Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2022.tde-12102022-112918
Document
Author
Full name
Rodrigo Rey Carvalho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2022
Supervisor
Committee
Junqueira, Lucia Renato (President)
Dias, Rodrigo Roque
Fernandes, Gabriel Zanetti Nunes
Mezabarba, Renan Maneli
Passos, Marcelo Dias
Title in English
Covering properties,reflections in elementary submodels and partitions on topological spaces
Keywords in English
Covering properties
Elementary submodels
Forcing
Function spaces
Ramsey theory
Topological space partitions
Abstract in English
This work develops two distinct topics. We first work with partitions on topological spaces, developing some topics found on [27]. We fixed the proof of the first theorem from the previous paper. We also improved the consistency of a result obtained using by constructing an example consistent with ¬. In relation with the second topic we studied the spaces developed on [25]. For this we followed the line of work of the thesis [16]. We see that, for scattered spaces the properties Rothberger, Menger and indestructibly Lindelöf are preserved for elementary submodels. Furthermore we continue to investigate these preservations for more general spaces. Finally we worked with spaces and elementary submodels.
Title in Portuguese
Propriedades de cobertura, reflexões em submodelos elementares e partições em espaços topológicos
Keywords in Portuguese
Espaços de funções
Forcing
Partição de espaços topológicos
Propriedades de cobertura
Submodelos elementares
Teoria de Ramsey
Abstract in Portuguese
Este trabalho trata de dois tópicos distintos. Primeiro tratamos sobre a teoria das partições em espaços topológicos, desenvolvendo os tópicos explorados em [27]. Adaptamos a demonstração do primeiro teorema do artigo previamente citado. Também melhoramos a consistência de um resultado feito com , construindo um exemplo consistente com ¬. Com relação ao segundo tópico, desenvolvemos sobre os espaços definidos em [25]. Seguimos por um caminho semelhante ao feito na tese [16]. Vemos que, no caso de espaços dispersos, há preservação, com relação a submodelos elementares, para as propriedades de Rothberger, Menger e indestrutivelmente Lindelöf. Ademais continuamos a investigar tais reflexões para espaços mais gerais. Por fim, trabalhamos com espaços da forma () e submodelos elementares.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
FinalThesis.pdf (967.89 Kbytes)
Publishing Date
2023-01-04