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Abstract

In 1982, Karen Uhlenbeck published two foundational papers in gauge theory, which
quickly led to Simon Donaldson’s Fields medal winning result on topology of four-manifolds,
and to the beginning of an era of using gauge theoretic techniques as tools for proving
theorems. In 2019, she became the first (and thus far only) woman to receive the Abel
prize, for these and other groundbreaking works in geometric analysis.

In one of these works, entitled Connections with LP bounds on curvature, Uhlenbeck
proved two very important technical results on the existence of a good gauge, and the
sequential compactness of weak connections with bounded curvature. In this work, we prove
these results and then address their immediate consequence: the uniform convergence of
weak Yang-Mills connections with bounded curvature.

Keywords: gauge theory, geometric analysis, fibre bundles, connections, Uhlenbeck com-
pactness, Yang-Mills equation.

Resumo

Em 1982, Karen Uhlenbeck publicou dois artigos fundamentais em teoria de gauge, que
rapidamente levaram Simon Donaldson ao resultado em topologia de 4-variedades que lhe
rendeu a medalha Fields, e ao inicio de uma era de utilizagdo de técnicas de teoria de gauge
em demonstragoes. Em 2019, se tornou a primeira (e por enquanto, tinica) mulher a receber
o prémio Abel, por esses e outros trabalhos revoluciondrios em andlise geométrica.

Em um desses trabalhos, Connections with LP bounds on curvature, Uhlenbeck provou
dois resultados técnicos muito importantes sobre a existéncia de uma boa escolha de gauge, e
sobre a compacidade sequencial de conexdes fracas com curvatura uniformemente limitada.
Neste trabalho, provamos esses resultados e em seguida nos voltamos a uma consequén-
cia imediata: a convergéncia uniforme de sequéncias de conexbes Yang-Mills fracas com
curvatura uniformemente limitada.

Palavras-chave: teoria de gauge, andlise geométrica, fibrados, conexdes, compacidade de
Uhlenbeck, equagdo de Yang-Mills.
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Chapter 1

(FAUGE THEORY

Gauge theory is essentially the study of connections on principal bundles. The goal of this
chapter is to expand on this, by first giving an introduction to the theory of vector and
principal bundles, and giving the definitions of connections and gauge transformations, first
assuming that all objects are smooth. Then, in section 1.3, we introduce Sobolev spaces
of sections of fibre bundles and state the results that will be used extensively throughout
this work. Finally, in section 1.4, we define the Sobolev spaces of connections and gauge
transformations and prove several lemmas.

1.1 Vector bundles

In this first short section we define vector bundles and connections. At the end of the section
we especialize to the case of Riemannian manifolds in order to introduce notation and objects
which will be used extensively throughout the rest of the text. For an introduction to this
subject see e.g. [Cral5].

Definition 1.1. A vector bundle of rank r over a manifold M consists of
e a manifold F,
e a surjective map 7 : £ — M, and
e for each z € M, a vector space structure on the fibres E, := 7~ 1(x),

satisfying a local triviality condition: around each x € M there is a neighbourhood U and

a diffeomorphism
¢:Ely:=ntU)—=UxK"

sending each fibre E, isomorphically to {z} x K", for K =R or C.

A section of the vector bundle is a map s : M — E such that 7 o s(z) = x, that is, it
takes points on M to the corresponding fibre. It is a smooth section if s is a smooth map
between manifolds, and we denote the space of sections of a vector bundle E by I'(E); it is
easily seen to be a vector space over K with the operations defined pointwise, and in fact it
is a module over C*°(M).

An important notion is that of a trivial vector bundle. The (real or complex) trivial
vector bundle of rank r over M is simply 7 : M x K" — M, where 7 is the projection
on the first factor. A vector bundle is said to be trivializable if it is isomorphic to the
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corresponding trivial bundle. A vector bundle morphism E| between two vector bundles
E and F over M is a smooth map u : E — F such that it preserves the fibres and the
restriction u, : E, — F, is linear; it is an isomorphism when u is a diffeomorphism, or
equivalently when the u, are linear isomorphisms.

Just as manifolds have local coordinate charts which make them more tractable using
tools from calculus, vector bundles have frames. A frame for a rank r vector bundle is a
collection of r sections,

e=(e',...,e"

such that for each 2 € M, e!(z),...,e"(z) is a basis for the vector space E,. Vector
bundles may not have globally defined frames, and indeed a choice of frame is equivalent to
a trivialization (a choice of isomorphism to the trivial bundle). Nevertheless, local frames
always exist: the local triviality condition in the definition is equivalent to the existence of
a local frame around every point in M.

New vector bundles can be constructed from previously known ones. Any operation that
is natural in the context of vector spaces (e.g., direct sum, dual, tensor product) extends to
vector bundles. For instance, if £ — M is a vector bundle, we can define its dual E* — M
by defining

forallz € M;if FF — M is another vector bundle, we can define the bundle Hom(E, F') — M
with fibres
Hom(E, F), = Hom(E,, Fy);

similarly, since we will always be working over vector bundles with finite rank, we can define
the tensor product as
(E® F), = Hom(E7, Fy).

Moreover, it is possible to take pullbacks of vector bundles. Given a smoothmap f: M — N
and a vector bundle ¥ — N, we can form the pullback bundle f*E — M by letting

(f*E)s = Ef(y)-

Example 1.2. A classical example of a vector bundle is the tangent bundle TM — M,
and its sections are vector fields, T'(TM) = X(M). A manifold whose tangent bundle is
trivializable is called parallelizable. More interestingly, differential forms are sections of a
vector bundle, QF(M) = T'(A*T*M).

Definition 1.3. A connection on a vector bundle £ — M is a bilinear map

V: X x [(E) — I'(E)
(X,s)— Vx(s)

satisfying
e Vixs= fVxs,

e Vx(fs)=fVxs+ X(f)s (Leibniz rule)

1One says that morphisms like this “cover the identity”, because it is also possible to define morphism
between vector bundles over different bases, say £ — M and F' — N. In this case a map f: M — N is also
needed, and then ug : Ey — Ff(w)'
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for all X € X(M), s e I'(F) and f € C>(M).

On a given trivialization of the vector bundle with frame e = (eq, ..., e, ), the connection
is uniquely characterized by a connection matrix A := (A;;), which is an r-by-r matrix
of 1-forms, 4;; € QY(M),

Viles) =Y Ay(X)es,
=1

and we denote by V4 the connection associated to the connection matrix A. Using the
Leibniz rule, on a local section
,
=3 r
i=1

we have

Vf(s(x) = Z dfi(Xx)ei(z) + ij(x)Aij(Xx)ei(:c). (1.1)

Another way to interpret a connection is as a covariant derivative,
da:T(E) — QY (M, E), da(s)(X) := V4(s).

From the properties of the connection it is immediate that the covariant derivative is linear
and satisfies the Leibniz rule

da(fs) = fdas+ df @ .

Moreover, from (|1.1]) we see that on a local section s defined in terms of a local frame e as
above,
das=>_ dfle;+ > [T Ayei,
i .3

which leads to the frequently used notation
dg=d+ A

for the local representation of the covariant derivative.
There are two usual ways to extend the covariant derivative from sections to more
general k-forms on the vector bundle, and we define two operators

VA, da: Q8 (M, E) — QFL(M, E)
as follows: for Xy,..., Xy € TM and w € QF(M, E),

VAW (Xo, ..., Xp) == Vi, (W(X1, ..., X5) — w(VE X1,..., X) (1.2)
— ... — w(Xl, .. .,V{)\(/[DX]C),

and
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where VM is the Levi-Civita connection on TM — M. E| These operators are related to
one another by

k
daw (Xo, ..., Xi) = 3 _(-1)! V4w (X;, Xo, ..., Xi, ..., Xp), (1.4)
i=0
and as expected when k& = 0 (that is, in sections of the bundle), dg = VA4, so that the
notation dss(X) = V4s is still consistent.

Just as we can define new bundles from old using operations which are natural to vector
spaces and pullbacks, the same can be done with connections. Let £ — M be a vector
bundle, and let f : N — M be a smooth map. Given a connection V on E we can define a
pullback connection f*V on f*E as follows: for s € I'(E), x € N and X € T'N,

(fV)x(fs)(x) = Va,r0x)s(f(2))-

This can be used to define a further useful property of a connection: it defines a way to move
from one fibre £, to another along paths on M. Given a path on the base, say v: I — M
for some interval I C R, we can define paths on E above v as a section u € I'(y*E), and
then
u:l —F,
u(t) S Ey(t)~

Such a path u is said to be parallel to ~ if
(v*'V)au=0.
dt

Given v,V and an initial point s € E, ) for ty € I, there is a unique path u, such that
us(to) = s and u; is parallel to . A collection of such paths taking each point in £, to

E. 4, for I = [to,t1] is called parallel transport,
P,il’to : E’Y(to) — E’Y(tl) (15)
s — ug(ty),

and this is a linear isomorphism of the fibres it connects.
One last thing that needs to be discussed is vector bundle metric. A metric on a vector
bundle £ — M is a family

h = {hm}xeM

of inner products on the vector spaces F,, which vary smoothly on M in the sense that, for
two sections s, s’ € I'(E),

h(s,s')(z) = ho(s(x), ' (x))
is smooth as a function M — K. Given a vector bundle £ — M with metric h, a connection
on E is said to be compatible with A if, for instance,

Xh(s,s') =hVxs,s)+h(s,Vxs')
holds for every X € X(M) and s,s" € I'(E).

Proposition 1.4 ([Cral5], proposition 1.41). Every vector bundle admits a metric, and for
every metric there always exists a compatible connection.

2See the discussion below on Riemannian manifolds for the definition of the Levi-Civita connection.
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1.1.1 Useful notions on Riemannian manifolds

Before moving on from vector bundles, let us discuss a bit about the very important and
special case of the tangent bundle. A Riemannian metric on a manifold M is simply a
metric on the tangent bundle, therefore by the previous proposition we know that every
smooth manifold admits a Riemannian metric. We will denote a Riemannian metric by g.

When E = TM, the sections of the vector bundle are also vector fields, and so a
connection is an operator

V:XM)xX(M)— X(M),
which makes it possibly to talk about torsion,
Ty(X,Y)=VxY - VyX — [X,Y].

A connection is said to be torsion-free if Ty = 0. Because of the existence of torsion, in this
case it is possible to single out a canonical connection:

Proposition 1.5 ([Cral5], theorem 1.43). On a Riemannian manifold there ezists a unique
connection compatible with the metric and torsion-free. It is called the Lewvi-Civita con-
nection.

It will be useful to define the Christoffel symbols for the Levi-Civita connection. On
TM — M it is natural to use a local frame

0 0

dx1’ 7 Oy,

induced by a local coordinate chart (U, x1,...,z,). Let 0; := E)%i and V; := Vp,, then the
Christoffel symbols Ffj are defined as

Vi0; = T};0%.
The fact that V is torsion-free is reflected in the symmetry of the symbols,
Iy =Tk
Moreover, representing the metric g locally by a matrix
9ij = 9(0;, 9;),

and letting (¢%) be its inverse, the compatibility of V with the metric becomes
1 99t 9gu _ 9gij
k- j i _ 995\ Ik
K 2 zl: (81‘2 + aZCj 8l‘l g

The Christoffel symbols are also useful to show the dependence of the covariant derivative
on the metric on the base manifold. For instance, we can write locally for A € Q' (M, E):

(VA)yj == VA8, 8;) = VE(A9;)) — A(VY8;) = VFA; — T Ay,

Besides a canonical choice of connection, the metric on M also gives natural definitions
to operations such as integration and inner products, and then a further choice of vector

3We use the Einstein summation convention for repeated indices.
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bundle metric extends these notions to bundle valued objects. We give these definitions
now.
First, the metric defines a volume form dvol and then for f € Cy(M) we can define

/Mf = /Mfdvol. (1.6)

Locally, the volume form is given by dvol = \/|det g|dxy A--- A dx,. For simplicity we are
assuming that M is oriented in order to have a globally defined volume form, however that
is not necessary for defining integration, see e.g. [Aub82], chapter 1, sections 9 and 11.

Moreover, the metric induces a pointwise inner product on tensors o, 8 € @¥T;* M, which
can be written as

<Oé, 5) = g“jl T gzkjkail---ikﬁjr"jk'

This is independent of the local coordinates. Note that a Riemannian metric is itself a
tensor, g € T(®2T*M).

The previous definitions can now be used to define the Hodge star, * : QF(M) —
Q"=F(M), as the only map that satisfies

aAxf = (o, ) dvol, Vo, e QF(M).

We can also define an inner product on the space of k-forms: for a, 3 € QF(M),

(a, B) := /M(a,ﬁ) dvol:/ a A x3.

M

We will sometimes denote dvol =: x1. Note that * is its own inverse up to a sign: for
a € QF(M), ¥*a = (—1)kF"=k)q. Occasionally, when the sign itself is not important, we will
simply use *% = +1.

The Hodge star is also used to define the codifferential,

d*: QF (M) — QF L)
a — (=1)"F Dy d s a

The operator d* is also called the formal adjoint to the exterior derivative because of the
following: for a € QF(M) and 8 € Q¥ (M),

/ d(a A =3) :/ da Axf+ (=1)fan dxp
M M
= [ danspd ((FD)EEE D0 () d e g
M
= / da A8+ (=1)"F Do A (s dx) 8
M
:/ da Axf+ —aAxd*p
M

= (da, ) — (a, d* ).

Then by Stokes’s theorem, if either M has no boundary or one of the forms vanishes on
oM,
(da, B) = (a, d* ).

Finally, it is possible to extend these notions to vector bundle valued differential forms.
Let E — M be such a vector bundle, with bundle metric h. Given a local frame e on
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a trivializing neighbourhood U C M, for a € Q¥(M, E) and 8 € Q/(M, E) we can write
a=a'®e and B = ' Qe for of, 3 € Q*(M). Then h induces a pairing

(A QF(M,E) x Q(M, E) — QF(M),
which is given locally by ' '
(aAB):=(a"NP?)h(eiej).
There is also a natural extension for the Hodge star, given locally by
sa = (xa') @ e;.

Note that now for any a, 8 € Q¥(M, E) we can associate a top-form on M given by (aAxf),
and thus we define an inner product on QF(M, E),

(.8) = [ tanss).
M
For the purposes of later use, we will actually refer to
(o, B) = *+(a A x3) € Q" (M) (1.7)

as the (pointwise) inner product on QF(M, E).
Moreover, if A is a connection on the vector bundle ¥ — M, we may also define the
formal adjoint of the covariant derivative dg,

d% - QF(M, E) — Q" Y(M, E),

A% = —(—=1)"* D s dy o«

1.2 Principal bundles

Principal bundles are the underlying objects in gauge theory. Our main objects of study,
connections and gauge transformations, will be defined in this context, and in fact will
be defined in more than one equivalent way. There is much more that can be said about
principal bundles and their relationship to vector bundlesﬁ but our focus in this section will
be on the many ways the bundle, connections and gauge transformations can be defined.
For organizational purposes, and because we will refer back to them often, all of the local
results are collected in a separate subsection.

Definition 1.6. A principal G-bundle is a manifold P along with
e a G actionon P, Px G — P, (p,g) — pg,

e a surjective map m : P — M that is G-invariant, i.e. 7w(pg) = 7(p) for all p € P and
g€G,

and such that a local triviality condition is satisfied: for all z € M, there exists a neigh-
bourhood U and a diffeomorphism

d:7 Y (U) —UxG
p+ (m(p), o(p))
taking a fibre 7=!(z) to {z} x G and which is G-equivariant, that is ¢(pg) = ¢(p)g.

“Frame bundles and G-structures, for instance. See [Crald).
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Equivalently, m : P — M is a principal G-bundle if 7 is a submersion and there is a
free and proper G-action on P which is fibre preserving. The action is also transitive on
the fibres, that is, for any p,q € 7~ 1(x) there exists g € G such that ¢ = pg. Unlike vector
bundles, principal bundles do not generally have global sections; indeed, a global section is
equivalent to a trivialization of the bundle, P ~ M x G.

A more direct point of view is to use a bundle atlas (Uy, @, = (7, ¢0))aca to write
any p € P as

b= LO&, T, g~|
for a« € A, x = 7w(p) and g = ¢, (p) € G. This is an equivalence class, and we will want that
on non-empty intersections U, N Ug

L, 2, 6a(p)] = 15,2, d5(p)]-

We define so called transition functions ¢,z : Uy NUg — G as

¢aﬁ(x) = (ba(p)(bﬁ(p)_l

for any p € 7~ 1(z); this is well defined, as for any ¢ € 7~ !(x) there exists g € G such that
q = pg and

¢a(Pg)d5" (pg) = ¢a(P)9(d5(P)9) " = da(p)ds(p) ™"

Then the equivalence relation that defines |-, -, -] will be

(a,x,g) ~ (/Bvxvh) < h= (Z)Ba(x)g'

The G-action is defined naturally as

pg = o, 7(p), da(p)g]-

Note that these functions satisfy cocycle conditions, on U, N Uz N U,

@ba’y(x) = ¢aﬁ($)¢57(x)7 (18)

and also ¢aq = 1 and ¢as(z) ™! = ¢pa(®).

The open cover of M and the transition functions defined on the intersections encode the
whole principal bundle. Indeed, given such a cover M = (J,c 4 Un and G-valued transition
functions {¢ag}a,sea, the equivalence relation (o, z,g9) ~ (8,2, ¢ga(x)g) gives rise to a
principal G-bundle

m:{|lo,z,g9] € Ajx € M,ge G} — M.

If these transition functions originated from a pre-existing bundle P, then this procedure
reconstructs P. More generally, it is possible to check if two principal G-bundles are iso-
morphic by observing their transition functions on the same open cover of the base bundle.
A G-bundle isomorphism is a bundle isomorphism |E| that also preserves the group action.

Lemma 1.7. Let M = Uyeca Ua be an open cover of M and let {¢os}, {¥as}, a,B € A
be two sets of transition functions for two principal G-bundles over M. Then these bundles
are isomorphic if, and only if, there exist a cover M = |J,ca Vo with Vi, C U, and local
functions go : Vo = G such that Yap(x) = ga($)gba5(x)ggl(x).

5A diffeomorphism of the total spaces which preserves the fibres.
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Isomorphic bundles will usually be identified, and so an object of great importance is
the group of G-bundle automorphisms of a principal bundle P,

Aut(P) i= {: P — P :mow = and $(pg) = ¥(p)g}.

To each ¢ € Aut(P) we will associate a map called a gauge transformation. To properly
discuss these transformations and connections on principal bundles, we need to look at
associated bundles.

Let F' be some other manifold with a representation p : G — Diff(F') which gives
a G-action on it. Then we may define an associated bundle to a principal G-bundle P
as the set of equivalence classes |p, f] = |pg,p(g~1)f] for all ¢ € G, and we denote it
E(P,F)=(PxF)/G. If F =V is a vector space, then p: G — GL(V) is a representation
of G in the usual sense, and E(P,V) is a vector bundle. We will now define and give
properties of two bundles associated to P which will be especially important.

We denote by 7 : Ad(P) — M the associated bundle with fibre G

_ PxdG

Ad(P) : o

where G acts on itself by conjugation, (g, h) — hgh~!. Thus we have the fibres
7 (x) = Ad(P); = {[p.g] : g € G},

for p € 7~!(x), and note that |pg, k] = |p,ghg~']. We can identify the sections of Ad(P)
with the G-equivariant functions,

C®(P,G)% := {u i P — G :ulpg) = g u(p)g = Adg U(p)} ,
in the following way:

e asection s € I' Ad(P) induces a function u by s(m(p)) = [p,u(p)], and u is equivariant
because

lp,u(p)] = |pg, u(pg)] = |p, Adgu(pg)]
implies u(p) = gu(pg)g™";

e a function u € C*®(P,G)% induces a section s(z) = |p, u(p)], and this does not depend
on the choice of p € 771(x), as for any other ¢ € 7~ 1(x) we write ¢ = pg for some
g € G, and so

lg,u(q)] = [pg,ulpg)] = [pg, Ady-1u(p)] = [p,u(p)].

Furthermore, the sections of Ad(P) form a group under pointwise multiplication,

(s-8)(x) := |p,u(p)d (p)].

The G-equivariant functions can further be identified with the G-bundle automorphisms
of P. This identification can be written as follows:

e A function u € C*(P,G)% induces an automorphism 1 : P — P, ¢(p) = pu(p) which
is clearly fibre preserving, and is equivariant:

Y(pg) = pgu(pg) = pu(p)g = ¥ (p)g-
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e Conversely, there is a unique map u : P — G such that ¢ (p) = pu(p) for a given
1 € Aut(P). The equivariance of 9 gives

b(pg) = p(gulpg)) = p(u(p)g) = ¥(p)g,
and because the action of G is free, gu(pg) = u(p)g, which establishes u € C>®(P,G)C.

This identification also introduces a group multiplication in Aut(P) via composition of
automorphisms,

Y1 01ba(p) = p - uz(p)ui(p).
Thus we have the group isomorphisms

L Ad(P) ~ C®(P,G)¢ ~ Aut(P).

Definition 1.8 (Gauge transformation). We will call u € C*°(P,G)¢ a gauge transforma-
tion, and denote the group of gauge transformations G(P).

We will have more to say about gauge transformations, their action and local represen-
tation, further into the chapter.

Let g be the Lie algebra of G, and let G act on g via the adjoint action

Ad: G — End(g)
& Ady(€) = gég "

Then ad(P) — M is the associated vector bundle with standard fibre g,

Pxg
G

ad(P) := .
Just as with Ad(P), we can identify the sections of ad(P) with G-equivariant functions
P -y,

C(P,g)% == {f: P —g: f(pg) = Adgr f(p)},

such that any section can be written s(z) = |p, f(p)], for any p € 7=!(z). The space of
sections I"ad(P) has a natural Lie algebra structure induced by the bracket on g,

[s.s](x) = Lp. [f (), /' (0)]]-

The importance of this associated bundle will become clear after the next definition.
There is a canonical vertical subbundle TV P C TP given by TV P = ker dr, composed
of vectors tangent to the fibres P, ~ G. Each vertical tangent space is isomorphic to the
Lie algebra,
TZYP = ker dpm ~ g,

and the tangent vectors will be denoted p&, as defined in subsection Every complement
of these vertical spaces is isomorphic to I'm(d,m) = Ty, M, but there is in general no
canonical choice for these horizontal spaces; a connection on a principal bundle represents
precisely a choice of equivariant horizontal distribution H such that TP =TV P & H.

Definition 1.9 (Connection). A connection on P is a 1-form A € Q!(P, g) satisfying

10
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o Apg(vg) = g 1Ap(v)g = Ady-1 A, for all g € G and v € T),P,

o Ap(p§) =&, forall ¢ € g,

that is, it is G-equivariant and takes fixed values on vertical tangent vectors. We denote
the set of smooth connections A(P).

To see the relation between both notions, observe that we can write
TP =T"P &ker A.

Note that Q!'(P, g) means that the one-forms take values in g, which is a finite dimen-
sional vector space. In the language of vector bundles, Q' (P,g) = I'(AT*P ® P x g), where
P x g — P is a trivializable vector bundle of rank dimg. From either point of view it is
clear that many global results on forms will readily generalize to connections; for instance,
it makes sense to write dA in this case, when in general connections are needed to define
covariant derivatives.

It is easy to see from the definition that the difference of two connections is a basic
form: G-equivariant and horizontalﬂ On the other hand, it is known that the space of basic
k-forms QF (P, g) is isomorphic to QF(M,ad(P)): for 7 € QF (P,g), the corresponding

bas bas

7 € QF(M,ad(P)) is uniquely defined by
I_p, Tp(Xl, . ,Xkﬂ = %ﬂ(p)(dpﬂ'(Xl), ey del'(Xk>) S ad(P)ﬂ.(p) (1.9)

for any X1,..., X} € T,P. Thus, the space of connections is an affine space, and fixing a
reference connection A € A(P) we can write

A(P) = A+ QY(M,ad(P)).

A similar isomorphism exists for general associated vector bundles E(P, V'), and it allows
a connection on the principal bundle to induce one on the associated bundle. Suppose
p: G — GL(V) is a representation and E(P,V) is the corresponding bundle. There is an
isomorphism h : QF(M, E(P,V)) — QF (P,V), and furthermore we can differentiate the

representation, dyp: g — End(V). For A € A(P) we can then define

da: QF (P, V) — QN L(P V)

bas bas

W = df+ d]lp(A)(w)7
and this in turn will induce a connection on E(P, V),
VA:=hlodygoh: Q¥ M, E(P,V)) = QXY (M, E(P,V)).

In the particular case of ad(P), which is the associated vector bundle E(P,g) with
p=Ad: G — GL(g), we have djp(§)n = ad(§)n = [£,n] and so a connection A € A(P)
defines

da : Qye(Pg) — 1 (Pg) (1.10)

bas

T dr +[ANAT],

5Tt kills vertical tangent vectors.

11
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where [- A -] is the wedge product of two forms with the Lie bracket used to combine the
values in g[] This will then induce on ad(P) a covariant derivative

VA T'(ad(P)) — QY (M, ad(P))

which can be written explicitly in the following way: for s € C*®(P,g)¢ ~ T'(ad(P)),
X € TuM and Y € TP such that 7(p) = z and dp,n(Y) = X,

VAs(X) = |p, dps(Y) + [A(Y), s(p)]] € ad(P),. (1.11)

This, of course, extends to V4 : Q¥(M,ad(P)) — Q¥1(M,ad(P)) exactly as in (L.2).

Now, while it is true that for the usual (de Rham) exterior derivative we have d? = 0,
this will not hold in general for d defined above. This failure can be measured by the
curvature of the connection,

1
Fa=dA+3[ANA] € Q2..(P,g), (1.12)

bas

and we obtain ds da7 = [FaAT] forall 7 € QF (P, g). A connection for which Fy =0 = d%

bas
is called a flat connection. The curvature satisfies the Bianchi identity,

daF4=0.

Moreover, it can be seen as a differential form in Q?(M, ad(P)).
We now calculate the effect of a gauge transformation on a connection and its curvature.
For that, define the Maurer-Cartan form 6, = dyL,- : T,G — g, for Ly(h) = gh.

Lemma 1.10 (The gauge action). Let u € G(P) and ¢ (p) = pu(p) its corresponding
automorphism. Then the action of a gauge transformation on a connection is defined as
u*A = Y*A and can be written

wA=u"tAu 4 u*o (1.13)
=u " Au+u " du. (1.14)

Proof. Define the multiplication o on P x G as o(p,g) = pg = Ry(p) = L,(g) and write
Y(p) = o(Id,u)(p). Then for v € TP,

dpp(v) = dp,u(p))0 © dp(Id, u)(v)
= dipup)o (v, dpu(v))

(%) ~ =
= dpRu(p)(U) + du(p)Lp(dpu(U))7

where (%) follows because T(,, o) (P x G) ~ T;,P & TyG and using curves one can easily show
that d(, q0(v,0) = d,Ry(v) and d(p,g)0o(0, X) = d,L,(X). Since L,(h) = ph = pgg~'h,
we may write Ep = Epg o Ly-1, so that

du(p)f’p( dpu(v)) = d]lf’pu(p) du(p)Lu(p)*1 ( dpu(v)) = d]lf’pu(p)eu(p)( dpu(v))
For p¢ = dyL,(¢€) and vg = d,R,(v) as defined in subsection
dpp(v) = vu(p) + pu(p)fy(p) (dpu(v)).

"For example, for a, 8 € Qp,.(P,9) and X,Y € TP, [a A B](X,Y) = [a(X), B(Y)] = [a(Y), B(X)], and
then note [a A o] = 2[e, a].

12
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Now, using this expression and calculating using the properties of the connection,

YT A(v) = Ay (dpp(v))
= Apu(p) (Uu(p) + pu(p) eu(p) ( dpu(v)))
€g
— () Ap(0)ulp) + B dyu(v))

and rewriting 0,y (dpu(v)) as (u*0)p(v) or dyp)Lyp)-1(dpu(v)) = u(p)~tdpu(v) from
gup, = dpLg(v), we have the expressions we wanted for the gauge action. O

From this, it is also possible to show the effect of a gauge transformation on the curva-
ture,

Fyea = u*Fy = v ' Fau. (1.15)

Finally, we define a pointwise inner product on QF(M,ad(P)) as in (I.7). We assume the
Riemannian metric on M is given, and the metric on ad(P) is induced by the Ad-invariant
inner product on g defined in subsection [1.2.2]

(I €15 [P, CDaacp) = (€, Q)

Now, viewing the curvature as being in Q?(M,ad(P)) and writing | - | = /{-,) : M — R,
we can define the Yang-Mills functional

YM(A) = /M P42 dvol = /M*<FA/\*FA>. (1.16)

Due to the gauge action on F4 and the invariance of the metric on ad(P), this functional
is invariant under gauge transformations,

IM(u*A) = YM(A), Yue G(P).

We will want to study its extrema. For that, note that because A(P) is an affine space with
vector space Q' (M, ad(P)), it is enough to check the variation of the curvature along lines
A+18, for 3 € QY(M,ad(P)). Now,

1
FA_A'_tﬁ :FA+tdA,8+§t2[6/\ﬁ],

and thus momentarily writing (-,-) for the integrated (not pointwise) inner product it is
straightforward to calculate

d d
T t:oyM(A +18) = ’n t:0<FA+tﬁ,FA+tﬁ>
— 2<FA7 dA/3>a

and so an extremum of the Y M functional has to satisfy the weak Yang-Mills equation,

/M<FA, daB) =0, VB e Q' (M, ad(P)).

13
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If everything is smooth, this is equivalent to the (strong) Yang-Mills equation,

d3Fa=0 on M,
*FA’8M:O on OM,

where in the case of a manifold without boundary this is just the usual Yang-Mills equation.
This will be proved further ahead in a more general context as lemma [I.37] Just as the
functional, these equations are also invariant under gauge transformations, and because of
this it is said that the solutions to the Yang-Mills equations come in gauge orbits.

1.2.1 Local formulations and results

In this subsection we will derive local representations and formulas for the objects we have
defined, as these will be the forms which we will mainly use throughout the text.

Recall the description of a principal G-bundle w# : P — M via local trivializations
and transition functions given at the beginning of this section. On a trivializing open set
U, € M we have a bundle chart

d, : W_I(Ua) — Uy, x G
p = (7(p), ¢a(p)),

and the transition functions defined on intersections U, N Ug

bap(x) = dalp)da(p) ",

which obey the cocycle conditions (|1.8]). Moreover, we write the induced trivializations on
the associated bundles Ad(P) and ad(P) over U, with the same notation, as there is very
little chance of confusion in context. For 7 : Ad(P) — M,

Dy : 7 N (Uy) — Uy x G
19,91 = (7(p), ¢allp, 1),
with ¢a(|p, g1) = @a(p)g¢a(p) ™. And for 7 : ad(P) — M,
Dy 7N (Uy) — Uy x g
1p,€] = (7(p), da(lp; €1),

with ¢a(|p,€]) = ¢a(P)€da(p) . Throughout this subsection we will assume this setting.
For a gauge transformation u € G(P), let @ € I'(Ad(P)) be the corresponding section,
such that a(x) = |p,u(p)] for z = 7(p). Then we can use this to define u locally on U,,

Ug 1= P 010 : Uy — G, (1.17)
and this acts on U, x G by (z,g) — (x, gua(x)). Thus, for any p € 7~ !(z),

U () = a(p)u(p)da(p) "

is well defined, and we can recover v on U,,

u(p) = ¢a(p) " ta(r)da(p).

14
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If we assume this to be valid for all o € A, then using the transition functions on U, NUg
we get the transition identity

ug = G 5tadas- (1.18)

Likewise, any collection of G-valued functions {u, }aeca satisfying (1.18]) uniquely defines a
global gauge transformation in the same way as we used to recover u(p). Equivalently, a
global gauge transformation must satisfy

Paf = Uy Paplis.

The local description of connections on open sets U C M is very similar, using the
isomorphism QF (P,g) ~ QF(M,ad(P)) and then the second component of the local triv-

bas

ialization for ad(P). For 7 € QF (P, g) let ¥ € Q¥(M,ad(P)) be the corresponding form
given by (1.9). This defines 7 locally,

Ta = éa oT € Qk(Ucwg)7

and similar to the case of the gauge transformation, on an intersection U, N Ug these local
forms will satisfy

T8 = (z);ngaQSaBa
and the global form can be reconstructed as
(Y1, Vi) = a(d) a(dpr(V1), ..., dpm(Y2))¢a(p), VY1,..., Y € T,P.

In the case of connections it is necessary to choose a reference connection in order to
use this isomorphism, and there is no canonical choice if the bundle is not flat. However,
locally on 7~ !(U,) there is a natural choice, namely A, := ¢.'d¢,. Then for the local
representative A, € QY(U,, g) of A € A(P) we write

Aa(dpr(Y)) = ¢a(D)AY)9a(p) ™ = dpda(Y)da(p) ™, VY € T,P. (1.19)

Assuming that A can be recovered over U, as

A(Y) = d)a(p)_lAa( dpﬂ-(Y))d)a(p) + Qba(p)_l dp¢a(Y)

we will once again get a transition identity for the local representatives of connections over
intersections. This is stated in the following lemma, along with the local formula for the
gauge action, which shows that locally a gauge transformation can be thought of as a change
of trivialization.

Lemma 1.11. For a connection A € A(P), its local representatives Ay, Ag have to meet
the following on Uy, NUg :

A,B = ¢;51Aa¢aﬁ + ﬁb;é d¢aﬂ-
Moreover, the local effect of a gauge transformation is

(u*A)g = ugt Agtig + uy b dug,.

15
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Proof. Both of the affirmations are checked with straightforward calculations. For the
change in trivialization, omitting the evaluations at p, Y and d,7(Y’), we calculate

Ap = dpAgy' — dos - o5
= ¢p(¢n ' Aatba + 05" doa)ds' — dos - 65"
= GasAatdas + o5 dda - 05" — dog - o5
= dp5Aadap + dap(dda - 85" — dapdds - ¢5')
= G Aadap + do4(doa - 05" + dady' dsdos")
= ppgAatas + 655 ddas.

Then for the local gauge action

(u ) (ba(u* )(ba - d(yba ¢a

= ¢o(u Au+u " du)p, !t — dog - oyt
(
—1

= Qa - _1¢aA¢ ua¢a+¢ ! _ld)a (¢ ua¢a))¢ — doq ¢_
=ty (¢aAd, " )t
+uy o doyt ua +uyt dug + doo - ¢!

— o - 9"
= uz Agug +ugt Ao - 03 g + uy toe dogt - ue +ugt dug,

= u;lAaua + u;l dug.
dJ

Finally, the covariant exterior derivative d : QF (P, g) — Q’lf;l (P, g) induced by a con-

nection A € A(P) as in ((1.10)) can be written locally on Ua, taking the local representatives
A, € QY Uy, 9) and 7, € Q¥(U,, 9),

(daT)a = d7a + [Aa A Tal;
its formal adjoint d% : QF (P, g) — Q{f;;l(P, g) is given locally as

(daT)a = d"70 — (_1)(n_k)(k_1) * [Aa A *Ta;

and the curvature (1.12)) can be written
(FA)a = dAs + 5 [A NA ] € 92(Uaag)>

and transforms under a change of trivialization in the same way it does under a gauge
transformation, (Fa)s = qb;ﬁl(FA)aqbaﬁ.

A word on notation. Occasionally, when working locally but not specifying a bundle
atlas, we will drop subscripts a and a connection A € A(P) will be represented by A €
QY(U, g), or a gauge transformation u € G(P) will be represented by u : U — G. When
specifying a global reference connection A, a connection A € A(P) will be denoted A =
A+a,and a € Q} (P, g) will be its representative.
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1.2.2 Several results on G, g and the action on P

In this subsection we fix some notation pertaining to the action of G on P and g, define
the inner product that will be fixed on g and some other notions that depend on it, such
as the metric on G, and prove a result on the derivative of the adjoint action which will be
needed later.

We begin with some notation: For p € P and g,h € G,

gh=Ly(h), Ly : G — G,

pg:Lpg), [:p :G — P,
pg = Ry(p), Ry: P — P.

Forpe P, { c€g,and v € TP,

d
pé = d1Ly(§) = T pexp(t§) € TP,
t=0

vg = dpRy(v) € TyyP,

and for g,h € G, £ € g and v € T},G,

d
9 = diLy(€) =
t=

gv = dpLg(v) € TynG.

gexp(t) € T,G,
0

We need to fix a certain inner product on g. The following lemma is the main reason
that we restrict to compact Lie groups; its proof can be found in [Kna96], proposition 4.24,
and the subsequent properties of the inner product and the induced metrics can be found
in [Weh04], Remark A.3.

Lemma 1.12. Let G be a compact Lie group. Then the Lie algebra g admits an inner
product which is invariant under the adjoint action of G on g, that is, for all £,m € g and
g€G,

(969~ gng™") = (&m).
This inner product satisfies, for all £,7,( € g,

([&:],C) = (&, In, €], (1.20)

and it can be rescaled in such a way that the associated norm || = \/(&, §) satisfies, for all
§,neg,

&l < [€] - [nl- (1.21)

We will fix this inner product on g throughout all of this text.
The inner product on g also induces a metric on TG,

(X,V)g = (g 'X,97Y),, VX,V € T,G,
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where ¢~ X is understood in the sense defined above. It is clear that with this metric left
and right multiplication are isometries of G. If we denote by exp, the exponential map with
base point g € G, then for all £ € g and g € G,

expy(9€) = gexp(§),
exp(g~'€g) = g~ exp(&)g.

Moreover, the geodesics are 1-parameter subgroups,

exp((s +1)§) = exp(sf) exp(tf),

for all s, € R and & € g.
Furthermore, we can define a geodesic distance on G,

dg(g,h) == inf {|X], X € T,G and h = exp,(X)}, (1.22)

which is invariant under left and right multiplication, and this can be used to define a metric
on C°(U, ). For maps u and v from some domain U to G, it will be denoted by

d(u,v) := 2161[[]) dg(u(x),v(x)),

and this too will be invariant under left and right multiplication by continuous maps.
We also define a convex geodesic ball of radius R around 1 € G to be such that

(i) the exponential map is a bijection between Br(1) C g and Br(1) C G,

(ii) and for all g,h € Bgr(1) there is a unique minimal geodesic from g to h that lies
entirely within Br(1).

For the existence of such balls see e.g. [GHLI0, 2.89, 2.90], Moreover, because left multi-
plications are isometries of GG, there exist convex geodesic balls of same radius around any
g €aq.

Finally, we prove a small lemma on the (covariant) derivative of the adjoint action on
k-forms.

Lemma 1.13. For 7 € Q%(U, g) and u: U — G,
d(Ad, 7) = Ad, d7 + [du- v A Ad, 7]. (1.23)

Moreover, for the covariant derivative V induced by the canonical flat connection on the
trivial vector bundle U x g — U,

V(uru™) = w(Vr)u ™t + [du-u™ uru™. (1.24)
Proof. For a fixed point p € U and some X € TU,
dp(uru™)(X) = d(Ady.y -1 (ulp)Tulp) ))(X)
= (i Adody(u- u(p)™) - u(p)ru(p) " + Adyygy - dp(up)rup) ™)) (X)

= ([dpu ~u(p) ™ u(p)Tulp) T +udyru? (p)) (X)

—~
~

—~
-
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= <[du cu uruT Fudr uil) X (p),

where (1) follows from looking at Ad as a map on a product manifold, Ad : G x g — g,
similar to what was done in the calculation of the gauge group action, lemma and (2)

is just dy Ad(£)n = ad(&)n = [, 7).
We now use ((1.23]) to prove the second identity ((1.24]). With the canonical flat connection
VE = d, evaluating at vector fields X; € TU and letting 7 := 7(X1, ..., Xg),

V(uru N (Xo,..., Xg) = Vf(o(u?ufl) —uru” N (Vx, X1, ..., Xp)
— o —uru N (X, ., Vi Xk)
= d(Ad, 7)Xo — ur(Vx, X1, ..., Xp)u !
— (X1, Vi Xp)u ™
= [du(Xo)u ™ uru™) + ud?(Xo)u ™" —ur(Vx, X1,..., Xp)u™*
— - —ur(Xy,... ,VXOXk)u_l
= [du-u " uru™)(Xo, ..., Xp) + uVT(Xo, ..., Xp)u !
= ([du cu  uruT u(VT)u_l) (Xo, .., Xg).

1.3 An analytic interlude

We now turn to the case when our objects may not be infinitely differentiable. The main
reason for this is that Q'(M,ad(P)) has infinite dimension, and thus A(P) is an affine
space with infinite dimensional vector space. Moreover, G(P) can be seen to be an infinite
dimensional Lie group. Thus, we find ourselves in the realm of functional analysis, and we
would like to work with Banach spaces.

In this section, our aim is to give the definitions and most relevant results on Sobolev
spaces of sections of fibre bundles. For an introduction to the theory of Sobolev spaces
on R", we recommend [Eval(], chapter 5; for definitions and results on Sobolev spaces of
functions on Riemannian manifolds, see [Aub82], chapter 2. For Sobolev spaces of sections
of vector bundles, see [Nic07], section 10.4.2. We mainly follow [Weh04], appendix B.

Let (M, g) be a compact Riemannian manifold, £ — M a vector bundle, and choose a
bundle metric on E and a compatible connection. We have shown that with these choices
it is possible to define: a covariant derivative

V: QM E) = QY (M, E),

given by the connection on E and the Levi-Civita connection for the Riemannian metric g
as in (1.2)); a pointwise inner product on QF(M, E),

(a, B) = x(a A*8) : M — R,

given by the bundle metric and the Riemannian metric as in (1.7]), which we then use to
define || := /{a,a); and a way to integrate functions over M given by the Riemannian
metric, using the volume form as in (|1.6)).
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Definition 1.14 (Sobolev space of sections of vector bundle). For k € Ny and 1 < p < o0,
the Sobolev space W¥P(M, E) of sections of the vector bundle £ — M is defined as the
completion of I'(F) with respect to the W¥*P-norm,

k
o, = 3= Vol .
j=1

[wall, = ([, I7al):

Several properties of the usual Sobolev spaces on Euclidean space will generalize to
Sobolev spaces of sections. From the definition, it is clear that W"P(M, E) are Banach
spaces, and therefore many important results from functional analysis are valid, in particular
those from Appendix [A] Moreover, this definition directly gives the density of smooth
sections, which makes it possible to give proofs using approximating sequences of smooth
sections, for which stronger results are valid; see, e.g., lemma below. Other properties
and results will be consequences of the following characterization:

Remark 1.15. Consider a finite bundle atlas (U;, ®;)¥, of E — M, with ®; : E|y, —
Vi x R™ for ¢ : U; — V; C R™ a coordinate chart of M and m the rank of E. A section
a € T'(E) which is locally « : U; — E|y, is represented by ®;.« : V; — R™, or with m
components (®;.a); : V; — R. Then for k € Ng and 1 < p < oo, the WkP_norm defined
above is equivalent to

where

N m

33 (@)l
i=1j=1
where the WP norm on functions R" — R is the usual one. Therefore « lies in W*P (M, E)
if and only if its local components (®;.cr); are WkP_functions for all coordinate patches
i=1,...,N.
Note that it is essential that the base manifold is compact for the sum above to be finite
and the norms equivalent.

From this characterization it also becomes clear that when M is compact, the space
Wk’p(M , E') will not depend on the choices involved, as the WkP-norms induced will be
equivalent. The choices were: the metric on M, the bundle metric on E, and the compatible
connection on F.

Remark 1.16 (On the norm of a metric). In chapter [2 we will several times look at
the W"*_norm of a Riemannian metric g. The metric is a tensor, g € I'(®?T*M), and
therefore as a section of a vector bundle it makes sense to define its W*P-norm as above,
but with respect to what metric on M? As we have noted, over a compact manifold all of
the norms will be equivalent, so any fixed choice is valid. In chapter [2] we will mostly be
working over open sets in Euclidean (half) space, and thus we may canonically choose the
Euclidean metric in this case.

By far the most important result from the usual theory of Sobolev spaces which is also
valid for sections of bundles is the Sobolev embeddings and estimates. Before stating the
result, we need to define the norm on the spaces C7 of continuous functions, for j € Nj.
For o € CO(M, @FT*M ® E) a k-form,

lally == sup |a(z)],
zeM
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where |- | comes from the pointwise inner product defined on Q*(M, E) above; then for a
section aw € C7 (M, E),

k
all; :—supHV aH .
H H],oo k<j

Finally, note that WOP(M, E) is simply LP(M, E), and these LP-spaces are also included in
the following result, as 7 = 0 is allowed.

A word on notation. We will denote the norm on the Sobolev space W*P(M, E) over
the Riemannian manifold (M, g) as |- ||, s, ar)» and when the metric and the space are
clear from context, they will be omitted from the norm.

Theorem 1.17 (Sobolev embeddings and estimates). Let E — M be a vector bundle over
a compact Riemannian n-manifold, j <k € N and 1 < p,q < 0.

(i) If k — % >4 — % then the inclusion
WHhP(M, E) < W34(M, E)
is continuous, i.e., there exists a constant Cy such that for o € Wk’p(M, E),
el g < Cw llellyy, -
(ii) If k — % >4 — %, this inclusion is a compact map.

(iti) Furthermore, if k — 3 > j, there is a continuous embedding WHEP(M) — CI(M), i.e.,
there exists a constant Cyy such that for o € WEP(M, E),

ol oo < Cw llallyy, -
Moreover, this inclusion is compact.

The generalization of the result from bounded domains in R™ to the case of vector bun-
dles is straighforward using remark see the discussion after Theorem A.2 in [Weh04].

These embeddings will cause a few hypotheses to appear particularly frequently: the
inclusion

Whe ey 0

will lead to the condition kp > n; and the inclusion
Wht e L2

will lead to p > 5. When looking at the Sobolev spaces of connections and gauge transfor-
mations, we will generally be working with the W' and W?? spaces, and for k = 2 the
hypothesis p > 5 guarantees both of these embeddings.

Of central importance to the results in this text is the Banach-Alaoglu theorem, which
we state and use in the following form:

Theorem 1.18 (Banach-Alaoglu). Let k € N and 1 < p < oo, and let E — M be a vector
bundle over a compact Riemannian manifold. Then every bounded sequence in Wk’p(M, E)
has a weakly convergent subsequence.
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The generalization from the result for bounded domains in R™ also follows from remark
As for the relation of this result to the usual Banach-Alaoglu theorem from functional
analysis, note that Sobolev spaces are reflexive.

A recurrent argument used in proofs is to make use of the Banach-Alaoglu theorem to
find a weakly convergent subsequence for a bounded sequence, and then use some compact
Sobolev embedding to find a further subsequence which converges uniformly.

Finally, in order to deal with manifolds with boundary, we need the following result.

Theorem 1.19 (Trace theorem). Let M be a compact Riemannian n-manifold and let
1 < p < co. The restriction to the boundary OM is a bounded linear operator W1P(M) —
LP(OM).

Proof. See [Weh04], Theorem B.10. O

This means that for any h € WhP(M),
1Rloat |l poary < C IRl pan

In particular, any sequence of smooth functions that approximates h in the W*?(M)-norm
restricts to a sequence in the boundary that approximates h|gps in the LP(OM )-norm, since

||(hj - h)|6M||p(aM) <c ||hj - h||17p(M) <c th - th’7p(M) — 0.

Using the trace theorem and approximating sequences, we can generalize Stokes’s the-
orem to the non-smooth case. We state and prove this as a lemma, and make implicit use
of it whenever we use Stokes’s theorem.

Lemma 1.20 (Sobolev Stokes’s Lemma). Let M be a compact n-dimensional manifold with
boundary, E — M a trivial vector bundle and o € WEP(M, @" ' T*M ® E) an (n—1)-form.

Then
/ a\aM:/ da.
oM M

Proof. We can approximate « in the W1P(M)-norm by a sequence (a;)jeny € Q" 1(M, E)
of smooth forms, and using the trace theorem (aj|ons) € Q"1 (0M, E) also approximates
algps in the LP(OM )-norm. Then, because of the triviality of the bundle, Stokes’s theorem
can be applied to each component of the smooth forms,

da— hm/ daj = lim aj]aM:/ alons -
oM

J—00 j—)OO
O

Finally, we will make use of a few product inequalities, but we state them in appendix
[A] so as not to clutter the more important results here.

Let us shift our focus now to maps between manifolds, say M and X. Suppose that M
is a compact n-dimensional manifold, and X is an f-manifold, and fix on X an embedding
®: X — R2*1 an atlas (U,, ¢a)aca, and a metric. We then get the following two results.

Proposition 1.21. Let M and X be as above, and let k € N and 1 < p < oo be such that
kp > n. Foru € C%(M, X) the following are equivalent:
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(i) paou € Wk’p(ufl(Ua,Re) foralla € A,
(ii) ® ou € WhP(M,R?H1),
(iii) u = exp, (V) for some s € C®°(M,X) and V € WFP(M, s*TX).

In case X = G is a Lie group with Lie algebra g, the last item can be reformulated as
u=s-exp(&) for s € C°(M,G) and & € WFP(M,g), and there is another equivalence,

(iv) u=tdu € WE-LP(M, T*M ® g).

Proposition 1.22. For a sequence (u;)ien and some w, all of which satisfy the equivalent
conditions in the previous proposition, and under the same assumptions, the following are
equivalent:

(i) u; converges to u in the C°-topology and ¢, 0u; converges to ¢ ou with respect to the
WkP_norm for all o € A,

(i) ® o u; converges to ® ou with respect to the W*P-norm,

(iii) there exist s € C®°(M,X), V. € WEP(M,s*TX), and for sufficiently large i € N there
are V; € WFP(M, s*TX) such that u = expy(V), u; = exp4(V;) and the V; converge to
V in the W5P-norm,

and in case X = G is a Lie group with Lie algebra g, once again the last item can be
reformulated with u = s - exp(€), u; = s -exp(&;) and & — &€ in WFP(M,g), and there is
another equivalence,

(iv) u; converges tou in the CO-topology and ui_l du; converges touw™ du in WF=LP(M, T*M®
g)-
Proof. See [Weh04], lemmata B.5 and B.7. O

A key lemma in the proof of the equivalences in proposition [I.22]is the following, which
will also be used elsewhere in this text and for that reason we state it. This lemma is the
reason for the assumption kp > n in the previous results, and this hypothesis is needed here
because of the embedding WP — €0,

Lemma 1.23. Let U C M be an open subset of a compact n-manifold, 1 < p < oo and
k,m,N € N such that kp > n. If f € CF(V C R™ RYN), then composition with f is a
continuous map, that is

WkP(U, V) — WEP(U,RY)
u+— fou.

Proof. See [Weh04], lemma B.8. This result too is stated there for bounded domains in R"
and then generalizes via remark O

At last, we may give the definitions for Sobolev spaces of maps of manifolds and of
sections of fibre bundles.

Definition 1.24 (Sobolev space of maps of manifolds). For M and X manifolds as described
above, the Sobolev space W*P(M, X) is given as a set by functions u € C°(M, X) such
that u satisfies the equivalent statements of lemma and the topology on this space is
given by defining its convergent sequences using the equivalent statements of lemma [T.22]
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Definition 1.25 (Sobolev space of sections of fibre bundles). Let X < F -+ M be a fibre
bundle, and fix a bundle atlas (U, 7a)aca. In every local trivialization 7 x 7, : 7~ 1(Uy) —
U, X X a section u is represented by 7, ou : U, — X. Then define the Sobolev space
WHP(M, F) of sections of this fibre bundle to consist of all sections u such that

Ta0u € WEP(U,, X)

for all a € A, following the definition above for maps of manifolds. The topology is once
again given by the equivalent conditions in proposition [I.22] via convergence in a bundle
atlas.

We make a few observations. First, proposition shows that WP (M, X) is indepen-
dent of the choice of atlas (used in condition (7)), embedding (used in condition (i7)) and
metric (used in condition (7i7)), and therefore it is well defined for kp > n. Moreover, the
definition via embeddings makes it possible to extend the Sobolev embeddings in theorem

[[.1I7] to the Sobolev spaces defined above.

Partial differential equations and elliptic operators

When working with partial differential equations (PDEs), there are four main aspects of
solutions that one is usually concerned with in an abstract context: existence, uniqueness,
regularity and estimates. Existence, of course, has to do with whether there is a solution
to the given problem in the chosen domain, which might be some C* or Sobolev space;
if a solution exists, it is often good to know whether it is unique, at least up to some
equivalence class (up to a measure zero set, for instance); regularity means, roughly, the
degree of smoothness of a solution; and estimates, for our purposes, are very useful tools in
proofs.

Throughout this text, the main PDE we will be concerned with is the Yang-Mills equa-
tion. However, in the proofs of the main theorems we will need to quote results on two
other equations: the Neumann problem, and the d + d* operator.

For the Yang-Mills equation, we will need a very important regularity result (theorem
, which will be crucial in the proof of the strong compactness theorem This will
be discussed in more detail in the next section, when discussing non-smooth Yang-Mills
connections.

For the Neumann problem, we will need results on existence and uniqueness, as well as
an estimate; these will be used only once, in the proof of theorem and can be found in
appendix [A]

For the d + d* operator, we will need the following estimate, which will be used twice
in chapter 2, in the motivation and proof of theorem [2.2]

Theorem 1.26 ([Weh04], theorem 5.1). Let M be a compact manifold with (possibly empty)

boundary. For 1 < p < oo, if A € WYP(M,T*M) satisfies xAlpar = 0 and H'(M;R) = 0,
then there is a constant C such that

1Al < CUIdA], + [[d*Al,).-

Moreover, this constant depends W -continuously on the metric on M. This is also valid
for 1-forms with values in a finite dimensional vector space.
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All of these results are proved individually and in great detail in the book [Weh04], and
indeed have many chapters dedicated to them. However, it is worth commenting that all
of the operators associated to these equations are part of a class of special operators with
good properties, called elliptic operators. Indeed, it is often the case that saying that an
operator is elliptic is enough justification for certain results. For instance, in Uhlenbeck’s
original paper [UhI82], after the statement of Theorem 1.3, she Writesﬁ

“Regularity of solutions of Yang-Mills equations for connections A € AP, 2p >
dim M follows rather easily from [the gauge fixing] theorem. (...) The system
of equations (...) is uniformly elliptic. Now standard techniques apply.”

Another example, from Donaldson and Kronheimer’s book [DK97], p. 55:

“The operator d + d* is elliptic, its kernel decomposes according to degree and
so if, as we suppose, H!(M) is zero, all the 1-forms are orthogonal to the kernel.
So elliptic theory gives inequalities

| Al < const. (H d"All_y o + dAHk—l,Q) :

While we have been discussing above the case of a closed base manifold, similar
ideas can be applied on manifolds with boundary or on complete manifolds,
given appropriate boundary or decay conditions.”

We will not delve into elliptic theory, as that is beyond the scope of this work, but we
point to references. For elliptic theory on compact manifolds, a good introduction which
avoids doing too much analysis can be found in [NicQ7], chapter 10; a more succinct overview
which delves into the analytical aspects is [Wel80], chapter IV. For elliptic boundary value
problems (i.e. on manifolds with boundary), see [Sch95] or [H07|, section 20.1.

1.4 Analysis in gauge theory

With all of the analytical machinery defined, we can turn again to gauge theory. In all that
follows, let P — M be a principal G-bundle over a compact Riemannian n-manifold.

Definition 1.27 (Sobolev space of connections). Fix a smooth reference connections Ac
A(P), and note that it gives a covariant derivative V4 on the associated vector bundle
ad(P) — M. Then we define the (affine) Sobolev space of connections as

ARP(P) .= A+ WFP(M, T*M @ ad(P)),

modelled after the Sobolev space of sections WH*P (M, T*M ® ad(P))EI which is a vector
space.

Once again, note that since M is compact, A¥P(P) will not depend on the choices of
Riemannian metric and reference connection, even though the norm on W*P(M,T*M ®
ad(P)) does depend on these choices.

8The mathematical notation in the quotes was changed to agree with the one fixed in this work, so as
not to cause confusion.

9See definition m
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Recalling the definitions given in subsection [1.2.1] in a local trivialization ® = 7 x ¢ :
7Y U) — U x G over some U C M we have a natural reference connections A = ¢! de
and can represent a connection by A = A + « for o € QOY(U,g). The reference connection
can be used to define A¥P(P|y), and we affirm that the norm on WP (U, T*U ® ad(P|y))
is equal to the norm on W*»(U, T*U ® g). Thus we are able to locally define the Sobolev
space of connections as

ARP(U) .= WP (U, T*U @ g), (1.25)

such that
ARP(P|y) = ¢t dop + ARP(U).

Definition 1.28 (Sobolev space of gauge transformations). For kp > n, we define the
Sobolev space of gauge transformations as the Sobolev space of sections of the bundle

Ad(P) — M [T
GFP(P) .= WHP(M, Ad(P)).

Similar to the smooth case, this is naturally isomorphic to the Sobolev space of G-
equivariant maps W*?(P,G)%, and from proposition a map u € WFP(P,G)% can
be written as u = s - exp(€) for s € C®(P,G)“ a smooth gauge transformation, and ¢ €
WHP(P,g)%. On a local trivialization over U C M, a gauge transformation is represented
by a map v : U — G, and thus locally we can identify G*P(P|y) with

GFP(U) == WHP(U,G), (1.26)
and furthermore proposition [I.21] will yield
utdu e WFLP(U, TU @ g) = AP 12 (U)

for u € GFP(U).
Just as we defined the Yang-Mills functional to be an L?-energy, we may generalize this
and define an L%-energy of a connection A € A(P), for 1 < g < oo,

E(A) = [ 1l = |1 all. (1.27

We may extend these functionals to Sobolev spaces of connections, and they will be well
behaved.

Lemma 1.29. When 5 < q < oo, &; is a continuous functional on AY4(P), and for every
smooth reference connection A there exists a constant C' such that for all A = A+« €

ALp(p))
1 ~ 1
Eg(A)a < E(A)a +2]lally, + Cllall;,.

Proof. The curvature of A = A+ o is

Fy= d(fl—l—oz)+%[(/~l+a)/\(fl+a)]

= A+ da+ S(AAA +aAo] +2(AAa))

10Gee definition m
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- 1
=F;+ da+[A/\o<]+§[o</\a]

1
1+ dAa+§[a/\a].

From (|1.4), we know that for any X,Y € TM
dza(X,Y) = VAa(X,Y) - VAa(Y, X),

which implies ‘dAa] <2 ‘VAa‘
Writing o = «; dz; on a local frame {0x;},

[aNa] = Z[ai, aj)dz; da; = z 2]y, aj) da; daj (1.28)
.3 1<j
and so
1 1
onal] =Sl € S laik oyl < il oo = el

1<j 1<j

where we used (1.21)) in (%), and then

1 1
ol - () = () -1,
Finally,
£,(4)s — £,(A)3| = || Fx —i—dAoH—;[a/\aH 151,
Hl [ A o
2 q

A 2
s2Hv qu+uau2q
2
< 2llall; , + Cw llal?,, .

where the last inequality follows because of the embedding W4 < L2 which holds with
the assumption ¢ > 3. O

Locally, the energy of a connection A € A%(U) is denoted the same way and given by
E/(A) = IFally).

where Fiy € L9(U, A2°T*U ®g) is the local representative of the curvature. Then the estimate
in the previous lemma becomes

&4(A)

We already know that the group of gauge transformations is indeed a group; we now
prove that the group operations are continuous, and therefore the G¥P are topological
groups, for kp > n.

Q=

= | Fall, < 21140l + C AN, (1.29)
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Lemma 1.30. Let k € N and 1 < p < o0 be such that kp > n; then group multiplication
and inversion are continuous maps on GFP(P).

Proof. Let (Uy,Ta)aca be a bundle atlas of Ad(P) — M. By definition, a gauge trans-
formation u € G*P(P) is a continuous section of this bundle such that for all a € A,
U = Toou: Uy — G is in WEP(U,, Q). If (V, ¢5)pep is an atlas of G, then this means
that ¢p o uy € WEP(uz(V3),RY), for all B € B and /£ the dimension of G. We will prove
the continuity of the inversion map, and the multiplication will be analogous.

Let i : G — G be the inversion map, i(g) = ¢g~'. Then u~! can be defined by (v 1), =
iowug for all a € A. We would like to show that (u™'), € W*P(U,,G). For v € B,

vao(u_l)a =@¢y0iou, = (qﬁ,yoioqbgl)o(gf)ﬁoua),

Now we can use Lemma [1.23| with f = pyoio qﬁEl € C*®(¢s(Vs) C RYRY) to conclude that
dyo(u), € Whe((u=1);T(V,),RY). Since o € A and v € B were arbitrary, this proves

«

u~t e gkr(P). O

Moreover, the gauge action on the appropriate Sobolev space of connections is continu-
ous.

Lemma 1.31. Let k € N and 1 < p < oo be such that kp > n; then the gauge action

GhP(P) x AFLP(P) — AFLP(P)
(u, A) — u*A

1s a continuous map. Moreover, for every trivializing neighbourhood U C M there is a
constant C' such that for u € G¥P(U) and A € A¥=LP(U) the following holds:

k—1
Hu*AHk,Lp < Hu’l duH +C ||A”k—1,p (1 T Huil dqu—Q,Zp) '

k—1,p

Proof. First, note that it suffices to prove continuity of the action on an arbitrary trivializing
neighbourhood, say U C M. We wish to prove that for two sequences (u;) C G¥P(U) and
(A;) C AF=LP(U) converging to u € GFP(U) and A € A*~LP(U), respectively,

(wi) "t Az + (ug) Tt duy = uf Ay — uA.

We treat the cases k = 1 and k > 2 separately. In both cases, note that by definition

(lemma [1.22)), (u;) converges to u in C°(U,G) and (u;) ! du; B219) =1 g,
For k = 1, the inequality is simply

Al < Ju™ d“pr) + H“AA“HMU) ’

which is just the triangle inequality for the norm of the gauge action. Then when looking
at [[u*A — ujAil|,, ), we have shown that the first term converges, and the second term

-1 -1
Hu Au —u; " Ay

< Hu_lAu — u_lAiu
p

‘ + Hu_lAiu — uz_lAzul
p p

<[ A= Aill, + [Adu — Ady, | [|Adl,
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will also converge because of the C%-convergence u; — u. For the second inequality, we used
the invariante of the metric on g under conjugation and the fact that Ad, is a bounded
linear operator on g.
For k > 2, once again writing
-1
" Al piony < [ du

+ Hu_lAuH

k—1,p(U) k—1,p(U)’

the first term is known to converge, and for the second term we use lemma below with
T=A,1;, = A; and £ = k — 1 to get convergence and an estimate which yields the desired
inequality. O

Lemma 1.32. Let U C M be a trivializing neighbourhood of P — M, 0 < £ < k be integers
and 1 < p < oo be such that kp >n and p > 5. Then the following holds.

Let (u;) € GFP(U) and (1;) € WEP(AT*U®g) be sequences that converge to u € GFP(U)
and T € WHP(A'T*U ® @), respectively and in the appropriate topologies. Then

(ui)*lnui @ uwLru.

Moreover, there exists a constant C' such that

L
Hu_lTuH <C|rl, (1 + Hu_l du” ) .
K’p P 6_172p

Proof. The proof will go through by induction on £.

For ¢ = 0, the estimate is provided by the invariance of the metric on g under conjugation
and is simply

T, =
u Tul| =7, -
[t = I,

Convergence follows from the C? convergence of the u; (lemma [1.22)).

Assume the lemma to hold for £ — 1 > 0. The case £ = 0 already provides convergence
for the LP term in the norm and it remains to show that the derivative, which we write

using (1.24) and du™!-u = —u"!du,
V(u;lnui) = ui_IVnui — [ui_1 dui,uz-_lnuz-],

converges to V(u~'7u) in the W 1P-norm. The first term in the derivative can be seen to
converge from the induction hypothesis, using the lemma for Vr and ¢ — 1. For the second
term, the Lie bracket, note the calculation below,

e B R | T

Mt dus — -t —L -1 ;T —u”!
_‘[uz duj —w du, uy Tiwg] + [ du, vy g — w Tu]Hf—lp

< ‘ [ui_l du; —u! du,u;lnui] . + H[u_l du,ui_lnui — u_lTu]H
)

l—1,p

< ‘ uit du; — ut du’ . u._lﬂ;ui + ‘Hu_l du’ . u-_lnui — u_lTu‘H
(A 1 1

4—1717 f—l,p
@ -1 -1
< ||lu; " du; —u duH ‘ Uy T

{—1,2p {—1,2p
+ Hu_l duH ’ u;lnui — u_lTuH
{—1,2p {—1.2p
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3)

SCW‘ !

ui_l du; —u™? duH ‘ u; T

Lp £—1,2p
(4) (5) . —
—0 —lu=trull,_y 5,

+ CX//V Hu_l du” u;lnui — u_lTuH 0,
l,p —1.2p
const. 6
®

where (1) follows from (1.20); (2) is lemma with 7 = s = 2p; (3) is the Sobolev
embedding WP — W 1.2P which is valid for p > % (4) follows from Lemma noting
that ¢ <k —1; (5) and (6) follow taking the lemma with ¢ — 1 (which is valid by induction
hypothesis) but with (k — 1,2p) instead of (k,p), since by the same embedding WP —;
W*12p the original sequence (7;) also converges in W*=1?P-norm and (u;) also converges
in GF=1.2P. This proves convergence for £ from ¢ — 1.

For the estimate, assume it valid for £ — 1. Then, denoting by C' all constants which do
not come from a Sobolev estimate, and by Cyy all of the ones that do,

e tral,, < lutra], + 9@t
4,p P {=1,p

(1)
< ||7'Hp + HU_IVTUH + Hu_l duH Hu ITUH
/—1,p —1,2p 0—1,2p

@ - -1
< HTHP +C ”VTHLLLp (1 + Hu ' dqu—z,2p>
+ Huil duHe—1,2p ¢ HTHZ’I’% (1 + Huil duH£—2,4p)Z_1
<C HTHé,p <1 + Huil dqump)g_l
+ <1 + Huil du”emp) Cw ”THe,p (1 +Cw Huil duH€1,2p>£1

¢
<C|l, <1 + H“_l dqump) ’

where (1) follows from arguments similar to those already used for the convergence above, (2)
is the induction hypothesis, and the Sobolev estimates for W4P «— W¢=1.2P and Wt-1.2r —
W =24 hold due to p > 5 O

The following results will be critical for proving the weak and strong compactness the-
orems.

Lemma 1.33. Let k € N and 1 < p < oo be such that kp > n and p > 5. Let (A%)en C
AF=LP(P) and (u?);en € GFP(P) be two sequences such that both A, _, , and |u A%, _, v
are uniformly bounded. Then the following holds:

(i) For every trivialization over some domain U, C M, there is a uniform bound on
N
[ (ug,) dUZHk—Lp(Ua)'

(ii) There exists a subsequence of (u') that converges in the C°-topology to some limit in

GFP(P).
Proof. See [Weh04], lemma A.8. O
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Lemma 1.34. Let1 < p < oo and k € Ng such that kp > n andp > §. Let A, A’ € AFP(P).
If there is a continuous gauge transformation u such that A" = u* A, then u € GFLP(P).

Proof. Look at the local representatives on some chart U C M, such that A, A’ € A¥P(U)
and u € C%(U, G), then write A’ = u~!Au+u "' du (the gauge action looks the same locally,
see lemma [1.11)). In case k = 0, it suffices to look at

-1 -1
ot < o - < 161, 1,
where in the second inequality we used that the inner product on g is Ad-invariant. Then
uw~tdu € LP(U,T*U ® g), and so by proposition u € GHP(P).
For k > 1, we will use the estimate in lemma [1.32) above. First, note that for all j < k,

[ dull,, <1141, + 14l < 4y, + 14Ty

. 27 1
since kp > n > =5-n. Then,

o] <+ o]

and from lemma ]|u*1Aqu7P is bounded by A, and |u? du“kq,zp- The norm

|A’|[,, 1s finite by assumption, and we bound the second term as follows: we iterate the
estimate above, using the embeddings

kap (N Wk7172p [SEEN Wk72)4p SN N kaj)sz

to bound the [[A’[| term, which hold since p > § > &7 for j > 1, and using lemma
to bound the ||u_1AuH term. This process will finally end with ||u_1 du||kp bounded by

a finite amount of terms [|A’[|; , and |u? duHQkp’ which we showed above is finite. Thus,
u € Ghir(p). O

That is, bounds on the connection forms give bounds on the gauge transformations
relating them.

Non-smooth Yang-Mills connections

In the smooth case, we defined the Yang-Mills functional , showed that critical points
satisfied the weak Yang-Mills equation and said that smooth solutions to the weak equation
also satisfy the strong Yang-Mills equation with boundary condition. It is possible to extend
the functional to connections with less regularity as we have been discussing for the past
section. For Y M to be well defined, we need F4 of class L2. If A € AYP(P), observing the
formula for the curvature

1
Fq= dA+§[A/\A],

we see that dA € LP(P,g), so we need p > 2, and ||[[A A A]||, < ||A]3, hence we need the
Sobolev embedding W'» < L, which gives the condition p > ﬁin.

Definition 1.35. For 1 < p < oo such that p > 5, and in case n = 2 assume in addition
p> %, a connection A € AMP(P) is called weak Yang-Mills if it satisfies

/M<FA, daB) =0, VB e Q' (M,ad(P)). (1.30)
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This is, in fact, even weaker than the functional itself, as the functional might not be
defined or finite for a weak Yang-Mills connection: we do not explicitly ask for p > 2, and
while p > 7 guarantees this for n > 4, this might fail if n < 3; moreover, the condition
p > ﬁT"n fails for n = 3. What the conditions in the definition guarantee is that the weak
equation is well defined, (F4, daB) € L'(M). With p > %, the embedding W? < L?
guarantees that [A A A] is in LP, and therefore so is the curvature. Then we need d4f of
class LP*, for

1 1

— =1

p* p
Since 3 is smooth, we need WP — LP* for A € A"P, and the condition for this is p > f—fl;
for n = 1 this is met due to p > 1, for n > 3 this is met due to p > § > HQ—]:I, and then for

n = 2 we need to assume p > %.
The following lemma shows that ([1.30) is preserved under gauge transformations.

Lemma 1.36. Let A € AYP(P) be a weak Yang-Mills connection, and fir a compact set
K C M. Then for every gauge transformation u € G*P(P|k), u*A € AV (P|k) is also
weak Yang-Mills.

Proof. First, we show that (1.30]) still holds if we the test forms are not smooth but instead
B € W2P(M,ad(P)). Since Fa € LP, we check that daf € LP*. From the local formula

(dAﬁ)a = dﬂa + [Aa A /Ba]u
the first term is in LP* since df, € WP and WP — LP* and then
I[Aa A ﬂa]”p* < c||[Aq] ’/804|||p>k <c ||A0<Hp* [Ballos < Cw HAaHLp Hﬂa”Q,pv

where W2? < CY holds for p > 5

Now, let K C M be compact and let u € G*P(P|k). For a smooth test 1-form J
with support in K, we define B := uBu~! and extend it to 0 outside K, such that S €
W2P(K, ad(P\K)) We have shown that holds for such 3, and thus

| Fueacduead) = [ @ Fauu dabu) = [ (P, dad) =0,
M M M
This follows from the calculation below, where we use ((1.23)),

(dA(uﬁu_l))a = d(Ady, Ba) + [Aa A uaBauy ']

= [dug - u;l A uaﬁaugl] + Ad,, dBs + u;l[uaAaugl A Ba)ua

= Uqy dﬁaugl + g [u;l dug A Ba]u;1 + u;l[uaAaugl A Baltia
= (u(du*Aﬁ)u_l)a.
OJ

Next, we show that for sufficient regularity, the weak and strong Yang-Mills equations
are equivalent, and this implies the result in the smooth case.

H1ndeed, see lemmata and
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Lemma 1.37. Let 1 < p < oo be such that p > % and let k € N. Fiz a con-

nection A € AYP(P), and two equivariant forms w € WYP(M,A*T*M ® ad(P)) and
v € LP(M,A*=YT*M ® ad(P)). Then the following are equivalent:

(i) For all smooth n € QY(M,ad(P)),

/ (w, dam) = / (v, m)-
M M
(i)
djw =7,
«wl|onr = 0.
Proof. Consider the calculation below,

/M<w, dA77>:/ , dn) —I—/ J[AAn])

:/ (n, d*w +/ d(n A xw) :t/ (xw A [A A D))
= d*w,n) +/ (n A *w) :t/ [xw A A] A1)

- —eRD | Al + [ o)

oM
—/ diw,n) —|—/ (n A *w)

where we have used Stokes’s theorem and property of the inner product on g-valued
forms. We did not keep track of the sign in front of the [(w,[A A n]) term when writing
down the calculation because it would become too cumbersome but it can be checked that
we obtain the correct sign. Moreover, the hypothesis p > +2 guarantees WP < L2 which
is needed for the integral of (xw A [A A n]) to be well defined.

We use this identity to prove the lemma. If we assume (i7), then it directly gives (7).
Now assume (4): testing with arbitrary n that vanish at the boundary we get djw =, and
this further implies that the boundary term is zero for all , which proves xw|gy; = 0. O

The weak Yang-Mills equation is well behaved under limits, weak and strong.
Lemma 1.38. Let 1 < p < oo such that p > 3, and in case n = 2 let also p > %.

(i) If a sequence of weak Yang-Mills connections in AY“P(P) converges strongly in the
WP topology, the limit is also weak Yang-Mills.

(ii) If in case n = 2 there is strict inequality p > %, for a sequence of weak Yang-Mills
connections in AYP(P) with LP-bound on curvature which converges weakly in the WP
topology, the limit connection is also weak Yang-Mills.

Proof. We will prove (i) and (i7) at the same time, commenting where the extra assumptions
for (ii) are neededB Remember that strong convergence implies weak convergence.

12Some steps would be more straightforward if we only wished to prove the case of strong convergence,
however we do not comment on those.
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Suppose (AY) C ALP(P) is a sequence which converges weakly to A € A'P(P) such that
each A* is weak Yang-Mills. Note that if the convergence is strong, then there is a uniform
bound on [[Fy:||,, a priori; if the convergence is weak, we must assume the uniform bound.

Then, using the Cauchy-Schwartz ineqality and Holder’s inequality for 1 = ]%—i— 1%’ we prove
that A is also weak Yang-Mills, calculating for any 5 € Q'(M,ad(P)):

/M<FA, daf) = /M<FA, daf) - /M<FA@-, d i)

/ <FA — Fyi, dA,B> —l—/ <FAi, daf — dAiIB>
M M

[ Fa=Fadap) + [ Fa daf— dud)

M M

|

M

Fa=Faio daf)+ [ |Fail- 1daB = dyp

IN

IN

< / (Fa = Fai, daB) + [ Faill, [1daB — daifll,. — 0.
M ——
bounded —0

—0

The first limit is the weak LP-convergence of Fy:, and we check weak convergence of
local representatives on all bundle charts Uy, (Fyi)o = dA% + [AL A A%). For the weak
convergence of the dA? term, test with any 3 € Q?(U,, g) that vanishes on 9U,,

[ tad g = [l am = [ aaa) = [ (dda.8)
then note that the limit holds for all 3 € Q2(U,, g) since these can be LP*-approximated
by such test forms which vanish on the boundary@ For the [A% A AY] term, use Hélder’s

i i 11,4 1
inequality for 5 =2 1 3

[[Aa A Aa] — 1AL A AL

<l

5y 4allo, + |45

.- 4,
2p

— 0,
2p

and this converges strongly because of the compact Sobolev embedding WP — L?P guar-
anteed by p > 7.
As for the second limit, we again look at local representatives,

(dAﬁ - dAiB)a = [(Aa - Af:v) N ﬂaL

and obtain convergence in all bundle charts observing the following:

1(daB = dasB)ll,, < [ Aa — 4L

1Bl —0.

This limit follows from the continuous embedding W' < LP* if the original sequence con-
verged strongly in AP, however if we only had weak convergence the additional hypothesis

p > % is needed to ensure that the embedding is compact and therefore there is strong
convergence in LP*. O

13\Writing B; for the test forms vanishing on OU, approximating 3, using Hoélder’s inequality and noting
that the compact embedding WP < L? gives a uniform bound on | A, o the boundary term coming from

Stokes’s theorem will be bounded by | Al , 18— Bill,. — 0.
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Finally, we state without proof the main result we will need on the regularity of Yang-
Mills connections.

Proposition 1.39. Let M be a compact n-manifold, and let A € A(P) be a smooth reference

connection. Let 1 < p < oo and k € N be such that either kp > n, or if k = 1 then

5 <p<mn, and in either case if n =2, then p > %. Moreover, let q := p in the first case or

q:= 2:2; in the second case. Then there exists a constant C with the following significance:
Let A= A+ a € A¥P(P) be a connection that satisfies

dja =0,
xaloyr =0,

and for all smooth 3 € QY(M,ad(P))
/ (Fa, dap) = 0.
M
Then A € A**14(P) and

3
ladlisrg < C (14 llally, + llali,) -

Moreover, the constant C' can be chosen such that it depends W1 _continuously on
the metric.

Proof. See [Weh04], corollary 9.6. O

The first pair of equations in this proposition may seem arbitrary, but we will meet them
again in the next chapter. This result essentially proves the regularity of the Yang-Mills
operator in Coulomb gauge.
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Chapter 2

THE GAUGE FIXING LEMMA

The main theorem in this chapter is very easy to state in simple terms: there always exists
a good gauge locally. In the first section we motivate the idea behind gauge fixing and show
an example of a good gauge in the simple case of G abelian and M a closed manifold, before
giving the main definition of what a “good” gauge is in the present text, and explaining
how the main theorem follows from a similar result in Fuclidean space. Then, in the
second section, we prove the result on a chart.

The gauge fixing lemma will be essential for the proofs of the compactness theorems in
the next chapter.

2.1 Motivation and main result

Flat connections, Coulomb gauge and Hodge theory

In a problem that is gauge invariant, solutions come in families (equivalence classes) and
one may wish to choose representatives for some reason. For instance, it may simplify
calculations, as in the choice of gauge V- A = 0 for the vector potential in electromagnetism;
it may minimize some norm, or choose some specific representative that has some other
important meaning.

If a connection is flat, then we know that we may choose a trivialization such that
the connection matrix is identically zero, that is, V4 = d is the canonical or product
connection on a trivial vector bundle. This may be done with parallel transport, by first
choosing a frame over a point p and then extending this frame in each direction on the
manifold. Similarly, on a holomorphic vector bundle one may wish to choose trivializations
such that the partial connection d, = @ + o has a = 0, that is, choose a gauge such that
the flat-in-the-(0,1)-direction connection is the canonical oneﬂ

So if a connection is somehow flat, one obtains local gauges such that the connection
matrix is zero. If instead of flatness we have small curvature, can one find a correspondingly
small connection matrix? In the case of the abelian U(1) gauge groupE] we may use Hodge
theory. Assume M is a simply connected closed base manifold for the time being, and let
A be a connection on a trivial U(1)-bundle over M; recall that the Lie algebra of U(1) is
iR. The curvature of the connection is simply F4 = dA, and any change A — A+ idf for
a smooth real valued function leaves the curvature unchanged. If u : M — U(1) is a gauge

'For the detailed statements and proofs of these results, see [DK97], section 2.2
2This corresponds to classical electromagnetism, see appendix ?7?.
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Chapter 2. Gauge fixing 2.1. Motivation and main result

transformation, then it may be written as u(x) = exp(if(z)) and
utdu = exp(—if) dexp(if) = idf,

so that indeed A — A +idf is a gauge transformation. We want to minimize the L?-norm
of the connection
PG
M

along this gauge equivalent family. The Euler-Lagrange equation for this functional is
d*A=0.
Indeed,

(A+itdf, A+itdf) = 2i(df, A)
dtf,_g

= 2i(f, d*A) =0, ¥ f € C(M)

implies that d*A = 0. Thus we wish to find f such that A := A+ idf is gauge equivalent
to A, and

d*A=d*"(A+idf) =0.
This is equivalent to
Af =—id"A.

From the Hodge decomposition theoremﬂ we know that there is a solution f if and only if
d* A is orthogonal to the kernel of the Laplacian, which in this case consists of the constant
functions. So what we want is that [ —1-id*A =0, or [ d*A =0. But

/d*A::t/ *d*A*lz:l:/ d+A=0
M M M

by Stokes’s theorem, since we are assuming that M has no boundary. Therefore we find
a solution f. The proof that this critical point of the functional is in fact a minimum is
a little more involved and we skip it, as there seems to be no insight to be gained from it
in this context. More interesting than that is the fact that d + d* is an elliptic operator,
which provides the following estimate for some constant C' (since M is simply connected
and so H' (M) = O)E|

14lly, < € (1Al + 1" Al ) -

When the gauge is fixed such that d*A = 0, and in the abelian case with F)y = dA, we
then have
[Allp < CllIEAll-1>

and so we showed that there exists an optimal gauge choice such that it minimizes the norm
of the connection matrix, and moreover this norm is bounded by the norm of the curvature,
such that small curvature leads to small connection, as we wished. As a sanity check, note
that if the connection is flat, then the Hodge gauge indeed forces the connection matrix to
be zero.

3See e.g. [War83], theorem 6.8, or [DK97], theorem (A.7), which they call “the Fredholm alternative”.
4 Alternatively, see theorem
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2.1. Motivation and main result Chapter 2. Gauge fixing

Uhlenbeck’s gauge fixing lemma

In the discussion above we considered the case of an abelian gauge group action on a
trivial bundle over a simply connected compact manifold without boundary. Each of these
hypotheses were important for this straightforward development: the vanishing bracket let
us write the linear equation F)4 = dA; the triviality of the bundle let us work with the local
representation of connections and gauge transformations; H'(M) = 0 and compactness were
needed for the elliptic estimate, and the empty boundary hypothesis was used for Stokes’s
theorem and to avoid dealing with (elliptic) boundary conditions. What we want now is
for a similar result to hold locally on any smooth manifold with a non-abelian gauge group
action on a bundle that is not necessarily trivial. Of course, if the result is local we may
choose trivializing neighbourhoods and essentially work on a trivial bundle over the unit ball
on Euclidean space. For elliptic theory to hold, we need the closed ball for compactness, but
now the boundary is not empty and we will need a suitable boundary condition. Finally, for
a non-abelian gauge group, the curvature is F)4 = dA + %[A A A] which leads to non-linear
equations. We assert that the gauge we used above, supplemented with a suitable boundary
condition, is still an interesting and profitable gauge choice. Indeed, on the closed ball, the
Euler-Lagrange equations for the [ |A|2 functional are

d*A =0,
*A’@U =0.

Issues can arise when directly minimizing the norm this way, as the gauges constructed can
have singularities; however, in the small curvature regime this is not a problemﬁ As we
shall see later, these equations also fit in nicely with the Yang-Mills equation and yield an
elliptic system. Finally, we would once again like for bounds on curvature to translate into
bounds on the connection matrix. With all of these considerations, the following definition
should feel natural:

Definition 2.1 (Uhlenbeck gauge). Let (M, g) be a Riemannian manifold, let G be a
compact Lie group, and let P — M be a principal G-bundle.

Let U C M be a trivializing neighbourhood of P. We say that a connection A € AP(U)
is in Uhlenbeck gauge with constant C' if it satisfies

d*A =0 on U,
(2.1)
xAlgy =0 on OU,
and
1Al < C || Fall (2.2)

for s = p or ¢, q as in the following theorem.
Our main theorem is then on the local existence of Uhlenbeck gauges.

Theorem 2.2 (Gauge fixing). Suppose that 1 < q < p < oo such that g > 5, p> 5, and in
case g < mn, p < nn—_qq. Then there exist constants C and € > 0 such that the following holds:

For every point in M, there is a neighbourhood U C M such that for every connection
A € AV (U) with E,(A) < & there exists a gauge transformation u € G*P(U) such that
A:=u*A is in Uhlenbeck gauge. Note that |F;| = |Fal.

5See lemma
6See [FU91], the comment right before Lemma 8.2 on page 119.
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Originally, this theorem was proved by Uhlenbeck in 1982 for n > p > 4 and ¢ = § on
the unit ball; it is theorem 2.1 in [UhI82]. The condition p > & guarantees that the gauge
group is indeed a topological group with continuous action. Nevertheless, it is possible to

extend the result for p = § by a weak-limit argument.

Corollary 2.3. The theorem also holds for p=q =5 if n > 3.

Proof. See [Weh04], proof of remark 6.2a), page 105. O

It suffices to prove the theorem on a coordinate chart, since the result is local and the
Uhlenbeck gauge conditions are invariant under change of coordinates on the base manifold.
Thus, we now state the theorem on an open set in Euclidean (half) space, which we will
prove in the next section, and then show how this implies theorem 2.2}

Proposition 2.4. Let G be a compact Lie group and B C R™ the open unit ball or the
“egg”m. Suppose that 1 < q < p < oo such that ¢ > 5, p> 5, and in case ¢ <n, p < n”—fq.
Then there exist constants C, € > 0 and § > 0 such that the following holds:

If B is equipped with a smooth metric g such that ||g — 11||27Oo < § then for every con-
nection A € AYP(B) with £(A) < & there exists a gauge transformation u € gf’p(B) such

that u* A is in Uhlenbeck gauge with respect to the metric g and with constant C'.
Proof of Theorem [2.3. Take § > 0 from Proposition 2.4 and take B as follows:
e For p in the interior of M, B C R" is the unit ball around the origin.

e For p € OM, the “egg” B is an open subset of the half space H" = {(x1,...,z,) €
R™ : 21 > 0} that contains a neighbourhood of 0 in OH", is starshaped relative to 0
and has smooth boundaryf]

For p € M, choose a coordinate chart around p, ¢ : V. — M for V' C R™ or H", such that
Y*g(0) = ]lﬂ For some small o € (0,1], 0B C V and we can restrict ¢ : 0B — M. To get
a chart on B, consider 1), := 1 oo : B — M. The pullback metric is ¥ g(z) = o?1*g(02);
indeed,

Vo9(v,w)(z) = (¥ 0 0)*g(v, w)(z)
=Y*g(d,ov, d,ow)(oz)

= o2 g(v,w) (02).

Note that ¥%g(0) = 021, and so this metric is not close to the identity, but if we sim-
ply rescale by 072, then o~ 2¢%g(z) = ¥*g(0z) is W*>-close to the identity, as the first

o

derivative is V(¢*g o 0)(2) = oV (¢*g)(0z), and the second derivative is

V(0 59)(2) = V(Y g o 0)(2)
= V(o(Vgoo))(2)
= o?V2*g(o2).

"See definition below.

8This type of domain is called an “egg squeezed to the boundary” in [Weh04].

“Note that this is always possible, as you can simply choose an orthonormal basis on T, M and then
parallel transport it to get a local frame over a contractible domain.
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2.2. Proof Chapter 2. Gauge fixing

Then, because ¥*g is smooth on the closure of o B (which is compact), these derivatives are
bounded and can be made small by the choice of o.

Now, having chosen o such that HU*Q g — 1”2,00 < §, Proposition H holds on B with
metric gp 1= 0~ 21p%g. However, in order to obtain the result on U := (o B) C M with the
intended metric g, we need to show that the result still holds on B with metric 02gp = 9g.

On the effect of the conformal change of metric on A4, G and condition , note that
over a compact manifold the metrics are equivalent and so the spaces are the same, and
as for the equations, the change of metric affects the Hodge star, however only by possible
conformal scalings, and the equations still hold.

What is left is to check that the bounds are still valid with the same constant C.
First, we look at the effect of the rescaling on the norm of the curvature:

[Falfsgy = [ 1Falls, \/det(a?g) d"

= [ (072" 02 (Fa)ig(Fay) foo den(g) d”
B
= Un_2q ”FAH;q ‘
For g as in the theorem, this is the Li-energy &,24. ,(A). If it is bounded &2, ,(A) < &,
then since ¢ > § and 0 < 1, &, 4(A4) < 024 "¢ gives Eg.q(A) < &. The calculation for the

LP-norm is the same. For the W1P-norm of a connection A € AYP(B), we first have the
straightforward calculation

V4
2

1A U?gp_/ (024" 4 A7) %\ [det(o2g) A"z = o™ P | AIP |

and then for the covariant derivative note that (VA);; = V;A4; — Ak and the Christoffel
symbols for o%g and g are the 5ame. Then VYA = V°°94 and as for the curvature

Putting both terms together we have

O.TL—QP ||V9A”§,p °

= 0" Al 1, + 0" TP IVAL 0" | Allg,

H Hgglp glp g7 Y2

Finally, if A is a connection that has been put in Uhlenbeck gauge and satisfies (2.2)) with
respect to the metric o2g, then simply concatenating our inequalities

n—2p ~
[A] <o v |Aly,,<Co v HFAHg;poHFAH

o2g;1,p g;1p a2g;p

we see that A also satisfies (2.2]) with respect to the metric g and with the same constant
C. O

2.2 The big bad proof

This proof is the main technical result of this text. It will refer to most of the lemmas
from the preceding chapter and appendix For its relevance (and length), we give it its

OTndeed, T'*, = a sum of multiples (components of g~ !)x(derivatives of components of g), and so a
ij g g
constant rescaling is cancelled.
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own section. The proof will go through via the continuous induction method, and its main
interesting features are the use of the implicit function theorem, boundary value spaces, the
elliptic estimate for the d + d* operator and results relating to the Neumann problem.

Define the modified energy & (A) = [5|Fa(x)|? dz™ using the Euclidean metric on B
for a connection A, note that if § is small enough in [|g — 1|5, < d, then g is sufficiently
close to the identity that

SENA) < E,(4) < 265(4).

Define
Aci={Aec A'P(B): £'(4) <¢},
and
Se := {A € A; such that A can be put into Uhlenbeck gauge} .
We will show that S. = A., and thus every connection with energy at most € := § can be

put into Uhlenbeck gauge.
The proof will have three steps, and during each step some care has to be taken with
the constants ¢, C' and § and their dependence on each other and the metric on B:

(1) For some fixed g and ¢, we prove A; is connected.
(2) For some fixed g, € and C, S. is closed.

(3) We find e, C and 8, and vary the metric with 6, such that S. is open.

Throughout, we take the local descriptions explained in subsection [I.2.1] Therefore, a
connection in A'P(B) as defined in (1.25) is a g-valued 1-form on B and a gauge transfor-
mation in G*P(U) as defined in (1.26) is a function u : B — G.

(1) A. is connected.

Proposition 2.5. Let B be equipped with any smooth metric g and let € > 0; then A. as
defined above is connected.

Proof. We prove there is a continuous path from each A € A. to the canonical flat connec-
tion in A., which is represented by A =0 € Q(B, g).

Let A € A, and define the path (A4,),¢0,1) by Aq(7) = 0*A(z) = 0 A(ox) where we
take the pullback under the map = +— ox Clearly, Ag = 0 and A; = A, and for each
o €1[0,1], A, € A'?(B). The curvature of the connection A, is [

Fy (x) = d(4,) + %[A(7 A Ay = o*dA(ox) + C;Q[A(Ua:) A A(ox)] = 0*Fa(ox),

and so we have

£(A,) = /B 02| Fy(oa)|? dz" = o29" /U IFA@)? dy” < oM (4) < e,

where we changed variables y = oz and used the assumption that ¢ > 5 for g < 1.
Therefore, the whole path is contained in A..

" This is well defined since B is star-shaped with respect to 0 and therefore the path oz stays within B.
12Use dy(As) = du(o 0 Ao o), and recall that the differential of a linear map is itself.
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2.2. Proof Chapter 2. Gauge fixing

To show the continuity of the path, we will use the Euclidean metric on B instead of

the metric g. For continuity at o = 0, since A9 = 0, it suffices to show that [|As|ly, , 290.

We look at the two LP-norms separately. First, we have

p _ P n
140l iy = [, 4ol do
:Up/ |A(oz)|P da™
B

A
IN=

o HlHﬁ ap(o8) 1A 2po )
=P~ nVOl(UB)2 1A%, :2p(0B)

(<) P "3V ol(B )ZCW A%, :1,p(cB)
<"~ Vol( B):C AR, ) — 0,

—0

constant

where in (1) we used the Holder inequality and (2) is the Sobolev inequality for W1? «s L2P
guaranteed by the hypothesis p > 5, which is also used for oP~% — 0. For the derivative
term,

IV A0liipi) = [ 19 4a(a)” 2"
:/ o?|V(Aoo)(x)|P dz"
B
— g% / IV A(o)? dz”
B

= g2 / VAP dy”

= 0% " |VAIL g — 0

where we simply use a change of variables and again need the condition p > 4 for conver-
gence.

The continuity at o¢ € (0, 1] is more convoluted, and we will make use of an auxiliary
sequence (A%);eny C A(B) of smooth connections which converge to 4 in A(B):

|Ag () — Aoy (z)| = |0 A(0x) — 00 A(007)|
= |ocA(ox) — 0 A'(0x) + 0 A'(0x) — cA'(opx) + 0 A*(opx)
— 0A(oopz) + 0 A(ooz) — 00 A(00T)]
< o|A(oz) - A'(ow)| + 0| A (o) — A'(00a)|
Yo ‘Ai(aoaz) - A(aox)] + |o — 00| |[A(oo)|
< ‘A(ax) — Ai(a;r)’ + |0 — 00| C;
+[A%(002) = A(oom)| + o = 00l | A(00e)
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where we have used o < 1 and the mean value inequality, proposition for HVAl(x)H <
C;, since the A; and all of their derivatives are bounded on B. Now we apply the Euclidean

norm [ - || ) to this inequality H and change variables to obtain
n . 1
_n i ' 1
[Ae — Agglly., <o 7 |[A-A ﬂ;p(UB)+|O'—O'0‘CZVOZ(B)P
~5 i ~>
+op " ||A-A 1, p(00 B) + |0 = ool o HAH]l;p(UUB)

< (U_Z + UOZ> HA — A

1
1, p(B) + ’U — J(]| CiVOl(B)p

+lo—oolog * | Ally; ) -

It is now necessary to be a bit careful about the mixed terms depending on ¢ and o, but for
fixed og the right-hand side can be made as small as we want in the following way: first,

n n

take o close to og such that o + a(; ?"is bounded, say, by 20(: ? 4 ¢ for some constant c;
then take ¢ such that the first term is small; for this fixed ¢, C; is also constant and therefore
a further suitable choice of o even closer to oy makes the second and third terms small.

The computation to check that |[VA, — VAy,|| 7% 0 is completely analogous, using
bounds C! on the second derivatives of A%, yielding

Ve = VAn iy < (075 40,7 )[4 - v

1
! P
1 p(B) + |o — ao| CiVol(B)

+|o? = o8| o * VAl ) — 0

for suitable choices of ¢ and o close to og as before. O

(2) S. is closed

Proposition 2.6. Let B be equipped with any smooth metric g and let € > 0. Suppose that
there is a sequence (A;)ien C Ae converging to some A € A. such that each A; can be put
into Uhlenbeck gauge with constant C' by some gauge transformation u; € G*P(B). Then
there exists u € G>P(B) such that u* A is also in Uhlenbeck gauge with constant C.

Proof. We will show that there exist the limits v; — v and ujA4; =: fL — A such that
u*A = A and this is in Uhlenbeck gauge.

We can get a uniform bound on H/L

[L.29}

) by first bounding the curvature, from lemma
7p

2
IFaill, < c(lAilly, + 14illp) < €

with uniform ¢’ due to the W'P-convergence of the A;, and then applying the Uhlenbeck
gauge condition

H& < C||Fall, < C.

Lp

13That is, we elevate both sides to the p-th power, integrate over B with the Euclidean volume form and
take the % power, and then separate the terms, all of which can be done because the integral,  — z¥ and

1 ..
x — xP are subadditive.
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With this uniform bound, we may use the Banach-Alaoglu theorem to find a subse-
quence weakly converging to some A € A'P(B), and then from the compact embedding
WP s 2P a further subsequenc also converges in the L?’-norm to A.

Then, since both [|4;],, and H/L )
? ’p
a subsequence u; such that it converges in the C°-topology to some u € G*P(B), and
u; ! du; — w=! du uniformly in the L2P-norm.
Thus we have

are uniformly bounded, lemma [1.33| gives us

uwldu +— ui_l du; = A; — ul-_lAiui — A —u A,

where the second limit follows because the two terms converge, and the second term con-
verges because of the continuity of the adjoint actionE Equality follows from the uniqueness
of the L#-limit, and so A = u*A.

Now, we check that A is in Uhlenbeck gauge, i.e. check and :

(i) All A; are already in Uhlenbeck gauge and thus satisfy d*A; = 0, and for all ¢ €
C*°(B) such that ¢|sp =0,

(¢, d*fl)z/B¢>d*fl*1:/B¢*(d*fl— d*4;)

——
=0
> i ~<*>/ i
= d(xA — +4;) Z £ [ dp Ax(A— 4;) — 0,
\*;;/BW* )t [ doned Ay
= —

where (x) follows from the following computation (where we write a € Q!(B)), using
Stokes’s theorem and ¢lopp =0

0:/8Bqﬁ *a:/Bd(qﬁ *a)z/jgdgb/\*a%—(—l)”_l/jB(b/\ d*a

Since C§°(B) is dense in LP(B), this proves that d*A = 0.

(ii) Similarly, *A;|sp = 0 and this is also preserved under the weak WhP-limit, as we
show. For any ¢ € C*°(0B) we may extend it to some ® € C*°(B), and so we have

where in (x) again we used Stokes’s theorem This then shows that *A|sp = 0 as
we wished.

14VWe keep the same labelling ¢ € N for the subsequence.
15See calculation in proof of lemma
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(iii) Let s = p or ¢. We may write

|4

< liminf H/L

1,s 1—00

< Climinf [|Fa,||, < O Fal,,
1,s 1—00
and this gives us our result. The first inequality is true because any norm is sequentially
weakly lower semicontinuous; the second follows from A; being in Uhlenbeck gauge;
and the third follows from the continuity of the L*-energy functional on A"® from

lemma and the convergence A; R A, which also implies there is convergence in
W4 because for p > ¢ and B of finite volume, W4(B) < W1P(B).

O

(3) S. is open

We would like to show that for any A € S, there is a neighbourhood of A in A, contained
in S.. Instead, it is simpler to find a neighbourhood of Ay := u*A in A"?(B) made up of
connections which can be put in Uhlenbeck gauge, pull it back by u~! to a neighbourhood
of A in AY?(B) and intercept it with A. to get what we need. This string of operations
makes sense because G2P(B) acts continuously on A'P(B) (see lemma and is closed
under compositions. Since the energy £(A) is gauge invariant, we can forget about the
original connection A and work with an arbitrary connection in Uhlenbeck gauge.

We will make use of the implicit function theorem for a suitable operator between Banach
spaces, which will yield a neighbourhood of connections around Ay which satisfy in
the Uhlenbeck gauge definition. We can then ask for a bit more from the solutions so that
the connections satisfy condition , owing to a a priori estimates.

Before moving on to the proof, it will be important to establish some inequalities with
uniform constants. Since the W'P-norm only depends on the metric, its inverse and
first derivatives, control over the W1 *-norm of the metric is enough to guarantee that
if [|g — 1|, o, < for small enough d, we get

1
S ledlga, <llally,, <2l

5 » < Va € WYP(B,T*B). (2.3)

g;1,p>

If we choose § such that this equivalence is valid for the WP, W14 and L"-norms (with
r =r(n,p,q) from lemma at the same time, we moreover get uniform constants in the
estimates between these spaces, by first using the appropriate estimate with the Euclidean
metric 1, and then using . This means that throughout the next proofs, the constants
Crnpq coming from lemma@ and Cyy coming from the Sobolev embeddings will not depend
on the metric.

Lemma 2.7 (A priori estimates). There exist positive constants 0, C, and A such that for
every metric g satisfying ||g — 1[[; o, <& the following holds:

Let A € AYP(B) be such that d*A = 0 on B and xAlsp = 0, and ||A]|, < A, where
r=r(n,p,q) from lemma . Then

1Al < ClIFall, .
14l 4 < C I Fall,

that is, A is in Uhlenbeck gauge with constant C.
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2.2. Proof Chapter 2. Gauge fixing

Proof. As we are working over the ball in Euclidean space and xA|gp = 0, it follows from
theorem [I.26] that for all 1 < s < oo,

HAHl,s S CQ(H dAHs + || d*AHs)a
——
=0
where C, depends on the metric g on B; however, we also know that the constant depends

W1_continuously on the metric, and so we may choose & such that there is a uniform
constant C' for all metrics ||g — 1||; . < 0, and thus

1Al < ClldA];-

Now, looking at the curvature as dA = Fy — 3[4 A A],

1
1415 < CUEAll, + 5 1A A AJll,)

and we would like to get rid of this ||[A A A]| term somehow. There is a clever trick to make
it so that we can absorb this term into the constant and the left hand side. We take s = p
or ¢ and use lemma in the following;:

1
S IAAAN, < A A,

1)
< [121A[ - [All 4
< 2Crnpq [[All g 1Al M1,

2

< 8Crnpq Al 1Al 5

< 8CrnpgA ||A||1,s )
where in (1) we used that [[AA A]|; < 2|A[3 (see e.g. (1.28) and proof of lemma [1.29),
and in (2) we used that |V |A|| < |VA| (see lemma [A.10). Since we used lemma for

the Euclidean metric and then used the equivalence of the norms (2.3), Cpnpe is metric
independent and we may absorb it into C,

[All s < CUIFall, + AllA

1,5)’

and now all that is left to do is take A = % and combine the [|A|; ; terms, and the result
follows for C' = 2C. O

We will need to keep track of this extra condition ||A|, < A while solving the boundary
value problem posed by , and this will appear as a bound A on X for a gauge transfor-
mation exp(X), so that a transformed connection exp(X)*A will satisfy this A bound on
its L"-norm.

Lemma 2.8. There exists § > 0 such that for every constant C' > 0 there exists ¢ > 0 such
that for every metric g satisfying ||g — 1”2,00 < § the following is true:

Let Ay € AYP(B) be in Uhlenbeck gauge with constant C and energy E(A) < ; then for
all X > 0 there exists R > 0 such that for every connection A € AYP(B) with ||A — Aoy, <

R there is a solution X € W*P(B,g) of

d*(exp(X)*A) =0onB
*(exp(X)*A)|lsp =0 on 9B,
with || X|ly, < A.
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Chapter 2. Gauge fixing 2.2. Proof

Proof. As explained, we will use the implicit function theorem[A.3] Let us define our Banach
spaces:
First, define the space

W2P(B.g) = (X € W2P(B,q): [ X =0},
B

which is a closed subspacﬂ of a Banach space, and therefore also Banach. Next, define

W'?(B, g)

WyP(B,g) =
W;"(B,g)

where I/V(;1 P(B, g) is the closure in the W!P-norm of the subspace of sections which vanish
at the boundary of B. This is a boundary value space, whose elements are equivalence
classes of functions on B which coincide on the boundary 0B. With the quotient norm

6]y 10 (B,g) = inf{|| @], , : ® € WP(B, g) and Plap = ¢},

W(;’p (B, g) is a Banach space. Now define

Z = {(f,6) € LP(B,g) x W)"(B,g) : /Bf+/83¢ ~ 0}.

Note that LP(B,g) x Wg’p(B,g) with the direct sum norm is a Banach space, and Z is a
closed subspace, and therefore Banach. To see that

/f+ ¢=0 (2.4)
B 0B

is a closed condition, note that using the trace theorem we get

| 181=19l03) < C 191l 5y < CUIlyz0 +2)

for some choice of ® such that ®|s5 = ¢, which is enough to see that (2.4]) is preserved
under limits. Finally, AM?(B) is a Sobolev space and therefore clearly Banach.
We will use the implicit function theorem on the operator

F: AY(B) x W2P(B,g) — Z
(A, X) = (d7(exp(X)"A), *(exp(X)*A)[sp)-

That F' is a continuous map into LP(B, g) X W(;’p (B, g) follows from the facts that exp X €
G*?(B) for X € W?P(B, g) by definition (see lemma[1.21)), the map X ~ exp X is continu-
ous, and the gauge action G%P x A" — AP is continuous (see lemma . That it maps
into Z can be checked with Stokes’s theorem (lemma [1.20)): for o = (exp X)*AE

/d*a*lz—/ d*a:—/ xalop,
B B oB

16 f B X =0 is a (clearly linear and) closed condition, which is easily seen taking limits in each component
of g.
"Use k = n in the formulas %> = (—=1)*™=%) and d* = —(—1)"*~D,
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2.2. Proof Chapter 2. Gauge fixing

so that is indeed satisfied by (f, ¢) in the image of F'. Thus, F' is a continuous operator
between Banach spaces.

Now, knowing that F(Ag,0) = 0, what we want is an open set around Ag in AP(B)
and some continuous map f on this open set to a neighbourhood of 0 € W2P(B, g) such
that F'(A, f(A)) = 0, and this map will permit us to control the norm of X. Under these
circumstances, we need to analyse the derivative of F' with respect to the second variable
X. The partial derivative dx F'[(4 x) is the Fréchet derivative of the map F'(A,-), which is

a linear map
OxFlax): WaP(B,g) = Z.

We check that this map exists, is continuous and is bijective at (Ag,0). First, note that
since the chain rule is valid for the Fréchet derivative, and d, * and |gp are linear maps, we
need only look at the Fréchet derivative of the gauge action X +— (exp(X))*A, which we
will call G(A, X) : W2P(B, g) — AYP(B), and then

OxFlia,x): & (d7(G(A, X)E), x(G(A, X)E) o).
We will show that the linearization of the gauge action is
g(A¢ X)g = d§+ dexp(—X) Ad(d—X exp(—f))A,
which is to say that

[exp(X +€)"A = exp(X)7A = d€ — dey(—x) Ad(d_x exp(~£)) 4|

lim = 0.
€] —0 €]

We can rewrite this in a more suggestive format,

exp(X +§)"A — exp(X)"A — d§ — dexp(—x) Ad(d—x exp(—§))A
= Adexp(x4e)-1 A +exp(X + &) Ldexp(X +¢)
— Adepr_1 A—expX tdexp X
— d€ = dexp(—x) Ad(d—x exp(—¢)) A
= Adeyp(x46)-1 A — Adeyp x-1 A — dexp(—x) Ad(d—x exp(—=¢)) A,

and observe that this expression is exactly the expression for the derivative of Adexpy,

d(—X)(Adexp)(_g) = d(_X)(AdoeXp)(—ﬁ)
= dexp(—x) Ad(d(_x) exp(=E)).

Thus the limit is indeed zero. Moreover, G(A, X) is clearly continuous.
To check bijectivity of dx F'[(4,,0) we simplify the expression

G(Ap,0)§ = d€ + dy Ad(dgexp(—£))Ag

Y de + dy Ad(—8) Ay
= d¢ +ad(—¢£) Ay
= dé — [€ A Ag]

where (%) follows because the differential of the exponential map at zero is the identity.
Now, we must look at d*G(Ag,0)¢ and *G(Ag, 0)¢|sp. Note that because ¢ € W2P(B, g) is
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Chapter 2. Gauge fixing 2.2. Proof

just a function, *[{ A Ag] = [ A *Ap], and remember that Ay is in Uhlenbeck gauge already.
Then we calculate

—d*[f A Ao] =—(—x d*)[f /\Ao] = *d[f A *Ao]
= x[dE A xAg] + *[E A d* Ag]
«[dE A xAg] + [€ A xd * Ap]
———
—d*Ap=0

= x[d& A xAg)].
Moreover, xAg|lgp = 0 and so

#(d€ — [E A Aol)lop = *dEaB-

Therefore
OxF|, o& = (d"dg + +[dE A xAo], x dE|op).

We write Ox F'|a,0 =T + S, where
T = (A, *d€lpp) and S = (x[d& A xA),0).

Note that T is the operator for the inhomogeneous Neumann problem@ From theorem
Z is exactly the space of functions (f, g) for which the Neumann problem has solution,
and so T is surjective onto Z; moreover, the solutions are unique up to additive constant,
and so the additional condition on the domain W2P(B, g) that [ & = 0 makes T injective.
Furthermore, by theorem [A.7] the inverse of this operator is bounded for every metric
W?2>_close to the identity. Choosing an appropriate §, we can make HT*1H < C7 for some
constant C which is independent of the metric. Now, if we find a bound for S, lemma [A75]
gives the bijectivity of T'+ S. Calculate

[[dE A Ao]| = [ D[056, Aj] day A day| = [« D[06€, A7] g7 % 1]
<Y 197110i€) | Aj] < max |g7| > |9:€] | A;]

——
=:lg~1|

g"

= ’9_1’ |d§|]1 |A0|]1 :

Then, because [g~!| < [|g7!|| ., we can use lemmaand require § < 1 such that [g7!] <
(1—1lg — 1ll.)"* <2, and now we apply this in inequality (x) below:

[15¢1lz = IIx[d§ A =Ao]ll,.,,
<2 ||*[d£ A *AO]HIl;p

=2 (/Bl*g{dEA*ng]l’iy
([ qagh 4ok )’

18See appendix the section on the Neumann problem.
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2.2. Proof Chapter 2. Gauge fixing

= 4[l[d¢ly [Aoly Iy,
< 4Cnpq 1 A€l 114,15 M1Aol1 1151 4

)
< 407"”?‘1 H€||]1;2,p HAOHII;L(]
< 16Crnpq €112, 140l 4 5

where the factors of 2 come from the equivalence of the norms on B, the constants
Crnpq come from lemma as usual, and in (1) we use lemma for |V |A|| < |VA| and
that on sections ¢ : B — g, V = d so Vd¢ = V2¢,

Now, let C be given and choose € = (BQCmqu’CT)_q. Since Ag is in Uhlenbeck gauge

~ ~ 1 ~
with energy €,(Ap) < € and constant C', we can use ||Aol|; , < C'[[Fa,ll, < e¢C and at last

~ 1

156112 < 16CrupmCs €]l = 55 €], -
This means that S and T satisfy the hypotheses from lemma namely that T is bijective
with bounded inverse and ||S|| |77 = 4 < 1, and therefore Ox F|4,0 =T + S is bijective.

Finally, this means that F' satisfies all conditions to the implicit function theorem
around (Ao, 0), and therefore there are neighbourhoods U around Ay and V around 0, and
a continuous map f : U — V such that F(A, f(A)) = 0, which implies that exp(f(A))*A is
in Uhlenbeck gauge for all A € U C A"P(B, g). Furthermore, to get the bound [X1ly, <A
it suffices to take a ball with sufficiently small radius R within f~!(B,(0)NV) C U, so that
f:BR(A())—>B>\(0). O

Lemma fixes the constant C' we will use for the Uhlenbeck gauge, and this in turn
fixes €, which is defined in terms of C in the proof of lemma 2.8. Then for a connection
Ap in Uhlenbeck gauge with constant C' and energy &, < e, we find R such that for every
connection A € Bgr(Ag) C AYP(B), there is a gauge transformation exp(X) such that
(exp X)* A satisfies , the first condition of the Uhlenbeck gauge, and we get a bound
1X1ly,, < A

All that is left to do now is check that these solutions (A, X) satisfy ||exp(X)*A[|, <A,
so that they can be shown to satisfy by lemma and finally all of Br(Ay) can be
put into Uhlenbeck gauge with constant C. Therefore, we show this now: first, we have

lexp(X)* All, < ||Adaxp(x) A + llexp(—X) dexp(X)] .
Because the inner product on g is Ad-invariant, the first term is just || Al and we have
1Al < [[A = Aoll, + [ Aoll,
< 40w (14~ Aol + 4ol
< 40w (R + Ce),

where (x) follows from the equivalence of metrics (2.3) and the Sobolev embeddings L" <
WP and L" < W14, As for the second term, we can write

exp(—X () dexp(X(z)) = exp(=X(z)) dx expodX

and note that, since 2p > n, the embedding W?2P? — C? provides control over the C%-norm
of X, sup,ep | X(x)| < A. Therefore, for sufficiently small A, for every point € B the map
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exp(—X (7)) dx()exp : g — g is arbitrarily close to exp(0)doexp = dgexp = 1, which
means that its norm can be bounded by 2. Thus,

[exp(—X) dexp(X)||, = [lexp(—X) dx expodX],
<2 dX|, < 4] dX]|y,
<ACw [|dX|ly.q,
< 8Cw [l dX],,
< 8Cw [ X]l,,, < SCwA.

For the first term, 4Cy does not depend on the metric, and C has already been fixed; for
the second term, 8Cyy does not depend on the metric, and so putting both terms together
we have

lexp(X)"All, < c(R+e+A)

for some uniform constant ¢. Given C, we chose ¢ as a uniform constant which can be made
smaller. The constant A is arbitrary, and so once again can be made even smaller. Finally,
while R depends on A and the metric on B, we can put a uniform upper bound on it which
can also be made smaller, and furthermore making A smaller only makes R smaller as well.
Then, making each term small as needed, we may bound ||exp(X)*A||, by A for all metrics
lg = Llly e < 6.

O

This ends the proof of the gauge fixing lemma on B. Let us recapitulate the choices of
constants that were made during the proof of the theorem:

e For proving that S is connected and closed, there was no need to fix anything.

e Pick a ¢ small enough such that if ||g — ]lHLOO < 4, there is equivalence of norms ([2.3))

with different metrics on B for WP, W14 and L™ with r = r(n,p,q) from lemma
A9

e In the implicit function step, pick § possibly smaller to guarantee bijectivity of the
derivative of the operator F' defined. Then, for any C given, independent of the
metric, choose € appropriately, which will also be uniform. For each metric and every
A, there is R(}, g) such that || X[, , < A for X = f(A) and [|[A — Aol|; , < R.

e The Uhlenbeck gauge constant C is fixed with the a priori estimates. Along with it, &
is picked once again for an estimate from theorem [I.26] to hold with uniform constant,
and we find a bound A on the L"-norm of the connection which guarantees that these
a priort estimates hold.

e Finally, when checking that the solution to the implicit function problem has L"-bound
A, we find that it is bounded by R(\,g) + € + A\, where A can be chosen arbitrarily,
€ was already a uniform constant which can be made smaller, and we may choose a
uniform bound R for R(], ¢g) such that the A bound holds for each metric and a given
A. Then R, € and A can be made small enough for the A bound to hold.
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Chapter 3

WEAK AND STRONG COMPACTNESS

The notion of sequential compactness is an extremely important one, and from a first course
in real analysis one learns that “a bounded sequence in R has a convergent subsequence”
and that in R"™ it is equivalent for a set to be compact, sequentially compact or closed and
bounded. As one moves to studying functional analysis, things start to get more compli-
cated. The closed unit ball is no longer compact if it is in an infinite dimensional Banach
space, weaker topologies become important and one gets the Banach-Alaoglu theorem (in
its original form). The notion of equicontinuity, which one may first encounter when study-
ing the Arzela—Ascoli theorem on R", generalizes to metric spaces; the Banach-Steinhaus
theorem, one of the fundamental results in functional analysis, is also known as the uniform
boundedness principal and states precisely that a pointwise bounded family of continuous
linear operators between Banach spaces is equicontinuous.

Other than the gauge fixing lemma, which we proved in the previous chapter, the im-
portance of Uhlenbeck’s Connections with LP bounds on curvature [ULI82] is a compactness
theorem, which translates a uniform bound to convergence. A little more precisely, she
proves the weak compactness theorem, which states that a sequence of connections with
uniformly bounded curvatures has a weakly convergent subsequence. Along with the regu-
larity of the Yang-Mills equation provided by the gauge fixing lemma, the strong compact-
ness theorem emerges as a corollary, and it states that a sequence of Yang-Mills connections
with uniformly bounded curvature has a subsequence which converges uniformly.

The goal of this chapter is to prove these two theorems. First, we begin by commenting
on compactness for geodesics and flat connections. The case of the geodesics is simple and
instructive. The case of the flat connections is the opposite: while these connections do have
a uniform bound on curvature (namely, zero), the usual proof of the compactness result for
flat connections does not need this, instead using an identification with a specific class of
homomorphisms. We include a sketch of this proof here for completeness, but also to show
that not all compactness theorems emerge in the same way. Finally, note that the weak
compactness theorem can be seen as a generalization of the result for flat connections.

Geodesics

Let (M,g) be a Riemannian manifold, and consider curves v : [0,1] — M with fixed
endpoints 7(0),v(1) € M. A geodesic will be one such curve that minimizes length, so it is
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a critical point of the length functional

L(y) = /01 (V| dt.
It is also a critical point of the L2-energy

E(y) = /01 [Vy[* dt.

For a,b € [0, 1], the distance between two points on the curve is

)| b b
/ldt /\vfﬂ dt
a a

b *
dr(@)2) = [ 73] ar P
<la—bZE()?,

=

1
2 2

where (x) is the Cauchy-Schwartz inequality. Using this now it is easy to see how uniform
bounds on energy can lead to compactness properties. Let {7;};eny be a sequence of paths
7i +[0,1] = M with fixed endpoints and £(v;) < C. Looking at (M, g) as a metric space
with this distance as the metric, we have that

d(vi(a), (b)) < Cla—b|?,

which makes this sequence equicontinuousﬂ Therefore, by the Arzela-Ascoli theorem, there
is a uniformly convergent subsequence.

Flat connections

The previous example had a very clear procedure: uniform bounds lead to convergence. We
now come back to gauge theory and look at flat connections on trivial vector bundles. It is
a very classical result that the moduli space of flat (G-connections is compact, but the usual
way to prove it does not follow the same procedure. Instead, it hinges on the following
lemma.

Lemma 3.1 ([Cral5], corollary 1.29). Let E — M be a vector bundle with flat connections
V. Then for any x,y € M, the induced parallel transport from E, to E, only depends on
the homotopy class of the path from x to y.

A connection is called G-connection if, for instance, the associated parallel transports
induce isomorphisms of the fibres which are in G as a subgroup of GL(R™) (this will always
be the case for G compact), for m the rank of the bundle. With this lemma, we can write
the following identification.

Proposition 3.2 ([DK97], proposition 2.2.3). There is a one-to-one correspondence between
conjugacy classes of homomorphisms p : (M) — G and gauge equivalence classes of flat
G-connections on M.

Sketch of proof. Let V be a flat G-connection, then the associated parallel transport induces
a representation pV : 71 (M, z) — G by defining, for each loop v based at = € M,

oV (14]) = PY € G C GL(E,).

For £ > 0, take § = (¢/C)%.
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3.1. Weak compactness Chapter 3. Compactness

If we prove compactness of the space of homomorphisms p : m (M) — G when G is
compact, then we are done. We will sketch this proof.

Lemma 3.3. Let G be a compact Lie group, M a smooth manifold. Then w is

compact.

Sketch of proof. We prove that Hom (w1 (M), G) is closed in G™M) with the product topol-
ogy, which is compact by Tychonoff’s theorem and because G is compact. Then Hom(m (M), G)
is compact, as is quotient.

Let f : m (M) — G be a function which is not a homomorphism: there exist r, s € m (M)
such that f(r)f(s) # f(rs). Take Uq)s(s) Us(rs) neighbourhoods of f(r)f(s) and f(rs)
which do not intersect. Since G is a topological group, the multiplication is continuous and
the preimage of Uy, ¢(s) gives neighbourhoods of f(r) and f(s), Uy(,) and Uy ), respectively.
Now, letting p, : G™(M) — @ be the continuous projection p,.(f) = f(r), we construct a
neighbourhood of f on G™(M),

U= p; (Usery) N3 (Up() NP5y Usirs))s

such that for any g € U, g cannot be a homomorphism: g(rs) € Uy, and g(r)g(s) €
Us(r)f(s)> and therefore g(rs) # g(r)g(s). Thus, the complement of the homomorphisms is
open and consequently Hom(7; (M), G) is closed. O

Corollary 3.4. The moduli space of flat G-connections on M is compact.

3.1 Weak compactness

Without further ado, we come to the result. Let M be a compact n-manifold with (possibly
empty) boundary, and let P — M be a G-principal bundle.

Theorem 3.5 (Weak compactness). Let ¥ < p < co. A sequence of connections in AP(P)
with uniform LP-bound on the sequence of curvatures has a subsequence which is gauge
equivalent to a weakly convergent sequence, with gauge transformations in G*P(P).

For the proof of this theorem we are essentially looking for a sequence of global gauges
such that the gauged connections are uniformly W'P-bounded and will therefore, by the
Banach-Alaoglu theorem, converge weakly. For that we will need the gauge fixing theorem
2:2] and a patching lemma [3.10] which we will prove later, but roughly goes as follows.

Lemma 3.6 (cf. lemma. Two sets of transition functions describe isomorphic bundles
if they are C%-close. Furthermore, there are bounds on the gauge transformations relating
these transition functions; for a sequence of transition functions and transformations, the
bounds are uniform.

The gauge fixing lemma will give us a bundle atlas of P — M such that the local
connections are in Uhlenbeck gauge, and therefore the uniform bound on the curvature will
translate into a uniform bound on the connections. The gauge transformations resulting
from the lemma do not necessarily patch up to a global gauge transformation, however
they do yield new transition functions for a sequence of bundles. While it will be easy to
see that these bundles will all be isomorphic to each other and the original bundle, the
obvious changes to the gauge transformations mess with the uniform bounds, and thus
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the patching lemma will be needed in order to find less straightforward but more suitable
isomorphisms between the bundles, which then can be modified in a uniform way to yield
globally defined uniformly bounded gauge transformations. To get uniform bounds on the
gauge transformations, we will also need the following.

Lemma 3.7 (cf. lemmata and . Bounds on connection forms give bounds on
the gauge transformations relating them, and moreover if two sequences of connections are
uniformly bounded, then the sequence of gauge transformations relating them has a C°-
convergent subsequence.

Proof of weak compactness theorem. Let (A")ieny € A"P(P) be a sequence such that || F4: "
is uniformly bounded. Choose ¢ < p such that it satisfies the hypotheses of the gauge fixing
lemma [2.2] We can bound the Li-energy

‘ (1) p—q a
EAll) = [ Fgill gy S (VoL |1 Fge ) < (VOLUY'™ | Fel

where (1) is the Holder inequality for % = % + %. With this expression we can make

Ey(AY|y) < & for U of sufficiently small volume, and this is why it is important that ¢ < p
strictly since we need 1 — % > (0 to make the Li-energy small. Now we are in the setting of
and all the A” may be put in Uhlenbeck gauge on open sets which cover M; since M is
compact, we can take a finite subcollection M = Ué\le Us.

These U, form a bundle atlas for P — M, and on each U, the connections are repre-
sented by connection matrices A%, € AYP(U,). Since ,(A%) = E,(AYp,) < &, there exist
ul, € G*P(U,) such that ui* A’ is in Uhlenbeck gauge, and in particular Hufl*AiaHLp <
C HF "¢ || is uniformly bounded. This is sufficient to find weakly convergent subsequences
on each 1(?](1, however the u, do not necessarily define a global gauge transformation. For
that to be the case we need

iy = ()™ G (3.1)
to be identical to ¢,g, the transition functions of the bundle atlas, see and the
discussion in subsection Therefore, the next step in the proof is modifying the u?,
appropriately to achieve this.

In order to use the patching lemma we need the transition functions to be C%-close

to each other. To see this, write
U (e A5) = (ugugs) Ay = (Sapuf) A = ujy’ (945 47) (32)

— ui* %
B B

and since all u’*A! are uniformly bounded for any o € A, lemma m tells us that the
gauge transformations relating these connection forms, ugﬂ, are also uniformly bounded,
and furthermore there is a subsequence of the uaﬁ (also labelled i € N) that converges in
C°. Thus, for a further subsequence, and for each o, 3 =1,..., N, all the u’a 5 can be made
to be within a geodesic §-ball of each other for any § > 0; in particular we can single out

1

the first element of this subsequence g,p := u}w and denote also g, := ul, and we have

d(uf)z[% .gocﬁ) S 5a

ZNote that if we look at the gauge transformations u’, as local changes of trivialization, then the u?, 5 are
new transition functions for an isomorphic bundle for each i < N; even so, this is not enough.

3See subsection [1.2.2| for the definitions of a geodesic convex ball and this metric.

4 Also note that the first element g, can only be fixed after the choice of 4.
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3.1. Weak compactness Chapter 3. Compactness

Picking 0 = Aeyp the radius of a convex geodesic ball on G, the patching lemma gives
us a refinement V,, C U, of the original cover and new gauge transformations A}, : Vo, = G
with uniform bounds and such that

(hi) " ubghly = gap-
With these new gauge transformations we can now modify the original u?,. Define @', :=
u hl,go on V,, and note that this defines a global gauge transformation, as M = ngl Va
and on V,, N V3
(ﬂg)_lﬁéaﬂa%’ = ga(hy) ™! (ug)_1¢a3uiq 23951 = gagaﬁggl = Pap- (3.3)
S ——
ul g
Moreover, i’ as defined by the local @, is in G*P(P), as lemma yields h, € G*P(V,), we
had u!, € G>P(V,,) from the start and G*P is closed under group multiplication for kp > n,
which is the case since p > 5.
It remains to prove that @‘*A? is uniformly bounded in A'P(V,,) for all « = 1,..., N.

This follows easily from lemma which in this case states that for A® € A"P(V) and
u® € GEP(V) for some trivializing neighbourhood V, the following holdslﬂ

‘ Lp) : (3.4)

where ¢, Cy are constants. Then writing

~ik AT __ NS INEENY
ua Aa_(ga ) hcx uoz Aou

uZ*AZ

< H(ui)—l dut
Lp

el
P

<1 + Cw H(uz)_1 du

we first note that h*(u’*AY%) is uniformly bounded: ||u}* A’ is bounded uniformly by

a H 1,p
the uniform bound on the curvature (because of the Uhlenbeck gauge), and ||(h,) dh

allip

has a
Lp

uniform bound (lemma . Using again, the uniform bound on Al *ul * A} and the
fact that g, ! is independent of i € N, we get a uniform WP-bound on @‘* A%

Finally, we can use the Banach-Alaoglu theorem to guarantee that for every a =
1,..., N, the sequence @' *A’, has a W!P-weakly convergent subsequence, and because the
4" are global gauges, we can choose the same ﬁ subsequence for all (finite) «, which finally
gives us a weakly convergent subsequence of 7'*A® in AP (P). O

is uniformly bounded by the patching lemma and the fact that H(ugﬁ)_l dufw

Remark 3.8. Note that the choice of @, makes sense. In finding a global gauge, the
simplest thing to do would be to take @i, = 14, and in order to keep the original u, around
for the Uhlenbeck gauge, it would have sufficed to have @, = 1g = u’,(u’,)~!; however,
there is no uniform bound on (ul)~!. In the patching lemma, it is already clear that

hi, = (u?,)"'g would have sufficed for the isomorphism, and if this could be guaranteed to

have a uniform bound in this form then one could naturally write
o = 1o = g (ug) ' ga ga -
—_——

h,

5We used the Sobolev embedding W'? < L??, note that 1 — % > —%.
SFor ae = 1, there is a convergent subsequence; this subsequence is also uniformly bounded on a = 2, and
so some further subsequence converges. By repeating this process until you find a convergent subsequence
for a = N, this same subsequence can be used for all a. If there were countably many «, a similar argument

would work by taking the diagonal of the subsequences.
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Chapter 3. Compactness 3.2. Strong compactness

Thus it makes sense to simply substitute the more complicated h?, found in the proof of
the patching lemma in the expression above when choosing a uniformly bounded globally
defined gauge transformation.

3.2 Strong compactness

While the strong compactness theorem is attributed to Uhlenbeck, it is not stated it in any
of her 1982 papers. However, it is a simple corollary from the proof of the weak compactness
theorem and a result on regularity of Yang-Mills connections in Coulomb gauge, which is a
consequence of the gauge fixing lemma and she also stated in her paper [UhI82]. We show
the adaptation of the proof, sketching the points which are already explained in the proof

of theorem [3.5I["]

Theorem 3.9 (Strong compactness). Let M be a compact Riemannian n-manifold with
(possibly empty) boundary, and let 1 < p < oo such that p > 5 and in casen =2, p > %.
Suppose a sequence of connections (A);en C AYP(P) is such that the A® are weak Yang-
Mills connections and || Fa:|, is uniformly bounded. Then there exists a subsequence (with
same label i € N) and a sequence of gauge transformations (u');en C G*P(P) such that
u'*A' converges strongly with all derivatives to a smooth Yang-Mills connection.

Proof. Let A" € AYP(P) be as in the statement of the theorem. Choose g to satisfy the
hypotheses of the gauge fixing lemma, then there is a finite cover M = U(]lv:1 U, such that
E,(AL) < &, and therefore there exist sequences of gauge transformations (uf,);en C G2P(U,)
on each U, such that from the uniform bound on [|Fyil|, we get a uniform bound on

|uir AL ||,  for each a. Since the A" are weak Yang-Mills connections, then so are the ul* A%,
(lemma [1.36)), and therefore from the regularity theorem we find uniform bounds on
Jug,*AG ||, for all k € N.

Once again we look at the transition functions ug 5 a8 defined in ll where the ¢, are
the transition functions for our bundle. From 1) and lemma we see u; 5 € GFP for all

k, and then from lemma [1.33| we find uniform bounds on H(ugﬂ)*l dugﬁHk for all £, and a
7p

subsequence of the ugﬁ that converges in C” which can be taken the same subsequence for
all a,8=1,...,N. Therefore there is some 7 such that all the uiaﬁ are within a Ay, sized
CO-ball, for Aexp the radius of a convex geodesic ball on G, and we take this ¢ to be the
first element of the sequence. Now, instead of fixing u), as we did for the proof of we
will need to take smooth g, € G(U,) that are C°-close to u, for each «, which will imply
that gop 1= g;lgbaﬂglg will also be C%-close to the ufw.
We apply the patching lemma to find a refinement V, C U, of the original cover
and hé, € GFP(V,) such that
(hi) il sty = gus

on V,NVj and such that there are uniform bounds on ||(kf,) ™" dhf |, (V) for all k € N. Then

@, = ulhi g5 will patch to global gauge transformations as in (3.3)), and the inequality in
lemma [1.31] will take the form [
k
k,p> ’

"Throughout this proof we once again keep taking subsequences and relabelling them the same as the

original sequence, with ¢ € N.
SWh=1.2P —y WP gince p > 3.

<l

oo Tel4
P

(1 + Cw H(zﬂ)_l du’
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3.3. Patching Chapter 3. Compactness

slightly more complicated than (3.4), which we use to find uniform W*?-bounds on @* A?, =
(g1 )*hixul * A% for all k € N, on each V,,. Here it is important that the g, are smooth in
order to preserve the bounds for all k.

Finally, having obtained uniform bounds on the W*P-norms of the local gauged con-
nections for all £k € N, we may use the Arzela-Ascoli theorem to find subsequences which
converge uniformly with all derivatives, and then take the same subsequence on all V,, such
that the @, patch to a global @’ and @' * A* converges uniformly with all derivatives to some
smooth connection A € A(P). Then, from lemmata and @ A® is weak Yang-Mills
for each i € N and the limit connection A will also be weak Yang-Mills; since it is smooth,
it is a Yang-Mills connection. O

In the book [Weh04] another approach is used to prove the strong compactness theorem,
due to Dietmar Salamon. Rather than adapt the proof of the weak compactness theorem,
relies on a local slice theorem and then applies theorem [3.5] directly. Observe, however, that
it needs strict inequality p > é in case n = 2 because there will only be weak convergence
of the connections, see lemma [1.38] ().

3.3 Patching

Finally, we prove the patching lemma used in the proofs of the weak and strong compactness
theorems.

Lemma 3.10 (Patching lemma). Let M be an n-manifold, p > % and let M = |J ey Ua be
a locally finite open cover by precompactﬂ sets. Then there is a refinement Vo, C U, such
that the following holds:

(i) Let k € N and let gog, hap € G¥TVP(Uy N Ug) be two sets of transition functions for
some principal G-bundle over M such that

d(gaﬁa h‘aﬁ) < Aeva VOé, ﬁ € N. (35)

Then there exist gauge transformations hy, € GFYVP(V,,) for all a € N such that on all
intersections Vo, N'Vp

h;lhaghg = Gap- (3.6)

(71) Let K > 2 be an integer or K = co. If the hog in (i) run through a sequence hfxﬁ of
sets of transition functions such that hgﬂ, Jap € GktLr(U, N Ug) for all k < K, and
moreover for all a, B € N and k < K there is a uniform bound on

i \—1 qpi
H( op) dh“fBHk,p(UamUﬁ)'

Then the gauge transformations hi, in (i) satisfy, for all « € N and k < K, h!, €
GHY(V,,) and

sup H(hg)_l dn, < 00, (3.7)

1€N

k,p(Va)

which is to say that these norms are uniformly bounded for each o and k.

9Closure is compact.
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Chapter 3. Compactness 3.3. Patching

Proof. Note that we assume the cover is countable. We will first prove (i) by induction on
the cover, and then for a sequence of the constructed k!, constructed in (), regularity will
follow directly and the uniform bounds will be proved by another induction on the cover.

For (i), on each step j € N, we will construct h; on V; := Uj, while changing some
(or none) of the previous V, already constructed for & < j — 1 and keeping h, the same,
albeit with possibly smaller domain. For each V,, the process will end in finitely many
steps, because as will be seen during the construction, on the j-th step a certain V, will
only be modified if V,, N U; # @, and the cover is locally finite. Moreover, the V;, will not
depend on k € N (from the Sobolev exponent) or the transition functions hqg, gog. For the
h; constructed, we will want three conditions to be satisfied at each step j:

(1) the one we are trying to achieve, that is, condition (3.6)),

ha' haphs = gag,
on V, NVg for all o, B < j,
(2) a technical condition which will be important within the construction,
d(hiahagais 1) < Aexps (3.8)
on Vo, NU; for all « < j and @ > 7,
(3) and regularity, ho, € GF1(V,) for all o < 5.

For the first step, j = 1, we take V; := U; and h; := 1. Conditions (1) and (3) are
trivially satisfied m and for all ¢« > 1, d(hjhig1i, 1) = d(g1i, h1i) < Aexp on Vi N U; by
assumption, therefore condition (2) is also satisfied.

At an arbitrary j-th step, for the induction hypothesis we will assume that for all
a < j — 1 we have constructed V, C U, and h, such that there is still an open cover of M
and the hq respect conditions (1)—(3). That is, M = U,<; Va U Uy Ua, and conditions
(1)—(3) were met on the (j — 1)-th step.

Then, for a = j, we will take V; := U; and construct h; such that (1)—(3) are satisfied.
We will see that there is a natural choice of h; on the intersection with the V;, which will
automatically yield condition (1). We could then take h; = 1 on U;\ Uy<; Vo and be done,
but then A; might not even be continuous, let alone in Qk‘“(Uj). The idea, then, is to write
hj := exp(1;§;) for some §; € g and a cutoff function ;. Condition (2) is what is needed
to have a well defined ¢;, and the V,, will be modified so that there can be two disjoint
compact sets where 1; will take the values 0 and 1.

Consider p; : UjNUy<; Vo — G given by pj := hjohaga; on U;jNV,. This is well defined,
since is satisfied for «, 8 < j by assumption (condition (1)) and so on intersections
UinVanVg

hishsgs; = (hjahap)hp(9paga;) = hjahaga;-

This is exactly what we need h; to be on the intersections U; NV, as
hathaj(hjahada;) = Gaj- (3.9)

As a product of GF+1» maps p € GFTLP(U; N Ua<j Va), and moreover condition (2) for
a < j — 1 guarantees that d(p,1) < Aexp, and therefore p takes values in the convex
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3.3. Patching Chapter 3. Compactness

U Ve

o &)

Figure 3.1: A sketch of the involved sets on the j-th step, illustrating the reason to make
the V,, into smaller V : so that the h; will be appropriately smooth.

geodesic ball Ba,, (1). Therefore, there exists &; : wktle(U; Y

pj = exp(§;).
Next, we replace the V,,, a < j, by possible smaller V! C V,, so that we can take (see
Fig. (3.3

a<j Va) — @ such that

Lo dpi=exp(&)  onUiNnUag Va,
! 1 = exp(0) on Uj\ Ua<; Va

in a W**tlP_smooth way. Changing the domains V,, will not interfere with the induction
hypothesis, as conditions (1)—(3) remain valid when diminishing the domain of the hq, so
long as we are still left with an open cover of M.

B = ﬁj\an‘ Vo is compact and is where h; = 1. We need to make it disjoint to
C = UjNUa<; Vi, where we will want h; = p;. Let N = M\ U,>; Ua € Ug<jUa- Note
that it is closed and covered by finitely many precompact sets, and therefore it is compact.

For ¢ =1,...,5 — 1, we will change one V; at a time. Define
Ac=N\UWVu U Val.
a<l I<a<j

The Ay are compact and
Ay CVp C B

Then there exists an open set V/ C V; such that
A, CV/CV/C B
The cover is preserved at each step since Ay C V/ and the A, are chosen such that they

cover whatever parts of N the other V,, and V do not, then

M=NU|JUsand N C [JVjuAu (] Ve

a>j a<l I<a<j

ORemember hao = gaa = 1.
1By assumption for the transition functions and by the induction hypothesis for the hq.
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Chapter 3. Compactness 3.3. Patching

Figure 3.2: A sketch of the construction of the sets B and C', that we need to make disjoint.

Also, C C Uy« V2 € B¢, and therefore BNC = @. If V;NU; = @, also V;NU; = @ and so
V; makes no difference for the definition of C' and does not need to be changed, V; := V4,
making the process finite for each o € N.

We can now say that there exists a cutoff function v; : U; — [0,1] such that (B) =0
and (C) = 1@ Then let

L [epliE)  on ViU, Ve
71 on Vj\ Ua<j Va-

Note that, for x € V; NV, hj(z) = exp(af) = ¢f=*(1) for some a € [0,1] and ¢ € g, and
thus hj;(z) is part of some geodesic between 1 and exp(§) = exp(§;(z)) = pj(x). Then

= hjahagaj(T) onV;NVY, fora<j—1,
hj(z) € Y(L, (hjahagaj)(z)) onV;NV,, fora<j—1
=1 on Vi \ Uac; Va-

Now, we check that h; satisfies conditions (1)—(3). The first equality shows that condi-
tion (1) holds now for «, 8 < j when replacing V,, by V., as we had already seen with .
Condition (2) remains valid for & < j —1 from the induction hypothesis with V. C V,,, and
we now check that for i > j+1 it is valid on V;NU;. On V; NU;\ Uy<j Va, we have hj = 1,
and so

a<j

d(hijh;gji, 1) = d(hijgzi, 1) = d(hij, gij) < Dexps
from the original assumption on the transition functions. On V;NU; NV}, for some o < j—1,
we show that h; lies on the convex geodesic ball Ba_,, (hjigij), and therefore

d(hijhjgji, 1) = d(hj, hjigij) < Dexp,

as we wish. First, note that we have shown that h; lies on the unique minimal geodesic
from 1 to hjahaga;. Now,

d(1, hjigij) = d(hij, gij) < Dexp

12Take a partition of unity subordinate to the cover B¢ and C°, for instance.
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by assumption on the transition functions, and

d(hjozhozgaj’hjigij) = d(houhozjhjigijgjoc) = d(homhozigia) - d(hiahoagai’ IL) < Aexp
by the induction hypothesis for « < j — 1. Both endpoints of (1, hjahagaj) lie in
B, (hjigij), and therefore the geodesic is entirely contained in the ball. Finally, con-
dition (3) is still met by hy for @ < j — 1 because h, € GF*1P(V,) and restricting to
a smaller domain preserves the regularity; for o« = j, we know that 1; is smooth and
& € WHHLP(V; g), and therefore h; = exp(v);&;) € Qk+17p(Vj), by lemma

We are done with the proof of (7).

For (ii), we have instead of hng a sequence of hgﬁ, each of which is close to g.g, the
transition functions g.g, hflﬁ are said to be in the appropriate Sobolev gauge group GF+1r
i

for all £ < K, and moreover there are uniform bounds on H( ¢ 6)*1 dheg for each

A Hk’,p(Uang)
«, . We need to check the regularity of the hl, for all £ < K, and that there are uniform

bounds on [|(h%)~? théHkm(Va) for each a.

Since the construction of each k!, in (i) is independent of the Sobolev exponent k and
regularity followed from the original regularity of the transition functions, we have h €
Gr+Lr(V,) for all k < K.

For each k < K, the uniform bounds will follow by another induction on the cover. The
first step is trivial, since the construction in (i) begins with h{ = 1 and so dh{ = 0 and
the norm is just zero. For the induction hypothesis we will assume that for all @ < j — 1
there are uniform bounds on [|(h%) ! dhg”hp (.)- Note that h% = exp(y;€h) on Uj and &
is defined by p% = exp(f;) = o hggaj on UjNV, for a < j —1. We will show that there are
uniform bounds on pé- on the intersections of U; with each V,,, which will then give uniform
bounds on {; on U; NUq«;

For the uniform bound for pé-, first note the estimate for u,v € GFTLP(U) over some
precompact set U,

H(uv)*1 d(uv)H

«

Va, and in turn this will give the uniform bounds on h;

- = ‘ vilufl(udv + du - v)Hk’p

< ‘ v ! dv’ + Hv_l(u_l du)vH
k,p k,p

A
IN=

14 Cllutd 1 14 ’
o], w0t aul (14 o], )

A
A

-14 cllu-14a 1 “14 k
prtao], + €t (1 o], )

where in (1) we used lemma and in (2) we used the Sobolev estimate for W =1.2P
WP which is valid over U even if M is not compact. Since we have uniform bounds over
UMWV on ||(h%,) " i,

on H(goéj)_1 dgaijm because it is independent of i, we can apply this estimate to (u,v) =

‘k by assumption, on || (k%)= dhl || kp by induction hypothesis and
’p >

Because there are finitely many intersections U; NV, this gives an overall uniform bound

for H(pé)_l dp§- . Va-

Finally, we can use this to get a uniform bound for

(hy» hy) and then to (u,v) = (h!,hl, gaj) to get a uniform bound on H(p;'-)*1 dp}

joo

on its whole domain of definition, U; N U,

{; . on Uj N Uy« Ve in a rather

roundabout way, which we only sketch. First, fix an embedding ® : Ba,,, (1) € G — R2d+1,
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Chapter 3. Compactness 3.3. Patching

which contains the image of every pé, and use the bound on (pé)*1 dp§~ to achieve bounds
on the embedding; this will then give bounds on a global chart ¢ : Ba,,, (1) — R?, and
subsequently on ;. To see this more clearly, make the following definitions: let U := U; N
Ua<j Va, then let 6 : g — R% be an isomorphism, and use it to define a chart ¢ := ¢goexp™*
and an embedding ® := (¢,0) = to¢ for 1 : R? < R?¥*1, To get from bounds on p to bounds
on the embedding, use these definitions and see the calculations on page 189 of [Weh04];
then the calculations on page 187 give estimates on the chart, which gives estimates on 5;
via the isomorphism, and finally see the calculations on page 188 to achieve estimates on
the hj.

Pj exp~? ¢ R i R2d+1

exp
\—(b/

Figure 3.3: Embedding ® and chart ¢ of Ba_,, € G. We have dropped the subscript j and
defined U := U; NUy<j Va-

O
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Appendix A

BACKGROUND MATERIAL

We will need some results on calculus of Banach spaces. A good source is [AP95].

Definition A.1. Let X and Y be Banach spaces, and U C X an open subset, and consider
amap F : U — Y. We say that F' is Fréchet differentiable at u € U if there exists a
bounded operator A : X — Y such that

lig 1+ h) = Flu) — A(h])

im = 0.
1R —0 Al

Such an A is uniquely determined as is called the (Fréchet) differential of F' at u.
The following result is the analogous to the usual mean value theorem of calculus.

Proposition A.2 (Mean value inequality). Let F': U — Y be differentiable. For u,v € U
such that the line segment [u,v] is contained in U,

[F(u) = F(o)| < sup [[dF(w)].

wE [u,v]
And this is the implicit function theorem for Banach spaces.

Theorem A.3 (Implicit function theorem). Let T' : X XY — Z be a continuous map
between Banach spaces that is differentiable with respect to Y, and suppose there is a point
(o, B) € X XY such that T'(a, ) = 0 and 9yT |4 p) is bijective.

Then there exist neighbourhoods U C X and V C Y of o and 3, respectively, and a
continuous map f: U — V such that for all x € U, T'(z, f(x)) = 0.

Lemma A.4. If T is an operator on a Banach space such that | T — I|| < 1, then

_ 1
HT1H§1_HT—IW

Lemma A.5 ([WehO4], lemma E.4). Let T, S : X — Z be bounded linear operators between

Banach spaces, and suppose that T is bijective and | T~ ||S|| < 1. Then the perturbed
operator T + S is also bijective with bounded inverse.
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Chapter A. Background material

The Neumann problem

The first four chapters of [Weh04] are fully devoted to giving a good and thorough introduc-
tion to the Neumann problem, beginning with the L? theory for the homogeneous problem,
generalization to LP-spaces and sections of vector bundles, and the inhomogeneous prob-
lem. We quote here only a few results that will be needed in chapter 2l For M a compact
manifold with boundary, the Neumann problem is as follows:

{Au:f on M, (A1)

g—gzg on OM,

where v is the exterior normal direction. The problem is said homogeneous when g = 0.
From now on let 1 < p < oo and k € Ng. If f € WFP(M), then the natural space for the
boundary values g is

I/Vl’p(M)

|1/k+17 -—_

0 p(ju) = k-‘rl,p( )a
d 1 M

where WP (M) is defined as the closure in W**+1(M) of the smooth functions vanishing
on the boundary. The norm on this space is

lgllyssre = inf {|Gllp, : G € WHEP(M) and g = Glon | -

Theorem A.6 ([Weh04], theorem 3.1). Let f € LP(M) and g € Wé’p(M). Then there
exists a solution u € W2P(M) the Neumann problem if and only if

/f+ g=0.
M oM

The solution is unique up to an additive constant.

Proposition A.7 ([Weh04], theorem 3.2). There exist constants C,C’ such that for all
u € WF2P (M),

ou
fulleszy < € <||Au||k,p o - ||u||k+1,p> ,
o]

Wngl,p) s Zf /M u=0.

Moreover, for each k € Ny, these constants depend continuously on the metric on M. For
C the dependence is with respect to the W*t1>®_topology, and for C' the dependence is with
respect to the W T2 _topology on the space of metrics.

ou
Jullsap < © (uAqu,p +|5

When restricted to functions such that [, u = 0, the second estimate implies that the
operator associated to the Neumann problem has bounded inverse.

Orphaned lemmas and estimates

Finally, we leave in this section a couple of estimates on Sobolev spaces which did not add
to the presentation of the theory in chapter [I} but are nonetheless useful.
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Lemma A.8 ([Weh04], lemma B.3). Let M be a compact Riemannian n-manifold, and let
keNgand 1l <p,r,s <oo be such that either

1 1 ko1
rs>p and —+ - < —+ —,
r s n o p
or
1 1 ko1
rs>p and —+- < —+—
r s n o p

Then there is a constant C such that for all « € WET(M) and f € WFS(M) the product
lies in WH*P(M) and satisfies

- Bllyy < 2 Bl -
A particular important case is k <1, r =s=p and kp > n.

Lemma A.9 ([Weh04], lemma 6.5). Let M be a compact Riemannian n-manifold and
1 <q <p<oo such that ¢ > 5. In case ¢ < n, assume further that p < n”—_qq. Then there

exists a constant Crypq such that, for all f,g € WHP(M)

1 9llg < Crnpg 1 £1l 191145
1= 9llp < Crapg 111 191
11 gll, < Cropg [1F111 g 19115 5

where we have:

(i) Forq<mn,r= " Zp

(ii) for q=mn, r = 2p,
(iii) and for ¢ > n, r = co.
Whenever this lemma is used the constant will be called C.,pq. The following lemma is
sometimes called Kato’s inequality, and we prove it in a particular case.

Lemma A.10. Let E — B be a vector bundle over B C R"™ with the Fuclidean metric
gij = 0ij, and choose a metric and a compatible connection for E. Then for a section A of
T"M® F,

V4] < VA

Proof. Write A = A; dx;, then
(VA)i; = Vi A(9;) — A(V05) = ViA;,

because V;0; = rk "0k and the Christoffel symbols are zero for the Euclidean metric. Then
simply write

VAl = d|A| = ! d(A, A) = 1’Z@-M,A)dmi:vllZ(VA,A)da:i,

214] 2[4

and use the Cauchy-Schwartz inequality in the following:

A A) AT A
viapp =y VAT Z'V "' = S VAAPR = VAL,
4P

66



BIBLIOGRAPHY

[AP95]

[Aub82]

[Cralb]

[DK97]

[Eval0]

[FU91]

[GHL90]

[H07]

[Kna96]

[Nic07]

[Sch95]

[Uh182]

Antonio Ambrosetti and Giovanni Prodi. A primer of nonlinear analysis, vol-
ume 34 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1995. [64]

Thierry Aubin. Nonlinear analysis on manifolds. Monge-Ampére equations, vol-
ume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, New York, 1982. |§|,

Marius Crainic. Lecture notes for Mastermath course Differential Geometry
2015/2016. https://webspace.science.uu.nl/~crain101/DG-2015/main10.

pdfl, 2015. [Online; accessed 26-May-2021].

S. K. Donaldson and P. B. Kronheimer. The Geometry of Four-Manifolds. Oxford
Mathematical Monographs. Clarendon Press, 1997. 36}, 37

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, second edition,
2010.

D. Freed and K. Uhlenbeck. Instantons and Four-Manifolds. MSRI Publications.
Springer-Verlag, 2 edition, 1991.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geome-
try. Universitext. Springer-Verlag, Berlin, second edition, 1990.

Lars Hormander. The analysis of linear partial differential operators. I11. Classics
in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of
the 1994 edition. 25l

A. W. Knapp. Lie Groups Beyond an Introduction. Birkh&duser, 1996.

Liviu I. Nicolaescu. Lectures on the geometry of manifolds. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, second edition, 2007.

Giinter Schwarz. Hodge decomposition—a method for solving boundary value prob-
lems, volume 1607 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.
120)

Karen K. Uhlenbeck. Connections with LP bounds on curvature. Comm. Math.

Phys., 83(1):31-42, 1982.

67


https://webspace.science.uu.nl/~crain101/DG-2015/main10.pdf
https://webspace.science.uu.nl/~crain101/DG-2015/main10.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[War83] Frank W. Warner. Foundations of differentiable manifolds and Lie groups, vol-
ume 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin,
1983. 31

[Weh04] K. Wehrheim. Uhlenbeck Compactness. Series of Lectures in Mathematics. EMS,

2004. 17}, [19} 21} [22} 23} [24), 25 B0} 35} B9}, [58) 63} (64}, 65, [66]

[Wel80] R. O. Wells. Differential analysis on complex manifolds. Graduate Texts in Math-
ematics. Springer-Verlag, 1980.

68



	Gauge theory
	Vector bundles
	Riemannian manifolds

	Principal bundles
	Local formulations and results
	Several results on G, g and the action on P

	An analytic interlude
	Analysis in gauge theory

	Gauge fixing
	Motivation and main result
	Proof

	Compactness
	Weak compactness
	Strong compactness
	Patching

	Background material
	Bibliography

