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Abstract

In 1982, Karen Uhlenbeck published two foundational papers in gauge theory, which
quickly led to Simon Donaldson’s Fields medal winning result on topology of four-
manifolds, and to the beginning of an era of using gauge theoretic techniques as tools
for proving theorems. In 2019, she became the first (and thus far only) woman to receive
the Abel prize, for these and other groundbreaking works in geometric analysis.

In one of theseworks, entitledConnectionswithLp bounds on curvature, Uhlenbeckproved
two very important technical results on the existence of a good gauge, and the sequential
compactness of weak connections with bounded curvature. In this work, we prove these
results and then address their immediate consequence: the uniform convergence of weak
Yang-Mills connections with bounded curvature.

Keywords: gauge theory, geometric analysis, fibre bundles, connections, Uhlenbeck compactness,
Yang-Mills equation.

Resumo

Em 1982, Karen Uhlenbeck publicou dois artigos fundamentais em teoria de gauge, que
rapidamente levaram SimonDonaldson ao resultado em topologia de 4-variedades que lhe
rendeu amedalha Fields, e ao início de uma era de utilização de técnicas de teoria de gauge
em demonstrações. Em 2019, se tornou a primeira (e por enquanto, única) mulher a receber
o prêmio Abel, por esses e outros trabalhos revolucionários em análise geométrica.

Em um desses trabalhos, Connections with Lp bounds on curvature, Uhlenbeck provou
dois resultados técnicos muito importantes sobre a existência de uma boa escolha de
gauge, e sobre a compacidade sequencial de conexões fracas com curvatura uniformemente
limitada. Neste trabalho, provamos esses resultados e em seguida nos voltamos à uma
consequência imediata: a convergência uniforme de sequências de conexões Yang-Mills
fracas com curvatura uniformemente limitada.

Palavras-chave: teoria de gauge, análise geométrica, fibrados, conexões, compacidade de Uhlen-
beck, equação de Yang-Mills.
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Introduction

This work is very technical. It deals with something called gauge theory, and the main
results concern existence of objects with good properties, and convergence of sequences
in abstract spaces. The motivation for these results is of type “because they are powerful
tools for proofs in gauge theory”, which may seem tautological and empty for a non
mathematician unaware of the larger context. Hence, before getting into the main results
and the mathematics of it, we will spend some effort to motivate the area as a whole, and
we aim to answer the following three questions in increasing level of abstractness:

1) What is gauge theory?

2) What are the motivations to study gauge theory, mathematical or otherwise?

3) What is this specific manuscript about?

What is gauge theory?

To put it shortly, gauge theory is the study of connections on principal bundles. Unpacking
this terse definition is the goal of the first half of chapter 1, and the reader could simply
skim it to get a feel for the objects of interest. Nevertheless, we will attempt here to be a bit
more intuitive.

A fibre bundle consists of a family of spaces, all isomorphic to each other and called
fibres, which is parametrized by a base manifold, such that at each point of the manifold
there is one fibre. If the fibres are, for instance, one dimensional vector spaces, then
imagining a bundle of wires is an appropriate visualization. Now, if we call the base
manifold M , and let the fibres be isomorphic to F , it is not correct to think of the bundle
as a productM × F , even though at each point the fibre is isomorphic to {point} × F . A
fibre bundle may be twisted somehow. When the bundle is globally a product, it is called
trivial, and we demand that all fibre bundles be locally trivial.

Because of this twisting of the bundle, there is no natural way of moving along fibres,
which in particular means that there is no natural notion of differentiation. A connection
is essentially a choice of how to navigate this twist. It defines a covariant derivative on the
bundle, a way to differentiate sections. It makes it possible to define away tomove between
fibres, called parallel transport. On a principal bundle, a connection can be defined as a
choice of horizontal subbundle inside the tangent bundle of the total space. If the bundle
is trivial and there are natural choices, then these choices define a canonical connection.

Finally, a gauge transformation is nothing more than an automorphism of the bundle;
locally, it can also be seen as a choice of trivialization. These objects are both troublesome
and helpful. On the one hand, when we identify all isomorphic bundles, a great deal
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of redundancy is introduced and solving equations might be hard. On the other hand,
looking for gauge invariance becomes a good way of finding interesting objects.

Why gauge theory?

In biology, there is a concept called convergent evolution, which is the independent evolu-
tion of similar traits in organisms which are not closely related.1 A similar phenomenon
sometimes arises between physics and pure mathematics, whereas two areas develop in-
dependently of each other and eventually converge on the same idea; a notable example
is general relativity and differential geometry. Where the analogy differs is that when the
two interpretations become aware of each other and come into contact, the ensuing inter-
action often leads to profound results. Gauge theory is a prime example of this wonderful
phenomenon.

The fundamentals of the general theory of fibre bundles were developed mainly from
1935 to 1950, and in 1951, N. Steenrod published the first book on the subject, Topology of
Fibre Bundles [Ste51]. At the same time, the notion of gauge invariance was already well
known to physicists in the context of electromagnetism, but it was not very fleshed out and
it was not given much importance. Unaware of the existing mathematical theory, in 1954
physicists C.-N. Yang and R. Mills published their acclaimed paper, Conservation of isotopic
spin and isotopic gauge invariance [YM54], in which they generalize the abelian principle of
gauge invariance of eletromagnetism to the non-abelian case of isospin, and in the process
“discover” connections and curvature.

The realization of the geometric meaning of gauge fields would only come around 20
years later. Indeed, Yang himself affirmed during an interview that he only learned of the
concept of a connection around 1970.2 In the abstract of a 1975 paper of Yang and T.-T. Wu,
they state [WY75]:

“Generalizations to non-Abelian groups are carried out, and results in identifi-
cationwith themathematical concept of connectionsonprincipal fiber bundles.”

Nevertheless, Yang andMills’ paper ushered in a proliferation of gauge theories in physics
which culminated in the formulation of the Standard Model of particle physics. The
Standard Model is the quantum field theory which describes three of four fundamental
forces of the universe, and is one of the greatest achievements of contemporary physics.

The year 1975 also saw the introduction of instantons (then called pseudoparticles),
special solutions of the Yang–Mills equations in four dimensions [BPST75]. This finally
piqued the interest of mathematicians, and led M. Atiyah and others to publish papers
looking at constructions and the moduli space of instantons, [AW77, ADHM78, AHS78].
Already at this point there was plenty of interaction between different areas of mathemat-
ics: using R. Penrose’s twistor theory, the instanton problem was seen to a problem in
complex analysis, and then in algebraic geometry. The main developments of this time are
beautifully explained in lecture notes by Atiyah, [Ati79].

As the success and intrinsic interest of Yang–Mills theory in mathematics became ap-
parent, others followed suit. For the next few years, several works appeared studying
solutions to the Yang–Mills equations. In particular, K. Uhlenbeck, one of the founders of

1Two examples of this are wings evolving in birds and bats, or dorsal fins and flippers evolving in fish and
marine mammals.

2See the quote at the beginning of [BM94, chapter 3].
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modern geometric analysis, because interested in the subject and in 1982 published two
works considered fundamental for the analysis of Yang–Mills theory.

As a result of Uhlenbeck’s and others’ work, S. Donaldson obtained a groundbreaking
result in 1983. In his paper [Don83], Donaldson used the moduli space of instantons to
prove a theorem on the topology of four-manifolds, which building on work from M.
Freedman essentially proved the existence of non-smoothable topological manifolds in
dimension four. For their work, Donaldson and Freedman were awarded the Fields Medal
in 1986.

From that point onwards, gauge theory became a powerful tool in mathematics, es-
pecially for finding topological invariants. Donaldson expanded his work on topological
invariants of four-manifolds, founding an area called Donaldson theory, and A. Floer soon
came up with instanton invariants for three-manifolds, marking the beginning of Floer
theory [Flo88].

As time passed, new equations emerged to coexist with the Yang–Mills equation, via
methods such as dimensional reduction or the addition of supersymmetry. As the land-
scape broadened, so did the applications. One important example is the Seiberg–Witten
equation, which was shown to provide easier proofs to many of Donaldson’s results, and
is used to define certain types of Floer homologies; a very important and somewhat re-
cent application in the context of contact topology3 is C. Taubes’s proof of the Weinstein
conjecture [Tau07]. In the same year, A. Kapustin and E. Witten published the Kapustin–
Witten equations [KW07], which promise applications to number theory via the geometric
Langlands program.

More recently, two of the plenary lectures of the 2018 International Congress of Mathe-
maticians were given by prominent gauge theorists discussing the future of the area. One
lecture was given by Donaldson, on recent developments in Kähler geometry and excep-
tional holonomy. The other lecture, given by P. Kronheimer and T. Mrowka, stresses the
utility of gauge theory as a tool, and proposes a proof of the infamous four colour theorem
in graph theory using instanton Floer homology for knots.

Gauge theory is a cornerstone of particle physics, and a mathematical theory with far-
reaching applications. We hope to have convinced the reader of its ongoing significance.
There is still much to be done on both sides, and thus it seems fair to conclude that this is
something worth studying.

The main results

With all of this said, we now discuss the contents of this dissertation.
In this work, we studiedUhlenbeck’s highly acclaimed paperConnections withLp bounds

on curvature [Uhl82]. We mainly followed the exposition on [Weh04]. The main results can
be very roughly (and imprecisely) stated as follows.

Theorem (Gauge fixing). For a local connection with small curvature, there exists a good gauge.

Theorem (Weak compactness). A sequence of connections with limited curvature is somehow
equivalent to a sequence which converges weakly.

Theorem (Strong compactness). A sequence of Yang–Mills connections with limited curvature
is somehow equivalent to a sequence which converges uniformly.

3A contact manifold is the analogue of a symplectic manifold in odd dimensions.
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Let us now be more precise. Let P be a principalG-bundle over a compact manifoldM
with (possibly empty) boundary, where G is a compact Lie group (this will always be our
setup, unless stated otherwise). We are interested in studying connections on P , and the
most convenient way is to interpret connections as g-valued 1-forms on P , and we denote
the space of connections by A(P ). The curvature of a connection is a 2-form. The gauge
transformations, defined as G-equivariant maps from P to G, act on the connections and
their curvatures, and form a group, which we denote G(P ).

Both A(P ) and G(P ) are infinite dimensional objects, with A(P ) being an affine space
and G(P ) a Lie group. In order to use tools from functional analysis, we first need to turn
them into a Banach space and a Banach manifold. To do so, Sobolev spaces of sections of
fibre bundles are introduced, andwedefine the Sobolev spacesAk,p(P )ofweak connections
and Gk,p(P ) of weak gauge transformations on P .

We call our “good” gauge the Uhlenbeck gauge condition, which consists of a gauge fix-
ing differential equation (the Coulomb gauge), and estimates on the norm of the connection
using the norm of the curvature. Then, the first result is precisely stated as follows.

Theorem (Gauge fixing, cf. definition 2.1 and theorem 2.2). Suppose that 1 < q ≤ p < ∞
such that q ≥ n

2 , p >
n
2 , and in case q < n, p ≤ nq

n−q . Then there exist constants C̃ and ε̃ > 0 such
that the following holds:

For every point in M , there is a neighbourhood U ⊆ M such that for every connection A ∈
A1,p(U) with ‖FA‖qq ≤ ε̃ there exists a gauge transformation u ∈ G2,p(U) such that Ã := u∗A is
in Uhlenbeck gauge.

The gauge fixing lemma is one of the main ingredients in the proof of the compactness
theorems. We can now state the first one precisely.

Theorem (Weak compactness, cf. theorem 3.5). Let n2 < p < ∞. A sequence of connections
inA1,p(P ) with uniform Lp-bound on the sequence of curvatures has a subsequence which is gauge
equivalent to a weakly convergent sequence, with gauge transformations in G2,p(P ).

For a connectionA ∈ A(P ), letFA be its curvature. The Yang–Mills functional is defined
as

YM(A) =
∫
M
|FA|2 ,

and a connectionwhich is a critical point of this functional is aweakYang–Mills connection.
Finally, our last result is:

Theorem (Strong compactness, cf. theorem 3.9). Let 1 < p < ∞ be such that p > n
2 and in

case n = 2, p ≥ 4
3 . Suppose a sequence of connections (Ai)i∈N ⊆ A1,p(P ) is such that the Ai are

weak Yang–Mills connections and ‖FAi‖p is uniformly bounded. Then there exists a subsequence
(with same label i ∈ N) and a sequence of gauge transformations (ui)i∈N ⊆ G2,p(P ) such that ui ∗Ai
converges strongly with all derivatives to a smooth Yang–Mills connection.

This work is organized as follows: In chapter 1, we give precise definitions of vector and
principal bundles, giving special attention to the equivalent definitions of connections and
gauge transformations. After defining Sobolev spaces of sections of fibre bundles and
quoting without proof several results from analysis, we redefine the spaces of connections
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and gauge transformations in this new context and prove several lemmas that show that
these objects are well defined and well behaved. We finish the chapter with a discussion
on the very important particular case of Yang-Mills connections.

In chapters 2 and 3, we state and prove the main results, giving further motivation as
well.

There are two appendices: appendix A goes into more detail on gauge theory from
the physicist’s point of view, following a historical thread and in particular showing how
to reinterpret eletromagnetism as a U(1) Yang-Mills gauge theory; appendix B contains
a collection of results from analysis that are used throughout the text but would involve
going off too big of a tangent to introduce and study in detail.
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Chapter 1

Gauge theory

The goal of this first chapter is to establish our framework. If gauge theory is the study
of connections on principal bundles, then it is vital to have a solid foundation on the
theory of fibre bundles. We begin by giving a quick introduction to vector bundles and
principal bundles in sections 1.1 and 1.2, paying special attention to the many equivalent
definitions of connections and gauge transformations, and culminating in the introduction
of the Yang–Mills functional. There are three subsections which are separated from the
rest of the text, because they contain a series of important conventions and definitions;
in particular, the local formulations are all gathered in a single subsection, as we will be
working on local trivializations for most of this text. In section 1.3, we take a slight detour
and introduce Sobolev spaces of sections of fibre bundles, in preparation for the analysis
of section 1.4. In this final section, we define the Sobolev spaces of connections and gauge
transformations, as well as weak (non-smooth) Yang–Mills connections; we prove several
lemmas, some of which are very technical, but which show that the objects we defined are
well-defined and well-behaved, and provide the foundations for the bigger proofs ahead.

1.1 Vector bundles

In this first short sectionwedefine vector bundles and connections. At the end of the section
we especialize to the case of Riemannian manifolds in order to introduce notation and
objects which will be used extensively throughout the rest of the text. For an introduction
to this subject see e.g. [Cra15].

Definition 1.1. A vector bundle of rank r over a manifoldM consists of

• a manifold E,

• a surjective map π : E →M , and

• for each x ∈M , a vector space structure on the fibres Ex := π−1(x),

satisfying a local triviality condition: around each x ∈M there is a neighbourhood U and
a diffeomorphism

φ : E|U := π−1(U)→ U ×Kr

sending each fibre Ex isomorphically to {x} ×Kr, for K = R or C.
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Chapter 1. Gauge theory 1.1. Vector bundles

A section of the vector bundle is a map s : M → E such that π ◦ s(x) = x, that is, it
takes points on M to the corresponding fibre. It is a smooth section if s is a smooth map
between manifolds, and we denote the space of sections of a vector bundle E by Γ(E); it is
easily seen to be a vector space over Kwith the operations defined pointwise, and in fact it
is a module over C∞(M).

An important notion is that of a trivial vector bundle. The (real or complex) trivial vector
bundle of rank r overM is simply π : M ×Kr → M , where π is the projection on the first
factor. A vector bundle is said to be trivializable if it is isomorphic to the corresponding
trivial bundle. A vector bundlemorphism 1 between two vector bundlesE and F overM is
a smooth map u : E → F such that it preserves the fibres and the restriction ux : Ex → Fx
is linear; it is an isomorphism when u is a diffeomorphism, or equivalently when the ux
are linear isomorphisms.

Just as manifolds have local coordinate charts which make them more tractable using
tools from calculus, vector bundles have frames. A frame for a rank r vector bundle is a
collection of r sections,

e = (e1, . . . , er)

such that for each x ∈M , e1(x), . . . , er(x) is a basis for the vector space Ex. Vector bundles
may not have globally defined frames, and indeed a choice of frame is equivalent to a
trivialization (a choice of isomorphism to the trivial bundle). Nevertheless, local frames
always exist: the local triviality condition in the definition is equivalent to the existence of
a local frame around every point inM .

New vector bundles can be constructed from previously known ones. Any operation
that is natural in the context of vector spaces (e.g., direct sum, dual, tensor product) extends
to vector bundles. For instance, ifE →M is a vector bundle, we can define its dualE∗ →M
by defining

E∗x = (Ex)∗

for allx ∈M ; ifF →M is another vector bundle,we candefine the bundleHom(E,F )→M
with fibres

Hom(E,F )x = Hom(Ex, Fx);

similarly, since we will always be working over vector bundles with finite rank, we can
define the tensor product as

(E ⊗ F )x = Hom(E∗x, Fx).

Moreover, it is possible to takepullbacks of vector bundles. Given a smoothmap f : M → N
and a vector bundle E → N , we can form the pullback bundle f∗E →M by letting

(f∗E)x = Ef(x).

Example 1.2. A classical example of a vector bundle is the tangent bundle TM → M ,
and its sections are vector fields, Γ(TM) = X (M). A manifold whose tangent bundle is
trivializable is called parallelizable. More interestingly, differential forms are sections of a
vector bundle, Ωk(M) = Γ(ΛkT ∗M).

1One says that morphisms like this “cover the identity”, because it is also possible to define morphism
between vector bundles over different bases, say E → M and F → N . In this case a map f : M → N is also
needed, and then ux : Ex → Ff(x).
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1.1. Vector bundles Chapter 1. Gauge theory

Definition 1.3. A connection on a vector bundle E →M is a bilinear map

∇ : X × Γ(E) −→ Γ(E)
(X, s) 7→ ∇X(s)

satisfying

• ∇fXs = f∇Xs,

• ∇X(fs) = f∇Xs+X(f)s (Leibniz rule)

for all X ∈ X (M), s ∈ Γ(E) and f ∈ C∞(M).

On a given trivialization of the vector bundlewith frame e = (e1, . . . , er), the connection
is uniquely characterized by a connection matrix A := (Aij), which is an r-by-r matrix of
1-forms, Aij ∈ Ω1(M),

∇AX(ej) =
r∑
i=1

Aij(X)ei,

and we denote by ∇A the connection associated to the connection matrix A. Using the
Leibniz rule, on a local section

s =
r∑
i=1

f iei

we have

∇AXs(x) =
∑
i

df i(Xx)ei(x) +
∑
i,j

f j(x)Aij(Xx)ei(x). (1.1)

Another way to interpret a connection is as a covariant derivative,

dA : Γ(E) −→ Ω1(M,E), dA(s)(X) := ∇AX(s).

From the properties of the connection it is immediate that the covariant derivative is linear
and satisfies the Leibniz rule

dA(fs) = f dAs+ df ⊗ s.

Moreover, from (1.1) we see that on a local section s defined in terms of a local frame e as
above,

dAs =
∑
i

df iei +
∑
i,j

f jAijei,

which leads to the frequently used notation

dA = d +A

for the local representation of the covariant derivative.
There are two usual ways to extend the covariant derivative from sections to more

general k-forms on the vector bundle, and we define two operators

∇A, dA : Ωk(M,E)→ Ωk+1(M,E)
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Chapter 1. Gauge theory 1.1. Vector bundles

as follows: for X0, . . . , Xk ∈ TM and ω ∈ Ωk(M,E),

∇Aω (X0, . . . , Xk) := ∇AX0(ω(X1, . . . , Xk))− ω(∇MX0X1, . . . , Xk) (1.2)
− . . .− ω(X1, . . . ,∇MX0Xk),

and

dAω (X0, . . . , Xk) :=
k∑
i=0

(−1)i∇AXi(ω(X0, . . . , X̂i, . . . , Xk)) (1.3)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where∇M is the Levi-Civita connection on TM →M . 2 These operators are related to one
another by

dAω (X0, . . . , Xk) =
k∑
i=0

(−1)i∇Aω (Xi, X0, . . . , X̂i, . . . , Xk), (1.4)

and as expected when k = 0 (that is, in sections of the bundle), dA = ∇A, so that the
notation dAs(X) = ∇AXs is still consistent.

Just as we can define new bundles from old using operationswhich are natural to vector
spaces and pullbacks, the same can be done with connections. Let E → M be a vector
bundle, and let f : N → M be a smooth map. Given a connection ∇ on E we can define a
pullback connection f∗∇ on f∗E as follows: for s ∈ Γ(E), x ∈ N and X ∈ TN ,

(f∗∇)X(f∗s)(x) = ∇dxf(X)s(f(x)).

This can be used to define a further useful property of a connection: it defines away tomove
from one fibre Ex to another along paths onM . Given a path on the base, say γ : I → M
for some interval I ⊆ R, we can define paths on E above γ as a section u ∈ Γ(γ∗E), and
then

u : I −→E,
u(t) ∈Eγ(t).

Such a path u is said to be parallel to γ if

(γ∗∇) d
dt
u = 0.

Given γ,∇ and an initial point s ∈ Eγ(t0) for t0 ∈ I , there is a unique path us such that
us(t0) = s and us is parallel to γ. A collection of such paths taking each point in Eγ(t0) to
Eγ(t1) for I = [t0, t1] is called parallel transport,

P t1,t0γ : Eγ(t0) → Eγ(t1) (1.5)
s 7→ us(t1),

and this is a linear isomorphism of the fibres it connects.

2See the discussion below on Riemannian manifolds for the definition of the Levi-Civita connection.
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1.1. Vector bundles Chapter 1. Gauge theory

One last thing that needs to be discussed is vector bundle metric. A metric on a vector
bundle E →M is a family

h = {hx}x∈M
of inner products on the vector spaces Ex, which vary smoothly onM in the sense that, for
two sections s, s′ ∈ Γ(E),

h(s, s′)(x) = hx(s(x), s′(x))

is smooth as a functionM → K. Given a vector bundleE →M with metric h, a connection
on E is said to be compatible with h if, for instance,

Xh(s, s′) = h(∇Xs, s′) + h(s,∇Xs′)

holds for every X ∈ X (M) and s, s′ ∈ Γ(E).

Proposition 1.4 ([Cra15], proposition 1.41). Every vector bundle admits a metric, and for every
metric there always exists a compatible connection.

1.1.1 Useful notions on Riemannian manifolds

Before moving on from vector bundles, let us discuss a bit about the very important and
special case of the tangent bundle. A Riemannian metric on a manifold M is simply a
metric on the tangent bundle, therefore by the previous proposition we know that every
smooth manifold admits a Riemannian metric. We will denote a Riemannian metric by g.

When E = TM , the sections of the vector bundle are also vector fields, and so a
connection is an operator

∇ : X (M)×X (M)→ X (M),

which makes it possibly to talk about torsion,

T∇(X,Y ) = ∇XY −∇YX − [X,Y ].

A connection is said to be torsion-free if T∇ = 0. Because of the existence of torsion, in this
case it is possible to single out a canonical connection:

Proposition 1.5 ([Cra15], theorem 1.43). On a Riemannian manifold there exists a unique
connection compatible with the metric and torsion-free. It is called the Levi-Civita connection.

It will be useful to define the Christoffel symbols for the Levi-Civita connection. On
TM →M it is natural to use a local frame

∂

∂x1
, . . . ,

∂

∂xn

induced by a local coordinate chart (U, x1, . . . , xn). Let ∂i := ∂
∂xi

and ∇i := ∇∂i , then the
Christoffel symbols Γkij are defined as 3

∇i∂j = Γkij∂k.

The fact that ∇ is torsion-free is reflected in the symmetry of the symbols,

Γkij = Γkji.

3We use the Einstein summation convention for repeated indices.
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Chapter 1. Gauge theory 1.1. Vector bundles

Moreover, representing the metric g locally by a matrix

gij := g(∂i, ∂j),

and letting (gij) be its inverse, the compatibility of∇with the metric becomes

Γkij = 1
2
∑
l

(
∂gjl
∂xi

+ ∂gil
∂xj
− ∂gij
∂xl

)
glk.

The Christoffel symbols are also useful to show the dependence of the covariant derivative
on the metric on the base manifold. For instance, we can write locally for A ∈ Ω1(M,E):

(∇A)ij := ∇A(∂i, ∂j) = ∇Ei (A(∂j))−A(∇Mj ∂i) = ∇Ei Aj − ΓkijAk.

Besides a canonical choice of connection, the metric onM also gives natural definitions
to operations such as integration and inner products, and then a further choice of vector
bundle metric extends these notions to bundle valued objects. We give these definitions
now.

First, the metric defines a volume form dvol and then for f ∈ C0(M) we can define∫
M
f :=

∫
M
f dvol. (1.6)

Locally, the volume form is given by dvol =
√
|det g|dx1 ∧ · · · ∧ dxn. For simplicity we

are assuming thatM is oriented in order to have a globally defined volume form, however
that is not necessary for defining integration, see e.g. [Aub82, chapter 1, sections 9 and 11].

Moreover, the metric induces a pointwise inner product on tensors α, β ∈ ⊗kT ∗xM ,
which can be written as

〈α, β〉 = gi1j1 · · · gikjkαi1···ikβj1···jk .

This is independent of the local coordinates. Note that a Riemannian metric is itself a
tensor, g ∈ Γ(⊗2T ∗M).

The previous definitions can now be used to define the Hodge star, ∗ : Ωk(M) →
Ωn−k(M), as the only map that satisfies

α ∧ ∗β = 〈α, β〉dvol, ∀α, β ∈ Ωk(M).

We can also define an inner product on the space of k-forms: for α, β ∈ Ωk(M),

〈α, β〉 :=
∫
M
〈α, β〉dvol =

∫
M
α ∧ ∗β.

We will sometimes denote dvol =: ∗1. Note that ∗ is its own inverse up to a sign: for
α ∈ Ωk(M), ∗2α = (−1)k(n−k)α. Occasionally, when the sign itself is not important, we will
simply use ∗2 = ±1.

The Hodge star is also used to define the codifferential,

d∗ : Ωk(M) −→ Ωk−1(M)
α 7→ − (−1)n(k−1) ∗ d ∗ α.

11



1.1. Vector bundles Chapter 1. Gauge theory

The operator d∗ is also called the formal adjoint to the exterior derivative because of the
following: for α ∈ Ωk(M) and β ∈ Ωk+1(M),∫

M
d(α ∧ ∗β) =

∫
M

dα ∧ ∗β + (−1)kα ∧ d ∗ β

=
∫
M

dα ∧ ∗β + (−1)k(−1)(n−k+1)(k−1)α ∧ (∗∗)d ∗ β

=
∫
M

dα ∧ ∗β + (−1)n(k−1)α ∧ ∗(∗d∗)β

=
∫
M

dα ∧ ∗β +−α ∧ ∗d∗β

= 〈dα, β〉 − 〈α, d∗β〉.

Then by Stokes’s theorem, if either M has no boundary or one of the forms vanishes on
∂M ,

〈dα, β〉 = 〈α, d∗β〉.

Finally, it is possible to extend these notions to vector bundle valued differential forms.
Let E → M be such a vector bundle, with bundle metric h. Given a local frame e on a
trivializing neighbourhood U ⊆ M , for α ∈ Ωk(M,E) and β ∈ Ωl(M,E) we can write
α = αi ⊗ ei and β = βi ⊗ ei, for αi, βi ∈ Ω•(M). Then h induces a pairing

〈· ∧ ·〉 : Ωk(M,E)× Ωl(M,E)→ Ωk+l(M),

which is given locally by
〈α ∧ β〉 := (αi ∧ βj)h(ei, ej).

There is also a natural extension for the Hodge star, given locally by

∗α := (∗αi)⊗ ei.

Note that now for any α, β ∈ Ωk(M,E) we can associate a top-form onM given by 〈α∧∗β〉,
and thus we define an inner product on Ωk(M,E),

〈α, β〉 =
∫
M
〈α ∧ ∗β〉.

For the purposes of later use, we will actually refer to

〈α, β〉 := ∗〈α ∧ ∗β〉 ∈ Ωn(M) (1.7)

as the (pointwise) inner product on Ωk(M,E).
Moreover, if A is a connection on the vector bundle E → M , we may also define the

formal adjoint of the covariant derivative dA,

d∗A : Ωk(M,E)→ Ωk−1(M,E),

d∗A = −(−1)n(k−1) ∗ dA ∗ .

12



Chapter 1. Gauge theory 1.2. Principal bundles

1.2 Principal bundles

Principal bundles are the underlying objects in gauge theory. Our main objects of study,
connections and gauge transformations, will be defined in this context. There is much
more that can be said about principal bundles and their relationship to vector bundles,4
but our focus in this section will be on the many ways the bundle, connections and gauge
transformations can be defined. For organizational purposes, and because we will refer
back to them often, all of the local results are collected in a separate subsection.

Definition 1.6. A principal G-bundle is a manifold P along with

• a G action on P , P ×G→ P , (p, g) 7→ pg,

• a surjective map π : P → M that is G-invariant, i.e. π(pg) = π(p) for all p ∈ P and
g ∈ G,

and such that a local triviality condition is satisfied: for all x ∈ M , there exists a neigh-
bourhood U and a diffeomorphism

Φ : π−1(U) −→ U ×G
p 7→ (π(p), φ(p))

taking a fibre π−1(x) to {x} ×G and which is G-equivariant, that is φ(pg) = φ(p)g.

Equivalently, π : P → M is a principal G-bundle if π is a submersion and there is a
free and proper G-action on P which is fibre preserving. The action is also transitive on
the fibres, that is, for any p, q ∈ π−1(x) there exists g ∈ G such that q = pg. Unlike vector
bundles, principal bundles do not generally have global sections; indeed, a global section
is equivalent to a trivialization of the bundle, P 'M ×G.

A more direct point of view is to use a bundle atlas (Uα,Φα = (π, φα))α∈A to write any
p ∈ P as

p = bα, x, ge

for α ∈ A, x = π(p) and g = φα(p) ∈ G. This is an equivalence class, and we will want that
on non-empty intersections Uα ∩ Uβ

bα, x, φα(p)e = bβ, x, φβ(p)e.

We define so called transition functions φαβ : Uα ∩ Uβ → G as

φαβ(x) = φα(p)φβ(p)−1

for any p ∈ π−1(x); this is well defined, as for any q ∈ π−1(x) there exists g ∈ G such that
q = pg and

φα(pg)φ−1
β (pg) = φα(p)g(φβ(p)g)−1 = φα(p)φβ(p)−1.

Then the equivalence relation that defines b· , · , ·ewill be

(α, x, g) ∼ (β, x, h) ⇐⇒ h = φβα(x)g.

4Frame bundles and G-structures, for instance. See [Cra15].
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1.2. Principal bundles Chapter 1. Gauge theory

The G-action is defined naturally as

pg = bα, π(p), φα(p)ge.

Note that these functions satisfy cocycle conditions, on Uα ∩ Uβ ∩ Uγ

φαγ(x) = φαβ(x)φβγ(x), (1.8)

and also φαα = 1 and φαβ(x)−1 = φβα(x).
The open cover ofM and the transition functions defined on the intersections encode

the whole principal bundle. Indeed, given such a cover M =
⋃
α∈A Uα and G-valued

transition functions {φαβ}α,β∈A, the equivalence relation (α, x, g) ∼ (β, x, φβα(x)g) gives
rise to a principal G-bundle

π : {bα, x, ge : α ∈ A, x ∈M, g ∈ G} →M.

If these transition functions originated from a pre-existing bundle P , then this procedure
reconstructs P . More generally, it is possible to check if two principal G-bundles are
isomorphic by observing their transition functions on the same open cover of the base
bundle. AG-bundle isomorphism is a bundle isomorphism 5 that also preserves the group
action.

Lemma 1.7. Let M =
⋃
α∈A Uα be an open cover of M and let {φαβ}, {ψαβ}, α, β ∈ A be two

sets of transition functions for two principalG-bundles overM . Then these bundles are isomorphic
if, and only if, there exist a coverM =

⋃
α∈A Vα with Vα ⊆ Uα and local functions gα : Vα → G

such that ψαβ(x) = gα(x)φαβ(x)g−1
β (x).

Isomorphic bundles will usually be identified, and so an object of great importance is
the group of G-bundle automorphisms of a principal bundle P ,

Aut(P ) := {ψ : P → P : π ◦ ψ = ψ and ψ(pg) = ψ(p)g}.

To each ψ ∈ Aut(P ) we will associate a map called a gauge transformation. To properly
discuss these transformations and connections on principal bundles, we need to look at
associated bundles.

Let F be some other manifold with a representation ρ : G → Diff(F ) which gives
a G-action on it. Then we may define an associated bundle to a principal G-bundle P
as the set of equivalence classes bp, fe = bpg, ρ(g−1)fe for all g ∈ G, and we denote it
E(P, F ) = (P × F )/G. If F = V is a vector space, then ρ : G→ GL(V ) is a representation
of G in the usual sense, and E(P, V ) is a vector bundle. We will now define and give
properties of two bundles associated to P which will be especially important.

We denote by π̃ : Ad(P )→M the associated bundle with fibre G

Ad(P ) := P ×G
G

,

where G acts on itself by conjugation, (g, h) 7→ hgh−1. Thus we have the fibres

π̃−1(x) = Ad(P )x = {bp, ge : g ∈ G} ,

5A diffeomorphism of the total spaces which preserves the fibres.
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Chapter 1. Gauge theory 1.2. Principal bundles

for p ∈ π−1(x), and note that bpg, he = bp, ghg−1e. We can identify the sections of Ad(P )
with the G-equivariant functions,

C∞(P,G)G :=
{
u : P → G : u(pg) = g−1u(p)g = Adg−1 u(p)

}
,

in the following way:

• a section s ∈ Γ Ad(P ) induces a function u by s(π(p)) = bp, u(p)e, and u is equivariant
because

bp, u(p)e = bpg, u(pg)e = bp,Adg u(pg)e

implies u(p) = gu(pg)g−1;

• a functionu ∈ C∞(P,G)G induces a section s(x) = bp, u(p)e, and this does not depend
on the choice of p ∈ π−1(x), as for any other q ∈ π−1(x) we write q = pg for some
g ∈ G, and so

bq, u(q)e = bpg, u(pg)e = bpg, Adg−1 u(p)e = bp, u(p)e.

Furthermore, the sections of Ad(P ) form a group under pointwise multiplication,

(s · s′)(x) := bp, u(p)u′(p)e.

The G-equivariant functions can further be identified with the G-bundle automor-
phisms of P . This identification can be written as follows:

• A function u ∈ C∞(P,G)G induces an automorphismψ : P → P , ψ(p) = pu(p)which
is clearly fibre preserving, and is equivariant:

ψ(pg) = pgu(pg) = pu(p)g = ψ(p)g.

• Conversely, there is a unique map u : P → G such that ψ(p) = pu(p) for a given
ψ ∈ Aut(P ). The equivariance of ψ gives

ψ(pg) = p(gu(pg)) = p(u(p)g) = ψ(p)g,

and because the action ofG is free, gu(pg) = u(p)g, which establishes u ∈ C∞(P,G)G.

This identification also introduces a group multiplication in Aut(P ) via composition of
automorphisms,

ψ1 ◦ ψ2(p) = p · u2(p)u1(p).

Thus we have the group isomorphisms

Γ Ad(P ) ' C∞(P,G)G ' Aut(P ).

Definition 1.8 (Gauge transformation). Wewill callu ∈ C∞(P,G)G a gauge transformation,
and denote the group of gauge transformations G(P ).

15



1.2. Principal bundles Chapter 1. Gauge theory

We will have more to say about gauge transformations, their action and local represen-
tation, further into the chapter.

Let g be the Lie algebra of G, and let G act on g via the adjoint action

Ad : G→ End(g)
ξ 7→ Adg(ξ) = gξg−1.

Then ad(P )→M is the associated vector bundle with standard fibre g,

ad(P ) := P × g

G
.

Just as with Ad(P ), we can identify the sections of ad(P ) with G-equivariant functions
P → g,

C∞(P, g)G :=
{
f : P → g : f(pg) = Adg−1 f(p)

}
,

such that any section can be written s(x) = bp, f(p)e, for any p ∈ π−1(x). The space of
sections Γ ad(P ) has a natural Lie algebra structure induced by the bracket on g,

[s, s′](x) = bp, [f(p), f ′(p)]e.

The importance of this associated bundle will become clear after the next definition.
There is a canonical vertical subbundle T V P ⊆ TP given by T V P = ker dπ, composed

of vectors tangent to the fibres Px ' G. Each vertical tangent space is isomorphic to the Lie
algebra,

T Vp P = ker dpπ ' g,

and the tangent vectors will be denoted pξ, as defined in subsection 1.2.2. Every comple-
ment of these vertical spaces is isomorphic to Im(dpπ) = Tπ(p)M , but there is in general no
canonical choice for these horizontal spaces; a connection on a principal bundle represents
precisely a choice of equivariant horizontal distribution H such that TP = T V P ⊕H .

Definition 1.9 (Connection). A connection on P is a 1-form A ∈ Ω1(P, g) satisfying

• Apg(vg) = g−1Ap(v)g = Adg−1 A, for all g ∈ G and v ∈ TpP ,

• Ap(pξ) = ξ, for all ξ ∈ g,

that is, it isG-equivariant and takes fixed values on vertical tangent vectors. We denote the
set of smooth connections A(P ).

To see the relation between both notions, observe that we can write

TP = T V P ⊕ kerA.

Note that Ω1(P, g) means that the one-forms take values in g, which is a finite dimen-
sional vector space. In the language of vector bundles, Ω1(P, g) = Γ(ΛT ∗P ⊗P × g), where
P × g → P is a trivializable vector bundle of rank dim g. From either point of view it is
clear that many global results on forms will readily generalize to connections; for instance,
it makes sense to write dA in this case, when in general connections are needed to define
covariant derivatives.
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Chapter 1. Gauge theory 1.2. Principal bundles

It is easy to see from the definition that the difference of two connections is a basic form:
G-equivariant and horizontal 6. On the other hand, it is known that the space of basic k-
forms Ωk

bas(P, g) is isomorphic to Ωk(M, ad(P )): for τ ∈ Ωk
bas(P, g), the corresponding

τ̃ ∈ Ωk(M, ad(P )) is uniquely defined by

bp, τp(X1, . . . , Xk)e = τ̃π(p)(dpπ(X1), . . . , dpπ(Xk)) ∈ ad(P )π(p) (1.9)

for any X1, . . . , Xk ∈ TpP . Thus, the space of connections is an affine space, and fixing a
reference connection Ã ∈ A(P ) we can write

A(P ) = Ã+ Ω1(M, ad(P )).

A similar isomorphism exists for general associated vector bundles E(P, V ), and it al-
lows a connection on the principal bundle to induce one on the associated bundle. Suppose
ρ : G → GL(V ) is a representation and E(P, V ) is the corresponding bundle. There is an
isomorphism h : Ωk(M,E(P, V )) ∼−→ Ωk

bas(P, V ), and furthermore we can differentiate the
representation, d1ρ : g→ End(V ). For A ∈ A(P ) we can then define

dA : Ωk
bas(P, V ) −→ Ωk+1

bas (P, V )
ω 7→ df + d1ρ(A)(ω),

and this in turn will induce a connection on E(P, V ),

∇A := h−1 ◦ dA ◦ h : Ωk(M,E(P, V ))→ Ωk+1(M,E(P, V )).

In the particular case of ad(P ), which is the associated vector bundle E(P, g) with
ρ = Ad : G → GL(g), we have d1ρ(ξ)η = ad(ξ)η = [ξ, η] and so a connection A ∈ A(P )
defines

dA : Ωk
bas(P, g) −→ Ωk+1

bas (P, g) (1.10)
τ 7→ dτ + [A ∧ τ ],

where [· ∧ ·] is the wedge product of two forms with the Lie bracket used to combine the
values in g.7 This will then induce on ad(P ) a covariant derivative

∇A : Γ(ad(P )) −→ Ω1(M, ad(P ))

which can be written explicitly in the following way: for s ∈ C∞(P, g)G ' Γ(ad(P )),
X ∈ TxM and Y ∈ TpP such that π(p) = x and dpπ(Y ) = X ,

∇As(X) = bp, dps(Y ) + [A(Y ), s(p)]e ∈ ad(P )x. (1.11)

This, of course, extends to∇A : Ωk(M, ad(P ))→ Ωk+1(M, ad(P )) exactly as in (1.2).
Now, while it is true that for the usual (de Rham) exterior derivative we have d2 = 0,

this will not hold in general for dA defined above. This failure can be measured by the
curvature of the connection,

FA = dA+ 1
2[A ∧A] ∈ Ω2

bas(P, g), (1.12)

6It kills vertical tangent vectors.
7For example, for α, β ∈ Ω1

bas(P, g) and X,Y ∈ TpP , [α ∧ β](X,Y ) = [α(X), β(Y )] − [α(Y ), β(X)], and
then note [α ∧ α] = 2[α, α].
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1.2. Principal bundles Chapter 1. Gauge theory

andweobtain dA dAτ = [FA∧τ ] for all τ ∈ Ωk
bas(P, g). A connection forwhichFA = 0 = d2

A

is called a flat connection. The curvature satisfies the Bianchi identity,

dAFA = 0.

Moreover, it can be seen as a differential form in Ω2(M, ad(P )).
We now calculate the effect of a gauge transformation on a connection and its curvature.

For that, define the Maurer-Cartan form θg = dgLg−1 : TgG→ g, for Lg(h) = gh.

Lemma 1.10 (The gauge action). Let u ∈ G(P ) and ψ(p) = pu(p) its corresponding automor-
phism. Then the action of a gauge transformation on a connection is defined as u∗A := ψ∗A and
can be written

u∗A = u−1Au+ u∗θ (1.13)
= u−1Au+ u−1 du. (1.14)

Proof. Define the multiplication σ on P × G as σ(p, g) = pg = R̃g(p) = L̃p(g) and write
ψ(p) = σ(Id, u)(p). Then for v ∈ TpP ,

dpψ(v) = d(p,u(p))σ ◦ dp(Id, u)(v)
= d(p,u(p))σ(v, dpu(v))
(∗)= dpR̃u(p)(v) + du(p)L̃p(dpu(v)),

where (∗) follows because T(p,g)(P ×G) ' TpP ⊕TgG and using curves one can easily show
that d(p,g)σ(v, 0) = dpR̃g(v) and d(p,g)σ(0, X) = dgL̃p(X). Since L̃p(h) = ph = pgg−1h,
we may write L̃p = L̃pg ◦ Lg−1 , so that

du(p)L̃p(dpu(v)) = d1L̃pu(p) du(p)Lu(p)−1(dpu(v)) = d1L̃pu(p)θu(p)(dpu(v))

For pξ = d1L̃p(ξ) and vg = dpR̃g(v) as defined in subsection 1.2.2,

dpψ(v) = vu(p) + pu(p)θu(p)(dpu(v)).

Now, using this expression and calculating using the properties of the connection,

ψ∗A(v) = Aψ(p)(dpψ(v))
= Apu(p)(vu(p) + pu(p) θu(p)(dpu(v)︸ ︷︷ ︸

∈g

))

= u(p)−1Ap(v)u(p) + θu(p)(dpu(v)),

and rewriting θu(p)(dpu(v)) as (u∗θ)p(v) or du(p)Lu(p)−1(dpu(v)) = u(p)−1 dpu(v) from
gvh = dhLg(v), we have the expressions we wanted for the gauge action.

From this, it is also possible to show the effect of a gauge transformation on the curva-
ture,

Fu∗A = u∗FA = u−1FAu. (1.15)
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Chapter 1. Gauge theory 1.2. Principal bundles

Finally, we define a pointwise inner product onΩk(M, ad(P )) as in (1.7). We assume the
Riemannian metric onM is given, and the metric on ad(P ) is induced by the Ad-invariant
inner product on g defined in subsection 1.2.2,

〈bp, ξe, bp, ζe〉ad(P ) := 〈ξ, ζ〉g.

Now, viewing the curvature as being in Ω2(M, ad(P )) and writing | · | =
√
〈· , ·〉 : M → R,

we can define the Yang–Mills functional

YM(A) :=
∫
M
|FA|2 dvol =

∫
M
∗〈FA ∧ ∗FA〉. (1.16)

Due to the gauge action on FA and the invariance of the metric on ad(P ), this functional is
invariant under gauge transformations,

YM(u∗A) = YM(A), ∀u ∈ G(P ).

We will want to study its extrema. For that, note that because A(P ) is an affine space with
vector space Ω1(M, ad(P )), it is enough to check the variation of the curvature along lines
A+ tβ, for β ∈ Ω1(M, ad(P )). Now,

FA+tβ = FA + tdAβ + 1
2 t

2[β ∧ β],

and thus momentarily writing 〈·, ·〉 for the integrated (not pointwise) inner product it is
straightforward to calculate

d
dt

∣∣∣∣
t=0
YM(A+ tβ) = d

dt

∣∣∣∣
t=0
〈FA+tβ, FA+tβ〉

= 2〈FA, dAβ〉,

and so an extremum of the YM functional has to satisfy the weak Yang–Mills equation,∫
M
〈FA, dAβ〉 = 0, ∀β ∈ Ω1(M, ad(P )).

If everything is smooth, this is equivalent to the (strong) Yang–Mills equation,{
d∗AFA = 0 onM,

∗FA|∂M = 0 on ∂M,

where in the case of amanifoldwithout boundary this is just the usual Yang–Mills equation.
This will be proved further ahead in a more general context as lemma 1.37. Just as the
functional, these equations are invariant under gauge transformations, and because of this
it is said that the solutions to the Yang–Mills equations come in gauge orbits.

1.2.1 Local formulations and results

In this subsection we will derive local representations and formulas for the objects we have
defined, as these will be the forms which we will mainly use throughout the text.
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1.2. Principal bundles Chapter 1. Gauge theory

Recall the description of a principal G-bundle π : P −→ M via local trivializations
and transition functions given at the beginning of this section. On a trivializing open set
Uα ⊆M we have a bundle chart

Φα : π−1(Uα) −→ Uα ×G
p 7→ (π(p), φα(p)),

and the transition functions defined on intersections Uα ∩ Uβ

φαβ(x) = φα(p)φβ(p)−1,

which obey the cocycle conditions (1.8). Moreover, we write the induced trivializations on
the associated bundles Ad(P ) and ad(P ) over Uα with the same notation, as there is very
little chance of confusion in context. For π̃ : Ad(P ) −→M ,

Φ̃α : π̃−1(Uα) −→ Uα ×G
bp, ge 7→ (π(p), φ̃α(bp, ge),

with φ̃α(bp, ge) = φα(p)gφα(p)−1. And for π̃ : ad(P )→M ,

Φ̃α : π̃−1(Uα) −→ Uα × g

bp, ξe 7→ (π(p), φ̃α(bp, ξe),

with φ̃α(bp, ξe) = φα(p)ξφα(p)−1. Throughout this subsection we will assume this setting.
For a gauge transformation u ∈ G(P ), let ũ ∈ Γ(Ad(P )) be the corresponding section,

such that ũ(x) = bp, u(p)e for x = π(p). Then we can use this to define u locally on Uα,

uα := φ̃α ◦ ũ : Uα → G, (1.17)

and this acts on Uα ×G by (x, g) 7→ (x, guα(x)). Thus, for any p ∈ π−1(x),

uα(x) = φα(p)u(p)φα(p)−1

is well defined, and we can recover u on Uα,

u(p) = φα(p)−1uα(x)φα(p).

If we assume this to be valid for all α ∈ A, then using the transition functions on Uα ∩ Uβ
we get the transition identity

uβ = φ−1
αβuαφαβ. (1.18)

Likewise, any collection of G-valued functions {uα}α∈A satisfying (1.18) uniquely defines
a global gauge transformation in the same way as we used to recover u(p). Equivalently, a
global gauge transformation must satisfy

φαβ = u−1
α φαβuβ.

The local description of connections on open sets U ⊆ M is very similar, using the
isomorphism Ωk

bas(P, g) ' Ωk(M, ad(P )) and then the second component of the local
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trivialization for ad(P ). For τ ∈ Ωk
bas(P, g) let τ̃ ∈ Ωk(M, ad(P )) be the corresponding form

given by (1.9). This defines τ locally,

τα := φ̃α ◦ τ̃ ∈ Ωk(Uα, g),

and similar to the case of the gauge transformation, on an intersection Uα ∩ Uβ these local
forms will satisfy

τβ = φ−1
αβταφαβ,

and the global form can be reconstructed as

τ(Y1, . . . , Yk) = φα(p)−1τα(dpπ(Y1), . . . , dpπ(Yk))φα(p), ∀Y1, . . . , Yk ∈ TpP.

In the case of connections it is necessary to choose a reference connection in order to
use this isomorphism, and there is no canonical choice if the bundle is not flat. However,
locally on π−1(Uα) there is a natural choice, namely Ãα := φ−1

α dφα. Then for the local
representative Aα ∈ Ω1(Uα, g) of A ∈ A(P ) we write

Aα(dpπ(Y )) = φα(p)A(Y )φα(p)−1 − dpφα(Y )φα(p)−1, ∀Y ∈ TpP. (1.19)

Assuming that A can be recovered over Uα as

A(Y ) = φα(p)−1Aα(dpπ(Y ))φα(p) + φα(p)−1 dpφα(Y )

we will once again get a transition identity for the local representatives of connections
over intersections. This is stated in the following lemma, along with the local formula for
the gauge action, which shows that locally a gauge transformation can be thought of as a
change of trivialization.

Lemma 1.11. For a connection A ∈ A(P ), its local representatives Aα, Aβ have to meet the
following on Uα ∩ Uβ :

Aβ = φ−1
αβAαφαβ + φ−1

αβ dφαβ.

Moreover, the local effect of a gauge transformation is

(u∗A)α = u−1
α Aαuα + u−1

α duα.

Proof. Both of the affirmations are checked with straightforward calculations. For the
change in trivialization, omitting the evaluations at p, Y and dpπ(Y ), we calculate

Aβ = φβAφ
−1
β − dφβ · φ−1

β

= φβ(φ−1
α Aαφα + φ−1

α dφα)φ−1
β − dφβ · φ−1

β

= φ−1
αβAαφαβ + φ−1

αβ dφα · φ
−1
β − dφβ · φ−1

β

= φ−1
αβAαφαβ + φ−1

αβ(dφα · φ−1
β − φαβ dφβ · φ

−1
β )

= φ−1
αβAαφαβ + φ−1

αβ(dφα · φ−1
β + φαφ

−1
β φβ dφ−1

β )
= φ−1

αβAαφαβ + φ−1
αβ dφαβ.

Then for the local gauge action

(u∗A)α = φα(u∗A)φ−1
α − dφα · φ−1

α
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= φα(u−1Au+ u−1 du)φ−1
α − dφα · φ−1

α

= φα(φ−1
α u−1

α φαAφ
−1
α uαφα + φ−1

α u−1
α φα d(φ−1

α uαφα))φ−1
α − dφα · φ−1

α

= u−1
α (φαAφ−1

α )uα
+ u−1

α φα dφ−1
α · uα + u−1

α duα + dφα · φ−1
α

− dφα · φ−1
α

= u−1
α Aαuα + u−1

α dφα · φ−1
α uα + u−1

α φα dφ−1
α · uα + u−1

α duα
= u−1

α Aαuα + u−1
α duα.

Finally, the covariant exterior derivative dA : Ωk
bas(P, g)→ Ωk+1

bas (P, g) induced by a con-
nection A ∈ A(P ) as in (1.10) can be written locally on Uα, taking the local representatives
Aα ∈ Ω1(Uα, g) and τα ∈ Ωk(Uα, g),

(dAτ)α = dτα + [Aα ∧ τα];

its formal adjoint d∗A : Ωk
bas(P, g)→ Ωk+1

bas (P, g) is given locally as

(d∗Aτ)α = d∗τα − (−1)(n−k)(k−1) ∗ [Aα ∧ ∗τα];

and the curvature (1.12) can be written

(FA)α = dAα + 1
2[Aα ∧Aα] ∈ Ω2(Uα, g),

and transforms under a change of trivialization in the same way it does under a gauge
transformation, (FA)β = φ−1

αβ(FA)αφαβ .

Aword on notation. Occasionally, when working locally but not specifying a bundle atlas,
we will drop subscripts α and a connection A ∈ A(P ) will be represented by A ∈ Ω1(U, g),
or a gauge transformation u ∈ G(P ) will be represented by u : U → G. When specifying
a global reference connection Ã, a connection A ∈ A(P ) will be denoted A = Ã + α, and
α ∈ Ω1

bas(P, g) will be its representative.

1.2.2 Several results on G, g and the action on P

In this subsection we fix some notation pertaining to the action ofG on P and g, define the
inner product that will be fixed on g and some other notions that depend on it, such as the
metric onG, and prove a result on the derivative of the adjoint action which will be needed
later.

We begin with some notation: For p ∈ P and g, h ∈ G,

gh = Lg(h), Lg : G→ G,

hg = Rg(h), Rg : G→ G,

pg = L̃p(g), L̃p : G→ P,

pg = R̃g(p), R̃g : P → P.

For p ∈ P , ξ ∈ g, and v ∈ TpP ,

pξ := d1L̃p(ξ) = d
dt

∣∣∣∣
t=0

p exp(tξ) ∈ TpP,
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vg := dpR̃g(v) ∈ TpgP,

and for g, h ∈ G, ξ ∈ g and v ∈ ThG,

gξ := d1Lg(ξ) = d
dt

∣∣∣∣
t=0

g exp(tξ) ∈ TgG,

gv := dhLg(v) ∈ TghG.

We need to fix a certain inner product on g. The following lemma is the main reason
that we restrict to compact Lie groups; its proof can be found in [Kna96, proposition 4.24],
and the subsequent properties of the inner product and the induced metrics can be found
in [Weh04, remark A.3].

Lemma 1.12. LetG be a compact Lie group. Then the Lie algebra g admits an inner product which
is invariant under the adjoint action of G on g, that is, for all ξ, η ∈ g and g ∈ G,

〈gξg−1, gηg−1〉 = 〈ξ, η〉.

This inner product satisfies, for all ξ, η, ζ ∈ g,

〈[ξ, η], ζ〉 = 〈ξ, [η, ζ]〉, (1.20)

and it can be rescaled in such a way that the associated norm |ξ| =
√
〈ξ, ξ〉 satisfies, for all

ξ, η ∈ g,

|[ξ, η]| ≤ |ξ| · |η| . (1.21)

We will fix this inner product on g throughout all of this text.
The inner product on g also induces ametric on TG,

〈X,Y 〉G := 〈g−1X, g−1Y 〉g, ∀X,Y ∈ TgG,

where g−1X is understood in the sense defined above. It is clear that with this metric left
and right multiplication are isometries of G. If we denote by expg the exponential map
with base point g ∈ G, then for all ξ ∈ g and g ∈ G,

expg(gξ) = g exp(ξ),
exp(g−1ξg) = g−1 exp(ξ)g.

Moreover, the geodesics are 1-parameter subgroups,

exp((s+ t)ξ) = exp(sξ) exp(tξ),

for all s, t ∈ R and ξ ∈ g.
Furthermore, we can define a geodesic distance on G,

dG(g, h) := inf
{
|X| , X ∈ TgG and h = expg(X)

}
, (1.22)

which is invariant under left and right multiplication, and this can be used to define a
metric on C0(U,G). For maps u and v from some domain U to G, it will be denoted by

d(u, v) := sup
x∈U

dG(u(x), v(x)),

and this too will be invariant under left and right multiplication by continuous maps.
We also define a convex geodesic ball of radius R around 1 ∈ G to be such that
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(i) the exponential map is a bĳection between BR(1) ⊆ g and BR(1) ⊆ G,

(ii) and for all g, h ∈ BR(1) there is a unique minimal geodesic from g to h that lies
entirely within BR(1).

For the existence of such balls see e.g. [GHL90, 2.89, 2.90], Moreover, because left multi-
plications are isometries of G, there exist convex geodesic balls of same radius around any
g ∈ G.

Finally, we prove a small lemma on the (covariant) derivative of the adjoint action on
k-forms.

Lemma 1.13. For τ ∈ Ωk(U, g) and u : U → G,

d(Adu τ) = Adu dτ + [du · u−1 ∧Adu τ ]. (1.23)

Moreover, for the covariant derivative ∇ induced by the canonical flat connection on the trivial
vector bundle U × g→ U ,

∇(uτu−1) = u(∇τ)u−1 + [du · u−1, uτu−1]. (1.24)

Proof. For a fixed point p ∈ U and some X ∈ TU ,

dp(uτu−1)(X) = d(Adu·u(p)−1(u(p)τu(p)−1))(X)
(1)=
(
d1 Ad ◦dp(u · u(p)−1) · u(p)τu(p)−1 + Adu·u(p)−1 dp(u(p)τu(p)−1)

)
(X)

(2)=
(
[dpu · u(p)−1, u(p)τu(p)−1] + udpτu−1 (p)

)
(X)

=
(
[du · u−1, uτu−1] + udτ · u−1

)
X(p),

where (1) follows from looking at Ad as a map on a product manifold, Ad : G × g → g,
similar to what was done in the calculation of the gauge group action, lemma 1.10, and (2)
is just d1 Ad(ξ)η = ad(ξ)η = [ξ, η].

We nowuse (1.23) to prove the second identity (1.24). With the canonical flat connection
∇E = d, evaluating at vector fields Xj ∈ TU and letting τ̃ := τ(X1, . . . , Xk),

∇(uτu−1)(X0, . . . , Xk) = ∇EX0(uτ̃u−1)− uτu−1(∇X0X1, . . . , Xk)
− · · · − uτu−1(X1, . . . ,∇X0Xk)

= d(Adu τ̃)X0 − uτ(∇X0X1, . . . , Xk)u−1

− · · · − uτ(X1, . . . ,∇X0Xk)u−1

= [du(X0)u−1, uτ̃u−1] + udτ̃(X0)u−1 − uτ(∇X0X1, . . . , Xk)u−1

− · · · − uτ(X1, . . . ,∇X0Xk)u−1

= [du · u−1, uτu−1](X0, . . . , Xk) + u∇τ(X0, . . . , Xk)u−1

=
(
[du · u−1, uτu−1] + u(∇τ)u−1

)
(X0, . . . , Xk).
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1.3 An analytic interlude

Because it ismodelled onΩ1(M, ad(P )), it is easily seen thatA(P ) is an infinite dimensional
affine space, and G(P ) can be shown to be an infinite dimensional Lie group. It is known
thatC∞ spaces are not the ideal setting for doing functional analysis, as they are not Banach
spaces. What is more, the Yang–Mills equations are partial differential equations; in PDE
theory, theCk spaces are not necessarily the best domains to look for solutions, and it turns
out to be more profitable to work with so-called weak derivatives and weak solutions. For
these reasons, we will rework our framework into the less regular realm of Sobolev spaces.
From now on, we trade smoothness in for powerful analytic results.

In this section, our aim is to give the definitions and most relevant results on Sobolev
spaces of sections of fibre bundles. For an introduction to the theory of Sobolev spaces
on Rn, we recommend [Eva10, chapter 5]; for definitions and results on Sobolev spaces of
functions on Riemannian manifolds, see [Aub82, chapter 2]. For Sobolev spaces of sections
of vector bundles, see [Nic07, section 10.4.2]. We mainly follow [Weh04, appendix B].

Let (M, g) be a compact Riemannian manifold, E → M a vector bundle, and choose a
bundle metric on E and a compatible connection. We have shown that with these choices
it is possible to define: a covariant derivative

∇ : Ωk(M,E)→ Ωk+1(M,E),

given by the connection on E and the Levi-Civita connection for the Riemannian metric g
as in (1.2); a pointwise inner product on Ωk(M,E),

〈α, β〉 = ∗〈α ∧ ∗β〉 : M → R,

given by the bundle metric and the Riemannian metric as in (1.7), which we then use to
define |α| :=

√
〈α, α〉; and a way to integrate functions over M given by the Riemannian

metric, using the volume form as in (1.6).

Definition 1.14 (Sobolev space of sections of vector bundles). For k ∈ N0 and 1 ≤ p < ∞,
the Sobolev space W k,p(M,E) of sections of the vector bundle E → M is defined as the
completion of Γ(E) with respect to theW k,p-norm,

‖α‖k,p =
k∑
j=1

∥∥∥∇jα∥∥∥
p
,

where ∥∥∥∇jα∥∥∥
p

=
(∫

M

∣∣∣∇jα∣∣∣p) .
Several properties of the usual Sobolev spaces on Euclidean space will generalize to

Sobolev spaces of sections. From the definition, it is clear that W k,p(M,E) are Banach
spaces, and therefore many important results from functional analysis are valid, in partic-
ular those from Appendix B. Moreover, this definition directly gives the density of smooth
sections, which makes it possible to give proofs using approximating sequences of smooth
sections, for which stronger results are valid; see, e.g., lemma 1.20 below. Other properties
and results will be consequences of the following characterization:
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Remark 1.15. Consider a finite bundle atlas (Ui,Φi)Ni=1 ofE →M , withΦi : E|Ui → Vi×Rm
for φ : Ui → Vi ⊆ Rn a coordinate chart of M and m the rank of E. A section α ∈ Γ(E)
which is locally α : Ui → E|Ui is represented by Φi∗α : Vi → Rm, or with m components
(Φi∗α)j : Vi → R. Then for k ∈ N0 and 1 ≤ p < ∞, the W k,p-norm defined above is
equivalent to

N∑
i=1

m∑
j=1
‖(Φi∗α)j‖k,p(Vi) ,

where theW k,p norm on functionsRn → R is the usual one. Therefore α lies inW k,p(M,E)
if and only if its local components (Φi∗α)j are W k,p-functions for all coordinate patches
i = 1, . . . , N .

Note that it is essential that the base manifold is compact for the sum above to be finite
and the norms equivalent.

From this characterization it also becomes clear that when M is compact, the space
W k,p(M,E) will not depend on the choices involved, as the W k,p-norms induced will be
equivalent. The choices were: themetric onM , the bundlemetric onE, and the compatible
connection on E.

Remark 1.16 (On the norm of a metric). In chapter 2, we will several times look at the
W k,∞-norm of a Riemannianmetric g. Themetric is a tensor, g ∈ Γ(⊕2T ∗M), and therefore
as a section of a vector bundle it makes sense to define its W k,p-norm as above, but with
respect to what metric onM? As we have noted, over a compact manifold all of the norms
will be equivalent, so any fixed choice is valid. In chapter 2 we will mostly be working over
open sets in Euclidean (half) space, and thus we may canonically choose the Euclidean
metric in this case.

By far the most important result from the usual theory of Sobolev spaces which is also
valid for sections of bundles is the Sobolev embeddings and estimates. Before stating the
result, we need to define the norm on the spaces Cj of continuous functions, for j ∈ N0.
For α ∈ C0(M,⊗kT ∗M ⊗ E) a k-form,

‖α‖∞ := sup
x∈M
|α(x)| ,

where | · | comes from the pointwise inner product defined on Ωk(M,E) above; then for a
section α ∈ Cj(M,E),

‖α‖j,∞ := sup
k≤j

∥∥∥∇kα∥∥∥
∞
.

Finally, note thatW 0,p(M,E) is simply Lp(M,E), and these Lp-spaces are also included in
the following result, as j = 0 is allowed.

A word on notation. We will denote the norm on the Sobolev spaceW k,p(M,E) over the
Riemannian manifold (M, g) as ‖ · ‖g; k,p (M), and when the metric and the space are clear
from context, they will be omitted from the norm.

Theorem 1.17 (Sobolev embeddings and estimates). Let E → M be a vector bundle over a
compact Riemannian n-manifold, j < k ∈ N and 1 ≤ p, q <∞.
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(i) If k − n
p ≥ j −

n
q then the inclusion

W k,p(M,E) ↪→W j,q(M,E)

is continuous, i.e., there exists a constant CW such that for α ∈W k,p(M,E),

‖α‖j,q ≤ CW ‖α‖k,p .

(ii) If k − n
p > j − n

q , this inclusion is a compact map.

(iii) Furthermore, if k − n
p > j, there is a continuous embeddingW k,p(M) ↪→ Cj(M), i.e., there

exists a constant CW such that for α ∈W k,p(M,E),

‖α‖j,∞ ≤ CW ‖α‖k,p .

Moreover, this inclusion is compact.

The generalization of the result from bounded domains in Rn to the case of vector
bundles is straighforward using remark 1.15, see the discussion after Theorem A.2 in
[Weh04].

These embeddings will cause a few hypotheses to appear particularly frequently: the
inclusion

W k,p ↪→ C0

will lead to the condition kp > n; and the inclusion

W 1,p ↪→ L2p

will lead to p ≥ n
2 . When looking at the Sobolev spaces of connections and gauge transfor-

mations, we will generally be working with the W 1,p and W 2,p spaces, and for k = 2 the
hypothesis p > n

2 guarantees both of these embeddings.
Of central importance to the results in this text is the Banach–Alaoglu theorem, which

we state and use in the following form:

Theorem 1.18 (Banach–Alaoglu). Let k ∈ N and 1 < p <∞, and letE →M be a vector bundle
over a compact Riemannian manifold. Then every bounded sequence inW k,p(M,E) has a weakly
convergent subsequence.

The generalization from the result for bounded domains inRn also follows from remark
1.15. As for the relation of this result to the usual Banach–Alaoglu theorem from functional
analysis, note that Sobolev spaces are reflexive.

A recurrent argument used in proofs is to make use of the Banach–Alaoglu theorem to
find aweakly convergent subsequence for a bounded sequence, and then use some compact
Sobolev embedding to find a further subsequence which converges uniformly.

Finally, in order to deal with manifolds with boundary, we need the following result.

Theorem 1.19 (Trace theorem). LetM be a compact Riemannian n-manifold and let 1 ≤ p <∞.
The restriction to the boundary ∂M is a bounded linear operatorW 1,p(M)→ Lp(∂M).

Proof. See [Weh04, theorem B.10].
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This means that for any h ∈W 1,p(M),

‖h|∂M‖p(∂M) ≤ C ‖h‖1,p(M) .

In particular, any sequence of smooth functions that approximates h in theW k,p(M)-norm
restricts to a sequence in the boundary that approximates h|∂M in the Lp(∂M)-norm, since

‖(hj − h)|∂M‖p(∂M) ≤ c ‖hj − h‖1,p(M) ≤ c ‖hj − h‖k,p(M) → 0.

Using the trace theorem and approximating sequences, we can generalize Stokes’s
theorem to the non-smooth case. We state and prove this as a lemma, and make implicit
use of it whenever we use Stokes’s theorem.

Lemma 1.20 (Sobolev Stokes’s Lemma). Let M be a compact n-dimensional manifold with
boundary, E → M a trivial vector bundle and α ∈ W k,p(M,⊗n−1T ∗M ⊗ E) an (n − 1)-form.
Then ∫

∂M
α|∂M =

∫
M

dα.

Proof. We can approximate α in the W 1,p(M)-norm by a sequence (αj)j∈N ⊆ Ωn−1(M,E)
of smooth forms, and using the trace theorem (αj |∂M ) ⊆ Ωn−1(∂M,E) also approximates
α|∂M in the Lp(∂M)-norm. Then, because of the triviality of the bundle, Stokes’s theorem
can be applied to each component of the smooth forms,∫

M
dα = lim

j→∞

∫
M

dαj = lim
j→∞

∫
∂M

αj |∂M =
∫
∂M

α|∂M .

Finally, we will make use of a few product inequalities, but we state them in appendix
B so as not to clutter the more important results here.

Let us shift our focus now to maps between manifolds, sayM and X . Suppose thatM
is a compact n-dimensional manifold, andX is an `-manifold, and fix onX an embedding
Φ : X → R2`+1, an atlas (Uα, φα)α∈A, and a metric. We then get the following two results.

Proposition 1.21. LetM and X be as above, and let k ∈ N and 1 ≤ p <∞ be such that kp > n.
For u ∈ C0(M,X) the following are equivalent:

(i) φα ◦ u ∈W k,p(u−1(Uα,R`) for all α ∈ A,

(ii) Φ ◦ u ∈W k,p(M,R2`+1),

(iii) u = exps(V ) for some s ∈ C∞(M,X) and V ∈W k,p(M, s∗TX).

In caseX = G is a Lie group with Lie algebra g, the last item can be reformulated as u = s · exp(ξ)
for s ∈ C∞(M,G) and ξ ∈W k,p(M, g), and there is another equivalence,

(iv) u−1 du ∈W k−1,p(M,T ∗M ⊗ g).

Proposition 1.22. For a sequence (ui)i∈N and some u, all of which satisfy the equivalent conditions
in the previous proposition, and under the same assumptions, the following are equivalent:

(i) ui converges to u in the C0-topology and φα ◦ ui converges to φα ◦ u with respect to the
W k,p-norm for all α ∈ A,
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(ii) Φ ◦ ui converges to Φ ◦ u with respect to theW k,p-norm,

(iii) there exist s ∈ C∞(M,X), V ∈ W k,p(M, s∗TX), and for sufficiently large i ∈ N there are
Vi ∈W k,p(M, s∗TX) such that u = exps(V ), ui = exps(Vi) and the Vi converge to V in the
W k,p-norm,

and in case X = G is a Lie group with Lie algebra g, once again the last item can be reformulated
with u = s · exp(ξ), ui = s · exp(ξi) and ξi → ξ inW k,p(M, g), and there is another equivalence,

(iv) ui converges to u in theC0-topology and u−1
i dui converges to u−1 du inW k−1,p(M,T ∗M⊗

g).

Proof. See [Weh04, lemmata B.5 and B.7].

A key lemma in the proof of the equivalences in proposition 1.22 is the following, which
will also be used elsewhere in this text and for that reason we state it. This lemma is the
reason for the assumption kp > n in the previous results, and this hypothesis is needed
here because of the embeddingW k,p ↪→ C0.

Lemma 1.23. LetU ⊆M be an open subset of a compact n-manifold, 1 ≤ p <∞ and k,m,N ∈ N
such that kp > n. If f ∈ Ck(V ⊆ Rm,RN ), then composition with f is a continuous map, that is

W k,p(U, V ) −→W k,p(U,RN )
u 7→ f ◦ u.

Proof. See [Weh04, lemma B.8]. This result too is stated there for bounded domains in Rn
and then generalizes via remark 1.15.

At last, we may give the definitions for Sobolev spaces of maps of manifolds and of
sections of fibre bundles.

Definition 1.24 (Sobolev space ofmaps ofmanifolds). ForM andX manifolds as described
above, the Sobolev spaceW k,p(M,X) is given as a set by functions u ∈ C0(M,X) such that
u satisfies the equivalent statements of lemma 1.21, and the topology on this space is given
by defining its convergent sequences using the equivalent statements of lemma 1.22.

Definition 1.25 (Sobolev space of sections of fibre bundles). Let X ↪→ F
π−→ M be a fibre

bundle, and fix a bundle atlas (Uα, τα)α∈A. In every local trivialization π × τα : π−1(Uα)→
Uα × X a section u is represented by τα ◦ u : Uα → X . Then define the Sobolev space
W k,p(M,F ) of sections of this fibre bundle to consist of all sections u such that

τα ◦ u ∈W k,p(Uα, X)

for all α ∈ A, following the definition above for maps of manifolds. The topology is once
again given by the equivalent conditions in proposition 1.22 via convergence in a bundle
atlas.

Wemake a few observations. First, proposition 1.21 shows thatW k,p(M,X) is indepen-
dent of the choice of atlas (used in condition (i)), embedding (used in condition (ii)) and
metric (used in condition (iii)), and therefore it is well defined for kp > n. Moreover, the
definition via embeddings makes it possible to extend the Sobolev embeddings in theorem
1.17 to the Sobolev spaces defined above.
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Partial differential equations and elliptic operators

When working with partial differential equations (PDEs) in an abstract context, there are
a few aspects of solutions that one is usually concerned with: existence, uniqueness and
regularity. Existence, of course, has to do with whether there is a solution to the given
problem in the chosen domain, which is usually a Sobolev space; if a solution exists, it is
often good to know whether it is unique, at least up to some equivalence class (up to a
measure zero set, for instance); regularity means, roughly, the degree of smoothness of a
solution.

In thiswork, themain PDEwe are concernedwith is the Yang–Mills equation. However,
in the proofs of the main theorems we will also need to quote results for the Neumann
problem and the d + d∗ operator.

For the Yang–Mills equation, we will need a regularity result (proposition 1.39) which
will be crucial in the proof of the strong compactness theorem 3.9; this will be discussed
in more detail in the next section, when discussing weak Yang–Mills connections. For
the Neumann problem, we will need results on existence and uniqueness, as well as an
estimate; these will be used only once, in the proof of theorem 2.2, and can be found in
appendix B. For the d + d∗ operator, we will need the following estimate, which will be
used in chapter 2 in the motivation and proof of theorem 2.2.

Theorem 1.26 ([Weh04], theorem 5.1). Let M be a compact manifold with (possibly empty)
boundary. For 1 < p <∞, if A ∈ W 1,p(M,T ∗M) satisfies ∗A|∂M = 0 and H1(M ;R) = 0, then
there is a constant C such that

‖A‖1,p ≤ C(‖dA‖p + ‖d∗A‖p).

Moreover, this constant depends W 1,∞-continuously on the metric on M . This is also valid for
1-forms with values in a finite dimensional vector space.

All of these results are proved individually and in great detail in the book [Weh04], and
indeed have many chapters dedicated to them. However, it is worth commenting that all
of the operators associated to these equations are part of a class of special operators with
good properties, called elliptic operators. More often than not, elliptic theory is considered
standard in geometric analysis texts. For instance, in Uhlenbeck’s original paper [Uhl82],
after the statement of theorem 1.3, she writes:8

“Regularity of solutions of Yang–Mills equations for connections A ∈ A1,p,
2p ≥ dimM follows rather easily from [the gauge fixing] theorem. (...) The
system of equations (...) is uniformly elliptic. Now standard techniques apply.”

After this, she immediately concludes the main regularity result for Yang–Mills connec-
tions, her corollary 1.4 and our theorem 1.40. Another example, from Donaldson and
Kronheimer’s book [DK97, page 55]:

“The operator d+ d∗ is elliptic, its kernel decomposes according to degree and
so if, as we suppose,H1(M) is zero, all the 1-forms are orthogonal to the kernel.
So elliptic theory gives inequalities

‖A‖k,2 ≤ const.
(
‖d∗A‖k−1,2 + ‖dA‖k−1,2

)
.

8The mathematical notation in the quotes was changed to agree with the one fixed in this work, so as not to
cause confusion.
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...

While we have been discussing above the case of a closed basemanifold, similar
ideas can be applied on manifolds with boundary or on complete manifolds,
given appropriate boundary or decay conditions.”

We will not delve into elliptic theory, as that is beyond the scope of this work, but we
leave here a few references. For elliptic theory on compact manifolds, a good introduction
which avoids doing too much analysis can be found in [Nic07, chapter 10]; a more suc-
cinct overview which delves into the analytical aspects is [Wel80, chapter IV]. For elliptic
boundary value problems (i.e., on manifolds with boundary), see [Sch95] or [H0̈7, section
20.1].

1.4 Analysis in gauge theory

With all of the analytical machinery defined, we can turn again to gauge theory. In all that
follows, let P →M be a principal G-bundle over a compact Riemannian n-manifold.

Definition 1.27 (Sobolev space of connections). Fix a smooth reference connections Ã ∈
A(P ), and note that it gives a covariant derivative ∇Ã on the associated vector bundle
ad(P )→M . Then we define the (affine) Sobolev space of connections as

Ak,p(P ) := Ã+W k,p(M,T ∗M ⊗ ad(P )),

modelled after the Sobolev space of sections W k,p(M,T ∗M ⊗ ad(P )),9 which is a vector
space.

Once again, note that since M is compact, Ak,p(P ) will not depend on the choices of
Riemannian metric and reference connection, even though the norm on W k,p(M,T ∗M ⊗
ad(P )) does depend on these choices.

Recalling the definitions given in subsection 1.2.1, in a local trivialization Φ = π × φ :
π−1(U) → U × G over some U ⊆ M we have a natural reference connections Ã = φ−1 dφ
and can represent a connection by A = Ã + α for α ∈ Ω1(U, g). The reference connection
can be used to define Ak,p(P |U ), and we affirm that the norm onW k,p(U, T ∗U ⊗ ad(P |U ))
is equal to the norm on W k,p(U, T ∗U ⊗ g). Thus we are able to locally define the Sobolev
space of connections as

Ak,p(U) := W k,p(U, T ∗U ⊗ g), (1.25)

such that
Ak,p(P |U ) = φ−1 dφ+Ak,p(U).

Definition 1.28 (Sobolev space of gauge transformations). For kp > n, we define the
Sobolev space of gauge transformations as the Sobolev space of sections of the bundle
Ad(P )→M ,10

Gk,p(P ) := W k,p(M,Ad(P )).

9See definition 1.14.
10See definition 1.25.
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Similar to the smooth case, this is naturally isomorphic to the Sobolev space of G-
equivariant maps W k,p(P,G)G, and from proposition 1.21, a map u ∈ W k,p(P,G)G can
be written as u = s · exp(ξ) for s ∈ C∞(P,G)G a smooth gauge transformation, and ξ ∈
W k,p(P, g)G. On a local trivialization over U ⊆ M , a gauge transformation is represented
by a map u : U → G, and thus locally we can identify Gk,p(P |U ) with

Gk,p(U) := W k,p(U,G), (1.26)

and furthermore proposition 1.21 will yield

u−1 du ∈W k−1,p(U, T ∗U ⊗ g) = Ak−1,p(U)

for u ∈ Gk,p(U).
Just as we defined the Yang–Mills functional to be an L2-energy, we may generalize this

and define an Lq-energy of a connection A ∈ A(P ), for 1 ≤ q <∞,

Eq(A) :=
∫
M
|FA|q = ‖FA‖qq . (1.27)

We may extend these functionals to Sobolev spaces of connections, and they will be well
behaved.

Lemma 1.29. When n
2 ≤ q <∞, Eq is a continuous functional on A1,q(P ), and for every smooth

reference connection Ã there exists a constant C such that for all A = Ã+ α ∈ A1,p(P ),

Eq(A)
1
q ≤ Eq(Ã)

1
q + 2 ‖α‖1,q + C ‖α‖21,q .

Proof. The curvature of A = Ã+ α is

FA = d(Ã+ α) + 1
2[(Ã+ α) ∧ (Ã+ α)]

= dÃ+ dα+ 1
2([Ã ∧ Ã] + [α ∧ α] + 2[Ã ∧ α])

= FÃ + dα+ [Ã ∧ α] + 1
2[α ∧ α]

= FÃ + dÃα+ 1
2[α ∧ α].

From (1.4), we know that for any X,Y ∈ TM

dÃα(X,Y ) = ∇Ãα(X,Y )−∇Ãα(Y,X),

which implies
∣∣dÃα∣∣ ≤ 2

∣∣∣∇Ãα∣∣∣.
Writing α = αi dxi on a local frame {∂xi},

[α ∧ α] =
∑
i,j

[αi, αj ]dxi dxj =
∑
i<j

2[αi, αj ]dxi dxj (1.28)

and so ∣∣∣∣12[α ∧ α]
∣∣∣∣2 =

∑
i<j

|[αi, αj ]|2
(∗)
≤
∑
i<j

|αi|2 |αj |2 ≤
∑
i,j

|αi|2 |αj |2 = |α|4 ,
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where we used (1.21) in (∗), and then∥∥∥∥1
2[α ∧ α]

∥∥∥∥
q

=
(∫ ∣∣∣∣12[α ∧ α]

∣∣∣∣q) 1
q

≤
(∫
|α|2q

) 1
q

= ‖α‖22q .

Finally,

∣∣∣Eq(A)
1
q − Eq(Ã)

1
q

∣∣∣ =
∣∣∣∣∣
∥∥∥∥FÃ + dÃα+ 1

2[α ∧ α]
∥∥∥∥
q
−
∥∥FÃ∥∥q

∣∣∣∣∣
≤
∣∣∣∣∣∥∥dÃα∥∥q +

∥∥∥∥1
2[α ∧ α]

∥∥∥∥
q

∣∣∣∣∣
≤ 2

∥∥∥∇Ãα∥∥∥
q

+ ‖α‖22q

≤ 2 ‖α‖1,q + CW ‖α‖21,q ,

where the last inequality follows because of the embeddingW 1,q ↪→ L2p which holds with
the assumption q ≥ n

2 .

Locally, the energy of a connection A ∈ A1,q(U) is denoted the same way and given by

Eq(A) = ‖FA‖qq(U) ,

whereFA ∈ Lq(U,Λ2T ∗U⊗g) is the local representative of the curvature. Then the estimate
in the previous lemma becomes

Eq(A)
1
q = ‖FA‖q ≤ 2 ‖A‖1,q + C ‖A‖21,q . (1.29)

We already know that the group of gauge transformations is indeed a group; we now
prove that the group operations are continuous, and therefore the Gk,p are topological
groups, for kp > n.

Lemma 1.30. Let k ∈ N and 1 ≤ p < ∞ be such that kp > n; then group multiplication and
inversion are continuous maps on Gk,p(P ).

Proof. Let (Uα, τα)α∈A be a bundle atlas of Ad(P ) → M . By definition, a gauge trans-
formation u ∈ Gk,p(P ) is a continuous section of this bundle such that for all α ∈ A,
uα := τα ◦ u : Uα → G is in W k,p(Uα, G). If (Vβ, φβ)β∈B is an atlas of G, then this means
that φβ ◦uα ∈W k,p(u−1

α (Vβ),R`), for all β ∈ B and ` the dimension ofG. We will prove the
continuity of the inversion map, and the multiplication will be analogous.

Let i : G → G be the inversion map, i(g) = g−1. Then u−1 can be defined by (u−1)α =
i ◦ uα for all α ∈ A. We would like to show that (u−1)α ∈W k,p(Uα, G). For γ ∈ B,

φγ ◦ (u−1)α = φγ ◦ i ◦ uα = (φγ ◦ i ◦ φ−1
β ) ◦ (φβ ◦ uα).

Nowwe can use Lemma 1.23 with f = φγ ◦ i ◦φ−1
β ∈ C∞(φβ(Vβ) ⊆ R`,R`) to conclude that

φγ ◦ (u−1)α ∈ W k,p((u−1)−1
α (Vγ),R`). Since α ∈ A and γ ∈ B were arbitrary, this proves

u−1 ∈ Gk,p(P ).

Moreover, the gauge action on the appropriate Sobolev space of connections is contin-
uous.
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Lemma 1.31. Let k ∈ N and 1 ≤ p <∞ be such that kp > n; then the gauge action

Gk,p(P )×Ak−1,p(P )→ Ak−1,p(P )
(u,A) 7→ u∗A

is a continuous map. Moreover, for every trivializing neighbourhood U ⊆M there is a constant C
such that for u ∈ Gk,p(U) and A ∈ Ak−1,p(U) the following holds:

‖u∗A‖k−1,p ≤
∥∥∥u−1 du

∥∥∥
k−1,p

+ C ‖A‖k−1,p

(
1 +

∥∥∥u−1 du
∥∥∥
k−2,2p

)k−1
.

Proof. First, note that it suffices to prove continuity of the action on an arbitrary trivializing
neighbourhood, say U ⊆ M . We wish to prove that for two sequences (ui) ⊆ Gk,p(U) and
(Ai) ⊆ Ak−1,p(U) converging to u ∈ Gk,p(U) and A ∈ Ak−1,p(U), respectively,

(ui)−1Aiui + (ui)−1 dui = u∗iAi −→ u∗A.

We treat the cases k = 1 and k ≥ 2 separately. In both cases, note that by definition (lemma
1.22), (ui) converges to u in C0(U,G) and (ui)−1 dui

(k−1,p)−→ u−1 du.
For k = 1, the inequality is simply

‖u∗A‖p(U) ≤
∥∥∥u−1 du

∥∥∥
p(U)

+
∥∥∥u−1Au

∥∥∥
p(U)

,

which is just the triangle inequality for the norm of the gauge action. Then when looking
at ‖u∗A− u∗iAi‖p(U), we have shown that the first term converges, and the second term∥∥∥u−1Au− u−1

i Aiui
∥∥∥
p
≤
∥∥∥u−1Au− u−1Aiu

∥∥∥
p

+
∥∥∥u−1Aiu− u−1

i Aiui
∥∥∥
p

≤ ‖A−Ai‖p + ‖Adu−Adui‖ ‖Ai‖p

will also converge because of the C0-convergence ui → u. For the second inequality, we
used the invariante of the metric on g under conjugation and the fact that Adg is a bounded
linear operator on g.

For k ≥ 2, once again writing

‖u∗A‖k−1,p(U) ≤
∥∥∥u−1 du

∥∥∥
k−1,p(U)

+
∥∥∥u−1Au

∥∥∥
k−1,p(U)

,

the first term is known to converge, and for the second termwe use lemma 1.32 belowwith
τ = A, τi = Ai and ` = k − 1 to get convergence and an estimate which yields the desired
inequality.

Lemma 1.32. Let U ⊆ M be a trivializing neighbourhood of P → M , 0 ≤ ` ≤ k be integers and
1 ≤ p <∞ be such that kp > n and p ≥ n

2 . Then the following holds.
Let (ui) ⊆ Gk,p(U) and (τi) ⊆ W `,p(Λ`T ∗U ⊗ g) be sequences that converge to u ∈ Gk,p(U)

and τ ∈W `,p(Λ`T ∗U ⊗ g), respectively and in the appropriate topologies. Then

(ui)−1τiui
`,p−→ u−1τu.

Moreover, there exists a constant C such that∥∥∥u−1τu
∥∥∥
`,p
≤ C ‖τ‖`,p

(
1 +

∥∥∥u−1 du
∥∥∥
`−1,2p

)`
.
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Proof. The proof will go through by induction on `.
For ` = 0, the estimate is provided by the invariance of themetric on gunder conjugation

and is simply ∥∥∥u−1τu
∥∥∥
p

= ‖τ‖p .

Convergence follows from the C0 convergence of the ui (lemma 1.22).
Assume the lemma to hold for `− 1 ≥ 0. The case ` = 0 already provides convergence

for the Lp term in the norm and it remains to show that the derivative, which we write
using (1.24) and du−1 · u = −u−1 du,

∇(u−1
i τiui) = u−1

i ∇τiui − [u−1
i dui, u−1

i τiui],

converges to ∇(u−1τu) in theW `−1,p-norm. The first term in the derivative can be seen to
converge from the induction hypothesis, using the lemma for∇τ and `− 1. For the second
term, the Lie bracket, note the calculation below,

‖[u−1
i dui, u−1

i τiui]− [u−1 du, u−1τu]‖`−1,p

=
∥∥∥[u−1

i dui − u−1 du, u−1
i τiui] + [u−1 du, u−1

i τiui − u−1τu]
∥∥∥
`−1,p

≤
∥∥∥[u−1

i dui − u−1 du, u−1
i τiui]

∥∥∥
`−1,p

+
∥∥∥[u−1 du, u−1

i τiui − u−1τu]
∥∥∥
`−1,p

(1)
≤
∥∥∥∣∣∣u−1

i dui − u−1 du
∣∣∣ · ∣∣∣u−1

i τiui
∣∣∣∥∥∥
`−1,p

+
∥∥∥∣∣∣u−1 du

∣∣∣ · ∣∣∣u−1
i τiui − u−1τu

∣∣∣∥∥∥
`−1,p

(2)
≤
∥∥∥u−1

i dui − u−1 du
∥∥∥
`−1,2p

∥∥∥u−1
i τiui

∥∥∥
`−1,2p

+
∥∥∥u−1 du

∥∥∥
`−1,2p

∥∥∥u−1
i τiui − u−1τu

∥∥∥
`−1,2p

(3)
≤ CW

∥∥∥u−1
i dui − u−1 du

∥∥∥
`,p︸ ︷︷ ︸

(4)
−→0

∥∥∥u−1
i τiui

∥∥∥
`−1,2p︸ ︷︷ ︸

(5)
−→‖u−1τu‖`−1,2p

+ C ′W

∥∥∥u−1 du
∥∥∥
`,p︸ ︷︷ ︸

const.

∥∥∥u−1
i τiui − u−1τu

∥∥∥
`−1,2p︸ ︷︷ ︸

(6)
−→0

−→ 0,

where (1) follows from (1.20); (2) is lemma B.8 with r = s = 2p; (3) is the Sobolev
embedding W `,p ↪→ W `−1,2p which is valid for p ≥ n

2 ; (4) follows from Lemma 1.22,
noting that ` ≤ k − 1; (5) and (6) follow taking the lemma with ` − 1 (which is valid by
induction hypothesis) but with (k − 1, 2p) instead of (k, p), since by the same embedding
W `,p ↪→ W `−1,2p, the original sequence (τi) also converges in W `−1,2p-norm and (ui) also
converges in Gk−1,2p. This proves convergence for ` from `− 1.

For the estimate, assume it valid for `− 1. Then, denoting by C all constants which do
not come from a Sobolev estimate, and by CW all of the ones that do,∥∥∥u−1τu

∥∥∥
`,p
≤
∥∥∥u−1τu

∥∥∥
p

+
∥∥∥∇(u−1τu)

∥∥∥
`−1,p

(1)
≤ ‖τ‖p +

∥∥∥u−1∇τu
∥∥∥
`−1,p

+
∥∥∥u−1 du

∥∥∥
`−1,2p

∥∥∥u−1τu
∥∥∥
`−1,2p

(2)
≤ ‖τ‖p + C ‖∇τ‖`−1,p

(
1 +

∥∥∥u−1 du
∥∥∥
`−2,2p

)`−1
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+
∥∥∥u−1 du

∥∥∥
`−1,2p

C ‖τ‖`−1,2p

(
1 +

∥∥∥u−1 du
∥∥∥
`−2,4p

)`−1

≤ C ‖τ‖`,p
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)`−1

+
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)
CW ‖τ‖`,p

(
1 + CW

∥∥∥u−1 du
∥∥∥
`−1,2p

)`−1

≤ C ‖τ‖`,p
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)`
,

where (1) follows from arguments similar to those already used for the convergence
above, (2) is the induction hypothesis, and the Sobolev estimates for W `,p ↪→ W `−1,2p

andW `−1,2p ↪→W `−2,4p hold due to p ≥ n
2 .

The following results will be critical for proving the weak and strong compactness
theorems.

Lemma1.33. Let k ∈ N and 1 ≤ p <∞ be such that kp > n and p > n
2 . Let (Ai)i∈N ⊆ Ak−1,p(P )

and (ui)i∈N ⊆ Gk,p(P ) be two sequences such that both
∥∥Ai∥∥k−1,p and

∥∥ui∗Ai∥∥k−1,p are uniformly
bounded. Then the following holds:

(i) For every trivialization over some domain Uα ⊆ M , there exists a uniform bound on∥∥(uiα)−1 duiα
∥∥
k−1,p(Uα).

(ii) There exists a subsequence of (ui) that converges in the C0-topology to some limit in Gk,p(P ).

Proof. See [Weh04, lemma A.8].

Lemma 1.34. Let 1 < p <∞ and k ∈ N0 such that kp > n and p ≥ n
2 . Let A,A

′ ∈ Ak,p(P ). If
there is a continuous gauge transformation u such that A′ = u∗A, then u ∈ Gk+1,p(P ).

Proof. Look at the local representatives on some chart U ⊆ M , such that A,A′ ∈ Ak,p(U)
and u ∈ C0(U,G), thenwriteA′ = u−1Au+u−1 du (the gauge action looks the same locally,
see lemma 1.11). In case k = 0, it suffices to look at∥∥∥u−1 du

∥∥∥
p
≤
∥∥∥A′ − u−1Au

∥∥∥
p
≤
∥∥A′∥∥p + ‖A‖p ,

where in the second inequality we used that the inner product on g is Ad-invariant. Then
u−1 du ∈ Lp(U, T ∗U ⊗ g), and so by proposition 1.21, u ∈ G1,p(P ).

For k > 1, we will use the estimate in lemma 1.32 above. First, note that for all j ≤ k,∥∥∥u−1 du
∥∥∥

2jp
≤
∥∥A′∥∥2jp + ‖A‖2jp ≤

∥∥A′∥∥k,p + ‖A‖k,p

since kp > n > 2j−1
2j n. Then,∥∥∥u−1 du

∥∥∥
k,p
≤
∥∥A′∥∥k,p +

∥∥∥u−1Au
∥∥∥
k,p
,

and from lemma 1.32,
∥∥u−1Au

∥∥
k,p is bounded by ‖A‖k,p and

∥∥u−1 du
∥∥
k−1,2p. The norm

‖A′‖k,p is finite by assumption, and we bound the second term as follows: we iterate the
estimate above, using the embeddings

W k,p ↪→W k−1,2p ↪→W k−2,4p ↪→ · · · ↪→W k−j,2jp
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to bound the ‖A′‖ term, which hold since p ≥ n
2 ≥

n
2j for j ≥ 1, and using lemma 1.32

to bound the
∥∥u−1Au

∥∥ term. This process will finally end with
∥∥u−1 du

∥∥
k,p bounded by a

finite amount of terms ‖A′‖k,p and
∥∥u−1 du

∥∥
2kp, which we showed above is finite. Thus,

u ∈ Gk+1,p(P ).

That is, bounds on connections give bounds on gauge transformations relating them.

Non-smooth Yang–Mills connections

In the smooth case, we defined the Yang–Mills functional (1.16),

YM(A) =
∫
M
|FA|2 ,

showed that critical points satisfy the weak Yang–Mills equation, and noted that smooth
solutions to the weak equation also satisfy the strong Yang–Mills equation with boundary
condition. It is possible to extend the functional to connectionswith less regularity. ForYM
to be well-defined, we need FA of class L2. Let A ∈ A1,p(P ), and consider the curvature:

FA = dA+ 1
2[A ∧A].

It is clear that dA ∈ Lp(P, g), yielding the necessary hypothesis p ≥ 2, which at this point
we are used to; as for the second term, note that ‖[A ∧A]‖2 ≤ ‖A‖

2
4, hence we need the

Sobolev embeddingW 1,p ↪→ L4, which holds when p ≥ 4n
4+n .

That said, we can ask even less of the connection if we only want it to satisfy the weak
Yang–Mills equation 1.30.

Definition 1.35. For 1 ≤ p < ∞ such that p > n
2 , and in case n = 2 assume in addition

p ≥ 4
3 , a connection A ∈ A

1,p(P ) is called weak Yang–Mills if it satisfies∫
M
〈FA, dAβ〉 = 0, ∀β ∈ Ω1(M, ad(P )). (1.30)

The conditions in the definition guarantee that 〈FA, dAβ〉 ∈ L1(M). With p ≥ n
2 , the

embeddingW 1,p ↪→ L2p guarantees that [A ∧A] is in Lp, and therefore so is the curvature.
Then we need dAβ of class Lp∗, for

1
p∗

:= 1− 1
p
.

Since β is smooth, we needW 1,p ↪→ Lp∗ for A ∈ A1,p, and the condition for this is p ≥ 2n
n+1 ;

for n = 1 this is met due to p ≥ 1, for n ≥ 3 this is met due to p ≥ n
2 ≥

2n
n+1 , and then for

n = 2 we need to assume p ≥ 4
3 .

As we hinted to, the Yang–Mills functional might not be defined or finite for a weak
Yang–Mills connection: we do not explicitly ask for p ≥ 2, and while p ≥ n

4 guarantees this
for n ≥ 4, this might fail if n ≤ 3; moreover, the condition p ≥ 4n

4+n fails for n = 3.
The following lemma shows that (1.30) is preserved under gauge transformations.

Lemma 1.36. Let A ∈ A1,p(P ) be a weak Yang–Mills connection, and fix a compact set K ⊆ M .
Then for every gauge transformation u ∈ G2,p(P |K), u∗A ∈ A1,p(P |K) is also weak Yang–Mills.
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Proof. First, we show that (1.30) still holds if we the test forms are not smooth but instead
β ∈W 2,p(M, ad(P )). Since FA ∈ Lp, we check that dAβ ∈ Lp∗. From the local formula

(dAβ)α = dβα + [Aα ∧ βα],

the first term is in Lp∗ since dβα ∈W 1,p andW 1,p ↪→ Lp∗, and then

‖[Aα ∧ βα]‖p∗ ≤ c ‖|Aα| |βα|‖p∗ ≤ c ‖Aα‖p∗ ‖βα‖∞ ≤ CW ‖Aα‖1,p ‖βα‖2,p ,

whereW 2,p ↪→ C0 holds for p > n
2 .

Now, let K ⊆ M be compact and let u ∈ G2,p(P |K). For a smooth test 1-form β
with support in K, we define β̃ := uβu−1 and extend it to 0 outside K, such that β̃ ∈
W 2,p(K, ad(P |K)).11 We have shown that (1.30) holds for such β̃, and thus∫

M
〈Fu∗A, du∗Aβ〉 =

∫
M
〈u−1FAu, u

−1 dAβ̃u〉 =
∫
M
〈FA, dAβ̃〉 = 0.

This follows from the calculation below, where we use (1.23),(
dA(uβu−1)

)
α

= d(Aduα βα) + [Aα ∧ uαβαu−1
α ]

= [duα · u−1
α ∧ uαβαu−1

α ] + Aduα dβα + u−1
α [uαAαu−1

α ∧ βα]uα
= uα dβαu−1

α + uα[u−1
α duα ∧ βα]u−1

α + u−1
α [uαAαu−1

α ∧ βα]uα
=
(
u(du∗Aβ)u−1

)
α
.

Next, we show that for sufficient regularity, the weak and strong Yang–Mills equations
are equivalent, and this implies the result in the smooth case.

Lemma 1.37. Let 1 ≤ p <∞ be such that p ≥ 2n
n+2 and let k ∈ N. Fix a connection A ∈ A1,p(P ),

and two equivariant forms ω ∈W 1,p(M,ΛkT ∗M ⊗ ad(P )) and γ ∈ Lp(M,Λk−1T ∗M ⊗ ad(P )).
Then the following are equivalent:

(i) For all smooth η ∈ Ω1(M, ad(P )),∫
M
〈ω, dAη〉 =

∫
M
〈γ, η〉.

(ii) {
d∗Aω = γ,

∗ω|∂M = 0.

Proof. Consider the computation below,∫
M
〈ω, dAη〉 =

∫
M
〈ω, dη〉+

∫
M
〈ω, [A ∧ η]〉

=
∫
M
〈η, d∗ω〉+

∫
M

d〈η ∧ ∗ω〉 ±
∫
M
〈∗ω ∧ [A ∧ η]〉

11Indeed, see lemmata 1.30 and 1.32.
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=
∫
M
〈d∗ω, η〉+

∫
∂M
〈η ∧ ∗ω〉 ±

∫
M
〈[∗ω ∧A] ∧ η〉

=
∫
M
〈d∗ω, η〉 − (−1)(n−k)(k−1)

∫
M
〈∗[A ∧ ∗ω], η〉+

∫
∂M
〈η ∧ ∗ω〉

=
∫
M
〈d∗Aω, η〉+

∫
∂M
〈η ∧ ∗ω〉

where we have used Stokes’s theorem and property (1.20) of the inner product on g-valued
forms. We did not keep track of the sign in front of the

∫
〈ω, [A ∧ η]〉 term when writing

down the calculation because it would become too cumbersome, but it can be checked
that we obtain the correct sign. Moreover, the hypothesis p ≥ 2n

n+2 guaranteesW 1,p ↪→ L2,
which is needed for the integral of 〈∗ω ∧ [A ∧ η]〉 to be well defined.

We use this identity to prove the lemma. If we assume (ii), then it directly gives (i).
Now assume (i): testing with arbitrary η that vanish at the boundary we get d∗Aω = γ, and
this further implies that the boundary term is zero for all η, which proves ∗ω|∂M = 0.

The weak Yang–Mills equation is well behaved under limits, weak and strong.

Lemma 1.38. Let 1 < p <∞ such that p > n
2 , and in case n = 2 let also p ≥ 4

3 .

(i) If a sequence of weak Yang–Mills connections in A1,p(P ) converges strongly in the W 1,p

topology, the limit is also weak Yang–Mills.

(ii) If in case n = 2 there is strict inequality p > 4
3 , for a sequence of weak Yang–Mills connections

in A1,p(P ) with Lp-bound on curvature which converges weakly in the W 1,p topology, the
limit connection is also weak Yang–Mills.

Proof. Wewill prove (i) and (ii) at the same time, commentingwhere the extra assumptions
for (ii) are needed.12 Remember that strong convergence implies weak convergence.

Suppose (Ai) ⊆ A1,p(P ) is a sequence which converges weakly to A ∈ A1,p(P ) such
that each Ai is weak Yang–Mills. Note that if the convergence is strong, then there is a
uniform bound on ‖FAi‖p a priori; if the convergence is weak, we must assume the uniform
bound. Then, using the Cauchy-Schwartz ineqality and Hölder’s inequality for 1 = 1

p + 1
p∗ ,

we prove that A is also weak Yang–Mills, calculating for any β ∈ Ω1(M, ad(P )):∫
M
〈FA, dAβ〉 =

∫
M
〈FA, dAβ〉 −

∫
M
〈FAi , dAiβ〉

=
∫
M
〈FA − FAi , dAβ〉+

∫
M
〈FAi , dAβ − dAiβ〉

≤
∫
M
〈FA − FAi , dAβ〉+

∫
M
|〈FAi , dAβ − dAiβ〉|

≤
∫
M
〈FA − FAi , dAβ〉+

∫
M
|FAi | · |dAβ − dAiβ|

≤
∫
M
〈FA − FAi , dAβ〉︸ ︷︷ ︸

−→0

+ ‖FAi‖p︸ ︷︷ ︸
bounded

‖dAβ − dAiβ‖p∗︸ ︷︷ ︸
−→0

−→ 0.

12Some steps would be more straightforward if we only wished to prove the case of strong convergence,
however we do not comment on those.
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The first limit is the weak Lp-convergence of FAi , and we check weak convergence of
local representatives on all bundle charts Uα, (FAi)α = dAiα + [Aiα ∧ Aiα]. For the weak
convergence of the dAiα term, test with any β ∈ Ω2(Uα, g) that vanishes on ∂Uα,∫

Uα
〈dAiα, β〉 =

∫
Uα
〈Aiα, d

∗β〉 i→∞−→
∫
Uα
〈Aα, d∗β〉 =

∫
Uα
〈dAα, β〉

then note that the limit holds for all β ∈ Ω2(Uα, g) since these can be Lp∗-approximated
by such test forms which vanish on the boundary.13 For the [Aiα ∧ Aiα] term, use Hölder’s
inequality for 1

p = 1
2p + 1

2p ,∥∥∥[Aα ∧Aα]− [Aiα ∧Aiα]
∥∥∥
p
≤
∥∥∥Aα −Aiα∥∥∥2p

‖Aα‖2p +
∥∥∥Aiα∥∥∥2p

∥∥∥Aα −Aiα∥∥∥2p
−→ 0,

and this converges strongly because of the compact Sobolev embedding W 1,p ↪→ L2p

guaranteed by p > n
2 .

As for the second limit, we again look at local representatives,

(dAβ − dAiβ)α = [(Aα −Aiα) ∧ βα],

and obtain convergence in all bundle charts observing the following:

‖(dAβ − dAiβ)α‖p∗ ≤
∥∥∥Aα −Aiα∥∥∥

p∗
· ‖βα‖∞ −→ 0.

This limit follows from the continuous embedding W 1,p ↪→ Lp∗ if the original sequence
converged strongly in A1,p, however if we only had weak convergence the additional
hypothesis p > 4

3 is needed to ensure that the embedding is compact and therefore there is
strong convergence in Lp∗.

Finally, we state without proof the main result we will need on the regularity of Yang–
Mills connections.

Proposition 1.39. Let M be a compact n-manifold, and let Ã ∈ A(P ) be a smooth reference
connection. Let 1 < p <∞ and k ∈ N be such that either kp > n, or if k = 1 then n

2 < p < n, and
in either case if n = 2, then p ≥ 4

3 . Moreover, let q := p in the first case or q := np
2n−p in the second

case. Then there exists a constant C with the following significance:
Let A = Ã+ α ∈ Ak,p(P ) be a connection that satisfies{

d∗Ãα = 0,
∗α|∂M = 0,

and for all smooth β ∈ Ω1(M, ad(P )) ∫
M
〈FA, dAβ〉 = 0.

Then A ∈ Ak+1,q(P ) and

‖α‖k+1,q ≤ C
(
1 + ‖α‖k,p + ‖α‖3k,p

)
.

Moreover, the constant C can be chosen such that it depends W k+1,∞-continuously on the
metric.

13Writing βi for the test forms vanishing on ∂Uα approximating β, using Hölder’s inequality and noting
that the compact embeddingW 1,p ↪→ Lp gives a uniform bound on

∥∥Aiα∥∥p, the boundary term coming from
Stokes’s theorem will be bounded by

∥∥Aiα∥∥p ‖β − βi‖p∗ → 0.
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Proof. See [Weh04, corollary 9.6].

If the first pair of equations in this proposition seems arbitrary now, the next chapter
should convince you otherwise. Proposition 1.39 along with theorem 2.2 imply the follow-
ing result on the regularity of Yang–Mills connections. We shall not use it in this work,
however we thought it would fit in nicely as the conclusion to this first chapter. This is also
essentially corollary 1.4 in Uhlenbeck’s original paper [Uhl82].

Theorem 1.40. Let M be a compact n-manifold, and let 1 < p < ∞ be such that p > n
2 , and in

case n = 2 assume further that p ≥ 4
3 . Then for every weak Yang–Mills connection A ∈ A1,p(P )

there is a gauge transformation u ∈ G2,p(P ) such that u∗A is smooth.

Proof. See [Weh04, theorem 9.4].
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Chapter 2

The gauge fixing lemma

Themain theorem in this chapter is very easy to state in simple terms: for connections with
bounded curvature, there is a good local gauge. In the first section we motivate the idea
behind gauge fixing and show an example of a good gauge in the simple case when G is
abelian andM is a closed manifold; next, we give the main definition 2.1 of what a “good”
gauge is in our context, and explain how the main theorem 2.2 follows from a similar result
in Euclidean space. Then, in the second section, we prove the result on a chart.

The gauge fixing lemma will be essential for the proofs of the compactness theorems
in the next chapter. It is theorem 2.1 in [Uhl82], and we mainly follow the expositions in
[DK97, chapter 2] and [Weh04, chapter 6].

2.1 Motivation and main result

Flat connections, Coulomb gauge and Hodge theory

In a problem that has a gauge redundancy, solutions come in families (gauge orbits) and it is
often necessary, or at least convenient, to choose representatives; this process is called gauge
fixing. A choice of gauge might be good simply because it simplifies calculations, as in the
classical choice of Coulomb gauge ∇ · A = 0 for the vector potential in electromagnetism.
More abstractly, onemight also be afterminimizing norms, ormaking a systemof equations
elliptic (and therefore more tractable).

If a connection is flat and the base manifold is simply connected, then we may choose
a trivialization such that the connection matrix is identically zero, that is, ∇A = d is the
canonical (or product) connection on a trivial (product) vector bundle. This may be done
with parallel transport, by first choosing a frame over a point p and then extending this
frame in each direction on the manifold. Similarly, on a holomorphic vector bundle one
may wish to choose local trivializations such that the partial connection ∂α = ∂ + α has
α = 0, that is, choose a gauge such that the flat-in-the-(0,1)-direction connection is the
canonical one.1

Hence, if a connection is somehowflat, one obtains local gauges such that the connection
matrix is zero. If instead of flatness there is small curvature, can one find a correspondingly
small connection matrix? In the case of the abelian U(1) gauge group, we may use Hodge
theory. AssumeM is a simply connected closed base manifold for the time being, and let
A be a connection on a trivial U(1)-bundle overM ; recall that the Lie algebra of U(1) is iR.

1For the detailed statements and proofs of these results, see [DK97, section 2.2].
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The curvature of the connection is simply FA = dA, and any change A 7→ A+ idf for
a smooth real valued function leaves the curvature unchanged. If u : M → U(1) is a gauge
transformation, then it may be written as u(x) = exp(if(x)) and

u−1 du = exp(−if)d exp(if) = idf,

so that indeed A 7→ A + idf represents the action of a gauge transformation as in lemma
1.10. We want to minimize the L2-norm of the connection,∫

M
|A|2 ,

along this gauge equivalent family. The Euler–Lagrange equation for this functional is

d∗A = 0, (2.1)

Indeed,

d
dt

∣∣∣∣
t=0
〈A+ itdf,A+ itdf〉 = 2i〈df,A〉

= 2i〈f, d∗A〉 = 0, ∀ f ∈ C∞(M),

implies that d∗A = 0. Equation (2.1) is our gauge fixing condition, and is usually called
the Hodge or Coulomb gauge.2 Thus we wish to find f such that Ã := A + idf is gauge
equivalent to A, and

d∗Ã = d∗(A+ idf) = 0.

This is equivalent to

∆f = −id∗A.

From the Hodge decomposition theorem,3 we know that there is a solution f if and
only if d∗A is orthogonal to the kernel of the Laplacian, which in this case consists of the
constant functions. So what we want is that

∫
−1 · id∗A = 0, or

∫
d∗A = 0. But∫

M
d∗A = ±

∫
M
∗d ∗A ∗ 1 = ±

∫
M

d ∗A = 0

by Stokes’s theorem, since we are assuming thatM has no boundary. Therefore we find a
solution f . The proof that this critical point of the functional is in fact a minimum is a little
more involved and we skip it, as there seems to be no insight to be gained from it in this
context.4 More interesting than that is the fact that d + d∗ is an elliptic operator, which
provides the following estimate for some constant C (sinceM is simply connected and so
H1(M) = 0):5

‖A‖k,p ≤ C
(
‖dA‖k−1,p + ‖d∗A‖k−1,p

)
.

2Note that we are dealing with the case of classical electromagnetism, where ∇ · A = d∗A = 0 is the
Coulomb gauge; see appendix A.

3See e.g. [War83, theorem 6.8], or [DK97, theorem (A.7)], which they call “the Fredholm alternative”.
4For a proof, see e.g. [Jos02, section 2.2].
5Alternatively, see theorem 1.26.
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When the gauge is fixed such that d∗A = 0, and in the abelian case with FA = dA, we end
up with

‖A‖k,p ≤ C ‖FA‖k−1,p .

In conclusion, we showed that there exists an optimal gauge choice such that it min-
imizes the L2-norm of the connection matrix. Beyond that, the gauge fixing condition
together with the condition on the curvature yields an elliptic system,

curvature dA and gauge fixing condition d∗A −→ elliptic operator d + d∗,

and because of this theW k,p-norms of the connection are bounded by theW k−1,p-norms of
the curvature. Small curvature leads to small connection, as we wanted. As a sanity check,
note that if the connection is flat, then the Coulomb gauge indeed forces the connection
matrix to be zero.

Uhlenbeck’s gauge fixing lemma

In the discussion above we considered the case of an abelian gauge group action on a
trivial bundle over a simply connected compact manifold without boundary. Each of these
hypotheses were important for this straightforward development: the vanishing bracket
lets us write the linear equation FA = dA; the triviality of the bundle let us choose a global
gauge and work with the local representation of connections and gauge transformations;
H1(M) = 0 and compactnesswere needed for the elliptic estimate, and the empty boundary
hypothesis was used for Stokes’s theorem and to avoid dealing with (elliptic) boundary
conditions. Whatwewant now is for a similar result to hold locally on any smoothmanifold
with a non-abelian gauge group action on a bundle that is not necessarily trivial. Of course,
if the result is local we may choose trivializing neighbourhoods and essentially work on a
trivial bundle over the unit ball on Euclidean space. For elliptic theory to hold, we need
the closed ball for compactness, but now the boundary is not empty and we will need
a suitable boundary condition. Finally, for a non-abelian gauge group, the curvature is
FA = dA + 1

2 [A ∧ A] which leads to non-linear equations. We assert that the gauge we
used above, supplemented with a suitable boundary condition, is still an interesting and
profitable gauge choice. Indeed, on the closed ball, the Euler–Lagrange equations for the∫
B |A|

2 functional are 6 {
d∗A = 0,
∗A|∂U = 0.

Issues can arise when directly minimizing the norm this way, as the gauges constructed
can have singularities; however, in the small curvature regime this is not a problem.7 Aswe
shall see later, these equations also fit in nicely with the Yang–Mills equation and yield an
elliptic system. Finally, we would once again like for bounds on curvature to translate into
bounds on the connection matrix. With all of these considerations, the following definition
should feel natural:

Definition 2.1 (Uhlenbeck gauge). Let (M, g) be a Riemannianmanifold, letG be a compact
Lie group, and let P →M be a principal G-bundle.

6See lemma 1.37.
7See [FU91], the comment right before Lemma 8.2 on page 119.
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Let U ⊆M be a trivializing neighbourhood of P . We say that a connectionA ∈ A1,p(U)
is in Uhlenbeck gauge with constant C̃ if it satisfies{

d∗A = 0 on U,
∗A|∂U = 0 on ∂U,

(2.2)

and

‖A‖1,s ≤ C̃ ‖FA‖s (2.3)

for s = p or q, q as in the following theorem.

Our main theorem is then on the local existence of Uhlenbeck gauges.

Theorem 2.2 (Gauge fixing). Suppose that 1 < q ≤ p <∞ such that q ≥ n
2 , p >

n
2 , and in case

q < n, p ≤ nq
n−q . Then there exist constants C̃ and ε̃ > 0 such that the following holds:

For every point in M , there is a neighbourhood U ⊆ M such that for every connection A ∈
A1,p(U) with Eq(A) ≤ ε̃ there exists a gauge transformation u ∈ G2,p(U) such that Ã := u∗A is in
Uhlenbeck gauge. Note that

∣∣FÃ∣∣ = |FA|.

Originally, this theorem was proved by Uhlenbeck in 1982 for n > p ≥ n
2 and q = n

2 on
the unit ball; it is theorem 2.1 in [Uhl82]. The condition p > n

2 guarantees that the gauge
group is indeed a topological group with continuous action. Nevertheless, it is possible to
extend the result for p = n

2 by a weak-limit argument.

Corollary 2.3. The theorem also holds for p = q = n
2 if n ≥ 3.

Proof. See [Weh04, page 105], proof of remark 6.2a).

It suffices to prove the theorem on a coordinate chart, since the result is local and
the Uhlenbeck gauge conditions are invariant under change of coordinates on the base
manifold. Thus, we now state the theorem on an open set in Euclidean (half) space, which
we will prove in the next section, and then show how this implies theorem 2.2.

Proposition 2.4. Let G be a compact Lie group and B ⊆ Rn the open unit ball or the “egg” 8.
Suppose that 1 < q ≤ p < ∞ such that q ≥ n

2 , p >
n
2 , and in case q < n, p ≤ nq

n−q . Then there
exist constants C̃, ε̃ > 0 and δ > 0 such that the following holds:

If B is equipped with a smooth metric g such that ‖g − 1‖2,∞ ≤ δ then for every connection
A ∈ A1,p(B) with E(A) ≤ ε̃ there exists a gauge transformation u ∈ G2,p(B) such that u∗A is in
Uhlenbeck gauge with respect to the metric g and with constant C̃.

Proof of Theorem 2.2. Take δ > 0 from Proposition 2.4, and take B as follows:

• For p in the interior ofM , B ⊆ Rn is the unit ball around the origin.

• For p ∈ ∂M , the “egg” B is an open subset of the half space Hn = {(x1, . . . , xn) ∈
Rn : x1 ≥ 0} that contains a neighbourhood of 0 in ∂Hn, is starshaped relative to 0
and has smooth boundary.9

8See definition below.
9This type of domain is called an “egg squeezed to the boundary” in [Weh04].
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For p ∈ M , choose a coordinate chart around p, ψ : V → M for V ⊆ Rn or Hn, such that
ψ∗g(0) = 1.10 For some small σ ∈ (0, 1], σB ⊆ V and we can restrict ψ : σB → M . To get
a chart on B, consider ψσ := ψ ◦ σ : B → M . The pullback metric is ψ∗σg(z) = σ2ψ∗g(σz);
indeed,

ψ∗σg(v, w)(z) = (ψ ◦ σ)∗g(v, w)(z)
= ψ∗g(dzσv, dzσw)(σz)
= σ2ψ∗g(v, w)(σz).

Note that ψ∗σg(0) = σ2
1, and so this metric is not close to the identity, but if we simply

rescale byσ−2, thenσ−2ψ∗σg(z) = ψ∗g(σz) isW 2,∞-close to the identity, as thefirst derivative
is∇(ψ∗g ◦ σ)(z) = σ∇(ψ∗g)(σz), and the second derivative is

∇2(σ−2ψ∗σg)(z) = ∇2(ψ∗g ◦ σ)(z)
= ∇(σ(∇ψ∗g ◦ σ))(z)
= σ2∇2ψ∗g(σz).

Then, because ψ∗g is smooth on the closure of σB (which is compact), these derivatives are
bounded and can be made small by the choice of σ.

Now, having chosen σ such that
∥∥σ−2ψ∗σg − 1

∥∥
2,∞ ≤ δ, Proposition 2.4 holds on B with

metric gB := σ−2ψ∗σg. However, in order to obtain the result on U := ψ(σB) ⊆M with the
intendedmetric g, we need to show that the result still holds onB with metric σ2gB = ψ∗σg.

On the effect of the conformal change of metric on A, G and condition (2.2), note that
over a compact manifold the metrics are equivalent and so the spaces are the same, and
as for the equations, the change of metric affects the Hodge star, however only by possible
conformal scalings, and the equations still hold.

What is left is to check that the bounds (2.3) are still valid with the same constant C̃.
First, we look at the effect of the rescaling on the norm of the curvature:

‖FA‖qσ2g;q =
∫
B
|FA|qσ2g

√
det(σ2g)dnx

=
∫
B

(σ−2gikσ−2gjl(FA)ij(FA)kl)
q
2

√
σ2n det(g)dnx

= σn−2q ‖FA‖qg;q .

For q as in the theorem, this is the Lq-energy Eσ2g; q(A). If it is bounded Eσ2g; q(A) ≤ ε̃,
then since q ≥ n

2 and σ ≤ 1, Eg; q(A) ≤ σ2q−nε̃ gives Eg; q(A) ≤ ε̃. The calculation for the
Lp-norm is the same. For the W 1,p-norm of a connection A ∈ A1,p(B), we first have the
straightforward calculation

‖A‖pσ2g;p =
∫
B

(σ−2gijAiAj)
p
2

√
det(σ2g)dnx = σn−p ‖A‖pg;p ,

and then for the covariant derivative note that (∇A)ij = ∇iAj − ΓkijAk and the Christoffel
symbols for σ2g and g are the same.11 Then∇gA = ∇σ2gA and as for the curvature∥∥∥∇σ2gA

∥∥∥p
σ2g;p

= σn−2p ‖∇gA‖pg;p .

10Note that this is always possible, as you can simply choose an orthonormal basis on TpM and then parallel
transport it to get a local frame over a contractible domain.

11Indeed, Γkij = a sum of multiples (components of g−1)×(derivatives of components of g), and so a constant
rescaling is cancelled.

46



Chapter 2. Gauge fixing 2.2. Proof of proposition 2.4

Putting both terms together we have

‖A‖pσ2g; 1,p = σn−p ‖A‖pg; 1,p + σn−2p ‖∇A‖pg; 1,p ≤ σ
n−2p ‖A‖pg; 1,p .

Finally, if A is a connection that has been put in Uhlenbeck gauge and satisfies (2.3) with
respect to the metric σ2g, then simply concatenating our inequalities

‖A‖σ2g; 1,p ≤ σ
n−2p
p ‖A‖g; 1,p ≤ C̃ σ

n−2p
p ‖FA‖g; p = C̃ ‖FA‖σ2g; p

we see that A also satisfies (2.3) with respect to the metric g and with the same constant
C̃.

2.2 The big bad proof

The proof of proposition 2.4 is the main technical result of this text. It will refer to most of
the lemmas from the preceding chapter and appendix B. For its relevance (and length), we
give it its own section. The proofwill go through via the continuous inductionmethod, and
its main interesting features are the use of the implicit function theorem, boundary value
spaces, the elliptic estimate for the d + d∗ operator and results relating to the Neumann
problem.

Define the modified energy E ′q(A) =
∫
B |FA(x)|q dxn using the Euclidean metric on B

for a connectionA, and note that if δ is small enough in ‖g − 1‖2,∞ ≤ δ, then g is sufficiently
close to the identity that

1
2E
′
q(A) ≤ Eq(A) ≤ 2E ′q(A).

Define

Aε :=
{
A ∈ A1,p(B) : E ′q(A) < ε

}
, (2.4)

and

Sε := {A ∈ Aε such that A can be put into Uhlenbeck gauge} . (2.5)

We will show that Sε = Aε, and thus every connection with energy at most ε̃ := ε
2 can be

put into Uhlenbeck gauge.
The proof will have three steps, and during each step some care has to be taken with

the constants ε, C̃ and δ and their dependence on each other and the metric on B:

(1) For some fixed g and ε, we prove Aε is connected.

(2) For some fixed g, ε and C̃, Sε is closed. (Proof begins on page 50.)

(3) We find ε, C̃ and δ, and vary the metric with δ, such that Sε is open. (Proof begins on page
51.)

Throughout, we take the local descriptions explained in subsection 1.2.1. Therefore, a
connection in A1,p(B) as defined in (1.25) is a g-valued 1-form on B and a gauge transfor-
mation in G2,p(B) as defined in (1.26) is a function u : B → G.
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(1) Aε is connected

Proposition 2.5. Let B be equipped with any smooth metric g and let ε > 0; then Aε as defined
above is connected.

Proof. Weprove there is a continuouspath fromeachA ∈ Aε to the canonical flat connection
in Aε, which is represented by A ≡ 0 ∈ Ω1(B, g).

Let A ∈ Aε, and define the path (Aσ)σ∈[0,1] by Aσ(x) = σ∗A(x) = σA(σx) where we
take the pullback under the map x 7→ σx.12 Clearly, A0 = 0 and A1 = A, and for each
σ ∈ [0, 1], Aσ ∈ A1,p(B). The curvature of the connection Aσ is 13

FAσ(x) = d(Aσ) + 1
2[Aσ ∧Aσ] = σ2 dA(σx) + σ2

2 [A(σx) ∧A(σx)] = σ2FA(σx),

and so we have

E ′q(Aσ) =
∫
B
σ2q |FA(σx)|q dxn = σ2q−n

∫
σB
|FA(y)|q dyn ≤ σ2q−nE ′(A) ≤ ε,

where we changed variables y = σx and used the assumption that q ≥ n
2 for σ2q−n ≤ 1.

Therefore, the whole path is contained in Aε.
To show the continuity of the path, we will use the Euclidean metric on B instead of

the metric g. For continuity at σ = 0, since A0 = 0, it suffices to show that ‖Aσ‖1;1,p
σ→0−→ 0.

We look at the two Lp-norms separately. First, we have

‖Aσ‖p1;p(B) =
∫
B
|Aσ|p dxn

= σp
∫
B
|A(σx)|p dxn

= σp−n
∫
σB
|A(y)|p dyn

= σp−n ‖A‖p
1;p(σB)

(1)
≤ σp−n ‖1‖p

1; 2p(σB) ‖A‖
p
1; 2p(σB)

= σp−nV ol(σB)
1
2 ‖A‖p

1; 2p(σB)
(2)
≤ σp−n+n

2 V ol(B)
1
2CW ‖A‖p1; 1,p(σB)

≤ σp−
n
2︸ ︷︷ ︸

→0

V ol(B)
1
2C ‖A‖p

1; 1,p(B)︸ ︷︷ ︸
constant

−→ 0,

where in (1)weused theHölder inequality and (2) is the Sobolev inequality forW 1,p ↪→ L2p

guaranteed by the hypothesis p > n
2 , which is also used for σp−

n
2 → 0. For the derivative

term,

‖∇Aσ‖1; p(B) =
∫
B
|∇Aσ(x)|p dxn

=
∫
B
σp |∇(A ◦ σ)(x)|p dxn

12This is well defined since B is star-shaped with respect to 0 and therefore the path σx stays within B.
13Use dx(Aσ) = dx(σ ◦A ◦ σ), and recall that the differential of a linear map is itself.
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= σ2p
∫
B
|∇A(σx)|p dxn

= σ2p−n
∫
σB
|∇A(y)|p dyn

= σ2p−n ‖∇A‖p
1; p(σB) −→ 0

where we simply use a change of variables and again need the condition p > n
2 for conver-

gence.
The continuity at σ0 ∈ (0, 1] is more convoluted, and we will make use of an auxiliary

sequence (Ai)i∈N ⊆ A(B) of smooth connections which converge to A in A1,p(B):

|Aσ(x)−Aσ0(x)| = |σA(σx)− σ0A(σ0x)|
= |σA(σx)− σAi(σx) + σAi(σx) − σAi(σ0x) + σAi(σ0x)
− σA(σ0x) + σA(σ0x)− σ0A(σ0x)|

≤ σ
∣∣∣A(σx)−Ai(σx)

∣∣∣+ σ
∣∣∣Ai(σx)−Ai(σ0x)

∣∣∣
+ σ

∣∣∣Ai(σ0x)−A(σ0x)
∣∣∣+ |σ − σ0| |A(σ0x)|

≤
∣∣∣A(σx)−Ai(σx)

∣∣∣+ |σ − σ0|Ci

+
∣∣∣Ai(σ0x)−A(σ0x)

∣∣∣+ |σ − σ0| |A(σ0x)|

where we have used σ ≤ 1 and the mean value inequality, proposition B.2, for
∥∥∇Ai(x)

∥∥ ≤
Ci, since theAi and all of their derivatives are bounded onB. Nowwe apply the Euclidean
norm ‖ · ‖

1; p(B) to this inequality 14 and change variables to obtain

‖Aσ −Aσ0‖1; p ≤ σ
−n
p

∥∥∥A−Ai∥∥∥
1; p(σB)

+ |σ − σ0|CiV ol(B)
1
p

+ σ
−n
p

0

∥∥∥A−Ai∥∥∥
1; p(σ0B)

+ |σ − σ0|σ
−n
p

0 ‖A‖
1; p(σ0B)

≤
(
σ
−n
p + σ

−n
p

0

)∥∥∥A−Ai∥∥∥
1; p(B)

+ |σ − σ0|CiV ol(B)
1
p

+ |σ − σ0|σ
−n
p

0 ‖A‖
1; p(B) .

It is now necessary to be a bit careful about the mixed terms depending on i and σ, but for
fixed σ0 the right-hand side can be made as small as we want in the following way: first,
take σ close to σ0 such that σ−

n
p + σ

−n
p

0 is bounded, say, by 2σ
−n
p

0 + c for some constant c;
then take i such that the first term is small; for this fixed i, Ci is also constant and therefore
a further suitable choice of σ even closer to σ0 makes the second and third terms small.

The computation to check that ‖∇Aσ −∇Aσ0‖
σ→σ0−→ 0 is completely analogous, using

bounds C ′i on the second derivatives of Ai, yielding

‖∇Aσ −∇Aσ0‖1; p(B) ≤
(
σ
−n
p + σ

−n
p

0

)∥∥∥∇A−∇Ai∥∥∥
1; p(B)

+ |σ − σ0|C ′iV ol(B)
1
p

14That is, we elevate both sides to the p-th power, integrate overB with the Euclidean volume form and take
the 1

p
power, and then separate the terms, all of which can be done because the integral, x 7→ xp and x 7→ x

1
p

are subadditive.
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+
∣∣∣σ2 − σ2

0

∣∣∣σ−np0 ‖∇A‖
1; p(B) −→ 0

for suitable choices of i and σ close to σ0 as before.

(2) Sε is closed

Proposition 2.6. Let B be equipped with any smooth metric g and let ε > 0. Suppose that there is
a sequence (Ai)i∈N ⊆ Aε converging to some A ∈ Aε such that each Ai can be put into Uhlenbeck
gauge with constant C̃ by some gauge transformation ui ∈ G2,p(B). Then there exists u ∈ G2,p(B)
such that u∗A is also in Uhlenbeck gauge with constant C̃.

Proof. We will show that there exist the limits ui → u and u∗iAi =: Ãi → Ã such that
u∗A = Ã and this is in Uhlenbeck gauge.

We can get a uniform bound on
∥∥∥Ãi∥∥∥1,p

by first bounding the curvature, from lemma
1.29,

‖FAi‖p ≤ c(‖Ai‖1,p + ‖Ai‖2p) ≤ c
′,

with uniform c′ due to the W 1,p-convergence of the Ai, and then applying the Uhlenbeck
gauge condition ∥∥∥Ãi∥∥∥1,p

≤ C̃ ‖FAi‖p ≤ c
′C̃.

With this uniform bound, we may use the Banach–Alaoglu theorem 1.18 to find a subse-
quence weakly converging to some Ã ∈ A1,p(B), and then from the compact embedding
W 1,p ↪→ L2p, a further subsequence15 also converges in the L2p-norm to Ã.

Then, since both ‖Ai‖1,p and
∥∥∥Ãi∥∥∥1,p

are uniformly bounded, lemma 1.33 gives us
a subsequence ui such that it converges in the C0-topology to some u ∈ G2,p(B), and
u−1
i dui −→ u−1 du uniformly in the L2p-norm.
Thus we have

u−1 du←− u−1
i dui = Ãi − u−1

i Aiui −→ Ã− u−1Au,

where the second limit follows because the two terms converge, and the second term
converges because of the continuity of the adjoint action.16 Equality follows from the
uniqueness of the L2p-limit, and so Ã = u∗A.

Now, we check that Ã is in Uhlenbeck gauge, i.e. check (2.2) and (2.3):

(i) All Ãi are already in Uhlenbeck gauge and thus satisfy d∗Ãi = 0, and for all φ ∈
C∞(B) such that φ|∂B = 0,

〈φ, d∗Ã〉 =
∫
B
φd∗Ã ∗ 1 =

∫
B
φ ∗ (d∗Ã− d∗Ãi︸ ︷︷ ︸

=0

)

= ∗2︸︷︷︸
=±1

∫
B
φ d(∗Ã− ∗Ãi)

(∗)= ±
∫
B

dφ ∧ ∗(Ã− Ãi︸ ︷︷ ︸
→0

) −→ 0,

where (∗) follows from the following computation (where wewrite α ∈ Ω1(B)), using
Stokes’s theorem 1.20 and φ|∂B = 0

0 =
∫
∂B
φ ∗ α =

∫
B

d(φ ∗ α) =
∫
B

dφ ∧ ∗α+ (−1)n−1
∫
B
φ ∧ d ∗ α

15We keep the same labelling i ∈ N for the subsequence.
16See calculation in proof of lemma 1.31.

50



Chapter 2. Gauge fixing 2.2. Proof of proposition 2.4

Since C∞δ (B) is dense in Lp(B), this proves that d∗Ã = 0.

(ii) Similarly, ∗Ãi|∂B = 0 and this is also preserved under the weak W 1,p-limit, as we
show. For any φ ∈ C∞(∂B) we may extend it to some Φ ∈ C∞(B), and so we have

〈φ, ∗Ã|∂B〉 =
∫
∂B
φ ∗ Ã|∂B =

∫
∂B

Φ ∗ Ã|∂B =
∫
∂B

Φ ∗ (Ã− Ãi)|∂B
(∗)=
∫
B

d(Φ ∗ (Ã− Ãi)) =
∫
B

dΦ ∗ (Ã− Ãi)±
∫
B

Φ d ∗ (Ã− Ãi)

=
∫
B

dΦ ∧ ∗(Ã− Ãi)±
∫
B

Φ ∗ (∗d ∗ (Ã− Ãi))

=
∫
B

dΦ ∧ ∗ (Ã− Ãi)︸ ︷︷ ︸
→0

±
∫
B

Φ (d∗Ã− d∗Ãi)︸ ︷︷ ︸
=0

where in (∗) again we used Stokes’s theorem 1.20. This then shows that ∗Ã|∂B = 0 as
we wished.

(iii) Let s = p or q. We may write∥∥∥Ã∥∥∥
1,s
≤ lim inf

i→∞

∥∥∥Ãi∥∥∥1,s
≤ C̃ lim inf

i→∞
‖FAi‖s ≤ C̃ ‖FA‖s ,

and this gives us our result. The first inequality is true because any norm is sequen-
tially weakly lower semicontinuous; the second follows from Ãi being in Uhlenbeck
gauge; and the third follows from the continuity of the Ls-energy functional on A1,s

from lemma 1.29, and the convergence Ai
1,p−→ A, which also implies there is conver-

gence inW 1,q because for p ≥ q and B of finite volume,W 1,q(B) ↪→W 1,p(B).

(3) Sε is open

We would like to show that for any A ∈ Sε there is a neighbourhood of A in Aε contained
in Sε. Instead, it is simpler to find a neighbourhood of A0 := u∗A in A1,p(B) made up of
connections which can be put in Uhlenbeck gauge, pull it back by u−1 to a neighbourhood
of A in A1,p(B) and intercept it with Aε to get what we need. This string of operations
makes sense because G2,p(B) acts continuously on A1,p(B) (see lemma 1.31) and is closed
under compositions. Since the energy E(A) is gauge invariant, we can forget about the
original connection A and work with an arbitrary connection in Uhlenbeck gauge.

We will make use of the implicit function theorem for a suitable operator between
Banach spaces, which will yield a neighbourhood of connections around A0 which satisfy
(2.2) in the Uhlenbeck gauge definition. We can then ask for a bit more from the solutions
so that the connections satisfy condition (2.3), owing to a a priori estimates.

Before moving on to the proof, it will be important to establish some inequalities with
uniform constants. Since the W 1,p-norm only depends on the metric, its inverse and
first derivatives, control over the W 1,∞-norm of the metric is enough to guarantee that if
‖g − 1‖1,∞ ≤ δ for small enough δ, we get

1
2 ‖α‖g;1,p ≤ ‖α‖1;1,p ≤ 2 ‖α‖g;1,p , ∀α ∈W

1,p(B, T ∗B). (2.6)
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If we choose δ such that this equivalence is valid for the W 1,p, W 1,q and Lr-norms (with
r = r(n, p, q) from lemma B.9) at the same time, we moreover get uniform constants in the
estimates between these spaces, by first using the appropriate estimate with the Euclidean
metric 1, and then using (2.6). This means that throughout the next proofs, the constants
Crnpq coming from lemma B.9 and CW coming from the Sobolev embeddings will not
depend on the metric.

Lemma 2.7 (A priori estimates). There exist positive constants δ, C̃, and Λ such that for every
metric g satisfying ‖g − 1‖1,∞ ≤ δ the following holds:

Let A ∈ A1,p(B) be such that d∗A = 0 on B and ∗A|∂B = 0, and ‖A‖r ≤ Λ, where
r = r(n, p, q) from lemma B.9. Then

‖A‖1,p ≤ C̃ ‖FA‖p ,

‖A‖1,q ≤ C̃ ‖FA‖q ,

that is, A is in Uhlenbeck gauge with constant C̃.

Proof. As we are working over the ball in Euclidean space and ∗A|∂B = 0, it follows from
theorem 1.26 that for all 1 < s <∞,

‖A‖1,s ≤ Cg(‖dA‖s + ‖d∗A‖s︸ ︷︷ ︸
=0

),

where Cg depends on the metric g on B; however, we also know that the constant depends
W 1,∞-continuously on the metric, and so we may choose δ such that there is a uniform
constant C for all metrics ‖g − 1‖1,∞ ≤ δ, and thus

‖A‖1,s ≤ C ‖dA‖s .

Now, looking at the curvature as dA = FA − 1
2 [A ∧A],

‖A‖1,s ≤ C(‖FA‖s + 1
2 ‖[A ∧A]‖s)

and we would like to get rid of this ‖[A ∧A‖ term somehow. There is a clever trick to make
it so that we can absorb this term into the constant and the left hand side. We take s = p or
q and use lemma B.9 in the following:

1
2 ‖[A ∧A]‖s ≤ ‖[A ∧A]‖

1;s

(1)
≤ ‖2 |A| · |A|‖

1;s

≤ 2Crnpq ‖A‖1;r ‖|A|1‖1;1,s
(2)
≤ 8Crnpq ‖A‖r ‖A‖1,s
≤ 8CrnpqΛ ‖A‖1,s ,

where in (1) we used that |[A ∧A]|
1
≤ 2 |A|2

1
(see e.g. (1.28) and proof of lemma 1.29),

and in (2) we used that |∇ |A|| ≤ |∇A| (see lemma B.10). Since we used lemma B.9 for
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the Euclidean metric and then used the equivalence of the norms (2.6), Crnpq is metric
independent and we may absorb it into C,

‖A‖1,s ≤ C(‖FA‖s + Λ ‖A‖1,s),

and now all that is left to do is take Λ = 1
2C and combine the ‖A‖1,s terms, and the result

follows for C̃ = 2C.

We will need to keep track of this extra condition ‖A‖r ≤ Λ while solving the boundary
value problem posed by (2.2), and this will appear as a bound λ onX for a gauge transfor-
mation exp(X), so that a transformed connection exp(X)∗Awill satisfy this Λ bound on its
Lr-norm.

Lemma 2.8. There exists δ > 0 such that for every constant C̃ > 0 there exists ε > 0 such that for
every metric g satisfying ‖g − 1‖2,∞ ≤ δ the following is true:

Let A0 ∈ A1,p(B) be in Uhlenbeck gauge with constant C̃ and energy E(A) ≤ ε; then for all
λ > 0 there exists R > 0 such that for every connection A ∈ A1,p(B) with ‖A−A0‖1,p ≤ R there
is a solution X ∈W 2,p(B, g) of{

d∗(exp(X)∗A) = 0 on B
∗(exp(X)∗A)|∂B = 0 on ∂B,

with ‖X‖2,p ≤ λ.

Proof. As explained, wewill use the implicit function theoremB.3. Let us define our Banach
spaces:

First, define the space

W 2,p
m (B, g) := {X ∈W 2,p(B, g) :

∫
B
X = 0},

which is a closed subspace17 of a Banach space, and therefore also Banach. Next, define

W 1,p
∂ (B, g) := W 1,p(B, g)

W 1,p
δ (B, g)

whereW 1,p
δ (B, g) is the closure in theW 1,p-norm of the subspace of sections which vanish

at the boundary of B. This is a boundary value space, whose elements are equivalence
classes of functions on B which coincide on the boundary ∂B. With the quotient norm

‖φ‖
W 1,p
∂

(B, g) = inf{‖Φ‖1,p : Φ ∈W 1,p(B, g) and Φ|∂B = φ},

W 1,p
∂ (B, g) is a Banach space. Now define

Z = {(f, φ) ∈ Lp(B, g)×W 1,p
∂ (B, g) :

∫
B
f +

∫
∂B
φ = 0}.

Note that Lp(B, g) ×W 1,p
∂ (B, g) with the direct sum norm is a Banach space, and Z is a

closed subspace, and therefore Banach. To see that∫
B
f +

∫
∂B
φ = 0 (2.7)

17
∫
B
X = 0 is a (clearly linear and) closed condition, which is easily seen taking limits in each component of

g.
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is a closed condition, note that using the trace theorem 1.19 we get∫
∂B
|φ| = ‖φ‖1(∂B) ≤ C ‖Φ‖1,p (B) ≤ C(‖φ‖

W 1,p
∂

+ ε)

for some choice of Φ such that Φ|∂B = φ, which is enough to see that (2.7) is preserved
under limits. Finally, A1,p(B) is a Sobolev space and therefore clearly Banach.

We will use the implicit function theorem on the operator

F : A1,p(B)×W 2,p
m (B, g) −→ Z

(A,X) 7→ (d∗(exp(X)∗A), ∗(exp(X)∗A)|∂B).

That F is a continuous map into Lp(B, g)×W 1,p
∂ (B, g) follows from the facts that expX ∈

G2,p(B) forX ∈W 2,p(B, g) by definition (see lemma 1.21), the mapX 7→ expX is continu-
ous, and the gauge action G2,p ×A1,p → A1,p is continuous (see lemma 1.31). That it maps
into Z can be checked with Stokes’s theorem (lemma 1.20): for α = (expX)∗A,18∫

B
d∗α ∗ 1 = −

∫
B

d ∗ α = −
∫
∂B
∗α|∂B,

so that 2.7 is indeed satisfied by (f, φ) in the image of F . Thus, F is a continuous operator
between Banach spaces.

Now, knowing that F (A0, 0) = 0, what we want is an open set around A0 in A1,p(B)
and some continuous map f on this open set to a neighbourhood of 0 ∈ W 2,p

m (B, g) such
that F (A, f(A)) = 0, and this map will permit us to control the norm of X . Under these
circumstances, we need to analyse the derivative of F with respect to the second variable
X . The partial derivative ∂XF |(A,X) is the Fréchet derivative of the map F (A, ·), which is a
linear map

∂XF |(A,X) : W 2,p
m (B, g)→ Z.

We check that this map exists, is continuous and is bĳective at (A0, 0). First, note that since
the chain rule is valid for the Fréchet derivative, and d, ∗ and |∂B are linear maps, we need
only look at the Fréchet derivative of the gauge actionX 7→ (exp(X))∗A, which we will call
G(A,X) : W 2,p

m (B, g)→ A1,p(B), and then

∂XF |(A,X) : ξ 7→ (d∗(G(A,X)ξ), ∗(G(A,X)ξ)|∂B).

We will show that the linearization of the gauge action is

G(A,X)ξ = dξ + dexp(−X) Ad(d−X exp(−ξ))A,

which is to say that

lim
‖ξ‖→0

∣∣∣exp(X + ξ)∗A− exp(X)∗A− dξ − dexp(−X) Ad(d−X exp(−ξ))A
∣∣∣

‖ξ‖
= 0.

We can rewrite this in a more suggestive format,

exp(X + ξ)∗A− exp(X)∗A− dξ − dexp(−X) Ad(d−X exp(−ξ))A
= Adexp(X+ξ)−1 A+ exp(X + ξ)−1 d exp(X + ξ)

18Use k = n in the formulas ∗2 = (−1)k(n−k) and d∗ = −(−1)n(k−1).
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−AdexpX−1 A− expX−1 d expX
− dξ − dexp(−X) Ad(d−X exp(−ξ))A

= Adexp(X+ξ)−1 A−AdexpX−1 A− dexp(−X) Ad(d−X exp(−ξ))A,

and observe that this expression is exactly the expression for the derivative of AdexpY ,

d(−X)(Adexp)(−ξ) = d(−X)(Ad ◦ exp)(−ξ)
= dexp(−X) Ad(d(−X) exp(−ξ)).

Thus the limit is indeed zero. Moreover, G(A,X) is clearly continuous.
To check bĳectivity of ∂XF |(A0,0) we simplify the expression

G(A0, 0)ξ = dξ + d1 Ad(d0 exp(−ξ))A0
(∗)= dξ + d1 Ad(−ξ)A0

= dξ + ad(−ξ)A0

= dξ − [ξ ∧A0]

where (∗) follows because the differential of the exponential map at zero is the identity.
Now, we must look at d∗G(A0, 0)ξ and ∗G(A0, 0)ξ|∂B . Note that because ξ ∈ W 2,p

m (B, g) is
just a function, ∗[ξ ∧A0] = [ξ ∧ ∗A0], and remember that A0 is in Uhlenbeck gauge already.
Then we calculate

−d∗[ξ ∧A0] = −(− ∗ d∗)[ξ ∧A0] = ∗d[ξ ∧ ∗A0]
= ∗[dξ ∧ ∗A0] + ∗[ξ ∧ d ∗A0]
= ∗[dξ ∧ ∗A0] + [ξ ∧ ∗d ∗A0︸ ︷︷ ︸

−d∗A0=0

]

= ∗[dξ ∧ ∗A0].

Moreover, ∗A0|∂B = 0 and so

∗(dξ − [ξ ∧A0])|∂B = ∗dξ|∂B.

Therefore
∂XF

∣∣
A0,0ξ = (d∗ dξ + ∗[dξ ∧ ∗A0], ∗dξ|∂B).

We write ∂XF |A0,0 = T + S, where

T = (∆ξ, ∗dξ|∂B) and S = (∗[dξ ∧ ∗A0], 0).

Note that T is the operator for the inhomogeneous Neumann problem.19 From theorem
B.6, Z is exactly the space of functions (f, g) for which the Neumann problem has solution,
and so T is surjective onto Z ; moreover, the solutions are unique up to additive constant,
and so the additional condition on the domainW 2,p

m (B, g) that
∫
B ξ = 0 makes T injective.

Furthermore, by theorem B.7, the inverse of this operator is bounded for every metric
W 2,∞-close to the identity. Choosing an appropriate δ, we can make

∥∥T−1∥∥ ≤ CT for some

19See appendix B, the section on the Neumann problem.
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constant CT which is independent of the metric. Now, if we find a bound for S, lemma B.5
gives the bĳectivity of T + S. Calculate

|∗[dξ ∧ ∗A0]| =
∣∣∣∗∑[∂iξ, Aj ]dxi ∧ ∗dxj

∣∣∣ =
∣∣∣∗∑[∂iξ, Aj ] gij ∗ 1

∣∣∣
=
∣∣∣∑ gij [∂iξ, Aj ]

∣∣∣ ≤∑∣∣∣gij [∂iξ, Aj ]∣∣∣
≤
∑∣∣∣gij∣∣∣ |∂iξ| |Aj | ≤ max

∣∣∣gij∣∣∣︸ ︷︷ ︸
=:|g−1|

∑
|∂iξ| |Aj |

=
∣∣∣g−1

∣∣∣ |dξ|
1
|A0|1 .

Then, because
∣∣g−1∣∣ ≤ ∥∥g−1∥∥

∞, we can use lemma B.4 and require δ ≤ 1
2 such that

∣∣g−1∣∣ ≤
(1− ‖g − 1‖∞)−1 ≤ 2, and now we apply this in inequality (∗) below:

‖Sξ‖Z = ‖∗[dξ ∧ ∗A0]‖g;p
≤ 2 ‖∗[dξ ∧ ∗A0]‖

1;p

= 2
(∫

B
|∗g[dξ ∧ ∗gA0]|p

1

) 1
p

(∗)
≤ 4

(∫
B

(|dξ|
1
|A0|1)p

) 1
p

= 4 ‖|dξ|
1
|A0|1‖1;p

≤ 4Crnpq ‖|dξ|1‖1;1,p ‖|A0|1‖1;1,q
(1)
≤ 4Crnpq ‖ξ‖1;2,p ‖A0‖1;1,q

≤ 16Crnpq ‖ξ‖2,p ‖A0‖1,q ,

where the factors of 2 come from the equivalence of the norms (2.6) on B, the constants
Crnpq come from lemma B.9 as usual, and in (1) we use lemma B.10 for |∇ |A|| ≤ |∇A| and
that on sections ξ : B → g, ∇ = d so ∇dξ = ∇2ξ,

Now, let C̃ be given and choose ε = (32CrnpqC̃CT )−q. Since A0 is in Uhlenbeck gauge
with energy Eq(A0) ≤ ε and constant C̃, we can use ‖A0‖1,q ≤ C̃ ‖FA0‖q ≤ ε

1
q C̃ and at last

‖Sξ‖Z ≤ 16CrnpqC̃ε
1
q ‖ξ‖2,p = 1

2CT
‖ξ‖2,p .

This means that S and T satisfy the hypotheses from lemma B.5, namely that T is bĳective
with bounded inverse and ‖S‖

∥∥T−1∥∥ = 1
2 < 1, and therefore ∂XF |A0,0 = T +S is bĳective.

Finally, this means that F satisfies all conditions to the implicit function theorem B.3
around (A0, 0), and therefore there are neighbourhoods U around A0 and V around 0, and
a continuous map f : U → V such that F (A, f(A)) = 0, which implies that exp(f(A))∗A is
in Uhlenbeck gauge for all A ∈ U ⊆ A1,p(B, g). Furthermore, to get the bound ‖X‖2,p ≤ λ,
it suffices to take a ball with sufficiently small radius Rwithin f−1(Bλ(0)∩V ) ⊆ U , so that
f : BR(A0)→ Bλ(0).

Lemma 2.7 fixes the constant C̃ we will use for the Uhlenbeck gauge, and this in turn
fixes ε, which is defined in terms of C̃ in the proof of lemma 2.8. Then for a connection
A0 in Uhlenbeck gauge with constant C̃ and energy Eq ≤ ε, we find R such that for every
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connection A ∈ BR(A0) ⊆ A1,p(B), there is a gauge transformation exp(X) such that
(expX)∗A satisfies (2.2), the first condition of the Uhlenbeck gauge, and we get a bound
‖X‖2,p ≤ λ.

All that is left to do now is check that these solutions (A,X) satisfy ‖exp(X)∗A‖r ≤ Λ,
so that they can be shown to satisfy (2.3) by lemma 2.7 and finally all of BR(A0) can be put
into Uhlenbeck gauge with constant C̃. Therefore, we show this now: first, we have

‖exp(X)∗A‖r ≤
∥∥∥Adexp(X)A

∥∥∥
r

+ ‖exp(−X)d exp(X)‖r .

Because the inner product on g is Ad-invariant, the first term is just ‖A‖r and we have

‖A‖r ≤ ‖A−A0‖r + ‖A0‖r
(∗)
≤ 4CW (‖A−A0‖1,p + ‖A0‖1,q)
≤ 4CW (R+ C̃ε),

where (∗) follows from the equivalence of metrics (2.6) and the Sobolev embeddings Lr ↪→
W 1,p and Lr ↪→W 1,q. As for the second term, we can write

exp(−X(x))d exp(X(x)) = exp(−X(x))dX exp ◦dX

and note that, since 2p > n, the embeddingW 2,p ↪→ C0 provides control over the C0-norm
of X , supx∈B |X(x)| ≤ λ. Therefore, for sufficiently small λ, for every point x ∈ B the map
exp(−X(x))dX(x) exp : g → g is arbitrarily close to exp(0)d0 exp = d0 exp = 1g, which
means that its norm can be bounded by 2. Thus,

‖exp(−X)d exp(X)‖r = ‖exp(−X)dX exp ◦dX‖r
≤ 2 ‖dX‖r ≤ 4 ‖dX‖

1;r

≤ 4CW ‖dX‖1;1,p

≤ 8CW ‖dX‖1,p
≤ 8CW ‖X‖2,p ≤ 8CWλ.

For the first term, 4CW does not depend on themetric, and C̃ has already been fixed; for
the second term, 8CW does not depend on the metric, and so putting both terms together
we have

‖exp(X)∗A‖r ≤ c(R+ ε+ λ)

for some uniform constant c. Given C̃, we chose ε as a uniform constant which can bemade
smaller. The constant λ is arbitrary, and so once again can be made even smaller. Finally,
whileR depends on λ and the metric onB, we can put a uniform upper bound on it which
can also be made smaller, and furthermore making λ smaller only makesR smaller as well.
Then, making each term small as needed, we may bound ‖exp(X)∗A‖r by Λ for all metrics
‖g − 1‖1,∞ ≤ δ.

This ends the proof of the gauge fixing lemma on B. Let us recapitulate the choices of
constants that were made during the proof of the theorem:
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2.2. Proof of proposition 2.4 Chapter 2. Gauge fixing

• For proving that Sε is connected and closed, there was no need to fix anything.

• Pick a δ small enough such that if ‖g − 1‖1,∞ ≤ δ, there is equivalence of norms (2.6)
with different metrics onB forW 1,p,W 1,q and Lr with r = r(n, p, q) from lemma B.9.

• In the implicit function step, pick δ possibly smaller to guarantee bĳectivity of the
derivative of the operator F defined. Then, for any C̃ given, independent of the
metric, choose ε appropriately, which will also be uniform. For eachmetric and every
λ, there is R(λ, g) such that ‖X‖2,p ≤ λ for X = f(A) and ‖A−A0‖1,p ≤ R.

• The Uhlenbeck gauge constant C̃ is fixed with the a priori estimates. Along with it, δ
is picked once again for an estimate from theorem 1.26 to holdwith uniform constant,
and we find a bound Λ on the Lr-norm of the connection which guarantees that these
a priori estimates hold.

• Finally, when checking that the solution to the implicit function problem has Lr-
bound Λ, we find that it is bounded by R(λ, g) + ε + λ, where λ can be chosen
arbitrarily, εwas already a uniform constant which can be made smaller, and wemay
choose a uniform bound R for R(λ, g) such that the λ bound holds for each metric
and a given λ. Then R, ε and λ can be made small enough for the Λ bound to hold.
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Weak and strong compactness

Compactness is an extremely important and ubiquitous notion. From a first course in real
analysis, one learns that a bounded sequence on the real line has a convergent subsequence,
and that in Euclidean space it is equivalent for a set to be compact, sequentially compact,
or closed and bounded. While a uniform bound is a necessary condition for convergence,
in more general contexts is it not usually sufficient, and so many important theorems
have emerged to solve this problem. For instance, on infinite dimensional vector spaces,
the closed unit ball is no longer compact; weaker topologies come into play, and the
Banach–Alaoglu theorem provides compactness. On metric spaces, there is the notion
of equicontinuity and the Arzelà–Ascoli theorem. One of the fundamental results in
functional analysis is the uniform boundedness principle.

Other than the gauge fixing lemma, the importance of Uhlenbeck’s Connections with Lp
bounds on curvature [Uhl82] comes from a compactness theorem. As is clear from the title,
she was looking at sequences of connections with uniform bound on curvature. Therefore,
in this case there is not even a uniform bound on the sequence a priori. The gauge fixing
lemma is the key ingredient used to translate the bound on the curvatures to a uniform
bound on the connections; it also deals with the problem of gauge redundancy. Then,
the weak compactness theorem 3.5 states that a sequence of connections with uniformly
bounded curvatures has aweakly convergent subsequence, modulo gauge transformations.
The strong compactness theorem 3.9, on the uniform convergence of sequences of Yang–
Mills connections with uniform bounds on curvature, quickly follows.

The goal of this chapter is to prove these two theorems. First, we begin by commenting
on compactness for geodesics and flat connections. The case of the geodesics is simple
and instructive. The case of the flat connections is the opposite: while these connections
do have a uniform bound on curvature (namely, zero), the usual proof of the compactness
result for flat connections does not rely on estimates, instead using an identification with a
specific class of homomorphisms. We include a sketch of this proof here for completeness,
but also to show that not all compactness theorems emerge in the same way. Finally, note
that the weak compactness theorem can be seen as a generalization of the result for flat
connections.

Geodesics

Let (M, g) be a Riemannian manifold, and consider curves γ : [0, 1] → M with fixed
endpoints γ(0), γ(1) ∈ M . We wish to show the existence of a geodesic between γ(0) and
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γ(1) minimising length, i.e. a critical point of the length functional

L(γ) =
∫ 1

0
|∇γ| dt.

This will follow from a compactness argument. First, observe that a geodesic is also a
critical point of the L2-energy

E(γ) =
∫ 1

0
|∇γ|2 dt.

For a, b ∈ [0, 1], the distance between two points on the curve is

d(γ(a), γ(b)) =
∫ b

a
|∇γ| dt

(∗)
≤
∣∣∣∣∣
∫ b

a
1dt

∣∣∣∣∣
1
2
∣∣∣∣∣
∫ b

a
|∇γ|2 dt

∣∣∣∣∣
1
2

≤ |a− b|
1
2 E(γ)

1
2 ,

where (∗) is the Cauchy-Schwartz inequality. Using this now it is easy to see how uniform
boundsonenergy can lead to compactnessproperties. Let {γi}i∈N be aminimising sequence
of paths γi : [0, 1]→M with fixed endpoints and E(γi) < C. Looking at (M, g) as a metric
space with this distance as the metric, we have that

d(γi(a), γi(b)) ≤ C |a− b|
1
2 ,

which makes this sequence equicontinuous1. Therefore, by the Arzelà–Ascoli theorem,
there is a uniformly convergent subsequence, and the limit is a geodesic.

Flat connections

The previous example had a very clear procedure: use estimates and uniform bounds to
enter the setting of a well-known compactness theorem. We now come back to gauge
theory and look at flat connections on trivial vector bundles. It is a very classical result that
the moduli space of flat G-connections is compact, but the usual way to prove it does not
follow the same procedure. Instead, it hinges on the following lemma.

Lemma 3.1 ([Cra15], corollary 1.29). Let E → M be a vector bundle with flat connection ∇.
Then for any x, y ∈M , the induced parallel transport from Ex to Ey only depends on the homotopy
class of the path from x to y.

A connection is called G-connection if, for instance, the associated parallel transports
induce isomorphisms of the fibres which are in G as a subgroup of GL(Rm) (this will
always be the case for compact G), where m is the rank of the bundle. With this lemma,
we can write the following identification.

Proposition 3.2 ([DK97], proposition 2.2.3). There is a one-to-one correspondence between
conjugacy classes of homomorphisms ρ : π1(M) → G and gauge equivalence classes of flat G-
connections onM .

Sketch of proof. Let ∇ be a flat G-connection, then the associated parallel transport induces
a representation ρ∇ : π1(M,x)→ G by defining, for each loop γ based at x ∈M ,

ρ∇(bγe) = P∇γ ∈ G ⊆ GL(Ex).

1For ε > 0, take δ = (ε/C)2.
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Chapter 3. Compactness 3.1. Weak compactness

If we prove compactness of the space of homomorphisms ρ : π1(M) → G when G is
compact, then we are done.

Lemma 3.3. Let G be a compact Lie group,M a smooth manifold. Then Hom(π1(M),G)
G is compact.

Sketch of proof. Weprove thatHom(π1(M), G) is closed inGπ1(M) with theproduct topology,
which is compact by Tychonoff’s theorem and becauseG is compact. Then Hom(π1(M), G)
is compact, as is quotient.

Let f : π1(M)→ G be a functionwhich is not a homomorphism: there exist r, s ∈ π1(M)
such that f(r)f(s) 6= f(rs). Take Uf(r)f(s), Uf(rs) neighbourhoods of f(r)f(s) and f(rs)
which do not intersect. Since G is a topological group, the multiplication is continuous
and the preimage of Uf(r)f(s) gives neighbourhoods of f(r) and f(s), Uf(r) and Uf(s),
respectively. Now, letting pr : Gπ1(M) → G be the continuous projection pr(f) = f(r), we
construct a neighbourhood of f on Gπ1(M),

U = p−1
r (Uf(r)) ∩ p−1

s (Uf(s)) ∩ p−1
f(rs)(Uf(rs)),

such that for any g ∈ U , g cannot be a homomorphism: g(rs) ∈ Uf(rs) and g(r)g(s) ∈
Uf(r)f(s), and therefore g(rs) 6= g(r)g(s). Thus, the complement of the homomorphisms is
open and consequently Hom(π1(M), G) is closed.

Finally, the moduli space of flat G-connections is the quotient Aflat/G, for Aflat ⊆ A
the subspace containing flat G-connections, and we have the result:

Corollary 3.4. The moduli space of flat G-connections onM is compact.

3.1 Weak compactness

Let M be a compact n-manifold with (possibly empty) boundary, and let P → M be a
principal G-bundle. The second main result we wish to prove, theorem 3.6 in [Uhl82], is
the following:

Theorem 3.5 (Weak compactness). Let n2 < p <∞. A sequence of connections inA1,p(P ) with
uniform Lp-bound on the sequence of curvatures has a subsequence which is gauge equivalent to a
weakly convergent sequence, with gauge transformations in G2,p(P ).

For the proof of this theoremwe are essentially looking for a sequence of global gauges
such that the gauged connections are uniformly W 1,p-bounded and will therefore, by the
Banach–Alaoglu theorem, convergeweakly. For that wewill need the gauge fixing theorem
2.2, and a patching lemma 3.10 which we will prove later, but roughly goes as follows.

Lemma 3.6 (cf. lemma 3.10). Two sets of transition functions describe isomorphic bundles if they
are C0-close. Furthermore, there are bounds on the gauge transformations relating these transition
functions; for a sequence of transition functions and transformations, the bounds are uniform.

The gauge fixing lemma will give us a bundle atlas of P → M such that the local
connections are in Uhlenbeck gauge, and therefore the uniform bound on the curvature
will translate into auniformboundon the connections. Thegauge transformations resulting
from the lemma do not necessarily patch up to a global gauge transformation, however
they do yield new transition functions for a sequence of bundles. While it will be easy to
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see that these bundles will all be isomorphic to each other and the original bundle, the
obvious changes to the gauge transformations mess with the uniform bounds, and thus
the patching lemma will be needed in order to find less straightforward but more suitable
isomorphisms between the bundles, which then can be modified in a uniform way to yield
globally defined uniformly bounded gauge transformations. To get uniform bounds on the
gauge transformations, we will also need the following.

Lemma 3.7 (cf. lemmata 1.33 and 1.34). Bounds on connection forms give bounds on the gauge
transformations relating them, and moreover if two sequences of connections are uniformly bounded,
then the sequence of gauge transformations relating them has a C0-convergent subsequence.

Proof of weak compactness theorem. Let (Ai)i∈N ⊆ A1,p(P ) be a sequence such that ‖FAi‖p is
uniformly bounded. Choose q < p such that it satisfies the hypotheses of the gauge fixing
lemma 2.2. We can bound the Lq-energy

Eq(Ai|U ) = ‖FAi‖
q
q(U)

(1)
≤ (VolU)

p−q
p ‖FAi‖

q
p(U) ≤ (VolU)1− q

p ‖FAi‖
q
p ,

where (1) is the Hölder inequality for 1
q = 1

p + p−q
pq . With this expression we can make

Eq(Ai|U ) ≤ ε̃ for U of sufficiently small volume, and this is why it is important that q < p
strictly since we need 1− q

p > 0 to make the Lq-energy small. Now we are in the setting of
2.2, and all the Ai may be put in Uhlenbeck gauge on open sets which coverM ; sinceM is
compact, we can take a finite subcollectionM =

⋃N
α=1 Uα.

These Uα form a bundle atlas for P → M , and on each Uα the connections are
represented by connection matrices Aiα ∈ A1,p(Uα). Since Eq(Aiα) = Eq(Ai|Uα) ≤ ε̃,
there exist uiα ∈ G2,p(Uα) such that ui ∗α Aiα is in Uhlenbeck gauge, and in particular∥∥ui ∗α Aiα∥∥1,p ≤ C̃

∥∥∥FAiα∥∥∥p is uniformly bounded. This is sufficient to find weakly conver-
gent subsequences on each Uα, however the uα do not necessarily define a global gauge
transformation. For that to be the case we need

uiαβ := (uiα)−1φαβu
i
β (3.1)

to be identical to φαβ , the transition functions of the bundle atlas, see (1.18) and the
discussion in subsection 1.2.1.2 Therefore, the next step in the proof is modifying the uiα
appropriately to achieve this.

In order to use the patching lemma 3.10 we need the transition functions to be C0-close
to each other. To see this, write

ui ∗αβ (ui ∗α Aiα) = (uiαuiαβ)∗Aiα = (φαβuiβ)∗Aiα = ui ∗β (φ∗αβAiα) (3.2)
= ui ∗β A

i
β,

and since all ui ∗α Aiα are uniformly bounded for any α ∈ A, lemma 1.33 tells us that the
gauge transformations relating these connection forms, uiαβ , are also uniformly bounded,
and furthermore there is a subsequence of the uiαβ (also labelled i ∈ N) that converges in
C0. Thus, for a further subsequence, and for each α, β = 1, . . . , N , all the uiαβ can be made

2Note that if we look at the gauge transformations uiα as local changes of trivialization, then the uiαβ are
new transition functions for an isomorphic bundle for each i ≤ N ; even so, this is not enough.
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to be within a geodesic δ-ball of each other for any δ > 0; in particular we can single out
the first element of this subsequence gαβ := u1

αβ and denote also gα := u1
α, and we have 3 4

d(uiαβ, gαβ) ≤ δ,

Picking δ = ∆exp the radius of a convex geodesic ball on G, the patching lemma 3.10 gives
us a refinement Vα ⊆ Uα of the original cover and new gauge transformations hiα : Vα → G
with uniform bounds and such that

(hiα)−1uiαβh
i
β = gαβ.

With these new gauge transformations we can now modify the original uiα. Define
ũiα := uiαh

i
αgα on Vα, and note that this defines a global gauge transformation, as M =⋃N

α=1 Vα and on Vα ∩ Vβ

(ũiα)−1φαβũ
i
β = gα(hiα)−1 (uiα)−1φαβu

i
β︸ ︷︷ ︸

ui
αβ

hiβg
−1
β = gαgαβg

−1
β = φαβ. (3.3)

Moreover, ũi as defined by the local ũiα is in G2,p(P ), as lemma 3.10 yields hiα ∈ G2,p(Vα), we
had uiα ∈ G2,p(Vα) from the start and Gk,p is closed under group multiplication for kp > n,
which is the case since p > n

2 .
It remains to prove that ũi ∗α Aiα is uniformly bounded in A1,p(Vα) for all α = 1, . . . , N .

This follows easily from lemma 1.31, which in this case states that for Ai ∈ A1,p(V ) and
ui ∈ G2,p(V ) for some trivializing neighbourhood V , the following holds 5

∥∥∥ui ∗Ai∥∥∥
1,p
≤
∥∥∥(ui)−1 dui

∥∥∥
1,p

+ c
∥∥∥Ai∥∥∥(1 + CW

∥∥∥(ui)−1 dui
∥∥∥

1,p

)
, (3.4)

where c, CW are constants. Then writing

ũi ∗α A
i
α = (g−1

α )∗hi ∗α ui ∗α Aiα,

we first note that hi ∗α (ui ∗α Aiα) is uniformly bounded:
∥∥ui ∗α Aiα∥∥1,p is bounded uniformly by

the uniform bound on the curvature (because of the Uhlenbeck gauge), and
∥∥(hiα)dhiα

∥∥
1,p

is uniformly bounded by the patching lemma and the fact that
∥∥∥(uiαβ)−1 duiαβ

∥∥∥
1,p

has a
uniform bound (lemma 1.33). Using (3.4) again, the uniform bound on hi ∗α ui ∗α Aiα and the
fact that g−1

α is independent of i ∈ N, we get a uniformW 1,p-bound on ũi ∗α Aiα.
Finally, we can use the Banach–Alaoglu theorem 1.18 to guarantee that for every α =

1, . . . , N , the sequence ũi ∗α Aiα has aW 1,p-weakly convergent subsequence, and because the
ũi are global gauges, we can choose the same 6 subsequence for all (finite) α, which finally
gives us a weakly convergent subsequence of ũi ∗Ai in A1,p(P ).

3See subsection 1.2.2 for the definitions of a geodesic convex ball and this metric.
4Also note that the first element gαβ can only be fixed after the choice of δ.
5We used the Sobolev embeddingW 1,p ↪→ L2p, note that 1− n

p
≥ − n

2p .
6For α = 1, there is a convergent subsequence; this subsequence is also uniformly bounded on α = 2, and

so some further subsequence converges. By repeating this process until you find a convergent subsequence
for α = N , this same subsequence can be used for all α. If there were countably many α, a similar argument
would work by taking the diagonal of the subsequences.
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Remark 3.8. Note that the choice of ũiαmakes sense. In finding a global gauge, the simplest
thing to do would be to take ũiα = 1G, and in order to keep the original uiα around for the
Uhlenbeck gauge, it would have sufficed to have ũiα = 1G = uiα(uiα)−1; however, there is no
uniform bound on (uiα)−1. In the patching lemma, it is already clear that hiα = (uiα)−1gα
would have sufficed for the isomorphism, and if this could be guaranteed to have a uniform
bound in this form then one could naturally write

ũiα = 1G = uiα (uiα)−1gα︸ ︷︷ ︸
hiα

g−1
α .

Thus it makes sense to simply substitute the more complicated hiα found in the proof of
the patching lemma in the expression above when choosing a uniformly bounded globally
defined gauge transformation.

3.2 Strong compactness

While the strong compactness theorem is attributed to Uhlenbeck, it is not stated in her
1982 papers. Nevertheless, it is readily adapted from the proof of the weak compactness
theorem. The only additional ingredient is a result on regularity of Yang–Mills connections
in Coulomb gauge, a consequence of the gauge fixing lemma which she also stated in her
paper [Uhl82] as corollary 1.4. We show the adaptation of the proof, sketching the points
which are already explained in detail in the proof of theorem 3.5.7

Theorem 3.9 (Strong compactness). LetM be a compact Riemannian n-manifold with (possibly
empty) boundary, and let 1 < p < ∞ such that p > n

2 and in case n = 2, p ≥ 4
3 . Suppose a

sequence of connections (Ai)i∈N ⊆ A1,p(P ) is such that the Ai are weak Yang–Mills connections
and ‖FAi‖p is uniformly bounded. Then there exists a subsequence (with same label i ∈ N) and a
sequence of gauge transformations (ui)i∈N ⊆ G2,p(P ) such that ui ∗Ai converges strongly with all
derivatives to a smooth Yang–Mills connection.

Note that the assumptions on p in this theorem are stricter than in theweak compactness
theorem; the reason for that lies in the definition of the weak Yang–Mills connections, see
(1.30).

Proof. Let Ai ∈ A1,p(P ) be as in the statement of the theorem. Choose q to satisfy the
hypotheses of the gauge fixing lemma, then there is a finite cover M =

⋃N
α=1 Uα such

that Eq(Aiα) ≤ ε̃, and therefore there exist sequences of gauge transformations (uiα)i∈N ⊆
G2,p(Uα) on each Uα such that from the uniform bound on ‖FAi‖p we get a uniform bound
on

∥∥ui ∗α Aiα∥∥1,p for each α. Since the Ai are weak Yang–Mills connections, then so are
the ui ∗α Aiα (lemma 1.36), and therefore from the regularity theorem 1.39 we find uniform
bounds on

∥∥ui ∗α Aiα
∥∥
k,p for all k ∈ N.

Once again we look at the transition functions uiαβ as defined in (3.1), where the φαβ are
the transition functions for our bundle. From (3.2) and lemma 1.34 we see uiαβ ∈ Gk,p for all
k, and then from lemma 1.33 we find uniform bounds on

∥∥∥(uiαβ)−1 duiαβ
∥∥∥
k,p

for all k, and a
subsequence of the uiαβ that converges in C0 which can be taken the same subsequence for

7Throughout this proof we once again keep taking subsequences and relabelling them the same as the
original sequence, with i ∈ N.
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all α, β = 1, . . . , N . Therefore there is some i such that all the uiαβ are within a ∆exp sized
C0-ball, for ∆exp the radius of a convex geodesic ball on G, and we take this i to be the first
element of the sequence. Now, instead of fixing u1

α as we did for the proof of 3.5, we will
need to take smooth gα ∈ G(Uα) that are C0-close to u1

α for each α, which will imply that
gαβ := g−1

α φαβgβ will also be C0-close to the uiαβ .
We apply the patching lemma 3.10 to find a refinement Vα ⊆ Uα of the original cover

and hiα ∈ Gk,p(Vα) such that
(hiα)−1uiαβh

i
β = gαβ

onVα∩Vβ and such that there are uniformbounds on
∥∥(hiα)−1 dhiα

∥∥
k,p(Vα) for all k ∈ N. Then

ũiα := uiαh
i
αg
−1
α will patch to global gauge transformations as in (3.3), and the inequality in

lemma 1.31 will take the form 8

∥∥∥ui ∗Ai∥∥∥
k,p
≤
∥∥∥(ui)−1 dui

∥∥∥
k,p

+ c
∥∥∥Ai∥∥∥(1 + CW

∥∥∥(ui)−1 dui
∥∥∥
k,p

)k
,

slightly more complicated than (3.4), which we use to find uniform W k,p-bounds on
ũi ∗α Aiα = (g−1

α )∗hi ∗α ui ∗α Aiα for all k ∈ N, on each Vα. Here it is important that the giα
are smooth in order to preserve the bounds for all k.

Finally, having obtained uniform bounds on the W k,p-norms of the local gauged con-
nections for all k ∈ N, we may use the Arzelà–Ascoli theorem to find subsequences which
converge uniformlywith all derivatives, and then take the same subsequence on all Vα such
that the ũiα patch to a global ũi and ũi ∗Ai converges uniformly with all derivatives to some
smooth connection Ã ∈ A(P ). Then, from lemmata 1.36 and 1.38, ũiAi is weak Yang–Mills
for each i ∈ N and the limit connection Ã will also be weak Yang–Mills; since it is smooth,
it is a Yang–Mills connection.

In thebook [Weh04], another approach is used toprove the strong compactness theorem,
due to Dietmar Salamon. Rather than adapt the proof of the weak compactness theorem,
it relies on a local slice theorem and then applies theorem 3.5 directly. Observe, however,
that it needs strict inequality p > 4

3 in case n = 2, as there will only be weak convergence
of the connections, see lemma 1.38.(ii).

3.3 Patching

Finally,weprove thepatching lemmaused in theproofs of theweakand strong compactness
theorems.

Lemma 3.10 (Patching lemma). Let M be an n-manifold, p > n
2 and let M =

⋃
α∈N Uα be a

locally finite open cover by precompact 9 sets. Then there is a refinement Vα ⊆ Uα such that the
following holds:

(i) Let k ∈ N and let gαβ , hαβ ∈ Gk+1,p(Uα ∩ Uβ) be two sets of transition functions for some
principal G-bundle overM such that

d(gαβ, hαβ) ≤ ∆exp, ∀α, β ∈ N. (3.5)

8W k−1,2p ↪→W k,p since p > n
2 .

9Closure is compact.
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Then there exist gauge transformations hα ∈ Gk+1,p(Vα) for all α ∈ N such that on all
intersections Vα ∩ Vβ

h−1
α hαβhβ = gαβ. (3.6)

(ii) Let K ≥ 2 be an integer or K = ∞. If the hαβ in (i) run through a sequence hiαβ of sets of
transition functions such that hiαβ , gαβ ∈ Gk+1,p(Uα ∩ Uβ) for all k < K, and moreover for
all α, β ∈ N and k < K there is a uniform bound on∥∥∥(hiαβ)−1 dhiαβ

∥∥∥
k,p(Uα∩Uβ)

.

Then the gauge transformations hiα in (i) satisfy, for all α ∈ N and k < K, hiα ∈ Gk+1(Vα)
and

sup
i∈N

∥∥∥(hiα)−1 dhiα
∥∥∥
k,p(Vα)

<∞, (3.7)

which is to say that these norms are uniformly bounded for each α and k.

Proof. Note that we assume the cover is countable. We will first prove (i) by induction on
the cover, and then for a sequence of the constructed hiα constructed in (i), regularity will
follow directly and the uniform bounds will be proved by another induction on the cover.

For (i), on each step j ∈ N, we will construct hj on Vj := Uj , while changing some
(or none) of the previous Vα already constructed for α ≤ j − 1 and keeping hα the same,
albeit with possibly smaller domain. For each Vα, the process will end in finitely many
steps, because as will be seen during the construction, on the j-th step a certain Vα will
only be modified if Vα ∩ Uj 6= ∅, and the cover is locally finite. Moreover, the Vα will not
depend on k ∈ N (from the Sobolev exponent) or the transition functions hαβ, gαβ . For the
hj constructed, we will want three conditions to be satisfied at each step j:

(1) the one we are trying to achieve, that is, condition (3.6),

h−1
α hαβhβ = gαβ,

on Vα ∩ Vβ for all α, β ≤ j,

(2) a technical condition which will be important within the construction,

d(hiαhαgαi,1) ≤ ∆exp, (3.8)

on Vα ∩ Ui for all α ≤ j and i ≥ j,

(3) and regularity, hα ∈ Gk+1(Vα) for all α ≤ j.

For the first step, j = 1, we take V1 := U1 and h1 := 1. Conditions (1) and (3) are
trivially satisfied 10 and for all i ≥ 1, d(hi1h1g1i,1) = d(g1i, h1i) ≤ ∆exp on V1 ∩ Ui by
assumption, therefore condition (2) is also satisfied.

At an arbitrary j-th step, for the induction hypothesis we will assume that for all
α ≤ j − 1 we have constructed Vα ⊆ Uα and hα such that there is still an open cover of

10Remember hαα = gαα = 1.

66



Chapter 3. Compactness 3.3. Patching

Uj

Uj

⋃
α<j Vα

⋃
α<j Vα ⋃

α<j V
′
α

Uj

Uj

hj = ρj

smooth

hj = 1

Figure 3.1: A sketch of the relevant sets on the j-th step, illustrating the reason to make the
Vα into smaller V ′α : so that the hj will be appropriately smooth.

M and the hα respect conditions (1)–(3). That is,M =
⋃
α<j Vα ∪

⋃
α≥j Uα, and conditions

(1)–(3) were met on the (j − 1)-th step.
Then, for α = j, we will take Vj := Uj and construct hj such that (1)–(3) are satisfied.

We will see that there is a natural choice of hj on the intersection with the Vα which will
automatically yield condition (1). We could then take hj = 1 on Uj\

⋃
α<j Vα and be done,

but then hj might not even be continuous, let alone in Gk+1(Uj). The idea, then, is to write
hj := exp(ψjξj) for some ξj ∈ g and a cutoff function ψj . Condition (2) is what is needed
to have a well defined ξj , and the Vα will be modified so that there can be two disjoint
compact sets where ψj will take the values 0 and 1.

Consider ρj : Uj∩
⋃
α<j Vα → G given by ρj := hjαhαgαj onUj∩Vα. This iswell defined,

since (3.6) is satisfied for α, β < j by assumption (condition (1)) and so on intersections
Uj ∩ Vα ∩ Vβ

hjβhβgβj = (hjαhαβ)hβ(gβαgαj) = hjαhαgαj .

This is exactly what we need hj to be on the intersections Uj ∩ Vα, as

h−1
α hαj(hjαhαgαj) = gαj . (3.9)

As a product of Gk+1,p maps,11 ρ ∈ Gk+1,p(Uj ∩
⋃
α<j Vα), and moreover condition (2) for

α ≤ j − 1 guarantees that d(ρ,1) ≤ ∆exp, and therefore ρ takes values in the convex
geodesic ball B∆exp(1). Therefore, there exists ξj : W k+1,p(Uj ∩

⋃
α<j Vα) → g such that

ρj = exp(ξj).
Next, for α < j, we replace the Vα by possibly smaller V ′α ⊆ Vα, so that we can take

hj =
{
ρj = exp(ξj) on Uj ∩

⋃
α<j V

′
α,

1 = exp(0) on Uj\
⋃
α<j Vα

in a W k+1,p-smooth way. Changing the domains Vα will not interfere with the induction
hypothesis, as conditions (1)–(3) remain valid when diminishing the domain of the hα, so
long as we are still left with an open cover ofM .

11By assumption for the transition functions and by the induction hypothesis for the hα.
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N
A`

⋃
α<j Vα

⋃
α<j V

′
α

V`

V ′`

Uj
Uj

B

C

Figure 3.2: A sketch of the construction of the sets B and C, that we need to make disjoint.

Define the region where we will take hj = 1 to be the compact set B := Uj \
⋃
α<j Vα.

We need to make it disjoint from C := Uj ∩
⋃
α<j V

′
α, where we will let hj = ρj . Let N =

M\
⋃
α≥j Uα ⊆

⋃
α<j Uα. Note that it is closed and covered by finitely many precompact

sets, and therefore it is compact. For ` = 1, . . . , j − 1, we will change one V` at a time.
Define

A` := N \

⋃
α<`

V ′α ∪
⋃

`<α<j

Vα

 .

The A` are compact and
A` ⊆ V` ⊆ Bc.

Then there exists an open set V ′` ⊆ V` such that

A` ⊆ V ′` ⊆ V ′` ⊆ B
c.

The cover is preserved at each step, since A` ⊆ V ′` and the A` are chosen such that they
cover whatever parts of N the other Vα and V ′α do not:

M = N ∪
⋃
α>j

Uα and N ⊆
⋃
α<`

V ′α ∪A` ∪
⋃

`<α<j

Vα.

Also, C ⊆
⋃
α<j V

′
α ⊆ Bc, and therefore B ∩C = ∅. Note that if V` ∩Uj = ∅, it follows that

V` ∩ Uj = ∅ and so V` makes no difference for the definition of C and does not need to be
changed. We can let V ′` := V`, making the process finite for each α ∈ N.
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We can now say that there exists a cutoff function ψj : Uj → [0, 1] such that ψ(B) = 0
and ψ(C) = 1.12 Then let

hj :=
{

exp(ψjξj) on Vj ∩
⋃
α<j Vα,

1 on Vj \
⋃
α<j Vα.

Note that, for x ∈ Vj ∩ Vα, hj(x) = exp(aξ) = φt=aξ (1) for some a ∈ [0, 1] and ξ ∈ g, and
thus hj(x) is part of some geodesic between 1 and exp(ξ) = exp(ξj(x)) = ρj(x). Then

hj(x)


= hjαhαgαj(x) on Vj ∩ V ′α, for α ≤ j − 1,
∈ γ(1, (hjαhαgαj)(x)) on Vj ∩ Vα, for α ≤ j − 1
≡ 1 on Vj \

⋃
α<j Vα.

Now, we check that hj satisfies conditions (1)–(3). The first equality shows that condi-
tion (1) holds now for α, β ≤ j when replacing Vα by V ′α, as we had already seen with (3.9).
Condition (2) remains valid for α ≤ j−1 from the induction hypothesis with V ′α ⊆ Vα, and
we now check that for i ≥ j + 1 it is valid on Vj ∩Ui. On Vj ∩Ui\

⋃
α<j Vα, we have hj ≡ 1,

and so
d(hijhjgji,1) = d(hijgji,1) = d(hij , gij) ≤ ∆exp,

from the original assumption on the transition functions. On Vj∩Ui∩Vα for someα ≤ j−1,
we show that hj lies on the convex geodesic ball B∆exp(hjigij), and therefore

d(hijhjgji,1) = d(hj , hjigij) ≤ ∆exp,

as we wish. First, note that we have shown that hj lies on the unique minimal geodesic
from 1 to hjαhαgαj . Now,

d(1, hjigij) = d(hij , gij) ≤ ∆exp

by assumption on the transition functions, and

d(hjαhαgαj , hjigij) = d(hα, hαjhjigijgjα) = d(hα, hαigiα) = d(hiαhαgαi,1) ≤ ∆exp

by the induction hypothesis for α ≤ j − 1. Both endpoints of γ(1, hjαhαgαj) lie in
B∆exp(hjigij), and therefore the geodesic is entirely contained in the ball. Finally, con-
dition (3) is still met by hα for α ≤ j − 1 because hα ∈ Gk+1,p(Vα) and restricting to
a smaller domain preserves the regularity; for α = j, we know that ψj is smooth and
ξj ∈W k+1,p(Vj , g), and therefore hj = exp(ψjξj) ∈ Gk+1,p(Vj), by lemma 1.21.

We are done with the proof of (i).

For (ii), we have instead of hαβ a sequence of hiαβ , each of which is close to gαβ , the
transition functions gαβ, hiαβ are said to be in the appropriate Sobolev gauge group Gk+1,p

for all k < K, and moreover there are uniform bounds on
∥∥∥(hiαβ)−1 dhiαβ

∥∥∥
k,p (Uα∩Uβ)

for

each α, β. We need to check the regularity of the hiα for all k < K, and that there are
uniform bounds on

∥∥(hiα)−1 dhiα
∥∥
k,p(Vα) for each α.

12Take a partition of unity subordinate to the cover Bc and Cc, for instance.
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Since the construction of each hiα in (i) is independent of the Sobolev exponent k
and regularity followed from the original regularity of the transition functions, we have
hiα ∈ Gk+1,p(Vα) for all k < K.

For each k < K, the uniform bounds will follow by another induction on the cover. The
first step is trivial, since the construction in (i) begins with hi1 ≡ 1 and so dhi1 = 0 and
the norm is just zero. For the induction hypothesis we will assume that for all α ≤ j − 1
there are uniform bounds on

∥∥(hiα)−1 dhiα
∥∥
k,p (Uα). Note that hij = exp(ψjξij) on Uj and ξij

is defined by ρij = exp(ξij) = hijαh
i
αgαj on Uj ∩ Vα for α ≤ j − 1. We will show that there

are uniform bounds on ρij on the intersections of Uj with each Vα, which will then give
uniform bounds on ξij on Uj ∩

⋃
α<j Vα, and in turn this will give the uniform bounds on

hij .
For the uniform bound for ρij , first note the estimate for u, v ∈ Gk+1,p(U) over some

precompact set U ,∥∥∥(uv)−1 d(uv)
∥∥∥
k,p

=
∥∥∥v−1u−1(udv + du · v)

∥∥∥
k,p

≤
∥∥∥v−1 dv

∥∥∥
k,p

+
∥∥∥v−1(u−1 du)v

∥∥∥
k,p

(1)
≤
∥∥∥v−1 dv

∥∥∥
k,p

+ C
∥∥∥u−1 du

∥∥∥
k,p

(
1 +

∥∥∥v−1 dv
∥∥∥
k−1,2p

)k
(2)
≤
∥∥∥v−1 dv

∥∥∥
k,p

+ C
∥∥∥u−1 du

∥∥∥
k,p

(
1 +

∥∥∥v−1 dv
∥∥∥
k,p

)k
where in (1) we used lemma 1.32, and in (2) we used the Sobolev estimate forW k−1,2p ↪→
W k,p, which is valid over U even ifM is not compact. Since we have uniform bounds over
Uj ∩ Vα on

∥∥∥(hijα)−1 dhijα
∥∥∥
k,p

by assumption, on
∥∥(hiα)−1 dhiα

∥∥
k,p by induction hypothesis

and on
∥∥(gαj)−1 dgαj

∥∥
k,p because it is independent of i, we can apply this estimate to (u, v) =

(hijα, hiα) and then to (u, v) = (hijαhiα, gαj) to get a uniform bound on
∥∥∥(ρij)−1 dρij

∥∥∥
k,p(Uj∩Vα)

.
Because there are finitely many intersections Uj ∩ Vα, this gives an overall uniform bound
for

∥∥∥(ρij)−1 dρij
∥∥∥
k,p

on its whole domain of definition, Uj ∩
⋃
α<j Vα.

U B∆exp g Rd R2d+1ρij exp−1 φ̃

ξij Φ

φ

i

Figure 3.3: Embedding Φ and chart φ of B∆exp ⊆ G. We have dropped the subscript j and
defined U := Uj ∩

⋃
α<j Vα.

Finally, we can use this to get a uniform bound for
∥∥∥ξij∥∥∥k,p on Uj ∩ ⋃α<j Vα in a rather

roundaboutway, whichwe only sketch. First, fix an embeddingΦ : B∆exp(1) ⊆ G→ R2d+1,
which contains the image of every ρij , and use the bound on (ρij)−1 dρij to achieve bounds
on the embedding; this will then give bounds on a global chart φ : B∆exp(1) → Rd,
and subsequently on ξij . To see this more clearly, make the following definitions: let

70



Chapter 3. Compactness 3.3. Patching

U := Uj ∩
⋃
α<j Vα, then let φ̃ : g → Rd be an isomorphism, and use it to define a chart

φ := φ̃ ◦ exp−1 and an embedding Φ := (φ, 0) = ι ◦ φ for ι : Rd ↪→ R2d+1. To get from
bounds on ρ to bounds on the embedding, use these definitions and see the calculations on
page 189 of [Weh04]; then the calculations on page 187 give estimates on the chart, which
gives estimates on ξij via the isomorphism, and finally see the calculations on page 188 to
achieve estimates on the hij .
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Appendix A

From the point of view of physics

In this appendix, we seek tomotivate the study of gauge theory from another point of view.
We tell the history of the concept of gauge invariance, with its origins in the classical theory
of electromagnetism, through the revolution of quantum mechanics, and finally emerging
as a central concept in contemporary particle physics. For this, wemainly follow the survey
[JO01]. At the same time, we recast Maxwell’s equations in terms of differential forms, and
comment on the relation between physics, and the theory of fibre bundles and Yang–Mills
connections that were studied in this work. Even thoughwe do not necessarily follow them
here, two interesting mathematical textbooks on differential geometry and gauge theory
motivated by physics are [BM94] and [Nab11].

Although it was not called by this name yet, the idea of gauge invariance was noticed as
a feature of classical electromagnetism during the time this theory was being formulated,
around the second half of the 19th century. After several partial developments, the first
clear statement of the arbitrariness of the potentials appeared in a 1909 book by H. A.
Lorentz. The history of how the equations of electromagnetism came to be, from empirical
observations to subsequent refinements of the formulations, is a fascinating subject that
we will not get into; it can be found in any introductory textbook on the subject. Instead,
we will skip ahead to the differential formulation of Maxwell’s equations, using modern
notation andnomenclature. For simplicity, wewillworkwith the vacuumequations (where
charge and current densities vanish).1

Define two vector fields E(x, y, z, t) and B(x, y, z, t) on R3 × R, called the electric and
magnetic fields, respectively. With the ∇ operator acting only on the spatial part, i.e., R3,
Maxwell’s equations are written

∇ ·B = 0, ∇ · E = 0, (A.1)

∇× E = −∂B
∂t
, ∇×B = 1

c2
∂E

∂t
.

One important feature of electromagnetism is that we can work with what are called scalar
and vector potentials, φ and A, which satisfy

B = ∇×A,

E = −∇φ− ∂A

∂t
.

1We will also use the international system of units, with the constants c for the speed of light, ~ for the
reduced Planck’s constant and e for the elementary charge.

72



Chapter A. Physics

Using these potentials, the system of equations (A.1) remains unchanged under the trans-
formations

φ 7→ φ− ∂f

∂t
, (A.2)

A 7→ A+∇f,

for some real valued function f , since E and B themselves remain unchanged. This can be
checked with a simple computation, recalling that ∇×∇ ≡ 0. Nowadays, these are called
gauge transformations, and a choice of A and φ is referred to as a choice of gauge. Specific
gauges can be chosen for practical purposes to simplify calculations in different situations.
Some famous choices are named, like the Coulomb gauge in R3 or the Lorenz gauge in
Minkowski space,

∇ ·A = 0, ∂µA
µ = 0.

Using an identification of vector fields with forms, we write E as a 1-form and B as a
2-formonR3 with time-dependent components, and sowe can rewriteMaxwell’s equations
with differential forms as

dB = 0, d ∗ E = 0,

dE + ∂B

∂t
= 0, d ∗B = 1

c2
∂ ∗ E
∂t

.

Let us further rewrite the equations, this time as equations on the Minkowski space2 R3,1.
We combine E ∈ Ω1(R3) and B ∈ Ω2(R3) into a 2-form

F = B + E ∧ dt ∈ Ω2(R3,1)

known as the electromagnetic field. Thuswe haveMaxwell’s equations inMinkowski space

dF = 0, (A.3)
d ∗ F = 0. (A.4)

Note that F is a closed form, and because we are working over R4 it is also exact, thus
we may define a potential A ∈ Ω1(R3,1) such that

F = dA.

Now, a transformation

A 7→ A+ df (A.5)

clearly leaves F unchanged; ifA = −φdt+A1 dx1 +A2 dx2 +A3 dx3, for the potentialsA =
(A1, A2, A3) and φ above, then it is clear that (A.5) corresponds to a gauge transformation
(A.2). It is also straightforward to show that the Coulomb or Lorentz gauge fixing condition
can be written as

d∗A = − ∗ d ∗A = 0

2Aside from it being the usual setting for dealing with special relativity, there is nothing special about the
Minkowski space for this formulation of Maxwell’s equations. We can take spacetime to be any manifold and
define an electromagnetic field there as a 2-form F . However, in order to define separate electric and magnetic
fields, we need a splitting R× S for some manifold S we call space.
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on R3 or R3,1.
If we make a slight modification, and let the fields and functions take pure imaginary

values, all that preceded can be reinterpreted in terms of the mathematical gauge theory
discussed in this work: A is a connection 1-form on a trivial bundle overR3,1, taking values
in the Lie algebra iR; letting the gauge (or structure) group G be abelian, F = dA is the
curvature of A, and Maxwell’s equations are the Bianchi identity (A.3) and the Yang–Mills
equation (A.4). There are then two possibilities for the Lie group with g = iR: either U(1)
or iR itself. How do we know which one it is?

One way of finding out is by looking at the quantum mechanical picture. In quantum
mechanics, one works with a Hilbert space of physical states, which are then represented
by unitary vectors ψ ∈ H. Two vectors which differ by a phase, say

ψ′ = ψ exp(iθ),

still represent the same state. In 1926, V. Fock had been looking at the relativistic wave
equation for spinless particles, now known as the Klein–Gordon equation,{(

∂µ + ie

~c
Aµ
)2

+
(
mc

~

)2
}
ψ = 0.

For such an equation to maintain its form under a gauge transformation (A.2), Fock pro-
posed to incorporate the following change,

ψ 7→ ψ exp(iθ(x)), (A.6)

with no physical meaning. As exp(iθ) ∈ U(1), this shows that U(1) is the correct group.

Because of their arbitrariness, it is clear that local potentials are not physical observables.
Still, that is not to say they are completely devoid of physical meaning. In the ideal picture
of the Aharonov-Bohm effect, an infinite solenoid produces a magnetic field inside but
no field outside when the current is on. Does switching the current on or off alter the
trajectory of a charged particle passing near the solenoid? It turns out that the answer
is yes! The physical explanation is that the wave function of the particle experiences a
phase shift when the current is on, which causes interference in the calculation of the path
integral. This effect has been shown experimentally: in a double slit experiment, a solenoid
placed between the two slits changes the interference pattern that appears. Thus, local
fields cannot account for all of the physics we observe, and we must also use potentials.

Mathematically, the solenoid represents a hole in the base manifold (spacetime), which
is now no longer simply connected; the connection is flat since the curvature is zero
everywhere outside the solenoid, but there is no global choice of gauge that makes the
connectionmatrixA = 0 everywhere. Then the Aharonov-Bohm effect is amanifestation of
holonomy. Inmore general gauge theories, physicists quantify holonomyusing observables
called Wilson loops.

Remark A.1. Not long after Fock’s proposal of a better principle of “gradient invariance”
(as he called it), it was noticed that this was very similar to an idea of H. Weyl. In 1919,
Weyl had been attempting to reconcile electromagnetismwith general relativity by looking
at scale changes in the metric, which he called called eichinvarianz, or scale invariance.
When discussing the transformations (A.2) and (A.6), Weyl called it the “principle of gauge
invariance” in analogy to his own previous work. This was the first use the word “gauge”
in a physics paper in English, and the name stuck.
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Thus, we have showed that electromagnetism fits into the theory of Yang–Mills con-
nections that was discussed in chapter 1. However, far from being a mere abstract gen-
eralization of Maxwell’s equations, Yang–Mills theory underpins contemporary particle
physics.

In 1954, the physicists C.-N. Yang andR.Millswere examining symmetries of something
called isospin, a property of particles used, for instance, to differentiate between protons
and neutrons, and attempting to write equations of motion which would remain invariant
under some local transformation. In direct analogy with electromagnetism (where gauge
invariance was already well known), in their paper [YM54] they proposed a formula for
a covariant derivative adding a term to the usual derivative, and then defined a field
strength that transforms in a very simple way under (isospin) gauge transformations.
From a mathematician’s point of view, Yang and Mills managed to guess the formula for
the curvature of a connection, without knowing what a connection was.

The gauge invariant field equations they obtained from this formulation came to be
knownasYang–Mills equations, and their ideaofwritingfield equations byusingprinciples
of gauge invariance became fundamental. In the years that followed, physicists came up
with the Standard Model of particle physics, which classifies all elementary particles and
explains three of the four fundamental forces of the universe: the strong force is explained
by Quantum Chromodynamics, a Yang–Mills gauge theory with symmetry group SU(3);
and the electromagnetic and weak forces were joined in electroweak theory, which is
a Yang–Mills gauge theory with symmetry group U(1) × SU(2). Gravity, of course, is
explained by general relativity, which is also a gauge theory but not of Yang–Mills type.

The Standard Model is an incredibly successful theory, in that its predictions have
been tested to unprecedented levels of accuracy in experiments such as those at the Large
Hadron Collider. However, it is still a very incompletemodel, as it leavesmany phenomena
unexplained and fails to incorporate gravitation. While there seems to be no clear direction
for physicists to go beyond the Standard Model, many of its proposed extensions continue
bearing fruit for mathematicians.
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Appendix B

Background material

We will need some results on calculus of Banach spaces. A good source is [AP95].

Definition B.1. LetX and Y be Banach spaces, and U ⊆ X an open subset, and consider a
map F : U → Y . We say that F is Fréchet differentiable at u ∈ U if there exists a bounded
operator A : X → Y such that

lim
‖h‖→0

‖F (u+ h)− F (u)−A(h)‖
‖h‖

= 0.

Such an A is uniquely determined as is called the (Fréchet) differential of F at u.

The following result is the analogous to the usual mean value theorem of calculus.

Proposition B.2 (Mean value inequality). Let F : U → Y be differentiable. For u, v ∈ U such
that the line segment [u, v] is contained in U ,

‖F (u)− F (v)‖ ≤ sup
w∈[u,v]

‖dF (w)‖ .

And this is the implicit function theorem for Banach spaces.

Theorem B.3 (Implicit function theorem). Let T : X × Y → Z be a continuous map between
Banach spaces that is differentiable with respect to Y , and suppose there is a point (α, β) ∈ X × Y
such that T (α, β) = 0 and ∂Y T |(α,β) is bĳective.

Then there exist neighbourhoods U ⊆ X and V ⊆ Y of α and β, respectively, and a continuous
map f : U → V such that for all x ∈ U , T (x, f(x)) = 0.

Lemma B.4. If T is an operator on a Banach space such that ‖T − I‖ < 1, then

∥∥∥T−1
∥∥∥ ≤ 1

1− ‖T − I‖ .

Lemma B.5 ([Weh04], lemma E.4). Let T, S : X → Z be bounded linear operators between
Banach spaces, and suppose that T is bĳective and

∥∥T−1∥∥ ‖S‖ < 1. Then the perturbed operator
T + S is also bĳective with bounded inverse.
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Chapter B. Background material

The Neumann problem

The first four chapters of [Weh04] are fully devoted to giving a good and thorough in-
troduction to the Neumann problem, beginning with the L2 theory for the homogeneous
problem, generalization to Lp-spaces and sections of vector bundles, and the inhomoge-
neous problem. We quote here only a few results that will be needed in chapter 2. ForM
a compact manifold with boundary, the Neumann problem is as follows:{

∆u = f onM,
∂u
∂ν = g on ∂M,

(B.1)

where ν is the exterior normal direction. The problem is said homogeneous when g = 0.
From now on let 1 < p < ∞ and k ∈ N0. If f ∈ W k,p(M), then the natural space for the
boundary values g is

W k+1,p
∂ (M) := W 1,p(M)

W k+1,p
δ (M)

,

whereW k+1,p
δ (M) is defined as the closure inW k+1,p(M) of the smooth functions vanishing

on the boundary. The norm on this space is

‖g‖
Wk+1,p
∂

= inf
{
‖G‖k+1,p : G ∈W k+1,p(M) and g = G|∂M

}
.

Theorem B.6 ([Weh04], theorem 3.1). Let f ∈ Lp(M) and g ∈ W 1,p
∂ (M). Then there exists a

solution u ∈W 2,p(M) the Neumann problem if and only if∫
M
f +

∫
∂M

g = 0.

The solution is unique up to an additive constant.

Proposition B.7 ([Weh04], theorem 3.2). There exist constants C,C ′ such that for all u ∈
W k+2,p(M),

‖u‖k+2,p ≤ C
′
(
‖∆u‖k,p +

∥∥∥∥∂u∂ν
∥∥∥∥
Wk+1,p
∂

+ ‖u‖k+1,p

)
,

‖u‖k+2,p ≤ C
(
‖∆u‖k,p +

∥∥∥∥∂u∂ν
∥∥∥∥
Wk+1,p
∂

)
, if

∫
M
u = 0.

Moreover, for each k ∈ N0, these constants depend continuously on the metric on M . For C the
dependence is with respect to theW k+1,∞-topology, and for C ′ the dependence is with respect to the
W k+2,∞-topology on the space of metrics.

When restricted to functions such that
∫
M u = 0, the second estimate implies that the

operator associated to the Neumann problem has bounded inverse.

Orphaned lemmas and estimates

Finally, we leave in this section a couple of estimates on Sobolev spaces which did not add
to the presentation of the theory in chapter 1, but are nonetheless useful.
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Chapter B. Background material

Lemma B.8 ([Weh04], lemma B.3). LetM be a compact Riemannian n-manifold, and let k ∈ N0
and 1 ≤ p, r, s <∞ be such that either

r, s ≥ p and 1
r

+ 1
s
<

k

n
+ 1
p
,

or
r, s > p and 1

r
+ 1
s
≤ k

n
+ 1
p
.

Then there is a constant C such that for all α ∈ W k,r(M) and β ∈ W k,s(M) the product lies in
W k,p(M) and satisfies

‖α · β‖k,p ≤ C ‖α‖k,r ‖β‖k,s .
A particular important case is k ≤ 1, r = s = p and kp > n.

Lemma B.9 ([Weh04], lemma 6.5). Let M be a compact Riemannian n-manifold and 1 ≤ q ≤
p <∞ such that q ≥ n

2 . In case q < n, assume further that p ≤ nq
n−q . Then there exists a constant

Crnpq such that, for all f, g ∈W 1,p(M)

‖f · g‖q ≤ Crnpq ‖f‖r ‖g‖1,q ,
‖f · g‖p ≤ Crnpq ‖f‖r ‖g‖1,p ,
‖f · g‖p ≤ Crnpq ‖f‖1,q ‖g‖1,p ,

where we have:

(i) For q < n, r = nq
n−q ≥ p,

(ii) for q = n, r = 2p,

(iii) and for q > n, r =∞.

Whenever this lemma is used the constant will be called Crnpq. The following lemma is
sometimes called Kato’s inequality, and we prove it in a particular case.

Lemma B.10. Let E → B be a vector bundle over B ⊆ Rn with the Euclidean metric gij = δij ,
and choose a metric and a compatible connection for E. Then for a section A of T ∗M ⊗ E,

|∇ |A|| ≤ |∇A| .

Proof. Write A = Ai dxi, then

(∇A)ij = ∇iA(∂j)−A(∇i∂j) = ∇iAj ,

because ∇i∂j = Γkij∂k and the Christoffel symbols are zero for the Euclidean metric. Then
simply write

∇ |A| = d |A| = 1
2 |A| d〈A,A〉 = 1

2 |A|
∑

∂i〈A,A〉dxi = 1
|A|

∑
〈∇iA,A〉dxi,

and use the Cauchy-Schwartz inequality in the following:

|∇ |A||2 =
∑ 〈∇iA,A〉2

|A|2
≤
∑ |∇iA|2 |A|2

|A|2
=
∑
|∇iA|2 = |∇A|2 .
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