class of Schrödinger-Bopp-Podolsky systems. As a novelty, we apply topological methods to find solutions of equations that involve the bi-Laplacian operator as well as such solutions are defined in subsets of R^N where N 3.
 
Title in Portuguese
Problemas de autovalores para sistemas Schrödinger-Bopp-Podolsky
Keywords in Portuguese
Condição PS
Multiplicadores de Lagrange
Operador Bi-Lapaciano
Regularidade
Teoria do gênero
Abstract in Portuguese
Esta tese está no marco do estudo da classe de sistemas de equações Schrödinger-Bopp-Podolsky. Como novedade, aplicamos metódos topologicos para encontrar soluções das equações que involvem o operador Bi-Laplaciano assim como a obtenção de soluções definidas em subconjuntos de R^N sendo N 3.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-01-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.