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i

Kabelsalat

From this german words,
’A giant entangled of strings’
We may actually learn
How our journey begins

If every person in our life
creates a new crossing,
which braid do you give rise to?

But after I met you, my love
I keep asking myself,
why don’t we close our braids
and become a link already?

Since, no matter the orientation,
I want always to come back to you.
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Resumo

FIOROTTO, S. L. R. Tranças, Nós e Links. Tese (Mestrado) - Instituto de Matemática
e Estatística, Universidade de São Paulo, São Paulo, 2023.

A teoria das tranças e nós oferece uma via cativante e intuitiva para explorar uma
variedade diversificada de ferramentas na topologia algébrica. Nosso objetivo é utilizar
o contexto das tranças e links para proporcionar um caminho de estudo na topologia
algébrica e explorar resultados importantes na área, como o Teorema de Alexander e o
Teorema de Markov.

Esta tese explora os aspectos fundamentais da teoria das tranças, incluindo várias
definições de grupos de tranças, noções de equivalência e invariantes. Também fornece
noções básicas e resultados da teoria dos nós, como invariantes e superfícies de Seifert.
Além disso, investigamos a relação entre tranças e nós. O Teorema de Alexander afirma
que todo nó ou link em S3 pode ser representado como uma trança fechada, enquanto
o teorema de Markov oferece insights sobre a relação que as tranças que geram um de-
terminado nó compartilham. Este trabalho oferece um caminho acessível para entender a
interação entre tranças, nós e topologia algébrica.

Palavras-chave: Tranças, Nós, Links, Teorema de Alexander, Teorema de Markov.
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Abstract

FIOROTTO, S. L. R. Braids, Knots and Links. Master Thesis - Mathematics and
Statistics Institute, University of Sao Paulo, São Paulo, 2023.

The theory of braids and knots offers a captivating and intuitive avenue for exploring
a diverse array of tools in the algebraic topology. We aim to use the context of braids and
links to provide a path of study on algebraic topology and exploring important results in
the area such as Alexander and Markov’s Theorem.

This thesis explores braid theory’s fundamental aspects, including various definitions
of braid groups, equivalence notions, and invariants. It also provides basic notion and
results from knot theory, such as invariants and Seifert Surfaces. Moreover, we investigate
the relationship between braids and knots. Alexander’s Theorem establishes that every
knot or link in S3 can be represented as a closed braid, while Markov’s theorem provides
insight into the relationship braids generating a given knot share.

Keywords: Braids, Links, Alexander’s Theorem, Markov Theorem
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Introduction

The theory of braids is widely studied in the field of algebraic topology. Stemming
from an intuitive concept, this theory offers a unique opportunity to explore a multitude
of interconnected fields and tools. As a result, delving into the study of braids is not only
intriguing but also presents a fascinating avenue for research and exploration.

Essentially, a mathematical braid is a collection of paths living in R3 that tangles them-
selves in one another without intersecting and it starts and ends in different points set
in parallel planes. Also, equipping the set of braids with the operation of concatenating
one another gives us a group structure. Actually, the braid group Bn was first defined
by Emil Artin in [Art25] and further studied in [Art47a] and [Art47b]. However, it was
probably first considered by Hurwitz in 1891 when discussing, in modern terminology the
fundamental group of configuration spaces. Other definitions were given later and by the
time of 1936 it was already known their equivalence [Zar36].

Moreover, Artin introduced the braid group with the idea it could help with knots and
links. Knot theory is the theory of studying the embedding of the circle in the space. On
the other hand, links are a generalization of knots, namely a link is a finite disjoint union
of knots, possibly intertwined. Each knot Ki is called a component of the link. We can
also try defining operations on those links such as composition, reflection and reversing
the orientation. With this operations we can also define a group structure to the set of
knots. A big part of knot theory is trying to define invariants in such a way that given two
links that are equivalent, they must have the same invariant. In this text, we will explore
some of them, such as the coloring number of a given knot.

In the exploration of braid and knot theories, undeniable intersections emerge, natu-
rally evoking curiosity about potential relationships between braids and links. In fact, we
can always obtain a knot from a braid by making the process of closing a braid which,
intuitively consists in connecting the initial to the final points of every string without
creating any more crossings. Therefore, it’s natural to ask if given a knot K, there is a
braid that it can be obtained from? If there is, is it unique? Moreover, if the braids that
give rise to this knot are not unique, what do they have in common? Actually, the first
question was answered positively by Alexander’s Theorem that states that every knot or
link in S3 can be represented as a closed braid. In addition, Markov’s theorem states that
the braids that give rise to a given not are not unique. However, one can be obtained from
the other by a braid isotopy or a single stabilization or a destabilization.

In Chapter 1 we will explore three definitions of braid groups, the notion of equivalence
and the braid permutation as an invariant and the pure braid group. We will also inves-

1



2 LIST OF FIGURES 0.0

tigate some results involving fibration sequence and braids, an the proof of how to obtain
Artin’s famous presentation of braid groups building upon the configuration space’s defi-
nition.

In Chapter 2 we will dive in some definitions on knots and links, how to define the
notion of their equivalence and Reidemeister moves. Moreover, we will look closely to op-
erations such as composition, reflection, reverse and defining a group structure under the
set of links L. Furthermore, we study some link invariants such as multiplicity, minimum
crossing points, the bridge number, the unknotting number and the colouring number of
a given knot. Finally, we will look to the process of obtaining a Seifert surface for a given
knot.

In Chapter 3 we will study the relationship between braids and knots. First, we will
look closely to the concept of closed braids. Then, we will prove Alexander’s Theorem
using Yamada-Vogel Algorithm [Yam87] [Vog90]. We will then see a proof of Markov’s
Theorem, due to o Pawel Traczyk [Tra98] that uses some of the ideas that were developed
in the proof of Alexander’s theorem.

This text aims to provide a clear and intuitive understanding of the mathematical
concepts presented here. Additionally, it offers the option to explore proofs that utilize
fundamental tools in algebraic topology, detailed in the Appendices for reference and in-
depth study, such as fibration sequences, cell complexes and homotopy. These proofs not
only offer a geometric and pleasing interpretation of classical results but also contribute
to a comprehensive grasp of the subject matter.



Chapter 1

Braids

In this chapter we will first study the notion of braids and braid groups. We will give
three different definitions: geometric definition, configuration spaces and Artin’s presenta-
tion. Each of these definitions will equip us with essential tools to tackle a variety of results.
After giving the geometric definition, we will study the notion of braid equivalence, per-
mutation and pure braid groups. Subsequently, we will introduce the configuration spaces
definition for braid groups and pure braid groups. We shall examine outcomes related to
the fibration sequence and braid groups. Finally, we will give the Artin’s presentation for
braid groups and see a prove of how this presentation appears naturally from configura-
tion spaces definition given originally by Fox and Neuwirth [FN62]. In the last section of
the chapter we study the Garside Structure and how to obtain a solution for the word
problem. The main references used on this chapter are: [MK12], [B+74], [GM11], [Gar69].

1.1 Intuitive approach
In several occasions, in our everyday life, we may have crossed the notion of a

braid, mostly in the context of hairstyle. However, mathematically, one doesn’t need to
be confined only to three strings, or even R3 (although it will be our initial focus). So,
intuitively speaking, a mathematical braid can be understood by the following setup:

For example, imagine two parallel acrylic plates with 4 strings that intertwine (without
intersecting) fixed on the plates on both ends. (See Figure 1.1)

Figure 1.1: A braid with four strings and a mathematical representation of it.

The second picture illustrates how we will represent the braids in mathematics. If one
string passes behind another, we will represent it by leaving a little blank space.

3



4 BRAIDS 1.2

Another interesting way to think about braids is the following: Imagine three flies
standing under an acrylic plate in an instant t = 0. When the time starts, they begin
going down until they reach another plate in t = 1 in such a way that in each time t
they are on the same height. When we see the bigger picture, one can imagine how their
movement describes a mathematical braid. (See Figure 1.2) However, one may also realize
you can make a braid by looking at different configurations of three points on each instant
going from t = 0 to t = 1.

This visualization will help us understanding the configuration spaces definition of a
mathematical braid.

Figure 1.2: The path done by the flies and the braid they represent it.

1.2 Geometric definition
Now, we will give our first attempt trying to formalize our notion of a braid:

Definition 1.2.1. Consider R3 and two parallel planes α, β with the third coordinate
being 0 and 1, respectively. Let Pi, Qi (1 ≤ i ≤ n) the points with coordinates (i, 0, 1)
and (i, 0, 0), such that {P1, . . . , Pn} ⊂ β in the superior plane and {Q1, . . . , Qn} ⊂ α in
the inferior plane.

A braid with n strings is made of n paths, γ1, . . . , γn, such that γi connects Pi from
the superior plane to Qπ(i) in the inferior plane for some permutation π ∈ Σn. Also,

(i) Each γi intersects the plane z = t only once for each t ∈ [0, 1]

(ii) The paths γ1, . . . , γn intersects the plane z = t always in n distinct points, ∀t ∈ [0, 1]

Figure 1.3: Representation of a generic braid.
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The element π is called the braid permutation and will be detailed later. In other
words, the definition says that in a n-string braid, each string crosses each other a finite
number of times and they never intersect each other.

Furthermore, one can recognize a group structure under concatenation of braids. We
will formalize some details later. Intuitively, the trivial braid (or the group identity) on
n-strings is the one with the trivial permutation and no crossings between the strings.
Additionally, if one concatenates a given braid with the trivial one, nothing happens.
Also, we can try looking into the notion of inverse of a braid by asking: Which braid (if
there is any) can we concatenate with a given one to obtain the trivial braid? See the
following figures for some examples:

Figure 1.4: Example of composition of two braids with two strings that gives rise to the trivial
braid.

Figure 1.5: Example of composition of two braids with three strings that gives rise to the trivial
braid.

Figure 1.6: Example of composition of two braids with three strings.



6 BRAIDS 1.3

1.3 Equivalence, Braid Permutation and Pure Braid
Group

A big question when studying braid groups is whether given two braids if they are
equivalent or not. Thinking about this, we will define an operation that doesn’t affect or
change the braid we re interested about.

Definition 1.3.1. (Elementary move) Let C be a unit cube and α1, α2 be a pair of
parallel faces of the cube that will limit the braid. Let AB be an edge of a string c.
(For the purposes of this definition, we need to be strict and work exclusively with the
polygonal image of a string.) Let O be a point in C such that the triangle △ABO (in C )
does not intersect any other strings and only meets c along AB. Further, suppose:

(i) AO ∪OB intersects every plane parallel to α and β at most at one point,

(ii) replace AB by the two edges AO ∪OB,

(ii’) replace AO ∪OB by the edge AB.

If the conditions above holds then the operation, denoted by Φ, or the inverse operation,
Φ−1 is called an elementary move on a braid. Note that the first condition assures the
result of operating a given braid β with Φ is also a braid since mathematical braids always
flows downward (See Figure 1.7).

Figure 1.7: Elementary move performed on a string c.

Definition 1.3.2 (Equivalence of braids). Two n-braids β and β′ is said to be equivalent
(β ∼ β′) if β can be deformed into β′ by a finite series of elementary moves, within the cube
C. In other words, β is equivalent to β′ if there is a finite sequence of βi, i ∈ {1, . . . ,m}
such that βi is obtained by βi−1 by applying Φ or Φ−1.

β = β0
Φ±1
−→ β1

Φ±1
−→ · · · Φ±1

−→ βm = β′

Moreover, it can be shown that this relation is, in fact, an equivalence relation. That
means it holds the reflexive, symmetric and transitive properties.

Proposition 1.3.1. Assume we have n-braids β, β′, α, α′ such that β is equivalent to β′

and α is equivalent to α′. Then, it holds that

βα ∼ β′α′.
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Proof. Considering the definition of braid equivalence (Definition 1.3.2), there exists a
finite sequence,

β = β0
Φ±1
−→ β1

Φ±1
−→ · · · Φ±1

−→ βm = β′.

This sequence also induces another sequence:

βα = β0α
Φ±1
−→ β1α

Φ±1
−→ · · · Φ±1

−→ βmα = β′α.

Thus, we obtain βα ∼ β′α.
Similarly, given α ∼ α′, we have a finite sequence:

α = α0
Φ±1
−→ α1

Φ±1
−→ · · · Φ±1

−→ αk = α′,

which, in turn, gives rise to another finite sequence:

β′α = β′α0
Φ±1
−→ β′α1

Φ±1
−→ · · · Φ±1

−→ β′αk = β′α′.

Hence, we deduce that β′α ∼ β′α′.
The transitivity of braid equivalence allows us to conclude that βα ∼ β′α′.

Definition 1.3.3. Let β be an n-braid. We will define the mirror of an n-braid (denoted
by β̄ in the following way: if a given string di goes from Pi to Qj(i) in the mirror image we
will take d̄i from Pj(i) to Qi. Also, all crossings will be preserved. That means, if di goes
over dj then d̄i will also go over d̄j, for i ̸= j.

Figure 1.8: An example of a braid β and it’s mirror image β̄.

Proposition 1.3.2. For each n-braid β, there exists a n-braid β̄ such that

ββ̄ ∼ 1n and β̄β ∼ 1n.

Such a n-braid is called the inverse of β and denoted by β−1.
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Figure 1.9: The composite of a braid β and it’s mirror image β̄ gives the identity.

So far, we have been rather flexible regarding the distinction between an n-braid β
(belonging to Bn) and its equivalence class [β] (belonging to Bn). However, to establish a
group structure, we must now shift our focus to the equivalence classes of n-braids.

A significant consequence of Proposition 1.3.1 is that the product of two elements [β1]
and [β2] in Bn is well-defined, given by [β1] · [β2] = [β1β2] (where the equivalence class
[β1β2] remains independent of the choice of representatives for each class). With this result
and the previous ones we have now fulfilled all the necessary requirements for Bn to form
a (non-commutative) group.
Theorem 1.3.3. The set of equivalence classes of n-braids, denoted by Bn, indeed con-
stitutes a group. This group is often referred to as the n-braid group or Artin’s n-braid
group.
Proof. See reference [MK12].

It’s not difficult to see that if two braids do not have the same amount of strings, they
can never be equivalent. However, if we have two n-braids we suspect are not equivalent,
how can one prove this is, in fact, the case? What can help on that is to find some sort
of invariant, that means an algebraic result that can be calculated from a given braid .
Definition 1.3.4 (Braid Invariant). Let f be a mapping from the space of braids B to
some algebraic structure (for instance, number, polynomials, matrices...). If f has the
following property:

β ∼ β′ =⇒ f(β) = f(β′)

then f is said to be a braid invariant.
Example 1.3.1. The most intuitive algebraic structure to associate with a braid is the
number of strings. In fact, f : B −→ N where f(β) equals the number of strings is a braid
invariant. Indeed, if f(β) ̸= f(β′), then β ≁ β′.
Definition 1.3.5 (Braid Permutation). Let β be an n-braid and consider that the string
si takes Pi to Qj(i) for i ∈ {1, 2, . . . , n}. Define π : B −→ Σn (recall that Σn is the set of
all permutations of {1, 2, . . . , n}) as:

π(β) =
Å

1 2 · · · n
j(1) j(2) · · · j(n)

ã
π(β) is called the braid permutation of β.
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Example 1.3.2. The braid permutation is a braid invariant. In fact, if given two braids
such that β ∼ β′, then for each i ∈ {1, 2, . . . , n} the ith string must have the same bottom
point Qj(i)

Example 1.3.3. Consider the braids β and β′:

Figure 1.10: Projection of braids β and β′.

The permutations are given by:

π(β) =
Å

1 2 3 4
2 4 1 3

ã
π(β′) =

Å
1 2 3 4
3 1 2 4

ã
Since π(β) ̸= π(β′), we may conclude that β ≁ β′.

Even though the pure braid group have already appeared for us, we now present another
meaning to it:

Definition 1.3.6 (Pure Braid). Let β be an n-braid. If π(β) is trivial then π(β) is called
a pure braid. In other words,

π(β) =
Å

1 2 . . . n
1 2 . . . n

ã
1.4 Configuration Spaces Definition

Artin’s definition was generalized by Fox and Neuwirth in [FN62] and defines a braid
group not just in the plane, but in any manifold M . Also, that is the definition used by
Birman in [B+74].

Definition 1.4.1 (Configuration Spaces of n points on M). Let M be a manifold dim ≥ 2

and let
n∏

i=1
M the product space ofM , n times (i.e.M×· · ·×M , n times). The configuration
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space of n points in M , C̃nM is:

C̃nM :=
®

(z1, ..., zn) ∈
n∏

i=1
M | zi ̸= zj se i ̸= j

´
Definition 1.4.2. (Pure Braid Group) The fundamental group of C̃nM , denoted π1(C̃nM),
is called the Pure Braid Group (or unpermuted) with n strings in a manifold M . More
precisely, the Pure Braid Group is π1(C̃nM, z), where z is a chosen base point on C̃nM .

Remark 1.4.1. When we doesn’t explicit M , then M = R2. Normally, when we are in
the context of geometrical or Artin’s definition, we are always talking about braids in R2.

Definition 1.4.3 (Unordered Configuration Space). Define an equivalence relation z, z′ ∈
C̃nM as it follows: z ∼ z′ if the coordinates (z1, . . . , zn) of z e (z′

1, . . . , z
′
n) of z′ differ only by

a permutation. Let Cn be the quotient space C̃n /∼ identified with the relation described
above.

Definition 1.4.4. (Braid Group) We call the braid group with n strings the set

Bn := π1(CnR2)

.

Remark 1.4.2. Usually, we will omit R2 from the braid group notation. Moreover, it can
also be studied braid groups in other manifolds, but this won’t be the focus in this text.

Note that one have a natural projection p : C̃n −→ Cn that will be useful in many
steps ahead. Therefore, more precisely, one may understand Bn as π1(Cn, z̄), such that
z̄ = p(z), where z is the base point chosen on C̃nM .

Remark 1.4.3. One may understand C̃nM as a topological space with the induced topol-
ogy by the product topology of M × · · · ×M . Also, since dimM ≥ 2 and M is connected,
the homotopy groups πi(C̃nM) are independent of the choice of the base point.

1.4.1 Fibration sequence and Braids
Let Qm = {q1, . . . , qm} a fixed set of m distinct points in a manifold M . Define Q0 = ∅

and let C̃m
n M := C̃n(M −Qm).

Theorem 1.4.4 (Fadell and Neuwirth, 1962). [FVB+62] If 1 ≤ r < n and

π :C̃m
n M −→ C̃m

r M

(z1, . . . , zn) 7→ (z1, . . . , zr)

Then, (π, C̃m
n M) is a fibration over C̃m

r M with fiber C̃m+r
n−r M

Proof. [B+74] We want to get the following fiber bundle:

C̃m+r
n−r

i
↪→ C̃m

n
π→ C̃m

r
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In other words, we need π : C̃m
n M −→ C̃m

r M such that for each z ∈ C̃m
r M exists a

neighborhood U of z such that exists a homeomorphism h : π−1(U) −→ U × C̃m+r
n−r M that

makes the following diagram commute:

π−1(U) U × C̃m+r
n−r

U

iπ

h

Let z1, . . . , zr be a base point in C̃m
r M . Consider the fiber

π−1(z1, . . . , zr) = {(z1, . . . , zr, yr+1, . . . , yn) ∈ M −Qm,with distinct coordinates}

Consider the choice Qm+r = Qm ∪ {z1, . . . , zr}. Then, we have:

C̃m+r
n−r M = {(yr+1, . . . , yn), yi ∈ M −Qm+r∀i , and yi ̸= yj∀i ̸= j}

Figure 1.11: Schematic drawing of fibration (π, C̃m
n M) over C̃m

r M with fiber C̃m+r
n−r M .

And we have the following homeomorphism:

h : C̃m+r
n−r M −→ π−1(z0, . . . , zr)

h(yr+1, . . . , yn) = (z1, . . . , zr, yr+1, . . . , yn)

Now, we prove the local triviality condition for the case r=1. First, fix a point x̄ ∈
M −Qm = C̃m

1 M = C̃m
r M . Now, consider Qm+1 after adding a point qm+1 to the set Qm.
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Pick a homeomorphism φ : M −→ M fixing Qm and such that

φ : M −→ M

qm+1 7→ x̄ = φ(qm+1)

Let U be an open neighborhood of x̄ ∈ M −Qm homeomorphic to an open ball. Also,
consider Ū the closure of U . Define a map:

G :U × Ū −→ Ū

(z, y) 7→ G(z, y) = Gz(y)

such that:

(i) Gz : Ū −→ Ū is a homeomophism which fixes ∂Ū

(ii) Gz(z) = x̄.

Now, using (i), let’s extend G : U × Ū −→ Ū to G : U × M −→ by setting G(z, y) = y
if y /∈ U . Note that the first condition guarantees the continuity of G.The required local
product representation is given by:

U× C̃m+1
n−1 π−1(U)

F

F−1

F (z, z2, . . . , zn) = (z,G−1
z φ(z2), . . . , G−1

z φ(zn))

F−1(z, z2, . . . , zn) = (z, φ−1Gz(z2), . . . , φ−1Gz(zn))

The intuition behind F is that if the points of C̃m+1
n−1 don’t end up inside the neighbor-

hood U , we can just take them as are together with any point in U and we already get
a configuration. However, if any of the points end up inside U , then we can perturb it
slightly with G which guarantees that the points won’t coincide. Note that all coordinates
are distinct since M − x̄ is fiber and:

G−1
z φ(zi) = z ⇐⇒ φ(zi) = Gz(z) (ii)⇐⇒ φ(zi) = x̄

For r > 1, the idea is to consider again a neighborhood composed of open balls around
the r points:

V =
o

D (z1) × · · · ×
o

Dn (zk−1) .

and the homeomorfism:

h : V × C̃m+r
n−r π−1(V )

h

h−1

h ((m1, . . . ,mk−1) ,mk) =
®

(m1, . . . ,mk−1,mk) if mk /∈ ∪1≤i≤k−1D
n (qi) , and

(m1, . . . ,mk−1, G (mi,mk)) if mk ∈ Dn (qi)

One can see further details in the computation of G in [Coh10].
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Corollary 1.4.5. If π2(M −Qm) = π3(M −Qm) = 0 for each m ≥ 0, then π2(C̃nM) = 0

Proof. [B+74] The exact homotopy sequence of the fibration π : C̃m
n M → C̃m

1 M =M−Qm

of the previous theorem gives an exact sequence

· · · → π3 (M −Qm) → π2(C̃m+1
n−1 M) → π2(C̃m

n M) → π2 (M −Qm) → · · · .

To understand more about this fact, the reader can consult appendix .1. Note that
π2 (M −Qm) = π3 (M −Qm) = 0. Therefore, follows that π2(C̃m+1

n−1 ) and π2(C̃m
n ) are

isomorphic. One can use an inductive argument to show that

π2(C̃nM) ∼= π2(C̃n−1
1 M) = π2 (M −Qn−1) = 0

Consider the projection map π from C̃nM to C̃n−1M . Let (z1, · · · , zn) be a base point
for π1(C̃nM), and let C̃n−1

1 M = M −Qn−1 = M − {z1, · · · , zn−1}. We define the inclusion
map j from C̃n−1

1 M to C̃nM as follows: for zn ∈ M − {z1, · · · , zn−1}, we have j (zn) =
(z1, · · · , zn−1, zn).

Corollary 1.4.6. Assume that π2 (M −Qm) = π3 (M −Qm) = π0 (M −Qm) = 1 for
every m ≥ 0. Then, the following sequence of groups and homomorphisms is exact:

1 −→ π1
(
C̃n−1

1 M, z
) j∗−→ π1

(
C̃nM, (z1, · · · , zn)

) π∗−→ π1
(
C̃n−1M, (z1, · · · , zn−1)

)
−→ 1,

where π∗ and j∗ are the homomorphisms induced by the mappings π and j, respectively.

Proof. By Theorem 1.4.4, the sequence is part of the exact homotopy sequence of the
fibration π : C̃m

n M → C̃m
n−1M for every m ≥ 0. From the previous corollary, we know

that π2(C̃m+1
n−1 M) ∼= π2(C̃m

n M) for every m ≥ 0. Moreover, we have π2 (M −Qm) =
π3 (M −Qm) = π0 (M −Qm) = 1, which implies that π2(C̃n−1

1 M) = π2(C̃nM) = π0(C̃n−1
1 M) =

1. Therefore, the exact sequence reduces to the form stated in the corollary.

1.5 Artin’s presentation
The idea of this definition is to think that any braid in the plane R2 with n-strings

can be seen as formed by a finite number of elementary braids σ1, σ2, . . . , σn such that σi

is the geometric braid that crosses the ith string over the (i + 1)th string and maintains
every other string as the identity.

Figure 1.12: The generator σi.

Also, notice that if one concatenates σi with the geometric braid that crosses the
(i+ 1)th string over the ith string we will end up with the identity braid, as follows:
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Figure 1.13: Representation of the composition of σi and σ−1
i .

This classical presentation of braid groups in terms of the generators and relations first
appeared in [Art25], as follows:

Definition 1.5.1. The groupBn admits a presentation in terms of generators σ1, σ2, . . . , σn−1
and defining relations:

(i) σiσj = σjσi if |i− j| ≥ 2, i ≥ 1, j ≤ n− 1

(ii) σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n− 2

Figure 1.14: Visual representation of the relations σiσj = σjσi if |i − j| ≥ 2, i ≥ 1, j ≤ n − 1
and σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n − 2.

We will prove on the following section how this presentation appears naturally. The first
proof given by Artin of the completeness of this presentation is more an indication than a
rigorous proof. Other demonstrations have been given by Magnus [Mag34], Bohnenblust
[Boh47], Chow [WL48], Fadell and Van Buskirk [FVB+62] and the one we will follow
closely given by Fox and Neuwirth [FN62].

Remark 1.5.1. Birman, Ko, and Lee discovered a new presentation for a group, which
expanded the set of generators to a more symmetric set. The new generators are denoted



1.5 ARTIN’S PRESENTATION 15

by σs,t, where 1 ≤ s < t ≤ n. We adopt the convention that we will write the smaller
subscript first. The defining relations for these generators are as follows:

σs,tσq,r = σq,rσs,t if (t− r)(t− q)(s− r)(s− q) > 0,
σs,tσr,s = σr,tσs,t = σr,sσr,t if 1 ≤ r < s < t ≤ n.

1.5.1 From Configuration Spaces to Artin’s presentation
From the configuration spaces definition, we want to show how Artin’s presentation

appears. The idea of this proof was first given by Fox and Neuwirth in [FN62]. It was
also rewritten and appears in [GM11]. We will use cell complexes and the configuration
space’s definition to prove this fact.

Lemma 1.5.2. Given a cell complexM of dimension n and a subcomplexM ′ of dimension
n− 2, one can compute a presentation of π1(M \M ′) in the following way:

(i) Consider a graph Λ having a vertex for each n-cell in M \M ′ and an edge connecting
two vertices for each (n− 1)-cell next to the corresponding n-cells

(ii) Choose a spanning tree τ in the graph Λ

(iii) Each edge e of Λ \ τ (corresponding to a (n − 1)-cell) will give rise to a generator
of π1(M \M ′). This generator represents a loop that starts at a chosen base vertex,
follows τ to one endpoint of e, traverses along e, and then returns to the base vertex
along τ .

(iv) For each (n − 2)-cell in M \ M ′, consider the (n − 1)-cells adjacent to it. These
(n−1)-cells form a loop in Λ (up to orientation). Select one of the edges in this loop
that does not belong to τ . This selected edge corresponds to one of the generators
introduced in step 3. Write down a relation in π1(M \ M ′) by reading the selected
edges (generators) in the corresponding order and orientation.

Proof. For further details, consult Example 1.22 in [Hat05].

Theorem 1.5.3. The definitions 1.4.4 and 1.5.1 coincide. That means, given the config-
uration space definition of a braid, one can find and prove a natural presentation given
by the generators σ1, σ2, . . . , σn−1 and defining relations:

(i) σiσj = σjσi if |i− j| ≥ 2, i ≥ 1, j ≤ n− 1

(ii) σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n− 2

Proof. We already know that the braid group Bn is the fundamental group of the con-
figuration space, i.e, Bn = π1(Cn). So, the idea here is to construct a n-dimensional cell
complex M and M ′ a subcomplex of M with dimension n− 2 in the Lemma’s condition.
In this way, we can compute a presentation of the fundamental group of the cell complex
M \M ′, i.e., π1(M \M ′) and hence of the corresponding braid group Bn. If we consider
a complex number as a pair of real numbers, then Cn can be ordered by using the lexico-
graphical order. That is, given z1 = a1 + b1i and z2 = a2 + b2i we will say that z1 <lex z2
if and only if either:
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• a1 < a2 (and then z1 < z2)

• a1 = a2 and b1 < b2 (then we will say that z1 ⊻ z2)

• z1 = z2

Now, given a collection of points {z1, . . . , zn}, they can be totally ordered using the
lexicographic order as described above. Hence, we can write z1□z2□ . . .□zn, where □ can
be either <, ⊻ or =. Note, also, that every point in Cn/Σn is precisely a family of n
unordered points {z1, . . . , zn}.

Therefore, for each configuration of signs θ = (z1□z2□ . . .□zn) we can associate a cell:

Cθ = {{z1, . . . , zn} ∈ Cn/Σn such that they are related according to θ}

Note that each cell is a configuration of n points that can be geometrically arranged
in relation of each other. For example, if we have a cell that is a configuration of four
points {z1, z2, z3, z4} such that z1 < z2 < z3 ⊻ z4 these are some of the possibilities of how
it would look like (See Figure 1.15). Also, intuitively, z1 < z2 means that z1 is to the left
of z2 while z1 ⊻ z2 means that z1 is below z2.

Figure 1.15: Some possible configurations of points for the cell z1 < z2 < z3 ⊻ z4.

Hence, it is possible to realize that the sets Cθ determines a regular cell decomposi-
tion R of Cn/Σn, that has real dimension 2n. (The reader can consult Appendix .2 to
see further details about cell complexes). Furthermore, consider the big diagonal D/Σn.
Clearly, it’s a subcomplex of Cn/Σn and, moreover, (Cn/Σn) \ (D/Σn) = Cn, where Cn is
the configuration space on n points.

Therefore, since π1(Cn) = Bn we can use the Lemma 1.5.2 to compute a presentation
of the braid group. Note that each cell Cθ has real dimension that can be understood as:

dim(Cθ) = 2n− (#⊻) − 2(# =)

For example, take θ = (z1 ⊻ z2 < z3). The possible configurations for z3 are represented
in different colors (Figure 1.16). The dimension can be computed as follows:

dim(Cθ) = 2 · 3 − 1 − 2 · 0 = 5
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Figure 1.16: Possible configurations of points for the cell Cθ for θ = (z1 ⊻ z2 < z3).

Note also those Cθ for which θ involves at least one equality determine a regular
cell decomposition of the big diagonal D/Σn. We can also realize that dim(Cθ) = 2n
if, and only if, (#⊻) = (# =) = 0. Hence, the only possible way dim(Cθ) = 2n is if
θ = (z1 < z2 < · · · < zn). Therefore, the graph Λ from the Lemma 1.5.2 has only one
vertex x, and then τ = {x}. We can consider x = {1, . . . , n} the usual base points for
braids.

Recall from the lemma that the generators are given by the (2n − 1)-cells. But note
that dim(Cθ) = 2n − 1 if, and only if, (#⊻) = 1 and (# =) = 0. So, the (2n-1)-cells Cθi

will come from θi = (z1 < · · · < zi ⊻ zi+1 < . . . zn) for i ∈ {1, . . . , n − 1}. To construct
the i-th generator, we will make a loop with base point at x that crosses the Cθi

. This
corresponds to moving the points i and i+ 1 in such a way that they swap positions, the
i-th one passing bellow the i + 1-st. (See Figure 1.17) This way we obtain the generator
σi.

Figure 1.17: Representation of a loop based at point x = (1, . . . , n) moving along the 2n-cell
and crossing the (2n − 1)-cell. This motion represents the generator σi.

Now, to try understanding the relations, following the lemma’s result, we will have to
look to the (2n− 2)-cells. Note that dim(Cθ) = 2n− 2 if and only if:

• (#⊻) = 0 and (# =) = 1

• (#⊻) = 2 and (# =) = 0

However, note that the first case will correspond to a cell decomposition of the big di-
agonal. So, we will consider only the second one. Also, we will distinguish the second
condition into two cases corresponding to the following θ:

(i) θi,j = (z1 < · · · < zi ⊻ zi+1 < · · · < zj ⊻ zj+1 < · · · < zn)
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(ii) θi,i+1 = (z1 < · · · < zi ⊻ zi+1 ⊻ zi+2 < · · · < zn)

Consider the first scenario. Note that with this conditions, Cθi,j
describes a configura-

tion where two pairs of points, zi and zi+1, are vertically arranged with zi below zi+1, and
similarly, zj and zj+1 are positioned with zj below zj+1, while all the other points lie in
separate vertical lines. This (2n − 2)-cell shares an edge with two (2n − 1)-cells, namely
Cθi

and Cθj
, as depicted in Figure 3.2. To make a loop around Cθi,j

one must traverse
each adjacent cell twice, once in each direction. Therefore, the corresponding relation is
given by σiσjσ

−1
i σ−1

j = 1, or equivalently: σiσj = σjσi.

Figure 1.18: Representation of a loop based at point x = (1, . . . , n) moving along the (2n − 2)-
cell Cθi,j and crossing the following (2n − 1)-cells: Cθi

, Cθj
, Cθi

in the opposite sense and Cθj

in the opposite sense. This motion represents the relation σiσjσ−1
i σ−1

j = 1.

The second case corresponds to three points aligned vertically zi, zi+1, zi+2 lying in the
(2n−2)-cell Cθi,i+1 . This cell is adjacent to two (2n−1)-cells Cθi

and Cθi+1 . In order to do
the loop around Cθi,i+1 we must cross each (2n−1)-cells three times, with the corresponding
orientations, yielding a relation: σiσi+1σiσ

−1
i+1σ

−1
i σ−1

i+1 = 1, or in other words:

σiσi+1σi = σi+1σiσi+1
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Figure 1.19: Representation of a loop based at point x = (1, . . . , n) moving along the (2n−2)-cell
Cθi,i+1 and crossing the following (2n − 1)-cells: Cθi

, Cθi+1, Cθi
again, and now in the opposite

sense: Cθi+1, Cθi
and Cθi+1 again. This motion represents the relation σiσi+1σiσ

−1
i+1σ−1

i σ−1
i+1 = 1.

This argument given by Fox and Neuwirth gives us not just a presentation for Bn, but
also how this relations appears naturally.

Theorem 1.5.4. The pure n-braid group Pn has the following presentation,
generators: Aj,k

(
= σk−1σk−2 . . . σj+1σ

2
jσ

−1
j+1 . . . σ

−1
k−2σ

−1
k−1

)
for 1 ⩽ j < k ⩽ n

relations:

(A) Ar,s ⇌ Ai,j if 1 ⩽ r < s < i < j ⩽ n or 1 ⩽ r < i < j < s ⩽ n

(B) Ar,sAr,jA
−1
r,s = A−1

s,jAr,jAs,j if 1 ⩽ r < s < j ⩽ n

(C) Ar,sAs,jA
−1
r,s = A−1

s,jA
−1
r,jAs,jAr,jAs,j if 1 ⩽ r < s < j ⩽ n

(D) A−1
i,j As,jAi,j ⇌ Ar,i if 1 ⩽ r < s < i < j ⩽ n

(D’) (Equivalent to (D)) Ar,iAs,jA
−1
r,i =

[
A−1

i,j , A
−1
r,j

]
As,j

[
A−1

i,j , A
−1
r,j

]−1 if 1 ⩽ r < s <
i < j ⩽ n

Proof. The reader is referred to [MK12] and [B+74] for a complete proof.

1.6 Garside Structure and the Word Problem
The work of Garside [Gar69] reveals a series of algebraic features of braid groups. This

allowed him to solve the word problem in a different way and the conjugacy problem for
the first time. We will now introduce the main ideas of his work.

First, notice that the relations in Artin’s presentation of the braid group only involves
positive powers of the generators σi. Hence, one can consider a monoid B+

n determined by
that presentation. The elements in B+

n are words in σ1, . . . , σn−1 (but not their inverses).
We will establish the following equivalence:
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Definition 1.6.1. Consider two words in B+
n . We will say that two words are equivalent

if and only if one can be obtained from the other by replacing:

• subwords of the form σiσj (|i− j| > 1) by σjσi

• subwords of the form σiσjσi (|i− j| = 1) by σjσiσj

Moreover, Meneses [GM11] introduced a partial order that helps understanding the
results presented by Garside. Let a, b ∈ B+

n , we say that a ≼ b if ac = b for some c ∈ B+
n .

We say that a is a prefix of b.
One intriguing property of ≼ is that it is invariant under left multiplication. That is,

if a ≼ b, then for any x ∈ B+
n , we have xa ≼ xb.

A natural question arises: Are there unique greatest common divisors and least common
multiples with respect to this partial order? In other words, for a, b ∈ B+

n , does there exist
a unique d ∈ B+

n satisfying d ≼ a, d ≼ b, and d′ ≼ d for every d′ that is a common prefix
of a and b? Similarly, is there a unique m ∈ B+

n such that a ≼ m, b ≼ m, and m ≼ m′

for every m′ that shares a and b as prefixes? If such unique elements exist, we will denote
them by d = a ∧ b (greatest common divisor) and m = a ∨ b (least common multiple),
respectively. Notably, xd = xa ∧ xb and xm = xa ∨ xb for every x ∈ B+

n .
Additionally, one can define a suffix order ≽ that is invariant under right multiplication.
Garside’s work emphasizes the existence of least common multiples for σi and σj in

B+
n , which can be expressed as follows:

σi ∨ σj =
®
σiσj if |i− j| > 1,
σiσjσi if |i− j| = 1.

He also demonstrates the cancellativity of B+
n , meaning that if xay = xby, then a = b for

all a, b, x, y ∈ B+
n .

As the relations in Bn’s presentation are homogeneous, equivalent words in B+
n have

the same length, allowing for a well-defined length in B+
n . Moreover, induction on this

length, combined with the cancellativity condition and the above results allows us to show
that each pair of elements in B+

n possesses unique least common multiples and greatest
common divisors.

Garside’s investigation centers on a special element ∆, which can be expressed as:

∆n−1 = σ1 (σ2σ1) · · · (σn−1σn−2 · · ·σ1)

With elementary arguments, he demonstrates that ∆ = σ1 ∨ σ2 ∨ · · · ∨ σn−1 in B+
n and

that σi∆ = ∆σn−i for i = 1, . . . , n− 1. Consequently, it follows that σ1, . . . , σn−1 are also
suffixes of ∆. Furthermore, ∆2 commutes with every element in B+

n , and by employing
induction on the length, it can be deduced that for every a ∈ B+

n , there exist non-negative
integers m and m′ such that a ≼ ∆m and ∆m′

≽ a.
These findings hold significant implications. Due to the existence of a common multiple

(a power of ∆) for any two elements in B+
n and the cancellativity of B+

n , we have that
B+

n can be embedded in its group of fractions. This group of fractions, as defined by the
presentation, precisely corresponds to Bn. Therefore, B+

n is not solely an algebraically
defined monoid; rather, it constitutes the subset of Bn comprising braids expressible as
words involving positive powers of the generators.
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Definition 1.6.2 (Positive braids). Braids that can be written as words on positive
powers of generators σi are referred to as positive braids, and B+

n is known as the monoid
of positive braids.

As a consequence of these properties, the partial order ≼ (and similarly ≽) can be
extended to encompass Bn. Specifically, a ≼ b (or b ≽ a) if and only if ac = b (or b = ca)
for some c ∈ B+

n . This extension results in a partial order that remains invariant under
left-multiplication (or right-multiplication) and admits unique least common multiples
and greatest common divisors.

The established structure allows us to unveil numerous desirable properties of braid
groups, such as the word problem. In other words, given any two braids β1, β2 ∈ Bn, we
want to find a method to decide whether or not β1 = β2. We can re-estate the problem
by deciding whether or not β = Id, since if β1 = β2 we have β1β

−1
2 = 1.

Recall that σi ≼ ∆ for every i = 1, . . . , n − 1. Put differently, ∆ = σixi, for some
xi ∈ B+

n . Let β be a braid written as a word in σ1, . . . , σn−1 and their inverses. Note that
since ∆ = σixi, we have:

σ−1
i ∆ = σ−1

i σixi =⇒ σ−1
i ∆ = xi =⇒ σ−1

i ∆∆−1 = xi∆−1 =⇒ σ−1
i = xi∆−1

Therefore, we can replace every appearance of σ−1
i by xi∆−1. Moreover, with more

computations, one can show that conjugating every positive braid with ∆−1 gives a pos-
itive braid. Hence, we can move all appearances of ∆−1 to the left and this shows that
every braid can be written as ∆pα for some p ∈ Z and some α ∈ B+

n . Additionally, if
∆ ≼ α, we can replace ∆p with ∆p+1 and α with ∆−1α. However, this process decreases
the length of α, and it can only be done a finite number of times. Consequently, each
braid can be uniquely represented as ∆pα, where p ∈ Z, α ∈ B+

n , and ∆ ⪯̸ α.
This normal form allows us to solve the word problem by enumerating all positive

words representing the positive braid A, applying the braid relations iteratively in every
possible way. Although Garside’s solution is somewhat inefficient, Elrifai and Morton
[EM94] improved it by defining the left normal form of a braid. The left normal form of a
braid is given by ∆pa1 · · · ar, where ai is a positive proper prefix of ∆ (i.e., 1 ≺ ai ≺ ∆),
and (aiai+1) ∧ ∆ = ai for i = 1, . . . , r. This left normal form is unique and provides a
decomposition of a braid as a product of a power of ∆ and a sequence of proper simple
elements (positive prefixes of ∆), known as permutation braids.

Theorem 1.6.1. Braid groups’ are torsion-free

Proof. Suppose x ∈ Bn such that xn = 1 for some n > 0. We can consider the element
d = 1 ∧ x ∧ · · · ∧ xn−1. Then, xd = x (1 ∧ x ∧ · · · ∧ xn−1) = x ∧ x2 · · · ∧ xn−1 ∧ 1 = d.
Cancelling d, we get x = 1. This demonstrates that braid groups are torsion-free.



Chapter 2

Knots and Links

In this chapter we will first explore the intuition and first definitions of knots both their
polygonal and smooth presentations. Moreover, we will delve into how to define the notion
of equivalence obtaining the Ambient Isotopy Equivalence notion and Reidemeister Moves.

Furthermore, we will define operations with knots such as composition, reflection, re-
verse and see how to obtain a group structure from this operations. Then, we will look
closely to the notion of links, that consist of a finite disjoint union of knots Ki, called
the components of the link. Since a big part of knot theory consists in studying how to
determine whether too given links are or not the same, we will study some knot invari-
ants such as: multiplicity, the minimum crossing points, the bridge number, unknotting
number and the colouring number.

Finally, we will end the chapter studying the algorithm of how to obtain a Seifert
Surface from a given knot. This notion will help with the proofs from the next chapter.
The main references for this chapter are: [Bud12], [MK96], [Cro04].

2.1 Knots definition
Just like the braids can arise from an intuitive point of view, we can do the same for

knots. If you simply take a piece of string and do a simple knot (in the most intuitive
sense) and glue both ends, you will end up with the first non-trivial knot, the trefoil knot
(See Figure 2.1). By non-trivial we mean that even if you pull or stretch all you want, you
can never untangle the knot and come back to the unknot (that is, what you obtain from
an untangled piece of string if you glue the ends together, as in top left of Figure 2.2).

22
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Figure 2.1: Representation of how to make a trefoil knot with a piece of string.

It’s easy to realize that the same knot can be depicted in different ways, that can come
from looking through different perspectives or even changing the rope a little . Each of
this "pictures" is called a projection of a given knot K (we will formalize this notions ahead
in the text). Mathematicians use the projection of a knot to identify them, representing
with a tiny space the intersections that go under. These places are called the crossings of
the knot.

Figure 2.2: Projections of the trivial knot and the five first non trivial knots.

Let’s try formalizing a little our notion on knots, giving our first definition:

Definition 2.1.1. A knot K ⊂ R3 is a subset of points homeomorphic to a circle. Alter-
natively, a knot is an embedding of the circle S1 into three-dimensional Euclidean space
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R3. We also sometimes consider knots as embeddings of S1 into S3, the 3-sphere seen as
the one-point compactification of R3 (since it is equivalent to R3 with a single point added
at ∞).

Note that this definition doesn’t specify how the circle should be arranged in space,
although until now we were representing as a smooth curve. However, one might represent
is as a collection of polygonal curves.

Figure 2.3: A polygonal and a smooth presentation of the figure eight knot.

Thinking of a knot with a polygonal representation we can formalize it as a finite set
of straight line segments in R3 which intersect only at their endpoints. We’ll call the lines
edges and their endpoints vertices. Note that exactly two edges meet at every vertex.
While using this approach, some questions may arise:

• Can every knot be represented by a polygonal arrangement?

• Suppose a knot K can be represented as a polygon. What can one say about the
minimum number of edges and vertices?

• Given a number n of edges, what knots can we produce?

The first two questions will be explored when we give a more formal definition of a knot
ahead in this chapter. The last question can’t be answered in general, since the number
of cases explodes as n increases. However, we can answer it for small cases. For example,
to make the trivial knot we need at least 3 edges. Moreover, it can also be proved that a
knotted polygon must have at least six edges.

Another path to specify particular knots is through smooth functions f : R −→ R3.
Recall that a smooth function can be differentiated k times and the kth derivative is
continuous for some k > 0.

Example 2.1.1. We can represent the trivial knot through the image of following function
that maps the real line onto the circle with radius 1 in the xy-plane.

f : R −→ R3

t 7→ (sin(t), cos(t), 0)
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Example 2.1.2. Another example is the trefoil knot, that can be given by:

f : R −→ R3

t 7→ (sin(t) + 2sin(2t), cos(t) − 2cos(2t),−sin(3t))

In general, to represent a knot as the image of a function we need f in which the
function coordinates x(t), y(t), z(t) are smooth and f is periodic.

f : R −→ R3

t 7→ (x(t), y(t), z(t))

Let p : R3 −→ R2 be the mapping that projects the point P(x, y, z) in R3 onto the
point P̃(x, y, 0) in the xy-plane.

For a knot (or link) K, we define p(K) = K̃ as the projection of K. If K has an assigned
orientation, K̃ inherits its orientation naturally. However, K̃ is not a simple closed curve
on the plane; it has multiple points of intersection.
Definition 2.1.2 (Regular projection). Given a knot K, a regular projection is K̃ = p(K)
such that, p : R3 −→ R2 is a map that satisfies:

(i) K̃ has a finite number of intersection points at most.

(ii) If Q is an intersection point of K̃, then the inverse image p−1(Q) ∩ K of Q in K
consists of exactly two points. That is, Q is a double point of K̃.

(iii) A vertex of K (considered as a polygon) is never mapped onto a double point of
K̃.(See Figures 2.4, 2.5)

Figure 2.4: The idea of a double point

Figure 2.5: The image of a knot K under p
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Definition 2.1.3 (Regular diagram). A regular diagramD of a knotK is a modification of
a regular projection that eliminates the ambiguity at double points. In a regular projection,
it’s unclear whether the knot passes over or under itself at these double points. To address
this ambiguity, we make a slight adjustment to the projection near the double points,
effectively creating the illusion of a continuous knot smoothly passing over and under
itself. This modified projection is known as a regular diagram.

Definition 2.1.4 (Arcs of a diagram D). Let D be a regular diagram. The arcs of a
diagram D are the path components of D.

Figure 2.6: The arcs of the diagram of the figure eight knot

2.2 Knot Equivalence
A big part of knot theory is to find tools to determine whether two knots are the

same or not. In other words, whether they are equivalent.
Intuitively, two knots are equivalent if they can be continuously deformed into the

other. So it’s natural we would try a definition that explicit this relation. However, we
have to be very careful when trying to formalize this definition that involves sliding one
knot until it becomes the other. A natural idea would be using the notion of homotopy
for doing it (See Appendix .3 for more details on homotopy). That means one could try
defining for two knots K1, K2 ⊂ R3 a continuous map H : X × [0, 1] −→ R3 such that
H(x, 0) = K1 and H(x, 1) = K2 . In spite of that, doing it would give us a continuous
family of knots that can "pull the knot tight" but it would always end up with the trivial
knot (See Figure 2.7).

Figure 2.7: A continuous transformation that makes the knot vanishing.
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Moreover, homotopies allow a curve to pass through itself, which also implies that any
knot is homotopic to the trivial one. Therefore, homotopies do not give a good notion of
deformation for knots. One way to fix this problem is ensuring that each Ht is one-to-one .
If Ht satisfies this property for all t ∈ [0, 1] we will say that H is a isotopy. Unfortunately,
isotopy also aren’t the answer we are looking for. This is because, although they prevent
the curves to pass through themselves, another problem arise. Imagine you pull the knot
very hard so that the knot becomes very small and tight. Doing this, we would inevitably
end up with the trivial knot since mathematical threads have no thickness. The good
news, however, is that it’s easy to fix this problem. To do it, we only have to ask in our
definition that the space containing the knot moves continuously along with the knot and
does not become irreparably contorted. Formally, this notion can be translated through
this definition:

Definition 2.2.1. Let H be an homeomorphism of R3. We say that H is isotopic to the
identity if there is an homotopy H ′ : R3 × I −→ R3 such that each H ′

t : R3 −→ R3 is an
homeomorphism, H ′

0 is the identity and H ′
1 = H.

Now, we can state a definition of equivalence that explicit the deformation of a knot
into another:

Definition 2.2.2 (Ambient Isotopy Equivalence). Let K1, K2 ⊂ R3. If we have a home-
omorphism H of R3 which is equivalent to the identity and H(K1) = K2 we will say that
K1 and K2 are said to be ambient isotopic. Also, the knots Ht(K1) provides a continuous
family which moves progressively from K1 to K2 as t increases for 0 to 1.

It can also be shown that ambient isotopy equivalence is an equivalence relation on
knots. That said, we can think of each knot actually as the equivalence class of all knots
ambient isotopic to it. In practice, this is what we mean that when talking about knots.

Remark 2.2.1. Now, we can also try answering our first question about polygonal knots.
Actually, not all knots are equivalent to a polygonal knot. Those that are are called tame
knots and those that aren’t are called wild knots. An example of wild knot is tying
infinitely knots in a loop one after another (See Figure 2.8) but their study is outside the
scope of our work here.

Figure 2.8: Example of a wild knot.

Also, a deformation in the knot projection is called planar isotopy. This term is due
to the fact that we are only deforming the knot within the projection plane. Nonetheless,
we can define moves that allows us to go from one projection to another without modifying
the knot it represents. Those are called the Reidemeister Moves. The first Reidemeister
moves allows us to put in or take out a twist from a given string (See Figure 2.9). The
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second Reidemeister move enable us to add or remove two more crossings to a given string
(See Figure 2.10). Finally, the third Reidemeister move allows us to slide a given string
under or over some other crossing (See Figure 2.11).

Figure 2.9: First Reidemeister Move (Type I).

Figure 2.10: Second Reidemeister Move (Type II).

Figure 2.11: Third Reidemeister Move (Type III).

Theorem 2.2.2 (Reidemeister’s Theorem). Let D,D′ be any two diagrams of the same
knot or link K. Then there exists a sequence of diagrams D = D1 → D2 → · · · → Dk = D′

such that any Di+1 in the sequence is obtained from Di by one of the three Reidemeister
moves

Proof. The reader is refereed to [BZK85].

2.3 Operating with knots

Composition

Given two projection of knots, K and K ′ we can remove an arc of each knot (on the
outside of the projection to avoid any new crossings) and then connect the four lose ends
in a standard way, which does not introduce additional crossings. The resulting knot will
be called the composition of the other two knots. We will denote the resulting knot by
K#K ′ (See Figure 2.12).
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Figure 2.12: Composition of the figure-8 and the cinquefoil.

Note that when we composite any knot with the unknot, nothing happens. This ob-
servation suggests that the operation of composition admits a neutral element. Also, we
call a knot that can be expressed as the composition of two knots a composite knot,
and the knots that are part of this composition are the factor knots. If one knot can’t be
expressed as the composition of any two nontrivial knots, they will be called prime knots.
Unfortunately, although all this could suggest an algebraic structure involving knots and
their composition, the operation is not very well defined. In fact, given two knots and
performing the composition operation in different places can give rise to different knots.

Reflection

A question that may arise at this point is what a knot K ⊂ R3 and it’s image
under a homeomorphism h : R3 −→ R3 share. In other words, are K and h(K) ambient
isotopic? Indeed, if h is orientation-preserving, the answer is yes.

However, what about the homeomorphisms that are orientation-reversing? To answer
this question, let’s go back to the construction of the trefoil knot. Note that while con-
structing it, we made a choice of which side of the string we would put under the other. If
we make the other choice, we get the "reflected" image of the knot (we will improve this
notion soon). So, one might wonder if it is possible to deform the left-handed trefoil knot
into the right-handed trefoil knot.

Figure 2.13: Projection of the trivial knot, the left-handed trefoil knot and the right-handed
trefoil knot.
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We can formalize the notion of "reflection" by the following orientation-reversing home-
omorphism:

r : R3 −→ R3

(x, y, z) 7→ (−x,−y,−z)

Definition 2.3.1. The image of a knot K ⊂ R3 under r, r(K) is called the mirror image
and it’s denoted by K∗.

Definition 2.3.2. If K is equivalent to it’s mirror image K ′, we call K achiral or am-
phichiral. If this does not happen, we call the knot chiral and it occurs in a left-handed
or a right handed form

Example 2.3.1. The figure-8 knot is amphichiral since it’s equivalent to it’s mirror image.
One can rotate 90º the mirror image and note you end up with exactly the same knot.

Figure 2.14: An embedding of the figure-8 knot and it mirror image.

Remark 2.3.1. Let K be an achiral knot. The reflection of K independs of the choise
of r, i.e., K will be ambient isotopic to r(K) under any other orientaion-reversing home-
omorphism.

Reverse

Another possibility that knots gives us is orienting them. Given a knot, we have two
possible ways of orienting them. Hence, if K is an oriented knot, one can define the reverse
of K that have the opposite orientation of K and will be denoted by −K. (see Figure
2.15 for an example [Cro04])
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Figure 2.15: An embedding of the figure-8 knot and it’s reverse.

Definition 2.3.3. At a crossing point, c, of an oriented regular diagram we have two
possible configurations considering the orientation of a crossing point. In case (a) we
assign sign(c) = +1 to the crossing point (and its said to be positive), while in case (b)
we assign sign(c) = −1 (and its said to be negative).

Figure 2.16: Signs of a given crossing.

Group Structure

Let r be the operation that transforms K into −K, and m be the operation that
transforms K into it’s mirror image K∗. Moreover, let i = rm be the composite operation
that maps K to −K∗ (The knot −K∗ is known as the inverse of K.). Due to the properties
−(−K) = K, (K∗)∗ = K, and − (K∗) = (−K)∗, the operations m, r, and i form a group.

1 m r i
1 1 m r i
m m 1 i r
r r i 1 m
i i r m 1
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The composition table presented above displays that any oriented knot with two non-
trivial symmetries must also possess the third. Consequently, there are five possible topo-
logical symmetry types for oriented knots:

K = −K = K∗ = −K∗ fully symmetric
K = −K reversible
K = K∗ + amphichiral
K = −K∗ - amphichiral

none of the above asymmetric

2.4 Links
Until now, we have focused our attention in studying knots. However, we can generalize

the notion of knots by tanking not a single embedding of S1, but as many as we want.

Definition 2.4.1 (Link). A link L is a finite disjoint union of knots Ki, i ∈ {1, . . . , n},
n ∈ N, i.e, L = K1 ∪· · ·∪Kn. Each knot Ki is called component of the link and n is called
the multiplicity of L.

Remark 2.4.1. A trivial link of multiplicity n is a collection of n unlinked trivial knots.

Figure 2.17: Some examples of simple links.

Links can also be oriented, which means that each component is assigned an orientation,
in the way described for the knots.

Definition 2.4.2 (Weak Link Equivalence). Two links L1 and L2 are ambient isotopic
if there exists an isotopy h : R3 × [0, 1] → R3 such that h (L1, 0) = h0 (L1) = L1 and
h (L1, 1) = h1 (L1) = L2.
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Note that there is a free choice of how to match up the components of L1 with those
of L2. Hence, this definition of equivalence is considered weak as it does not impose any
restrictions on the isotopy; When we represent a link as K1 ∪· · ·∪Kn, its components are
given arbitrary labels 1, . . . , n. The components of a link may also be oriented. A stronger
definition of equivalence requires the isotopy to preserve any label or orientations on the
links.

All the operations we defined for knots can be generalized for links. When we delve
deeper into the symmetries of oriented knots, we found that there were five possible sym-
metry classes. However, with links, the situation becomes even more intricate. Consider
an oriented n-component link L = K1 ∪ · · · ∪Kn. We can represent the link formed from
L by reversing the orientations of some components as ±K1 ∪ · · · ∪ ±Kn, where a - sign
indicates a reversal of orientation and a + sign denotes an unchanged orientation. We can
also write L followed by the sequence of + and - signs, generating 2n possible links.

2.5 Invariants
Definition 2.5.1 (Link Invariant). A link invariant is a function from the set of links
to any other set in such a way that this calculation depends only of the equivalence class
the link belongs. In other words, a link invariant is a function from the set of all links L
to another set S, f : L −→ S such that:

L ∼ L′ =⇒ f(L) = f(L′)

Multiplicity

The simplest link invariant is the multiplicity of the link, i.e., the number of it’s com-
ponents.

The minimum crossing points

Another intuitive association of knots with an integer number would be the amount of
crossing points in a given diagram. However, this does not configures an invariant, since
the same knot can have diagrams with less or more crossing points. This is because one
can perform a Reidemeister move and change the amount of crossing points (See Figure
2.18)

Figure 2.18: Examples of different diagrams with distinct crossing numbers of the same knot.
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Nevertheless, consider DL the set of all diagrams of a given link L. Then, we have:

Proposition 2.5.1. The minimum crossing points of a link L given by

c(L) = min
DL

c(D)

is a link invariant.

Proof. Let’s assume that D stands as the minimum regular diagram of L, i.e, a diagram
that haves crossing points equal to the minimum crossing points of a link L. Suppose
L′ represents a link equivalent to L, and D′ is its minimum regular diagram. Note that
c (D) ≤ c (D′) since D′ is the regular diagram for L and L and L′ are equivalent. However,
since D qualifies as a regular diagram of L′, again by definition, c (D′) ≤ c (D). Thus,
combining these two inequalities, we conclude c (D) = c (D′), implying c (D) remains the
minimum number of crossing points for all links equivalent to L. This establishes it as a
link invariant.

In general, there is no method for computing the minimum crossing points of a given
link. However, it’s been completely determined for alternating knots (i.e. a knot that can
be depicted in a knot diagram where crossings consistently alternate between underpasses
and overpasses) and for some specific types of non-alternating knots and links. Moreover,
if K1 and K2 are alternating knots once can prove that:

c (K1#K2) = c (K1) + c (K2)

The reader is referred to [MK96] for the proof of the facts above mentioned.

The bridge number

Let D be a diagram of a given link L. We will remove small segments from the diagram
that passes over the crossing points such that we end up with a collection of disconnected
segments. (See Figure 2.19)

Figure 2.19: The bridge number of the trefoil knot.

These segments are called bridges and for a given diagram D the number of bridges is
called the bridge number.
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Definition 2.5.2. Let D be a regular diagram of a knot K. If we can partition D into
2n polygonal curves γ1, γ2, . . . , γn and ψ1, ψ2, . . . , ψn, such that the following conditions
hold, then we say that the bridge number of D, denoted as br(D), is at most n.

(1) The polygonal curves γ1, γ2, . . . , γn are mutually disjoint and simple polygonal curves.

(2) The curves ψ1, ψ2, . . . , ψn are also mutually disjoint and simple curves.

(3) At the crossing points of D, the segments γ1, γ2, . . . , γn pass over the crossing points,
while the segments ψ1, ψ2, . . . , ψn pass under the crossing points.

In cases where br(D) ≤ n but br(D) ≰ n− 1, we define br(D) = n.

Proposition 2.5.2. For a link L, the bridge number

br(L) = min
DL

br(D)

is an invariant for L and this quantity is called the bridge number (or bridge index) of L

Proof. The proof is analogous of the crossing points proof.

Unknotting number

Let D be a diagram of a given link L. The unknotting procedure at a crossing consists
of exchanging locally the over and under crossing segments on one chosen crossing point
until we get a trivial knot (or link).

Proposition 2.5.3. Every diagram D of a given knot (or link) K becomes the unknot
after a finite times of performing the unknotting procedure described above (It might also
be necessary to perform some Reidemeister moves).

Proof. The proof will proceed by induction on the crossing number of D, c(D). The initial
case, for c(D) = 0 trivially holds, since if c(D) = 0 we have already the trivial knot. Now,
suppose the condition holds for all regular diagrams D such that c(D) < n and we will
prove the statement is true for a diagram D with c(D) = n. Let A be an arbitrary point
on the diagram that is not on a crossing point. From A we will follow the knot around. If
at a crossing point we move along a part that passes over the crossing point, we simply
do nothing. However, if we move along a part that passes under the crossing point, we
will perform the unknotting operation.

In this manner, we will gradually construct a regular diagram in which, starting from
A, we consistently navigate over all knot’s crossing points. Continuing our traversal along
D and replicating the aforementioned process, we will eventually encounter a crossing
point B that we have already traversed (In the case of K being a link, we will return to
our initial point A.)

Upon the completion of the procedure, we will have formed a loop that includes the
point B. By applying Reidemeister moves, this loop can be eliminated. The resultant new
regular diagram, denoted as D′, will possess fewer crossing points than D. Therefore, we
can apply the induction hypothesis to D′, thus concluding our proof.
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Similar to our preceding discussions, we define the unknotting number of D as the
minimum count of unknotting operations needed to transform D into the regular diagram
of the trivial knot (or link). This unknotting number of D will be denoted by u(D). As
anticipated, it should be noted that u(D) does not serve as an invariant of K.

As previously discussed, consider all regular diagrams representing K. The minimum
number of unknotting operations across all these regular diagrams serves as a knot in-
variant.

The coloring number of a knot

Let K be a knot and D be it’s projection. Suppose P is a crossing point of D and note
that locally the diagram is splitted in three arcs a0, a1, a2.

Figure 2.20: The arcs formed by each crossing on the diagram.

Definition 2.5.3 (3-colorability). Let K be a knot and D one of its diagrams, with
A = {a0, . . . , an−1} it’s arcs. Then a 3-coloring of K is a function

φ : A −→ {0, 1, 2}

such that in each crossing, the three arcs ai, aj, ak satisfies either:
• φ(ai) = φ(aj) = φ(ak)

• φ(ai), φ(aj)andφ(ak) are all distinct.
If φ(ai) = φ(aj) ∀i ̸= j we will call it a trivial coloring. Also, if D admits a non-trivial
coloring, we will say that K is 3−colorable.

Each number can be associated with a different color. So, intuitively, for a knot to be
3-colorable we have to color each arc with a color in such a way that as least 2 colors are
used and in each crossing all colors have to be equal or all different. (See Figures 2.21 and
2.22)

Figure 2.21: The knot above is 3-colorable
.
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Figure 2.22: The trefoil (31) and 61 knots are 3-colorable while 41, 51, 52 are not. Note that
in the black strings there are no possible choice of colors we can make so that we still follow the
rules

Proposition 2.5.4. 3-colorability is a knot invariant. In other words, if D is a diagram
from a given knot K that is 3-colorable and D′ is another diagram of K, then D′ is also
3-colorable.

Proof. We want to prove that 3-colorability independs of the choice of diagram represent-
ing the knot K. So, because of Reidemeister Theorem, one only have to check that the
three types of Reidemeister moves satisfies the 3-colorability conditions. In other words,
to prove this proposition it is sufficient to show that each of the regular diagrams obtained
after we have performed one of the Reidemeister moves or it’s inverses are 3-colorable (See
Figure 2.23).

Figure 2.23: The Reidemeister moves preserves 3-colorability
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One might think if we can also define the notion of n-colorability, for an integer n And
actually, we can do it, with a slightly difference. One can see further details in [MK96]
Definition 2.5.4 (n-colorability). Let k, n be an integer, K be a knot (or link) and D
one of its diagrams, with A = {a0, . . . , ak−1} it’s arcs. Then a n-coloring of K is a function

φ : A −→ {0, 1, . . . , n− 1}

such that at each crossing, if ar is the label of the strand that is crossing over, and as, at

are the labels of the other two strands, then in each crossing

2φ(ar) ≡ φ(as) + φ(at) mod n

If φ(ai) = 0 ∀i ∈ {0, 1, . . . , n − 1} we will call it a trivial coloring. Also, if D admits
a non-trivial coloring, we will say that K is n−colorable.

Note that this definition holds for 3-colorability. If we look closer to Figure 2.22, each
crossing satisfies the condition that 2φ(ar) ≡ φ(as) + φ(at) mod 3.

2.6 Seifert Surfaces
An invariant that plays a big role in the context of knot theory is the Alexander’s

Polynomial. Although we won’t be looking closely to this concept, we will now study part
of the initial mechanics one can use to compute it: Seifert Surfaces, since one can define
Alexander polynomial via Seifert matrix. This same tool of calculating the Seifert Surface
of a given knot will be very important in the proof of Alexander’s Theorem in the next
chapter.
Theorem 2.6.1. Let K be an arbitrary knot (or link). Then, there exists an orientable
and connected surface S ⊂ R3 that has as its boundary K.
Proof. Let D be a regular diagram of a given knot (or link) K. We want to decompose the
diagram D into several simple closed curves. To do it, we pick an orientation and remove
all crossings in the following way:

• draw a circumference centered in every crossing and let A,B,C and D be the inter-
section with the arcs of the diagram.

• we want to splice the crossing point connecting A to B and C to D (See Figure
2.24)

Figure 2.24: Splicing of a knot K.
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This operation is called splicing of a knot K along its orientation at a crossing point
of D. Note that if we perform this operation in every´crossing then we will remove every
crossing point of D we will transform the diagram (that will be called Seifert Diagram)
into several simple closed curves that may now be spanned by a disk. (See Figure 2.25)
This simple closed curves will be called Seifert Circles

Figure 2.25: Splicing of the figure-eight knot.

By performing the splicings we obtain some discs. In order to create the surface, we
need to attach a single twisted band between those disks that will lie in different heights.
(See Figure 2.26)

Figure 2.26: Twisted bands.

If we attach positive (negative) bands between disks that corresponded to positive
(negative) crossing points before they were spliced, then we obtain a connected, orientable
surface F. (In the case of a link, K, if we alter K in such a way that the projection of
K is connected, then by the above method we can also obtain a connected surface.) The
boundary of this surface, F, is plainly the original knot K. Further, it can also be proved
that F is also an orientable surface, with orientation induced by the orientation of K. (See
Figure 2.27)
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Figure 2.27: Seifert Surface of the figure-eight knot.



Chapter 3

Relations Between Knots and Braids

In this chapter, we will dive into the fundamental connection between knots and
braids. Our exploration begins by elucidating the process of obtaining a knot or a link
from a given braid through a process known as ’closing’ the braid. This approach leads
us to two pivotal questions concerning knots and braids.

One might ask: If is it possible to obtain knots from a given braid, how general is this
construction? In other words, is it true that every knot can be obtained from a closed
braid? Alexander’s theorem answer this question affirmatively. However, it becomes ap-
parent that the correspondence between knots and braids is not one-to-one, as equivalent
knots can arise from conjugate braids. This observation naturally leads to the second
question: which closed braids represent the same knot type? Markov’s theorem answers
this question by providing a set of ’moves’ that relate any two closed braid representatives
of a knot or link while preserving the closed braid structure. The main reference for this
chapter is [BB05].

3.1 From Braids to Knots
Let β be a braid on n strings. To obtain a knot or a link, one can simply "close up" the

braid as in Figure 3.1. We want to connect Pi to Qi with paths that doesn’t create new
crossings. This operation is known as the closure of β and will be denoted by b(β). The
pre-image in R3 of the ’center point’ under the usual projection map is called the axis of
the braid. Next, we orient the resulting knot or link in a manner such that all the strands
of the braid are traveling counterclockwise around the braid axis.

Figure 3.1: Schematic representation of the operation of closing a braid.

41
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Remark 3.1.1. If the intention is to examine the knot in S3, we must incorporate the
point at infinity, resulting in the braid axis being an embedded S1.

Example 3.1.1. The closure of the braid β = σ1σ2 is the unknot.

Figure 3.2: The closure of β = σ1σ2 is trivial.

Alternatively, let’s consider a knot K residing in the three-dimensional sphere S3.
Suppose there exists an embedding h : S1 → S3 such that Z is a unknotted within S3 and
lies in the complement of K and A = h(S1). Additionally, we choose the point at infinity,
denoted by {∞}, to be included in A. Utilizing standard cylindrical coordinates (ρ, θ, z)
on R3, we identify the resulting subset R ∼= A− {∞} with the z-axis in R3 ∼= S3 − {∞}.
Now, as we travel around the knot K with a suitable cylindrical parametrization, we
always ensure that dθ/dt > 0. Under these conditions, we refer to K as a closed braid
with respect to the axis A. The closed braid diagram illustrated in Figure 3.1 can then
be obtained through projection, parallel to the direction defined by A, onto a plane that
is orthogonal to A.

3.2 From Knots to Braids

3.2.1 Alexander’s Theorem
While going from braids to knots can be done with a simple procedure, the reverse can

be much more complicated. The proof we’re going to give, gives an algorithm to find a
closed braid that gave rise to a given knot. This proof is originally due to Yamada [Yam87]
and was later improved by Vogel [Vog90].

Theorem 3.2.1 (Alexander’s Theorem). Every knot or link in S3 can be represented as
a closed braid.

In order to prove Alexander’s we will first define some terminology to help in the
algorithm and then present the Yamada-Vogel Algorithm to transform a knot into a
closed braid.

Definition 3.2.1. Let C1 and C2 be two oriented disjoint closed curves in S2. Then C1
and C2 cobound an annulus A. We say that C1 and C2 are coherent if C1 and C2 represent
the same element of H1(A). Otherwise we say that C1 and C2 are incoherent.
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Remark 3.2.2. Let’s interpreter this definition in a more intuitive way. Let C1, C2 be
two oriented disjoint closed curves in S2. Then, [C1] = [C2] ∈ H1(A) if, and only if,
[C1] − [C2] = 0 ∈ H1(A). This means that [C1] + [−C2] annihilates in H1(A). Hence, we
have that [C1] + [−C2] is boundary of some 2−cell (or sum of 2-cells). So, consider an
arbitrary 2-cell with the boundary oriented compatibly given by δ, α, β, γ. Note that α and
γ cancel each other, so the boundary of this 2-cell is [δ] + [β] (See Figure 3.3). Therefore,
in order to [C1] + [−C2] = 0 we need C1 and C2 oriented as δ and β, respectively.

Figure 3.3: Compatibly oriented 2-cell.

In other words, [C1] + [−C2] = 0 if C1 and −C2 have reversed orientations, and hence,
if C1 and C2 share the same orientation (or if C1 and C2 "point in the same direction"
- see Figure 3.4). A visualization that may help determine whether two oriented disjoint
curves are coherent is the following: imagine these curves are immersed in a liquid and
the orientation of the curve determines the direction of movement in this liquid. If the
liquid flows in an organized way, the curves are coherently oriented. Otherwise, they are
not coherent.

Figure 3.4: Examples of coherent and not coherent closed curves.
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Definition 3.2.2. The height h(D) of a Seifert Diagram D is is the number of incoherent
oriented pairs of Seifert circles. If h(D) = 0 we will say that the diagram is in the closed
braid form.

Definition 3.2.3 (Change of infinity). The procedure of change of infinity at the knot
level, consists of flipping an edge around to the other side of the knot. It can be performed
on any edge which borders the outside region of the knot.

Figure 3.5: Change of infinity performed at the knot level.

At the Seifert circles level, we can imagine them lying on the sphere and changing the
perspective we are looking at them.

Figure 3.6: Change of infinity performed at the Seifert circles level.

Yamada-Vogel Algorithm

1. The algorithm starts in the same way of the Seifert algorithm for constructing a
surface from a given knot (See section 2.6). So, given a diagram D, we will obtain a
collection of Seifert circles C1, . . . , Cn. Also, the crossings of the knot will be denoted
by signed segments connecting two Seifert circles, in the notion described in Figure
2.16. Note that any two circles joined by a signed arc in any Seifert Diagram are
necessarily coherent;

2. If h(D) = 0, the knot K is already in the closed braid form, and our task is accom-
plished. In cases where h(D) > 0, we will create a reducing arc α. This arc connects
an incoherent pair C1 and C2, intersecting S only at its endpoints, where S is the
Seifert diagram. A region within S2\S that contains a reducing arc is will be called



3.2 FROM KNOTS TO BRAIDS 45

a defect region. Employ a reducing move along α, as demonstrated in Figure 3.7,
to generate a new Seifert diagram S ′. In this revised diagram, a duo of coherent
Seifert circles, C ′

1 and C ′
2, linked by two arcs with opposite orientations, replaces

the former incoherent pair C1 and C2. The corresponding alteration in the original
diagram D corresponds to a Reidemeister move of type II. In this movement, C1 is
slid over C2 in a small neighborhood of the arc α, resulting in a fresh diagram D′

with two newly introduced crossings. It is important to note that if we instead slide
C1 under C2, the two new Seifert circles remain the same, although the orientations
of the two newly introduced arcs are reversed;

Figure 3.7: Reducing move operation.

3. Keep applying reducing moves to incoherent pairs until a diagram with a height of
zero is achieved

4. Perform change of infinity procedure, if necessary to help identifying the closed
braid.

Example 3.2.1. We apply the Yamada-Vogel algorithm to the diagram of the trefoil
knot (31). Note that h(D) = 0 so no reducing move is needed.

Figure 3.8: Yamada-Vogel algorithm performed on the trefoil knot.

Example 3.2.2. We apply the Yamada-Vogel algorithm to the diagram of the trefoil
knot (52). This example stands out as the first instance in knot tables where the diagram’s
height is greater than zero. Here, the height of the original knot diagram is 2, since we
have two pairs of incoherent Seifert circles. The diagram presents the reducing arcs, α1, α2.
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Figure 3.9: Yamada-Vogel algorithm performed on the 52 knot.

By starting from the positively signed arc positioned at ’eleven o’clock’ and proceeding
counterclockwise, the equivalence between knot 52 and b(X) becomes evident. Here,

X = σ2σ
−1
1 σ2σ

−1
3 σ2σ1σ2σ3σ2

Applying the braid relations to the word defined by X, we see that:

X = σ2σ
−1
1 σ2σ

−1
3 σ2σ1σ2σ3σ2 = σ2σ

−1
1 σ2σ

−1
3 σ1σ2σ1σ3σ2 =

σ2σ
−1
1 σ2σ1σ

−1
3 σ2σ3σ1σ2 = σ2σ

−1
1 σ2σ1σ2σ3σ

−1
2 σ1σ2

Since this braid only involves σ3 once, we may ’delete a trivial loop to get the 8-crossing
3-braid σ2σ

−1
1 σ2σ1σ2σ

−1
2 σ1σ2, so the algorithm did not give us minimum braid index. The

braid σ2σ
−1
1 σ2σ

2
1σ2 can indeed be further simplified. This reduction to a 6-crossing 3-braid

demonstrates the minimality of 6 crossings. This minimality arises because the crossing
number of a 3-braid knot must be even and this knot doesn’t possess a diagram with
fewer than 5 crossings Consequently, we deduce an additional insight: when utilizing the
Yamada-Vogel algorithm to transform a knot into a closed braid form, the crossing number
invariably increases.
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Proof of Alexander’s Theorem

Now that we have Yamada-Vogel Algorithm that allow us to obtain a closed braid
from a given knot, there are some things we still need to prove in order to demonstrate
Alexander’s Theorem. Firstly, we need to see that Yamada-Vogel Algorithm will always
lead to a diagram D such that h(D) = 0.

Lemma 3.2.3. Performing a reducing move reduces by one the height of the diagram.
That means, if D is a Seifert diagram that contains a reducing arc, and D′ is the diagram
obtained after applying the reducing move with respect to this arc, one have h(D′) =
h(D) − 1.

Proof. Let C1, . . . , Cn be the Seifert Circles from a Seifert Diagram S. Also, let Ci, Cj be
a pair of non-coherent circles. Note that the union of Ci and Cj divides the 2-sphere S2

into three sections: an annulus A between Ci and Cj, and two disks, Di and Dj, bounded
by Ci and Cj respectively. Suppose A can accommodate a reducing arc α. Executing a
reducing move along α preserves all other circles Cp for p ̸= i, j and replaces Ci and Cj

with two new circles. One of these, say C ′
j, encloses a disk D′

j containing no other Seifert
circles in the new diagram S ′. The other, denoted by C ′

i, encloses a disk D′
i containing

all original Seifert circles within annulus A in S. (See Figure 3.10.)

Figure 3.10: Incoherent Seifert Circles lying on the 2-sphere (on the left) and the circles after
the reducing move (on the right).

For simplicity, we’ll use (C,C ′) = 1 if the pair C,C ′ is coherent, and (C,C ′) = −1
otherwise. If {p, q}∩{i, j} = ∅, then the reducing move on (Ci, Cj) keeps the pair (Cp, Cq)
unchanged. Therefore, it suffices to consider how the reducing move affects (Cp, Cx), where
x = i or x = j and p ̸= i, j.

If Cp resides in annulus A in S, then (Cp, C
′
i) =

(
Cp, C

′
j

)
= (Cp, Ci) = (Cp, Cj).

Similarly, if Cp ⊂ Di in S, then (Cp, C
′
i) = (Cp, Ci) and

(
Cp, C

′
j

)
= (Cp, Cj). Likewise,

if Cp ⊂ Dj in S, then (Cp, C
′
i) = (Cp, Cj) and

(
Cp, C

′
j

)
= (Cp, Ci). Consequently, the

number of distinct incoherent pairs Ck, Cl in S distinct of Ci, Cj is equivalent to the
total number of distinct incoherent pairs in S ′, denoted as C ′

k, C
′
l , distinct of C ′

i, C
′
j. By

construction, the substitution of (Ci, Cj) = −1 with
(
C ′

i, C
′
j

)
= 1 is achieved. This implies

h (D′) = h(D) − 1.

The proof of Alexander’s Theorem will be concluded by the following lemma.

Lemma 3.2.4. [Yam87] If D represents a knot or a link, and h(D) > 0, the corresponding
Seifert diagram S must contain a defect region.
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Proof. We consider the space S2\S and let C denote a connected component of this space.
Each boundary component of C consists of a collection of signed arcs (possibly none) and
segments of Seifert circles. Also, each component C of S2\S is a genus-0 surface with at
least one boundary component. We will refer to the Seifert circles in S that compose part
or all of a boundary component of C as the exposed circles and let m be the number of
exposed circles of C. We can analyze the possibilities for C to not be a defect region.

(i) If m = 1 it’s not a defect region.

(ii) If m = 2 it could be either an annulus or a disk. If it’s a disk, the two circles
are connected by at least one signed arc, meaning they are coherent, and C is not
a defect region. If C is an annulus, it’s a defect region if the exposed circles are
incoherent, otherwise, it’s not.

(iii) If m ≥ 3 there must be an incoherent pair among them, making C a defect region.

Suppose that no component of S2\S is a defect region. Hence, each component is one
of the three non-defect region types described above. At least one of these regions must
be of the second type, or else h(D) = 0. Such a region can be visualized as lying between
two nested coherent circles connected by at most one signed arc.

If we start with such a region and try to create a diagram without defect regions, we
can’t add any circles within the annulus bound by the two nested circles, as this would
create a component with three or more exposed circles. We can only add coherent circles
that nest with the original two circles (and any number of signed arcs between adjacent
pairs). However, such a diagram has height zero. Consequently, h(D) > 0 implies the
presence of a defect region.

Definition 3.2.4 (Braid Index). The braid index of a knot or link K is the smallest
number n for which a braid X ∈ Bn whose closure b(X) represents K exists.

The braid index of K is naturally bounded above by the minimum number of Seifert
circles in any of its diagrams. However, the reverse inequality is true according to the
Yamada-Vogel algorithm.

Corollary 3.2.5. [Yam87] The minimum number of Seifert circles in any diagram repre-
senting a knot or link K is equal to its braid index.

Corollary 3.2.6. [Tra98] [Vog90] Let N denote the length of a sequence of reducing
moves required to transform a diagram D into its closed braid form. Then, we have:

N = h(D) ≤ (n− 1)(n− 2)
2 ,

where n represents the number of Seifert circles associated with D.

The lemma above allow us a way to measure the complexity in the process of trans-
forming a knot into its closed braid form.
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3.2.2 Markov’s Theorem
Alexander’s Theorem, established in the preceding section, provides the assurance that

closed braid representations for a knot indeed exist. However, as mentioned earlier, such
representations are not unique. Markov’s Theorem, gives us a certain amount of control
over different closed braid representatives of the same knot. This theorem states that any
two of these representatives can be linked by a finite sequence of basic moves, serving as
the analogous for closed braids to the Reidemeister Theorem for knots.

Definition 3.2.5 (Markov Moves). The Markov moves consists of three movements that
will play a central role in Markov’s Theorem: braid isotopy, destabilization and stabiliza-
tion.

(a) A braid isotopy means isotopy of the closed braid, through braids, in the complement
of the braid axis;

(b) A positive stabilization consists in performing a type I like Reidemeister move for
the closed braid, around the braid axis, creating a positive crossing. The negative
stabilization is the analogous, for a negative crossing. This operation increases the
braid index by 1;

(c) A positive (negative) destabilization is undoing the former operation, removing the
extra crossing created by a positive (negative) stabilization. This operation decreases
the braid index by 1 (See Figure 3.11).

Figure 3.11: The operations of stabilization and destabilization. The weight w that is attached
to one of the braid strands denotes that many ‘parallel’ strands. The braid inside the box which
is labeled K is an arbitrary (w + 1)-braid.

Theorem 3.2.7 (Markov’s Theorem). Let X and X ′ be closed braids representations of
the same oriented link K ∈ R3, then there exists a sequence of closed braid representations
of K:

X = X1 → X2 → · · · → Xr = X ′

This sequence is such that each Xi+1 is derived from Xi through one of the Markov
moves. We say that two braid related by a sequence of Markov moves are Markov equiv-
alent.
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Proof of Markov’s Theorem

The following proof is due to Pawel Traczyk [Tra98]. It begins with Reidemeister’s
theorem, and uses the circle of ideas that were described in Alexander’s Theorem proof.
Let X and X ′ be closed braid representatives of the same oriented knot type K. We can
assume without loss of generality that X and X ′ are defined by closed braid diagrams Y
and Y ′ of height h(Y ) = h(Y ′) = 0. By Reidemeister’s Theorem (Theorem 2.2.2) there is
a sequence of knot diagrams Y = Y1 → Y2 → · · · → Yk = Y ′, where for i = 2, . . . , k − 1,
h(Yi) ≥ 0. Also, any two diagrams in this sequence are connected by a single Reidemeister
move of type I, II, or III. Additionally, Traczyk’s proof begins by simplifying the problem
to sequences of knot diagrams related by Yamada-Vogel reducing moves:

Lemma 3.2.8. It is sufficient to prove Theorem 3.2.7 for closed braid diagrams Y and Y ′

that are connected by sequences Y = Y1 → Y2 → · · · → Yq = Y ′ satisfying the following
conditions:

(i) h(Y ) = h(Y ′) = 0,

(ii) h(Yi) > 0 for i = 2, . . . , q − 1

(iii) Yi+1 is obtained from Yi by a single Yamada-Vogel reducing move or the inverse of
such a move (See Figure 3.7).

Proof. We can always assume that diagrams Y2, . . . , Yq−1 have a height greater than zero.
If not, we can simply replace the given sequences with subsequences that join any two
intermediate diagrams of height zero.

A Reidemeister move is considered braid-like if the strands involved in it are locally
oriented in a coherent manner, similar to the configuration in a closed braid. Hence, any
Reidemeister move of type I is braid-like. To initiate the proof of the lemma, we establish
a slightly weaker claim: we contend that we can transition from Y to Y ′ using a finite
sequence of four types of moves and their inverses, all of which are braid-like Reidemeister
moves:

• Type Ib: A braid-like Reidemeister move of type I.

• Type IIb: A braid-like Reidemeister move of type II.

• Type IIIb: A braid-like Reidemeister move of type III.

• Type Y : A Yamada-Vogel reducing move.

To prove this claim, it suffices to show that non-braid-like Reidemeister moves denoted
Inb, IInb, and IIInb can be achieved using a finite sequence of moves of types Ib, IIb, IIb,
and Y . This can be demonstrated by analyzing the cases of Inb, IInb, and IInb sequentially.

1. Any type I Reidemeister move is equivalent to a braid-like Reidemeister move of
type Ib.

2. A move of type IInb can be seen as a move of type Y± if the segments involved
belong to distinct Seifert circles. Thus, we only need to address the scenario where
they are subarcs of the same Seifert circle. The move can be replaced by two moves
of type Ib (creating two new Seifert circles), followed by a move of type Y , and finally
a move of type Y−1.
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Figure 3.12: Replacing moves of type IInb

3. A type IIInb Reidemeister move involves three segments of the knot or braid. There
are various scenarios, based on local orientations and the signs of the three crossings,
though they all share similarities. We will explore one of those cases with more detail.
In this situation, one segment passes under a crossing formed by the other two
segments and has an orientation opposite to the other two strands. The sequence of
replacements (See Figure 3.13) demonstrates that our type IInb Reidemeister move
can be achieved by a sequence consisting of a type IInb move, an isotopy, a type IIIb

move, and finally another type IInb move. The other cases of type IIInb moves are
left for the reader’s consideration, reducing the situation to the type IInb moves.

Figure 3.13: Replacing moves of type IInb

Consequently, we are left with the case where each diagram in the sequence transition-
ing from Y to Y ′ involves only type Ib, IIb, IIIb, or Y±. To finalize the proof of Lemma
3.2.8, consider a braid-like Reidemeister move t to be performed on diagram Yi. Suppose
hi = h(Yi) > 0. We can find a sequence of reducing moves r1, . . . , rhi

such that applying
rhi

◦ · · · ◦r1 to Yi results in a braid, and each associated reducing arc α1, . . . , αhi
is disjoint

from the region where t will be executed. This allows each reducing move rj to commute
with t, enabling us to replace t with its ’conjugate’ r−1

1 ◦ · · · ◦ r−1
hi

◦ t ◦ rhi
◦ · · · ◦ r1. This

positions t to be performed at height 0, meaning on a braid.
In the cases where t is of type IIb or IIIb, the proof is complete, as a braid-like move of

type II or III executed on a braid corresponds to a braid isotopy. When t is of type Ib, it
corresponds to a stabilization (up to isotopy) only if applied to the braid strand closest to
the braid axis. However, realizing a type Ib move on any strand in terms of Markov moves
is straightforward: merely push the strand beneath the others using type IIt moves, and
execute the required stabilization near the braid axis.

Given that we have established that any type IIb or type IIIb move can be realized
through a finite series of type Y± moves and braid isotopies, this implies that a type Ib
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move can also be substituted by a finite sequence of type Y± moves and braid isotopies.
The treatment of inverse moves of type Ib follows a similar approach.

By employing this strategy, we have effectively transformed our initial sequence con-
necting Y to Y ′ into a new sequence, which, in general, may be lengthier but is exclusively
comprised of Markov moves (performed on braid diagrams, i.e., on diagrams with zero
height) and type Y± moves. To be more precise, our initial sequence from Y to Y ′ can
be replaced by a sequence of the form Y = Y0, . . . , Ya1 , . . . , Ya2 , . . . , Yan = Y ′, where
h(Yai

) = 0 for all i, and within each subsequence Yai
, . . . , Yai+1 , either (1) every diagram

in the subsequence has zero height, and adjacent diagrams are connected by a single
Markov move, or (2) all intermediate diagrams have strictly positive height, and adjacent
diagrams are related by a single move of type Y or Y−1. Therefore, to establish Markov’s
theorem, it is adequate to examine solely sequences of the second type.

Let’s now consider a sequence of diagrams Y = Y1, . . . , Yn = Y ′ that satisfy the
conditions of Lemma 3.2.8. It’s important to note that, similar to the earlier proof, we
will not typically distinguish between a diagram and its corresponding Seifert picture.
Thus, we’ll talk about a Seifert circle in the diagram Yi, referring to a Seifert circle in
the Seifert picture associated with Yi. Essentially, each circle in a Seifert picture can be
considered a part of the corresponding diagram, except in a small neighborhood of signed
arcs representing crossings. As reducing arcs avoid signed arcs, there’s no ambiguity in
referring to a reducing arc in a diagram.

Now, let’s delve into the graph of the height function across our sequence. This graph
initiates and concludes at height zero, and each intermediate "step" either increments
or decrements by 1 since we’ve reduced our case to sequences of only reducing moves
(or their inverses). We’re interested in examining the local maxima within this height
function. Let Y (r), Ŷ , and Y (s) be three consecutive diagrams in our sequence, forming
a local maximum at Ŷ . In simpler words, we have two reducing moves, r and s, with
corresponding arcs αr and αs in Ŷ such that performing reducing moves along αr (resp.
αs) leads to diagrams Y (r) (resp. Y (s)) in such a way that makes sense discussing αr ∪αs.

Definition 3.2.6. The triple {Y (r), Ŷ , Y (s)} will be called a peak in the height function
of our sequence. The height of this peak is defined as h(Ŷ ), and the height of the sequence
is the maximum value attained by the height function throughout the sequence. To prove
Markov’s Theorem, we will use induction based on the height of the sequence.

Lemma 3.2.9. One can assume the reducing arcs associated with any peak in the height
function are disjoint. Furthermore, any adjustments required in our sequence of reducing
moves to achieve this do not affect the height of the sequence.

Proof. Consider a peak {Y (r), Ŷ , Y (s)} in the height function with corresponding reduc-
ing arcs αr and αs. We can assume that these arcs intersect minimally and transversely. If
|αr ∩ αs| = n ≥ 2, by slightly adjusting some of the intersection points, we can find a new
reducing arc αr′ with the same endpoints as αr such that αr ∩αr′ = ∅ and |αr′ ∩ αs| < n.
This allows us to replace the given peak {Y (r), Ŷ , Y (s)} with two consecutive peaks
{Y (r), Ŷ , Yr′} and {Yr′ , Ŷ , Y (s)}. This process, known as "inserting the reducing operation
r′ at Ŷ , effectively replaces one peak with two peaks of the same height. This procedure
is continued iteratively until the intersection numbers of adjacent pairs of reducing arcs
are at most 1. If the intersection number of the arcs αr and αs corresponding to a peak
{Y (r), Ŷ , Y (s)} is 1, and there exists a reducing arc αt such that αt ∩ αr = αt ∩ αs = ∅,
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we can insert the reducing operation t at Ŷ to generate two peaks, each associated with a
disjoint pair of reducing arcs. In case the defect region supporting αr and αs contains no
third reducing arc disjoint from both αr and αs, there is only one possible configuration,
as illustrated in Figure 3.13.

Figure 3.14: The case where two reducing arcs at a peak intersect once. The green boxes
represent the possible signed arcs between the Seifert Circles.

Now, let’s focus on the region labeled as R, which is situated "outside" the circles within
our defect region and the signed arcs that connect them. If R contains a Seifert circle,
it’s evident that there must exist a region somewhere in the diagram with three exposed
circles. Such a region, as observed in the previous section, unavoidably represents a defect
region containing a reducing arc that is not connected to either αr or αs. Conversely,
if R doesn’t encompass any Seifert circles, then it also cannot include signed arcs. This
conclusion is drawn from the fact that all conceivable signed arcs between the four exposed
circles of region R are already depicted in Figure 3.14. Consequently, we can introduce a
reducing arc in R that connects either pair of diagonally opposed circles.

In summary, when dealing with a peak {Y (r), Ŷ , Y (s)} that exhibits intersection 1 in
its associated arcs, it’s always possible to locate a third reducing arc αt that enables us to
insert the reducing operation t at Ŷ . This operation transforms the initial peak into two
distinct peaks, each featuring a pair of reducing arcs that are disjoint. As this process of
inserting a reducing operation at a peak maintains the height of the sequence.

With the preceding lemma, we can now presume that each peak in the graph of our
height function corresponds to a separate pair of reducing arcs. Before we introduce the
next lemma, which concerns these peaks, we need to familiarize ourselves with a few
concepts. Notably, when the reducing arcs engaged in a peak {Y (r), Ŷ , Y (s)} are disjoint,
these reducing moves commute. This means that they can be executed in either order,
originating from the diagram Ŷ and resulting in the same diagram Y ′. Moreover, as long
as the reducing arcs αr and αs act on three or four distinct Seifert circles, the sequence
of the two reducing moves remains interchangeable without altering the outcome. Given
that the reducing arcs αr and αs are disjoint within the diagram Ŷ , it’s meaningful to
discuss the arc αs (or αr) in the context of the diagram Y (r) (or Y (s)) obtained by
reducing Ŷ along αr (or αs). In this scenario, we have a "commuting pair" of reducing
moves associated with the peak. When a peak {Y (r), Ŷ , Y (s)} exhibits a commuting pair,
we can replace it with a "valley" – a subsequence {Y (r), Y ′, Y (s)} where h(Y ′) = h(Y )−2
and Y ′ = Y (s ◦ r) = Y (r ◦ s) results from reducing Y (r) along αs or vice versa. By
this method, we can eliminate any peak corresponding to a commuting pair (such a peak
always has a minimum height of 2).
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In situations where a peak is characterized by two reducing arcs acting on the same two
circles, the second Reidemeister move becomes non-reducing after one move is executed,
leading to what is termed a non-commuting pair of reducing moves. Consider a peak de-
noted as {Y (r), Ŷ , Y (s)}, corresponding to a non-commuting pair of reducing arcs. Let
C1 and C2 be the two Seifert circles involved in this context. If there exists a reducing arc
αt such that αt ∩ αr = αt ∩ αs = ∅ and t involves a circle other than C1 or C2, then we
can insert t at Ŷ to transform the peak {Y (r), Ŷ , Y (s)} into two new peaks characterized
by commuting pairs of reducing moves: {Y (r), Ŷ , Y (t)} and {Y (t), Ŷ , Y (s)}. Following
the earlier pattern, each peak is subsequently replaced by a ’valley’: {Y (r), Y ′, Y (t)}
and {Y (t), Y ′′, Y (s)}, respectively. Here, Y ′ = Y (t ◦ r) = Y (r ◦ t) represents the diagram
resulting from reducing Y (r) by t (or equivalently, from reducing Y (t) by r), while Y ′′ cor-
responds to the diagram resulting from reducing Y (s) by t (or equivalently, from reducing
Y (t) by s). This process establishes that the initial non-commuting peak {Y (r), Ŷ , Y (s)}
had a height of at least 2. Consequently, we can substitute such a peak with peaks of
strictly lesser height and repeat this procedure until all peaks either possess a height of
1 or do not admit a reducing arc αt as previously mentioned; such peaks are classified as
irreducible.

Lemma 3.2.10. We can assume that each peak in the height function of our sequence
either has a height of 1 or is irreducible.

Proof. We introduced the concept of irreducible peaks in a way that encompasses all
scenarios that prevent height reduction to 1.

Lemma 3.2.11. We can assume that no peaks in the height function of our sequence
possess a height of 1.

Proof. Let {Y (r), Ŷ , Y (s)} constitute a peak with a height of 1. Recall that a height of
1 indicates that the two reducing arcs are non-commutative and, thus, involve exactly
two circles. It can be also be demonstrated that these two circles must be positioned
either "inside" or "outside" a band of circles. Additionally, αr and αs are equivalent as
reducing moves. Consequently, the diagram Y (r) is equivalent to Y (s), allowing for the
direct elimination of this peak from our sequence.

Hence, the last thing we need to address is irreducible peaks within the height function
of our sequence. Fortunately, these peaks exhibit a very specific pattern. To elucidate this
pattern, we define a weighted Seifert circle similar to the weights associated with closed
braid diagrams. A Seifert circle with an attached weight w signifies a collection of w
coherently oriented, nested, parallel Seifert circles. The term band denotes a Seifert circle
with a correspondent weight.

Lemma 3.2.12. If {Y (r), Ŷ , Y (s)} constitutes an irreducible peak within the height
function of our sequence, the diagram Ŷ features at most four bands, arranged as depicted
in Figure 3.15.
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Figure 3.15: The diagram linked to the irreducible peak Y (r), Ŷ , Y (s). Two extra reducing arcs
employed for eradicating irreducible peaks. Both pairs, αr, αs, and αt, αu, represent potential
non-commuting pairs associated with the peak.

Proof. Consider an irreducible peak {Y (r), Ŷ , Y (s)} and let C1 and C2 denote the two
circles engaged in the reducing arcs αr and αs. For i = 1, 2, use Di to indicate the disk
bounded by Ci in S2, which does not contain the reducing arcs αr and αs. Consequently,
the region S2\ (D1 ∪D2 ∪ αr ∪ αs) consists of two components. Based on the assumption,
neither component can accommodate a defect region (as that would enable the discovery
of a reducing arc αt as described earlier, contradicting the irreducibility of our peak).
Consequently, if either component includes Seifert circles, these circles must form a band,
positioned opposite to C1 and C2. It is admissible that these bands might have a weight
of zero. Using similar reasoning, we can deduce that Di cannot host a defect region for
i = 1, 2, implying that Ci must serve as the outer circle of a band. It is possible, of course,
for some braiding to occur between adjacent coherent circles, as indicated in Figure 3.15.
This configuration yields a diagram with each pictured circle representing a band, thus
completing the argument.

The subsequent lemma permits us to replace irreducible peaks in the height function
of our sequence with peaks of strictly smaller height.

Lemma 3.2.13. Suppose {Y (r), Ŷ , Y (s)} is an irreducible peak with a height of n + 1
in the height function of our sequence. Then, there exist sequences of diagrams Y (r) =
Y r

1 , . . . , Y
r

n = Y (p ◦ r) and Y (s) = Y s
1 , . . . , Y

s
n = Y (u ◦ s) such that Y r

i+1 (resp. Y s
i+1

)
is

obtained from Y r
i (resp. Y s

i ) by a reducing move. Moreover, h(Y (p◦ r)) = h(Y (u◦ s) = 0,
and Y (p ◦ r) and Y (u ◦ s)) are Markov equivalent.

Before delving into the proof of this lemma, we outline how it contributes to establishing
the Markov theorem. Utilizing the preceding lemmas, we have effectively narrowed down
the proof of Markov’s Theorem to a scenario involving two closed braid diagrams X and
X ′ connected by a sequence of diagrams that involve reducing moves (as well as their
inverses). In this sequence, the height of each intermediate diagram is strictly positive,
and any peak in the sequence’s height function is irreducible, with a height of at least
2. Let {Y (r), Ȳ , Y (s)} be an irreducible peak with a height of n in the height function
of our sequence. Thanks to Lemma 3.2.13, we can substitute this subsequence with a
subsequence of strictly smaller height (potentially including a subsequence entirely at
height 0 related by Markov moves, which we can disregard as before). In the process,
we generate new peaks with heights strictly lower than the peak being replaced. By
performing this operation at every irreducible peak, we establish a new sequence linking
our closed braid diagrams Y and Y ′.
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It is important to note that the new peaks may or may not be irreducible, and their
corresponding arcs might not even be disjoint. Nevertheless, we find ourselves back in
a situation analogous to that before Lemma 3.2.9, albeit with a sequence of reduced
height. Hence, by employing induction based on the sequence’s height (with the base case
provided by Lemma 3.2.11), we can substitute any sequence as described in Lemma 3.2.7
with a sequence entirely composed of diagrams with a height of zero. This successfully
concludes the proof of Markov’s Theorem.

A brief overview of the proof of Lemma 3.2.13 follows. According to Lemma 3.2.12,
the diagram Y has at most four bands, denoted as B1, B2, B3, and B4, linked by four
(potentially trivial) braids X1, X2, X3, X4, as depicted in Figure 3.15. Let wi denote the
weight of band Bi. Note that, for instance, braid X1 encompasses w1 + w3 strands, with
similar considerations applicable to the other Xi. If wi or wj exceeds 1, a reducing arc
connecting Bi and Bj implies a sequence of wiwj reducing moves. Multiple approaches
are available for constructing such sequences; we adopt the practice of selecting reducing
moves in a manner that ensures the strands of one band uniformly slide either below or
above the strands of the other band.

Returning to Figure 3.15, we commence by executing the reducing move r along the
arc αr, followed by an additional reduction via arc αp, involving B3 and B4. This leads to
a variable number of reducing moves, contingent upon the weights of the bands involved.
The resultant diagram Y (p ◦ r) assumes the closure of the initial braid, accounting for a
choice of arcs passing over or under during the various Type II Reidemeister moves.

To generate the second sequence outlined in the lemma, we initiate the process with
the reducing move s along the arc αs, followed by another reduction involving the arc αu.
The resulting configuration, represented by the diagram Y (u ◦ s), takes the form of the
second braid presented in Figure 3.16.

Figure 3.16: The closures of the two braids are the result of performing the two pairs of reducing
moves r,p and s,u indicated in Figure 3.15

At this point, we have successfully identified our two sequences of reducing moves.
As a result, the demonstration of Markov’s Theorem has been distilled to a singular
computation, specifically, the demonstration of the mutual equivalence (M-equivalence)
between the closed braids Y (p ◦ r) and Y (u ◦ s). Establishing the equivalence between
these two braids involves a sequence comprising numerous braid isotopies, along with two
stabilizations and two destabilizations. For a comprehensive account of the calculation,
readers can refer to [Tra98] and [BB05]. This finalizes the proof Markov’s Theorem.
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.1 Long exact sequence of a fibration
It’s well known that in algebraic topology, a "short exact sequence of spaces" A ↪→ X →

X/A gives rise to a long exact sequence of homology groups given some conditions over X
and A. However, this is not true when talking about a long exact sequence of homotopy
groups due to the failure of excision. Nonetheless, there is a different type of "short exact
sequence of spaces" that does give a long exact sequence of homotopy groups. This type
of short exact sequence F → E

p−→ B, called a fiber bundle, is distinguished from the
type A ↪→ X → X/A in that it has more homogeneity: all the subspaces p−1(b) ⊂ E,
which are called fibers, are homeomorphic.

For example, E could be the product F × B with p : E → B being the projection.
General fiber bundles can be thought of as twisted products. Familiar examples are the
Möbius band, which is a twisted annulus with line segments as fibers.

Remark .1.1. One of the most elegant examples of a fiber bundle is the Hopf bundle
S1 → S3 → S2, where S3 denotes the group of quaternions with unit norm and S1 is the
subgroup of unit complex numbers.

For this particular bundle, the long exact sequence of homotopy groups takes on the
following form:

· · · → πi

(
S1) → πi

(
S3) → πi

(
S2) → πi−1

(
S1) → πi−1

(
S3) → · · ·

A remarkable observation is that the exact sequence yields an isomorphism π2 (S2) ∼=
π1 (S1), since the two adjacent terms π2 (S3) and π1 (S3) vanish under cellular approxima-
tion. This provides a direct proof, from a homotopy-theoretic perspective, that π2 (S2) ∼=
Z. Moreover, the proposition that πi (S1) = 0 for i > 1 allows us to deduce that
πi (S3) ∼= πi (S2) for all i ≥ 3, and therefore π3 (S2) ∼= π3 (S3) ∼= Z.

Now, let’s introduce the characteristic that leads to a long exact sequence of homotopy
groups. We say that a map p : E → B satisfies the homotopy lifting property concerning
a space X, it implies that given a homotopy gt : X → B and a map g̃0 : X → E that lifts
g0 that is p ◦ g̃0 = g0, there exists a homotopy g̃t : X → E that lifts gt.

A fibration is a map p : E → B that satisfies the homotopy lifting property for all
spaces X. For instance, a projection B × F → B is a fibration since we can choose lifts
of the form g̃t(x) = (gt(x), h(x)), where g̃0(x) = (g0(x), h(x)).

Theorem .1.2. [Hat05]Let p : E → B be a map with the homotopy lifting property with
respect to disks Dk for all k ≥ 0. Let b0 be a basepoint in B, and x0 ∈ F = p−1(b0).
Then, for all n ≥ 1, the induced map p∗ : πn(E,F, x0) → πn(B, b0) is an isomorphism. In
particular, if B is path-connected, then we have a long exact sequence:

· · · → πn(F, x0) → πn(E, x0)
p∗−→ πn(B, b0) → πn−1(F, x0) → · · · → π0(E, x0) → 0

To prove this, we will use a relative version of the homotopy lifting property. We say
that p : E → B has the homotopy lifting property for a pair (X,A) if every homotopy
ft : X → B lifts to a homotopy g̃t : X → E with g̃0 fixed and g̃t(A) ⊂ F . In other words,
p has the lift extension property for (X × I,X × {0} ∪ A× I).

The equivalence between the homotopy lifting property for disks and for all CW pairs
(X,A) can be established. The proof relies on a step-by-step construction of the lifting
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g̃t for each cell of X − A, using induction over the skeleta of X. Additionally, the fact
that the pairs

(
Dk × I,Dk × {0}

)
and

(
Dk × I,Dk × {0} ∪ ∂Dk × I

)
are homeomorphic

is used. A map p : E → B that satisfies the homotopy lifting property for disks is referred
to as a Serre fibration.

Proof. Let us first show that p∗ is onto. Consider an element [f ] ∈ πn(B, b0) represented by
a map f : (In, ∂In) → (B, b0). Since p : (E,F ) → (B, b0) satisfies the relative homotopy
lifting property for (In−1, ∂In−1), we can construct a lift f̃ : In → E of f over Jn−1 ⊂ In

by the constant map to x0. Using the relative homotopy lifting property for (In, ∂In),
we can then extend this lift to a map f̃ : (In, ∂In) → (E,F ) such that f̃(∂In) ⊂ F and
p ◦ f̃ = f . Thus, p∗([f̃ ]) = [f ] and p∗ is onto.

To show that p∗ is injective, suppose we have two lifts f̃0, f̃1 : (In, ∂In, Jn−1) →
(E,F, x0) of maps f0, f1 : (In, ∂In) → (B, b0) such that p∗([f̃0]) = p∗([f̃1]). Let G :
(In × I, ∂In × I) → (B, b0) be a homotopy from p ◦ f̃0 to p ◦ f̃1. We can construct a
partial lift G̃ : (In × I, ∂In × I, Jn−1 × I) → (E,F, x0) of G such that G̃(In × {0}) = f̃0,
G̃(In × {1}) = f̃1, and G̃(Jn−1 × I) = x0. Using the relative homotopy lifting property for
(In, ∂In), we can then extend this partial lift to a full lift G̃ : (In ×I, ∂In ×I) → (E,F, x0)
of G. Thus, G̃ is a homotopy between f̃0 and f̃1 and p∗([f̃0]) = p∗([f̃1]) implies that p∗ is
injective.

Finally, to show the last statement of the theorem, we plug πn(B, b0) in for πn(E,F, x0)
in the long exact sequence for the pair (E,F ). The map πn(E, x0) → πn(E,F, x0) in the
exact sequence then becomes the composition πn(E, x0) → πn(E,F, x0)

p∗−→ πn (B, b0)
Thus, we have shown that p∗ is onto and injective, which implies that p∗ is an isomor-

phism.
This completes the proof of the theorem. Note that the last statement of the theorem

follows from the surjectivity of π0(F, x0) → π0(E, x0), which is a consequence of the
fact that B is path-connected. It suffices to note that π0(B, b0) = 0 since B is path
connected.
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.2 Cell Complexes
The idea of cellular complexes is based on constructing Hausdorff topological spaces by

attaching cells (structures that we will define shortly, but intuitively we can think of 0-cells
as points, 1-cells as intervals, and so on). That is, we start with a discrete set of points X0.
In X0, we attach 1-dimensional disks (intervals) through functions χα : ∂D1 = S0 → X0.
In X1, we attach 2-dimensional disks through χα : ∂D2 = S1 → X1. In this way, by
attaching n-dimensional disks in Xn−1 through χα : ∂Dn = Sn−1 → Xn−1, we obtain Xn.

Definition .2.1 (Open n-cell). Let X be a Hausdorff topological space. An open n-cell
in X is a subspace e ⊂ X together with a homeomorphism

◦
he :

◦
Dn → e ⊂ X

Definition .2.2 (n-cell). Furthermore, if the homeomorphism of its open cell extends to
the boundary, that is, if it is a continuous map h : Dn → X such that h| ◦

Dn
:

◦
Dn → h(

◦
Dn)

is a homeomorphism, we call e = h(
◦
Dn) ⊂ X together with this homeomorphism an

n-cell.

Definition .2.3 (Cellular boundary). We define the cellular boundary as the set given
by:

∂cell(e) = e− e

Note that it is important to differentiate the boundary of e (∂(e)) and the cellular bound-
ary of e (∂cell(e)) as they generally do not refer to the same set.

Definition .2.4 (Characteristic function). The characteristic function χe is defined as
the restriction:

χe = he|Sn−1 : Sn−1 → X

Definition .2.5 (Attaching an n-cell). Let X be a Hausdorff topological space and A ⊂ X
be closed. We say that X is obtained from A by attaching an n-cell if there exists an open
n-cell (e, he) ⊂ X such that X = A ∪ e, A ∩ e = ∅.

Proposition .2.1. Let X = Dn or X = In. Let ∼ be an equivalence relation on ∂X such
that x ∼ y ⇐⇒ x = y or x, y ∈ ∂X = Sn−1. Suppose Y = X/ ∼ is Hausdorff and let
B = π(∂X) ⊂ Y . Then, Y is obtained from B by attaching an n-cell (e = π(IntX)).

Proof. Since In is homeomorphic toDn (via a homeomorphism that preserves their bound-
aries, i.e., ∂In ∼= ∂Dn), we can assume X = Dn. So, we consider he = π : Dn → Y =
Dn/ ∼. Thus, we have e = he(

◦
Dn) and Y = e ∪ B (where B = he(∂Dn)) such that

e ∩B = ∅ because points in
◦
Dn and ∂Dn are not equivalent to each other.

Lemma .2.2. Let f : X → Y be a continuous function and B ⊂ X be open in X. Then,
if f(x) ∈ f(B), then f(x) ∈ f(B).

Proof. Let V be a neighborhood of f(x). Thus, f−1(V ) is an open set containing x.
Therefore, it must intersect B at some point y. Thus, V intersects f(B) at the point f(y),
which implies that f(x) ∈ f(B).
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Proposition .2.3. If e ⊂ X is an n-cell with defining map he : Dn → X, then:
(i) he(Dn) = e

(ii) he(Sn−1) = ∂cell(e)
Proof. (i) We will show that (he(Dn) ⊂ e) and (e ⊂ he(Dn)). Since he is continuous,

by the lemma, we have he(B) ⊂ he(B) for all B ⊂ Dn. Thus, in particular, for
◦
Dn ⊂ Dn, we have he(Dn) ⊂ e, since the closure of the interior of a set is the
set itself and he(

◦
Dn) = e. On the other hand, we have e = he(

◦
Dn) ⊂ he(Dn).

Furthermore, he(Dn) is compact because it is the image of a compact set under
a continuous function, and thus it is closed since X is Hausdorff. Therefore, we
conclude that e ⊂ he(Dn). From these two inclusions, it follows that he(Dn) = e.

(ii) Now, let’s show that he(Sn−1) = e− e by proving both inclusions. Let y ∈ e− e. By
item (i), we have y = he(x) for some x ∈ Dn such that x /∈

◦
Dn, since e = he(

◦
Dn).

Therefore, x ∈ Sn−1, and we conclude that e− e ⊂ he(Sn−1). Now, let’s analyze the
other inclusion. Let y = he(x) for x ∈ Sn−1. We want to show that y /∈ e. Suppose,
by contradiction, that y ∈ e, which means that y = he(x′) for some x′ ∈

◦
Dn. Since

Dn is Hausdorff and x ̸= x′, there exist open sets U and V in Dn such that x ∈ U ,
x′ ∈ V , and U ∩V = ∅. We can assume that V ⊂

◦
Dn. Since

◦
he is a homeomorphism,

he(V ) is open in e, and thus it is open in e. Furthermore, since he : Dn → e is
continuous, h−1

e (he(V )) is open in Dn. However, x ∈ h−1
e (he(V )) because y = h′

e(x).
Therefore, there exists ϵ > 0 such that (Dn ∩ Bϵ(x)) ⊂ h−1

e (he(V )), where Bϵ(x)
denotes the ball of radius ϵ centered at x with the usual Euclidean metric. Note that
we can choose ϵ such that Dn ∩ Bϵ(x) ⊂ U . Now, let z ∈ (

◦
Dn ∩ Bϵ(x)). From what

we have verified above, there exists z′ ∈ V such that he(z) = he(z′). Thus, since z
and z′ belong to

◦
Dn, we must have z = z′. Therefore, z ∈ V and z ∈ U , which leads

to a contradiction.

From the above proposition, we see that the characteristic function of e can be seen as
χe : Sn−1 → A describing the way A and e interact within X. Alternatively, it describes
the relationship between the inclusion i : A ↪−→ X and the defining map h : Dn → X. This
relationship can be represented by the following diagram:

Sn−1 Dn

A

χe

i
X

he

inclusion

Furthermore, X can be reconstructed from A ⊂ X using the characteristic map.
Proposition .2.4 (Universal Property). Suppose X is obtained from A by attaching an
n-cell with the defining map he : Dn → X. Let Y be another topological space. Then, the
function f : X → Y is continuous if and only if both f |A : A → Y and f ◦ he : Dn → Y
are continuous.
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Moreover, f 7→ (f |A, f ◦ he) defines a bijection between:

• continuous functions f : X → Y

• pairs (fA, fe) such that fA : A → Y and fe : Dn → Y are continuous, satisfying
fA ◦ χe = fe|Sn−1 .

Sn−1 Dn

A

χe

i
X

he

inclusion

Y

f

fA

fe

Furthermore, we can also say that the diagram is a pushout in the category of Topolog-
ical Spaces. This means exactly what we described earlier: If fA and fe are such that the
outer diagram commutes (i.e., for every p ∈ Sn−1, (fA ◦ χe)(p) = fe(p)), then there exists
a unique function f such that the inner diagrams commute (i.e., such that f(a) = f |A(a)
for all a ∈ A and fe(p) = f(he(p)) for all p ∈ Dn).

Proof. It is clear that if f : X → Y is continuous, then f |A and f ◦he are also continuous.
Let’s prove the converse. Suppose f |A and f ◦ he are continuous. We will show that f is
continuous by verifying that for every closed subset F ⊂ Y , f−1(F ) is closed in X. Note
that

f−1(F ) ∩ A = (f |A)−1(F )
Therefore, since f |A is continuous, f−1(F ) ∩A is closed in A. But since A is closed in X,
it follows that f−1(F ) ∩ A is closed in X. Also,

f−1(F ) ∩ e = he((f ◦ he)−1(F ))
Thus, since (f ◦ he)−1(F ) is closed in Dn and therefore compact, he((f ◦ he)−1(F )) is
compact in a Hausdorff space (since X is Hausdorff) and therefore closed in X. Moreover,

f−1(F ) = (f−1(F ) ∩ A) ∪ (f−1(F ) ∩ ē)

Therefore, f−1(F ) is a union of two closed sets and therefore closed in X.
Furthermore, f exists and is unique since X = A ∪ e, and:{

f(a) = fA(a) ∀a ∈ A

f(x) = fe(h−1
e | ◦

D
n)(x) ∀x ∈ e

Moreover, it is well-defined because of A ∩ e = ∅.

With this, we can prove that:

Proposition .2.5. For any Hausdorff space A and continuous function χ : Sn−1 → A,
there exists a unique space X, up to homeomorphism, such that X is obtained from A by
attaching an n-cell with characteristic map χ.
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Definition .2.6. Let X be a Hausdorff space and A ⊂ X be closed. We say that X is
obtained from A by attaching n-cells ei ⊂ X (i ∈ I) if X = A∪ (⋃

i∈I ei) and the following
conditions are satisfied:

(i) A ∩ ei = ∅, ∂cell(e) ⊂ A, and ei ∩ ej ̸= ∅ for all i ̸= j.

(ii) F ⊂ X is closed if and only if F ∩A is closed and F ∩ ei is closed for all i ∈ I (This
is also known as the "weak topology").

Definition .2.7 (Cellular Decomposition). Let X be a Hausdorff space. A cellular de-
composition of X is a sequence of closed subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . .

such that:

• ⋂
n∈Z≥−1 Xn = X

• For each n ≥ 0, Xn is obtained from Xn−1 by attaching n-cells (the n-cells, along
with the defining maps, are part of the structure).

• F ⊂ X is closed if and only if F ∩Xn is closed for all n ≥ 0.

Definition .2.8. A CW complex is a Hausdorff topological space X together with a
cellular decomposition. Moreover, the subspace Xn is called the n-skeleton of X.
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.3 Homotopy
Definition .3.1 (Homotopy). Let X and Y be topological spaces, and let f, g : X → Y
be continuous functions. A homotopy from f to g is a continuous function H : X×I → Y
such that H(x, 0) = f(x) and H(x, 1) = g(x). In this case, we say that f and g are
homotopic, denoted as H : f ≃ g or simply f ≃ g when the homotopy is clear from the
context.

X

I

f1

f0

ft

fx

In the diagram, ft denotes H(x, t) for a fixed t, and fx denotes H(x, t) for a fixed x. A
homotopy defines a family of functions Ht(x) = H(x, t), where 0 ≤ t ≤ 1. We can think
of this process as the parameter t representing time, and H as a function that promotes
a deformation from f to g.

Proposition .3.1. For any topological spaces X and Y , homotopy is an equivalence
relation.

Proof. (i) Every function f is homotopic to itself through the trivial homotopyH(x, t) =
f(x). Thus, the homotopy relation is reflexive.

(ii) Suppose H : f ≃ g. Then, a homotopy from g to f can be given by
∼
H(x, t) =

H(x, 1 − t). Thus, the homotopy relation is symmetric.

(iii) Suppose F : f ≃ g and G : g ≃ h. We can construct H : X × I → Y that deforms
f into h. The idea is to use F to deform f into g at double speed, and then use G
to deform g into h also at double speed.

H(x, t) =
®
F (x, 2t) 0 ≤ t ≤ 1

2
G(x, 2t− 1) 1

2 ≤ t ≤ 1

Note that F (x, 1) = g(x) = G(x, 0), so the function H is well-defined at t = 1
2 .

Since H is continuous on the closed sets X × [0, 1
2 ] and X × [1

2 , 1] (as F and G are
continuous), H is continuous on X × I by the Pasting Lemma.

Example .3.1. An important example is that of linear homotopy. Let V be a vector
space (or V ⊂ Rn convex) and f, g : X → V . Then, f ≃ g via the linear homotopy given
by H(x, t) = (1 − t)f(x) + tg(x).



66 .3

g(x)

f(x)
X

I

g(x)

f(x) V

Definition .3.2 (Relative Homotopy). LetX and Y be topological spaces, and let A ⊂ X.
We say that f, g : X → Y are homotopic relative to A (f ≃ g rel A) if there exists a
homotopy H : X × I → Y such that:

• H(x, 0) = f(x)

• H(x, 1) = g(x)

• H(a, t) = f(a) for all a ∈ A

In particular, f |A = g|A.

Example .3.2. Let’s see that IdRn+1−{0} ≃ rSn rel Sn, where:

rSn : Rn+1 − {0} → Rn+1 − {0}

x 7→ x

∥x∥
Indeed, it suffices to consider the homotopy H(x, t) = (1 − t)x+ t x

∥x∥ .

Definition .3.3 (Homotopy Equivalence). We say that the continuous function f : X →
Y is a homotopy equivalence if there exists a continuous function g : Y → X such that
g ◦ f ≃ IdX and f ◦ g ≃ IdY . In this case, X and Y are said to be homotopy equivalent
or have the same homotopy type. The function g is called the homotopy inverse of f .
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Example .3.3. From the previous example, we have that Rn+1−{0} and Sn are homotopy
equivalent. We can consider rSn and i : Sn ↪−→ Rn+1 − {0}. Thus, rSn ◦ i = IdSn and
i ◦ rSn = IdRn+1−{0}.

Definition .3.4 (Contractible). A topological space X is said to be contractible if it is
homotopy equivalent to a space consisting of only one point.

Definition .3.5 (Retraction). Let A ⊂ X. A retraction of X onto A is a continuous
function r : X → A such that r(a) = a for all a ∈ A (i.e., r ◦ i = IdA).

Definition .3.6 (Deformation Retract). We say that a retraction is a deformation retract
of X onto A if there exists a homotopy between IdX and a retraction of X onto A. We can
think of a deformation retract as a process of shrinking X onto A during a time interval
0 ≤ t ≤ 1, and then defining a family of functions ft : X → X such that ft(x) is the point
to which x moves after time t. In other words, a deformation retract of X onto A ⊂ X
is a family of functions ft : X → X, t ∈ I = [0, 1], such that f0 = IdX , f1(X) = A, and
ft|A = Id for all t ∈ I.

Example .3.4. Let V be a vector space. Then, V is contractible. In fact, consider f :
V → {0} and g : {0} −→ V , where f ◦ g = Id{0} and H : g ◦ f ≃ IdV with H(v, t) = vt.
Note that H(v, 0) = 0 = (g ◦ f)(v) and H(v, 1) = v = IdV (v).

Example .3.5. Let’s denote by M the Möbius strip. Then, M ≃ S1. In fact, recall that
M = I×I/(0, t) ∼ (1, 1−t). Let’s consider S1 as a subset of M using the homeomorphism
h : S1 → S1 ⊂ M given by e2πis 7→ [s, 1

2 ]. Also, consider i : S1 −→ M such that [s, 1
2 ] 7→

[s, 1
2 ], and r : M → S1 such that [(s, t)] 7→ [(s, 1

2)]. Indeed, this is a deformation retract,
as:

(i) r ◦ i = IdS1 : (r ◦ i)([s, 1
2 ]) = r(i([s, 1

2 ])) = r([s, 1
2 ]) = [s, 1

2 ]

(ii) i ◦ r ≃ IdM : Consider the homotopy H([s, t], ϵ) = [s, (1 − ϵ)t+ ϵ
2 ]

S1
M

M

S1
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