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Resumo

Rodrigo Rey Carvalho. Propriedades de cobertura, reflexões em submodelos ele-
mentares e partições em espaços topológicos. Tese (Doutorado). Instituto de Mate-

mática e Estatística, Universidade de São Paulo, São Paulo, 2022.

Este trabalho trata de dois tópicos distintos. Primeiro tratamos sobre a teoria das partições em espaços

topológicos, desenvolvendo os tópicos explorados em [27]. Adaptamos a demonstração do primeiro teorema

do artigo previamente citado. Também melhoramos a consistência de um resultado feito com ♦, construindo

um exemplo consistente com ¬𝐶𝐻 . Com relação ao segundo tópico, desenvolvemos sobre os espaços

definidos em [25]. Seguimos por um caminho semelhante ao feito na tese [16]. Vemos que, no caso de espaços

dispersos, há preservação, com relação a submodelos elementares, para as propriedades de Rothberger,

Menger e indestrutivelmente Lindelöf. Ademais continuamos a investigar tais reflexões para espaços mais

gerais. Por fim, trabalhamos com espaços da forma 𝐶𝑝(𝑋 ) e submodelos elementares, estudando a interação

entre 𝐶𝑝(𝑋𝑀 ) e 𝐶𝑝(𝑋 )𝑀 .

Palavras-chave: Partição de espaços topológicos. Teoria de Ramsey. Forcing. Propriedades de cobertura.

Submodelos elementares. Espaços de funções.





Abstract

Rodrigo Rey Carvalho. Covering properties, reflections in elementary submodels
and partitions on topological spaces. Thesis (Doctorate). Institute of Mathematics

and Statistics, University of São Paulo, São Paulo, 2022.

This work develops two distinct topics. We first work with partitions on topological spaces, developing

some topics found on [27]. We fixed the proof of the first theorem from the previous paper. We also improved

the consistency of a result obtained using ♦ by constructing an example consistent with ¬𝐶𝐻 . In relation

with the second topic we studied the spaces developed on [25]. For this we followed the line of work of the

thesis [16]. We see that, for scattered spaces the properties Rothberger, Menger and indestructibly Lindelöf

are preserved for elementary submodels. Furthermore we continue to investigate these preservations for

more general spaces. Finally we worked with 𝐶𝑝 spaces and elementary submodels, studying the relation

between 𝐶𝑝(𝑋𝑀 ) and 𝐶𝑝(𝑋 )𝑀 .

Keywords: Topological space partitions. Ramsey theory. Forcing. Covering properties. Elementary sub-

models. Function spaces.
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Introduction

This thesis is split in two central parts. In the first one we present a study of some
results obtained working with Ramsey theory and topological spaces. The object of study
of this field is known as partitions of topological spaces. It appeared in the literature after
the fourth Prague Topological Symposium, dating to 1976 on a work of J. Nešetřil and
V. Rödl [34]. One such paper is [27], by P. Komjáth and W. Weiss, which investigates
conditions to have monochromatic copies of countable ordinals. Some of the results
presented in this thesis are from an accepted paper co-authored by my Ph.D. advisor, L.
Junqueira, and G. Fernandes, relating to this previous paper.

The other topic this thesis concerns the use elementary submodels and topology. Many
papers started to appear in this area after the systematic study from A. Dow in [13]. We
follow a line of work that considers the spaces 𝑋𝑀 , introduced in [25]. We will consider
two ways of developing this topic. The first is to study the preservation of covering
properties as was done by R. Figueiredo in his thesis [16], expanding it to other covering
properties such as the Rothberger property. The other is the beginning of a systematic
study concerning spaces of the type 𝐶𝑝(𝑋 )𝑀 and some variants.

In Chapter 1 we start by setting some of the notations and results that will be used
throughout this work. Next in Chapter 2 we present the first topic related to partitions of
topological spaces detailing some of the results from [10]. We first start by investigating
an alternative version of the Cantor-Bendixson decomposition – the Sequential Cantor-
Bendixson decomposition – studying some preliminary results and illustrating this new
definition with some examples. After such investigation, we present a revision on a result
by W. Weiss and P. Komjáth, which was the motivation for the previous decomposition.
Given a coloriong this result describes a condition under which we can find monochromatic
copies of each 𝛼 < 𝜔1. In the next two sections of Chapter 2 we revisit an example made
by P. Komjáth and W. Weiss using ♦ and present a version of the same example without
CH. For this, in Section 2.3, we study a new club-like principle ♣𝐹 , that extracts the
essence of the use of ♦ in the original construction, verifying its consistency with ¬𝐶𝐻 .
In the final section we make use of♣𝐹 to obtain the desired example in a model without𝐶𝐻 .

In Chapter 3 we study spaces of the type 𝑋𝑀 as it was done by L. Junqueira, F. Tall,
K. Kunen and many others. We proceed in a similar line of work as R. Figueiredo in his
thesis [16]. In the first section of this chapter we present some results from the literature
to motivate our results. We center this chapter mostly around the works [25], [23], [24]
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and [16]. In Sections 3.2 and 3.3 we define the Rothberger, Menger and indestructibly
Lindelöf properties and study their reflection. Section 3.2 is dedicated to scattered spaces
and its effects on the preservation of the previous covering properties. Section 3.3 will
investigate the general case for these covering properties. Several reflection results need
the assumption of the reflection of the Lindelöf property. Finally, in the last section we
verify some reflection results for the weakly Lindelöf property and establish a connection
between the reflection of the linearly Lindelöf property with some interesting problems,
one of which concerns Dowker spaces.

Finally, in Chapter 4, we study 𝐶𝑝 spaces and elementary submodels. The initial
motivation behind this investigation was to find concrete examples of topological spaces
with the covering properties from the previous chapter and study whether or not we can
reflect them. But, we ended up focusing on a study of spaces of the form 𝐶𝑝(𝑋 )𝑀 and
𝐶𝑝(𝑋𝑀 ). The first section of this chapter presents an overview of some results in the area
of function spaces and covering properties. The last chapter presents a result that relates
the spaces 𝐶𝑝(𝑋 )𝑀 and 𝐶𝑝(𝑋𝑀 ) and, assuming some extra conditions, also has a result on
the preservation of the tightness for 𝐶𝑝(𝑋 )𝑀 and 𝐶𝑝(𝑋 ).



3

Chapter 1

Background content

In this chapter we will give some definitions and present some classical results that
will be used throughout our work. As it is usual, we refer to [15] for most of our notation
regarding topology and [29] to our notation regarding set theory. On a particular note,
when we consider regularity and normality we assume that the space is 𝑇1.

1.1 Topology
One of the topics from Chapter 2 is a generalization of the Cantor-Bendixson decom-

position for topological spaces. Furthermore, several results from Chapter 3 depend on the
structure of scattered spaces. We will present some basic results regarding this topic.

Definition 1.1.1. Given a topological space ⟨𝑋, 𝜏⟩ we say that:

• 𝑋 is scattered if, for every non-empty subspace 𝑌 ⊂ 𝑋 , there is an isolated point 𝑦 ∈ 𝑌 .

• 𝑋 is perfect if there are no isolated points in 𝑋 .

Definition 1.1.2. Given any topological space 𝑌 , define

𝐼 (𝑌 ) = {𝑦 ∈ 𝑌 ∶ 𝑦 is an isolated point of 𝑌}.

Definition 1.1.3. Given a scattered space 𝑋 , we define recursively:

• 𝑋 (0) = 𝑋 ;

• 𝐼𝛼 (𝑋 ) = 𝐼 (𝑋 (𝛼));

• 𝑋 (𝛼) = 𝑋 ⧵⋃𝛽<𝛼 𝐼𝛽(𝑋 ).

Note that we obtain a stratified partition of 𝑋 and we stop this process when we
exhaust all of its points. This prompts the following definition.

Definition 1.1.4. Given a scattered space 𝑋 and an element 𝑥 ∈ 𝑋 ,

• ℎ𝑡(𝑥, 𝑋 ) = 𝛼 is the height of 𝑥 , where 𝛼 is the only ordinal such that 𝑥 ∈ 𝐼𝛼 (𝑋 ).
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• ℎ𝑡(𝑋 ) = 𝑚𝑖𝑛{𝛼 ∶ 𝐼𝛼 (𝑋 ) = ∅}.

This stratification of the space also gives us an interesting property relating to the
open sets of 𝑋 .

Proposition 1.1.5. Given a scattered space 𝑋 , 𝑥 ∈ 𝑋 and 𝑉 a neighbourhood of 𝑥 , there is
an open neighbourhood 𝑈 of 𝑥 such that 𝑈 ⊂ 𝑉 ∩ (⋃𝛽≤ℎ𝑡(𝑥,𝑋 ) 𝐼𝛽(𝑋 )) and 𝑈 ∩ 𝐼ℎ𝑡(𝑥,𝑋 )(𝑋 ) = {𝑥}.

This gives us a basis for the topology formed by such "downward" open sets. Note also
that, for scattered spaces, 𝐼0(𝑋 ) is dense in 𝑋 , since any open neighbourhood of 𝑥 must
intercept every level of height < ℎ𝑡(𝑥, 𝑋 ).

Now one well-known result is the following:

Proposition 1.1.6. Given a topological space ⟨𝑋, 𝜏⟩, there is a partition 𝑋𝑆 , 𝑋𝑃 ⊂ 𝑋 of 𝑋
where 𝑋𝑆 is scattered and 𝑋𝑃 is perfect.

The proof of such fact also consists of exhausting the isolated points of 𝑋 in a iterated
manner in such way that what is left must be perfect.

To conclude this section we briefly present some definitions of covering properties and
cardinal functions that will be used throughout this thesis.

Definition 1.1.7. We say that a topological space 𝑋 is:

1. Compact if every open cover of 𝑋 has a finite subcover;

2. Countably compact if every countable open cover of 𝑋 has a finite subcover;

3. Lindelöf if every open cover of 𝑋 has a countable subcover;

4. Hereditarily Lindelöf if for every subspace 𝑌 of 𝑋 , 𝑌 is Lindelöf.

Definition 1.1.8. Given a topological space 𝑋 and 𝑥 ∈ 𝑋 , we define the following:

• 𝐿(𝑋 ) = 𝑚𝑖𝑛{𝜅 ∶ ∀ open cover of 𝑋 ∃ ′ ⊂  ( ′ is a subcover ∧ | ′| ≤ 𝜅)} is the
Lindelöf degree of 𝑋 .

• 𝜒 (𝑥, 𝑋 ) = 𝑚𝑖𝑛{𝜅 ∶ ∃ neighbourhood basis for 𝑥 in 𝑋 (|| ≤ 𝜅)} is the character of
𝑥 in 𝑋 .

• 𝜒 (𝑋 ) = 𝑠𝑢𝑝{𝜒 (𝑦, 𝑋 ) ∶ 𝑦 ∈ 𝑋} is the character of 𝑋 .

• 𝑡(𝑥, 𝑋 ) = 𝑚𝑖𝑛{𝜅 ∶ ∀𝐴 ⊂ 𝑋 (𝑥 ∈ 𝐴 ⇒ ∃𝐵 ⊂ 𝐴(𝑥 ∈ 𝐵 ∧ |𝐵| ≤ 𝜅))} is the tightness of 𝑥
in 𝑋 .

• 𝑡(𝑋 ) = 𝑠𝑢𝑝{𝑡(𝑦, 𝑋 ) ∶ 𝑦 ∈ 𝑋} is the tightness of 𝑋 .

1.2 Combinatorial properties
In chapter 2 we work with forcing and ♦-like properties. In what follows we give some

basic definitions on this topic that can be found in [29] by K. Kunen.

Definition 1.2.1. Let 𝜌 be an ordinal. We say that  ⊂ 𝜌 is unbounded in 𝜌 if, for all 𝛼 ∈ 𝜌,
there is 𝛾 ∈  such that 𝛼 < 𝛾 .
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Definition 1.2.2. Let 𝜅 be a cardinal. We say that  ⊂ 𝜅 is a club in 𝜅 (closed and unbounded)
if it is unbounded in 𝜅 and, for every 𝛼 ∈ 𝜅, if 𝛼 is a limit ordinal and  ∩ 𝛼 is unbounded in
𝛼 , then 𝛼 ∈ .

Definition 1.2.3. Let 𝜅 be a cardinal. We say that 𝑆 ⊂ 𝜅 is a stationary set in 𝜅 if, for every
club  in 𝜅, we have  ∩ 𝑆 ≠ ∅.

When there is no ambiguity to which cardinal we are working on we shall just say
that  is a club and 𝑆 is as stationary set. For the rest of this section we will work with 𝜔1
since it is what we will need, but the definitions and results can be generalized for any
regular uncountable cardinal.

Definition 1.2.4. Let 𝑆 ⊂ 𝜔1 be a stationary set and 𝑓 ∶ 𝑆 ⧵ {∅} → 𝜔1 a function. 𝑓 is
regressive if, for all 𝛼 ∈ 𝑑𝑜𝑚(𝑓 ), we have 𝑓 (𝛼) < 𝛼 .

The next lemma is also known as the pressing down lemma.

Lemma 1.2.5 (Fodor’s lemma). If 𝑓 ∶ 𝑆 ⧵ {∅} → 𝜔1 is a regressive function then there are
a stationary set 𝑆′ ⊂ 𝑆 and 𝛼 ∈ 𝜔1 such that 𝑓 [𝑆] = {𝛼}.

Now we define the combinatorial principle ♦, that will be used in Chapter 2.

Definition 1.2.6. A sequence ⟨𝐴𝛼 ∶ 𝛼 < 𝜔1⟩ of subsets of 𝜔1 is called a ♦-sequence if for all
𝐴 ⊂ 𝜔1 the set {𝛼 ∶ 𝐴 ∩ 𝛼 = 𝐴𝛼} is stationary.

Definition 1.2.7. A sequence ⟨𝐴𝑛
𝛼 ∶ 𝑛 < 𝜔 ∧ 𝛼 < 𝜔1⟩ is called a ♦∗-sequence if the following

holds:

(1) For every 𝛼 ∈ 𝜔1 and 𝑛 ∈ 𝜔, 𝐴𝑛
𝛼 ⊂ 𝛼 ;

(2) For every 𝐴 ⊂ 𝜔1, there is a 𝐶 club in 𝜔1 such that, for every 𝛼 ∈ 𝐶 , there is 𝑛 ∈ 𝜔
satisfying 𝐴 ∩ 𝛼 = 𝐴𝑛

𝛼 .

Such combinatorial principles are consistent with ZFC and are known to hold, for
example, when we consider 𝑉 = 𝐿; see e.g. [30].

1.3 Forcing
We follow up with some basic definitions and results on the topic of forcing.

Definition 1.3.1. A forcing is a triple ⟨ℙ, ≤, 1⟩ consisting of a partial order ⟨ℙ, ≤⟩ and a
maximal element 1. Given 𝑝, 𝑞 ∈ ℙ we say that:

• 𝑞 is stronger than 𝑝, if 𝑞 ≤ 𝑝;

• 𝑞 is incompatible with 𝑝, denoted by 𝑞 ⟂ 𝑝, if there is no 𝑡 ∈ ℙ such that 𝑡 ≤ 𝑝, 𝑞,
otherwise we say that 𝑝 and 𝑞 are compatible.

When there is no ambiguity we shall omit both maximal element and order and refer to
the forcing as ℙ.

Definition 1.3.2. Let ℙ be a forcing, 𝑡 ∈ ℙ and 𝐷 ⊂ ℙ. We say that:

• 𝐷 is dense in ℙ if, for all 𝑝 ∈ ℙ, there is 𝑞 ∈ 𝐷 such that 𝑞 ≤ 𝑝.
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• 𝐷 is dense below 𝑡 if, for all 𝑝 ≤ 𝑡 , there is 𝑞 ∈ 𝐷 such that 𝑞 ≤ 𝑝.

Definition 1.3.3. Let ℙ be a forcing and 𝐺 ⊂ ℙ. 𝐺 is said to be a filter over ℙ if the following
conditions hold:

• 1 ∈ 𝐺;

• For all 𝑝, 𝑞 ∈ 𝐺, they are compatible;

• If 𝑝 ∈ 𝐺, then, for all 𝑞 ≥ 𝑝, we have 𝑞 ∈ 𝐺.

We say that a filter 𝐺 is ℙ-generic over 𝑀 if 𝐺 intersects all dense sets of ℙ that are in 𝑀 .

Definition 1.3.4. Given a forcing ℙ, we define recursively that 𝜏 is a ℙ-name if it is a binary
relation and, for all ⟨𝜎, 𝑝⟩ ∈ 𝜏 , we have that 𝜎 is a ℙ-name and 𝑝 ∈ ℙ. We refer to 𝑉 ℙ as the
class of all ℙ-names. Given 𝑀 a transitive model for 𝑍𝐹 − 𝑃 we set

𝑀ℙ = 𝑉 ℙ ∩𝑀 = {𝜏 ∈ 𝑀 ∶ (𝜏 is a ℙ − 𝑛𝑎𝑚𝑒)𝑀}.

The following ℙ-names are particularly interesting.

Definition 1.3.5. Given any set 𝑥 we define recursively �̌� = {⟨�̌�, 1⟩ ∶ 𝑦 ∈ 𝑥}.

We now can consider ℙ as the language with ∈ as a binary relation and ℙ-names as
constant symbols.

Definition 1.3.6. Given a forcing ℙ, a ℙ-name 𝜏 and 𝐺 ⊂ ℙ we define 𝜏𝐺 recursively as
𝜏𝐺 = {𝜎𝐺 ∶ ⟨𝜎, 𝑝⟩ ∈ 𝜏 ∧ 𝑝 ∈ 𝐺}.

Definition 1.3.7. As in the conditions of the previous definitions, given 𝑝 ∈ ℙ, a formula
𝜙(𝑥1,⋯ , 𝑥𝑛) and ℙ-names 𝜏1,⋯ , 𝜏𝑛, we say that 𝑝 forces 𝜙(𝜏1,⋯ , 𝜏𝑛) and write 𝑝 ⊩ 𝜙(𝜏1,⋯ , 𝜏𝑛)
if (𝜙((𝜏1)𝐺 ,⋯ , (𝜏𝑛)𝐺))𝑉 [𝐺] holds for every ℙ-generic filter 𝐺 such that 𝑝 ∈ 𝐺.

Proposition 1.3.8. In the conditions of the previous definitions the following are equivalent:

1. 𝑝 ⊩ 𝜙(𝜏1,⋯ , 𝜏𝑛);

2. ∀𝑟 < 𝑝 𝑟 ⊩ 𝜙(𝜏1,⋯ , 𝜏𝑛);

3. The set {𝑟 < 𝑝 ∶ 𝑟 ⊩ 𝜙(𝜏1,⋯ , 𝜏𝑛)} is dense below 𝑝.

Lemma 1.3.9 (Truth Lemma). Let 𝑀 be a countable transitive model for 𝑍𝐹 − 𝑃 and ℙ ∈ 𝑀
a forcing. If 𝜓 is a sentence of ℙ ∩𝑀 and 𝐺 is a ℙ-generic filter over 𝑀 , then 𝑀[𝐺] ⊨ 𝜓 if
and only if there is a 𝑝 ∈ 𝐺 such that 𝑝 ⊩ 𝜓 .

Lemma 1.3.10. For any forcing ℙ ∈ 𝑀 and formula 𝜙(𝑥) ∈ ℙ ∩𝑀 with only 𝑥 as its free
variable, we have:

1. 𝑝 ⊩ ∀𝑥𝜙(𝑥) if and only if 𝑝 ⊩ 𝜙(𝜏 ) for all 𝜏 ∈ 𝑀ℙ;

2. 𝑝 ⊩ ∃𝑥𝜙(𝑥) if and only if {𝑞 ≤ 𝑝 ∶ ∃𝜏 ∈ 𝑀ℙ(𝑞 ⊩ 𝜙(𝜏 ))} is dense below 𝑝.

The following is a strengthening of item (2) of the previous lemma.

Theorem 1.3.11 (Maximal Principle). For any forcing ℙ ∈ 𝑀 and formula 𝜙(𝑥) ∈ ℙ ∩𝑀
with only 𝑥 as its free variable we have: 𝑝 ⊩ ∃𝑥𝜙(𝑥) if and only if 𝑝 ⊩ 𝜙(𝜏 ) for some 𝜏 ∈ 𝑀ℙ.
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The following definitions are useful when trying to control what happens to the size
of the set of the conditions used to decide a name.

Definition 1.3.12. Let ℙ be a forcing. a subset 𝐴 ⊂ ℙ is said to be an antichain if all elements
of 𝐴 are pairwise incompatible, that is for all distinct 𝑝, 𝑞 ∈ 𝐴 we have 𝑞 ⟂ 𝑝.

Definition 1.3.13. Let ℙ be a forcing and 𝜅 a cardinal. We say that ℙ has the 𝜅-cc if, for
every antichain 𝐴 in ℙ, |𝐴| < 𝜅.

Definition 1.3.14. Let ℙ be a forcing and 𝜏 ∈ 𝑉 ℙ a name. A nice name for a subset of 𝜏 is a
name of the form ⋃{{𝜎} × 𝐴𝜎 ∶ 𝜎 ∈ dom (𝜏 ) ∧ 𝐴𝜎 is an antichain in ℙ}.

Before considering iterated forcing we define the Cohen forcing.

Definition 1.3.15. Let 𝐹𝑛(𝜔, 2) be the set of the finite functions with domain in 𝜔 and image
in 2. The triple ⟨𝐹𝑛(𝜔, 2),∅, ⊃⟩ is the Cohen forcing.

Now we state the notation used when dealing with iterated forcing. We follow the
definition found in K. Kunen [29], but we opt to use the notation

◦𝑥 when considering
names for the objects in the stages of the iteration.

Definition 1.3.16. For any ordinal 𝛼 , the 𝛼-stage iterated forcing construction is a pair of
sequences

⟨⟨(ℙ𝛾 , ≤𝛾 , 1𝛾 ) ∶ 𝛾 ∈ 𝛼⟩, ⟨(
◦
ℚ𝛾 ,

◦≤ ◦
ℚ𝛾
,
◦
1 ◦
ℚ𝛾
) ∶ 𝛾 ∈ 𝛼⟩⟩

satisfying the following conditions:

1. Each ⟨ℙ𝛾 , ≤𝛾 , 1𝛾⟩ is a forcing;

2. Each ⟨
◦
ℚ𝛾 ,

◦≤ ◦
ℚ𝛾
,
◦
1 ◦
ℚ𝛾
⟩ is a ⟨ℙ𝛾 , ≤𝛾 , 1𝛾⟩-name for a forcing;

3. Each 𝑝 ∈ ℙ𝛾 is a sequence of the form ⟨
◦𝑞𝜉∶ 𝜉 < 𝛾⟩, where, for each 𝜉 < 𝛾 , we have

◦𝑞𝜉∈ 𝑑𝑜𝑚(
◦
ℚ𝜉 );

4. If 𝜉 < 𝛾 and 𝑝 ∈ ℙ𝛾 , then 𝑝 ↾𝜉∈ ℙ𝜉 ;

5. If 𝜉 < 𝛾 , 𝑝 ∈ ℙ𝜉 and 𝑝′ is the sequence given by 𝑝′ ↾𝜉= 𝑝 and 𝑝′(𝜇) =
◦
1 ◦
ℚ𝜇

for 𝜉 ≤ 𝜇 < 𝛾 ,

then 𝑝′ ∈ ℙ𝛾 and is denoted by 𝑖𝜉 ,𝛾 (𝑝);

6. 1𝛾 is the sequence ⟨
◦
1 ◦
ℚ𝜉
∶ 𝜉 < 𝛾⟩;

7. If 𝑝, 𝑝′ ∈ ℙ𝛾 , then 𝑝 ≤𝛾 𝑝′ if and only if 𝑝 ↾𝜉⊩ℙ𝜉 𝑝(𝜉 ) ≤𝜉 𝑝′(𝜉 ) for all 𝜉 < 𝛾 ;

8. If 𝛾 + 1 ≤ 𝛼 , then ℙ𝛾+1 is the set of all 𝑝⌢
◦𝑞 such that 𝑝 ∈ ℙ𝛾 ,

◦𝑞∈ 𝑑𝑜𝑚(
◦
ℚ𝛾 ) and

𝑝 ⊩ℙ𝛾
◦𝑞∈

◦
ℚ𝛾 .

Many times it is useful to restrict what happens on the limit stages of an iteration. In
this work we will be interested in the iterated forcing with countable support as we state
below.
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Definition 1.3.17. An iterated forcing of length 𝛼 is said to have countable support if, for
every limit ordinal 𝛽 ≤ 𝛼 , 𝑝 ∈ ℙ𝛽 only if the set {𝛾 < 𝛽 ∶ 𝑝(𝛾 ) ≠

◦
1𝛾} is countable.

When considering an iterated forcing it is useful to know what is happening in each
stage of the iteration in comparison with the final iteration. The next definition helps us
with that.

Definition 1.3.18. In the conditions of the previous definition, if 𝐺 is a ℙ𝛼 -generic over our
ground model 𝑀 , then, for all 𝜉 < 𝛼 , define 𝐺 ↾ 𝜉 = 𝑖−1𝜉 ,𝛼 (𝐺).

It follows that 𝐺𝜉 is a ℙ𝜉 -generic filter over M and 𝑀[𝐺 ↾ 𝜉 ] ⊂ 𝑀[𝐺 ↾ 𝛾 ] if 𝜉 < 𝛾 ≤ 𝛼 .
The idea behind this definition is that it is useful to determine when certain (small) objects
already appeared in previous steps of the iteration considering a generic 𝐺.

1.4 Elementary submodels
We now consider the theory of elementary submodels and take as reference the book

[30]. In what follows we state some definitions and results that will be used throughout
Chapters 3 and 4.

Definition 1.4.1. Given a cardinal 𝜃 the set 𝐻 (𝜃) is the following:

{𝑥 ∈ 𝑊𝐹 ∶ |𝑡𝑟𝑐𝑙(𝑥)| < 𝜃}

Definition 1.4.2. Let 𝜙(𝑥1,⋯ , 𝑥𝑛) be a formula and𝑀 and𝑁 be two classes such that𝑀 ⊂ 𝑁 .
We say that 𝜙 is absolute between𝑀 and𝑁 if, for all 𝑎1,⋯ , 𝑎𝑛 ∈ 𝑀 , we have𝑀 ⊨ 𝜙(𝑎1,⋯ , 𝑎𝑛)
if and only if 𝑁 ⊨ 𝜙(𝑎1,⋯ , 𝑎𝑛). In this case we write 𝑀 ≺𝜙 𝑁 .

Definition 1.4.3. Let 𝑀 and 𝑁 be two classes as in the previous definition and Σ be a finite
collection of formulas. We write 𝑀 ≺Σ 𝑁 if for all 𝜙 ∈ Σ we have 𝑀 ≺𝜙 𝑁 . In the case that
𝑀 ≺𝜙 𝑁 for every formula 𝜙 we say that 𝑀 is an elementary submodel of 𝑁 and write 𝑀 ≺ 𝑁 .

Theorem 1.4.4 (Reflection Theorem). If 𝑁 is a class and, for each ordinal 𝛼 , 𝑁 (𝛼) is a set
satisfying:

(1) 𝛼 < 𝛽 implies 𝑁 (𝛼) ⊂ 𝑁 (𝛽);

(2) 𝑁 (𝛾 ) = ⋃𝛼<𝛾 𝑁 (𝛼) for every limit ordinal 𝛾 ;

(3) 𝑁 = ⋃𝛼∈𝑂𝑁 𝑁 (𝛼),

then, for any formulas 𝜙1,⋯ , 𝜙𝑛 we have: ∀𝛼∃𝛽(𝜙1,⋯ , 𝜙𝑛 are absolute for 𝑁 (𝛽), 𝑁 ).

Throughout this work we will be referring to elementary submodels of 𝐻 (𝜃) for a
sufficiently large 𝜃 . This allows us to have the needed structure to prove what we need
and to apply some further results.

Theorem 1.4.5 (Tarski-Vaught criterion). Let 𝑀 and 𝑁 be sets such that 𝑀 ⊂ 𝑁 . Then the
following are equivalent:

• 𝑀 ≺ 𝑁 ;
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• For each 𝜙(𝑦, 𝑥1,⋯ , 𝑥𝑛) formula and sequence {𝑎1,⋯ , 𝑎𝑛} ⊂ 𝑀 , if 𝑁 ⊨
∃𝑦𝜙(𝑦, 𝑎1,⋯ , 𝑎𝑛), then there is 𝑎 ∈ 𝑀 such that 𝑁 ⊨ 𝜙(𝑎, 𝑎1,⋯ , 𝑎𝑛).

This result is a central tool to several results since it guarantees the existence of several
objects on the lower model when we work with elementary submodels. Another result
that works in the same way considers the idea of definability.

Definition 1.4.6. A set 𝑏 is said to be definable by parameters 𝑎0,⋯ , 𝑎𝑛 if there exists a
formula 𝜙(𝑥, 𝑦0,⋯ , 𝑦𝑛) such that

∀𝑥(𝜙(𝑥, 𝑎0,⋯ , 𝑎𝑛) ⟷ 𝑥 = 𝑏)

We shall say that a set is definable by parameters in 𝑀 if the parameter in the definition
above are in 𝑀 .

Proposition 1.4.7. If 𝑏 is definable by parameters in 𝑀 considering the formula 𝜙(𝑥, 𝑦) and
𝑀 ≺{∃𝑥𝜙(𝑥,𝑦),𝜙(𝑥,𝑦)} 𝐻 (𝜃), then 𝑏 ∈ 𝑀 .

The next result is also very important since it allows us to better select elementary
submodels, through a closure process, satisfying certain conditions.

Theorem 1.4.8 (Löwenhein-Skolem theorem). Let 𝐴 and 𝑁 be sets such that 𝐴 ⊂ 𝑁 . There
exists a set 𝑀 such that 𝐴 ⊂ 𝑀 , 𝑀 ≺ 𝑁 , and |𝐴| + ℵ0 = |𝑀 |.

Now the next definition gives us a distinction on elementary submodels.

Definition 1.4.9. We say that an elementary submodel 𝑀 is countably closed (𝜔-closed) if
[𝑀]𝜔 ⊂ 𝑀 . We say that an elementary submodel is 𝜔-covering if for every 𝐴 ∈ [𝑀]𝜔 there
exists 𝐵 ∈ 𝑀 such that 𝐴 ⊂ 𝐵.

The idea of 𝜔-covering elementary submodels first appears in A. Dow’s [13]. This is
of interest since additional results can be derived using such restrictions on the elemen-
tary submodel 𝑀 . A particularly useful one is the following result by L. Junqueira from
[23].

Proposition 1.4.10 (L. Junqueira [23]). If 𝑀 is an 𝜔-covering elementary submodel, then
𝜔1 ⊂ 𝑀 .

In regards to the size of such elementary submodels, we know that if 𝑀 is countably
closed then |𝑀 | ≥ c. Indeed, since 𝜔 ⊂ 𝑀 we must also have [𝜔]𝜔 ⊂ 𝑀 . In the same way,
the previous result gives that, for and 𝜔-covering 𝑀 , |𝑀 | ≥ 𝜔1. The following result is from
[13] and guarantees that it is possible to have 𝑀 𝜔-covering of size 𝜔1.

Proposition 1.4.11 (A. Dow [13]). Let𝐴 ⊂ 𝐻 (𝜃) be such that |𝐴| ≤ 𝜔. There exists𝑀 ≺ 𝐻 (𝜃)
such that 𝐴 ⊂ 𝑀 , |𝑀 | ≤ 𝜔1 and 𝑀 is 𝜔-covering.

Proof. We shall define recursively the following ⊂-increasing sequence of elementary
submodels {𝑀𝛼 ∶ 𝛼 ∈ 𝜔1} in the following way:

• 𝑀0 is an elementary submodel containing 𝐴 of size ℵ0 given by Theorem 1.4.8.

• Assume 𝑀𝛽 countable elementary submodel already defined for a 𝛽 ∈ 𝜔1. Take 𝑀𝛽+1
countable as in Theorem 1.4.8 containing 𝑀𝛽 ∪ {𝑀𝛽}.



10

1 | BACKGROUND CONTENT

• If 𝛼 ∈ 𝜔1 is a limit ordinal and 𝑀𝛽 is a countable elementary submodel defined for
all 𝛽 < 𝛼 then 𝑀𝛼 = ⋃𝛽<𝛼 𝑀𝛽 .

We just need to verify that 𝑀𝛼 for the limit step is indeed a countable elementary submodel.
Indeed, 𝑀𝛼 is countable since it is the countable union of countable sets. Furthermore, by
the Tarski-Vaught criterion, to see that 𝑀𝛼 ≺ 𝐻 (𝜃) we just need to verify that for every
formula 𝜙(𝑦, 𝑥1,⋯ , 𝑥𝑛) and sequence {𝑎1,⋯ , 𝑎𝑛} ⊂ 𝑀𝛼 , if 𝐻 (𝜃) ⊨ ∃𝑦𝜙(𝑦, 𝑎1,⋯ , 𝑎𝑛), then
there is 𝑎 ∈ 𝑀𝛼 such that 𝐻 (𝜃) ⊨ 𝜙(𝑎, 𝑎1,⋯ , 𝑎𝑛). Fix such a formula and a sequence. Since
(𝑀𝛽)𝛽<𝛼 is a ⊂-increasing sequence we have 𝛾 < 𝛼 such that {𝑎1,⋯ , 𝑎𝑛} ⊂ 𝑀𝛾 . Now, since
𝑀𝛾 ≺ 𝐻 (𝜃), there is 𝑎 ∈ 𝑀𝛾 ⊂ 𝑀𝛼 such that 𝐻 (𝜃) ⊨ 𝜙(𝑎, 𝑎1,⋯ , 𝑎𝑛). Now, in the same way
we have 𝑀 = 𝑀𝜔1 = ⋃𝛼<𝜔1

𝑀𝛼 ≺ 𝐻 (𝜃) and |𝑀 | ≤ 𝜔.𝜔1 = 𝜔1. To finish this proof we will see
that 𝑀 is 𝜔-closed. Indeed, given 𝐵 ∈ [𝑀]𝜔 , by the regularity of 𝜔1, there is 𝛾 ∈ 𝜔1 such
that 𝐵 ⊂ 𝑀𝛾 . But now 𝐵 ⊂ 𝑀𝛾 ∈ 𝑀𝛾+1 ⊂ 𝑀 , concluding this proof.
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Chapter 2

Partitions of topological spaces

The topic of partitions of topological spaces is a very interesting application of Ramsey
theory in topology. It surfaces on the literature by the 70s in works such as [17] by
H. Friedman considering mostly ordinals but incorporating some topological elements
such as closedness. A more topological approach to this topic first appears in the fourth
Prague topological Symposium dating to 1976 on a work of J. Nešetřil and V. Rödl [34]. A
more systematic study of this area is done by W. Weiss [42] in the chapter Partitioning
Topological Spaces on the book Mathematics of Ramsey Theory.

This chapter will cover in particular some topics of the work [27] of P. Komjáth and W.
Weiss, and will present some of the results obtained in [10], a joint work with L. Junqueira
and G. Fernandes.

We start by fixing the notation we will use throughout this chapter.

Definition 2.0.1. Given two topological spaces 𝑋 , 𝑌 and two cardinals 𝜆, 𝜅 we say that
𝑋 → (𝑌 )𝜆𝜅 if, for every function 𝑓 ∶ [𝑋 ]𝜆 → 𝜅, there exists𝑊 a subspace of 𝑋 homeomorphic
to 𝑌 such that 𝑓 |[𝑊 ]𝜆 is constant. We say that 𝑊 is a monochromatic copy of 𝑌 in regards to 𝑓 .

With the notation of the previous definition, when there could be ambiguity in regards
to 𝑌 , as is the case when working with ordinals, we shall make the following distinction
𝑋 → (𝑡𝑜𝑝 𝛼)𝜆𝜅 .

In the work [27] mentioned above, the authors show the following result:

Theorem 2.0.2 (P. Komjáth, W. Weiss [27]). Let 𝑋 be a regular topological space with
𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 and 𝜒 (𝑋 ) < b. Then 𝑋 → (𝑡𝑜𝑝 𝛼)1𝜔 for all 𝛼 < 𝜔1.

In the seminars organised by L. Junqueira a former student of hers R. Rodrigues
presented the original proof of this theorem and we found a statement that we could not
justify. More specifically, during a step of the construction they needed to guarantee the
existence of a certain converging sequence, but we did not think there were sufficient
conditions for that in the proof when the character was assumed < b.
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In a private communication, L. Junqueira asked W. Weiss about the proof. He recognized
that there was indeed a problem in the way the proof was written and suggested a way to
rectify it, changing the kind of decomposition that was used in the proof. The first section
of this chapter will cover the decomposition suggested by W. Weiss. In the second section
we provide some examples to contextualize Theorem 2.0.2 and show how to fix the proof.

Another question that originates from the same article is whether the bound on the
character exhibited in Theorem 2.0.2 is the best possible. In [27] a positive answer for this
question is obtained using ♦. In [10] G. Fernandes, L. Junqueira and I show that there is an
example that also confirms the bound without the assumption of 𝐶𝐻 . For this we define
a new ♣-like principle and explore its properties in the third section. Then we use this
principle to construct the example in the final section.

2.1 The sequential decomposition
We start this chapter with the study of the alternative decomposition suggested by

W. Weiss. As mentioned before the problem with the use of the Cantor-Bendixson de-
composition is that we may not find certain converging sequences when needed, which
is not a problem in case the space is first countable. So we do our new decomposition
considering converging sequences. That is, using the Cantor-Bendixson construction we
remove the isolated points in each step to obtain a stratification of any given topological
space, resulting in a scattered subspace and a perfect one by the end of the process. In the
new decomposition we remove points that do not have injective 𝜔-sequences converging
to them.

Definition 2.1.1. Given a topological space 𝑌 , using recursion on 𝛼 ordinal define:

𝑆𝐼0(𝑌 ) = {𝑥 ∈ 𝑌 ∶ there is no injective sequence 𝑠 ∈ 𝑌 𝜔 converging to 𝑥},

and 𝑆𝐼𝛼 (𝑌 ) = 𝑆𝐼0(𝑌 𝛼
𝑆 ), where 𝑌 𝛼

𝑆 = 𝑌 ⧵⋃{𝑆𝐼𝛽(𝑌 ) ∶ 𝛽 < 𝛼}

We set the sequential height of a topological space 𝑌 as

𝑆ℎ(𝑌 ) = 𝑚𝑖𝑛{𝛼 ∶ 𝑆𝐼𝛼 (𝑌 ) = ∅}.

We note that the sequential height is indeed well defined since at the very least
|𝑌 |+ ∈ {𝛼 ∶ 𝑆𝐼𝛼 (𝑌 ) = ∅}.

Definition 2.1.2. A topological space 𝑌 is S-scattered if 𝑌 𝑆ℎ(𝑌 )
𝑆 = ∅ or, equivalently, if

𝑌 = ⋃{𝑆𝐼𝛼 (𝑌 ) ∶ 𝛼 < 𝑆ℎ(𝑌 )}.

Analogous to the scattered and perfect decomposition of a space, we define:

Definition 2.1.3. A topological space 𝑌 is S-perfect if, for all 𝑥 ∈ 𝑌 , there is an injective
sequence converging to 𝑥 .

Now, just from this definitions we have:
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Corollary 2.1.4. Given a topological space 𝑌 , 𝑌 𝑆ℎ(𝑌 )
𝑆 is S-perfect.

Scattered spaces have some very good properties regarding its structure and neighbour-
hoods. The following results are an attempt to emulate such properties for the S-scattered
spaces.

This next proposition relates to the fact that, given a scattered space and a point 𝑥 , we
may consider open neighbourhoods to be as in Proposition 1.1.5.

Proposition 2.1.5. Let 𝑌 be an S-scattered topological space, 𝛼 > 0 and 𝑥 ∈ 𝑆𝐼𝛼 (𝑌 ).
Then, for all 𝛽 < 𝛼 , there is an injective sequence 𝑠 ∶ 𝜔 → 𝑌 converging to 𝑥 , such that
𝑠[𝜔] ⊂ ⋃{𝑆𝐼𝛾 (𝑌 ) ∶ 𝛾 ∈ [𝛽, 𝛼)}.

Proof. Suppose that there is a 𝛽 < 𝛼 such that, for all injective sequences 𝑠 converging to
𝑥 , we have

𝑠[𝜔] ⊄ ⋃{𝑆𝐼𝛾 (𝑌 ) ∶ 𝛾 ∈ [𝛽, 𝛼)}.

In particular, we must have

|𝑠[𝜔] ∩ (⋃{𝑆𝐼𝛾 (𝑌 ) ∶ 𝛾 ∈ [𝛽, 𝑆ℎ(𝑌 ))})| < ℵ0,

otherwise, we could take a convergent sub-sequence contradicting the hypothesis or con-
tradicting 𝑥 ∈ 𝑆𝐼𝛼 (𝑌 ). This condition gives us that there are no sequences in 𝑌 𝛽

𝑆 converging
to 𝑥 and, therefore, in the worst-case scenario, 𝑥 ∈ 𝑆𝐼𝛽(𝑌 ). That is a contradiction, hence,
the thesis must hold.

This proposition is useful in the sense that it gives us a lower estimate for the cardinality
of the levels of the sequential decomposition.

Proposition 2.1.6. Let 𝑌 be a topological space and 𝛼 < 𝑆ℎ(𝑌 ). If 𝛼 + 1 < 𝑆ℎ(𝑌 ) then
|𝑆𝐼𝛼 (𝑌 )| ≥ ℵ0.

Proof. Note that 𝛼 + 1 < 𝑆ℎ(𝑌 ) yields 𝑆𝐼𝛼+1(𝑌 ) ≠ ∅. Let 𝑥 ∈ 𝑆𝐼𝛼+1. By Proposition 3, we
have an injective sequence 𝑠 ∶ 𝜔 → 𝑌 such that 𝑠 converges to 𝑥 and 𝑠[𝜔] ⊂ 𝑆𝐼𝛼 (𝑌 ). Now
ℵ0 ≤ |𝑠[𝜔]| ≤ |𝑆𝐼𝛼 (𝑌 )|.

Note that we may not have the same behaviour as the original Cantor-Bendixson
decomposition regarding the open sets as seen in Proposition 1.1.5. But, the previous
results guarantee us that any open neighbourhood of 𝑥 has at least countably many points
in the levels lower than the height of 𝑥 .

We give some examples on how this new decomposition works on some topological
spaces.

Example 2.1.7. The space 𝜔1 + 1 with the order topology is such that 𝜔1 is in the 0𝑡ℎ-level
of the decomposition, together with the successor ordinals that are isolated. The rest of the
decomposition is the same as the Cantor-Bendixson for the countable heights. Indeed, the only
point with uncountable character was 𝜔1. So, for all other points, they are isolated if and only
if there are no converging injective sequences to it.
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This illustrates the importance of the character when comparing both decompositions,
as it was stated in the beginning of this chapter. This motivates the following:

Proposition 2.1.8. If 𝑋 is infinite and first countable, then both decompositions are the
same on 𝑋 .

Proof. Indeed, since being isolated is equivalent to not having an injective converging
sequence for such spaces 𝑋 , each step of the decompositions are identical.

For an illustration in ℝ both decompositions are the same since it is a first countable
space that is perfect. We will explore this space a little bit more on the next section.

This result concludes this section, but there are some questions that remain relevant.
In particular, it would be interesting to know whether the sequential decomposition, or
any other decomposition of the same kind, has other applications.

2.2 Rectifying the original theorem
We begin this section by contextualizing the hypothesis in Theorem 2.0.2. We will

present some concrete examples of topological spaces satisfying the conditions in its
hypothesis.

Example 2.2.1. The real line ℝ is regular, has countable character and is such that ℝ →
(𝑡𝑜𝑝 𝜔 + 1)1𝜔 .

Proof. This is due to the fact that ℝ is hereditarily Lindelöf and first countable. Given any
coloring 𝑓 ∶ ℝ → 𝜔 there must be 𝑌 ⊂ ℝ uncountable monochromatic set according
to 𝑓 . Using that 𝑌 is Lindelöf, it must have an accumulation point. Therefore, using the
countable character, we obtain our monochromatic sequence.

The example made above is a space in which the original proof of Theorem 2.0.2 can
be applied as it is. Indeed, since the space is first countable, the sequence we could not
find is obtained by naturally using the countable neighborhood basis. Furthermore, by
means of Proposition 2.1.8, the Cantor-Bendixson and the sequential Cantor-Bendixson
decompositions are the same. The next example is similar to the previous one but it is not
second countable, and since it is separable, it also cannot be metrizable.

Example 2.2.2. The Sorgenfrey line ℝ𝑆 is regular, has countable character and is such that
ℝ𝑆 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 .

As we can see, any hereditarily Lindelöf uncountable space is a space that satisfies part
of the hypothesis from Theorem 2.0.2. Furthermore, the classical example ℝ works with
the original proof as seen above. For an example that is not first countable nor hereditarily
Lindelöf, we refer to 𝜔1 + 1.

Example 2.2.3. The space 𝜔1 + 1 with the order topology is regular, has character 𝜔1 and
𝜔1 + 1 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 .
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Proof. Indeed, fix a coloring 𝑓 ∶ 𝜔1 + 1 → 𝜔. We will construct a club  such that all
colors that are unbounded in 𝜔1 are also unbounded in the elements of . Let 𝐴 = {𝑎𝑛 ∶
𝑛 ∈ 𝜔} ⊂ 𝜔 be a list of all unbounded colors in 𝜔1 and 𝛽 ∈ 𝜔1 be such that all elements
with bounded colors are below 𝛽 . Our  will be the range of a strictly increasing sequence
⟨𝛼𝛾 ∶ 𝛾 ∈ 𝜔1⟩ of countable ordinals. For 𝛼0 we take the limit of a strictly increasing
𝜔-sequence of ordinals greater than 𝛽 satisfying that the colors of 𝐴 repeat an infinite
amount of times in this sequence. We take 𝛼𝛾 = ⋃𝛽<𝛾 𝛼𝛽 if 𝛾 is a limit ordinal. Now, 𝛼𝛾+1
is taken to be the limit of an 𝜔-sequence of ordinals greater than 𝛼𝛾 in the same way we
took 𝛼0. Fix 𝛼 element of  that is above the ones with limited colors. Now 𝑓 (𝛼) is a colour
unlimited in 𝛼 so we may construct a converging sequence to 𝛼 of color 𝑓 (𝛼) using that 𝛼
has countable cofinality.

The idea behind this example will be the cornerstone of the constructions in Section
2.4, when we find a counterexample for increasing the bound of the character on Theorem
2.0.2. But first let us present a way to fix the problem that appears when we weaken the
bound on the character from 𝜔1 to b.

After studying the new decomposition and understanding some of its properties we
are finally ready to start working on the main result of this section. This next lemma is an
auxiliary result which we use to prove Theorem 2.0.2.

Lemma 2.2.4. Let 𝑋 be a regular, S-perfect, non empty topological space. If 𝜒 (𝑋 ) < b, then,
for all 𝛼 < 𝜔1, and for each non-empty open set 𝑉 ⊂ 𝑋 there exists Φ ∶ 𝛼 → 𝑉 such that Φ
is a homeomorphism on its image.

Proof. The copy of 𝛼 will be recursively constructed. Fix 𝛼 and suppose that, for all 𝛽 < 𝛼 ,
𝑦 ∈ 𝑋 and open neighbourhoods 𝐴 of 𝑦, there are 𝑓𝛽 ∶ 𝛽 → 𝐴 homeomorphism on its
image such that if 𝛽 is the successor of a limit ordinal 𝛾 then 𝑓𝛽(𝛾 ) = 𝑦. Fix 𝑥 ∈ 𝑋 and 𝑉
open neighbourhood of 𝑥 .

Using the Cantor normal decomposition consider 𝛼 = 𝜔𝛽1 .𝑛1+⋯+𝜔𝛽𝑘 .𝑛𝑘 . We will analyse
three cases, 𝛼 = 𝜔𝛽1 .1 + 1, 𝛼 = 𝜔𝛽1 .1, and the case which the Cantor normal decomposition
of 𝛼 is not of the two previous forms. For the latter case, using the S-perfectness, fix
an injective sequence 𝑠 converging to 𝑥 such that 𝑠[𝜔] ⊂ 𝑉 . By the injectivity of 𝑠 and
regularity of 𝑋 , fix 𝑦 ∈ 𝑉 and open sets 𝑊1, 𝑊2 satisfying 𝑦 ∈ 𝑊1 ⊂ 𝑊1 ⊂ 𝑉 , 𝑥 ∈ 𝑊2 ⊂
𝑊2 ⊂ 𝑉 with 𝑊1 ∩𝑊2 = ∅. We can easily split 𝛼 into two smaller ordinals and use the
recursion hypothesis to obtain their copies in each of the disjoint open sets above. Using
these copies we construct a copy of 𝛼 as desired.

Now we address the first two cases by considering whether or not 𝛽1 is a limit ordinal.
This is the case that was explained in [27] and will be considered in a similar way. The only
difference is that we take the sequence using our new decomposition. Suppose 𝛽1 = 𝛾 + 1.
Now ⟨𝜔𝛾 .𝑛 ∶ 𝑛 ∈ 𝜔⟩ is a sequence converging to 𝜔𝛽1 . By the S-perfectness of 𝑋 , fix
𝑠 ∶ 𝜔 → 𝑋 , an injective sequence in 𝑉 ⧵ {𝑥} converging to 𝑥 . The regularity of 𝑋 yields
open sets {𝑈𝑛 ∶ 𝑛 ∈ 𝜔}, such that 𝑈𝑖 ∩ 𝑈𝑗 = ∅, if 𝑖 ≠ 𝑗, and 𝑠(𝑛) ∈ 𝑈𝑛 ⊂ 𝑈𝑛 ⊂ 𝑉 for all
𝑛 ∈ 𝜔. Using the assumption made in the recursion, we take 𝑓𝑖 ∶ 𝜔𝛾 + 1 → 𝑓𝑖[𝜔𝛾 + 1] ⊂ 𝑈𝑖
homeomorphism such that 𝑓𝑖(𝜔𝛾 ) = 𝑠(𝑖).
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Fix a cofinal function ℎ ∶ 𝜔 → 𝜔𝛾 and an open basis {𝑊𝜌 ∶ 𝜌 < 𝜆} for 𝑥 where
𝜆 = 𝜒 (𝑥, 𝑋 ) < b. Let 𝑝𝜌 ∶ 𝜔 → 𝜔 be given by:

𝑝𝜌(𝑡) =
{
𝑚𝑖𝑛{𝑖 ∶ ∀𝛿 ≥ ℎ(𝑖) (𝑓𝑡(𝛿) ∈ 𝑊𝜌)}, if 𝑠(𝑡) ∈ 𝑊𝜌
0, otherwise.

Using the definition of b, we take 𝑔 ∶ 𝜔 → 𝜔 satisfying ∀𝜌 < 𝜆 (𝑝𝜌 ≤∗ 𝑔).

The value 𝑝𝜌(𝑡) helps us understand how the open set 𝑊𝜌 behaves in relation to the
homeomorphism 𝑓𝑡 using ℎ. The function 𝑔 will help us translate this behaviour to all the
𝑊𝜌’s.

With this in mind, the desired copy of 𝜔𝛽1 + 1 (or 𝜔𝛽1) in 𝑉 will be given by:

𝑓 (𝜃) =
{
𝑓𝑡(ℎ(𝑔(𝑡)) + 𝜃 ′) if 𝜃 = 𝜔𝛾 .𝑡 + 𝜃 ′ in the normal Cantor form and 0 < 𝜃 ′ ≤ 𝜔𝛾

𝑥 if 𝜃 = 𝜔𝛾+1

Now that 𝑓 is well-defined and injective, we need only prove that it is open and
continuous. For the continuity, fix an open set 𝑈 in 𝑋 . Without loss of generality we may
assume 𝑈 ⊂ 𝑉 . Let 𝜆 ∈ 𝑓 −1[𝑈 ]. If 𝜆 ≠ 𝜔𝛽1 , we have that 𝜆 = 𝜔𝛾 .𝑡 + 𝜃 ′. Since 𝑓 (𝜆) ∈ 𝑈 if and
only if 𝑓𝑡(ℎ(𝑔(𝑡)) + 𝜃 ′) ∈ 𝑈 and 𝑓𝑡 is continuous, we have the continuity of 𝑓 at 𝜆. If 𝜆 = 𝜔𝛽1 ,
then 𝑓 (𝜆) = 𝑥 . Consider 𝜌, such that 𝑥 ∈ 𝑊𝜌 ⊂ 𝑈 . There must be 𝑘 ∈ 𝜔 with the following
property: ∀𝑖 ≥ 𝑘 (𝑔(𝑖) ≥ 𝑝𝜌(𝑖)). Furthermore, since (𝜔𝛾 .𝑛)𝑛∈𝜔 converges to 𝜔𝛽1 , there must
be an 𝑙 ∈ 𝜔 with

∀𝑖 ≥ 𝑙 𝑓𝑖(𝜔𝛾 ) = 𝑓 (𝜔𝛾 .𝑖) ∈ 𝑊𝜌 .

Taking 𝑎 = 𝑚𝑎𝑥{𝑘, 𝑙} we have that, for all 𝑖 ≥ 𝑎, 𝑓𝑖(𝜔𝛾 ) = 𝑓 (𝜔𝛾 .𝑖) ∈ 𝑊𝜌 and 𝑔(𝑖) ≥ 𝑝𝜌 .
Therefore, for all 𝜃 ≥ 𝜔𝛾 .𝑎 + 1, 𝑓 (𝜃) ∈ 𝑊𝜌 ⊂ 𝑈 . Hence, (𝜔𝛾 .𝑎, 𝜔𝛽1] ⊂ 𝑓 −1[𝑈 ], and 𝜔𝛽1 is a
point in the interior of 𝑓 −1[𝑈 ].

To verify that 𝑓 is open, since 𝑓 is injective, we only need to check open sets of the
forms [0, 𝛿) and (𝛿, 𝜔𝛽1]. Fix 𝛿 = 𝜔𝛾 .𝑡 + 𝜃 ′. The following holds:

𝑓 [[0, 𝛿)] = [(⋃ {𝑈𝑖 ∶ 𝑖 ∈ 𝑡}) ∪ 𝑓𝑡 [[1, 𝜃 ′)]] ∩ ran (𝑓 ) .

Since 𝑓𝑡 is a homeomorphism, it follows that the set is open in ran (𝑓 ). Now, to see that
𝑓 [(𝛿, 𝜔𝛽1]] is open, consider 𝑓𝑡 [(𝜃 ′, 𝜔𝛾 ]], the open sets 𝑈𝑖 for 𝑖 > 𝑡 , and a 𝑊𝜌 , as defined
before, disjoint from the sets 𝑈0,⋯𝑈𝑡+1. The verification is analogous to the ones before.

We must also consider the case where 𝛽1 is a limit ordinal. In this case, we change
the convergent sequence (𝜔𝛾 .𝑛 ∶ 𝑛 ∈ 𝜔) to (𝜔𝛾𝑛 ∶ 𝑛 ∈ 𝜔), where (𝛾𝑛)𝑛∈𝜔 converges to 𝛽1,
which is possible since 𝛼 is countable. The functions 𝑓𝑖 will represent copies of 𝜔𝛾𝑖 + 1
in 𝑈𝑖 , and the function ℎ will be changed to an ℎ𝑛 for each corresponding 𝜔𝛾𝑛 . Changes
should also be made to the 𝑝𝜌’s and 𝑓 accordingly. The verification is almost identical to
the one before.
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In the original paper by P. Komjáth and W. Weiss, the previous lemma was considered
not only for (S-)perfect spaces but also for (S-)scattered with sufficient height. Now we
will explain the idea behind this double proof and use Lemma 2.2.4 to conclude the proof
of Theorem 2.0.2.

Theorem 2.2.5. Let 𝑋 be a regular topological space with 𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 , and 𝜒 (𝑋 ) < b.
Then 𝑋 → (𝑡𝑜𝑝 𝛼)1𝜔 for all 𝛼 < 𝜔1.

Proof. Let us consider a partition 𝑋 = ⋃𝑛∈𝜔 𝑋𝑛 given by a coloring 𝑓 ∈ 𝜔𝑋 . For each of the
subspaces 𝑋𝑛, we take the sequential Cantor-Bendixson decomposition. As in the original
proof, we shall consider the following two cases. In the first one, there is an 𝑛 ∈ 𝜔 such
that (𝑋𝑛)𝑆ℎ(𝑋𝑛)𝑆 is not empty; in the second one, for all 𝑛 ∈ 𝜔, 𝑋𝑛 is S-scattered.

For the first case, we fix 𝑛 ∈ 𝜔 given by the hypothesis. Note that, since (𝑋𝑛)𝑆ℎ(𝑋𝑛)𝑆
is S-perfect, non-empty, and regularity and character are hereditary, here we are in the
hypothesis of Lemma 2.2.4; therefore, the monochromatic copies of each 𝛼 < 𝜔1 are given
by it.

Consider now the second case. First, we note that there must be at least one 𝑗 ∈ 𝜔 such
that 𝑆ℎ(𝑋𝑗) ≥ 𝜔1. Otherwise, we would have 𝑆ℎ(𝑋𝑛) countable for all 𝑛 ∈ 𝜔, and then

{𝑆𝐼𝛼 (𝑋𝑛) ∶ 𝑛 ∈ 𝜔 and 𝛼 < 𝑆ℎ(𝑋𝑛)}

would be a partition of 𝑋 that contradicts 𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 , since from the definition of
𝑆𝐼𝛼 (𝑋𝑛) there is no 𝑠 ∶ 𝜔 → 𝑆𝐼𝛼 (𝑋𝑛) converging to a point in 𝑆𝐼𝛼 (𝑋𝑛). Fix one such 𝑗 ∈ 𝜔.
Our goal is to construct the copies of 𝛼 using the levels of 𝑋𝑗 to help us.

In the proof of Lemma 2.2.4, the hypothesis that, for all 𝛽 < 𝛼 , 𝑥 ∈ 𝑋 and open
neighbourhoods 𝑉 of 𝑥 , there are 𝑓𝛽 ∶ 𝛽 → 𝑉 homeomorphisms such that if 𝛽 is the
successor of a limit ordinal 𝛾 then 𝑓𝛽(𝛾 ) = 𝑥 , worked for every point 𝑥 and neighbourhood
𝑉 . This application, however, is not that simple. It is clear that no point in 𝑆𝐼0(𝑋𝑗) could
represent 𝜔 in a homeomorphism, since they cannot have a sequence in 𝑋𝑗 converging
to them. Therefore, we have to carefully choose the points in each step of the recursive
construction. With this in mind, we restate the hypothesis. Suppose that, for all 𝛽 < 𝛼 ,
there is a 𝜆𝛽 < 𝜔1 satisfying that for all 𝑥 ∈ (𝑋𝑗)

𝜆𝛽
𝑆 and open neighbourhood 𝑉 of 𝑥 , there is

an homeomorphism 𝑓 ∶ 𝛽 → 𝑓 [𝛽] ⊂ 𝑉 such that if 𝛽 = 𝛾 + 1 and 𝛾 is a limit ordinal, then
𝑓 (𝛾 ) = 𝑥 .

We prove that there is a 𝜆𝛼 < 𝜔1 satisfying the condition in the statement above. Let
𝜆 = 𝑠𝑢𝑝{𝜆𝛽 ∶ 𝛽 < 𝛼}. For all 𝛽 < 𝛼 , we have 𝜆𝛽 < 𝜔1 and 𝛼 < 𝜔1; hence, 𝜆 < 𝜔1. Let
𝜆𝛼 = 𝜆 + 1. Fix 𝑥 ∈ (𝑋𝑗)𝜆𝛼𝑆 and open neighbourhood 𝑉 of 𝑥 . By Proposition 2.1.5, there is a
sequence 𝑠 ∶ 𝜔 → 𝑋𝑗 converging to 𝑥 , with 𝑠[𝜔] ⊂ (𝑋𝑗)𝜆𝑆 ∩ 𝑉 . Since 𝜆 > 𝜆𝛽 , the elements
taken for the sequence have the same properties used in Lemma 2.2.4. We can now just
repeat the argument used before to obtain the homeomorphism and verify that 𝜆𝛼 is as
desired.
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2.3 The principle ♣𝐹 and 𝐶𝑆∗-forcing
We will discuss about a possible relaxation on the upper bound on the character of the

topological space on the result seen in the previous section. For this we will present, in
this section, a study on a variation of the ♣ principle that will be used in the next section.
In [27] W. Weiss and P. Komjáth create an example using ♦ that guarantee that, at least
consistently, b is the best bound.

Theorem 2.3.1. Assuming ♦ there is a topology on 𝜔1 that refines the order topology such
that 𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 , 𝑋 ↛ (𝑡𝑜𝑝 𝜔2 + 1)1𝜔 , and 𝜒 (𝑋 ) = 𝜔1 = b.

This construction follows in the same fashion of Example 2.2.3, and will be explored
in further detail in the next section. A question that was posed by W. Weiss was if it is
possible to construct such a space just using ♣. In spite of our efforts we were not able to
answer such question. But we were able to obtain an example that works without assuming
CH. The original construction uses ♦ to guarantee that 𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 . We tried to
extract the essence of the ♦ usage in the previous theorem to create a ♣-like principle to
help us build an example without using CH.

We shall state the principle that we called as ♣𝐹 .

Definition 2.3.2. A sequence ⟨𝐴𝑛
𝛼 ∶ 𝑛 < 𝜔 ∧𝛼 < 𝜔1⟩ is called a ♣𝐹 -sequence if the following

holds:

(1) for all 𝛼 ∈ 𝑎𝑐𝑐(𝜔1) and 𝑛 ∈ 𝜔 we have that 𝐴𝑛
𝛼 is an unbounded subset of 𝛼 ;

(2) for all 𝑓 ∶ 𝜔1 → 𝜔 there are 𝛼 ∈ 𝑎𝑐𝑐(𝜔1) and 𝑛,𝑚 ∈ 𝜔 such that 𝛼 ∈ 𝑓 −1[{𝑛}] and
𝐴𝑚
𝛼 ⊂ 𝑓 −1[{𝑛}].

The principle ♣𝐹 is the statement: there exists a ♣𝐹 -sequence

The idea behind this definition is that we have a matrix of guesses that are relevant
at limit ordinals. Furthermore, given any coloring of 𝜔1 in 𝜔 colors we must have a
limit ordinal 𝛼 , a column 𝑚 of the matrix and a color 𝑛 such that 𝐴𝑚

𝛼 and 𝛼 are both of
color 𝑛. This should help us find the monochromatic sequence when constructing the
example.

For now, we shall leave the construction of this space aside to verify some properties
of ♣𝐹 . First we will show the consistency of such principle. Let us first introduce some
notation.

Definition 2.3.3. Let 𝐵 = ⟨𝐵𝑚𝛼 ∶ 𝛼 < 𝜔1 ∧ 𝑛 < 𝜔⟩ be a ♦∗-sequence. Consider the sequence
𝐴 given by: 𝐴𝑛

𝛼 = 𝐵𝑛𝛼 for all 𝑛 ∈ 𝜔 and 𝛼 ∈ 𝜔1 such that 𝐵𝑛𝛼 is unbounded in 𝛼 , and 𝐴𝑛
𝛼 = 𝛼

otherwise. We say that 𝐴 is the derived sequence from 𝐵.

The next lemma gives us that a model for ♦∗ is also a model for ♣𝐹 .

Lemma 2.3.4. Let 𝐵 be ♦∗-sequence. Then 𝐴, the derived sequence from 𝐵, is a ♣𝐹 -sequence.

Proof. We shall prove that ⟨𝐴𝑛
𝛼 ∶ 𝑛 ∈ 𝜔 ∧ 𝛼 ∈ 𝜔1⟩ is a ♣𝐹 -sequence. Indeed, condition

(1) is immediate from our definition. To verify that the other condition is also satisfied
let 𝑓 ∶ 𝜔1 → 𝜔 be a function. There exists 𝑛 ∈ 𝜔 such that 𝑓 −1[{𝑛}] is stationary and
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therefore 𝑎𝑐𝑐(𝑓 −1[{𝑛}]) is a club. Applying the ♦∗ property for 𝑓 −1[{𝑛}] we have another
club  such that, for all 𝛽 ∈ , there exists 𝑚 ∈ 𝜔 with 𝑓 −1[{𝑛}] ∩ 𝛽 = 𝐵𝑚𝛽 . Finally, for
𝛽 ∈  ∩ 𝑎𝑐𝑐(𝑓 −1[{𝑛}]), 𝐵𝑚𝛽 satisfies 𝐵𝑚𝛽 = 𝐴𝑚

𝛽 , verifying (2).

In a communication with A. Rinot it has been brought to our attention that ♦∗ could
be weakened to ♦ by considering Lemma 3.5 from his paper with A. Brodsky [9]. Let us
state this result and then prove the desired implication.

Lemma 2.3.5 (A. M. Brodsky, A. Rinot[9]). Suppose that 𝜅, 𝜃 are cardinals such that 𝜅𝜃 = 𝜅,
𝑆 ⊂ 𝜅 is a stationary set, and that ♣(𝑆) holds. Then there exists a matrix ⟨𝑋 𝜏

𝛿 ∶ 𝛿 ∈ 𝑆 ∧ 𝜏 ∈ 𝜃⟩
such that, for every sequence ⟨𝑋 𝜏 ∶ 𝜏 ∈ 𝜃⟩ of cofinal subsets of 𝜅, there exists a stationary
𝑆′ ⊂ 𝑆 satisfying that, for all 𝛿 ∈ 𝑆′ and 𝜏 ∈ 𝜃 , 𝑋 𝜏

𝛿 = 𝑋 𝜏 ∩ 𝛿 and 𝑠𝑢𝑝(𝑋 𝜏
𝛿 ) = 𝛿 .

Now assuming ♦ is enough to secure the validity of the hypothesis from the previous
lemma for 𝜅 = 𝜔1, 𝜃 = 𝜔 and 𝑆 = 𝜔1, the idea to verify that ♣𝐹 holds is to use the sequence
that is being guessed by the matrix to translate our monochromatic sets as will be shown
below.

Proposition 2.3.6. Suppose that there exists a matrix ⟨𝑋 𝜏
𝛿 ∶ 𝛿 ∈ 𝜔1 ∧ 𝜏 ∈ 𝜔⟩ such that, for

every sequence ⟨𝑋 𝜏 ∶ 𝜏 ∈ 𝜔⟩ of cofinal subsets of 𝜔1, there exists a stationary 𝑆 ⊂ 𝜔1 such
that, for all 𝛿 ∈ 𝑆 and 𝜏 ∈ 𝜔, 𝑋 𝜏

𝛿 = 𝑋 𝜏 ∩ 𝛿 and 𝑠𝑢𝑝(𝑋 𝜏
𝛿 ) = 𝛿 . Then ♣𝐹 holds.

Proof. Consider 𝑋 the matrix as stated in the hypothesis and consider 𝐴 the matrix derived
from 𝑋 as in definition 2.3.3. We argue that 𝐴 verifies ♣𝐹 . Indeed condition (1) is satisfied
by taking the derived matrix (sequence). Now to verify condition (2) fix 𝑓 ∶ 𝜔1 → 𝜔. Now
there must be at least one 𝑛 ∈ 𝜔 such that 𝑓 −1[{𝑛}] is uncountable. We list all such 𝑓 −1[{𝑛}],
with repetition if necessary, on the sequence ⟨𝑋 𝑖 ∶ 𝑖 ∈ 𝜔⟩. Consider now a club of limit
ordinals on 𝜔1 such that all colors unbounded in 𝜔1, given by 𝑓 , are also unbounded at
such elements, and all elements must also have unbounded colors. The stationary subset 𝑆
given by our hypothesis applied to the sequence mentioned before must intersect this club
at an 𝛼 . Now we just need to select a column 𝑖 which the corresponding term 𝑓 −1[{𝑛}] of
the sequence has the same color as 𝛼 . Therefore, since 𝑋 𝑖

𝛼 = 𝑓 −1[{𝑛}] ∩ 𝛼 and 𝑠𝑢𝑝(𝑋 𝑖
𝛼 ) = 𝛿 ,

we must have 𝑋 𝑖
𝛼 = 𝐴𝑖

𝛼 ⊂ 𝑓 −1[{𝑛}] and 𝑓 (𝛼) = 𝑛.

In another communication, A. Rinot told us that he proved that the result from Lemma
2.3.5 is an equivalence, that is, the existence of such a matrix is enough to guarantee 𝜅𝜃 = 𝜅
and ♣(𝑆). We give the proof of such fact as it was communicated to us.

Lemma 2.3.7 (A. Rinot). Suppose that 𝜅, 𝜃 are cardinals, 𝑆 is a stationary set in 𝜅, and there
exists a matrix ⟨𝑋 𝜏

𝛿 ∶ 𝛿 ∈ 𝑆 ∧ 𝜏 ∈ 𝜃⟩ such that, for every sequence ⟨𝑋 𝜏 ∶ 𝜏 ∈ 𝜃⟩ of cofinal
subsets of 𝜅, there exists a stationary 𝑆′ ⊂ 𝑆, such that, for all 𝛿 ∈ 𝑆′ and 𝜏 ∈ 𝜃 , 𝑋 𝜏

𝛿 = 𝑋 𝜏 ∩ 𝛿
and 𝑠𝑢𝑝(𝑋 𝜏

𝛿 ) = 𝛿 . Then 𝜅𝜃 = 𝜅 and ♣(𝑆) holds.

Proof. The fact that ♣(𝑆) holds is immediate by just considering one column of the matrix.
Now we must show that 𝜅𝜃 = 𝜅. Consider ⟨𝐴𝛾 ∶ 𝛾 < 𝜅⟩ a partition of 𝜅 into 𝜅 many
cofinal sets. Now for each 𝛿 ∈ 𝑆 we consider

𝑍𝛿 = {𝛼 < 𝜅 ∶ 𝐴𝛼 ∩⋃
𝜏<𝜃

𝑋 𝜏
𝛿 ≠ ∅}.
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Given any 𝑌 ∈ [𝜅]𝜃 we shall see that there is 𝛿 ∈ 𝜅 such that 𝑌 = 𝑍𝛿 , completing the
proof. Indeed, for each element 𝛽 of 𝑌 consider 𝐴𝛽 . List such 𝐴𝛽s in a sequence of order
type 𝜃 as in the principle and take the stationary 𝑆′ given by our hypothesis. Now, since
⟨𝐴𝛾 ∶ 𝛾 < 𝜅⟩ is a partition and, for each 𝜏 < 𝜃 , 𝑋 𝜏

𝜌 is contained in a corresponding 𝐴𝛽 , the
set 𝑍𝜌 must only collect all the indexes from our sequence. Therefore 𝑍𝜌 = 𝑌 .

Note that in both the cases above we verified that ♣𝐹 is valid. But even then, we could
not remove it from the presence of 𝐶𝐻 , or ♦ for that matter. This is troublesome since we
cannot make a distinction between b and other small cardinals, which is relevant in our
original problem.

With this in mind we shall verify that♣𝐹 is indeed consistent with ¬𝐶𝐻 , at least relative
to the existence of a strongly inaccessible cardinal. For that we will have to work with
𝐶𝑆∗-forcing. In [18], Fuchino, Shelah and Soukup developed the concept of 𝐶𝑆∗-forcing
and used it to show the consistency of the club principle for every stationary subset of
limits of 𝜔1 with ¬𝐶𝐻 and MA for countable partial ordered sets. We shall use the same
forcing and show that ♣𝐹 holds in its extension.

Definition 2.3.8 (S. Fuchino, S. Shelah, L. Soukup [18]). We say that ℙ𝜀 = ⟨⟨ℙ𝛼 , ℚ̇𝛼⟩ ∶
𝛼 < 𝜀⟩ is a 𝐶𝑆∗-iteration if and only if ⟨(ℙ𝛼 , ℚ̇𝛼 ) ∶ 𝛼 < 𝜀⟩ is a countable support iteration
satisfying the following additional condition: if 𝛼 ≤ 𝜀 and 𝑝 < 𝑞 in ℙ𝛼 , then

diff(𝑝, 𝑞) = {𝛽 ∈ 𝑑𝑜𝑚(𝑝) ∩ 𝑑𝑜𝑚(𝑞) ∶ 𝑝 ↾𝛽 ⊮ 𝑝(𝛽) = 𝑞(𝛽)} is finite.

Furthermore we say that 𝑝 ≤ℎℙ𝛼 𝑞 if and only if 𝑝 ≤ 𝑞 and 𝑝 ↾dom(𝑞)= 𝑞. We also say that
𝑝 ≤𝑣ℙ𝛼 𝑞 if and only if 𝑝 ≤ 𝑞 and dom (𝑝) = dom (𝑞). The inequalities defined above are said
to be horizontal and vertical respectively. When there is no risk of ambiguity, we shall omit
ℙ𝛼 from ≤ℎℙ𝛼 and ≤𝑣ℙ𝛼 .

This iteration will be done using the Cohen forcing as stated below.

Definition 2.3.9 (Cohen 𝐶𝑆∗ iteration [18]). If ℙ𝜀 = ⟨(ℙ𝛼 , ℚ̇𝛼 ) ∶ 𝛼 < 𝜀⟩ is a 𝐶𝑆∗-iteration
such that for every 𝛼 < 𝜀 we have ⊩ℙ𝛼 ℚ̇𝛼 = 𝐹𝑛(𝜔, 2), then we call ℙ𝜀 a Cohen 𝐶𝑆∗-iteration
of length 𝜀.

The following theorem will be central to some of our results. It shows some properties
of the Cohen 𝐶𝑆∗-iteration when we start with a model where ♦∗ holds.

Theorem 2.3.10. Let ℙ𝜅 be a Cohen 𝐶𝑆∗-iteration of length 𝜅, where 𝜅 ≥ ℵ2 is a regular
cardinal such that for every 𝛼 < 𝜅 we have 𝛼ℵ0 < 𝜅. Suppose 𝐵 is a ♦∗-sequence and

𝐴 = ⟨𝐴𝑚
𝛼 ∶ 𝛼 < 𝜔1 ∧ 𝑛 ∈ 𝜔⟩

is the sequence derived from 𝐵. If 𝑝 ∈ ℙ𝜅 , 𝜎 is a ℙ𝜅-name and 𝑝 ⊩ 𝜎 ∶ �̌�1 → 𝜔, then there is
a condition 𝑝∗ < 𝑝, an ordinal 𝜂 < 𝜔1 and 𝑛,𝑚 ∈ 𝜔 such that

𝑝∗ ⊩ (�̌�𝑚
𝜂 ⊂ 𝜎−1[{�̌�}] ∧ 𝜎 (�̌�) = �̌�).

In particular 𝑝∗ ⊩ 𝜎 is not a bijection.

Before we prove this result we will first prove a corollary.
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Corollary 2.3.11. Assume ♦∗ and that 𝜅 ≥ ℵ2 is a regular cardinal such that for all 𝛼 < 𝜅
we have 𝛼ℵ0 < 𝜅. Let 𝐴 be the sequence derived from a ♦∗-sequence 𝐵. Then

⊩ℙ𝜅 𝐴 is a ♣𝐹 -sequence.

Proof. Let 𝜎 be a ℙ𝜅-name and 𝑞 ∈ ℙ such that 𝑞 ⊩ 𝜎 ∶ 𝜔1 → 𝜔. Fix 𝑝 ∈ ℙ such that 𝑝 ≤ 𝑞.
Applying Theorem 2.3.10 to 𝑝 and 𝜎 , it follows that there exists 𝑝∗ ≤ 𝑝, 𝜂 < 𝜔1 and 𝑛,𝑚 ∈ 𝜔
such that

𝑝∗ ⊩ �̌�𝑚
𝜂 ⊂ 𝜎−1[{�̌�}] ∧ 𝜎 (�̌�) = �̌�.

Therefore
⊩ℙ𝜅 𝐴 is a ♣𝐹 -sequence.

Now we know that ♣𝐹 holds in this extension, and, as noted in [18], such extension
has 𝜅 Cohen reals. Therefore we finally have a desired model that shows the consistency
of ♣𝐹 with ¬𝐶𝐻 . Next we focus on some preliminary results that will be used to prove
Theorem 2.3.10.

From here until the end of this section the forcing ℙ𝛼 will denote a Cohen 𝐶𝑆∗-iteration
of length 𝛼 for any ordinal 𝛼 .

Lemma 2.3.12 (S. Fuchino, S. Shelah, L. Soukup[18]). Let 𝛾 be an ordinal, and suppose
that ⟨𝑝𝑛 ∶ 𝑛 ∈ 𝜔⟩ is a sequence of elements of ℙ𝛾 such that 𝑚 < 𝑙 < 𝜔 implies 𝑝𝑙 ≤ℎ 𝑝𝑛. Then
𝑟 ∈ ℙ𝛾 for 𝑟 given by

𝑟(𝜉 ) =
{
𝑝𝑛(𝜉 ) if ∃𝑛 ∈ 𝜔 (𝜉 ∈ 𝑠𝑢𝑝𝑝(𝑝𝑛))
◦
1𝜉 otherwise.

Proof. Indeed, 𝑠𝑢𝑝𝑝(𝑟) is the union of countably many countable supports. To see that
𝑟 ∈ ℙ𝛾 we proceed by induction on 𝛾 . Suppose that the lemma is true for all 𝛽 < 𝛾 . If
𝛾 = 𝛼 + 1 then 𝑝𝑛 ↾𝛼 falls under the condition of our induction hypothesis. Therefore
𝑟 ↾𝛼∈ ℙ𝛼 and 𝑟 ↾⌢𝛼 𝑟(𝛼) ∈ ℙ𝛾 . If 𝛾 is a limit ordinal, then for each 𝛽 < 𝛾 , we have the same
argument as above, since 𝑝𝑛 ↾𝛽≤ℎ 𝑝𝑚 ↾𝛽 for 𝑚 ≤ 𝑛. Therefore 𝑟 ↾𝛽∈ ℙ𝛽 for all 𝛽 < 𝛾 . It
follows that 𝑟 ∈ ℙ𝛾 .

The previous lemma precedes the following proposition, verifying a countable closed-
ness for decreasing horizontal sequences. From here onward, when we have a sequence as
in the hypothesis of Lemma 2.3.12, we shall denote the resulting 𝑟 as ⋃𝛽<𝜔 𝑝𝛽 .

Proposition 2.3.13 (S. Fuchino, S. Shelah, L. Soukup[18]). Let ⟨𝑝𝑛 ∶ 𝑛 < 𝜔⟩ be a sequence
of elements of ℙ𝜅 such that 𝑛 < 𝑚 implies 𝑝𝑚 ≤ℎ 𝑝𝑚. Then ⋃𝑛<𝜔 𝑝𝑛 is a lower bound of the
sequence ⟨𝑝𝑛 ∶ 𝑛 < 𝜔⟩.

Proof. We already know that 𝑟 ∈ ℙ𝜅 by the previous lemma. Let us verify that it is a lower
bound for the given sequence. Fix 𝑛 ∈ 𝜔. To see that 𝑟 ≤ 𝑝𝑛 we shall again use induction
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on 𝜅. Suppose that this result is true for all ℙ𝛼 , 𝛼 < 𝜅. For 𝜅 limit, for each 𝛼 < 𝜅 our
induction hypothesis applied to the sequence of restrictions gives us

𝑟 ↾𝛼⊩ℙ𝛼 𝑟(𝛼) ≤𝛼 𝑝𝑛(𝛼).

If 𝜅 = 𝛽 + 1, then 𝑟 ↾𝛽⊩ℙ𝛽 𝑟(𝛽) ≤𝛽 𝑝𝑛(𝛽), since 𝑝𝑛(𝛽) = 𝑟(𝛽) or 𝑝𝑛(𝛽) =
◦
1𝛽 . We only need to

verify that the set diff(𝑟 , 𝑝𝑛) is finite. Indeed,

{𝛽 ∈ 𝑠𝑢𝑝𝑝(𝑟) ∩ 𝑠𝑢𝑝𝑝(𝑝𝑛) ∶ 𝑟 ↾𝛽⊮ℙ𝛽 𝑟(𝛽) = 𝑝𝑛(𝛽)} = ∅

since, by definition, 𝑟(𝛽) = 𝑝𝑛(𝛽) for all 𝛽 ∈ 𝑠𝑢𝑝𝑝(𝑝𝑛).

Lemma 2.3.14 (S. Fuchino, S. Shelah, L. Soukup[18]). Given an ordinal 𝜃 and 𝑝, 𝑞 ∈ ℙ𝜃 , if
𝑝 ≤ 𝑞, then there is 𝑝′ ≤ 𝑝 such that, for all 𝛼 ∈ diff(𝑝′, 𝑞), 𝑝′ ↾𝛼 decides the value of 𝑝′(𝛼).

Proof. Fix 𝑝, 𝑞 ∈ ℙ𝜃 , we define (𝛼𝑛)𝑛∈𝜔 decreasing sequence of ordinals and (𝑝𝑛)𝑛∈𝜔 decreas-
ing sequence of conditions the following way: start by taking

𝛼0 = 𝑚𝑎𝑥{𝛼 ∈ diff(𝑝, 𝑞) ∶ 𝑝 ↾𝛼 does not decide 𝑝(𝛼)}.

Now there is 𝑝′0 ∈ ℙ𝛼0 such that 𝑝′0 ≤ 𝑝 ↾𝛼0 and 𝑝′0 decides 𝑝(𝛼0). We take 𝑝0 = 𝑝′⌢0 (𝑝 ↾𝜃⧵𝛼0).
Suppose that 𝛼𝑛 and 𝑝𝑛 are defined we consider

𝛼𝑛+1 = 𝑚𝑎𝑥{𝛼 ∈ diff(𝑝𝑛, 𝑞) ∶ 𝑝𝑛 ↾𝛼 does not decide 𝑝𝑛(𝛼)}

if the set is not empty. Again 𝑝𝑛 will be given by 𝑝𝑛 = 𝑝′⌢𝑛 (𝑝 ↾𝜃⧵𝛼𝑛 ). Note that each 𝑝𝑛 taken
is a strengthening of its previous conditions. Therefore the values of 𝛼𝑛 are also decreasing
since each step decides a value for the greatest coordinate of diff(𝑝𝑛, 𝑞). This process ends
in a finite number of steps since 𝛼𝑛 is a decreasing sequence of ordinals. Now the condition
𝑝𝑚 of this step is the 𝑝′ we search, since {𝛼 ∈ diff(𝑝𝑚, 𝑞) ∶ 𝑝𝑛 ↾𝛼 does not decide 𝑝𝑚(𝛼)} =
∅.

The following lemma allows us to construct the element from the forcing we need
to prove Theorem 2.3.10 by replacing a given forcing condition with another one more
suitable.

Lemma 2.3.15. Let 𝜃 be an ordinal, 𝑝 ∈ ℙ𝜃 , and ⟨𝜎𝛼 ∶ 𝛼 ∈ dom (𝑝)⟩ be a sequence of
⋅
ℚ𝛼-names. If for all 𝛼 ∈ dom (𝑝) we have

𝑝 ↾𝛼⊩ 𝑝(𝛼) = 𝜎𝛼 ,

then for any formula 𝜑(𝑥) and ℙ𝜅-name 𝜏 we have:

𝑝 ⊩ 𝜑(𝜏 )

if and only if
𝑝′ ⋅= ⟨(𝛼, 𝜎𝛼 ) ∶ 𝛼 ∈ dom (𝑝)⟩ ⊩ 𝜑(𝜏 ).
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Proof. Given 𝑝, 𝑝′ ∈ ℙ𝜃 as in the hypothesis we prove the following statement by induction
on 𝛾 ≤ 𝜃 :

(△)𝛾 ∀𝑟(𝑟 ∈ ℙ𝛾 → (𝑟 ≤ 𝑝 ↾𝛾↔ 𝑟 ≤ 𝑝′ ↾𝛾 ))

Notice that (△)𝛾 implies that 𝑝 ↾𝛾 and 𝑝′ ↾𝛾 force the same statements.

Fix 𝛾 ≤ 𝜃 and suppose 𝑟 ≤ 𝑝 ↾𝛾 , then 𝑟 ≤ 𝑝′ ↾𝛾 . Indeed, we have 𝑟 ↾𝛼⊩ 𝑟(𝛼) ≤ 𝑝(𝛼),
since 𝑟 ↾𝛼≤ 𝑝 ↾𝛼 . Therefore 𝑟 ↾𝛼⊩ 𝑟(𝛼) ≤ 𝑝(𝛼) = 𝑝′(𝛼). We need to show now that
diff(𝑟 , 𝑝′ ↾𝛾 ) is finite. If 𝛼 ∈ diff(𝑟 , 𝑝′ ↾𝛾 ) then 𝑟 ↾𝛼 ̸⊩ 𝑟(𝛼) = 𝑝′(𝛼). Since 𝑟 ↾𝛼⊩ 𝑝(𝛼) = 𝑝′(𝛼),
𝑟 ↾𝛼 ̸⊩ 𝑟(𝛼) = 𝑝(𝛼). Therefore 𝛼 ∈ diff(𝑟 , 𝑝 ↾𝛾 ).

Let 𝑟 ≤ 𝑝′ ↾𝛾 . If 𝜁 < 𝛾 , then from our induction hypothesis (△)𝜁 we have that 𝑝′ ↾𝜁⊩
𝑝(𝜁 ) = 𝜎𝜁 . Therefore 𝑟 ≤ 𝑝′ ↾𝛾 implies 𝑟 ↾ 𝜁 ⊩ 𝑟(𝜁 ) ≤ 𝜎𝜁 = 𝑝(𝜁 ). Thus 𝑟 ≤ 𝑝 ↾𝛾 . Now fix
𝛼 ∈ diff(𝑟 , 𝑝 ↾𝛾 ), then 𝑟 ↾𝛼 ̸⊩ 𝑝(𝛼) = 𝑟(𝛼). Since 𝛼 < 𝛾 we have 𝑟 ↾𝛼⊩ 𝑝(𝛼) = 𝑝′(𝛼), it follows
that 𝑟 ↾𝛼 ̸⊩ 𝑝′(𝛼) = 𝑟(𝛼). Hence 𝛼 ∈ diff(𝑟 , 𝑝′ ↾𝛾 ) and (△)𝛾 holds.

Note that (△)𝜃 implies the lemma.

We are finally ready to prove Theorem 2.3.10.

Proof of Theorem 2.3.10. Let 𝜎 be a name for a given 𝑓 ∶ 𝜔1 → 𝜔 in the extension. We
start by taking any 𝑝 ∈ ℙ such that 𝑝 ⊩ 𝜎 ∶ �̌�1 → 𝜔. We will show that there is a condition
𝑝∗ < 𝑝, 𝜂 < 𝜔1 and 𝑛,𝑚 ∈ 𝜔 such that

𝑝∗ ⊩ (�̌�𝑚
𝜂 ⊂ 𝜎−1[{�̌�}] ∧ 𝜎 (�̌�) = �̌�)

which concludes the proof.

Following [11] we shall construct an 𝜔1-sequence that decides the evaluation of 𝜎 on
each 𝛼 < 𝜔1. We then use a pressing down argument to find a stationary set in 𝑉 where
we can apply a ♣𝐹 -sequence derived from a ♦∗-sequence in order to find the condition
𝑝∗. The basic idea here is that we cannot decide what happens with the whole coloring
but we may decide what happens with a great piece of a stationary subset of 𝜔1, which,
coupled with the ♣𝐹 on the ground model, gives us the desired control over 𝑓 .

We shall construct inductively ⟨𝑞𝛼 ∶ 𝛼 < 𝜔1⟩, ⟨𝑛𝛼 ∶ 𝛼 < 𝜔1⟩, together with an auxiliary
sequence ⟨𝑝𝛼 ∶ 𝛼 < 𝜔1⟩. These three sequences should satisfy the following conditions
for all 𝛼 < 𝜔1:

1. ⟨𝑝𝛾 ∶ 𝛾 < 𝛼⟩ is a sequence such that 𝛾 < 𝛾 ′ < 𝛼 implies 𝑝𝛾 ′ ≤ℎ 𝑝𝛾 ;

2. 𝑞𝛼 ≤𝑣 𝑝𝛼 and 𝑞𝛼 ⊩ 𝜎 (𝛼) = ň𝛼 ;

3. 𝑢𝛼 = diff(𝑞𝛼 , 𝑝𝛼 ) ⊂ dom (𝑝) ∪⋃𝛾<𝛼 dom (𝑞𝛾);

4. 𝑞𝛼 ↾(𝑑𝑜𝑚(𝑝𝛼 )⧵𝑢𝛼 )= 𝑝𝛼 ↾(𝑑𝑜𝑚(𝑝𝛼 )⧵𝑢𝛼 );

5. 𝑞𝛼 ↾𝑢𝛼∈ 𝐹𝑛(𝜅, {𝑡 ∶ 𝑡 ∈ 𝐹𝑛(𝜔, 2)}).
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Suppose we already constructed ⟨𝑝𝛽 ∶ 𝛽 < 𝛼⟩, ⟨𝑞𝛽 ∶ 𝛽 < 𝛼⟩, and ⟨𝑛𝛽 ∶ 𝛽 < 𝛼⟩.

Let 𝑟𝛼 = 𝑝 if 𝛼 = 0 or 𝑟𝛼 = ⋃𝛽∈𝛼 𝑝𝛽 otherwise. Fix 𝑤𝛼 ≤ 𝑟𝛼 such that there is 𝑛𝛼 ∈ 𝜔
satisfying 𝑤𝛼 ⊩ 𝜎 (𝛼) = �̌�𝛼 . Applying Lemma 2.3.14 on 𝑟𝛼 and 𝑤𝛼 , we obtain 𝑞∗𝛼 ≤ 𝑤𝛼 such
that, for all 𝛾 ∈ diff(𝑞∗𝛼 , 𝑟𝛼 ), there exists 𝑡𝛾 satisfying 𝑞∗𝛼 ↾𝛾⊩ 𝑞∗𝛼 (𝛾 ) = 𝑡𝛾 .

Define the following:

• 𝑝𝛼 = 𝑟𝛼 ∪ (𝑞∗𝛼 ↾𝑑𝑜𝑚(𝑞∗𝛼 )⧵𝑑𝑜𝑚(𝑟𝛼 ));

• 𝑑𝛼 = diff(𝑞∗𝛼 , 𝑝𝛼 );

• 𝑞𝛼 = 𝑝𝛼 ↾dom(𝑝𝛼 )⧵𝑑𝛼 ∪ {𝑡𝛾 ∶ 𝛾 ∈ 𝑑𝛼}.

Let us verify that 𝑝𝛼 and 𝑞𝛼 satisfy conditions (1) − (5).

First we note that 𝑝𝛼 ≤ℎ 𝑟𝛼 , and therefore 𝑝𝛼 ≤ℎ 𝑝𝛽 for all 𝛽 < 𝛼 . Indeed,
dom (𝑟𝛼 ) ⊂ dom (𝑝𝛼 ) and for all 𝛾 ∈ dom (𝑟𝛼 ) we have 𝑝𝛼 ↾𝛾⊩ 𝑟𝛼 (𝛾 ) = 𝑝𝛼 (𝛾 ) since
they are the same name. Furthermore diff(𝑝𝛼 , 𝑟𝛼 ) = ∅ and, by the definitions given, the
inequality holds.

Next, we verify (2). Note that for all 𝛾 ∈ dom (𝑞∗𝛼 ) ⧵ 𝑑𝛼 we have

𝑞∗𝛼 ↾𝛾⊩ 𝑞∗𝛼 (𝛾 ) = 𝑝𝛼 (𝛾 ) = 𝑞𝛼 (𝛾 ),

and for all 𝛾 ∈ 𝑑𝛼 we have
𝑞∗𝛼 ↾𝛾⊩ 𝑞∗𝛼 (𝛾 ) = 𝑡𝛾 = 𝑞𝛼 (𝛾 ).

It follows from Lemma 2.3.15 that 𝑞𝛼 forces the same statements that 𝑞∗𝛼 forces. In particular,
𝑞𝛼 ⊩ 𝜎 (𝛼) = ň𝛼 .

From the definition of 𝑝𝛼 and 𝑞𝛼 , it follows that dom (𝑞∗𝛼 ) = dom (𝑝𝛼 ) = dom (𝑞𝛼 ). Hence,
in order to verify 𝑞𝛼 ≤𝑣 𝑝𝛼 , we only have to verify that 𝑞𝛼 ≤ 𝑝𝛼 . Consider 𝜁 ∈ 𝑑𝑜𝑚(𝑝𝛼 ). If
𝜁 ∈ 𝑑𝑜𝑚(𝑟𝛼 ), then 𝑝𝛼 (𝜁 ) = 𝑟𝛼 (𝜁 ) and 𝑞𝛼 ↾𝜁⊩ 𝑝𝛼 (𝜁 ) = 𝑟𝛼 (𝜁 ) ≥ 𝑞∗𝛼 (𝜁 ) = 𝑞𝛼 (𝜁 ), since 𝑞∗𝛼 ↾𝜁 also
forces it.

If 𝜁 ∈ 𝑑𝑜𝑚(𝑝𝛼 ) ⧵ 𝑑𝑜𝑚(𝑟𝛼 ), since 𝑑𝛼 ⊂ 𝑑𝑜𝑚(𝑟𝛼 ), then 𝑝𝛼 (𝜁 ) = 𝑞∗𝛼 (𝜁 ). Therefore

𝑞𝛼 ↾𝜁 ⊩ 𝑞𝛼 (𝜁 ) = 𝑞∗𝛼 (𝜁 ) = 𝑝𝛼 (𝜁 ).

Now we verify condition (3). By Lemma 2.3.15, 𝛾 ∈ diff(𝑞𝛼 , 𝑝𝛼 ) if and only if 𝛾 ∈
diff(𝑞∗𝛼 , 𝑝𝛼 ). Therefore 𝑢𝛼 = 𝑑𝛼 . Furthermore, from our induction hypothesis

𝑢𝛼 ⊂ dom (𝑟𝛼 ) ⊂ 𝑑𝑜𝑚(𝑝) ∪⋃
𝛾<𝛼

dom (𝑝𝛾) = 𝑑𝑜𝑚(𝑝) ∪⋃
𝛾<𝛼

dom (𝑞𝛾) .
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Conditions (4) and (5) follows directly from our definitions of 𝑞𝛼 and the fact observed
above that 𝑢𝛼 = 𝑑𝛼 .

Consider now a bijection Φ ∶ ⋃𝛽<𝜔1
𝑑𝑜𝑚(𝑞𝛽) → 𝜔1, and let 𝑌 ⊂ 𝜔1 be a club such that,

for all 𝛼 ∈ 𝑌 ,
Φ(⋃

𝛽<𝛼
𝑑𝑜𝑚(𝑞𝛽)) ⊂ 𝛼.

Therefore, for all 𝛼 ∈ 𝑌 , we have 𝑎𝛼 ∶= Φ[𝑢𝛼] ⊂ 𝛼 .

Let 𝑌0 ⊂ 𝑌 be a stationary set and 𝑘 ∈ 𝜔 be such that for all 𝛼 ∈ 𝑌0, |𝑎𝛼 | = 𝑘. Let
𝜙0 ∶ 𝑌0 → 𝜔1 be a regressive function given by 𝜙0(𝛼) = 𝑚𝑖𝑛(𝑎𝛼 ). Applying Fodor’s
Lemma, we find 𝑌1 ⊂ 𝑌0 stationary such that 𝜙0 is constant on 𝑌1. Recursively, for 𝑛 < 𝑘,
we construct 𝜙𝑛 ∶ 𝑌𝑛 → 𝜔1 such that 𝜙𝑛(𝛼) is the 𝑛𝑡ℎ element of 𝑎𝛼 . After 𝑘 iterations we
find 𝑌𝑘+1 stationary and 𝑎 ∈ 𝜔<𝜔

1 such that 𝛼 ∈ 𝑌𝑘+1 implies 𝑎𝛼 = 𝑎.

For all 𝛼 ∈ 𝑌𝑘+1 we have 𝑢𝛼 = 𝑢 for a fixed 𝑢 ∈ 𝜅<𝜔 . The set

𝑊 = {𝑟 ∈ 𝐹𝑛(𝜅, 𝐹𝑛(𝜔, 2)) ∶ 𝑑𝑜𝑚(𝑟) = 𝑢}

is countable, therefore there is 𝑆 ⊂ 𝑌𝑘+1 stationary and 𝑟 ∈ 𝑊 such that for all 𝛼 ∈ 𝑆 and
𝛾 ∈ 𝑢 we have 𝑞𝛼 (𝛾 ) = 𝑟(𝛾 ).

Fix 𝑛∗ ∈ 𝜔 such that 𝑇 = {𝛼 ∈ 𝑆 ∶ 𝑛𝛼 = 𝑛∗} is stationary. Using that 𝐵 is a ♦∗-sequence,
we can find a club 𝐶 such that, for every 𝛼 ∈ 𝐶 , there exists 𝑚 ∈ 𝜔 such that 𝐵𝑚𝛼 = 𝑇 ∩ 𝛼 .
Finally, let 𝜂 ∈ 𝐶 ∩ 𝑇 ∩ 𝑎𝑐𝑐(𝑇 ), then 𝑠𝑢𝑝(𝐵𝑚𝛼 ) = 𝜂 and 𝐵𝑚𝜂 = 𝐴𝑚

𝜂 .

Next, consider 𝜉 ∈ 𝑇 such that 𝜉 > 𝜂. Let 𝑝∗ = 𝑞𝜉 . We shall verify that that 𝑝∗ is the
condition we are looking for.

First we shall see that if 𝛼 ∈ 𝑆 ∩ 𝜉 , then 𝑞𝜉 ≤ℎ 𝑞𝛼 . For every 𝛼 ∈ 𝑌 it holds that
𝑞𝛼 = 𝑝𝛼 ↾𝑑𝑜𝑚(𝑝𝛼 ⧵𝑑𝛼 ). We know that 𝑝𝜉 ≤ℎ 𝑝𝛼 and 𝑢𝛼 = 𝑑𝛼 , therefore 𝑝𝛼 ↾𝑑𝑜𝑚(𝑝𝛼 ⧵𝑑𝛼 )= 𝑝𝜉 ↾𝑑𝑜𝑚(𝑝𝛼 ⧵𝑑𝛼 ).
Hence 𝑞𝛼 ↾𝑑𝑜𝑚(𝑝𝛼 ⧵𝑑𝛼 )= 𝑞𝜉 ↾𝑑𝑜𝑚(𝑝𝛼 ⧵𝑑𝛼 ). From 𝛼 ∈ 𝑆 we have that 𝑢𝛼 = 𝑢 = 𝑢𝜉 and 𝑞𝛼 ↾𝑢𝛼= 𝑞𝜉 ↾𝑢.
Thus 𝑞𝜉 ≤ℎ 𝑞𝛼 and we have 𝑞𝜉 ⊩ 𝜎 ↾𝑆∩𝜉= ⟨𝑛𝛼 ∣ 𝛼 ∈ 𝑆 ∩ 𝜉⟩.

Next, given a cardinal 𝜅 as in the hypothesis of Theorem 2.3.10, we will address what
happens with d and 2ℵ0 in any ℙ𝜅-generic extension. We will need these results in Section
2.4, where we also obtain that b = 𝜔1 < 2ℵ0 in a ℙ𝜅-generic extension as an application of
Theorem 2.0.2 (see Corollary 2.4.7).

We first observe that, as in the usual Cohen forcing, under certain assumptions, 𝜔1 < d
holds in our extension. In order to verify that we will use the two following lemmas:
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Lemma 2.3.16 (S. Fuchino, S. Shelah, L. Soukup[18]). Suppose that 𝜅 is a strongly inacces-
sible cardinal > 𝜔1. Then the forcing ℙ𝜅 has the 𝜅-cc property.

Proof. We are in the hypothesis of the Δ-system lemma, that is, 𝜔1 < 𝜅 and for all 𝜃 < 𝜅 we
have 𝜃<𝜔1 < 𝜅 by the inaccessibility of 𝜅. Let {𝑝𝛽 ∶ 𝛽 < 𝜅} ⊂ ℙ𝜅 . Without loss of generality
we may assume that {𝑠𝑢𝑝𝑝(𝑝𝛽) ∶ 𝛽 < 𝜅} has non-empty root 𝑥 by the Δ-system lemma.
Let 𝛼0 = 𝑠𝑢𝑝{𝛾 + 1 ∶ 𝛾 ∈ 𝑥}. For each 𝛽 < 𝜅 we have 𝑝𝛽 ↾𝛼0∈ ℙ𝛼0 . Since 𝜅 is strongly

inaccessible, for each 𝛼 < 𝜅, we have |ℙ𝛼 | ≤ (𝑠𝑢𝑝{|
◦
ℚ𝛽 | ∶ 𝛽 < 𝛼})𝛼 < 𝜅 by induction on

◦
ℚ𝛽 .

Therefore |ℙ𝛼0 | < 𝜅, and we must have 𝛽, 𝛽 ′ < 𝜅 such that 𝑝𝛽 ↾𝛼0= 𝑝𝛽′ ↾𝛼0 . It follows that
𝑞 ∈ ℙ𝜅 given by:

𝑞(𝛾 ) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑝𝛽(𝛾 ) if𝛾 ∈ 𝑠𝑢𝑝𝑝(𝑝𝛽)
𝑝𝛽′(𝛾 ) if𝛾 ∈ 𝑠𝑢𝑝𝑝(𝑝𝛽′)
◦
1𝛾 , otherwise.

verifies the compatibility between 𝑝𝛽 and 𝑝𝛽′ .

Lemma 2.3.17. Let 𝜅 be a strongly inaccessible cardinal. Let ℙ𝜅 be the a 𝐶𝑆∗-iteration of
Cohen forcing of length 𝜅. Then, in any ℙ𝜅-generic extension, it holds that d ≥ 𝜅.

Proof. Let 𝑉 [𝐺] be a ℙ𝜅-generic extension of 𝑉 . Consider  ∈ 𝑉 [𝐺] a dominating family
of size d. By contradiction, suppose that d < 𝜅. In 𝑉 [𝐺], let  = {𝑓𝛼 ∣ 𝛼 < d} and let
Φ ∶ d×𝜔 → 𝜔 such thatΦ(𝛼,𝑚) = 𝑓𝛼 (𝑚) for each 𝛼 < d and𝑚 ∈ 𝜔. ThenΦ ⊂ d×𝜔×𝜔 codes
 . Using that ℙ𝜅 is 𝜅-cc it follows that Φ ∈ 𝑉 [𝐺 ↾ 𝜉 ] for some 𝜉 < 𝜅, and consequently
 ⊂ 𝑉 [𝐺 ↾ 𝜉 ]. Indeed, fix a nice name 𝜏 for Φ as a subset of d × 𝜔 × 𝜔. Since 𝑃𝜅 is 𝜅-cc
the antichains of ℙ𝜅 all have size < 𝜅, therefore all forcing conditions on 𝜏 have limited
support in 𝜅 and there is 𝜉 < 𝜅 limiting all supports. The ordinal 𝜉 is as we wanted. Let
𝑥𝜉+1 be the Cohen real added at step 𝜉 + 1. Consider dense sets in ℙ𝜉 ∈ 𝑉 [𝐺 ↾ 𝜉 ] for all
𝑓 ∈ 𝜔𝜔 ∩ 𝑉 [𝐺 ↾ 𝜉 ] and 𝑛 ∈ 𝜔 guaranteeing that there is 𝑚 > 𝑛 such that 𝑥𝜉+1(𝑚) > 𝑓 (𝑚).
It follows that 𝑥𝜉+1 can not be dominated by any real in 𝑉 [𝐺 ↾ 𝜉 ] ⊃  , contradicting our
hypothesis that  is a dominating family. Thus d ≥ 𝜅 in 𝑉 [𝐺].

Corollary 2.3.18. Suppose ♦∗ holds. Let 𝜅 be a regular cardinal which is ℵ0-inaccessible. Let
ℙ𝜅 be the a 𝐶𝑆∗-iteration of Cohen forcing of length 𝜅. Then ⊩ℙ𝛼 𝜔1 < d.

Proof. From Theorem 2.3.10 we have that ⊩ℙ𝜅 𝜔1 = �̌�1. By Lemma 2.3.17 we have ⊩ℙ𝜅 𝜅 ≤ d.
Thus ⊩ℙ𝜅 𝜔1 < 𝜅 ≤ d.

We are finally able to conclude that ♣𝐹 is compatible with ¬𝐶𝐻 modulo large cardi-
nals.

Corollary 2.3.19. 𝐶𝑜𝑛(𝑍𝐹𝐶 + exists a strongly inaccessible cardinal) → 𝐶𝑜𝑛(𝑍𝐹𝐶 +♣𝐹 +
¬𝐶𝐻 )
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2.4 A counterexample for ¬𝐶𝐻
In this section we shall present the construction of the regular topological space such

that every coloring has a monochromatic copy of 𝜔 + 1, has no copy of 𝜔2 + 1 and has
character b < d. In the original paper [27] the authors use 𝜔1 in their construction, as in
the case of the Example 2.2.3. The central idea of the proof is still the same, to use the same
club as in the example to find the monochromatic sequence. But we need to carefully refine
the neighborhoods of the limit ordinals in order to preserve the monochromatic sequence
but still destroying all copies of 𝜔2 + 1 and increasing the character of the space. For this
we use a ♦-sequence of partial functions to guess all 𝜔-colorings of 𝜔1. The refinement on
the limit ordinals is given by such sequence and the full power of the club is used to obtain
an element in the stationary set given by the sequence. We shall revisit this construction
in a future proposition.

One way of trying to obtain an example without assuming 𝐶𝐻 is to investigate if
there is any preservation of the original example when we add 𝜔2 Cohen reals to the
ground model. In a broader sense, it would be interesting to know "what is left of ♦ after
adding Cohen reals", as it is studied in [19] for the Continuum Hypothesis, and whether
the resulting property would be strong enough to yield the monochromatic sequence with
the same example. One of the problems that such approach faces is the following:

Lemma 2.4.1. Adding 𝜔1 Cohen reals to a model of ♦ destroys the previous ♦-sequence.

Proof. Let 𝐴 = ⟨𝑓𝛼 ∶ 𝛼 < 𝜔1⟩ be a ♦-sequence of partial functions 𝑓𝛼 ∶ 𝛼 → 𝜔. The forcing
𝐹𝑛(𝜔1, 2) is such that, for any generic filter 𝐺, the function 𝑔 = ⋃𝐺 cannot be guessed
through 𝐴. Indeed, for 𝜔 < 𝛼 < 𝜔1, the following dense sets

𝐷𝛼 = {𝑝 ∈ 𝐹𝑛(𝜔1, 2) ∶ ∃𝛽 ∈ 𝑑𝑜𝑚(𝑝) ∩ 𝛼(𝑝(𝛽) ≠ 𝑓𝛼 (𝛽))}

yield that 𝑔 ↾𝛼 is different from all 𝑓𝛼 . Therefore, the old sequence cannot guess 𝑔 in a
stationary set.

The previous lemma points to a possible problem in using the original example after
the Cohen forcing to distinguish b from c. Now what about a direct construction using
only ♣? We could use the elements 𝐴𝛼 of the ♣-sequence to refine the neighbourhoods
of limit ordinals 𝛼 in a similar way to what is done in the original construction. In this
case we have a monochromatic sequence but no control over the color of the limit point.
Indeed, given a coloring 𝑔, one of its colors must have stationary pre-image 𝑆. Now, 𝑆 is a
club and 𝑆 ∩ 𝑆 is a stationary set of 𝜔1. If we try to guess 𝑆 with the ♣-sequence we find a
stationary set 𝑆′. The problem is that we may have 𝑆′ ∩ 𝑆 ∩ 𝑆 = ∅.

Let us then understand what is needed to construct a counterexample without the use
of 𝐶𝐻 , and exactly what part ♣𝐹 plays in it. To do this we revisit the original construction
of the example made in [27], but modifying it a little to obtain the basic idea behind our
desired space.

Proposition 2.4.2. Suppose ⟨𝐴𝑚
𝛼 ∶ 𝛼 < 𝜔1 ∧ 𝑚 ∈ 𝜔⟩ is a ♣𝐹 -sequence. Then there is a

regular topological space (𝜔1, 𝜏 ) such that (𝜔1, 𝜏 ) → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 , (𝜔1, 𝜏 ) ↛ (𝑡𝑜𝑝 𝜔2 + 1)1𝜔
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and for every limit ordinal 𝛼 ∈ 𝜔1 and for every 𝑚 ∈ 𝜔 there exists an increasing sequence of
ordinals in 𝐴𝑚

𝛼 converging to 𝛼 .

Proof. Let ⟨𝐴𝑛
𝛼 ∶ 𝑛 ∈ 𝜔 ∧ 𝛼 ∈ 𝜔1⟩ be a ♣𝐹 -sequence and 𝛼 ∈ 𝑎𝑐𝑐(𝜔1). Let 𝛾𝑛 be a strictly

increasing sequence converging to 𝛼 . Define 𝑎0 = {𝑡0(0)} where 𝑡0(0) is the first element
of 𝐴0

𝛼 . Given 𝑛 ∈ 𝜔, suppose that, for all 𝑚 < 𝑛, 𝑎𝑚 = {𝑡𝑚(0),⋯ , 𝑡𝑚(𝑚)} is already defined.
Let 𝑎𝑛 = {𝑡𝑛(0),⋯ , 𝑡𝑛(𝑛)} be given by the following: 𝑡𝑛(𝑗) is the least element of 𝐴𝑗

𝛼 that
is greater than 𝛾𝑛 and all 𝑡𝑘(𝑙) constructed beforehand. Notice that this is possible since
all 𝐴𝑛

𝛼 are unbounded in 𝛼 . Order the ordinals 𝑡𝑘(𝑙) as a strictly increasing sequence 𝑠(𝑛)
converging to 𝛼 . Now, for each 𝑛 ∈ 𝜔, if 𝑠(𝑛) is a limit ordinal, let (𝛽𝑛𝑖 )𝑖∈𝜔 be a strictly
increasing sequence converging to 𝑠(𝑛). Otherwise consider 𝛽𝑛𝑖 = 𝑠(𝑛) − 1. We shall refine
the topology in 𝜔1 by considering new neighbourhoods of 𝛼 given by

𝑁𝛼 (ℎ, 𝑝) = {𝛼} ∪ (⋃{(𝛽𝑚ℎ(𝑚), 𝑠(𝑚)] ∶ 𝑚 ≥ 𝑝}),

where ℎ ∈ 𝜔𝜔 and 𝑝 ∈ 𝜔. As in the construction in [27], our space is regular and it cannot
contain any copy of 𝜔2 + 1 because of the new topology. Then, we just have to verify that
𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 . For that we fix any coloring 𝑓 ∶ 𝜔1 → 𝜔. Using (2) of ♣𝐹 there are
𝑚, 𝑛 ∈ 𝜔 and 𝛼 ∈ 𝜔1 such that 𝛼 ∈ 𝑓 −1[{𝑛}] and 𝐴𝑚

𝛼 ⊂ 𝑓 −1[{𝑛}]. Now, by construction, the
elements 𝛾 ∈ 𝐴𝑚

𝛼 that are in the new neighbourhood of 𝛼 together with 𝛼 constitute the
monochromatic copy of 𝜔 + 1.

Notice that we are almost there in terms of the construction, that is, our space is regular,
has monochromatic copies of 𝜔 + 1 and has no copy of 𝜔2 + 1. However, since we do not
have CH, we cannot control the size of each local basis by 𝜔1 or b. In fact we have the
following:

Lemma 2.4.3. Let 𝑋 be a space as constructed in Proposition 2.4.2. Then 𝜒 (𝑋 ) ≤ d.

Proof. Indeed, let be a dominating family of size d. For a limit ordinal 𝛼 the set {𝑁𝛼 (ℎ, 𝑝) ∶
ℎ ∈  ∧ 𝑝 ∈ 𝜔} is of size d and is a local basis. Given any 𝑁𝛼 (𝑓 , 𝑛), just consider ℎ ∈ 
such that 𝑓 ≤∗ ℎ, and 𝑝 greater than the maximum among the natural number that verify
the previous inequality and 𝑛.

One way to fix this problem would then be to find a model where b = d and ♣𝐹 holds.
We still do not know if such a model is possible. We then have the following question:

Question 2.4.4. 𝐶𝑜𝑛(𝑍𝐹𝐶) → 𝐶𝑜𝑛(𝑍𝐹𝐶 +♣𝐹 + 2ℵ0 > 𝜔1 + d = b)?

One of the ways to fix this situation would be to see that the example constructed in a
ground model, assuming ♦∗ and using Proposition 2.4.2, could be preserved somehow when
considering the Cohen 𝐶𝑆∗-iteration. That is, we still have monochromatic convergent
sequences and no copy of 𝜔2 + 1, but now, since the basic neighborhoods come from the
ground model, we at least have some control on the character of the space. For this we
must make sure that our guessing sequence is not destroyed by our forcing iteration.

The next theorem shows us that what we asked above is indeed the case, and finally
ends our search for the counterexample without CH.
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Theorem 2.4.5. Assume ♦∗ and that 𝜅 is a regular cardinal such that 𝜅 ≥ ℵ2 and, for every
𝛼 < 𝜅, we have 𝛼ℵ0 < 𝜅. Let ℙ𝜅 be the Cohen 𝐶𝑆∗-iteration of length 𝜅 and 𝐺 be a ℙ𝜅-generic
filter. Then, in 𝑉 [𝐺], there exists a topological space (𝑋, 𝜏 ) such that 𝑋 → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 ,
𝑋 ↛ (𝑡𝑜𝑝 𝜔2 + 1)1𝜔 and 𝜒 (𝑋 ) = 𝜔1 < c.

Proof. Let 𝐴 = ⟨𝐴𝑚
𝛼 ∶ 𝛼 < 𝜔1 ∧ 𝑛 ∈ 𝜔⟩ be the ♣𝐹 -sequence derived from a ♦∗-sequence 𝐵

in 𝑉 , as in Lemma 2.3.3. Let (𝑋, 𝜏 ) the space obtained by applying, in V, Theorem 2.4.2 to
𝐴. Let (𝑋, 𝜏 ) be the topological space generated, in 𝑉 [𝐺], using 𝜏 as a basis. We will prove
that (𝑋, 𝜏 ) is the space we wanted. Let 𝑝 ∈ ℙ𝜅 and let 𝜎 be a ℙ𝜅-name such that

𝑝 ⊩ 𝜎 ∶ 𝜔1 → 𝜔.

Recall that from Theorem 2.3.10 we have ⊩ℙ𝜅 �̌�1 = 𝜔1. We will find 𝑞 ≤ 𝑝, �̇� and 𝑛 such that

𝑞 ⊩ 𝜎[�̇�] = {𝑛} ∧ �̇� ⊂ 𝜔1 ∧ (�̇�, 𝜏 ) is homeomorphic to (𝜔 + 1, ∈).

We apply Theorem 2.3.10 to 𝐴, 𝜎 and 𝑝, to obtain 𝑝∗, 𝜂 < 𝜔1 and 𝑛,𝑚 ∈ 𝜔 such that

𝑝∗ ⊩ (�̌�𝑚
𝜂 ⊂ 𝜎−1[{�̌�}] ∧ 𝜎 (�̌�) = �̌�)

Next, we verify that 𝑝∗ is the condition 𝑞 that we are looking for. Let �⃗� = {𝑤𝑡 ∶ 𝑡 ∈ 𝜔}
be the sequence given by Theorem 2.4.2 such that �⃗� ⊂ 𝐴𝑚

𝜂 and �⃗� ↗ 𝜂. Let �̇� = �̌� ∪ {�̌�}
and notice that (𝑤 ∪ {𝜂}, 𝜏 ) is homeomorphic to (𝜔 + 1, ∈). Therefore

𝑝∗ ⊩ (�̇�, 𝜏 ) is homeomorphic to (𝜔 + 1, ∈).

We also have 𝑝∗ ⊩ �̇� ⊂ �̌�𝑚
𝜂 ∪ {𝜂} ⊂ 𝜎−1[{𝑛}]. Since 𝐶𝐻 holds in 𝑉 we have 𝜒 (𝑋, 𝜏 ) = 𝜔1

in 𝑉 and therefore 𝜒 (𝑋, 𝜏 ) = 𝜔1 in 𝑉 [𝐺]. From Corollary 2.3.18 we have 𝜔𝑉 [𝐺]
1 < c. Thus

(𝑋, 𝜏 ) is the space we wanted.

The following corollary just indicates the consistency of the result given by our result
above.

Corollary 2.4.6. Assume the consistency of𝑍𝐹𝐶 . Then𝑍𝐹𝐶 is consistent with the existence of
a topological space (𝑋, 𝜏 ) such that 𝑋 → (𝑡𝑜𝑝 𝜔 +1)1𝜔 , 𝑋 ↛ (𝑡𝑜𝑝 𝜔2 +1)1𝜔 and 𝜒 (𝑋 ) = 𝜔1 < c.

Proof. If 𝑉 = 𝐿, then ♦∗ holds. If 𝜅 ≥ ℵ2 is a regular cardinal that is not the successor of
a cardinal of countable cofinality, then, for all 𝛼 < 𝜅, we have 𝛼ℵ0 < 𝜅. Working in 𝐿, let
𝜅 ≥ ℵ2 be such a cardinal. By Theorem 2.3.10, if 𝐺 is a ℙ𝜅-generic filter then 𝑉 [𝐺] is a
model of 𝑍𝐹𝐶 where, by Theorem 2.4.5, there exists (𝑋, 𝜏 ) as in the hypothesis of the
corollary.

Another interesting corollary would be to notice that in the extension used in Theorem
2.3.10 we know the value of b using the topological results made in this section.

Corollary 2.4.7. Suppose ♦∗ holds, 𝜅 ≥ ℵ2 is a regular cardinal, and, for all 𝛼 < 𝜅, 𝛼ℵ0 < 𝜅.
Then in any ℙ𝜅-generic extension b = 𝜔1 .
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Proof. The results above gives us a space of character ℵ1 that satisfies all the hypothesis,
except the character, of Theorem 2.0.2 and does not satisfies its thesis. Therefore we must
have that the character of such space must be ≥ b. Hence 𝜔1 ≥ b ≥ 𝜔1.

This is also interesting since it further instigates the question about the existence of a
model for ♣𝐹 + ¬𝐶𝐻 + b = d.

We now finish this section with the study of what happens when we consider the
construction made in 2.4.2 directly in the extension given by the 𝐶𝑆∗-iteration, further
comparing the two spaces.

Let (𝑌 , 𝜏 ) be a space obtained by applying Theorem 2.4.2 to a ♣𝐹 -sequence 𝐴. We have
already seen in 2.4.3 that 𝜒 (𝑌 ) ≤ d. In the following lemmas we will present sufficient
conditions on 𝐴 which imply that the character of (𝑌 , 𝜏 ) is d.

Lemma 2.4.8. If 𝐴 is a ♣𝐹 -sequence such that there exist a limit ordinal 𝛼 ∈ 𝜔1 and 𝑚 ∈ 𝜔
satisfying 𝐴𝑚

𝛼 ⊂ 𝑎𝑐𝑐(𝜔1), then 𝜒 (𝑌 ) = d.

Proof. We have 𝜒 (𝑌 ) ≤ d since, for any given dominating family ⊂ 𝜔𝜔 , the set {𝑁𝛼 (ℎ, 𝑛) ∶
ℎ ∈  ∧ 𝑛 ∈ 𝜔 ∧ 𝛼 ∈ 𝑎𝑐𝑐(𝜔1)} together with the isolated successor ordinals is a basis for 𝑌 .

Now, assume that 𝜒 (𝑌 ) < d, and take 𝛼 and 𝑚 as in the hypothesis of the lemma. Let
 be a base of open sets for 𝛼 of size < d. We write  = {𝑁𝛼 (𝑔𝜃 , 𝑛𝜃 ) ∶ 𝜃 < 𝜆} for some
𝜆 < d. Take 𝐽 = {𝑟 ∈ 𝜔 ∶ 𝑠(𝑟) ∈ 𝐴𝑚

𝛼 } which is infinite by construction. Let 𝜙 ∶ 𝐽 → 𝜔 be
the increasing bijection. We will show that {𝑔𝜃 ↾𝐽 ◦𝜙−1 ∶ 𝜃 < 𝜆} is a dominating family,
which is a contradiction.

Given 𝑓 ∈ 𝜔𝜔 consider ℎ ∶ 𝜔 → 𝜔 defined by ℎ(𝑖) = 𝑓 ◦ 𝜙(𝑖) if 𝑖 ∈ 𝐽 and ℎ(𝑖) = 0
otherwise. 𝑁𝛼 (ℎ, 0) is a neighbourhood for 𝛼 so there must be 𝛾 < 𝜆 such that 𝑁𝛼 (𝑔𝛾 , 𝑛𝛾 ) ⊂
𝑁𝛼 (ℎ, 0). If 𝑖 ∈ 𝐽 ⧵ 𝑛𝛾 , since 𝑠(𝑖) is a limit ordinal, we must have 𝛽 𝑖ℎ(𝑖) < 𝛽 𝑖𝑔𝛾 (𝑖) and therefore
ℎ(𝑖) < 𝑔𝛾 (𝑖). This implies that 𝑔𝛾 ↾𝐽 ◦𝜙∗ ≥ 𝑓 since ℎ ↾𝐽= 𝑓 ◦ 𝜙.

Lemma 2.4.9. If 𝐴 is a ♣𝐹 -sequence derived from a ♦∗-sequence 𝐵, then there exist a limit
ordinal 𝛼 ∈ 𝜔1 and 𝑚 ∈ 𝜔 such that 𝐴𝑚

𝛼 ⊂ 𝑎𝑐𝑐(𝜔1).

Proof. Use ♦∗ on the set 𝑎𝑐𝑐(𝜔1) to find the club  that guesses this set. Now, if 𝛼 ∈ 
is a limit of limit ordinals, then there is 𝑚 ∈ 𝜔 such that 𝐵𝑚𝛼 = 𝑎𝑐𝑐(𝜔1) ∩ 𝛼 . Therefore
𝐵𝑚𝛼 = 𝐴𝑚

𝛼 ⊂ 𝑎𝑐𝑐(𝜔1).

The following corollary contrasts with the construction made in Theorem 2.4.5. Here
we first consider the extension by a Cohen 𝐶𝑆∗-iteration and afterwards construct the
topological space using a ♣𝐹 -sequence following Theorem 2.4.2.

Corollary 2.4.10. Let ℙ𝜅 be a Cohen 𝐶𝑆∗-iteration of length 𝜅, where 𝜅 ≥ ℵ2 is a regular
cardinal such that for every 𝛼 < 𝜅 we have 𝛼ℵ0 < 𝜅. Suppose 𝐵 is a ♦∗-sequence and𝐴 = ⟨𝐴𝑚

𝛼 ∶
𝛼 < 𝜔1 ∧ 𝑛 ∈ 𝜔⟩ is the sequence derived from 𝐵. If 𝐺 is a ℙ𝜅-generic filter, then there exists
a topological space (𝑌 , 𝜏 ) in 𝑉 [𝐺] such that (𝑌 , 𝜏 ) → (𝑡𝑜𝑝 𝜔 + 1)1𝜔 , (𝑌 , 𝜏 ) ↛ (𝑡𝑜𝑝 𝜔2 + 1)1𝜔
and 𝜔1 < 𝜒 (𝑌 ) = d.
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Proof. By Lemma 2.4.9, there exists 𝛼 ∈ 𝜔1 such that 𝐴𝑚
𝛼 ⊂ 𝑎𝑐𝑐(𝜔1), which remains true

in 𝑉 [𝐺]. By Corollary 2.3.11 we have that 𝐴 is a ♣𝐹 -sequence in 𝑉 [𝐺]. If 𝑌 is the space
obtained by applying Theorem 2.4.2 in 𝑉 [𝐺] to𝐴, it follows from Lemma 2.4.8 that 𝜒 (𝑌 ) = d.
By Lemma 2.3.17 and Theorem 2.3.10 we have d > 𝜔𝑉 [𝐺]

1 . Therefore (𝑌 , 𝜏 ) is the space we
wanted.

This is interesting because it highlights that even though the spaces obtained in
Theorem 2.4.5 and Corollary 2.4.10 have the same underlying set and are generated
considering the same ♣𝐹 -sequence, they are different. Indeed, the one from our ground
model ends up with a coarser topology than the one generated directly in our extension,
to the point where they end up having different characters.
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Chapter 3

Elementary submodels and
covering properties

In this chapter we will present a study on different covering properties and their
interaction with elementary submodels. We shall work similarly to some of the previous
papers in the area [23], [24], [25], and R. Figueiredo’s thesis [16]. In this introduction
we will give a brief historical overview of the relation between elementary submodels
and topology. Afterwards, in the first section, we present some results from the previous
cited works setting the tone for this chapter. In the two following sections we shall study
strengthenings of the Lindelöf property and their preservations, starting with scattered
spaces and then proceeding to less restricted spaces. Finally in the last section we study
the weakly Lindelöf property in the same way as the other sections.

Elementary submodels had already been introduced as a concept and studied in the field
of logic and set theory since the sixties. The interaction between elementary submodels
and topology begins a little further from this, in the early eighties, one of the first works
being S. Todorčević [41] “Directed sets and cofinal types". But I believe that it was with
A. Dow’s presentation at the Spring Topology Conference at Gainesville in 1988 and
his subsequent paper [13] that the area has come to a flourishment. His work brings to
attention some of the advantages of using elementary submodels in topology, such as,
insights on the structure of the set-theoretic universe and a way to encompass closing-off
arguments, bringing elegance to several proofs. In its wake several other works have been
made, such as I. Bandlow’s work [6], characterizing Corson compacta, and Z. Balogh’s
construction of a small Dowker space in ZFC in the paper [5]. With such context in mind
L. Junqueira and F. Tall started a systematic study of elementary submodels as means to
obtain an operation over a topological space 𝑋 . This is developed in their work [25] and
starts by considering the following definition:

Definition 3.0.1. Fix a topological space ⟨𝑋, 𝜏⟩ and an elementary submodel 𝑀 such that
𝑋, 𝜏 ∈ 𝑀 . The space 𝑋𝑀 is the topological space 𝑋 ∩𝑀 with the topology 𝜏𝑀 generated by
{𝑉 ∩𝑀 ∶ 𝑉 ∈ 𝜏 ∩𝑀}. When there is no ambiguity about the topology on 𝑋 we shall only
specify the space 𝑋 .

The idea behind this definition being: “the way 𝑋 is perceived through the lenses of 𝑀".
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Their work focus on several aspects of this operation, such as preservation of properties
from 𝑋 to 𝑋𝑀 , when 𝑋𝑀 is a subset of 𝑋 , or even a nice image of a subspace of 𝑋 , among
others. Following this work several others were developed with a focus on this operation,
such as F. Tall’s [37] and [39], L. Junqueira’s [23] and K. Kunen’s [28], focusing on several
other aspects such as covering properties, preservation of properties from 𝑋𝑀 to 𝑋 and
the interaction between compactness, scatteredness and when 𝑋𝑀 = 𝑋 . The following will
be standard notation throughout this chapter.

Definition 3.0.2. Given any property 𝑃 on topological spaces we say that:

• The property 𝑃 is preserved downwards if, for any topological space 𝑋 with the property
𝑃 and elementary submodel 𝑀 , it holds that 𝑋𝑀 has the property 𝑃 .

• The property 𝑃 is preserved upwards if, for any topological space 𝑋 and elementary
submodel 𝑀 , it holds that if 𝑋𝑀 has the property 𝑃 , then 𝑋 has the property 𝑃 .

Another continuation of the topic of preservation of compactness from these previous
works is developed in R. Figueiredo’s Ph.D. thesis, investigating whether we have preser-
vation of the Lindelöf property. In this chapter we shall continue this investigation for
other covering properties.

3.1 Some prior results
We start this section by stating some results from the aforementioned works, to give

some context to this study. In their first work on the topic, [25], L. Junqueira and F. Tall
exhibited the following result.

Proposition 3.1.1 (L. Junqueira, F. Tall[25]). For 𝑖 from 0 up to 3 1
2 , the property 𝑇𝑖 is

preserved downwards.

The properties 𝑇0 and 𝑇1 are also preserved upwards and, in the paper [37], F. Tall
proved the following:

Proposition 3.1.2 (F. Tall[37]). The 𝑇2 and 𝑇3 properties are preserved upwards for any
elementary submodel.

Some properties like 𝑇3 1
2

and 𝑇4 are not preserved, as we can see for Example 1.1 of L.
Junqueira’s work [23].

Continuing to focus on some properties related to compactness we return to [25] to
state the following result:

Proposition 3.1.3 (L. Junqueira, F. Tall[25]). Let 𝑋 be a countably compact topological
space and 𝑀 be a countably closed elementary submodel. Then 𝑋𝑀 also is countably compact.

The authors also investigate and present several examples regarding preservation. The
following one is particularly interesting since it illustrates that the downwards preservation
of compactness is not always guaranteed for any elementary submodel.

Example 3.1.4 (L. Junqueira, F. Tall[25]). There are a compact Hausdorff space 𝑋 and a
countably closed elementary submodel 𝑀 such that 𝑋 ∈ 𝑀 and 𝑋𝑀 is not paracompact.
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Proof. Let 𝜅 be a cardinal such that 𝜅𝜔 = 𝜅 and consider 𝑋 = 2𝜅 with the product topology.
Let 𝑌 ⊂ 𝑋 be a dense subset of size 𝜅 and 𝑀 an elementary submodel such that [𝑀]𝜔 ⊂ 𝑀 ,
|𝑀 | = 𝜅 and 𝑌 ∪ 𝜅 ∪ {𝜅, 𝑋} ⊂ 𝑀 . Note that 𝑋𝑀 is a subspace of 𝑋 . Indeed, given 𝑓 ∈ 𝑋 ∩𝑀 ,
if 𝑝 ⊂ 𝑓 is finite, then 𝑝 ∈ 𝑀 . Since the open set [𝑝] = {𝑔 ∈ 𝑋 ∶ 𝑝 ⊂ 𝑔} is definable from 𝑝
and 𝑋 , we have that [𝑝] ∈ 𝑀 .

We claim that 𝑋𝑀 is not compact: indeed, since |𝑋 ∩𝑀 | ≤ 𝜅 < 2𝜅 = |𝑋 |, we have that
𝑋 ∩𝑀 is a proper subset of 𝑋 . Furthermore, 𝑌 ⊂ 𝑋 ∩𝑀 gives us that 𝑋 ∩𝑀 is dense and,
therefore, cannot be closed. Finally, since 𝑋 is Hausdorff, 𝑋 ∩𝑀 = 𝑋𝑀 is not a compact
subspace.

Finally we will see that 𝑋𝑀 is not paracompact. The Proposition 3.1.3 on 𝑋 and 𝑀 gives
that 𝑋𝑀 is countably compact. Therefore 𝑋𝑀 must not be paracompact, otherwise it would
be compact, contradicting the previous assertion.

Note that, as seen in [16], since every regular Lindelöf space is paracompact, the
previous example yields the following:

Corollary 3.1.5 (R. Figueiredo[16]). There is a regular Lindelöf (compact) space 𝑋 and a
countably closed elementary submodel 𝑀 such that 𝑋𝑀 is not Lindelöf.

It becomes natural to ask in which cases we can guarantee the downwards preservation
of compactness. In the paper [24] L. Junqueira and F. Tall develop a study on when
𝑋 = 𝑋𝑀 , and the compactness of 𝑋𝑀 plays a central role in several of their results. One of
the results in this paper, credited to their previous works [25] and [23], is the upwards
preservation of compactness for spaces 𝑋𝑀 that are Hausdorff. Another result from [24] is
the following:

Proposition 3.1.6 (L. Junqueira, F. Tall[24]). If 𝑋𝑀 is compact Hausdorff and 𝑋 is first
countable, then 𝑋 = 𝑋𝑀 .

This is interesting since it implies that if 𝑋 is a compact Hausdorff first countable space
then 𝑋𝑀 cannot be compact unless 𝑋 = 𝑋𝑀 . Then, in chapter six of [24], the authors ask if
the opposite of such result may happen, that is a compact space 𝑋 such that 𝑋𝑀 is compact
for every 𝑀 . Then, in a communication with P. Koszmider relating to the preservation of
compactness by generic extensions, both him and the authors proved the following result
independently.

Theorem 3.1.7 (P. Kosminder, L. Junqueira, F. Tall[24]). If 𝑋 is a compact 𝑇2 scattered
space, then 𝑋𝑀 is compact for every elementary submodel 𝑀 in which 𝑋 ∈ 𝑀 .

This means that, for scattered Hausdorff spaces, we have the downwards preservation
of compactness for any elementary submodel. In fact, still in chapter six of [24], we
have a much stronger result that singles the scatteredness of such spaces as a necessary
condition.

Theorem 3.1.8 (L. Junqueira, F. Tall[24]). If there is a countable elementary submodel 𝑀
such that 𝑋 ∈ 𝑀 and 𝑋𝑀 is compact Hausdorff, then 𝑋 is scattered.
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Following this line of work K. Kunen in his paper [28] has developed the concept of
squashable spaces, that is, a compact Hausdorff space 𝑋 such that there exist a regular
cardinal 𝜃 and an elementary submodel 𝑀 satisfying 𝑋 ∈ 𝑀 ≺ 𝐻 (𝜃), 𝑋𝑀 is compact and
𝑋 ⊄ 𝑀 . In this paper K. Kunen investigates the relation between squashability and large
cardinals.

Another continuation for the line of work mentioned previously is in R. Figueiredo’s
Ph.D. thesis. The author studied the Lindelöf property and its interaction with elementary
submodels. One of the results he obtained is the following:

Theorem 3.1.9 (R. Figueiredo [16]). Let 𝑋 be a regular scattered space and 𝜅 a cardinal. If
𝐿(𝑋 ) ≤ 𝜅 then, for any elementary submodel 𝑀 with 𝑋 ∈ 𝑀 and 𝜅 ∈ 𝑀 , 𝐿(𝑋𝑀 ) ≤ 𝜅.

This result is analogous to the one before relating to the downwards preservation of
compactness to the Lindelöf property. Since scatteredness plays a central role in these
results, also in his thesis R. Figueiredo explores the preservation of scatteredness.

Proposition 3.1.10 (R. Figueiredo[16]). Let𝑋 be a topological space and𝑀 be an elementary
submodel. Then 𝑋 is scattered if and only if 𝑋𝑀 is scattered.

Now, in relation to the upwards preservation for the Lindelöf property, analogous to the
preservation of compactness, we have the following result from [23] by L. Junqueira.

Proposition 3.1.11 (L. Junqueira[23]). The Lindelöf property is preserved upwards if we
assume 𝑀 to be 𝜔-covering.

Note that in contrast to the compactness result it was necessary to assume that 𝑀 is 𝜔-
covering. Indeed, any non-Lindelöf space 𝑋 verifies that 𝑋𝑀 has the Lindelöf property if we
assume 𝑀 countable. Finally a result from I. Juhász and W. Weiss’s paper [21] guarantees
that the Lindelöf property is preserved through forcing for scattered regular spaces.

As a direct corollary of the previously mentioned results we have the following:

Corollary 3.1.12. If 𝑋 is a regular scattered space then the following are equivalent:

(a) 𝑋 is Lindelöf;

(b) 𝑋𝑀 is Lindelöf for every elementary submodel 𝑀 with 𝑋 ∈ 𝑀 ;

(c) 𝑋𝑀 is Lindelöf for every 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 ;

(d) 𝑋𝑀 is Lindelöf for some 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 ;

(e) 𝑋 is Lindelöf in every forcing extension;

(f) 𝑋 is Lindelöf in every 𝜔-closed forcing extension;

(g) 𝑋 is Lindelöf for some 𝜔-closed forcing extension.

In his thesis R. Figueiredo also studies preservations on being a P-space. This is inter-
esting since it is a natural consideration when working with properties of both compact
and Lindelöf spaces. Indeed, a usual line of research is to investigate when Lindelöf 𝑃-
spaces behave like compact spaces. This is also interesting since many covering properties
stronger than Lindelöf are implied when we consider a Lindelöf P-space, for example the
Rothberger and Alster properties.
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Definition 3.1.13. Given any topological space ⟨𝑋, 𝜏⟩, the set {𝐺 ⊂ 𝑋 ∶ 𝐺 is a 𝐺𝛿 set}
forms a base to a topology 𝜏𝛿 on 𝑋 , which we call the 𝐺𝛿 topology. In this case we denote 𝑋𝛿
the topological space given by the 𝐺𝛿 topology on 𝑋 .

Notice that if 𝑋 is a 𝑃-space then 𝑋 = 𝑋𝛿 . The next lemma by R. Figueiredo guarantees
us that P-spaces are preserved for a specific class of elementary submodels.

Lemma 3.1.14 (R. Figueiredo [16]). Let ⟨𝑋, 𝜏⟩ be a topological space and𝑀 be an𝜔-covering
elementary submodel. Then (𝑋𝛿 )𝑀 = (𝑋𝑀 )𝛿 .

3.2 Stronger covering properties: scattered spaces
Given the results in the previous section it is natural to ask what happens to stronger

covering properties. In [26] a study of Rothberger spaces, Menger spaces and their selection
principles is made. Also, in [38], the notion of an indestructibly Lindelöf space is defined. In
this section we are interested in exploring these properties and verifying their preservation
considering elementary submodels and scattered spaces. In what follows we shall give the
definitions and relations between these covering properties.

Definition 3.2.1. Let ⟨𝑋, 𝜏⟩ be a topological space. We say that 𝑋 is Rothberger if, for every
sequence of open covers (𝑛)𝑛∈𝜔 , there is a selection 𝑓 ∶ 𝜔 → 𝜏 such that 𝑓 (𝑛) ∈ 𝑛 and
𝑓 [𝜔] is a cover of 𝑋 .

Definition 3.2.2. Let ⟨𝑋, 𝜏⟩ be a topological space. We say that 𝑋 is Menger if, for every
sequence of open covers (𝑛)𝑛∈𝜔 , there is a selection 𝑓 ∶ 𝜔 → [𝜏 ]<𝜔 such that 𝑓 (𝑛) ⊂ 𝑛 and
⋃ 𝑓 [𝜔] is a cover of 𝑋 .

Definition 3.2.3. Let ⟨𝑋, 𝜏⟩ be a topological space. We say that 𝑋 is indestructibly Lindelöf
if and only if 𝑋 is Lindelöf and, for all countably closed forcings, the space 𝑋 remains Lindelöf
in the extension.

Now the following diagram illustrates the relationship between the properties men-
tioned above. A more complete diagram considering several other properties and relations
can be found for instance on L. Aurichi and F. Tall’s paper [4].

Menger

Rothberger

Indestructibly Lindelöf

Lindelöf

Most of the relations on the above diagram are a direct consequence of the definitions.
The fact that Rothberger implies indestructibly Lindelöf is proved in [36] as a consequence
of a characterization of indestructibility from the authors and a result of Pawlikowski and
can be found as Corollary 10 from [36].

It is known that these properties are indeed distinct. One example that shows this
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distinction for the Rothberger and Lindelöf properties is the real line ℝ. This space is
Lindelöf but cannot be Rothberger. For a quick verification of this fact just consider the
sequence of covers given by 𝑛 = {]𝑥 − 1

2𝑛 , 𝑥 + 1
2𝑛 [∶ 𝑥 ∈ ℝ}. Regardless of the choice made,

the union of any selection using this sequence will have finite measure, therefore cannot
contain ℝ. This will be used in future results from this chapter.

It is natural to ask, considering Corolary 3.1.12, if, in the case of regular scattered
spaces, we have the preservation, either downwards or upwards, of the previous covering
properties. In what follows we will present some known results from this area that will
help us better understand the relation between some of these properties and the Lindelöf
property.

Theorem 3.2.4 (R. Levy, M. D. Rice[31]). Let 𝑋 be a regular scattered Lindelöf space. Then
𝑋𝛿 is Lindelöf.

The next result is proved in [36] in the chain of implications in Theorem 47 from this
article. The authors attributed this result to F. Galvin, and in what follows we shall present
a more direct proof of the implication we are interested in.

Theorem 3.2.5 (M. Scheepers, F. Tall[36]). Let 𝑋 be a Lindelöf P-space. Then 𝑋 is a
Rothberger space.

Proof. Fix a sequence (𝑛)𝑛∈𝜔 of open covers of 𝑋 . For each 𝑥 ∈ 𝑋 let 𝑈 𝑥
𝑛 ∈ 𝑛 be an open

set containing 𝑥 . Since 𝑋 is a P-space we have that 𝑉𝑥 = ⋂𝑛∈𝜔 𝑈 𝑥
𝑛 is an open set of 𝑋

containing 𝑥 . It follows that  = {𝑉𝑥 ∶ 𝑥 ∈ 𝑋} is an open cover for 𝑋 . By Lindelöfness we
take a countable subcover {𝑉𝑥𝑛 ∶ 𝑛 ∈ 𝜔}. The selection of elements from (𝑛)𝑛∈𝜔 given by
(𝑈 𝑥𝑛

𝑛 )𝑛∈𝜔 verifies the Rothberger property, since 𝑋 = ⋃𝑛∈𝜔 𝑉𝑥𝑛 ⊂ ⋃𝑛∈𝜔 𝑈 𝑥𝑛
𝑛 .

This next result verifies that the diagram above collapses to one property when con-
sidering regular scattered spaces.

Theorem 3.2.6. Let 𝑋 be a regular scattered space. The following are equivalent:

(a) 𝑋 is Lindelöf;

(b) 𝑋 is Rothberger;

(c) 𝑋 is Menger;

(d) 𝑋 is indestructibly Lindelöf.

Proof. Most of the implications we need to verify follow from the diagram above. We only
need to concern ourselves with (a) implies (b) to finish this proof. Due to Theorem 3.2.4,
since 𝑋 is regular scattered and Lindelöf, we have that 𝑋𝛿 is Lindelöf. Then 𝑋𝛿 is a Lindelöf
P-space, which implies that 𝑋𝛿 is a Rothberger space by Theorem 3.2.5. It follows, from
the fact that the topology in 𝑋𝛿 is finer than that of 𝑋 , that 𝑋 must be Rothberger.

Now Corollary 3.1.12 holds for all the previous properties:

Corollary 3.2.7. If 𝑋 is a regular scattered space and 𝑇 is any of the properties Rothberger,
Menger or indestructibly Lindelöf then the following are equivalent:
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(a) 𝑋 is T;

(b) 𝑋𝑀 is T for every elementary submodel 𝑀 with 𝑋 ∈ 𝑀 ;

(c) 𝑋𝑀 is T for every 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 ;

(d) 𝑋𝑀 is T for some 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 ;

(e) 𝑋 is T in every forcing extension;

(f) 𝑋 is T in every 𝜔-closed forcing extension;

(g) 𝑋 is T for some 𝜔-closed forcing extension.

Proof. Fix a regular scattered topological space 𝑋 . To see that (a) implies (b) note that 𝑇
implies Lindelöf and, by Theorem 3.1.9, for every elementary submodel 𝑀 we have that
𝑋𝑀 is also Lindelöf. Now, by Propositions 3.1.1 and 3.1.10, 𝑋𝑀 also is regular and scattered.
Therefore, by Theorem 3.2.6, 𝑋𝑀 is 𝑇 . The implications from (b) to (c) and (c) to (d) are
immediate; we will see that (d) implies (a). Since 𝑋𝑀 is Lindelöf and 𝑀 is 𝜔-covering, by
Theorem 3.1.11, so is 𝑋 . By the results 3.1.10 and 3.1.2 𝑋 also is regular and scattered,
therefore 𝑋 is 𝑇 . Now (a) implies (e) follows from the fact that 𝑋 is Lindelöf on the ground
model and by Corollary 3.1.12 𝑋 also is Lindelöf in the extension. Now, since scatteredness
and regularity are preserved in the extension we have that 𝑋 is also 𝑇 . The implications
from (e) to (f) and (f) to (g) are immediate; we are only left with (g) implies (a). Indeed,
since 𝑋 is Lindelöf in the extension 𝑋 must also be Lindelöf in the ground model. This is
given by the fact that the forcing is countably closed, therefore, any countable subcover of
elements from the topology of 𝑋 in the ground model must also be in the ground model.
Since 𝑋 is scattered and regular in the ground model we have that 𝑋 also is 𝑇 .

3.3 Stronger covering properties: general case
In this section we shall continue the results from the previous section by looking at

the general case. A more detailed study of the given covering properties will be done
without assuming our space is regular and scattered. We start by checking some upward
preservation results.

Theorem 3.3.1. Let 𝑋 be a topological space and 𝑀 be a countably closed elementary
submodel such that 𝑋 ∈ 𝑀 . If 𝑋𝑀 is Rothberger, then 𝑋 must also be Rothberger.

Proof. Suppose that 𝑋 is not Rothberger. Then we have the following:

∃𝑓 (𝑓 is a function ∧ 𝑑𝑜𝑚(𝑓 ) = 𝜔 ∧ ∀𝑛 ∈ 𝜔(𝑓 (𝑛) ⊂ 𝜏 ∧⋃ 𝑓 (𝑛) = 𝑋 )∧

∧(∀𝑔 ∶ 𝜔 → 𝜏 ((∀𝑛 ∈ 𝜔(𝑔(𝑛) ∈ 𝑓 (𝑛))) ⇒ ⋃
𝑛∈𝜔

𝑔(𝑛) ≠ 𝑋 ))).

Using the Tarski-Vaught criterion, we may take 𝑓 ∈ 𝑀 . Let 𝑓 = (𝑛)𝑛∈𝜔 , no selection
𝑔 = (𝑈𝑛)𝑛∈𝜔 such that 𝑈𝑛 ∈ 𝑛 can be an open cover of 𝑋 . Now consider

 ′
𝑛 = {𝑈 ∩𝑀 ∶ 𝑈 ∈ 𝑛 ∩𝑀}.
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We will see that  ′
𝑛 is an open cover of 𝑋𝑀 . Note that, for all 𝑛 ∈ 𝜔, 𝑛 = 𝑓 (𝑛) ∈ 𝑀 .

Therefore, using absoluteness, we reflect the fact that ⋃𝑛 = 𝑋 to 𝑀 obtaining

∀𝑥 ∈ 𝑋 ∩𝑀∃𝑈 ∈ 𝑛 ∩𝑀(𝑥 ∈ 𝑈 ).

This is enough to see that ⋃ ′
𝑛 = 𝑋𝑀 and, since the open sets 𝑈 from the cover were

taken from 𝑀 , we have that each 𝑈 ∩𝑀 ∈ 𝜏𝑀 . Using the Rothberger property of 𝑋𝑀 there
is a selection (𝑈𝑛 ∩𝑀)𝑛∈𝜔 from the sequence ( ′

𝑛 )𝑛∈𝜔 that is an open cover of 𝑋𝑀 . Therefore,
since 𝑀 is countably closed and each 𝑈𝑛 ∈ 𝑀 , we have (𝑈𝑛)𝑛∈𝜔 ∈ 𝑀 . Now we reflect the
fact that 𝑀 ⊨ ⋃𝑛∈𝜔 𝑈𝑛 = 𝑋 and obtain that (𝑈𝑛)𝑛∈𝜔 is a selection from 𝑓 that is an open
cover of 𝑋 , contradicting our assumption.

The same argument can be made with the Menger property, yielding the follow-
ing.

Theorem 3.3.2. Let 𝑋 be a topological space and 𝑀 a countably closed elementary submodel
such that 𝑋 ∈ 𝑀 . If 𝑋𝑀 is Menger, then 𝑋 must also be Menger.

Proof. Again assume that 𝑋 is not Menger and use the Tarski-Vaught criterion to take
(𝑛)𝑛∈𝜔 sequence of open covers in 𝑀 such that no selection 𝑛 ∈ [𝑛]<𝜔 gives that
⋃𝑛∈𝜔 𝑛 is an open cover of 𝑋 . Now consider

 ′
𝑛 = {𝑈 ∩𝑀 ∶ 𝑈 ∈ 𝑛 ∩𝑀}.

Again, this set is an open cover of 𝑋𝑀 since, for all 𝑛 ∈ 𝜔, 𝑛 ∈ 𝑀 . Using the Menger
property of 𝑋𝑀 there is a selection ( ′

𝑛)𝑛∈𝜔 of finite subsets such that ⋃𝑛∈𝜔  ′
𝑛 is an open

cover of 𝑋𝑀 . Let
𝑛 = {𝑈 ∈ 𝑛 ∶ 𝑈 ∩𝑀 ∈  ′

𝑛}.

For all 𝑛, 𝑛 ∈ 𝑀 . Since 𝑀 is countably closed, we have (𝑛)𝑛∈𝜔 ∈ 𝑀 , and we can reflect
that it is a selection that contradicts the hypothesis.

Working with the indestructibly Lindelöf property is more complex in a sense. A result
by F. Tall in [38] characterizes indestructibility by means of covering trees. In a way this
can be seen as a weaker version of the Rothberger property since we replace the sequence
of open covers by a tree structure of height 𝜔1. To verify the upwards preservation we
first need to define covering trees and verify a result from [38].

Definition 3.3.3. Given a topological space ⟨𝑋, 𝜏⟩, a covering tree 𝑇 for 𝑋 is a function
𝑇 ∶ 𝜔<𝜔1 → 𝜏 such that, for all 𝑓 ∈ 𝜔<𝜔1 the set {𝑇 (𝑓 ∪ {⟨𝑑𝑜𝑚𝑓 , 𝑛⟩}) ∶ 𝑛 ∈ 𝜔} is a cover of
𝑋 .

In this way each branch of this tree can be seen as a selection of open sets in each
open cover. The next theorem is F. Tall’s result mentioned before that characterizes
indestructibility. The basic idea behind this is that for any given covering tree we can have
a "countable selection" that gives an open cover for the topological space.

Theorem 3.3.4 (F. Tall[38]). For a Lindelöf space 𝑋 the following are equivalent:

(a) 𝑋 is indestructible;
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(b) 𝑋 cannot be destroyed by the forcing 𝐹𝑛(𝜔1, 𝜔, 𝜔1);

(c) For each covering tree 𝑇 for the space𝑋 , the set {𝑓 ∈ 𝜔<𝜔1 ∶ 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ) is a cover of X}
is dense in 𝜔<𝜔1 ;

(d) For each covering tree 𝑇 for the space 𝑋 and 𝑓 ∈ 𝜔<𝜔1 , there is 𝑓 ∈ 𝜔𝜔1 such that
𝑓 |𝑑𝑜𝑚𝑓 = 𝑓 and {𝑇 (𝑓 |𝛼 ) ∶ 𝛼 < 𝜔1} is a cover of 𝑋 ;

(e) For each covering tree 𝑇 for the space 𝑋 , there is 𝑓 ∈ 𝜔<𝜔1 such that the set 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 )
is a cover of X.

Now we are ready to show the preservation result.

Theorem 3.3.5. Let 𝑋 be a topological space and 𝑀 be a countably closed elementary
submodel such that 𝑋, 𝜔<𝜔1 ∈ 𝑀 . If 𝑋𝑀 is indestructibly Lindelöf, then 𝑋 must also be
indestructibly Lindelöf.

Proof. First we note that, by Proposition 1.4.10, 𝜔1 ⊂ 𝑀 since 𝑀 is countably closed and,
therefore, 𝜔-covering. This implies, also by countably closedness, that 𝜔<𝜔1 ⊂ 𝑀 . Indeed,
each 𝑓 ∈ 𝜔<𝜔1 is a countable set of ordered pairs of the form ⟨𝛼, 𝑛⟩ for 𝛼 ∈ 𝜔1 ⊂ 𝑀
and 𝑛 ∈ 𝜔 ⊂ 𝑀 . Now, if we assume that 𝑋 is not indestructibly Lindelöf, by virtue of
Theorem 3.3.4, there is a covering tree contradicting (e). Fix such a tree 𝑇 . By the Tarski-
Vaught criterion, we may take 𝑇 ∈ 𝑀 . Hence, for each 𝑓 ∈ 𝜔<𝜔1 ⊂ 𝑀 , 𝑇 (𝑓 ) ∈ 𝑀 . Defining
𝑇 ∶ 𝜔<𝜔1 → 𝜏𝑀 by 𝑇 (𝑓 ) = 𝑇 (𝑓 ) ∩𝑀 , we have that 𝑇 is a covering tree for 𝑋𝑀 following
Definition 3.3.3. Indeed, for all 𝑓 ∈ 𝜔<𝜔1 , since

{𝑇 (𝑓 ∪ {⟨𝑑𝑜𝑚𝑓 , 𝑛⟩}) ∶ 𝑛 ∈ 𝜔} is a cover of 𝑋 and a subset of 𝑀 ,

it follows that

{𝑇 (𝑓 ∪ {⟨𝑑𝑜𝑚𝑓 , 𝑛⟩}) ∶ 𝑛 ∈ 𝜔} is a cover of 𝑋𝑀 .

Now, applying our hypothesis that 𝑋𝑀 is indestructibly Lindelöf and Theorem 3.3.4, fix
𝑔 ∈ 𝜔<𝜔1 such that the set 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑔) is a cover of 𝑋𝑀 , following (e) again. By countable
closedness, 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑔) ∈ 𝑀 since it is a countable set of elements from 𝑀 . Therefore,
by our choice of 𝑔 and elementarity, we have 𝑀 ⊨ ⋃ 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑔) = 𝑋 , contradicting our
choice of 𝑇 .

Now we will verify the downwards preservation for these stronger properties. It would
be interesting to see if the strengthenings of the Lindelöf property are enough to give
us any kind of preservation. It would be especially interesting if at least we had that
𝑋𝑀 is Lindelöf. More so if we are starting from an 𝑋 with the indestructibly Lindelöf
property, seeing that its definition is based in another kind of preservation for the Lindelöf
property. The following results show us that in fact the downwards preservation of the
Lindelöf property is related to the preservation of all the other properties. That is, for
certain elementary submodels 𝑀 , if the space 𝑋 has a stronger covering property and 𝑋𝑀
is Lindelöf, then 𝑋𝑀 also has the same covering property.

We start by verifying the case for the Rothberger property.
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Theorem 3.3.6. Let 𝑋 be a Rothberger space and 𝑀 be a countably closed elementary
submodel such that 𝑋 ∈ 𝑀 . If 𝑋𝑀 is Lindelöf, then 𝑋𝑀 is Rothberger.

Proof. To see that 𝑋𝑀 is Rothberger fix a sequence (𝑛)𝑛∈𝜔 of open covers of 𝑋𝑀 . Using
the Lindelöfness of 𝑋𝑀 we can take each 𝑛 to be a countable cover by open sets from
𝜏 ∩𝑀 , taking a refinement if necessary. Now each of these covers 𝑛 gives an open cover
of 𝑋 . Indeed, for each 𝑈 ∈ 𝑛 take the open set 𝑊𝑈 ∈ 𝜏 ∩𝑀 such that 𝑊𝑈 ∩𝑀 = 𝑈 . Let
𝑛 = {𝑊𝑈 ∶ 𝑈 ∈ 𝑛}; by countable closedness of 𝑀 , 𝑛 ∈ 𝑀 . Now we have

𝑀 ⊨ 𝑛 is a cover of 𝑋

so we reflect this and obtain that 𝑛 is a cover of 𝑋 . Now apply the Rothberger property
on (𝑛)𝑛∈𝜔 to find the selection (𝑊𝑈𝑛 )𝑛∈𝜔 that is an open cover. We have

𝑋𝑀 = ⋃
𝑛∈𝜔

(𝑊𝑈𝑛 ∩𝑀) = ⋃
𝑛∈𝜔

𝑈𝑛.

Therefore the selection (𝑈𝑛)𝑛∈𝜔 proves that 𝑋𝑀 is Rothberger.

Again, there is an analogous proof for the Menger property, requiring only a few
adjustments on the previous one:

Theorem 3.3.7. Let 𝑋 be a Menger space and 𝑀 be a countably closed elementary submodel.
If 𝑋𝑀 is Lindelöf, then 𝑋𝑀 is Menger.

Proof. Take (𝑛)𝑛∈𝜔 and 𝑛 as in the proof of Theorem 3.3.6. Apply the Menger property
to find the selection (𝑛)𝑛∈𝜔 such that 𝑛 ∈ [𝑛]<𝜔 and ⋃𝑛∈𝜔 𝑛 is a cover of 𝑋 . Restricting
𝑛 to 𝑀 , as in the proof before, verifies that 𝑋𝑀 is Menger.

To verify the downward preservation of the indestructibly Lindelöf property we will
need a lemma, which complements the result in Theorem 3.3.4 by adding another condition
to the list of equivalences. That is, given a base for the topology on 𝑋 , the new condition
allows us to consider only covering trees made by basic open sets.

Lemma 3.3.8. For a Lindelöf space 𝑋 the following are equivalent:

(a) 𝑋 is indestructible;

(b) For any covering tree 𝑇 for the space 𝑋 the set {𝑓 ∈ 𝜔<𝜔1 ∶ 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ) is a cover of X}
is dense in 𝜔<𝜔1 ;

(c) For any base of open sets  of 𝑋 , and any covering tree 𝑇 for the space 𝑋 composed by
elements of , the set {𝑓 ∈ 𝜔<𝜔1 ∶ 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ) is a cover of X} is dense in 𝜔<𝜔1 .

Proof. The equivalence between (a) and (b) is in [38] and (b) implies (c) is trivial. We need
to concern ourselves with the implication from (c) to (a). For this, we will have to redo the
proof of (b) implies (a) incorporating the desired base. Suppose that 𝑋 is destructible and
fix ℙ a countably closed forcing and 𝐺 a ℙ-generic filter witnessing this destructibility. We
fix a base  for 𝑋 in 𝑉 and a cover of elements of  in 𝑉 [𝐺] such that  does not have
countable subcovers. Using the truth lemma, we can fix 𝑝 ∈ ℙ and 𝜎 a ℙ-name such that:
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𝑝 ⊩ 𝜎 ⊂ ̌ ∧ ⋃ 𝜎 = �̌� ∧ ∀𝑠((𝑠 ⊂ 𝜎 ∧ |𝑠| = �̌�) ⇒ ⋃ 𝑠 ≠ �̌� )

We now define recursively 𝑝𝜂 for all 𝜂 ∈ 𝜔<𝜔1 . We first take 𝑝∅ = 𝑝. Now, for limit
𝛼 < 𝜔1 and 𝜂 ∈ 𝜔𝛼 , define 𝑝𝜂 as a 𝑞 ∈ ℙ satisfying 𝑞 ≤ 𝑝𝜂|𝛽 for all 𝛽 < 𝛼 . For 𝛼 = 𝛾 + 1 and
𝜂 ∈ 𝜔𝛾 , consider

𝜂 = {𝑈 ∈  ∶ ∃𝑞 ≤ 𝑝𝜂(𝑞 ⊩ 𝑈 ∈ 𝜎 )} ∈ 𝑉 .

𝜂 is a cover of 𝑋 and, using Lindelöfness of 𝑋 in 𝑉 we select {𝑈 𝑛
𝜂 ∶ 𝑛 ∈ 𝜔} a subcover

of 𝜂|𝛾 . We also fix 𝑞𝑛 ∈ ℙ witnessing that 𝑈 𝑛
𝜂 ∈ 𝜂. We put 𝑝𝜂⌢{⟨𝛾 ,𝑛⟩} = 𝑞𝑛. Now, the tree

formed by the open sets selected on the successor steps and the empty set otherwise,
contradicts (c).

Theorem 3.3.9. Let ⟨𝑋, 𝜏⟩ be an indestructibly Lindelöf space and 𝑀 a countably closed
elementary submodel. If 𝑋𝑀 is Lindelöf, then 𝑋𝑀 is indestructibly Lindelöf.

Proof. Suppose 𝑋𝑀 is not indestructibly Lindelöf. By item (c) of Lemma 3.3.8 there exist a
basic covering tree 𝑇 for 𝑋𝑀 , using  = {𝑉 ∩𝑀 ∶ 𝑉 ∈ 𝜏 ∩𝑀}, and 𝑔 ∈ 𝜔<𝜔1 such that no
extension 𝑓 of 𝑔 can yield an open cover of 𝑋𝑀 through 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ). For each 𝑓 ∈ 𝜔<𝜔1 let
𝑈𝑓 ∈ 𝜏 ∩𝑀 be such that 𝑇 (𝑓 ) = 𝑈𝑓 ∩𝑀 . We can consider 𝑇 given by 𝑇 (𝑓 ) = 𝑈𝑓 . Note that
𝑇 is a covering tree for 𝑋 . Indeed, for each 𝑓 ∈ 𝜔<𝜔1 , the set

{𝑇 (𝑓 ∪ {⟨𝑑𝑜𝑚𝑓 , 𝑛⟩}) ∶ 𝑛 ∈ 𝜔}

is in 𝑀 by countable closedness, and 𝑇 being a covering tree guarantees that

𝑀 ⊨ {𝑇 (𝑓 ∪ {⟨𝑑𝑜𝑚𝑓 , 𝑛⟩}) ∶ 𝑛 ∈ 𝜔} is a cover of 𝑋.

Using the indestructibility of 𝑋 and Theorem 3.3.4 we find 𝑓 ∈ 𝜔<𝜔1 such that 𝑔 ⊂ 𝑓
and 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ) is a cover of 𝑋 . Therefore 𝑟𝑎𝑛𝑇 |𝑝𝑟𝑒𝑑(𝑓 ) is a cover for 𝑋𝑀 , contradicting our
previous assumption.

Now we present some examples to put in perspective the results mentioned above.
One natural question that comes to mind is whether there is any possibility to obtain the
same results considering a less restricted 𝑀 , maybe 𝜔-covering? Other possible question
is to verify whether we could abandon the hypothesis that 𝑋𝑀 is Lindelöf.

We first consider a result of L. Junqueira from the paper [23].

Theorem 3.3.10 (L. Junqueira[23]). Under the continuum hypothesis an elementary sub-
model 𝑀 is 𝜔-covering if and only if 𝑀 is countably closed.

Next we state some results due to A. Miller and D. Fremlin that consider the size of
Rothberger and Menger subspaces of the real line.

Proposition 3.3.11 (D. Fremlin, A. Miller[32]). The minimal cardinality of a subspace of ℝ
that is not Menger is d.

Proposition 3.3.12 (D. Fremlin, A. Miller[32]). Any Lindelöf space with cardinality strictly
less than 𝑐𝑜𝑣() must also be Rothberger.
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The examples that follow show that in ZFC we cannot weaken our hypothesis for the
Rothberger property.

Example 3.3.13. Assume the negation of the Continuum Hypothesis and 𝑐𝑜𝑣() = c, for
example in a model with ℵ2 Cohen reals. There is a topological space 𝑋 such that, for every
𝜔-covering elementary submodel 𝑀 such that 𝑋 ∈ 𝑀 and |𝑀 | ≤ ℵ1, 𝑋𝑀 is Rothberger but 𝑋
is not.

Proof. Just consider ℝ and 𝑀 as stated. Since ℝ is first countable, by a result from [25], we
have that ℝ𝑀 is a subspace of ℝ. Now, given that |𝑀 | ≤ ℵ1, we have |ℝ𝑀 | ≤ ℵ1 < 𝑐𝑜𝑣().
Hence, by Proposition 3.3.12, ℝ𝑀 is Rothberger and ℝ is not.

The example above shows that the upwards preservation can fail for the Rothberger
property. The next example is from [22], and has already been used by R. Figueiredo in
[16]. It is related with the downwards preservation of the Rothberger property.

Example 3.3.14 (I. Juhász, W. Weiss[22]). Suppose there is a Kurepa tree with no Aronszajn
subtrees, such as in a model of 𝑉 = 𝐿, as seen in [12]. Then there is a regular Lindelöf P-space
𝑋 , of weight ℵ1, such that, for every 𝜔-covering elementary submodel 𝑀 of size 𝜔1 with
𝑋 ∈ 𝑀 , we have that 𝑋𝑀 is not Lindelöf.

Proof. The space 𝑋 constructed in [22] under such conditions is a linearly ordered P-space,
with the Lindelöf property, size > 𝜔1 and weight 𝜔1 having the basis as a Kurepa line. If 𝑀
is an 𝜔-covering elementary submodel, by Proposition 1.4.10 we have 𝑤(𝑋 ) = 𝜔1 ⊂ 𝑀 . It
follows that 𝑋𝑀 is a dense subspace of 𝑋 . Indeed, since 𝑤(𝑋 ) ⊂ 𝑀 , by the Tarski-Vaught
criterion, we have a base  ⊂ 𝑀 for the topology of size 𝜔1. This means that 𝑋𝑀 = 𝑋 ∩𝑀
with the subspace topology. Now, by the Tarski-Vaught criterion, for each 𝐵 ∈ , since 𝐵
is not empty there must be 𝑥 ∈ 𝐵 ∩𝑀 . Furthermore |𝑋𝑀 | ≤ |𝑀 | = 𝜔1 < |𝑋 |, therefore 𝑋 ∩𝑀
cannot be closed, in 𝑋 , otherwise by density |𝑋𝑀 | = |𝑋 |. Finally, since 𝑋 is a P-space 𝑋𝑀
cannot be Lindelöf, otherwise it would be closed.

Note that, in the Example 3.3.14, since 𝑋 is a regular P-space and Lindelöf, it must also
be Rothberger. This example, as it stands, addresses the weakening of our hypothesis on
the Lindelöf property. Since we considered 𝑉 = 𝐿 we have CH and therefore, by Theorem
3.3.10, the 𝜔-covering elementary submodel is countably closed and, at the same time, 𝑋𝑀
is not Lindelöf. On the other hand, if it is possible to obtain such a Kurepa tree in tandem
with ¬𝐶𝐻 we would have the weakening of the submodel hypothesis. But in this case we
still would lose the fact that 𝑋𝑀 is Lindelöf. It is still unknown to us whether there is such
a counterexample weakening The constraint on 𝑀 with 𝑋𝑀 Lindelöf. This motivates the
following corollary:

Corollary 3.3.15. It is consistent with ZFC that there exists a Rothberger space 𝑋 of weight
ℵ1 such that, for every 𝜔-covering elementary submodel 𝑀 , 𝑋𝑀 is not Rothberger.

Now we can also ask these questions about the Menger property. The last example is
also the one that shows downwards preservation does not hold for Menger spaces, since a
Rothberger space is also a Menger space. For an upwards counterexample we return our
focus to ℝ.
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Example 3.3.16. Assuming the negation of the Continuum Hypothesis and d > ℵ1, there is a
topological space 𝑋 such that, for every 𝜔-covering elementary submodel 𝑀 of size ℵ1, 𝑋𝑀 is
Menger, but 𝑋 is not.

Proof. First we note that, by Proposition 3.3.11, there is a non-Menger subspace 𝑋 ⊂ ℝ
such that |𝑋 | = d > ℵ1. Let 𝑀 be a 𝜔-covering elementary submodel of size ℵ1 with 𝑋 ∈ 𝑀 .
Since 𝑋 is a subspace of ℝ it is first countable and, therefore, 𝑋𝑀 is a subspace of ℝ. Since
|𝑋𝑀 | ≤ |𝑀 | = ℵ1 < d = |𝑋 |, we have that 𝑋𝑀 is Menger by Proposition 3.3.11.

Now, we are better equipped to understand the downward preservation for the Lindelöf
Property and its aforementioned strengthenings. The results 3.3.7, 3.3.6 and 3.3.9 guar-
antee us that for the preservation of the Menger, Rothberger and indestructibly Lindelöf
properties it is only necessary to verify the preservation of the Lindelöf property. It adds to
the question of what conditions are enough to guarantee the preservation of the Lindelöf
property. But, in contrast with these strengthenings, Example 3.3.14 gives us that it is
consistent with ZFC that not even Lindelöf P-spaces, which implies Rothberger, are enough
to guarantee the downwards preservation of the Lindelöf property. Furthermore, Corollary
3.1.5 states that even compactness is not enough for this preservation. This whole situation
motivates the following definition:

Definition 3.3.17. We say that a topological space 𝑋 is elementary Lindelöf if, for every
countably closed elementary submodel 𝑀 , the space 𝑋𝑀 is Lindelöf.

Now, even though indestuctibly Lindelöf is not enough to guarantee the downwards
preservation of the Lindelöf property, we turn our attention to [38]. Since the definition
of indestructibility is based in the preservation of the Lindelöf properties for countably
closed forcings, we hoped to find a direction for the parallel study involving elementary
submodels. And such research bore some fruits. A result by F. Tall in his paper lists some
properties which guarantee that a space is indestructibly Lindelöf.

Proposition 3.3.18 (F. Tall[38]). Given a Lindelöf space 𝑋 , each of the following conditions
imply that 𝑋 is indestructibly Lindelöf.

(a) 𝑋 is hereditarily Lindelöf;

(b) |𝑋 | ≤ ℵ1;

(c) |𝑋 | < 2ℵ1 and some form of generalized Martin’s axiom holds so that one can meet < 2ℵ1
dense subsets of 𝐹𝑛(𝜔1, 𝜔, 𝜔1);

(d) 𝑋 is 𝑇1 and has a point countable base;

(e) 𝑋 has at most ℵ1 non-isolated points;

(f) 𝐶𝐻 holds, and every subset of 𝑋 of cardinality ≤ ℵ1 has closure of cardinality ≤ ℵ1;

(g) 𝑋 is scattered and regular.

We shall see that some of the properties mentioned by Tall are enough to guarantee
downwards preservation of Lindelöfness for some types of elementary submodels.
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Theorem 3.3.19. Given a Lindelöf space 𝑋 and an elementary submodel 𝑀 , each of the
following conditions on 𝑋 and 𝑀 imply that 𝑋𝑀 is Lindelöf.

(a) 𝑋 ∩𝑀 is Lindelöf;

(b) 𝑋 is hereditarily Lindelöf;

(c) |𝑋 | ≤ c and 𝑀 is countably closed with c ∈ 𝑀 ;

(d) |𝑋 | ≤ ℵ1 and 𝑀 is 𝜔-covering with ℵ1 ∈ 𝑀 ;

(e) 𝑋 has at most ℵ1 non-isolated points and 𝑀 is 𝜔-covering with ℵ1 ∈ 𝑀 ;

(f) 𝑋 has at most c non-isolated points and 𝑀 is countably closed with c ∈ 𝑀 ;

(g) 𝑋 is scattered and regular.

Proof. (a) It follows from the definitions that the topology on 𝑋 ∩𝑀 as a subspace of 𝑋
is finer than that of 𝑋𝑀 . Now, from the fact that 𝑋 ∩𝑀 is Lindelöf, so is 𝑋𝑀 .

(b) Since 𝑋 is hereditarily Lindelöf the space 𝑋 ∩𝑀 is Lindelöf, and, by (a), so is 𝑋𝑀

(c) Since 𝑀 is countably closed we have c ⊂ 𝑀 by virtue of the Tarski-Vaught criterion
and the fact that (𝜔) ⊂ 𝑀 . Now, since |𝑋 | ≤ c and c ∈ 𝑀 , again by the Tarski-Vaught
criterion, we have 𝑋 ⊂ 𝑀 . Now 𝑋 ∩𝑀 = 𝑋 is a Lindelöf space, and, by (a), we have
that 𝑋𝑀 is Lindelöf.

(d) The proof is the same as in (c) replacing c by ℵ1 and using the fact that 𝜔1 ⊂ 𝑀 for
𝑀 𝜔-covering.

(e) Let 𝑋 ′ be the set of all non-isolated points of 𝑋 . Since

𝑋 ′ = {𝑥 ∈ 𝑋 ∶ ∀𝑈 ∈ 𝜏 (𝑥 ∈ 𝑈 ⇒ ∃𝑦 ∈ 𝑈 (𝑦 ≠ 𝑥))}

is definable by parameters in 𝑀 , we have 𝑋 ′ ∈ 𝑀 . Using that |𝑋 ′| ≤ ℵ1 we have
a surjective function 𝑓 ∶ 𝜔1 → 𝑋 ′. Using the Tarski-Vaught criterion we assume
𝑓 ∈ 𝑀 . Now, since 𝑀 is 𝜔-covering 𝜔1 ⊂ 𝑀 and therefore 𝑟𝑎𝑛(𝑓 ) = 𝑋 ′ ⊂ 𝑀 . Let  be
any cover for 𝑋𝑀 by open sets from {𝑈 ∩𝑀 ∶ 𝑈 ∈ 𝜏 ∩𝑀}. Take ̃ = {𝑈 ∈ 𝜏 ∩𝑀 ∶
𝑈 ∩𝑀 ∈ }. The fact that 𝑋 ′ ⊂ 𝑋 ∩𝑀 guarantees that

 = ̃ ∪ {{𝑥} ∶ 𝑥 ∈ 𝑋 ⧵ 𝑋 ′}

is an open cover of 𝑋 . Using the fact that 𝑋 is Lindelöf we extract a countable
subcover  ′ from  . Now,

{𝑈 ∩𝑀 ∶ 𝑈 ∈  ⧵ {{𝑥} ∶ 𝑥 ∈ 𝑋 ⧵ 𝑋 ′}} ⊂ 

is the countable subcover desired.

(f) The proof is the same as in (d) replacing ℵ1 by c.

(g) The proof is given by Corollary 3.1.12.
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By the Theorem 3.3.19 we have several classes of topological spaces that are elementary
Lindelöf.

Now, we can ask how the property from Definition 3.3.17 relates with other covering
properties, not only those presented throughout this chapter. In particular the following
question is interesting by the similarity of the definitions involved and the nature of the
examples we obtained.

Question 3.3.20. Is there an elementary Lindelöf space that is not indestructibly Lindelöf?

Another interesting and possibly more complex question would be the following:

Question 3.3.21. Is there a combinatorial characterization for the preservation of Lindelöf-
ness by elementary submodels?

3.4 Preservation for weakly Lindelöf spaces

In this final section we will explore the weakly Lindelöf property and show some
preservation results. We also bring to attention an existing problem, also pointed by R.
Figueiredo, related to the linearly Lindelöf property and its preservation by elementary
submodels.

Definition 3.4.1. A topological space 𝑋 is said to be weakly Lindelöf if, for any open cover
 of 𝑋 , there is a countable subset  ′ ⊂  satisfying that ⋃ ′ is dense in 𝑋 . We also
define

𝑤𝐿(𝑋 ) = 𝑚𝑖𝑛{𝜅 ∶ ∀ open cover of 𝑋 ∃ ′ ⊂  (⋃ ′ is dense in 𝑋 and | ′| ≤ 𝜅)}

The next result shows a sufficient condition for the upwards preservation of the weakly
Lindelöf property.

Lemma 3.4.2. Let 𝑋 be a topological space and 𝑀 be an 𝜔-covering elementary submodel
with 𝑋 ∈ 𝑀 . If 𝑋𝑀 is weakly Lindelöf then 𝑋 is also weakly Lindelöf.

Proof. Suppose that 𝑋 is not weakly Lindelöf. Then we have the following:

∃ open cover of 𝑋 such that, for all countable  ′ ⊂  , the set ⋃ ′ is not dense in 𝑋.

Using the Tarski-Vaught criterion we can take such  ∈ 𝑀 . Since  ∈ 𝑀 is an open cover
of 𝑋 we may reflect this to 𝑀 to obtain that, {𝑈 ∩𝑀 ∶ 𝑈 ∈  ∩𝑀} is a cover of 𝑋𝑀 by
open sets of 𝑋𝑀 . Since 𝑋𝑀 is weakly Lindelöf, there is a countable  ⊂  ∩𝑀 such that

{𝑉 ∩𝑀 ∶ 𝑉 ∈ )} ⊂ {𝑈 ∩𝑀 ∶ 𝑈 ∈  ∩𝑀}

and

⋃{𝑉 ∩𝑀 ∶ 𝑉 ∈ )} is dense in 𝑋𝑀 .
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Using that𝑀 is𝜔-covering we may take a countable ′ ∈ 𝑀 such that ⊂  ′. Furthermore,
since  ∈ 𝑀 , we have  ′′ =  ′ ∩ ∈ 𝑀 . We now show that ⋃ ′′ is dense in 𝑋 , which
contradicts our initial assumption. Indeed, since  ′′ ∈ 𝑀 is a collection of open sets and
 ⊂  ′′ we have the following;

𝑀 ⊨ ∀𝑊 ∈ 𝜏 ⧵ ∅∃𝑉 ∈  ′′(𝑊 ∩ 𝑉 ≠ ∅).

Reflecting this affirmation we verify the denseness of ⋃ ′′.

Again, as in the other covering properties cases, the scatteredness of the space allows
the downward preservation in a similar way.

Theorem 3.4.3. Let 𝑋 be a regular scattered space and 𝜅 be a cardinal. If 𝑤𝐿(𝑋 ) ≤ 𝜅 then,
for any elementary submodel 𝑀 with 𝑋 ∈ 𝑀 and 𝜅 ∈ 𝑀 , 𝑤𝐿(𝑋𝑀 ) ≤ 𝜅.

Proof. We shall prove this theorem by induction on the height of our scattered space 𝑋 .
The case where the topological space has height zero is trivial because the space is empty.
Now assume that 𝛿 is an ordinal and, for every regular scattered space 𝑌 of height less
than 𝛿 , if 𝑤𝐿(𝑌 ) ≤ 𝜅, then 𝑤𝐿(𝑋𝑀 ) ≤ 𝜅. Fix ⟨𝑋, 𝜏⟩, as in the conditions before, such that
ℎ𝑡(𝑋 ) = 𝛿 and fix an elementary submodel 𝑀 . We must show that 𝑤𝐿(𝑋𝑀 ) ≤ 𝜅.

By Proposition 1.1.5 and regularity, consider ⟨𝑈𝑥 ∶ 𝑥 ∈ 𝑋⟩ such that 𝑥 ∈ 𝑈𝑥 ∈ 𝜏 and,
if 𝑥 ≠ 𝑦 and ℎ𝑡(𝑥, 𝑋 ) ≤ ℎ𝑡(𝑦, 𝑋 ), then 𝑦 ∉ 𝑐𝑙𝜏 (𝑈𝑥 ). By the Tarski-Vaught criterion we can
assume that ⟨𝑈𝑥 ∶ 𝑥 ∈ 𝑋⟩ ∈ 𝑀 .

Claim: If 𝑥 ∈ 𝑋 ∩𝑀 , then 𝑐𝑙𝜏 (𝑈𝑥 )𝑀 has a weak Lindelöf degree ≤ 𝜅.

Proof of Claim: We divide this proof in two cases: ℎ𝑡(𝑐𝑙𝜏 (𝑈𝑥 )) < 𝛿 and ℎ𝑡(𝑐𝑙𝜏 (𝑈𝑥 )) = 𝛿 .
In the first one our claim is clear by virtue of the induction hypothesis. Now, in the second
case, we must have that 𝛿 = 𝛾 + 1. Indeed, by the way we selected 𝑈𝑥 , {𝑥} must be the last
level of 𝑐𝑙𝜏 (𝑈𝑥 ), therefore ℎ𝑡(𝑥, 𝑐𝑙𝜏 (𝑈𝑥 )) = 𝛾 and ℎ𝑡(𝑐𝑙𝜏 (𝑈𝑥 )) = 𝛾 + 1. Fix

 open cover of 𝑐𝑙𝜏 (𝑈𝑥 )𝑀 by elements of {𝑈 ∩ 𝑐𝑙𝜏 (𝑈𝑥 )𝑀 ∶ 𝑈 ∈ 𝜏 ∩𝑀}.

Since 𝑥 ∈ 𝑋 ∩ 𝑀 , there is an 𝑊 ∈  such that 𝑥 ∈ 𝑊 . Now 𝑐𝑙𝜏 (𝑈𝑥 ) ⧵ 𝑊 is such that
ℎ𝑡(𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 ) < 𝜅. By the induction hypothesis, (𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 )𝑀 has weak Lindelöf degree
≤ 𝜅. Since

{𝑈 ∩ (𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 )𝑀 ∶ 𝑈 ∈  } is a cover of (𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 )𝑀 by open sets,

there must be  ⊂  of size ≤ 𝜅 such that

⋃{𝑉 ∩ (𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 )𝑀 ∶ 𝑉 ∈ } is dense in (𝑐𝑙𝜏 (𝑈𝑥 ) ⧵𝑊 )𝑀 .

It follows that  ∪ {𝑊 } is a subcover of  of size ≤ 𝜅 and ⋃( ∪ {𝑊 }) is dense in 𝑐𝑙𝜏 (𝑈𝑥 ),
concluding the proof of the claim. ■
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Now, by the Tarski-Vaught criterion, we can find  ∈ 𝑀 such that  is a subset of
𝑟𝑎𝑛(⟨𝑈𝑥 ∶ 𝑥 ∈ 𝑋⟩) of size ≤ 𝜅 with dense union in 𝑋 . Therefore, reflecting the previous
assertion to 𝑀 we have that

⋃{(𝑈𝑥 )𝑀 ∶ 𝑈𝑥 ∈  ∩𝑀} is dense in 𝑋𝑀 .

Indeed, given 𝑊 non-empty open set in 𝑋𝑀 there is �̃� ∈ 𝜏 ∩𝑀 and 𝑈𝑦 ∈  ∩𝑀 such that
�̃� ∩𝑀 = 𝑊 and �̃� ∩ 𝑈𝑦 ∩𝑀 ≠ ∅. It follows that

⋃{𝑐𝑙𝜏 (𝑈𝑥 )𝑀 ∶ 𝑈𝑥 ∈  ∩𝑀} is also dense in 𝑋𝑀 .

Fix  an open cover of 𝑋𝑀 . We have that  is also a cover for 𝑐𝑙𝜏 (𝑈𝑥 )𝑀 , for each 𝑈𝑥 ∈ .
Now we apply the claim to obtain a family of size ≤ 𝜅 of open sets of  whose union is
dense in 𝑐𝑙𝜏 (𝑈𝑥 )𝑀 . The union of those families verifies that 𝑤𝐿(𝑋𝑀 ) ≤ 𝜅.

The two results above guarantee that an analogous of Corollary 3.2.7 holds for the
weakly Lindelöf property.

Corollary 3.4.4. If 𝑋 is a regular scattered space then the following are equivalent:

(a) 𝑋 is weakly Lindelöf;

(b) 𝑋𝑀 is weakly Lindelöf for every elementary submodel 𝑀 with 𝑋 ∈ 𝑀 ;

(c) 𝑋𝑀 is weakly Lindelöf for every 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 ;

(d) 𝑋𝑀 is weakly Lindelöf for some 𝜔-covering elementary submodel with 𝑋 ∈ 𝑀 .

Another important weakening of Lindelöfness is linear Lindelöfness, which has been
extensively studied. We first present some definitions and results from the literature
related to this property, to then finally study its relations with elementary submodels. The
central idea behind its definition is that, for compact spaces, we have the following classic
characterization:

Proposition 3.4.5 ([15]). A topological space 𝑋 is compact if and only if every infinite
subset of 𝑋 admits a complete accumulation point.

The natural extrapolation for this result, using uncountable subsets of regular car-
dinality, turns out to not be sufficient to characterize the Lindelöf property, although
Lindelöfness implies this generalization. One example that verifies the non equivalence
can be found in Mischenko’s work [33]. So the following definition makes sense:

Definition 3.4.6. A topological space is said to be linearly Lindelöf if every uncountable
subset of regular cardinality admits a complete accumulation point.

The name linearly Lindelöf was, in fact, given in a later date, in view of the following
equivalence:

Proposition 3.4.7. A topological space 𝑋 is linearly Lindelöf if and only if, for every open
cover 𝛾 of 𝑋 such that, for 𝐴, 𝐵 ∈ 𝛾 , 𝐴 ⊂ 𝐵 or 𝐵 ⊂ 𝐴, we have a countable subcover 𝛾 ′ ⊂ 𝛾 .
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In the paper [3] from A. Arhangel’skii and R. Buzyakova the relation between those
two properties is systematically studied and several questions are posed.

It follows that it should be interesting to verify an analogous to Theorem 3.1.9 for the
linearly Lindelöf property, as was also asked in [16].

Question 3.4.8. If 𝑋 is a scattered, regular, linearly Lindelöf 𝑃-space, must 𝑋𝑀 be linearly
Lindelöf for every elementary submodel 𝑀?

This seems to be a perfunctory question at first, but in what follows we show that it is
actually of interest in helping to answer some unknown questions from this area’s literature.
But first we give one more definition in the same style of the linearly Lindelöf.

Definition 3.4.9. Given a cardinal 𝜅 and a topological space 𝑋 , we say that 𝑋 is 𝜅-compact
if every subset of 𝑋 of size 𝜅 admits a complete accumulation point

From the paper [20] from I. Juhász and Z. Szentmiklóssy, relating to 𝜅-compactness
and Shelah’s PCF theory, we have the following result:

Theorem 3.4.10 (I. Juhász, Z. Szentmiklóssy[20]). Every linearly Lindelöf and ℵ𝜔-compact
space is Lindelöf.

This result implies, using the definition of ℵ𝜔-compact, the following immediate corol-
lary:

Corollary 3.4.11. Every linearly Lindelöf space of size < ℵ𝜔 is Lindelöf.

The following result is a consequence of Theorem 3.1.12 and Corollary 3.4.11 and was
also made in [16].

Corollary 3.4.12 (R. Figueiredo[16]). If 𝑋 is a scattered, regular, linearly Lindelöf space,
then 𝑋 is Lindelöf if, and only if, there exists an 𝜔-covering elementary submodel 𝑀 of
cardinality < ℵ𝜔 such that 𝑋𝑀 is linearly Lindelöf.

Proof. For the first implication suppose that 𝑋 is a Lindelöf space and fix an 𝜔-covering
elementary submodel 𝑀 of size ℵ1 that exists by Proposition 1.4.11. Using Theorem 3.1.12
we have that 𝑋𝑀 is Lindelöf and therefore, 𝑋𝑀 is linearly Lindelöf as well. For the other
implication fix 𝑀 as in the hypothesis of the corollary such that 𝑋𝑀 is linearly Lindelöf.
Since |𝑀 | < ℵ𝜔 we have |𝑋𝑀 | < ℵ𝜔 . By Corollary 3.4.11 𝑋𝑀 is also Lindelöf, and by Theorem
3.1.12 𝑋 must also be Lindelöf.

This is interesting since it gives a condition for the equivalence of the Lindelöf and
linearly Lindelöf properties for the class of scattered regular spaces. Then, since an af-
firmative answer to the Question 3.4.8 gives the second statement in the equivalence of
Corollary 3.4.12, it is equivalent to a negative answer for the following:

Question 3.4.13. Is there a topological space that is linearly Lindelöf, regular and scattered
but not Lindelöf?

This could be interesting for example when considering the following question from
[1] by L. Junqueira, O. Alas and R. Wilson

Question 3.4.14. Is there a linearly Lindelöf regular P-space which is not Lindelöf?
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In this case we might need to consider that the example cannot be scattered if an
affirmative answer for Question 3.4.12. Another use of such restriction is when considering
the following question:

Question 3.4.15. Is a normal linearly Lindelöf space Lindelöf?

It was noted by Miščenko, as is shown on [35], that such a counterexample for this
question must be a Dowker space. In the case Question 3.4.12 has an affirmative answer,
this counterexample, if it exists, cannot be scattered.
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Chapter 4

Reflection and function spaces

In this chapter we start the study of reflections on function spaces. This was motivated
by the previous studies relating to the Rothberger and indestructibly Lindelöf properties.
We wanted to find possible counterexamples related to the reflection of such properties.
This constituted part of the search for concrete examples of spaces with these covering
properties. The idea behind the investigation of such spaces is that their particular struc-
ture might help us decide the reflection results regarding the Lindelöf property. This is
particularly interesting when we study function spaces considering some historical focus
on the interplay between the Lindelöf property and function spaces.

We note that, beyond our motivation considering covering properties, this study is
interesting in and of itself. Several studies that have been made considering the relation
between elementary submodels and function spaces, for example I. Bandlow’s works [6],
that characterizes Corson compacta by means of elementary submodels and retractions, and
[7], that further develops the previous paper also investigating Corson compact subspaces
of 𝐶𝑝(𝑋 ) using elementary submodels. Another one of such studies is T. Eisworth’s work
[14], that systematically investigates a quotient space obtained by analysing 𝐶𝑝(𝑋 ) ∩𝑀 ,
that already appeared in the previous works from I. Bandlow and, independently, from
A. Dow. In his paper T. Eisworth incorporates the definition of the space 𝑋𝑀 and works
with monotonically normal compacta. But, to the best of our knowledge, in spite of the
extensive works on this field, no study had been made considering the spaces 𝐶𝑝(𝑋 )𝑀 and
𝐶𝑝(𝑋𝑀 ).

This chapter is divided in two sections. In the first one we state some previous results
from the literature setting the groundwork for the rest of the chapter. In the second
section we study the relation between 𝐶𝑝(𝑋 )𝑀 and 𝐶𝑝(𝑋𝑀 ) passing through the space 𝑋 /𝑀 .
Furthermore we verify a result concerning the downward preservation of the tightness of
𝐶𝑝(𝑋 )𝑀 .

4.1 Background content for function spaces
In this section we will state some results that will be useful to have in mind when

investigating spaces of the type 𝐶𝑝(𝑋 ) and covering properties. Furthermore we will
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introduce some notation and results from T. Eisworth [14] that will be used in this chapter.
Throughout this chapter we will assume that our topological spaces are Tychonoff as
is usual when considering continuous functions. Let us then start with the basic defini-
tions.

Definition 4.1.1. Given topological spaces 𝑋 and 𝑌 the function space 𝐶𝑝(𝑋, 𝑌 ) is the set
{𝑓 ∈ 𝑌 𝑋 ∶ 𝑓 is a continuous function} seen as a subspace of 𝑌 𝑋 with the product topology.

When 𝑌 = ℝ we will shorten 𝐶𝑝(𝑋,ℝ) to 𝐶𝑝(𝑋 ). One particular aspect we shall demand
from all our elementary submodels from now on is that ℝ ∈ 𝑀 , so that we may better
express the topology from 𝐶𝑝(𝑋 ). The next result will be used throughout this chapter,
and it is a direct application of a property from [25].

Proposition 4.1.2 (L. Junqueira, F. Tall[25]). If 𝑀 is an elementary submodel and ℝ ∈ 𝑀
then there is a basis of open sets  ∈ 𝑀 of ℝ such that  ⊂ 𝑀 is countable.

Proof. Indeed, since ℝ is second countable we may use the Tarski-Vaught criterion to
select such base in 𝑀 . Since 𝜔 ⊂ 𝑀 and 𝑀 has a function that enumerates the elements of
 we must also have  ⊂ 𝑀 .

Throughout the rest of this chapter we will need to use this result. Therefore we
preemptively fix such  ⊂ 𝑀 to use in the next results as the standard basis for ℝ.

Now we see the relationship between a function space 𝐶𝑝(𝑋 ) and 𝜎-compactness. A
result in this direction can be found in [40] and guarantees that there are severe restrictions
on 𝑋 if we have that 𝐶𝑝(𝑋 ) is 𝜎-compact.

Proposition 4.1.3. Let 𝑋 be a topological space. Then 𝐶𝑝(𝑋 ) is 𝜎 -compact if and only if 𝑋
is finite.

This is particularly interesting since many of the strengthenings of Lindelöfness can
be derived from 𝜎 -compactness, such as the Menger, Alster and Hurewicz properties. The
Rothberger property in particular is not derived from it. The following folklore result is very
useful to set a restriction on 𝑌 when a function space 𝐶𝑝(𝑋, 𝑌 ) can be Rothberger.

Proposition 4.1.4. Let 𝑋 and 𝑌 be non-empty topological spaces. If 𝑌 is Hausdorff, then
there is a closed copy of 𝑌 in 𝐶𝑝(𝑋, 𝑌 ). In particular there is a closed copy of ℝ in 𝐶𝑝(𝑋 ).

Proof. For each 𝑦 ∈ 𝑌 consider the following function 𝑓𝑦 ∶ 𝑋 → 𝑌 as being the constant
function assuming value 𝑦 . We shall argue that Φ ∶ 𝑌 → 𝐶𝑝(𝑋, 𝑌 ) given by Φ(𝑦) = 𝑓𝑦 is a
homeomorphism on its image and Φ[𝑌 ] is closed. Indeed, let 𝑔 ∈ 𝐶𝑝(𝑋, 𝑌 ) ⧵ Φ[𝑌 ]. There
must be 𝑥, 𝑧 ∈ 𝑋 such that 𝑔(𝑧) ≠ 𝑔(𝑥). Using Hausdorffness we take disjoint open sets
𝑊𝑥 and 𝑊𝑧 from 𝑌 separating the images. Now

𝑝𝑟−1𝑥 [𝑊𝑥] ∩ 𝑝𝑟−1𝑧 [𝑊𝑧] ∩ 𝐶𝑝(𝑋, 𝑌 )

is an open set containing 𝑔 that does not have any constant functions. This function clearly
is 1-1; we just need to see that it is continuous and open. Given any open set 𝑉 ⊂ 𝑌 and
𝑥 ∈ 𝑋 we have

Φ[𝑉 ] = 𝑝𝑟−1𝑥 [𝑉 ] ∩ Φ[𝑌 ].
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In an analogous manner, given any basic open set of Φ[𝑌 ],

𝑊 = ⋂
𝑖∈𝑛

𝑝𝑟−1𝑥𝑖 [𝑉𝑖] ∩ Φ[𝑌 ],

we have Φ−1[𝑊 ] = ⋂𝑖∈𝑛 𝑉𝑖 .

This result gives us the following two corollaries regarding the Rothberger prop-
erty.

Corollary 4.1.5. A function space 𝐶𝑝(𝑋, 𝑌 ) can be Rothberger only if 𝑌 is Rothberger.

Proof. Indeed, the Rothberger property is preserved through taking closed subspaces and
homeomorphisms. Therefore, if 𝐶𝑝(𝑋, 𝑌 ) is Rothberger, by Proposition 4.1.4, so must be
𝑌 .

Corollary 4.1.6. No function spaces of the form 𝐶𝑝(𝑋 ) can be Rothberger.

Proof. This is immediate from the corollary above and fact that ℝ is not Rothberger.

It follows that we must choose the space 𝑌 to be at least Rothberger if we want a
chance of 𝐶𝑝(𝑋, 𝑌 ) being Rothberger. For a recent example on such investigation, in a
paper from 2016 [8], D. Bernal-Santos studied necessary and sufficient conditions on a
Isbell-Mrowka space 𝜓 () in order to 𝐶𝑝(𝜓 (), 2)𝑛 have the Rothberger property.

For now, we will state some basic definitions and results from [14] that will be used in
the next section.

Definition 4.1.7. Given a topological space 𝑋 , a subset 𝐴 of 𝑋 is said to be a cozero set if
there is 𝑓 ∈ 𝐶𝑝(𝑋 ) such that 𝐴 = 𝑓 −1[ℝ ⧵ {0}]. Analogously 𝐴 is said to be a zero set if there
is 𝑓 ∈ 𝐶𝑝(𝑋 ) such that 𝐴 = 𝑓 −1[{0}].

Definition 4.1.8 (T. Eisworth [14]). Given a topological space 𝑋 , an elementary submodel𝑀
and 𝑥, 𝑦 ∈ 𝑋 , we define the relation 𝑥 ∼𝑀 𝑦 if and only if, for all 𝑓 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 , 𝑓 (𝑥) = 𝑓 (𝑦).

This definition above is an equivalence relation and we may consider the following
quotient space:

Definition 4.1.9 (T. Eisworth [14]). Let𝑋 /𝑀 be the topological space given by {[𝑥] ∶ 𝑥 ∈ 𝑋}
where [𝑥] represents the equivalence class of 𝑥 considering ∼𝑀 . We can also consider the
projection 𝜋𝑀 ∶ 𝑋 → 𝑋 /𝑀 given by 𝜋𝑀 (𝑥) = [𝑥]. The topology on 𝑋 /𝑀 will be the one
generated by the set {𝜋𝑀 [𝑈 ] ∶ 𝑈 ∈ 𝑀 ∧ 𝑈 is a cozero set}.

The following results will help us understand better some properties of 𝑋 /𝑀 and its
relation with 𝑋𝑀 .

Proposition 4.1.10 (T. Eisworth [14]). Given 𝑋 and 𝑀 as in the definition above, the
following hold:

• the projection 𝜋𝑀 ∶ 𝑋 → 𝑋 /𝑀 is continuous;

• 𝑥 ∼𝑀 𝑦 if and only if, for every cozero set 𝑈 ∈ 𝑀 , 𝑥 ∈ 𝑈 ⟺ 𝑦 ∈ 𝑈 ;
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• [𝑥] = ⋂{𝑍 ∈ 𝑀 ∶ 𝑥 ∈ 𝑍 ∧ 𝑍 is a zero set };

• [𝑥] = ⋂{𝑈 ∶ 𝑥 ∈ 𝑈 ∈ 𝑀 ∧ 𝑈 is a cozero set };

• 𝑋 /𝑀 is a Hausdorff space.

Proposition 4.1.11 (T. Eisworth [14]). 𝑋𝑀 is homeomorphic to a dense subspace of 𝑋 /𝑀 .
That is, there is a homeomorphism 𝐼 ∶ 𝑋𝑀 → 𝐼 [𝑋𝑀 ] ⊂ 𝑋 /𝑀 such that the image is dense in
𝑋 /𝑀 .

4.2 𝐶𝑝(𝑋 )𝑀 , 𝐶𝑝(𝑋 /𝑀) and 𝐶𝑝(𝑋𝑀)

In this section we will focus on the relation between the function spaces 𝐶𝑝(𝑋𝑀 ),
𝐶𝑝(𝑋 /𝑀) and the reflected function space 𝐶𝑝(𝑋 )𝑀 . Using the results from the previous
section we will prove a series of new results comparing these spaces.

Proposition 4.2.1. The function 𝑅 ∶ 𝐶𝑝(𝑋 /𝑀) → 𝐶𝑝(𝑋𝑀 ), given by 𝑅(𝑔) = 𝑔 ◦ 𝐼 , is
continuous and 1-1.

Proof. First we note that 𝑅 is well defined since 𝐼 is a homeomorphism. Fix 𝑓 , 𝑔 ∈ 𝐶𝑝(𝑋 /𝑀)
distinct. If 𝑅(𝑓 ) = 𝑅(𝑔), then we must have 𝑓 ↾𝐼 (𝑋𝑀 )= 𝑔 ↾𝐼 (𝑋𝑀 ). By density of 𝐼 (𝑋𝑀 ) and
continuity of 𝑓 and 𝑔 we must have 𝑓 = 𝑔. Now we must see that 𝑅 is continuous. Fix a
basic open set 𝑉 in 𝐶𝑝(𝑋𝑀 ) given by 𝑉 = ⋂𝑖∈𝑛 𝜋−1

𝑥𝑖 [𝑈𝑖] where 𝑥𝑖 ∈ 𝑋𝑀 and 𝑈𝑖 ∈ . Now

𝑅−1[𝑉 ] = {𝑓 ∈ 𝐶𝑝(𝑋 /𝑀) ∶ 𝑅(𝑓 ) ∈ 𝑉 } = {𝑓 ∈ 𝐶𝑝(𝑋 /𝑀) ∶ ∀𝑖 ∈ 𝑛 (𝑓 ◦ 𝐼 (𝑥𝑖) ∈ 𝑈𝑖)} =

= ⋂
𝑖∈𝑛

{𝑓 ∈ 𝐶𝑝(𝑋 /𝑀) ∶ 𝑓 ([𝑥𝑖]) ∈ 𝑈𝑖},

which is open.

Now that we found a continuous function relating 𝐶𝑝(𝑋 /𝑀) to 𝐶𝑝(𝑋𝑀 ) we shall take
a look at 𝐶𝑝(𝑋 ) ∩𝑀 . Since this space has two possible topologies, the subspace one and
𝐶𝑝(𝑋 )𝑀 , the next two propositions will cover both cases, illustrating some differences
between them.

Definition 4.2.2. Given a function 𝑔 ∈ 𝐶𝑝(𝑋 )𝑀 , define �̃� by �̃�([𝑥]) = 𝑔(𝑥).

We note that the definition above is sound. Given 𝑔 ∈ 𝐶𝑝(𝑋 )𝑀 we have �̃� ∈ ℝ𝑋 /𝑀 .
Indeed, because 𝑔 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 , it does not matter what element of [𝑥] we take to compute
𝑔 on. Now we give one condition to see that �̃� is continuous.

Proposition 4.2.3. Given a function 𝑔 ∈ 𝐶𝑝(𝑋 )𝑀 and �̃� as in Definition 4.2.2, if, for every
[𝑥] ∈ 𝑋 /𝑀 , there is 𝑦 ∈ 𝑋 ∩𝑀 such that 𝑦 ∈ [𝑥], then �̃� is continuous.

Proof. Fix 𝑈 ∈ . Taking [𝑥] ∈ �̃�−1[𝑈 ], we have 𝑔(𝑥) ∈ 𝑈 . Using Tychonoffness and
𝑥, 𝑔, 𝑈 ∈ 𝑀 we can use the Tarski-Vaught criterion to take a co-zero set 𝑍 in 𝑀 such that
𝑥 ∈ 𝑍 and 𝑔[𝑧] ⊂ 𝑈 . Now, [𝑥] ∈ 𝜋𝑀 [𝑍 ], 𝜋𝑀 [𝑍 ] is an open set, and �̃�[𝜋𝑀 [𝑍 ]] ⊂ 𝑈 .
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For the next results we shall assume that, for all 𝑔 ∈ 𝐶𝑝(𝑋 )𝑀 , �̃�, as in Definition 4.2.2,
is continuous.

Proposition 4.2.4. The function 𝐿0 ∶ 𝐶𝑝(𝑋 )𝑀 → 𝐶𝑝(𝑋 /𝑀), given by 𝐿0(𝑔) = �̃�, is open in
its image and 1-1.

Proof. Let 𝑓 , 𝑔 ∈ 𝐶𝑝(𝑋 )𝑀 . If 𝑓 ≠ 𝑔, then there is 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) ≠ 𝑔(𝑥). Therefore
𝑓 ([𝑥]) ≠ �̃�([𝑥]). To see that 𝐿0 is open we consider an open subset 𝑉 of 𝐶𝑝(𝑋 )𝑀 and take
𝑊 = 𝐿0[𝑉 ]. Let 𝑔 ∈ 𝐿0[𝑉 ], that is, there is 𝑓 ∈ 𝑉 such that 𝑔 = 𝐿0(𝑓 ). Since𝑉 ∈ 𝑀 and 𝑓 ∈ 𝑀 ,
there must be 𝑛 ∈ 𝜔, 𝑥𝑖 ∈ 𝑀 and 𝑈𝑖 ∈  for each 𝑖 ∈ 𝑛 such that 𝑓 ∈ ⋂𝑖∈𝑛 𝑝𝑟−1𝑥𝑖 [𝑈𝑖] ⊂ 𝑉 .
Therefore 𝑔 ∈ ⋂𝑖∈𝑛 𝑝𝑟−1[𝑥𝑖][𝑈𝑖] ∩ 𝐿0[𝐶𝑝(𝑋 )𝑀 ] ⊂ 𝐿0[𝑉 ]

Proposition 4.2.5. The function 𝐿1 ∶ 𝐶𝑝(𝑋 ) ∩ 𝑀 → 𝐶𝑝(𝑋 /𝑀), given by 𝐿1(𝑔) = �̃�, is
continuous and 1-1.

Proof. Since 𝐿1 has the same base function as 𝐿0 the fact that 𝐿1 is 1-1 is proved in same
way as 𝐿0. Therefore we only need to worry about the topological property relating to this
function. Let 𝑉 be a basic open set of 𝐶𝑝(𝑋 /𝑀) given by 𝑉 = ⋂𝑖∈𝑛 𝑝𝑟−1[𝑥𝑖][𝑈𝑖]. We have the
following:

𝐿−11 [𝑉 ] = {𝑓 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 ∶ 𝐿1(𝑓 ) ∈ 𝑉 } = {𝑓 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 ∶ 𝑓 (𝑥𝑖) ∈ 𝑈𝑖} = ⋂
𝑖∈𝑛

𝑝𝑟−1𝑥𝑖 [𝑈𝑖] ∩𝑀,

which is open.

Notice that, since our topology on 𝐶𝑝(𝑋 ) ∩ 𝑀 is finer that that of 𝐶𝑝(𝑋 )𝑀 , it makes
sense that 𝐿0 is open and 𝐿1 is continuous. The results from before motivate us to study the
composition of the previous functions. We then are able to obtain several ways to relate
𝐶𝑝(𝑋𝑀 ) and 𝐶𝑝(𝑋 )𝑀 . This is interesting since we might be able to derive some properties
of 𝑋𝑀 from 𝐶𝑝(𝑋 )𝑀 and vice versa.

Corollary 4.2.6. The function 𝑅 ◦ 𝐿1 is 1-1 and continuous.

Corollary 4.2.7. The function 𝑅 ◦ 𝐿0 is 1-1 and open on its image.

Proof. The 1-1 part is immediate from the previous propositions. To verify the openness
we repeat the argument used in Proposition 4.2.4 exchanging 𝐿0 by 𝑅 ◦ 𝐿0.

We shall return to these results later. The next two results give us insights on two
other interesting properties that these compositions have.

Proposition 4.2.8. For 𝑖 ∈ 2, 𝑅 ◦ 𝐿𝑖 is a ring-isomorphism on its image.

Proof. Let 𝑓 , 𝑔 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 . For all 𝑥 ∈ 𝑋𝑀 we have:

𝑅 ◦ 𝐿𝑖(𝑓 + 𝑔)(𝑥) = 𝐿𝑖(𝑓 + 𝑔) ◦ 𝐼 (𝑥) = 𝐿𝑖(𝑓 + 𝑔)([𝑥])
= (𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) = (𝐿𝑖(𝑓 ) + 𝐿𝑖(𝑔))([𝑥])
= (𝐿𝑖(𝑓 ) + 𝐿𝑖(𝑔)) ◦ 𝐼 (𝑥) = (𝑅 ◦ 𝐿𝑖(𝑓 ) + 𝑅 ◦ 𝐿𝑖(𝑔))(𝑥).

(4.1)
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In the same way we verify that 𝑅 ◦ 𝐿𝑖(𝑓 .𝑔) = 𝑅 ◦ 𝐿𝑖(𝑓 ).𝑅 ◦ 𝐿𝑖(𝑔).

Proposition 4.2.9. For 𝑖 ∈ 2, ran (𝑅 ◦ 𝐿𝑖) is a dense subset of 𝐶𝑝(𝑋𝑀 ).

Proof. Let 𝑉 be a non-empty basic open set from 𝐶𝑝(𝑋𝑀 ). There are 𝑥1,⋯ , 𝑥𝑛 ∈ 𝑋𝑀 and
𝑉0,⋯ , 𝑉𝑛 basic open sets of ℝ such that

𝑉 = 𝐶𝑝(𝑋𝑀 ) ∩(
⋂
𝑖∈𝑛+1

𝑝𝑟−1𝑋𝑀 ,𝑥𝑖 [𝑉𝑖])
.

By the Tarski-Vaught criterion, reflecting the fact that 𝑋 is Tychonoff and, for all 𝑗 ∈ 𝑛 + 1,
𝑥𝑗 , 𝑉𝑗 ∈ 𝑀 , we can take 𝑓 ∈ 𝐶𝑝(𝑋 ) ∩𝑀 such that 𝑓 (𝑥𝑗) ∈ 𝑉𝑗 for all 𝑗 ∈ 𝑛 + 1. Now 𝑅 ◦ 𝐿𝑖(𝑓 ) is
such that 𝑅 ◦ 𝐿𝑖(𝑓 )(𝑥𝑗) ∈ 𝑉𝑗 . This guarantees that 𝑅 ◦ 𝐿𝑖(𝑓 ) ∈ 𝑉 .

The previous results give us a foundation and what to expect when dealing with such
function spaces. For example, Propositions 4.2.4 and 4.2.5 illustrate the difference between
𝐶𝑝(𝑋 ) ∩𝑀 and 𝐶𝑝(𝑋 )𝑀 . It would be interesting to see what conditions would be necessary
for one of the functions 𝑅 ◦ 𝐿𝑖 to be a homeomorphism. One such condition that we will
explore later is the case where 𝑋 ⊂ 𝑀 . Note that the following holds:

Proposition 4.2.10. If 𝑋 ⊂ 𝑀 then, for every [𝑥] ∈ 𝑋 /𝑀 , there is 𝑦 ∈ 𝑋 ∩ 𝑀 such that
𝑦 ∈ [𝑥].

This guarantees that we are in the condition of the previous results.

Proposition 4.2.11. If 𝑋 ⊂ 𝑀 then 𝑅 ◦ 𝐿0 is also continuous.

Proof. When we argue that 𝐿1 is continuous in Proposition 4.2.5 the main argument is that
the sets 𝑝𝑟−1𝑥𝑖 [𝑈𝑖] ∩𝑀 must be open in the domain. Now, for all 𝑖 ∈ 𝑛, since 𝑥𝑖 ∈ 𝑋 ⊂ 𝑀 and
𝑈𝑖 ∈ 𝑀 we must have 𝑝𝑟−1𝑥𝑖 [𝑈𝑖] ∈ 𝑀 and therefore 𝑝𝑟−1𝑥𝑖 [𝑈𝑖] ∩𝑀 is an open set of 𝐶𝑝(𝑋 )𝑀
when we make the same arguments for 𝐿0, concluding the proof.

Corollary 4.2.12. There is a dense copy of 𝐶𝑝(𝑋 )𝑀 inside 𝐶𝑝(𝑋𝑀 ).

Proof. This is immediate since 𝑅 ◦ 𝐿0 is an homeomorphism with dense image by the
previous results.

A consequence of these results is a downward preservation of the countable tightness
of the function space 𝐶𝑝(𝑋 ). This relies on some classical results from the theory of function
spaces and results from Chapter 3.

Let us start with one such result due to A. Arhangel’skii [2].

Theorem 4.2.13 (A. Arhangel’skii [2]). For a space 𝑋 it holds that 𝑡(𝐶𝑝(𝑋 )) = 𝑠𝑢𝑝{𝑙(𝑋 𝑛) ∶
𝑛 ∈ 𝜔}. In particular, 𝐶𝑝(𝑋 ) is countably tight if and only if 𝑋 𝑛 is Lindelöf for each 𝑛 ∈ 𝜔.

Since we will work with product spaces it becomes relevant to present the following
result.
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Proposition 4.2.14. Let 𝑋, 𝑌 be topological spaces and 𝑀 be an elementary submodel such
that 𝑋, 𝑌 ∈ 𝑀 . Then (𝑋 × 𝑌 )𝑀 = 𝑋𝑀 × 𝑌𝑀 .

Proof. First we note that (𝑋 ∩𝑀)×(𝑌 ∩𝑀) = (𝑋 ×𝑌 )∩𝑀 , that is, both topological spaces have
the same underlying set. We only need to see that their topologies coincide. Indeed, take a
basic open set 𝑈 = (𝑈𝑋 ∩𝑀)× (𝑈𝑌 ∩𝑀) from (𝑋𝑀 )× (𝑌𝑀 ). We have 𝑈 = (𝑈𝑋 ∩𝑀)× (𝑈𝑌 ∩𝑀) =
(𝑈𝑋 × 𝑈𝑌 ) ∩𝑀 , which is a basic open set of (𝑋 × 𝑌 )𝑀 since 𝑈𝑋 × 𝑈𝑌 ∈ 𝜏𝑋×𝑌 ∩𝑀 . The other
inclusion is analogous.

Now we can prove the preservation of the tightness.

Theorem 4.2.15. Let X be a Tychonoff space and 𝑀 an elementary submodel such that
𝑋 ⊂ 𝑀 . If 𝐶𝑝(𝑋 ) has countable tightness, then so does 𝐶𝑝(𝑋 )𝑀 .

Proof. Notice that, since 𝐶𝑝(𝑋 ) is countably tight, we must have 𝑋 𝑛 Lindelöf for all 𝑛 by
Theorem 4.2.13. Now since 𝑋 ⊂ 𝑀 we also have 𝑋 𝑛 ⊂ 𝑀 . That implies, by Proposition 4.2.14
and Theorem 3.3.19 item (a), (𝑋𝑀 )𝑛 is Lindelöf for all 𝑛 ∈ 𝜔. This means that 𝐶𝑝(𝑋𝑀 ) also
has countable tightness. By our Corollary 4.2.12 and the fact that the tightness preserves
the inequality for subspaces and is preserved by homeomorphisms, we have that 𝐶𝑝(𝑋 )𝑀
also has countable tightness.

One interesting question is whether 𝑋 ⊂ 𝑀 is enough to guarantee that the subspace
topology on 𝐶𝑝(𝑋 ) ∩ 𝑀 is equal to the topology on 𝐶𝑝(𝑋 )𝑀 . This is in fact true, which
means that 𝑋 ⊂ 𝑀 is a stronger condition on the reflected 𝐶𝑝-space.

Proposition 4.2.16. If 𝑋 is a topological space and 𝑀 is an elementary submodel such that
𝑋 ⊂ 𝑀 , then 𝐶𝑝(𝑋 )𝑀 is a subspace of 𝐶𝑝(𝑋 ).

Proof. We only need to show that the topology from 𝐶𝑝(𝑋 )𝑀 is a basis for the subspace
topology. Indeed, let 𝐴 be a basic open set of 𝐶𝑝(𝑋 ). We have then 𝑛 ∈ 𝜔, 𝑥𝑖 ∈ 𝑋 , for 𝑖 ∈ 𝑛,
and 𝑉𝑖 ∈  such that 𝐴 = ⋂𝑖∈𝑛{𝑓 ∈ 𝐶𝑝(𝑋 ) ∶ 𝑓 (𝑥𝑖) ∈ 𝑉𝑖}. Now, since 𝑋, ⊂ 𝑀 we have that
𝐴 is definable by elements of 𝑀 . Therefore 𝐴 ∈ 𝑀 .

Now the previous results implies the following corollary for cardinal functions that
are hereditary.

Corollary 4.2.17. If there is 𝑖 ∈ 2 such that 𝑅 ◦𝐿𝑖 is a homeomorphism, then for any cardinal
function 𝑓 ∈ {𝜒 , 𝜓 , 𝑠, 𝑤} we have 𝑓 (𝐶𝑝(𝑋 )𝑀 ) ≤ 𝑓 (𝐶𝑝(𝑋𝑀 )).

One possible way of exploring this topic would be to verify the converse result. That
is, what does 𝐶𝑝(𝑋 )𝑀 being a subspace of 𝐶𝑝(𝑋 ) imply? Another possibility would be
to analyse whether one of the functions 𝑅 ◦ 𝐿𝑖 could be an homeomorphism without
demanding that 𝐶𝑝(𝑋 )𝑀 has the subspace topology.

In what follows we will show a corollary obtained by adjusting previous results from
the literature to the language of function spaces. Theorem 2.12 from [25] gives us a way
to analyse whether 𝑋𝑀 is a subspace of 𝑋 by considering 𝑋 with pointwise countable
type:
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Theorem 4.2.18 (L. Junqueira, F. Tall[25]). If 𝑌 is a Hausdorff space with countable tightness
and pointwise countable type, and 𝑀 is a countably closed elementary submodel, then 𝑌𝑀 is
a subspace of 𝑌 .

Now the following result can be found in [40].

Proposition 4.2.19. If 𝑋 is any space and there exists 𝐾 ⊂ 𝐶𝑝(𝑋 ) compact such that
𝜒 (𝐾, 𝐶𝑝(𝑋 )) ≤ 𝜔, then 𝑋 is countable.

From these results we can conclude:

Corollary 4.2.20. Let 𝑋 be such that 𝐶𝑝(𝑋 ) has pointwise countable type and𝑀 is countably
closed. Then 𝐶𝑝(𝑋 )𝑀 is a subspace of 𝐶𝑝(𝑋 ).

Proof. We already know that 𝐶𝑝(𝑋 ) is Hausdorff and has pointwise countable type. The
only thing that is left to check in order to apply Theorem 4.2.18 is the countable tightness.
But now, since 𝐶𝑝(𝑋 ) is non-empty and has pointwise countable type, there is a compact
set as in Proposition 4.2.19. It follows that 𝑋 is countable and, therefore, 𝐶𝑝(𝑋 ) is first
countable, hence countably tight.

Most of the results in this section have been made considering ℝ. But they can be
verified replacing ℝ by any 𝑌 second countable when it makes sense. We conclude this
section by stating that this study has just begun and we believe that it is a nice topic for
further developments.
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