
Compactness in gauge theory

Patrícia Muñoz Ewald

Dissertation submitted to the
Institute of Mathematics and

Statistics of the University of São
Paulo for the degree of

Master of Science

Program: Mathematics
Advisor: Prof. Dr. Cristian Ortiz

During the development of this dissertation the author was financially supported by CNPq

São Paulo, June 2021



Compactness in gauge theory

.
This is the original version of the dissertation developed by the

candidate Patrícia Muñoz Ewald as it was submitted to the Judging
Committee.



Ao meu Tata.



Abstract

In 1982, Karen Uhlenbeck published two foundational papers in gauge theory, which
quickly led to Simon Donaldson’s Fields medal winning result on topology of four-manifolds,
and to the beginning of an era of using gauge theoretic techniques as tools for proving
theorems. In 2019, she became the first (and thus far only) woman to receive the Abel
prize, for these and other groundbreaking works in geometric analysis.

In one of these works, entitled Connections with Lp bounds on curvature, Uhlenbeck
proved two very important technical results on the existence of a good gauge, and the
sequential compactness of weak connections with bounded curvature. In this work, we prove
these results and then address their immediate consequence: the uniform convergence of
weak Yang-Mills connections with bounded curvature.

Keywords: gauge theory, geometric analysis, fibre bundles, connections, Uhlenbeck com-
pactness, Yang-Mills equation.

Resumo

Em 1982, Karen Uhlenbeck publicou dois artigos fundamentais em teoria de gauge, que
rapidamente levaram Simon Donaldson ao resultado em topologia de 4-variedades que lhe
rendeu a medalha Fields, e ao início de uma era de utilização de técnicas de teoria de gauge
em demonstrações. Em 2019, se tornou a primeira (e por enquanto, única) mulher a receber
o prêmio Abel, por esses e outros trabalhos revolucionários em análise geométrica.

Em um desses trabalhos, Connections with Lp bounds on curvature, Uhlenbeck provou
dois resultados técnicos muito importantes sobre a existência de uma boa escolha de gauge, e
sobre a compacidade sequencial de conexões fracas com curvatura uniformemente limitada.
Neste trabalho, provamos esses resultados e em seguida nos voltamos à uma consequên-
cia imediata: a convergência uniforme de sequências de conexões Yang-Mills fracas com
curvatura uniformemente limitada.

Palavras-chave: teoria de gauge, análise geométrica, fibrados, conexões, compacidade de
Uhlenbeck, equação de Yang-Mills.
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Chapter 1

Gauge theory

Gauge theory is essentially the study of connections on principal bundles. The goal of this
chapter is to expand on this, by first giving an introduction to the theory of vector and
principal bundles, and giving the definitions of connections and gauge transformations, first
assuming that all objects are smooth. Then, in section 1.3, we introduce Sobolev spaces
of sections of fibre bundles and state the results that will be used extensively throughout
this work. Finally, in section 1.4, we define the Sobolev spaces of connections and gauge
transformations and prove several lemmas.

1.1 Vector bundles
In this first short section we define vector bundles and connections. At the end of the section
we especialize to the case of Riemannian manifolds in order to introduce notation and objects
which will be used extensively throughout the rest of the text. For an introduction to this
subject see e.g. [Cra15].

Definition 1.1. A vector bundle of rank r over a manifold M consists of

• a manifold E,

• a surjective map π : E →M , and

• for each x ∈M , a vector space structure on the fibres Ex := π−1(x),

satisfying a local triviality condition: around each x ∈ M there is a neighbourhood U and
a diffeomorphism

φ : E|U := π−1(U)→ U ×Kr

sending each fibre Ex isomorphically to {x} ×Kr, for K = R or C.

A section of the vector bundle is a map s : M → E such that π ◦ s(x) = x, that is, it
takes points on M to the corresponding fibre. It is a smooth section if s is a smooth map
between manifolds, and we denote the space of sections of a vector bundle E by Γ(E); it is
easily seen to be a vector space over K with the operations defined pointwise, and in fact it
is a module over C∞(M).

An important notion is that of a trivial vector bundle. The (real or complex) trivial
vector bundle of rank r over M is simply π : M × Kr → M , where π is the projection
on the first factor. A vector bundle is said to be trivializable if it is isomorphic to the
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1.1. Vector bundles Chapter 1. Gauge theory

corresponding trivial bundle. A vector bundle morphism 1 between two vector bundles
E and F over M is a smooth map u : E → F such that it preserves the fibres and the
restriction ux : Ex → Fx is linear; it is an isomorphism when u is a diffeomorphism, or
equivalently when the ux are linear isomorphisms.

Just as manifolds have local coordinate charts which make them more tractable using
tools from calculus, vector bundles have frames. A frame for a rank r vector bundle is a
collection of r sections,

e = (e1, . . . , er)

such that for each x ∈ M , e1(x), . . . , er(x) is a basis for the vector space Ex. Vector
bundles may not have globally defined frames, and indeed a choice of frame is equivalent to
a trivialization (a choice of isomorphism to the trivial bundle). Nevertheless, local frames
always exist: the local triviality condition in the definition is equivalent to the existence of
a local frame around every point in M .

New vector bundles can be constructed from previously known ones. Any operation that
is natural in the context of vector spaces (e.g., direct sum, dual, tensor product) extends to
vector bundles. For instance, if E →M is a vector bundle, we can define its dual E∗ →M
by defining

E∗x = (Ex)∗

for all x ∈M ; if F →M is another vector bundle, we can define the bundle Hom(E,F )→M
with fibres

Hom(E,F )x = Hom(Ex, Fx);

similarly, since we will always be working over vector bundles with finite rank, we can define
the tensor product as

(E ⊗ F )x = Hom(E∗x, Fx).

Moreover, it is possible to take pullbacks of vector bundles. Given a smooth map f : M → N
and a vector bundle E → N , we can form the pullback bundle f∗E →M by letting

(f∗E)x = Ef(x).

Example 1.2. A classical example of a vector bundle is the tangent bundle TM → M ,
and its sections are vector fields, Γ(TM) = X (M). A manifold whose tangent bundle is
trivializable is called parallelizable. More interestingly, differential forms are sections of a
vector bundle, Ωk(M) = Γ(ΛkT ∗M).

Definition 1.3. A connection on a vector bundle E →M is a bilinear map

∇ : X × Γ(E) −→ Γ(E)
(X, s) 7→ ∇X(s)

satisfying

• ∇fXs = f∇Xs,

• ∇X(fs) = f∇Xs+X(f)s (Leibniz rule)
1One says that morphisms like this “cover the identity”, because it is also possible to define morphism

between vector bundles over different bases, say E →M and F → N . In this case a map f : M → N is also
needed, and then ux : Ex → Ff(x).

2



Chapter 1. Gauge theory 1.1. Vector bundles

for all X ∈ X (M), s ∈ Γ(E) and f ∈ C∞(M).

On a given trivialization of the vector bundle with frame e = (e1, . . . , er), the connection
is uniquely characterized by a connection matrix A := (Aij), which is an r-by-r matrix
of 1-forms, Aij ∈ Ω1(M),

∇AX(ej) =
r∑
i=1

Aij(X)ei,

and we denote by ∇A the connection associated to the connection matrix A. Using the
Leibniz rule, on a local section

s =
r∑
i=1

f iei

we have

∇AXs(x) =
∑
i

df i(Xx)ei(x) +
∑
i,j

f j(x)Aij(Xx)ei(x). (1.1)

Another way to interpret a connection is as a covariant derivative,

dA : Γ(E) −→ Ω1(M,E), dA(s)(X) := ∇AX(s).

From the properties of the connection it is immediate that the covariant derivative is linear
and satisfies the Leibniz rule

dA(fs) = f dAs+ df ⊗ s.

Moreover, from (1.1) we see that on a local section s defined in terms of a local frame e as
above,

dAs =
∑
i

df iei +
∑
i,j

f jAijei,

which leads to the frequently used notation

dA = d +A

for the local representation of the covariant derivative.
There are two usual ways to extend the covariant derivative from sections to more

general k-forms on the vector bundle, and we define two operators

∇A, dA : Ωk(M,E)→ Ωk+1(M,E)

as follows: for X0, . . . , Xk ∈ TM and ω ∈ Ωk(M,E),

∇Aω (X0, . . . , Xk) := ∇AX0(ω(X1, . . . , Xk))− ω(∇MX0X1, . . . , Xk) (1.2)
− . . .− ω(X1, . . . ,∇MX0Xk),

and

dAω (X0, . . . , Xk) :=
k∑
i=0

(−1)i∇AXi(ω(X0, . . . , X̂i, . . . , Xk)) (1.3)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

3



1.1. Vector bundles Chapter 1. Gauge theory

where ∇M is the Levi-Civita connection on TM → M . 2 These operators are related to
one another by

dAω (X0, . . . , Xk) =
k∑
i=0

(−1)i∇Aω (Xi, X0, . . . , X̂i, . . . , Xk), (1.4)

and as expected when k = 0 (that is, in sections of the bundle), dA = ∇A, so that the
notation dAs(X) = ∇AXs is still consistent.

Just as we can define new bundles from old using operations which are natural to vector
spaces and pullbacks, the same can be done with connections. Let E → M be a vector
bundle, and let f : N →M be a smooth map. Given a connection ∇ on E we can define a
pullback connection f∗∇ on f∗E as follows: for s ∈ Γ(E), x ∈ N and X ∈ TN ,

(f∗∇)X(f∗s)(x) = ∇ dxf(X)s(f(x)).

This can be used to define a further useful property of a connection: it defines a way to move
from one fibre Ex to another along paths on M . Given a path on the base, say γ : I →M
for some interval I ⊆ R, we can define paths on E above γ as a section u ∈ Γ(γ∗E), and
then

u : I −→E,
u(t) ∈Eγ(t).

Such a path u is said to be parallel to γ if

(γ∗∇) d
dt
u = 0.

Given γ,∇ and an initial point s ∈ Eγ(t0) for t0 ∈ I, there is a unique path us such that
us(t0) = s and us is parallel to γ. A collection of such paths taking each point in Eγ(t0) to
Eγ(t1) for I = [t0, t1] is called parallel transport,

P t1,t0γ : Eγ(t0) → Eγ(t1) (1.5)
s 7→ us(t1),

and this is a linear isomorphism of the fibres it connects.
One last thing that needs to be discussed is vector bundle metric. A metric on a vector

bundle E →M is a family
h = {hx}x∈M

of inner products on the vector spaces Ex, which vary smoothly on M in the sense that, for
two sections s, s′ ∈ Γ(E),

h(s, s′)(x) = hx(s(x), s′(x))
is smooth as a functionM → K. Given a vector bundle E →M with metric h, a connection
on E is said to be compatible with h if, for instance,

Xh(s, s′) = h(∇Xs, s′) + h(s,∇Xs′)

holds for every X ∈ X (M) and s, s′ ∈ Γ(E).

Proposition 1.4 ([Cra15], proposition 1.41). Every vector bundle admits a metric, and for
every metric there always exists a compatible connection.

2See the discussion below on Riemannian manifolds for the definition of the Levi-Civita connection.
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Chapter 1. Gauge theory 1.1. Vector bundles

1.1.1 Useful notions on Riemannian manifolds

Before moving on from vector bundles, let us discuss a bit about the very important and
special case of the tangent bundle. A Riemannian metric on a manifold M is simply a
metric on the tangent bundle, therefore by the previous proposition we know that every
smooth manifold admits a Riemannian metric. We will denote a Riemannian metric by g.

When E = TM , the sections of the vector bundle are also vector fields, and so a
connection is an operator

∇ : X (M)×X (M)→ X (M),

which makes it possibly to talk about torsion,

T∇(X,Y ) = ∇XY −∇YX − [X,Y ].

A connection is said to be torsion-free if T∇ = 0. Because of the existence of torsion, in this
case it is possible to single out a canonical connection:

Proposition 1.5 ([Cra15], theorem 1.43). On a Riemannian manifold there exists a unique
connection compatible with the metric and torsion-free. It is called the Levi-Civita con-
nection.

It will be useful to define the Christoffel symbols for the Levi-Civita connection. On
TM →M it is natural to use a local frame

∂

∂x1
, . . . ,

∂

∂xn

induced by a local coordinate chart (U, x1, . . . , xn). Let ∂i := ∂
∂xi

and ∇i := ∇∂i , then the
Christoffel symbols Γkij are defined as 3

∇i∂j = Γkij∂k.

The fact that ∇ is torsion-free is reflected in the symmetry of the symbols,

Γkij = Γkji.

Moreover, representing the metric g locally by a matrix

gij := g(∂i, ∂j),

and letting (gij) be its inverse, the compatibility of ∇ with the metric becomes

Γkij = 1
2
∑
l

(
∂gjl
∂xi

+ ∂gil
∂xj
− ∂gij
∂xl

)
glk.

The Christoffel symbols are also useful to show the dependence of the covariant derivative
on the metric on the base manifold. For instance, we can write locally for A ∈ Ω1(M,E):

(∇A)ij := ∇A(∂i, ∂j) = ∇Ei (A(∂j))−A(∇Mj ∂i) = ∇Ei Aj − ΓkijAk.

Besides a canonical choice of connection, the metric on M also gives natural definitions
to operations such as integration and inner products, and then a further choice of vector

3We use the Einstein summation convention for repeated indices.
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1.1. Vector bundles Chapter 1. Gauge theory

bundle metric extends these notions to bundle valued objects. We give these definitions
now.

First, the metric defines a volume form dvol and then for f ∈ C0(M) we can define∫
M
f :=

∫
M
f dvol. (1.6)

Locally, the volume form is given by dvol =
√
|det g| dx1 ∧ · · · ∧ dxn. For simplicity we are

assuming that M is oriented in order to have a globally defined volume form, however that
is not necessary for defining integration, see e.g. [Aub82], chapter 1, sections 9 and 11.

Moreover, the metric induces a pointwise inner product on tensors α, β ∈ ⊗kT ∗xM , which
can be written as

〈α, β〉 = gi1j1 · · · gikjkαi1···ikβj1···jk .

This is independent of the local coordinates. Note that a Riemannian metric is itself a
tensor, g ∈ Γ(⊗2T ∗M).

The previous definitions can now be used to define the Hodge star, ∗ : Ωk(M) →
Ωn−k(M), as the only map that satisfies

α ∧ ∗β = 〈α, β〉dvol, ∀α, β ∈ Ωk(M).

We can also define an inner product on the space of k-forms: for α, β ∈ Ωk(M),

〈α, β〉 :=
∫
M
〈α, β〉 dvol =

∫
M
α ∧ ∗β.

We will sometimes denote dvol =: ∗1. Note that ∗ is its own inverse up to a sign: for
α ∈ Ωk(M), ∗2α = (−1)k(n−k)α. Occasionally, when the sign itself is not important, we will
simply use ∗2 = ±1.

The Hodge star is also used to define the codifferential,

d∗ : Ωk(M) −→ Ωk−1(M)
α 7→ − (−1)n(k−1) ∗ d ∗ α.

The operator d∗ is also called the formal adjoint to the exterior derivative because of the
following: for α ∈ Ωk(M) and β ∈ Ωk+1(M),∫

M
d(α ∧ ∗β) =

∫
M

dα ∧ ∗β + (−1)kα ∧ d ∗ β

=
∫
M

dα ∧ ∗β + (−1)k(−1)(n−k+1)(k−1)α ∧ (∗∗) d ∗ β

=
∫
M

dα ∧ ∗β + (−1)n(k−1)α ∧ ∗(∗ d∗)β

=
∫
M

dα ∧ ∗β +−α ∧ ∗ d∗β

= 〈dα, β〉 − 〈α, d∗β〉.

Then by Stokes’s theorem, if either M has no boundary or one of the forms vanishes on
∂M ,

〈 dα, β〉 = 〈α, d∗β〉.

Finally, it is possible to extend these notions to vector bundle valued differential forms.
Let E → M be such a vector bundle, with bundle metric h. Given a local frame e on
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Chapter 1. Gauge theory 1.2. Principal bundles

a trivializing neighbourhood U ⊆ M , for α ∈ Ωk(M,E) and β ∈ Ωl(M,E) we can write
α = αi ⊗ ei and β = βi ⊗ ei, for αi, βi ∈ Ω•(M). Then h induces a pairing

〈· ∧ ·〉 : Ωk(M,E)× Ωl(M,E)→ Ωk+l(M),

which is given locally by
〈α ∧ β〉 := (αi ∧ βj)h(ei, ej).

There is also a natural extension for the Hodge star, given locally by

∗α := (∗αi)⊗ ei.

Note that now for any α, β ∈ Ωk(M,E) we can associate a top-form onM given by 〈α∧∗β〉,
and thus we define an inner product on Ωk(M,E),

〈α, β〉 =
∫
M
〈α ∧ ∗β〉.

For the purposes of later use, we will actually refer to

〈α, β〉 := ∗〈α ∧ ∗β〉 ∈ Ωn(M) (1.7)

as the (pointwise) inner product on Ωk(M,E).
Moreover, if A is a connection on the vector bundle E → M , we may also define the

formal adjoint of the covariant derivative dA,

d∗A : Ωk(M,E)→ Ωk−1(M,E),

d∗A = −(−1)n(k−1) ∗ dA ∗ .

1.2 Principal bundles
Principal bundles are the underlying objects in gauge theory. Our main objects of study,
connections and gauge transformations, will be defined in this context, and in fact will
be defined in more than one equivalent way. There is much more that can be said about
principal bundles and their relationship to vector bundles,4 but our focus in this section will
be on the many ways the bundle, connections and gauge transformations can be defined.
For organizational purposes, and because we will refer back to them often, all of the local
results are collected in a separate subsection.

Definition 1.6. A principal G-bundle is a manifold P along with

• a G action on P , P ×G→ P , (p, g) 7→ pg,

• a surjective map π : P → M that is G-invariant, i.e. π(pg) = π(p) for all p ∈ P and
g ∈ G,

and such that a local triviality condition is satisfied: for all x ∈ M , there exists a neigh-
bourhood U and a diffeomorphism

Φ : π−1(U) −→ U ×G
p 7→ (π(p), φ(p))

taking a fibre π−1(x) to {x} ×G and which is G-equivariant, that is φ(pg) = φ(p)g.
4Frame bundles and G-structures, for instance. See [Cra15].
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1.2. Principal bundles Chapter 1. Gauge theory

Equivalently, π : P → M is a principal G-bundle if π is a submersion and there is a
free and proper G-action on P which is fibre preserving. The action is also transitive on
the fibres, that is, for any p, q ∈ π−1(x) there exists g ∈ G such that q = pg. Unlike vector
bundles, principal bundles do not generally have global sections; indeed, a global section is
equivalent to a trivialization of the bundle, P 'M ×G.

A more direct point of view is to use a bundle atlas (Uα,Φα = (π, φα))α∈A to write
any p ∈ P as

p = bα, x, ge

for α ∈ A, x = π(p) and g = φα(p) ∈ G. This is an equivalence class, and we will want that
on non-empty intersections Uα ∩ Uβ

bα, x, φα(p)e = bβ, x, φβ(p)e.

We define so called transition functions φαβ : Uα ∩ Uβ → G as

φαβ(x) = φα(p)φβ(p)−1

for any p ∈ π−1(x); this is well defined, as for any q ∈ π−1(x) there exists g ∈ G such that
q = pg and

φα(pg)φ−1
β (pg) = φα(p)g(φβ(p)g)−1 = φα(p)φβ(p)−1.

Then the equivalence relation that defines b· , · , ·e will be

(α, x, g) ∼ (β, x, h) ⇐⇒ h = φβα(x)g.

The G-action is defined naturally as

pg = bα, π(p), φα(p)ge.

Note that these functions satisfy cocycle conditions, on Uα ∩ Uβ ∩ Uγ

φαγ(x) = φαβ(x)φβγ(x), (1.8)

and also φαα = 1 and φαβ(x)−1 = φβα(x).
The open cover ofM and the transition functions defined on the intersections encode the

whole principal bundle. Indeed, given such a cover M =
⋃
α∈A Uα and G-valued transition

functions {φαβ}α,β∈A, the equivalence relation (α, x, g) ∼ (β, x, φβα(x)g) gives rise to a
principal G-bundle

π : {bα, x, ge : α ∈ A, x ∈M, g ∈ G} →M.

If these transition functions originated from a pre-existing bundle P , then this procedure
reconstructs P . More generally, it is possible to check if two principal G-bundles are iso-
morphic by observing their transition functions on the same open cover of the base bundle.
A G-bundle isomorphism is a bundle isomorphism 5 that also preserves the group action.

Lemma 1.7. Let M =
⋃
α∈A Uα be an open cover of M and let {φαβ}, {ψαβ}, α, β ∈ A

be two sets of transition functions for two principal G-bundles over M . Then these bundles
are isomorphic if, and only if, there exist a cover M =

⋃
α∈A Vα with Vα ⊆ Uα and local

functions gα : Vα → G such that ψαβ(x) = gα(x)φαβ(x)g−1
β (x).

5A diffeomorphism of the total spaces which preserves the fibres.
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Isomorphic bundles will usually be identified, and so an object of great importance is
the group of G-bundle automorphisms of a principal bundle P ,

Aut(P ) := {ψ : P → P : π ◦ ψ = ψ and ψ(pg) = ψ(p)g}.

To each ψ ∈ Aut(P ) we will associate a map called a gauge transformation. To properly
discuss these transformations and connections on principal bundles, we need to look at
associated bundles.

Let F be some other manifold with a representation ρ : G → Diff(F ) which gives
a G-action on it. Then we may define an associated bundle to a principal G-bundle P
as the set of equivalence classes bp, fe = bpg, ρ(g−1)fe for all g ∈ G, and we denote it
E(P, F ) = (P ×F )/G. If F = V is a vector space, then ρ : G→ GL(V ) is a representation
of G in the usual sense, and E(P, V ) is a vector bundle. We will now define and give
properties of two bundles associated to P which will be especially important.

We denote by π̃ : Ad(P )→M the associated bundle with fibre G

Ad(P ) := P ×G
G

,

where G acts on itself by conjugation, (g, h) 7→ hgh−1. Thus we have the fibres

π̃−1(x) = Ad(P )x = {bp, ge : g ∈ G} ,

for p ∈ π−1(x), and note that bpg, he = bp, ghg−1e. We can identify the sections of Ad(P )
with the G-equivariant functions,

C∞(P,G)G :=
{
u : P → G : u(pg) = g−1u(p)g = Adg−1 u(p)

}
,

in the following way:

• a section s ∈ Γ Ad(P ) induces a function u by s(π(p)) = bp, u(p)e, and u is equivariant
because

bp, u(p)e = bpg, u(pg)e = bp,Adg u(pg)e

implies u(p) = gu(pg)g−1;

• a function u ∈ C∞(P,G)G induces a section s(x) = bp, u(p)e, and this does not depend
on the choice of p ∈ π−1(x), as for any other q ∈ π−1(x) we write q = pg for some
g ∈ G, and so

bq, u(q)e = bpg, u(pg)e = bpg, Adg−1 u(p)e = bp, u(p)e.

Furthermore, the sections of Ad(P ) form a group under pointwise multiplication,

(s · s′)(x) := bp, u(p)u′(p)e.

The G-equivariant functions can further be identified with the G-bundle automorphisms
of P . This identification can be written as follows:

• A function u ∈ C∞(P,G)G induces an automorphism ψ : P → P , ψ(p) = pu(p) which
is clearly fibre preserving, and is equivariant:

ψ(pg) = pgu(pg) = pu(p)g = ψ(p)g.

9
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• Conversely, there is a unique map u : P → G such that ψ(p) = pu(p) for a given
ψ ∈ Aut(P ). The equivariance of ψ gives

ψ(pg) = p(gu(pg)) = p(u(p)g) = ψ(p)g,

and because the action of G is free, gu(pg) = u(p)g, which establishes u ∈ C∞(P,G)G.

This identification also introduces a group multiplication in Aut(P ) via composition of
automorphisms,

ψ1 ◦ ψ2(p) = p · u2(p)u1(p).

Thus we have the group isomorphisms

Γ Ad(P ) ' C∞(P,G)G ' Aut(P ).

Definition 1.8 (Gauge transformation). We will call u ∈ C∞(P,G)G a gauge transforma-
tion, and denote the group of gauge transformations G(P ).

We will have more to say about gauge transformations, their action and local represen-
tation, further into the chapter.

Let g be the Lie algebra of G, and let G act on g via the adjoint action

Ad : G→ End(g)
ξ 7→ Adg(ξ) = gξg−1.

Then ad(P )→M is the associated vector bundle with standard fibre g,

ad(P ) := P × g

G
.

Just as with Ad(P ), we can identify the sections of ad(P ) with G-equivariant functions
P → g,

C∞(P, g)G :=
{
f : P → g : f(pg) = Adg−1 f(p)

}
,

such that any section can be written s(x) = bp, f(p)e, for any p ∈ π−1(x). The space of
sections Γ ad(P ) has a natural Lie algebra structure induced by the bracket on g,

[s, s′](x) = bp, [f(p), f ′(p)]e.

The importance of this associated bundle will become clear after the next definition.
There is a canonical vertical subbundle T V P ⊆ TP given by T V P = ker dπ, composed

of vectors tangent to the fibres Px ' G. Each vertical tangent space is isomorphic to the
Lie algebra,

T Vp P = ker dpπ ' g,

and the tangent vectors will be denoted pξ, as defined in subsection 1.2.2. Every complement
of these vertical spaces is isomorphic to Im( dpπ) = Tπ(p)M , but there is in general no
canonical choice for these horizontal spaces; a connection on a principal bundle represents
precisely a choice of equivariant horizontal distribution H such that TP = T V P ⊕H.

Definition 1.9 (Connection). A connection on P is a 1-form A ∈ Ω1(P, g) satisfying

10
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• Apg(vg) = g−1Ap(v)g = Adg−1 A, for all g ∈ G and v ∈ TpP ,

• Ap(pξ) = ξ, for all ξ ∈ g,

that is, it is G-equivariant and takes fixed values on vertical tangent vectors. We denote
the set of smooth connections A(P ).

To see the relation between both notions, observe that we can write

TP = T V P ⊕ kerA.

Note that Ω1(P, g) means that the one-forms take values in g, which is a finite dimen-
sional vector space. In the language of vector bundles, Ω1(P, g) = Γ(ΛT ∗P ⊗P × g), where
P × g → P is a trivializable vector bundle of rank dim g. From either point of view it is
clear that many global results on forms will readily generalize to connections; for instance,
it makes sense to write dA in this case, when in general connections are needed to define
covariant derivatives.

It is easy to see from the definition that the difference of two connections is a basic
form: G-equivariant and horizontal 6. On the other hand, it is known that the space of basic
k-forms Ωk

bas(P, g) is isomorphic to Ωk(M, ad(P )): for τ ∈ Ωk
bas(P, g), the corresponding

τ̃ ∈ Ωk(M, ad(P )) is uniquely defined by

bp, τp(X1, . . . , Xk)e = τ̃π(p)( dpπ(X1), . . . , dpπ(Xk)) ∈ ad(P )π(p) (1.9)

for any X1, . . . , Xk ∈ TpP . Thus, the space of connections is an affine space, and fixing a
reference connection Ã ∈ A(P ) we can write

A(P ) = Ã+ Ω1(M, ad(P )).

A similar isomorphism exists for general associated vector bundles E(P, V ), and it allows
a connection on the principal bundle to induce one on the associated bundle. Suppose
ρ : G → GL(V ) is a representation and E(P, V ) is the corresponding bundle. There is an
isomorphism h : Ωk(M,E(P, V )) ∼−→ Ωk

bas(P, V ), and furthermore we can differentiate the
representation, d1ρ : g→ End(V ). For A ∈ A(P ) we can then define

dA : Ωk
bas(P, V ) −→ Ωk+1

bas (P, V )
ω 7→ df + d1ρ(A)(ω),

and this in turn will induce a connection on E(P, V ),

∇A := h−1 ◦ dA ◦ h : Ωk(M,E(P, V ))→ Ωk+1(M,E(P, V )).

In the particular case of ad(P ), which is the associated vector bundle E(P, g) with
ρ = Ad : G → GL(g), we have d1ρ(ξ)η = ad(ξ)η = [ξ, η] and so a connection A ∈ A(P )
defines

dA : Ωk
bas(P, g) −→ Ωk+1

bas (P, g) (1.10)
τ 7→ dτ + [A ∧ τ ],

6It kills vertical tangent vectors.

11
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where [· ∧ ·] is the wedge product of two forms with the Lie bracket used to combine the
values in g.7 This will then induce on ad(P ) a covariant derivative

∇A : Γ(ad(P )) −→ Ω1(M, ad(P ))

which can be written explicitly in the following way: for s ∈ C∞(P, g)G ' Γ(ad(P )),
X ∈ TxM and Y ∈ TpP such that π(p) = x and dpπ(Y ) = X,

∇As(X) = bp, dps(Y ) + [A(Y ), s(p)]e ∈ ad(P )x. (1.11)

This, of course, extends to ∇A : Ωk(M, ad(P ))→ Ωk+1(M, ad(P )) exactly as in (1.2).
Now, while it is true that for the usual (de Rham) exterior derivative we have d2 = 0,

this will not hold in general for dA defined above. This failure can be measured by the
curvature of the connection,

FA = dA+ 1
2[A ∧A] ∈ Ω2

bas(P, g), (1.12)

and we obtain dA dAτ = [FA∧τ ] for all τ ∈ Ωk
bas(P, g). A connection for which FA = 0 = d2

A

is called a flat connection. The curvature satisfies the Bianchi identity,

dAFA = 0.

Moreover, it can be seen as a differential form in Ω2(M, ad(P )).
We now calculate the effect of a gauge transformation on a connection and its curvature.

For that, define the Maurer-Cartan form θg = dgLg−1 : TgG→ g, for Lg(h) = gh.

Lemma 1.10 (The gauge action). Let u ∈ G(P ) and ψ(p) = pu(p) its corresponding
automorphism. Then the action of a gauge transformation on a connection is defined as
u∗A := ψ∗A and can be written

u∗A = u−1Au+ u∗θ (1.13)
= u−1Au+ u−1 du. (1.14)

Proof. Define the multiplication σ on P × G as σ(p, g) = pg = R̃g(p) = L̃p(g) and write
ψ(p) = σ(Id, u)(p). Then for v ∈ TpP ,

dpψ(v) = d(p,u(p))σ ◦ dp(Id, u)(v)
= d(p,u(p))σ(v, dpu(v))
(∗)= dpR̃u(p)(v) + du(p)L̃p( dpu(v)),

where (∗) follows because T(p,g)(P ×G) ' TpP ⊕ TgG and using curves one can easily show
that d(p,g)σ(v, 0) = dpR̃g(v) and d(p,g)σ(0, X) = dgL̃p(X). Since L̃p(h) = ph = pgg−1h,
we may write L̃p = L̃pg ◦ Lg−1 , so that

du(p)L̃p(dpu(v)) = d1L̃pu(p) du(p)Lu(p)−1( dpu(v)) = d1L̃pu(p)θu(p)( dpu(v))

For pξ = d1L̃p(ξ) and vg = dpR̃g(v) as defined in subsection 1.2.2,

dpψ(v) = vu(p) + pu(p)θu(p)( dpu(v)).
7For example, for α, β ∈ Ω1

bas(P, g) and X,Y ∈ TpP , [α ∧ β](X,Y ) = [α(X), β(Y )] − [α(Y ), β(X)], and
then note [α ∧ α] = 2[α, α].

12
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Now, using this expression and calculating using the properties of the connection,

ψ∗A(v) = Aψ(p)( dpψ(v))
= Apu(p)(vu(p) + pu(p) θu(p)( dpu(v)︸ ︷︷ ︸

∈g

))

= u(p)−1Ap(v)u(p) + θu(p)(dpu(v)),

and rewriting θu(p)(dpu(v)) as (u∗θ)p(v) or du(p)Lu(p)−1( dpu(v)) = u(p)−1 dpu(v) from
gvh = dhLg(v), we have the expressions we wanted for the gauge action.

From this, it is also possible to show the effect of a gauge transformation on the curva-
ture,

Fu∗A = u∗FA = u−1FAu. (1.15)

Finally, we define a pointwise inner product on Ωk(M, ad(P )) as in (1.7). We assume the
Riemannian metric on M is given, and the metric on ad(P ) is induced by the Ad-invariant
inner product on g defined in subsection 1.2.2,

〈bp, ξe, bp, ζe〉ad(P ) := 〈ξ, ζ〉g.

Now, viewing the curvature as being in Ω2(M, ad(P )) and writing | · | =
√
〈· , ·〉 : M → R,

we can define the Yang-Mills functional

YM(A) :=
∫
M
|FA|2 dvol =

∫
M
∗〈FA ∧ ∗FA〉. (1.16)

Due to the gauge action on FA and the invariance of the metric on ad(P ), this functional
is invariant under gauge transformations,

YM(u∗A) = YM(A), ∀u ∈ G(P ).

We will want to study its extrema. For that, note that because A(P ) is an affine space with
vector space Ω1(M, ad(P )), it is enough to check the variation of the curvature along lines
A+ tβ, for β ∈ Ω1(M, ad(P )). Now,

FA+tβ = FA + tdAβ + 1
2 t

2[β ∧ β],

and thus momentarily writing 〈·, ·〉 for the integrated (not pointwise) inner product it is
straightforward to calculate

d
dt

∣∣∣∣
t=0
YM(A+ tβ) = d

dt

∣∣∣∣
t=0
〈FA+tβ, FA+tβ〉

= 2〈FA, dAβ〉,

and so an extremum of the YM functional has to satisfy the weak Yang-Mills equation,∫
M
〈FA, dAβ〉 = 0, ∀β ∈ Ω1(M, ad(P )).

13
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If everything is smooth, this is equivalent to the (strong) Yang-Mills equation,{
d∗AFA = 0 on M,

∗FA|∂M = 0 on ∂M,

where in the case of a manifold without boundary this is just the usual Yang-Mills equation.
This will be proved further ahead in a more general context as lemma 1.37. Just as the
functional, these equations are also invariant under gauge transformations, and because of
this it is said that the solutions to the Yang-Mills equations come in gauge orbits.

1.2.1 Local formulations and results

In this subsection we will derive local representations and formulas for the objects we have
defined, as these will be the forms which we will mainly use throughout the text.

Recall the description of a principal G-bundle π : P −→ M via local trivializations
and transition functions given at the beginning of this section. On a trivializing open set
Uα ⊆M we have a bundle chart

Φα : π−1(Uα) −→ Uα ×G
p 7→ (π(p), φα(p)),

and the transition functions defined on intersections Uα ∩ Uβ

φαβ(x) = φα(p)φβ(p)−1,

which obey the cocycle conditions (1.8). Moreover, we write the induced trivializations on
the associated bundles Ad(P ) and ad(P ) over Uα with the same notation, as there is very
little chance of confusion in context. For π̃ : Ad(P ) −→M ,

Φ̃α : π̃−1(Uα) −→ Uα ×G
bp, ge 7→ (π(p), φ̃α(bp, ge),

with φ̃α(bp, ge) = φα(p)gφα(p)−1. And for π̃ : ad(P )→M ,

Φ̃α : π̃−1(Uα) −→ Uα × g

bp, ξe 7→ (π(p), φ̃α(bp, ξe),

with φ̃α(bp, ξe) = φα(p)ξφα(p)−1. Throughout this subsection we will assume this setting.
For a gauge transformation u ∈ G(P ), let ũ ∈ Γ(Ad(P )) be the corresponding section,

such that ũ(x) = bp, u(p)e for x = π(p). Then we can use this to define u locally on Uα,

uα := φ̃α ◦ ũ : Uα → G, (1.17)

and this acts on Uα ×G by (x, g) 7→ (x, guα(x)). Thus, for any p ∈ π−1(x),

uα(x) = φα(p)u(p)φα(p)−1

is well defined, and we can recover u on Uα,

u(p) = φα(p)−1uα(x)φα(p).

14
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If we assume this to be valid for all α ∈ A, then using the transition functions on Uα ∩ Uβ
we get the transition identity

uβ = φ−1
αβuαφαβ. (1.18)

Likewise, any collection of G-valued functions {uα}α∈A satisfying (1.18) uniquely defines a
global gauge transformation in the same way as we used to recover u(p). Equivalently, a
global gauge transformation must satisfy

φαβ = u−1
α φαβuβ.

The local description of connections on open sets U ⊆ M is very similar, using the
isomorphism Ωk

bas(P, g) ' Ωk(M, ad(P )) and then the second component of the local triv-
ialization for ad(P ). For τ ∈ Ωk

bas(P, g) let τ̃ ∈ Ωk(M, ad(P )) be the corresponding form
given by (1.9). This defines τ locally,

τα := φ̃α ◦ τ̃ ∈ Ωk(Uα, g),

and similar to the case of the gauge transformation, on an intersection Uα ∩ Uβ these local
forms will satisfy

τβ = φ−1
αβταφαβ,

and the global form can be reconstructed as

τ(Y1, . . . , Yk) = φα(p)−1τα( dpπ(Y1), . . . , dpπ(Yk))φα(p), ∀Y1, . . . , Yk ∈ TpP.

In the case of connections it is necessary to choose a reference connection in order to
use this isomorphism, and there is no canonical choice if the bundle is not flat. However,
locally on π−1(Uα) there is a natural choice, namely Ãα := φ−1

α dφα. Then for the local
representative Aα ∈ Ω1(Uα, g) of A ∈ A(P ) we write

Aα(dpπ(Y )) = φα(p)A(Y )φα(p)−1 − dpφα(Y )φα(p)−1, ∀Y ∈ TpP. (1.19)

Assuming that A can be recovered over Uα as

A(Y ) = φα(p)−1Aα(dpπ(Y ))φα(p) + φα(p)−1 dpφα(Y )

we will once again get a transition identity for the local representatives of connections over
intersections. This is stated in the following lemma, along with the local formula for the
gauge action, which shows that locally a gauge transformation can be thought of as a change
of trivialization.

Lemma 1.11. For a connection A ∈ A(P ), its local representatives Aα, Aβ have to meet
the following on Uα ∩ Uβ :

Aβ = φ−1
αβAαφαβ + φ−1

αβ dφαβ.

Moreover, the local effect of a gauge transformation is

(u∗A)α = u−1
α Aαuα + u−1

α duα.

15
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Proof. Both of the affirmations are checked with straightforward calculations. For the
change in trivialization, omitting the evaluations at p, Y and dpπ(Y ), we calculate

Aβ = φβAφ
−1
β − dφβ · φ−1

β

= φβ(φ−1
α Aαφα + φ−1

α dφα)φ−1
β − dφβ · φ−1

β

= φ−1
αβAαφαβ + φ−1

αβ dφα · φ
−1
β − dφβ · φ−1

β

= φ−1
αβAαφαβ + φ−1

αβ( dφα · φ−1
β − φαβ dφβ · φ

−1
β )

= φ−1
αβAαφαβ + φ−1

αβ( dφα · φ−1
β + φαφ

−1
β φβ dφ−1

β )
= φ−1

αβAαφαβ + φ−1
αβ dφαβ.

Then for the local gauge action

(u∗A)α = φα(u∗A)φ−1
α − dφα · φ−1

α

= φα(u−1Au+ u−1 du)φ−1
α − dφα · φ−1

α

= φα(φ−1
α u−1

α φαAφ
−1
α uαφα + φ−1

α u−1
α φα d(φ−1

α uαφα))φ−1
α − dφα · φ−1

α

= u−1
α (φαAφ−1

α )uα
+ u−1

α φα dφ−1
α · uα + u−1

α duα + dφα · φ−1
α

− dφα · φ−1
α

= u−1
α Aαuα + u−1

α dφα · φ−1
α uα + u−1

α φα dφ−1
α · uα + u−1

α duα
= u−1

α Aαuα + u−1
α duα.

Finally, the covariant exterior derivative dA : Ωk
bas(P, g)→ Ωk+1

bas (P, g) induced by a con-
nection A ∈ A(P ) as in (1.10) can be written locally on Uα, taking the local representatives
Aα ∈ Ω1(Uα, g) and τα ∈ Ωk(Uα, g),

( dAτ)α = dτα + [Aα ∧ τα];

its formal adjoint d∗A : Ωk
bas(P, g)→ Ωk+1

bas (P, g) is given locally as

( d∗Aτ)α = d∗τα − (−1)(n−k)(k−1) ∗ [Aα ∧ ∗τα];

and the curvature (1.12) can be written

(FA)α = dAα + 1
2[Aα ∧Aα] ∈ Ω2(Uα, g),

and transforms under a change of trivialization in the same way it does under a gauge
transformation, (FA)β = φ−1

αβ(FA)αφαβ.

A word on notation. Occasionally, when working locally but not specifying a bundle
atlas, we will drop subscripts α and a connection A ∈ A(P ) will be represented by A ∈
Ω1(U, g), or a gauge transformation u ∈ G(P ) will be represented by u : U → G. When
specifying a global reference connection Ã, a connection A ∈ A(P ) will be denoted A =
Ã+ α, and α ∈ Ω1

bas(P, g) will be its representative.
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1.2.2 Several results on G, g and the action on P

In this subsection we fix some notation pertaining to the action of G on P and g, define
the inner product that will be fixed on g and some other notions that depend on it, such
as the metric on G, and prove a result on the derivative of the adjoint action which will be
needed later.

We begin with some notation: For p ∈ P and g, h ∈ G,

gh = Lg(h), Lg : G→ G,

hg = Rg(h), Rg : G→ G,

pg = L̃p(g), L̃p : G→ P,

pg = R̃g(p), R̃g : P → P.

For p ∈ P , ξ ∈ g, and v ∈ TpP ,

pξ := d1L̃p(ξ) = d
dt

∣∣∣∣
t=0

p exp(tξ) ∈ TpP,

vg := dpR̃g(v) ∈ TpgP,

and for g, h ∈ G, ξ ∈ g and v ∈ ThG,

gξ := d1Lg(ξ) = d
dt

∣∣∣∣
t=0

g exp(tξ) ∈ TgG,

gv := dhLg(v) ∈ TghG.

We need to fix a certain inner product on g. The following lemma is the main reason
that we restrict to compact Lie groups; its proof can be found in [Kna96], proposition 4.24,
and the subsequent properties of the inner product and the induced metrics can be found
in [Weh04], Remark A.3.

Lemma 1.12. Let G be a compact Lie group. Then the Lie algebra g admits an inner
product which is invariant under the adjoint action of G on g, that is, for all ξ, η ∈ g and
g ∈ G,

〈gξg−1, gηg−1〉 = 〈ξ, η〉.

This inner product satisfies, for all ξ, η, ζ ∈ g,

〈[ξ, η], ζ〉 = 〈ξ, [η, ζ]〉, (1.20)

and it can be rescaled in such a way that the associated norm |ξ| =
√
〈ξ, ξ〉 satisfies, for all

ξ, η ∈ g,

|[ξ, η]| ≤ |ξ| · |η| . (1.21)

We will fix this inner product on g throughout all of this text.
The inner product on g also induces a metric on TG,

〈X,Y 〉G := 〈g−1X, g−1Y 〉g, ∀X,Y ∈ TgG,
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where g−1X is understood in the sense defined above. It is clear that with this metric left
and right multiplication are isometries of G. If we denote by expg the exponential map with
base point g ∈ G, then for all ξ ∈ g and g ∈ G,

expg(gξ) = g exp(ξ),
exp(g−1ξg) = g−1 exp(ξ)g.

Moreover, the geodesics are 1-parameter subgroups,

exp((s+ t)ξ) = exp(sξ) exp(tξ),

for all s, t ∈ R and ξ ∈ g.
Furthermore, we can define a geodesic distance on G,

dG(g, h) := inf
{
|X| , X ∈ TgG and h = expg(X)

}
, (1.22)

which is invariant under left and right multiplication, and this can be used to define a metric
on C0(U,G). For maps u and v from some domain U to G, it will be denoted by

d(u, v) := sup
x∈U

dG(u(x), v(x)),

and this too will be invariant under left and right multiplication by continuous maps.
We also define a convex geodesic ball of radius R around 1 ∈ G to be such that

(i) the exponential map is a bijection between BR(1) ⊆ g and BR(1) ⊆ G,

(ii) and for all g, h ∈ BR(1) there is a unique minimal geodesic from g to h that lies
entirely within BR(1).

For the existence of such balls see e.g. [GHL90, 2.89, 2.90], Moreover, because left multi-
plications are isometries of G, there exist convex geodesic balls of same radius around any
g ∈ G.

Finally, we prove a small lemma on the (covariant) derivative of the adjoint action on
k-forms.

Lemma 1.13. For τ ∈ Ωk(U, g) and u : U → G,

d(Adu τ) = Adu dτ + [ du · u−1 ∧Adu τ ]. (1.23)

Moreover, for the covariant derivative ∇ induced by the canonical flat connection on the
trivial vector bundle U × g→ U ,

∇(uτu−1) = u(∇τ)u−1 + [ du · u−1, uτu−1]. (1.24)

Proof. For a fixed point p ∈ U and some X ∈ TU ,

dp(uτu−1)(X) = d(Adu·u(p)−1(u(p)τu(p)−1))(X)
(1)=
(
d1 Ad ◦dp(u · u(p)−1) · u(p)τu(p)−1 + Adu·u(p)−1 dp(u(p)τu(p)−1)

)
(X)

(2)=
(
[ dpu · u(p)−1, u(p)τu(p)−1] + udpτu−1 (p)

)
(X)
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=
(
[ du · u−1, uτu−1] + udτ · u−1

)
X(p),

where (1) follows from looking at Ad as a map on a product manifold, Ad : G × g → g,
similar to what was done in the calculation of the gauge group action, lemma 1.10, and (2)
is just d1 Ad(ξ)η = ad(ξ)η = [ξ, η].

We now use (1.23) to prove the second identity (1.24). With the canonical flat connection
∇E = d, evaluating at vector fields Xj ∈ TU and letting τ̃ := τ(X1, . . . , Xk),

∇(uτu−1)(X0, . . . , Xk) = ∇EX0(uτ̃u−1)− uτu−1(∇X0X1, . . . , Xk)
− · · · − uτu−1(X1, . . . ,∇X0Xk)

= d(Adu τ̃)X0 − uτ(∇X0X1, . . . , Xk)u−1

− · · · − uτ(X1, . . . ,∇X0Xk)u−1

= [ du(X0)u−1, uτ̃u−1] + udτ̃(X0)u−1 − uτ(∇X0X1, . . . , Xk)u−1

− · · · − uτ(X1, . . . ,∇X0Xk)u−1

= [ du · u−1, uτu−1](X0, . . . , Xk) + u∇τ(X0, . . . , Xk)u−1

=
(
[ du · u−1, uτu−1] + u(∇τ)u−1

)
(X0, . . . , Xk).

1.3 An analytic interlude

We now turn to the case when our objects may not be infinitely differentiable. The main
reason for this is that Ω1(M, ad(P )) has infinite dimension, and thus A(P ) is an affine
space with infinite dimensional vector space. Moreover, G(P ) can be seen to be an infinite
dimensional Lie group. Thus, we find ourselves in the realm of functional analysis, and we
would like to work with Banach spaces.

In this section, our aim is to give the definitions and most relevant results on Sobolev
spaces of sections of fibre bundles. For an introduction to the theory of Sobolev spaces
on Rn, we recommend [Eva10], chapter 5; for definitions and results on Sobolev spaces of
functions on Riemannian manifolds, see [Aub82], chapter 2. For Sobolev spaces of sections
of vector bundles, see [Nic07], section 10.4.2. We mainly follow [Weh04], appendix B.

Let (M, g) be a compact Riemannian manifold, E → M a vector bundle, and choose a
bundle metric on E and a compatible connection. We have shown that with these choices
it is possible to define: a covariant derivative

∇ : Ωk(M,E)→ Ωk+1(M,E),

given by the connection on E and the Levi-Civita connection for the Riemannian metric g
as in (1.2); a pointwise inner product on Ωk(M,E),

〈α, β〉 = ∗〈α ∧ ∗β〉 : M → R,

given by the bundle metric and the Riemannian metric as in (1.7), which we then use to
define |α| :=

√
〈α, α〉; and a way to integrate functions over M given by the Riemannian

metric, using the volume form as in (1.6).
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Definition 1.14 (Sobolev space of sections of vector bundle). For k ∈ N0 and 1 ≤ p <∞,
the Sobolev space W k,p(M,E) of sections of the vector bundle E → M is defined as the
completion of Γ(E) with respect to the W k,p-norm,

‖α‖k,p =
k∑
j=1

∥∥∥∇jα∥∥∥
p
,

where ∥∥∥∇jα∥∥∥
p

=
(∫

M

∣∣∣∇jα∣∣∣p) .
Several properties of the usual Sobolev spaces on Euclidean space will generalize to

Sobolev spaces of sections. From the definition, it is clear that W k,p(M,E) are Banach
spaces, and therefore many important results from functional analysis are valid, in particular
those from Appendix A. Moreover, this definition directly gives the density of smooth
sections, which makes it possible to give proofs using approximating sequences of smooth
sections, for which stronger results are valid; see, e.g., lemma 1.20 below. Other properties
and results will be consequences of the following characterization:

Remark 1.15. Consider a finite bundle atlas (Ui,Φi)Ni=1 of E → M , with Φi : E|Ui →
Vi × Rm for φ : Ui → Vi ⊆ Rn a coordinate chart of M and m the rank of E. A section
α ∈ Γ(E) which is locally α : Ui → E|Ui is represented by Φi∗α : Vi → Rm, or with m
components (Φi∗α)j : Vi → R. Then for k ∈ N0 and 1 ≤ p < ∞, the W k,p-norm defined
above is equivalent to

N∑
i=1

m∑
j=1
‖(Φi∗α)j‖k,p(Vi) ,

where theW k,p norm on functions Rn → R is the usual one. Therefore α lies inW k,p(M,E)
if and only if its local components (Φi∗α)j are W k,p-functions for all coordinate patches
i = 1, . . . , N .

Note that it is essential that the base manifold is compact for the sum above to be finite
and the norms equivalent.

From this characterization it also becomes clear that when M is compact, the space
W k,p(M,E) will not depend on the choices involved, as the W k,p-norms induced will be
equivalent. The choices were: the metric onM , the bundle metric on E, and the compatible
connection on E.

Remark 1.16 (On the norm of a metric). In chapter 2, we will several times look at
the W k,∞-norm of a Riemannian metric g. The metric is a tensor, g ∈ Γ(⊕2T ∗M), and
therefore as a section of a vector bundle it makes sense to define its W k,p-norm as above,
but with respect to what metric on M? As we have noted, over a compact manifold all of
the norms will be equivalent, so any fixed choice is valid. In chapter 2 we will mostly be
working over open sets in Euclidean (half) space, and thus we may canonically choose the
Euclidean metric in this case.

By far the most important result from the usual theory of Sobolev spaces which is also
valid for sections of bundles is the Sobolev embeddings and estimates. Before stating the
result, we need to define the norm on the spaces Cj of continuous functions, for j ∈ N0.
For α ∈ C0(M,⊗kT ∗M ⊗ E) a k-form,

‖α‖∞ := sup
x∈M
|α(x)| ,

20



Chapter 1. Gauge theory 1.3. An analytic interlude

where | · | comes from the pointwise inner product defined on Ωk(M,E) above; then for a
section α ∈ Cj(M,E),

‖α‖j,∞ := sup
k≤j

∥∥∥∇kα∥∥∥
∞
.

Finally, note that W 0,p(M,E) is simply Lp(M,E), and these Lp-spaces are also included in
the following result, as j = 0 is allowed.

A word on notation. We will denote the norm on the Sobolev space W k,p(M,E) over
the Riemannian manifold (M, g) as ‖ · ‖g; k,p (M), and when the metric and the space are
clear from context, they will be omitted from the norm.

Theorem 1.17 (Sobolev embeddings and estimates). Let E →M be a vector bundle over
a compact Riemannian n-manifold, j < k ∈ N and 1 ≤ p, q <∞.

(i) If k − n
p ≥ j −

n
q then the inclusion

W k,p(M,E) ↪→W j,q(M,E)

is continuous, i.e., there exists a constant CW such that for α ∈W k,p(M,E),

‖α‖j,q ≤ CW ‖α‖k,p .

(ii) If k − n
p > j − n

q , this inclusion is a compact map.

(iii) Furthermore, if k− n
p > j, there is a continuous embedding W k,p(M) ↪→ Cj(M), i.e.,

there exists a constant CW such that for α ∈W k,p(M,E),

‖α‖j,∞ ≤ CW ‖α‖k,p .

Moreover, this inclusion is compact.

The generalization of the result from bounded domains in Rn to the case of vector bun-
dles is straighforward using remark 1.15, see the discussion after Theorem A.2 in [Weh04].

These embeddings will cause a few hypotheses to appear particularly frequently: the
inclusion

W k,p ↪→ C0

will lead to the condition kp > n; and the inclusion

W 1,p ↪→ L2p

will lead to p ≥ n
2 . When looking at the Sobolev spaces of connections and gauge transfor-

mations, we will generally be working with the W 1,p and W 2,p spaces, and for k = 2 the
hypothesis p > n

2 guarantees both of these embeddings.
Of central importance to the results in this text is the Banach-Alaoglu theorem, which

we state and use in the following form:

Theorem 1.18 (Banach-Alaoglu). Let k ∈ N and 1 < p <∞, and let E →M be a vector
bundle over a compact Riemannian manifold. Then every bounded sequence in W k,p(M,E)
has a weakly convergent subsequence.
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The generalization from the result for bounded domains in Rn also follows from remark
1.15. As for the relation of this result to the usual Banach-Alaoglu theorem from functional
analysis, note that Sobolev spaces are reflexive.

A recurrent argument used in proofs is to make use of the Banach-Alaoglu theorem to
find a weakly convergent subsequence for a bounded sequence, and then use some compact
Sobolev embedding to find a further subsequence which converges uniformly.

Finally, in order to deal with manifolds with boundary, we need the following result.

Theorem 1.19 (Trace theorem). Let M be a compact Riemannian n-manifold and let
1 ≤ p < ∞. The restriction to the boundary ∂M is a bounded linear operator W 1,p(M) →
Lp(∂M).

Proof. See [Weh04], Theorem B.10.

This means that for any h ∈W 1,p(M),

‖h|∂M‖p(∂M) ≤ C ‖h‖1,p(M) .

In particular, any sequence of smooth functions that approximates h in the W k,p(M)-norm
restricts to a sequence in the boundary that approximates h|∂M in the Lp(∂M)-norm, since

‖(hj − h)|∂M‖p(∂M) ≤ c ‖hj − h‖1,p(M) ≤ c ‖hj − h‖k,p(M) → 0.

Using the trace theorem and approximating sequences, we can generalize Stokes’s the-
orem to the non-smooth case. We state and prove this as a lemma, and make implicit use
of it whenever we use Stokes’s theorem.

Lemma 1.20 (Sobolev Stokes’s Lemma). Let M be a compact n-dimensional manifold with
boundary, E →M a trivial vector bundle and α ∈W k,p(M,⊗n−1T ∗M⊗E) an (n−1)-form.
Then ∫

∂M
α|∂M =

∫
M

dα.

Proof. We can approximate α in the W 1,p(M)-norm by a sequence (αj)j∈N ⊆ Ωn−1(M,E)
of smooth forms, and using the trace theorem (αj |∂M ) ⊆ Ωn−1(∂M,E) also approximates
α|∂M in the Lp(∂M)-norm. Then, because of the triviality of the bundle, Stokes’s theorem
can be applied to each component of the smooth forms,∫

M
dα = lim

j→∞

∫
M

dαj = lim
j→∞

∫
∂M

αj |∂M =
∫
∂M

α|∂M .

Finally, we will make use of a few product inequalities, but we state them in appendix
A so as not to clutter the more important results here.

Let us shift our focus now to maps between manifolds, say M and X. Suppose that M
is a compact n-dimensional manifold, and X is an `-manifold, and fix on X an embedding
Φ : X → R2`+1, an atlas (Uα, φα)α∈A, and a metric. We then get the following two results.

Proposition 1.21. Let M and X be as above, and let k ∈ N and 1 ≤ p <∞ be such that
kp > n. For u ∈ C0(M,X) the following are equivalent:
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(i) φα ◦ u ∈W k,p(u−1(Uα,R`) for all α ∈ A,

(ii) Φ ◦ u ∈W k,p(M,R2`+1),

(iii) u = exps(V ) for some s ∈ C∞(M,X) and V ∈W k,p(M, s∗TX).

In case X = G is a Lie group with Lie algebra g, the last item can be reformulated as
u = s · exp(ξ) for s ∈ C∞(M,G) and ξ ∈W k,p(M, g), and there is another equivalence,

(iv) u−1 du ∈W k−1,p(M,T ∗M ⊗ g).

Proposition 1.22. For a sequence (ui)i∈N and some u, all of which satisfy the equivalent
conditions in the previous proposition, and under the same assumptions, the following are
equivalent:

(i) ui converges to u in the C0-topology and φα ◦ui converges to φα ◦u with respect to the
W k,p-norm for all α ∈ A,

(ii) Φ ◦ ui converges to Φ ◦ u with respect to the W k,p-norm,

(iii) there exist s ∈ C∞(M,X), V ∈W k,p(M, s∗TX), and for sufficiently large i ∈ N there
are Vi ∈W k,p(M, s∗TX) such that u = exps(V ), ui = exps(Vi) and the Vi converge to
V in the W k,p-norm,

and in case X = G is a Lie group with Lie algebra g, once again the last item can be
reformulated with u = s · exp(ξ), ui = s · exp(ξi) and ξi → ξ in W k,p(M, g), and there is
another equivalence,

(iv) ui converges to u in the C0-topology and u−1
i dui converges to u−1 du inW k−1,p(M,T ∗M⊗

g).

Proof. See [Weh04], lemmata B.5 and B.7.

A key lemma in the proof of the equivalences in proposition 1.22 is the following, which
will also be used elsewhere in this text and for that reason we state it. This lemma is the
reason for the assumption kp > n in the previous results, and this hypothesis is needed here
because of the embedding W k,p ↪→ C0.

Lemma 1.23. Let U ⊆ M be an open subset of a compact n-manifold, 1 ≤ p < ∞ and
k,m,N ∈ N such that kp > n. If f ∈ Ck(V ⊆ Rm,RN ), then composition with f is a
continuous map, that is

W k,p(U, V ) −→W k,p(U,RN )
u 7→ f ◦ u.

Proof. See [Weh04], lemma B.8. This result too is stated there for bounded domains in Rn
and then generalizes via remark 1.15.

At last, we may give the definitions for Sobolev spaces of maps of manifolds and of
sections of fibre bundles.

Definition 1.24 (Sobolev space of maps of manifolds). ForM andX manifolds as described
above, the Sobolev space W k,p(M,X) is given as a set by functions u ∈ C0(M,X) such
that u satisfies the equivalent statements of lemma 1.21, and the topology on this space is
given by defining its convergent sequences using the equivalent statements of lemma 1.22.
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Definition 1.25 (Sobolev space of sections of fibre bundles). Let X ↪→ F
π−→M be a fibre

bundle, and fix a bundle atlas (Uα, τα)α∈A. In every local trivialization π× τα : π−1(Uα)→
Uα × X a section u is represented by τα ◦ u : Uα → X. Then define the Sobolev space
W k,p(M,F ) of sections of this fibre bundle to consist of all sections u such that

τα ◦ u ∈W k,p(Uα, X)

for all α ∈ A, following the definition above for maps of manifolds. The topology is once
again given by the equivalent conditions in proposition 1.22 via convergence in a bundle
atlas.

We make a few observations. First, proposition 1.21 shows that W k,p(M,X) is indepen-
dent of the choice of atlas (used in condition (i)), embedding (used in condition (ii)) and
metric (used in condition (iii)), and therefore it is well defined for kp > n. Moreover, the
definition via embeddings makes it possible to extend the Sobolev embeddings in theorem
1.17 to the Sobolev spaces defined above.

Partial differential equations and elliptic operators

When working with partial differential equations (PDEs), there are four main aspects of
solutions that one is usually concerned with in an abstract context: existence, uniqueness,
regularity and estimates. Existence, of course, has to do with whether there is a solution
to the given problem in the chosen domain, which might be some Ck or Sobolev space;
if a solution exists, it is often good to know whether it is unique, at least up to some
equivalence class (up to a measure zero set, for instance); regularity means, roughly, the
degree of smoothness of a solution; and estimates, for our purposes, are very useful tools in
proofs.

Throughout this text, the main PDE we will be concerned with is the Yang-Mills equa-
tion. However, in the proofs of the main theorems we will need to quote results on two
other equations: the Neumann problem, and the d + d∗ operator.

For the Yang-Mills equation, we will need a very important regularity result (theorem
1.39), which will be crucial in the proof of the strong compactness theorem 3.9. This will
be discussed in more detail in the next section, when discussing non-smooth Yang-Mills
connections.

For the Neumann problem, we will need results on existence and uniqueness, as well as
an estimate; these will be used only once, in the proof of theorem 2.2, and can be found in
appendix A.

For the d + d∗ operator, we will need the following estimate, which will be used twice
in chapter 2, in the motivation and proof of theorem 2.2.

Theorem 1.26 ([Weh04], theorem 5.1). LetM be a compact manifold with (possibly empty)
boundary. For 1 < p < ∞, if A ∈ W 1,p(M,T ∗M) satisfies ∗A|∂M = 0 and H1(M ;R) = 0,
then there is a constant C such that

‖A‖1,p ≤ C(‖dA‖p + ‖d∗A‖p).

Moreover, this constant depends W 1,∞-continuously on the metric on M . This is also valid
for 1-forms with values in a finite dimensional vector space.
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All of these results are proved individually and in great detail in the book [Weh04], and
indeed have many chapters dedicated to them. However, it is worth commenting that all
of the operators associated to these equations are part of a class of special operators with
good properties, called elliptic operators. Indeed, it is often the case that saying that an
operator is elliptic is enough justification for certain results. For instance, in Uhlenbeck’s
original paper [Uhl82], after the statement of Theorem 1.3, she writes:8

“Regularity of solutions of Yang-Mills equations for connections A ∈ A1,p, 2p ≥
dimM follows rather easily from [the gauge fixing] theorem. (...) The system
of equations (...) is uniformly elliptic. Now standard techniques apply.”

Another example, from Donaldson and Kronheimer’s book [DK97], p. 55:

“The operator d + d∗ is elliptic, its kernel decomposes according to degree and
so if, as we suppose, H1(M) is zero, all the 1-forms are orthogonal to the kernel.
So elliptic theory gives inequalities

‖A‖k,2 ≤ const.
(
‖ d∗A‖k−1,2 + ‖dA‖k−1,2

)
.

...
While we have been discussing above the case of a closed base manifold, similar
ideas can be applied on manifolds with boundary or on complete manifolds,
given appropriate boundary or decay conditions.”

We will not delve into elliptic theory, as that is beyond the scope of this work, but we
point to references. For elliptic theory on compact manifolds, a good introduction which
avoids doing too much analysis can be found in [Nic07], chapter 10; a more succinct overview
which delves into the analytical aspects is [Wel80], chapter IV. For elliptic boundary value
problems (i.e. on manifolds with boundary), see [Sch95] or [H0̈7], section 20.1.

1.4 Analysis in gauge theory
With all of the analytical machinery defined, we can turn again to gauge theory. In all that
follows, let P →M be a principal G-bundle over a compact Riemannian n-manifold.

Definition 1.27 (Sobolev space of connections). Fix a smooth reference connections Ã ∈
A(P ), and note that it gives a covariant derivative ∇Ã on the associated vector bundle
ad(P )→M . Then we define the (affine) Sobolev space of connections as

Ak,p(P ) := Ã+W k,p(M,T ∗M ⊗ ad(P )),

modelled after the Sobolev space of sections W k,p(M,T ∗M ⊗ ad(P )),9 which is a vector
space.

Once again, note that since M is compact, Ak,p(P ) will not depend on the choices of
Riemannian metric and reference connection, even though the norm on W k,p(M,T ∗M ⊗
ad(P )) does depend on these choices.

8The mathematical notation in the quotes was changed to agree with the one fixed in this work, so as
not to cause confusion.

9See definition 1.14.
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Recalling the definitions given in subsection 1.2.1, in a local trivialization Φ = π × φ :
π−1(U) → U × G over some U ⊆ M we have a natural reference connections Ã = φ−1 dφ
and can represent a connection by A = Ã + α for α ∈ Ω1(U, g). The reference connection
can be used to define Ak,p(P |U ), and we affirm that the norm on W k,p(U, T ∗U ⊗ ad(P |U ))
is equal to the norm on W k,p(U, T ∗U ⊗ g). Thus we are able to locally define the Sobolev
space of connections as

Ak,p(U) := W k,p(U, T ∗U ⊗ g), (1.25)

such that
Ak,p(P |U ) = φ−1 dφ+Ak,p(U).

Definition 1.28 (Sobolev space of gauge transformations). For kp > n, we define the
Sobolev space of gauge transformations as the Sobolev space of sections of the bundle
Ad(P )→M ,10

Gk,p(P ) := W k,p(M,Ad(P )).

Similar to the smooth case, this is naturally isomorphic to the Sobolev space of G-
equivariant maps W k,p(P,G)G, and from proposition 1.21, a map u ∈ W k,p(P,G)G can
be written as u = s · exp(ξ) for s ∈ C∞(P,G)G a smooth gauge transformation, and ξ ∈
W k,p(P, g)G. On a local trivialization over U ⊆ M , a gauge transformation is represented
by a map u : U → G, and thus locally we can identify Gk,p(P |U ) with

Gk,p(U) := W k,p(U,G), (1.26)

and furthermore proposition 1.21 will yield

u−1 du ∈W k−1,p(U, T ∗U ⊗ g) = Ak−1,p(U)

for u ∈ Gk,p(U).
Just as we defined the Yang-Mills functional to be an L2-energy, we may generalize this

and define an Lq-energy of a connection A ∈ A(P ), for 1 ≤ q <∞,

Eq(A) :=
∫
M
|FA|q = ‖FA‖qq . (1.27)

We may extend these functionals to Sobolev spaces of connections, and they will be well
behaved.

Lemma 1.29. When n
2 ≤ q <∞, Eq is a continuous functional on A1,q(P ), and for every

smooth reference connection Ã there exists a constant C such that for all A = Ã + α ∈
A1,p(P ),

Eq(A)
1
q ≤ Eq(Ã)

1
q + 2 ‖α‖1,q + C ‖α‖21,q .

Proof. The curvature of A = Ã+ α is

FA = d(Ã+ α) + 1
2[(Ã+ α) ∧ (Ã+ α)]

= dÃ+ dα+ 1
2([Ã ∧ Ã] + [α ∧ α] + 2[Ã ∧ α])

10See definition 1.25.
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= FÃ + dα+ [Ã ∧ α] + 1
2[α ∧ α]

= FÃ + dÃα+ 1
2[α ∧ α].

From (1.4), we know that for any X,Y ∈ TM

dÃα(X,Y ) = ∇Ãα(X,Y )−∇Ãα(Y,X),

which implies
∣∣ dÃα∣∣ ≤ 2

∣∣∣∇Ãα∣∣∣.
Writing α = αi dxi on a local frame {∂xi},

[α ∧ α] =
∑
i,j

[αi, αj ]dxi dxj =
∑
i<j

2[αi, αj ] dxi dxj (1.28)

and so ∣∣∣∣12[α ∧ α]
∣∣∣∣2 =

∑
i<j

|[αi, αj ]|2
(∗)
≤
∑
i<j

|αi|2 |αj |2 ≤
∑
i,j

|αi|2 |αj |2 = |α|4 ,

where we used (1.21) in (∗), and then∥∥∥∥1
2[α ∧ α]

∥∥∥∥
q

=
(∫ ∣∣∣∣12[α ∧ α]

∣∣∣∣q) 1
q

≤
(∫
|α|2q

) 1
q

= ‖α‖22q .

Finally,

∣∣∣Eq(A)
1
q − Eq(Ã)

1
q

∣∣∣ =
∣∣∣∣∣
∥∥∥∥FÃ + dÃα+ 1

2[α ∧ α]
∥∥∥∥
q
−
∥∥FÃ∥∥q

∣∣∣∣∣
≤
∣∣∣∣∣∥∥dÃα∥∥q +

∥∥∥∥1
2[α ∧ α]

∥∥∥∥
q

∣∣∣∣∣
≤ 2

∥∥∥∇Ãα∥∥∥
q

+ ‖α‖22q

≤ 2 ‖α‖1,q + CW ‖α‖21,q ,

where the last inequality follows because of the embedding W 1,q ↪→ L2p which holds with
the assumption q ≥ n

2 .

Locally, the energy of a connection A ∈ A1,q(U) is denoted the same way and given by

Eq(A) = ‖FA‖qq(U) ,

where FA ∈ Lq(U,Λ2T ∗U⊗g) is the local representative of the curvature. Then the estimate
in the previous lemma becomes

Eq(A)
1
q = ‖FA‖q ≤ 2 ‖A‖1,q + C ‖A‖21,q . (1.29)

We already know that the group of gauge transformations is indeed a group; we now
prove that the group operations are continuous, and therefore the Gk,p are topological
groups, for kp > n.
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Lemma 1.30. Let k ∈ N and 1 ≤ p < ∞ be such that kp > n; then group multiplication
and inversion are continuous maps on Gk,p(P ).

Proof. Let (Uα, τα)α∈A be a bundle atlas of Ad(P ) → M . By definition, a gauge trans-
formation u ∈ Gk,p(P ) is a continuous section of this bundle such that for all α ∈ A,
uα := τα ◦ u : Uα → G is in W k,p(Uα, G). If (Vβ, φβ)β∈B is an atlas of G, then this means
that φβ ◦ uα ∈ W k,p(u−1

α (Vβ),R`), for all β ∈ B and ` the dimension of G. We will prove
the continuity of the inversion map, and the multiplication will be analogous.

Let i : G→ G be the inversion map, i(g) = g−1. Then u−1 can be defined by (u−1)α =
i ◦ uα for all α ∈ A. We would like to show that (u−1)α ∈W k,p(Uα, G). For γ ∈ B,

φγ ◦ (u−1)α = φγ ◦ i ◦ uα = (φγ ◦ i ◦ φ−1
β ) ◦ (φβ ◦ uα).

Now we can use Lemma 1.23 with f = φγ ◦ i ◦φ−1
β ∈ C∞(φβ(Vβ) ⊆ R`,R`) to conclude that

φγ ◦ (u−1)α ∈ W k,p((u−1)−1
α (Vγ),R`). Since α ∈ A and γ ∈ B were arbitrary, this proves

u−1 ∈ Gk,p(P ).

Moreover, the gauge action on the appropriate Sobolev space of connections is continu-
ous.

Lemma 1.31. Let k ∈ N and 1 ≤ p <∞ be such that kp > n; then the gauge action

Gk,p(P )×Ak−1,p(P )→ Ak−1,p(P )
(u,A) 7→ u∗A

is a continuous map. Moreover, for every trivializing neighbourhood U ⊆ M there is a
constant C such that for u ∈ Gk,p(U) and A ∈ Ak−1,p(U) the following holds:

‖u∗A‖k−1,p ≤
∥∥∥u−1 du

∥∥∥
k−1,p

+ C ‖A‖k−1,p

(
1 +

∥∥∥u−1 du
∥∥∥
k−2,2p

)k−1
.

Proof. First, note that it suffices to prove continuity of the action on an arbitrary trivializing
neighbourhood, say U ⊆ M . We wish to prove that for two sequences (ui) ⊆ Gk,p(U) and
(Ai) ⊆ Ak−1,p(U) converging to u ∈ Gk,p(U) and A ∈ Ak−1,p(U), respectively,

(ui)−1Aiui + (ui)−1 dui = u∗iAi −→ u∗A.

We treat the cases k = 1 and k ≥ 2 separately. In both cases, note that by definition
(lemma 1.22), (ui) converges to u in C0(U,G) and (ui)−1 dui

(k−1,p)−→ u−1 du.
For k = 1, the inequality is simply

‖u∗A‖p(U) ≤
∥∥∥u−1 du

∥∥∥
p(U)

+
∥∥∥u−1Au

∥∥∥
p(U)

,

which is just the triangle inequality for the norm of the gauge action. Then when looking
at ‖u∗A− u∗iAi‖p(U), we have shown that the first term converges, and the second term∥∥∥u−1Au− u−1

i Aiui
∥∥∥
p
≤
∥∥∥u−1Au− u−1Aiu

∥∥∥
p

+
∥∥∥u−1Aiu− u−1

i Aiui
∥∥∥
p

≤ ‖A−Ai‖p + ‖Adu−Adui‖ ‖Ai‖p
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will also converge because of the C0-convergence ui → u. For the second inequality, we used
the invariante of the metric on g under conjugation and the fact that Adg is a bounded
linear operator on g.

For k ≥ 2, once again writing

‖u∗A‖k−1,p(U) ≤
∥∥∥u−1 du

∥∥∥
k−1,p(U)

+
∥∥∥u−1Au

∥∥∥
k−1,p(U)

,

the first term is known to converge, and for the second term we use lemma 1.32 below with
τ = A, τi = Ai and ` = k − 1 to get convergence and an estimate which yields the desired
inequality.

Lemma 1.32. Let U ⊆M be a trivializing neighbourhood of P →M , 0 ≤ ` ≤ k be integers
and 1 ≤ p <∞ be such that kp > n and p ≥ n

2 . Then the following holds.
Let (ui) ⊆ Gk,p(U) and (τi) ⊆W `,p(Λ`T ∗U⊗g) be sequences that converge to u ∈ Gk,p(U)

and τ ∈W `,p(Λ`T ∗U ⊗ g), respectively and in the appropriate topologies. Then

(ui)−1τiui
`,p−→ u−1τu.

Moreover, there exists a constant C such that

∥∥∥u−1τu
∥∥∥
`,p
≤ C ‖τ‖`,p

(
1 +

∥∥∥u−1 du
∥∥∥
`−1,2p

)`
.

Proof. The proof will go through by induction on `.
For ` = 0, the estimate is provided by the invariance of the metric on g under conjugation

and is simply ∥∥∥u−1τu
∥∥∥
p

= ‖τ‖p .

Convergence follows from the C0 convergence of the ui (lemma 1.22).
Assume the lemma to hold for `− 1 ≥ 0. The case ` = 0 already provides convergence

for the Lp term in the norm and it remains to show that the derivative, which we write
using (1.24) and du−1 · u = −u−1 du,

∇(u−1
i τiui) = u−1

i ∇τiui − [u−1
i dui, u−1

i τiui],

converges to ∇(u−1τu) in the W `−1,p-norm. The first term in the derivative can be seen to
converge from the induction hypothesis, using the lemma for ∇τ and `− 1. For the second
term, the Lie bracket, note the calculation below,

‖[u−1
i dui, u−1

i τiui]− [u−1 du, u−1τu]‖`−1,p

=
∥∥∥[u−1

i dui − u−1 du, u−1
i τiui] + [u−1 du, u−1

i τiui − u−1τu]
∥∥∥
`−1,p

≤
∥∥∥[u−1

i dui − u−1 du, u−1
i τiui]

∥∥∥
`−1,p

+
∥∥∥[u−1 du, u−1

i τiui − u−1τu]
∥∥∥
`−1,p

(1)
≤
∥∥∥∣∣∣u−1

i dui − u−1 du
∣∣∣ · ∣∣∣u−1

i τiui
∣∣∣∥∥∥
`−1,p

+
∥∥∥∣∣∣u−1 du

∣∣∣ · ∣∣∣u−1
i τiui − u−1τu

∣∣∣∥∥∥
`−1,p

(2)
≤
∥∥∥u−1

i dui − u−1 du
∥∥∥
`−1,2p

∥∥∥u−1
i τiui

∥∥∥
`−1,2p

+
∥∥∥u−1 du

∥∥∥
`−1,2p

∥∥∥u−1
i τiui − u−1τu

∥∥∥
`−1,2p

29



1.4. Analysis in gauge theory Chapter 1. Gauge theory

(3)
≤ CW

∥∥∥u−1
i dui − u−1 du

∥∥∥
`,p︸ ︷︷ ︸

(4)
−→0

∥∥∥u−1
i τiui

∥∥∥
`−1,2p︸ ︷︷ ︸

(5)
−→‖u−1τu‖`−1,2p

+ C ′W

∥∥∥u−1 du
∥∥∥
`,p︸ ︷︷ ︸

const.

∥∥∥u−1
i τiui − u−1τu

∥∥∥
`−1,2p︸ ︷︷ ︸

(6)
−→0

−→ 0,

where (1) follows from (1.20); (2) is lemma A.8 with r = s = 2p; (3) is the Sobolev
embedding W `,p ↪→ W `−1,2p which is valid for p ≥ n

2 ; (4) follows from Lemma 1.22, noting
that ` ≤ k − 1; (5) and (6) follow taking the lemma with `− 1 (which is valid by induction
hypothesis) but with (k − 1, 2p) instead of (k, p), since by the same embedding W `,p ↪→
W `−1,2p, the original sequence (τi) also converges in W `−1,2p-norm and (ui) also converges
in Gk−1,2p. This proves convergence for ` from `− 1.

For the estimate, assume it valid for `− 1. Then, denoting by C all constants which do
not come from a Sobolev estimate, and by CW all of the ones that do,∥∥∥u−1τu

∥∥∥
`,p
≤
∥∥∥u−1τu

∥∥∥
p

+
∥∥∥∇(u−1τu)

∥∥∥
`−1,p

(1)
≤ ‖τ‖p +

∥∥∥u−1∇τu
∥∥∥
`−1,p

+
∥∥∥u−1 du

∥∥∥
`−1,2p

∥∥∥u−1τu
∥∥∥
`−1,2p

(2)
≤ ‖τ‖p + C ‖∇τ‖`−1,p

(
1 +

∥∥∥u−1 du
∥∥∥
`−2,2p

)`−1

+
∥∥∥u−1 du

∥∥∥
`−1,2p

C ‖τ‖`−1,2p

(
1 +

∥∥∥u−1 du
∥∥∥
`−2,4p

)`−1

≤ C ‖τ‖`,p
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)`−1

+
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)
CW ‖τ‖`,p

(
1 + CW

∥∥∥u−1 du
∥∥∥
`−1,2p

)`−1

≤ C ‖τ‖`,p
(

1 +
∥∥∥u−1 du

∥∥∥
`−1,2p

)`
,

where (1) follows from arguments similar to those already used for the convergence above, (2)
is the induction hypothesis, and the Sobolev estimates for W `,p ↪→W `−1,2p and W `−1,2p ↪→
W `−2,4p hold due to p ≥ n

2 .

The following results will be critical for proving the weak and strong compactness the-
orems.

Lemma 1.33. Let k ∈ N and 1 ≤ p < ∞ be such that kp > n and p > n
2 . Let (Ai)i∈N ⊆

Ak−1,p(P ) and (ui)i∈N ⊆ Gk,p(P ) be two sequences such that both
∥∥Ai∥∥k−1,p and

∥∥ui∗Ai∥∥k−1,p
are uniformly bounded. Then the following holds:

(i) For every trivialization over some domain Uα ⊆ M , there is a uniform bound on∥∥(uiα)−1 duiα
∥∥
k−1,p(Uα).

(ii) There exists a subsequence of (ui) that converges in the C0-topology to some limit in
Gk,p(P ).

Proof. See [Weh04], lemma A.8.

30



Chapter 1. Gauge theory 1.4. Analysis in gauge theory

Lemma 1.34. Let 1 < p <∞ and k ∈ N0 such that kp > n and p ≥ n
2 . Let A,A

′ ∈ Ak,p(P ).
If there is a continuous gauge transformation u such that A′ = u∗A, then u ∈ Gk+1,p(P ).

Proof. Look at the local representatives on some chart U ⊆ M , such that A,A′ ∈ Ak,p(U)
and u ∈ C0(U,G), then write A′ = u−1Au+u−1 du (the gauge action looks the same locally,
see lemma 1.11). In case k = 0, it suffices to look at∥∥∥u−1 du

∥∥∥
p
≤
∥∥∥A′ − u−1Au

∥∥∥
p
≤
∥∥A′∥∥p + ‖A‖p ,

where in the second inequality we used that the inner product on g is Ad-invariant. Then
u−1 du ∈ Lp(U, T ∗U ⊗ g), and so by proposition 1.21, u ∈ G1,p(P ).

For k > 1, we will use the estimate in lemma 1.32 above. First, note that for all j ≤ k,∥∥∥u−1 du
∥∥∥

2jp
≤
∥∥A′∥∥2jp + ‖A‖2jp ≤

∥∥A′∥∥k,p + ‖A‖k,p

since kp > n > 2j−1
2j n. Then,∥∥∥u−1 du

∥∥∥
k,p
≤
∥∥A′∥∥k,p +

∥∥∥u−1Au
∥∥∥
k,p
,

and from lemma 1.32,
∥∥u−1Au

∥∥
k,p is bounded by ‖A‖k,p and

∥∥u−1 du
∥∥
k−1,2p. The norm

‖A′‖k,p is finite by assumption, and we bound the second term as follows: we iterate the
estimate above, using the embeddings

W k,p ↪→W k−1,2p ↪→W k−2,4p ↪→ · · · ↪→W k−j,2jp

to bound the ‖A′‖ term, which hold since p ≥ n
2 ≥

n
2j for j ≥ 1, and using lemma 1.32

to bound the
∥∥u−1Au

∥∥ term. This process will finally end with
∥∥u−1 du

∥∥
k,p bounded by

a finite amount of terms ‖A′‖k,p and
∥∥u−1 du

∥∥
2kp, which we showed above is finite. Thus,

u ∈ Gk+1,p(P ).

That is, bounds on the connection forms give bounds on the gauge transformations
relating them.

Non-smooth Yang-Mills connections

In the smooth case, we defined the Yang-Mills functional (1.16), showed that critical points
satisfied the weak Yang-Mills equation and said that smooth solutions to the weak equation
also satisfy the strong Yang-Mills equation with boundary condition. It is possible to extend
the functional to connections with less regularity as we have been discussing for the past
section. For YM to be well defined, we need FA of class L2. If A ∈ A1,p(P ), observing the
formula for the curvature

FA = dA+ 1
2[A ∧A],

we see that dA ∈ Lp(P, g), so we need p ≥ 2, and ‖[A ∧A]‖2 ≤ ‖A‖
2
4, hence we need the

Sobolev embedding W 1,p ↪→ L4, which gives the condition p ≥ 4n
4+n .

Definition 1.35. For 1 ≤ p < ∞ such that p > n
2 , and in case n = 2 assume in addition

p ≥ 4
3 , a connection A ∈ A1,p(P ) is called weak Yang-Mills if it satisfies∫

M
〈FA, dAβ〉 = 0, ∀β ∈ Ω1(M, ad(P )). (1.30)
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This is, in fact, even weaker than the functional itself, as the functional might not be
defined or finite for a weak Yang-Mills connection: we do not explicitly ask for p ≥ 2, and
while p ≥ n

4 guarantees this for n ≥ 4, this might fail if n ≤ 3; moreover, the condition
p ≥ 4n

4+n fails for n = 3. What the conditions in the definition guarantee is that the weak
equation is well defined, 〈FA, dAβ〉 ∈ L1(M). With p ≥ n

2 , the embedding W 1,p ↪→ L2p

guarantees that [A ∧ A] is in Lp, and therefore so is the curvature. Then we need dAβ of
class Lp∗, for

1
p∗

:= 1− 1
p
.

Since β is smooth, we need W 1,p ↪→ Lp∗ for A ∈ A1,p, and the condition for this is p ≥ 2n
n+1 ;

for n = 1 this is met due to p ≥ 1, for n ≥ 3 this is met due to p ≥ n
2 ≥

2n
n+1 , and then for

n = 2 we need to assume p ≥ 4
3 .

The following lemma shows that (1.30) is preserved under gauge transformations.

Lemma 1.36. Let A ∈ A1,p(P ) be a weak Yang-Mills connection, and fix a compact set
K ⊆ M . Then for every gauge transformation u ∈ G2,p(P |K), u∗A ∈ A1,p(P |K) is also
weak Yang-Mills.

Proof. First, we show that (1.30) still holds if we the test forms are not smooth but instead
β ∈W 2,p(M, ad(P )). Since FA ∈ Lp, we check that dAβ ∈ Lp∗. From the local formula

(dAβ)α = dβα + [Aα ∧ βα],

the first term is in Lp∗ since dβα ∈W 1,p and W 1,p ↪→ Lp∗, and then

‖[Aα ∧ βα]‖p∗ ≤ c ‖|Aα| |βα|‖p∗ ≤ c ‖Aα‖p∗ ‖βα‖∞ ≤ CW ‖Aα‖1,p ‖βα‖2,p ,

where W 2,p ↪→ C0 holds for p > n
2 .

Now, let K ⊆ M be compact and let u ∈ G2,p(P |K). For a smooth test 1-form β
with support in K, we define β̃ := uβu−1 and extend it to 0 outside K, such that β̃ ∈
W 2,p(K, ad(P |K)).11 We have shown that (1.30) holds for such β̃, and thus∫

M
〈Fu∗A, du∗Aβ〉 =

∫
M
〈u−1FAu, u

−1 dAβ̃u〉 =
∫
M
〈FA, dAβ̃〉 = 0.

This follows from the calculation below, where we use (1.23),(
dA(uβu−1)

)
α

= d(Aduα βα) + [Aα ∧ uαβαu−1
α ]

= [ duα · u−1
α ∧ uαβαu−1

α ] + Aduα dβα + u−1
α [uαAαu−1

α ∧ βα]uα
= uα dβαu−1

α + uα[u−1
α duα ∧ βα]u−1

α + u−1
α [uαAαu−1

α ∧ βα]uα
=
(
u( du∗Aβ)u−1

)
α
.

Next, we show that for sufficient regularity, the weak and strong Yang-Mills equations
are equivalent, and this implies the result in the smooth case.

11Indeed, see lemmata 1.30 and 1.32.
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Lemma 1.37. Let 1 ≤ p < ∞ be such that p ≥ 2n
n+2 and let k ∈ N. Fix a con-

nection A ∈ A1,p(P ), and two equivariant forms ω ∈ W 1,p(M,ΛkT ∗M ⊗ ad(P )) and
γ ∈ Lp(M,Λk−1T ∗M ⊗ ad(P )). Then the following are equivalent:

(i) For all smooth η ∈ Ω1(M, ad(P )),∫
M
〈ω, dAη〉 =

∫
M
〈γ, η〉.

(ii) {
d∗Aω = γ,

∗ω|∂M = 0.

Proof. Consider the calculation below,∫
M
〈ω, dAη〉 =

∫
M
〈ω, dη〉+

∫
M
〈ω, [A ∧ η]〉

=
∫
M
〈η, d∗ω〉+

∫
M

d〈η ∧ ∗ω〉 ±
∫
M
〈∗ω ∧ [A ∧ η]〉

=
∫
M
〈d∗ω, η〉+

∫
∂M
〈η ∧ ∗ω〉 ±

∫
M
〈[∗ω ∧A] ∧ η〉

=
∫
M
〈d∗ω, η〉 − (−1)(n−k)(k−1)

∫
M
〈∗[A ∧ ∗ω], η〉+

∫
∂M
〈η ∧ ∗ω〉

=
∫
M
〈d∗Aω, η〉+

∫
∂M
〈η ∧ ∗ω〉

where we have used Stokes’s theorem and property (1.20) of the inner product on g-valued
forms. We did not keep track of the sign in front of the

∫
〈ω, [A ∧ η]〉 term when writing

down the calculation because it would become too cumbersome, but it can be checked that
we obtain the correct sign. Moreover, the hypothesis p ≥ 2n

n+2 guaranteesW 1,p ↪→ L2, which
is needed for the integral of 〈∗ω ∧ [A ∧ η]〉 to be well defined.

We use this identity to prove the lemma. If we assume (ii), then it directly gives (i).
Now assume (i): testing with arbitrary η that vanish at the boundary we get d∗Aω = γ, and
this further implies that the boundary term is zero for all η, which proves ∗ω|∂M = 0.

The weak Yang-Mills equation is well behaved under limits, weak and strong.

Lemma 1.38. Let 1 < p <∞ such that p > n
2 , and in case n = 2 let also p ≥ 4

3 .

(i) If a sequence of weak Yang-Mills connections in A1,p(P ) converges strongly in the
W 1,p topology, the limit is also weak Yang-Mills.

(ii) If in case n = 2 there is strict inequality p > 4
3 , for a sequence of weak Yang-Mills

connections in A1,p(P ) with Lp-bound on curvature which converges weakly in theW 1,p

topology, the limit connection is also weak Yang-Mills.

Proof. We will prove (i) and (ii) at the same time, commenting where the extra assumptions
for (ii) are needed.12 Remember that strong convergence implies weak convergence.

12Some steps would be more straightforward if we only wished to prove the case of strong convergence,
however we do not comment on those.
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Suppose (Ai) ⊆ A1,p(P ) is a sequence which converges weakly to A ∈ A1,p(P ) such that
each Ai is weak Yang-Mills. Note that if the convergence is strong, then there is a uniform
bound on ‖FAi‖p a priori; if the convergence is weak, we must assume the uniform bound.
Then, using the Cauchy-Schwartz ineqality and Hölder’s inequality for 1 = 1

p + 1
p∗ , we prove

that A is also weak Yang-Mills, calculating for any β ∈ Ω1(M, ad(P )):∫
M
〈FA, dAβ〉 =

∫
M
〈FA, dAβ〉 −

∫
M
〈FAi , dAiβ〉

=
∫
M
〈FA − FAi , dAβ〉+

∫
M
〈FAi , dAβ − dAiβ〉

≤
∫
M
〈FA − FAi , dAβ〉+

∫
M
|〈FAi , dAβ − dAiβ〉|

≤
∫
M
〈FA − FAi , dAβ〉+

∫
M
|FAi | · | dAβ − dAiβ|

≤
∫
M
〈FA − FAi , dAβ〉︸ ︷︷ ︸

−→0

+ ‖FAi‖p︸ ︷︷ ︸
bounded

‖ dAβ − dAiβ‖p∗︸ ︷︷ ︸
−→0

−→ 0.

The first limit is the weak Lp-convergence of FAi , and we check weak convergence of
local representatives on all bundle charts Uα, (FAi)α = dAiα + [Aiα ∧ Aiα]. For the weak
convergence of the dAiα term, test with any β ∈ Ω2(Uα, g) that vanishes on ∂Uα,∫

Uα
〈 dAiα, β〉 =

∫
Uα
〈Aiα, d∗β〉

i→∞−→
∫
Uα
〈Aα, d∗β〉 =

∫
Uα
〈 dAα, β〉

then note that the limit holds for all β ∈ Ω2(Uα, g) since these can be Lp∗-approximated
by such test forms which vanish on the boundary.13 For the [Aiα ∧ Aiα] term, use Hölder’s
inequality for 1

p = 1
2p + 1

2p ,∥∥∥[Aα ∧Aα]− [Aiα ∧Aiα]
∥∥∥
p
≤
∥∥∥Aα −Aiα∥∥∥2p

‖Aα‖2p +
∥∥∥Aiα∥∥∥2p

∥∥∥Aα −Aiα∥∥∥2p
−→ 0,

and this converges strongly because of the compact Sobolev embedding W 1,p ↪→ L2p guar-
anteed by p > n

2 .
As for the second limit, we again look at local representatives,

( dAβ − dAiβ)α = [(Aα −Aiα) ∧ βα],

and obtain convergence in all bundle charts observing the following:

‖(dAβ − dAiβ)α‖p∗ ≤
∥∥∥Aα −Aiα∥∥∥

p∗
· ‖βα‖∞ −→ 0.

This limit follows from the continuous embedding W 1,p ↪→ Lp∗ if the original sequence con-
verged strongly in A1,p, however if we only had weak convergence the additional hypothesis
p > 4

3 is needed to ensure that the embedding is compact and therefore there is strong
convergence in Lp∗.

13Writing βi for the test forms vanishing on ∂Uα approximating β, using Hölder’s inequality and noting
that the compact embedding W 1,p ↪→ Lp gives a uniform bound on

∥∥Aiα∥∥p, the boundary term coming from
Stokes’s theorem will be bounded by

∥∥Aiα∥∥p ‖β − βi‖p∗ → 0.

34



Chapter 1. Gauge theory 1.4. Analysis in gauge theory

Finally, we state without proof the main result we will need on the regularity of Yang-
Mills connections.

Proposition 1.39. LetM be a compact n-manifold, and let Ã ∈ A(P ) be a smooth reference
connection. Let 1 < p < ∞ and k ∈ N be such that either kp > n, or if k = 1 then
n
2 < p < n, and in either case if n = 2, then p ≥ 4

3 . Moreover, let q := p in the first case or
q := np

2n−p in the second case. Then there exists a constant C with the following significance:
Let A = Ã+ α ∈ Ak,p(P ) be a connection that satisfies{

d∗
Ã
α = 0,

∗α|∂M = 0,

and for all smooth β ∈ Ω1(M, ad(P ))∫
M
〈FA, dAβ〉 = 0.

Then A ∈ Ak+1,q(P ) and

‖α‖k+1,q ≤ C
(
1 + ‖α‖k,p + ‖α‖3k,p

)
.

Moreover, the constant C can be chosen such that it depends W k+1,∞-continuously on
the metric.

Proof. See [Weh04], corollary 9.6.

The first pair of equations in this proposition may seem arbitrary, but we will meet them
again in the next chapter. This result essentially proves the regularity of the Yang-Mills
operator in Coulomb gauge.
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Chapter 2

The gauge fixing lemma

The main theorem in this chapter is very easy to state in simple terms: there always exists
a good gauge locally. In the first section we motivate the idea behind gauge fixing and show
an example of a good gauge in the simple case of G abelian andM a closed manifold, before
giving the main definition 2.1 of what a “good” gauge is in the present text, and explaining
how the main theorem 2.2 follows from a similar result in Euclidean space. Then, in the
second section, we prove the result on a chart.

The gauge fixing lemma will be essential for the proofs of the compactness theorems in
the next chapter.

2.1 Motivation and main result

Flat connections, Coulomb gauge and Hodge theory

In a problem that is gauge invariant, solutions come in families (equivalence classes) and
one may wish to choose representatives for some reason. For instance, it may simplify
calculations, as in the choice of gauge ∇·A = 0 for the vector potential in electromagnetism;
it may minimize some norm, or choose some specific representative that has some other
important meaning.

If a connection is flat, then we know that we may choose a trivialization such that
the connection matrix is identically zero, that is, ∇A = d is the canonical or product
connection on a trivial vector bundle. This may be done with parallel transport, by first
choosing a frame over a point p and then extending this frame in each direction on the
manifold. Similarly, on a holomorphic vector bundle one may wish to choose trivializations
such that the partial connection ∂α = ∂ + α has α = 0, that is, choose a gauge such that
the flat-in-the-(0,1)-direction connection is the canonical one.1

So if a connection is somehow flat, one obtains local gauges such that the connection
matrix is zero. If instead of flatness we have small curvature, can one find a correspondingly
small connection matrix? In the case of the abelian U(1) gauge group,2 we may use Hodge
theory. Assume M is a simply connected closed base manifold for the time being, and let
A be a connection on a trivial U(1)-bundle over M ; recall that the Lie algebra of U(1) is
iR. The curvature of the connection is simply FA = dA, and any change A 7→ A+ idf for
a smooth real valued function leaves the curvature unchanged. If u : M → U(1) is a gauge

1For the detailed statements and proofs of these results, see [DK97], section 2.2
2This corresponds to classical electromagnetism, see appendix ??.
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transformation, then it may be written as u(x) = exp(if(x)) and

u−1 du = exp(−if)d exp(if) = i df,

so that indeed A 7→ A+ idf is a gauge transformation. We want to minimize the L2-norm
of the connection ∫

M
|A|2

along this gauge equivalent family. The Euler-Lagrange equation for this functional is

d∗A = 0.

Indeed,

d
dt

∣∣∣∣
t=0
〈A+ itdf,A+ it df〉 = 2i〈 df,A〉

= 2i〈f, d∗A〉 = 0, ∀ f ∈ C∞(M)

implies that d∗A = 0. Thus we wish to find f such that Ã := A+ idf is gauge equivalent
to A, and

d∗Ã = d∗(A+ idf) = 0.
This is equivalent to

∆f = −i d∗A.

From the Hodge decomposition theorem,3 we know that there is a solution f if and only if
d∗A is orthogonal to the kernel of the Laplacian, which in this case consists of the constant
functions. So what we want is that

∫
−1 · i d∗A = 0, or

∫
d∗A = 0. But∫

M
d∗A = ±

∫
M
∗ d ∗A ∗ 1 = ±

∫
M

d ∗A = 0

by Stokes’s theorem, since we are assuming that M has no boundary. Therefore we find
a solution f . The proof that this critical point of the functional is in fact a minimum is
a little more involved and we skip it, as there seems to be no insight to be gained from it
in this context. More interesting than that is the fact that d + d∗ is an elliptic operator,
which provides the following estimate for some constant C (since M is simply connected
and so H1(M) = 0)4

‖A‖k,p ≤ C
(
‖ dA‖k−1,p + ‖ d∗A‖k−1,p

)
.

When the gauge is fixed such that d∗A = 0, and in the abelian case with FA = dA, we
then have

‖A‖k,p ≤ C ‖FA‖k−1,p ,

and so we showed that there exists an optimal gauge choice such that it minimizes the norm
of the connection matrix, and moreover this norm is bounded by the norm of the curvature,
such that small curvature leads to small connection, as we wished. As a sanity check, note
that if the connection is flat, then the Hodge gauge indeed forces the connection matrix to
be zero.

3See e.g. [War83], theorem 6.8, or [DK97], theorem (A.7), which they call “the Fredholm alternative”.
4Alternatively, see theorem 1.26.

37



2.1. Motivation and main result Chapter 2. Gauge fixing

Uhlenbeck’s gauge fixing lemma

In the discussion above we considered the case of an abelian gauge group action on a
trivial bundle over a simply connected compact manifold without boundary. Each of these
hypotheses were important for this straightforward development: the vanishing bracket let
us write the linear equation FA = dA; the triviality of the bundle let us work with the local
representation of connections and gauge transformations; H1(M) = 0 and compactness were
needed for the elliptic estimate, and the empty boundary hypothesis was used for Stokes’s
theorem and to avoid dealing with (elliptic) boundary conditions. What we want now is
for a similar result to hold locally on any smooth manifold with a non-abelian gauge group
action on a bundle that is not necessarily trivial. Of course, if the result is local we may
choose trivializing neighbourhoods and essentially work on a trivial bundle over the unit ball
on Euclidean space. For elliptic theory to hold, we need the closed ball for compactness, but
now the boundary is not empty and we will need a suitable boundary condition. Finally, for
a non-abelian gauge group, the curvature is FA = dA+ 1

2 [A ∧A] which leads to non-linear
equations. We assert that the gauge we used above, supplemented with a suitable boundary
condition, is still an interesting and profitable gauge choice. Indeed, on the closed ball, the
Euler-Lagrange equations for the

∫
B |A|

2 functional are 5{
d∗A = 0,
∗A|∂U = 0.

Issues can arise when directly minimizing the norm this way, as the gauges constructed can
have singularities; however, in the small curvature regime this is not a problem.6 As we
shall see later, these equations also fit in nicely with the Yang-Mills equation and yield an
elliptic system. Finally, we would once again like for bounds on curvature to translate into
bounds on the connection matrix. With all of these considerations, the following definition
should feel natural:

Definition 2.1 (Uhlenbeck gauge). Let (M, g) be a Riemannian manifold, let G be a
compact Lie group, and let P →M be a principal G-bundle.

Let U ⊆M be a trivializing neighbourhood of P . We say that a connection A ∈ A1,p(U)
is in Uhlenbeck gauge with constant C̃ if it satisfies{

d∗A = 0 on U,
∗A|∂U = 0 on ∂U,

(2.1)

and

‖A‖1,s ≤ C̃ ‖FA‖s (2.2)

for s = p or q, q as in the following theorem.

Our main theorem is then on the local existence of Uhlenbeck gauges.

Theorem 2.2 (Gauge fixing). Suppose that 1 < q ≤ p <∞ such that q ≥ n
2 , p >

n
2 , and in

case q < n, p ≤ nq
n−q . Then there exist constants C̃ and ε̃ > 0 such that the following holds:

For every point in M , there is a neighbourhood U ⊆ M such that for every connection
A ∈ A1,p(U) with Eq(A) ≤ ε̃ there exists a gauge transformation u ∈ G2,p(U) such that
Ã := u∗A is in Uhlenbeck gauge. Note that

∣∣FÃ∣∣ = |FA|.
5See lemma 1.37.
6See [FU91], the comment right before Lemma 8.2 on page 119.
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Originally, this theorem was proved by Uhlenbeck in 1982 for n > p ≥ n
2 and q = n

2 on
the unit ball; it is theorem 2.1 in [Uhl82]. The condition p > n

2 guarantees that the gauge
group is indeed a topological group with continuous action. Nevertheless, it is possible to
extend the result for p = n

2 by a weak-limit argument.

Corollary 2.3. The theorem also holds for p = q = n
2 if n ≥ 3.

Proof. See [Weh04], proof of remark 6.2a), page 105.

It suffices to prove the theorem on a coordinate chart, since the result is local and the
Uhlenbeck gauge conditions are invariant under change of coordinates on the base manifold.
Thus, we now state the theorem on an open set in Euclidean (half) space, which we will
prove in the next section, and then show how this implies theorem 2.2.

Proposition 2.4. Let G be a compact Lie group and B ⊆ Rn the open unit ball or the
“egg” 7. Suppose that 1 < q ≤ p <∞ such that q ≥ n

2 , p >
n
2 , and in case q < n, p ≤ nq

n−q .
Then there exist constants C̃, ε̃ > 0 and δ > 0 such that the following holds:

If B is equipped with a smooth metric g such that ‖g − 1‖2,∞ ≤ δ then for every con-
nection A ∈ A1,p(B) with E(A) ≤ ε̃ there exists a gauge transformation u ∈ G2,p(B) such
that u∗A is in Uhlenbeck gauge with respect to the metric g and with constant C̃.

Proof of Theorem 2.2. Take δ > 0 from Proposition 2.4, and take B as follows:

• For p in the interior of M , B ⊆ Rn is the unit ball around the origin.

• For p ∈ ∂M , the “egg” B is an open subset of the half space Hn = {(x1, . . . , xn) ∈
Rn : x1 ≥ 0} that contains a neighbourhood of 0 in ∂Hn, is starshaped relative to 0
and has smooth boundary.8

For p ∈ M , choose a coordinate chart around p, ψ : V → M for V ⊆ Rn or Hn, such that
ψ∗g(0) = 1.9 For some small σ ∈ (0, 1], σB ⊆ V and we can restrict ψ : σB → M . To get
a chart on B, consider ψσ := ψ ◦ σ : B →M . The pullback metric is ψ∗σg(z) = σ2ψ∗g(σz);
indeed,

ψ∗σg(v, w)(z) = (ψ ◦ σ)∗g(v, w)(z)
= ψ∗g( dzσv, dzσw)(σz)
= σ2ψ∗g(v, w)(σz).

Note that ψ∗σg(0) = σ2
1, and so this metric is not close to the identity, but if we sim-

ply rescale by σ−2, then σ−2ψ∗σg(z) = ψ∗g(σz) is W 2,∞-close to the identity, as the first
derivative is ∇(ψ∗g ◦ σ)(z) = σ∇(ψ∗g)(σz), and the second derivative is

∇2(σ−2ψ∗σg)(z) = ∇2(ψ∗g ◦ σ)(z)
= ∇(σ(∇ψ∗g ◦ σ))(z)
= σ2∇2ψ∗g(σz).

7See definition below.
8This type of domain is called an “egg squeezed to the boundary” in [Weh04].
9Note that this is always possible, as you can simply choose an orthonormal basis on TpM and then

parallel transport it to get a local frame over a contractible domain.
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Then, because ψ∗g is smooth on the closure of σB (which is compact), these derivatives are
bounded and can be made small by the choice of σ.

Now, having chosen σ such that
∥∥σ−2ψ∗σg − 1

∥∥
2,∞ ≤ δ, Proposition 2.4 holds on B with

metric gB := σ−2ψ∗σg. However, in order to obtain the result on U := ψ(σB) ⊆M with the
intended metric g, we need to show that the result still holds on B with metric σ2gB = ψ∗σg.

On the effect of the conformal change of metric on A, G and condition (2.1), note that
over a compact manifold the metrics are equivalent and so the spaces are the same, and
as for the equations, the change of metric affects the Hodge star, however only by possible
conformal scalings, and the equations still hold.

What is left is to check that the bounds (2.2) are still valid with the same constant C̃.
First, we look at the effect of the rescaling on the norm of the curvature:

‖FA‖qσ2g;q =
∫
B
|FA|qσ2g

√
det(σ2g) dnx

=
∫
B

(σ−2gikσ−2gjl(FA)ij(FA)kl)
q
2

√
σ2n det(g) dnx

= σn−2q ‖FA‖qg;q .

For q as in the theorem, this is the Lq-energy Eσ2g; q(A). If it is bounded Eσ2g; q(A) ≤ ε̃,
then since q ≥ n

2 and σ ≤ 1, Eg; q(A) ≤ σ2q−nε̃ gives Eg; q(A) ≤ ε̃. The calculation for the
Lp-norm is the same. For the W 1,p-norm of a connection A ∈ A1,p(B), we first have the
straightforward calculation

‖A‖pσ2g;p =
∫
B

(σ−2gijAiAj)
p
2

√
det(σ2g) dnx = σn−p ‖A‖pg;p ,

and then for the covariant derivative note that (∇A)ij = ∇iAj − ΓkijAk and the Christoffel
symbols for σ2g and g are the same.10 Then ∇gA = ∇σ2gA and as for the curvature∥∥∥∇σ2gA

∥∥∥p
σ2g;p

= σn−2p ‖∇gA‖pg;p .

Putting both terms together we have

‖A‖pσ2g; 1,p = σn−p ‖A‖pg; 1,p + σn−2p ‖∇A‖pg; 1,p ≤ σ
n−2p ‖A‖pg; 1,p .

Finally, if A is a connection that has been put in Uhlenbeck gauge and satisfies (2.2) with
respect to the metric σ2g, then simply concatenating our inequalities

‖A‖σ2g; 1,p ≤ σ
n−2p
p ‖A‖g; 1,p ≤ C̃ σ

n−2p
p ‖FA‖g; p = C̃ ‖FA‖σ2g; p

we see that A also satisfies (2.2) with respect to the metric g and with the same constant
C̃.

2.2 The big bad proof
This proof is the main technical result of this text. It will refer to most of the lemmas
from the preceding chapter and appendix A. For its relevance (and length), we give it its

10Indeed, Γkij = a sum of multiples (components of g−1)×(derivatives of components of g), and so a
constant rescaling is cancelled.
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own section. The proof will go through via the continuous induction method, and its main
interesting features are the use of the implicit function theorem, boundary value spaces, the
elliptic estimate for the d + d∗ operator and results relating to the Neumann problem.

Define the modified energy E ′q(A) =
∫
B |FA(x)|q dxn using the Euclidean metric on B

for a connection A, note that if δ is small enough in ‖g − 1‖2,∞ ≤ δ, then g is sufficiently
close to the identity that

1
2E
′
q(A) ≤ Eq(A) ≤ 2E ′q(A).

Define
Aε :=

{
A ∈ A1,p(B) : E ′(A) < ε

}
,

and
Sε := {A ∈ Aε such that A can be put into Uhlenbeck gauge} .

We will show that Sε = Aε, and thus every connection with energy at most ε̃ := ε
2 can be

put into Uhlenbeck gauge.
The proof will have three steps, and during each step some care has to be taken with

the constants ε, C̃ and δ and their dependence on each other and the metric on B:

(1) For some fixed g and ε, we prove Aε is connected.

(2) For some fixed g, ε and C̃, Sε is closed.

(3) We find ε, C̃ and δ, and vary the metric with δ, such that Sε is open.

Throughout, we take the local descriptions explained in subsection 1.2.1. Therefore, a
connection in A1,p(B) as defined in (1.25) is a g-valued 1-form on B and a gauge transfor-
mation in G2,p(U) as defined in (1.26) is a function u : B → G.

(1) Aε is connected.

Proposition 2.5. Let B be equipped with any smooth metric g and let ε > 0; then Aε as
defined above is connected.

Proof. We prove there is a continuous path from each A ∈ Aε to the canonical flat connec-
tion in Aε, which is represented by A ≡ 0 ∈ Ω1(B, g).

Let A ∈ Aε, and define the path (Aσ)σ∈[0,1] by Aσ(x) = σ∗A(x) = σA(σx) where we
take the pullback under the map x 7→ σx.11 Clearly, A0 = 0 and A1 = A, and for each
σ ∈ [0, 1], Aσ ∈ A1,p(B). The curvature of the connection Aσ is 12

FAσ(x) = d(Aσ) + 1
2[Aσ ∧Aσ] = σ2 dA(σx) + σ2

2 [A(σx) ∧A(σx)] = σ2FA(σx),

and so we have

E ′q(Aσ) =
∫
B
σ2q |FA(σx)|q dxn = σ2q−n

∫
σB
|FA(y)|q dyn ≤ σ2q−nE ′(A) ≤ ε,

where we changed variables y = σx and used the assumption that q ≥ n
2 for σ2q−n ≤ 1.

Therefore, the whole path is contained in Aε.
11This is well defined since B is star-shaped with respect to 0 and therefore the path σx stays within B.
12Use dx(Aσ) = dx(σ ◦A ◦ σ), and recall that the differential of a linear map is itself.
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To show the continuity of the path, we will use the Euclidean metric on B instead of
the metric g. For continuity at σ = 0, since A0 = 0, it suffices to show that ‖Aσ‖1;1,p

σ→0−→ 0.
We look at the two Lp-norms separately. First, we have

‖Aσ‖p1;p(B) =
∫
B
|Aσ|p dxn

= σp
∫
B
|A(σx)|p dxn

= σp−n
∫
σB
|A(y)|p dyn

= σp−n ‖A‖p
1;p(σB)

(1)
≤ σp−n ‖1‖p

1; 2p(σB) ‖A‖
p
1; 2p(σB)

= σp−nV ol(σB)
1
2 ‖A‖p

1; 2p(σB)
(2)
≤ σp−n+n

2 V ol(B)
1
2CW ‖A‖p1; 1,p(σB)

≤ σp−
n
2︸ ︷︷ ︸

→0

V ol(B)
1
2C ‖A‖p

1; 1,p(B)︸ ︷︷ ︸
constant

−→ 0,

where in (1) we used the Hölder inequality and (2) is the Sobolev inequality forW 1,p ↪→ L2p

guaranteed by the hypothesis p > n
2 , which is also used for σp−

n
2 → 0. For the derivative

term,

‖∇Aσ‖1; p(B) =
∫
B
|∇Aσ(x)|p dxn

=
∫
B
σp |∇(A ◦ σ)(x)|p dxn

= σ2p
∫
B
|∇A(σx)|p dxn

= σ2p−n
∫
σB
|∇A(y)|p dyn

= σ2p−n ‖∇A‖p
1; p(σB) −→ 0

where we simply use a change of variables and again need the condition p > n
2 for conver-

gence.
The continuity at σ0 ∈ (0, 1] is more convoluted, and we will make use of an auxiliary

sequence (Ai)i∈N ⊆ A(B) of smooth connections which converge to A in A1,p(B):

|Aσ(x)−Aσ0(x)| = |σA(σx)− σ0A(σ0x)|
= |σA(σx)− σAi(σx) + σAi(σx) − σAi(σ0x) + σAi(σ0x)
− σA(σ0x) + σA(σ0x)− σ0A(σ0x)|

≤ σ
∣∣∣A(σx)−Ai(σx)

∣∣∣+ σ
∣∣∣Ai(σx)−Ai(σ0x)

∣∣∣
+ σ

∣∣∣Ai(σ0x)−A(σ0x)
∣∣∣+ |σ − σ0| |A(σ0x)|

≤
∣∣∣A(σx)−Ai(σx)

∣∣∣+ |σ − σ0|Ci

+
∣∣∣Ai(σ0x)−A(σ0x)

∣∣∣+ |σ − σ0| |A(σ0x)|
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where we have used σ ≤ 1 and the mean value inequality, proposition A.2, for
∥∥∇Ai(x)

∥∥ ≤
Ci, since the Ai and all of their derivatives are bounded on B. Now we apply the Euclidean
norm ‖ · ‖

1; p(B) to this inequality 13 and change variables to obtain

‖Aσ −Aσ0‖1; p ≤ σ
−n
p

∥∥∥A−Ai∥∥∥
1; p(σB)

+ |σ − σ0|CiV ol(B)
1
p

+ σ
−n
p

0

∥∥∥A−Ai∥∥∥
1; p(σ0B)

+ |σ − σ0|σ
−n
p

0 ‖A‖
1; p(σ0B)

≤
(
σ
−n
p + σ

−n
p

0

)∥∥∥A−Ai∥∥∥
1; p(B)

+ |σ − σ0|CiV ol(B)
1
p

+ |σ − σ0|σ
−n
p

0 ‖A‖
1; p(B) .

It is now necessary to be a bit careful about the mixed terms depending on i and σ, but for
fixed σ0 the right-hand side can be made as small as we want in the following way: first,
take σ close to σ0 such that σ−

n
p + σ

−n
p

0 is bounded, say, by 2σ
−n
p

0 + c for some constant c;
then take i such that the first term is small; for this fixed i, Ci is also constant and therefore
a further suitable choice of σ even closer to σ0 makes the second and third terms small.

The computation to check that ‖∇Aσ −∇Aσ0‖
σ→σ0−→ 0 is completely analogous, using

bounds C ′i on the second derivatives of Ai, yielding

‖∇Aσ −∇Aσ0‖1; p(B) ≤
(
σ
−n
p + σ

−n
p

0

)∥∥∥∇A−∇Ai∥∥∥
1; p(B)

+ |σ − σ0|C ′iV ol(B)
1
p

+
∣∣∣σ2 − σ2

0

∣∣∣σ−np0 ‖∇A‖
1; p(B) −→ 0

for suitable choices of i and σ close to σ0 as before.

(2) Sε is closed

Proposition 2.6. Let B be equipped with any smooth metric g and let ε > 0. Suppose that
there is a sequence (Ai)i∈N ⊆ Aε converging to some A ∈ Aε such that each Ai can be put
into Uhlenbeck gauge with constant C̃ by some gauge transformation ui ∈ G2,p(B). Then
there exists u ∈ G2,p(B) such that u∗A is also in Uhlenbeck gauge with constant C̃.

Proof. We will show that there exist the limits ui → u and u∗iAi =: Ãi → Ã such that
u∗A = Ã and this is in Uhlenbeck gauge.

We can get a uniform bound on
∥∥∥Ãi∥∥∥1,p

by first bounding the curvature, from lemma
1.29,

‖FAi‖p ≤ c(‖Ai‖1,p + ‖Ai‖2p) ≤ c
′,

with uniform c′ due to the W 1,p-convergence of the Ai, and then applying the Uhlenbeck
gauge condition ∥∥∥Ãi∥∥∥1,p

≤ C̃ ‖FAi‖p ≤ c
′C̃.

13That is, we elevate both sides to the p-th power, integrate over B with the Euclidean volume form and
take the 1

p
power, and then separate the terms, all of which can be done because the integral, x 7→ xp and

x 7→ x
1
p are subadditive.
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With this uniform bound, we may use the Banach-Alaoglu theorem 1.18 to find a subse-
quence weakly converging to some Ã ∈ A1,p(B), and then from the compact embedding
W 1,p ↪→ L2p, a further subsequence14 also converges in the L2p-norm to Ã.

Then, since both ‖Ai‖1,p and
∥∥∥Ãi∥∥∥1,p

are uniformly bounded, lemma 1.33 gives us
a subsequence ui such that it converges in the C0-topology to some u ∈ G2,p(B), and
u−1
i dui −→ u−1 du uniformly in the L2p-norm.
Thus we have

u−1 du←− u−1
i dui = Ãi − u−1

i Aiui −→ Ã− u−1Au,

where the second limit follows because the two terms converge, and the second term con-
verges because of the continuity of the adjoint action.15 Equality follows from the uniqueness
of the L2p-limit, and so Ã = u∗A.

Now, we check that Ã is in Uhlenbeck gauge, i.e. check (2.1) and (2.2):

(i) All Ãi are already in Uhlenbeck gauge and thus satisfy d∗Ãi = 0, and for all φ ∈
C∞(B) such that φ|∂B = 0,

〈φ, d∗Ã〉 =
∫
B
φ d∗Ã ∗ 1 =

∫
B
φ ∗ ( d∗Ã− d∗Ãi︸ ︷︷ ︸

=0

)

= ∗2︸︷︷︸
=±1

∫
B
φ d(∗Ã− ∗Ãi)

(∗)= ±
∫
B

dφ ∧ ∗(Ã− Ãi︸ ︷︷ ︸
→0

) −→ 0,

where (∗) follows from the following computation (where we write α ∈ Ω1(B)), using
Stokes’s theorem 1.20 and φ|∂B = 0

0 =
∫
∂B
φ ∗ α =

∫
B

d(φ ∗ α) =
∫
B

dφ ∧ ∗α+ (−1)n−1
∫
B
φ ∧ d ∗ α

Since C∞δ (B) is dense in Lp(B), this proves that d∗Ã = 0.

(ii) Similarly, ∗Ãi|∂B = 0 and this is also preserved under the weak W 1,p-limit, as we
show. For any φ ∈ C∞(∂B) we may extend it to some Φ ∈ C∞(B), and so we have

〈φ, ∗Ã|∂B〉 =
∫
∂B
φ ∗ Ã|∂B =

∫
∂B

Φ ∗ Ã|∂B =
∫
∂B

Φ ∗ (Ã− Ãi)|∂B
(∗)=
∫
B

d(Φ ∗ (Ã− Ãi)) =
∫
B

dΦ ∗ (Ã− Ãi)±
∫
B

Φ d ∗ (Ã− Ãi)

=
∫
B

dΦ ∧ ∗(Ã− Ãi)±
∫
B

Φ ∗ (∗d ∗ (Ã− Ãi))

=
∫
B

dΦ ∧ ∗ (Ã− Ãi)︸ ︷︷ ︸
→0

±
∫
B

Φ ( d∗Ã− d∗Ãi)︸ ︷︷ ︸
=0

where in (∗) again we used Stokes’s theorem 1.20. This then shows that ∗Ã|∂B = 0 as
we wished.

14We keep the same labelling i ∈ N for the subsequence.
15See calculation in proof of lemma 1.31.
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(iii) Let s = p or q. We may write∥∥∥Ã∥∥∥
1,s
≤ lim inf

i→∞

∥∥∥Ãi∥∥∥1,s
≤ C̃ lim inf

i→∞
‖FAi‖s ≤ C̃ ‖FA‖s ,

and this gives us our result. The first inequality is true because any norm is sequentially
weakly lower semicontinuous; the second follows from Ãi being in Uhlenbeck gauge;
and the third follows from the continuity of the Ls-energy functional on A1,s from
lemma 1.29, and the convergence Ai

1,p−→ A, which also implies there is convergence in
W 1,q because for p ≥ q and B of finite volume, W 1,q(B) ↪→W 1,p(B).

(3) Sε is open

We would like to show that for any A ∈ Sε there is a neighbourhood of A in Aε contained
in Sε. Instead, it is simpler to find a neighbourhood of A0 := u∗A in A1,p(B) made up of
connections which can be put in Uhlenbeck gauge, pull it back by u−1 to a neighbourhood
of A in A1,p(B) and intercept it with Aε to get what we need. This string of operations
makes sense because G2,p(B) acts continuously on A1,p(B) (see lemma 1.31) and is closed
under compositions. Since the energy E(A) is gauge invariant, we can forget about the
original connection A and work with an arbitrary connection in Uhlenbeck gauge.

We will make use of the implicit function theorem for a suitable operator between Banach
spaces, which will yield a neighbourhood of connections around A0 which satisfy (2.1) in
the Uhlenbeck gauge definition. We can then ask for a bit more from the solutions so that
the connections satisfy condition (2.2), owing to a a priori estimates.

Before moving on to the proof, it will be important to establish some inequalities with
uniform constants. Since the W 1,p-norm only depends on the metric, its inverse and
first derivatives, control over the W 1,∞-norm of the metric is enough to guarantee that
if ‖g − 1‖1,∞ ≤ δ for small enough δ, we get

1
2 ‖α‖g;1,p ≤ ‖α‖1;1,p ≤ 2 ‖α‖g;1,p , ∀α ∈W

1,p(B, T ∗B). (2.3)

If we choose δ such that this equivalence is valid for the W 1,p, W 1,q and Lr-norms (with
r = r(n, p, q) from lemma A.9) at the same time, we moreover get uniform constants in the
estimates between these spaces, by first using the appropriate estimate with the Euclidean
metric 1, and then using (2.3). This means that throughout the next proofs, the constants
Crnpq coming from lemma A.9 and CW coming from the Sobolev embeddings will not depend
on the metric.

Lemma 2.7 (A priori estimates). There exist positive constants δ, C̃, and Λ such that for
every metric g satisfying ‖g − 1‖1,∞ ≤ δ the following holds:

Let A ∈ A1,p(B) be such that d∗A = 0 on B and ∗A|∂B = 0, and ‖A‖r ≤ Λ, where
r = r(n, p, q) from lemma A.9. Then

‖A‖1,p ≤ C̃ ‖FA‖p ,

‖A‖1,q ≤ C̃ ‖FA‖q ,

that is, A is in Uhlenbeck gauge with constant C̃.
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2.2. Proof Chapter 2. Gauge fixing

Proof. As we are working over the ball in Euclidean space and ∗A|∂B = 0, it follows from
theorem 1.26 that for all 1 < s <∞,

‖A‖1,s ≤ Cg(‖ dA‖s + ‖ d∗A‖s︸ ︷︷ ︸
=0

),

where Cg depends on the metric g on B; however, we also know that the constant depends
W 1,∞-continuously on the metric, and so we may choose δ such that there is a uniform
constant C for all metrics ‖g − 1‖1,∞ ≤ δ, and thus

‖A‖1,s ≤ C ‖ dA‖s .

Now, looking at the curvature as dA = FA − 1
2 [A ∧A],

‖A‖1,s ≤ C(‖FA‖s + 1
2 ‖[A ∧A]‖s)

and we would like to get rid of this ‖[A ∧A‖ term somehow. There is a clever trick to make
it so that we can absorb this term into the constant and the left hand side. We take s = p
or q and use lemma A.9 in the following:

1
2 ‖[A ∧A]‖s ≤ ‖[A ∧A]‖

1;s

(1)
≤ ‖2 |A| · |A|‖

1;s

≤ 2Crnpq ‖A‖1;r ‖|A|1‖1;1,s
(2)
≤ 8Crnpq ‖A‖r ‖A‖1,s
≤ 8CrnpqΛ ‖A‖1,s ,

where in (1) we used that |[A ∧A]|
1
≤ 2 |A|2

1
(see e.g. (1.28) and proof of lemma 1.29),

and in (2) we used that |∇ |A|| ≤ |∇A| (see lemma A.10). Since we used lemma A.9 for
the Euclidean metric and then used the equivalence of the norms (2.3), Crnpq is metric
independent and we may absorb it into C,

‖A‖1,s ≤ C(‖FA‖s + Λ ‖A‖1,s),

and now all that is left to do is take Λ = 1
2C and combine the ‖A‖1,s terms, and the result

follows for C̃ = 2C.

We will need to keep track of this extra condition ‖A‖r ≤ Λ while solving the boundary
value problem posed by (2.1), and this will appear as a bound λ on X for a gauge transfor-
mation exp(X), so that a transformed connection exp(X)∗A will satisfy this Λ bound on
its Lr-norm.
Lemma 2.8. There exists δ > 0 such that for every constant C̃ > 0 there exists ε > 0 such
that for every metric g satisfying ‖g − 1‖2,∞ ≤ δ the following is true:

Let A0 ∈ A1,p(B) be in Uhlenbeck gauge with constant C̃ and energy E(A) ≤ ε; then for
all λ > 0 there exists R > 0 such that for every connection A ∈ A1,p(B) with ‖A−A0‖1,p ≤
R there is a solution X ∈W 2,p(B, g) of{

d∗(exp(X)∗A) = 0 on B
∗(exp(X)∗A)|∂B = 0 on ∂B,

with ‖X‖2,p ≤ λ.
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Proof. As explained, we will use the implicit function theorem A.3. Let us define our Banach
spaces:

First, define the space

W 2,p
m (B, g) := {X ∈W 2,p(B, g) :

∫
B
X = 0},

which is a closed subspace16 of a Banach space, and therefore also Banach. Next, define

W 1,p
∂ (B, g) := W 1,p(B, g)

W 1,p
δ (B, g)

where W 1,p
δ (B, g) is the closure in the W 1,p-norm of the subspace of sections which vanish

at the boundary of B. This is a boundary value space, whose elements are equivalence
classes of functions on B which coincide on the boundary ∂B. With the quotient norm

‖φ‖
W 1,p
∂

(B, g) = inf{‖Φ‖1,p : Φ ∈W 1,p(B, g) and Φ|∂B = φ},

W 1,p
∂ (B, g) is a Banach space. Now define

Z = {(f, φ) ∈ Lp(B, g)×W 1,p
∂ (B, g) :

∫
B
f +

∫
∂B
φ = 0}.

Note that Lp(B, g) ×W 1,p
∂ (B, g) with the direct sum norm is a Banach space, and Z is a

closed subspace, and therefore Banach. To see that∫
B
f +

∫
∂B
φ = 0 (2.4)

is a closed condition, note that using the trace theorem 1.19 we get∫
∂B
|φ| = ‖φ‖1(∂B) ≤ C ‖Φ‖1,p (B) ≤ C(‖φ‖

W 1,p
∂

+ ε)

for some choice of Φ such that Φ|∂B = φ, which is enough to see that (2.4) is preserved
under limits. Finally, A1,p(B) is a Sobolev space and therefore clearly Banach.

We will use the implicit function theorem on the operator

F : A1,p(B)×W 2,p
m (B, g) −→ Z

(A,X) 7→ ( d∗(exp(X)∗A), ∗(exp(X)∗A)|∂B).

That F is a continuous map into Lp(B, g)×W 1,p
∂ (B, g) follows from the facts that expX ∈

G2,p(B) for X ∈W 2,p(B, g) by definition (see lemma 1.21), the map X 7→ expX is continu-
ous, and the gauge action G2,p×A1,p → A1,p is continuous (see lemma 1.31). That it maps
into Z can be checked with Stokes’s theorem (lemma 1.20): for α = (expX)∗A,17

∫
B

d∗α ∗ 1 = −
∫
B

d ∗ α = −
∫
∂B
∗α|∂B,

16∫
B
X = 0 is a (clearly linear and) closed condition, which is easily seen taking limits in each component

of g.
17Use k = n in the formulas ∗2 = (−1)k(n−k) and d∗ = −(−1)n(k−1).
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so that 2.4 is indeed satisfied by (f, φ) in the image of F . Thus, F is a continuous operator
between Banach spaces.

Now, knowing that F (A0, 0) = 0, what we want is an open set around A0 in A1,p(B)
and some continuous map f on this open set to a neighbourhood of 0 ∈ W 2,p

m (B, g) such
that F (A, f(A)) = 0, and this map will permit us to control the norm of X. Under these
circumstances, we need to analyse the derivative of F with respect to the second variable
X. The partial derivative ∂XF |(A,X) is the Fréchet derivative of the map F (A, ·), which is
a linear map

∂XF |(A,X) : W 2,p
m (B, g)→ Z.

We check that this map exists, is continuous and is bijective at (A0, 0). First, note that
since the chain rule is valid for the Fréchet derivative, and d, ∗ and |∂B are linear maps, we
need only look at the Fréchet derivative of the gauge action X 7→ (exp(X))∗A, which we
will call G(A,X) : W 2,p

m (B, g)→ A1,p(B), and then

∂XF |(A,X) : ξ 7→ ( d∗(G(A,X)ξ), ∗(G(A,X)ξ)|∂B).

We will show that the linearization of the gauge action is

G(A,X)ξ = dξ + dexp(−X) Ad( d−X exp(−ξ))A,

which is to say that

lim
‖ξ‖→0

∣∣∣exp(X + ξ)∗A− exp(X)∗A− dξ − dexp(−X) Ad( d−X exp(−ξ))A
∣∣∣

‖ξ‖
= 0.

We can rewrite this in a more suggestive format,

exp(X + ξ)∗A− exp(X)∗A− dξ − dexp(−X) Ad( d−X exp(−ξ))A
= Adexp(X+ξ)−1 A+ exp(X + ξ)−1 d exp(X + ξ)

−AdexpX−1 A− expX−1 d expX
− dξ − dexp(−X) Ad( d−X exp(−ξ))A

= Adexp(X+ξ)−1 A−AdexpX−1 A− dexp(−X) Ad( d−X exp(−ξ))A,

and observe that this expression is exactly the expression for the derivative of AdexpY ,

d(−X)(Adexp)(−ξ) = d(−X)(Ad ◦ exp)(−ξ)
= dexp(−X) Ad( d(−X) exp(−ξ)).

Thus the limit is indeed zero. Moreover, G(A,X) is clearly continuous.
To check bijectivity of ∂XF |(A0,0) we simplify the expression

G(A0, 0)ξ = dξ + d1 Ad( d0 exp(−ξ))A0
(∗)= dξ + d1 Ad(−ξ)A0

= dξ + ad(−ξ)A0

= dξ − [ξ ∧A0]

where (∗) follows because the differential of the exponential map at zero is the identity.
Now, we must look at d∗G(A0, 0)ξ and ∗G(A0, 0)ξ|∂B. Note that because ξ ∈W 2,p

m (B, g) is

48
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just a function, ∗[ξ ∧A0] = [ξ ∧∗A0], and remember that A0 is in Uhlenbeck gauge already.
Then we calculate

−d∗[ξ ∧A0] = −(− ∗ d∗)[ξ ∧A0] = ∗ d[ξ ∧ ∗A0]
= ∗[ dξ ∧ ∗A0] + ∗[ξ ∧ d ∗A0]
= ∗[ dξ ∧ ∗A0] + [ξ ∧ ∗d ∗A0︸ ︷︷ ︸

− d∗A0=0

]

= ∗[ dξ ∧ ∗A0].

Moreover, ∗A0|∂B = 0 and so

∗(dξ − [ξ ∧A0])|∂B = ∗ dξ|∂B.

Therefore
∂XF

∣∣
A0,0ξ = (d∗ dξ + ∗[ dξ ∧ ∗A0], ∗dξ|∂B).

We write ∂XF |A0,0 = T + S, where

T = (∆ξ, ∗ dξ|∂B) and S = (∗[ dξ ∧ ∗A0], 0).

Note that T is the operator for the inhomogeneous Neumann problem.18 From theorem
A.6, Z is exactly the space of functions (f, g) for which the Neumann problem has solution,
and so T is surjective onto Z; moreover, the solutions are unique up to additive constant,
and so the additional condition on the domain W 2,p

m (B, g) that
∫
B ξ = 0 makes T injective.

Furthermore, by theorem A.7, the inverse of this operator is bounded for every metric
W 2,∞-close to the identity. Choosing an appropriate δ, we can make

∥∥T−1∥∥ ≤ CT for some
constant CT which is independent of the metric. Now, if we find a bound for S, lemma A.5
gives the bijectivity of T + S. Calculate

|∗[ dξ ∧ ∗A0]| =
∣∣∣∗∑[∂iξ, Aj ]dxi ∧ ∗ dxj

∣∣∣ =
∣∣∣∗∑[∂iξ, Aj ] gij ∗ 1

∣∣∣
=
∣∣∣∑ gij [∂iξ, Aj ]

∣∣∣ ≤∑∣∣∣gij [∂iξ, Aj ]∣∣∣
≤
∑∣∣∣gij∣∣∣ |∂iξ| |Aj | ≤ max

∣∣∣gij∣∣∣︸ ︷︷ ︸
=:|g−1|

∑
|∂iξ| |Aj |

=
∣∣∣g−1

∣∣∣ |dξ|
1
|A0|1 .

Then, because
∣∣g−1∣∣ ≤ ∥∥g−1∥∥

∞, we can use lemma A.4 and require δ ≤ 1
2 such that

∣∣g−1∣∣ ≤
(1− ‖g − 1‖∞)−1 ≤ 2, and now we apply this in inequality (∗) below:

‖Sξ‖Z = ‖∗[ dξ ∧ ∗A0]‖g;p
≤ 2 ‖∗[ dξ ∧ ∗A0]‖

1;p

= 2
(∫

B
|∗g[ dξ ∧ ∗gA0]|p

1

) 1
p

(∗)
≤ 4

(∫
B

(| dξ|
1
|A0|1)p

) 1
p

18See appendix A, the section on the Neumann problem.
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= 4 ‖|dξ|
1
|A0|1‖1;p

≤ 4Crnpq ‖|dξ|1‖1;1,p ‖|A0|1‖1;1,q
(1)
≤ 4Crnpq ‖ξ‖1;2,p ‖A0‖1;1,q

≤ 16Crnpq ‖ξ‖2,p ‖A0‖1,q ,

where the factors of 2 come from the equivalence of the norms (2.3) on B, the constants
Crnpq come from lemma A.9 as usual, and in (1) we use lemma A.10 for |∇ |A|| ≤ |∇A| and
that on sections ξ : B → g, ∇ = d so ∇ dξ = ∇2ξ,

Now, let C̃ be given and choose ε = (32CrnpqC̃CT )−q. Since A0 is in Uhlenbeck gauge
with energy Eq(A0) ≤ ε and constant C̃, we can use ‖A0‖1,q ≤ C̃ ‖FA0‖q ≤ ε

1
q C̃ and at last

‖Sξ‖Z ≤ 16CrnpqC̃ε
1
q ‖ξ‖2,p = 1

2CT
‖ξ‖2,p .

This means that S and T satisfy the hypotheses from lemma A.5, namely that T is bijective
with bounded inverse and ‖S‖

∥∥T−1∥∥ = 1
2 < 1, and therefore ∂XF |A0,0 = T +S is bijective.

Finally, this means that F satisfies all conditions to the implicit function theorem A.3
around (A0, 0), and therefore there are neighbourhoods U around A0 and V around 0, and
a continuous map f : U → V such that F (A, f(A)) = 0, which implies that exp(f(A))∗A is
in Uhlenbeck gauge for all A ∈ U ⊆ A1,p(B, g). Furthermore, to get the bound ‖X‖2,p ≤ λ,
it suffices to take a ball with sufficiently small radius R within f−1(Bλ(0)∩V ) ⊆ U , so that
f : BR(A0)→ Bλ(0).

Lemma 2.7 fixes the constant C̃ we will use for the Uhlenbeck gauge, and this in turn
fixes ε, which is defined in terms of C̃ in the proof of lemma 2.8. Then for a connection
A0 in Uhlenbeck gauge with constant C̃ and energy Eq ≤ ε, we find R such that for every
connection A ∈ BR(A0) ⊆ A1,p(B), there is a gauge transformation exp(X) such that
(expX)∗A satisfies (2.1), the first condition of the Uhlenbeck gauge, and we get a bound
‖X‖2,p ≤ λ.

All that is left to do now is check that these solutions (A,X) satisfy ‖exp(X)∗A‖r ≤ Λ,
so that they can be shown to satisfy (2.2) by lemma 2.7 and finally all of BR(A0) can be
put into Uhlenbeck gauge with constant C̃. Therefore, we show this now: first, we have

‖exp(X)∗A‖r ≤
∥∥∥Adexp(X)A

∥∥∥
r

+ ‖exp(−X)d exp(X)‖r .

Because the inner product on g is Ad-invariant, the first term is just ‖A‖r and we have

‖A‖r ≤ ‖A−A0‖r + ‖A0‖r
(∗)
≤ 4CW (‖A−A0‖1,p + ‖A0‖1,q)
≤ 4CW (R+ C̃ε),

where (∗) follows from the equivalence of metrics (2.3) and the Sobolev embeddings Lr ↪→
W 1,p and Lr ↪→W 1,q. As for the second term, we can write

exp(−X(x))d exp(X(x)) = exp(−X(x))dX exp ◦dX

and note that, since 2p > n, the embedding W 2,p ↪→ C0 provides control over the C0-norm
of X, supx∈B |X(x)| ≤ λ. Therefore, for sufficiently small λ, for every point x ∈ B the map
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exp(−X(x)) dX(x) exp : g → g is arbitrarily close to exp(0)d0 exp = d0 exp = 1g, which
means that its norm can be bounded by 2. Thus,

‖exp(−X) d exp(X)‖r = ‖exp(−X)dX exp ◦ dX‖r
≤ 2 ‖dX‖r ≤ 4 ‖ dX‖

1;r

≤ 4CW ‖ dX‖1;1,p

≤ 8CW ‖ dX‖1,p
≤ 8CW ‖X‖2,p ≤ 8CWλ.

For the first term, 4CW does not depend on the metric, and C̃ has already been fixed; for
the second term, 8CW does not depend on the metric, and so putting both terms together
we have

‖exp(X)∗A‖r ≤ c(R+ ε+ λ)

for some uniform constant c. Given C̃, we chose ε as a uniform constant which can be made
smaller. The constant λ is arbitrary, and so once again can be made even smaller. Finally,
while R depends on λ and the metric on B, we can put a uniform upper bound on it which
can also be made smaller, and furthermore making λ smaller only makes R smaller as well.
Then, making each term small as needed, we may bound ‖exp(X)∗A‖r by Λ for all metrics
‖g − 1‖1,∞ ≤ δ.

This ends the proof of the gauge fixing lemma on B. Let us recapitulate the choices of
constants that were made during the proof of the theorem:

• For proving that Sε is connected and closed, there was no need to fix anything.

• Pick a δ small enough such that if ‖g − 1‖1,∞ ≤ δ, there is equivalence of norms (2.3)
with different metrics on B for W 1,p, W 1,q and Lr with r = r(n, p, q) from lemma
A.9.

• In the implicit function step, pick δ possibly smaller to guarantee bijectivity of the
derivative of the operator F defined. Then, for any C̃ given, independent of the
metric, choose ε appropriately, which will also be uniform. For each metric and every
λ, there is R(λ, g) such that ‖X‖2,p ≤ λ for X = f(A) and ‖A−A0‖1,p ≤ R.

• The Uhlenbeck gauge constant C̃ is fixed with the a priori estimates. Along with it, δ
is picked once again for an estimate from theorem 1.26 to hold with uniform constant,
and we find a bound Λ on the Lr-norm of the connection which guarantees that these
a priori estimates hold.

• Finally, when checking that the solution to the implicit function problem has Lr-bound
Λ, we find that it is bounded by R(λ, g) + ε + λ, where λ can be chosen arbitrarily,
ε was already a uniform constant which can be made smaller, and we may choose a
uniform bound R for R(λ, g) such that the λ bound holds for each metric and a given
λ. Then R, ε and λ can be made small enough for the Λ bound to hold.
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Chapter 3

Weak and strong compactness

The notion of sequential compactness is an extremely important one, and from a first course
in real analysis one learns that “a bounded sequence in R has a convergent subsequence”
and that in Rn it is equivalent for a set to be compact, sequentially compact or closed and
bounded. As one moves to studying functional analysis, things start to get more compli-
cated. The closed unit ball is no longer compact if it is in an infinite dimensional Banach
space, weaker topologies become important and one gets the Banach-Alaoglu theorem (in
its original form). The notion of equicontinuity, which one may first encounter when study-
ing the Arzelà–Ascoli theorem on Rn, generalizes to metric spaces; the Banach-Steinhaus
theorem, one of the fundamental results in functional analysis, is also known as the uniform
boundedness principal and states precisely that a pointwise bounded family of continuous
linear operators between Banach spaces is equicontinuous.

Other than the gauge fixing lemma, which we proved in the previous chapter, the im-
portance of Uhlenbeck’s Connections with Lp bounds on curvature [Uhl82] is a compactness
theorem, which translates a uniform bound to convergence. A little more precisely, she
proves the weak compactness theorem, which states that a sequence of connections with
uniformly bounded curvatures has a weakly convergent subsequence. Along with the regu-
larity of the Yang-Mills equation provided by the gauge fixing lemma, the strong compact-
ness theorem emerges as a corollary, and it states that a sequence of Yang-Mills connections
with uniformly bounded curvature has a subsequence which converges uniformly.

The goal of this chapter is to prove these two theorems. First, we begin by commenting
on compactness for geodesics and flat connections. The case of the geodesics is simple and
instructive. The case of the flat connections is the opposite: while these connections do have
a uniform bound on curvature (namely, zero), the usual proof of the compactness result for
flat connections does not need this, instead using an identification with a specific class of
homomorphisms. We include a sketch of this proof here for completeness, but also to show
that not all compactness theorems emerge in the same way. Finally, note that the weak
compactness theorem can be seen as a generalization of the result for flat connections.

Geodesics

Let (M, g) be a Riemannian manifold, and consider curves γ : [0, 1] → M with fixed
endpoints γ(0), γ(1) ∈M . A geodesic will be one such curve that minimizes length, so it is
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a critical point of the length functional

L(γ) =
∫ 1

0
|∇γ| dt.

It is also a critical point of the L2-energy

E(γ) =
∫ 1

0
|∇γ|2 dt.

For a, b ∈ [0, 1], the distance between two points on the curve is

d(γ(a), γ(b)) =
∫ b

a
|∇γ| dt

(∗)
≤
∣∣∣∣∣
∫ b

a
1dt

∣∣∣∣∣
1
2
∣∣∣∣∣
∫ b

a
|∇γ|2 dt

∣∣∣∣∣
1
2

≤ |a− b|
1
2 E(γ)

1
2 ,

where (∗) is the Cauchy-Schwartz inequality. Using this now it is easy to see how uniform
bounds on energy can lead to compactness properties. Let {γi}i∈N be a sequence of paths
γi : [0, 1] → M with fixed endpoints and E(γi) < C. Looking at (M, g) as a metric space
with this distance as the metric, we have that

d(γi(a), γi(b)) ≤ C |a− b|
1
2 ,

which makes this sequence equicontinuous1. Therefore, by the Arzelà-Ascoli theorem, there
is a uniformly convergent subsequence.

Flat connections

The previous example had a very clear procedure: uniform bounds lead to convergence. We
now come back to gauge theory and look at flat connections on trivial vector bundles. It is
a very classical result that the moduli space of flat G-connections is compact, but the usual
way to prove it does not follow the same procedure. Instead, it hinges on the following
lemma.

Lemma 3.1 ([Cra15], corollary 1.29). Let E →M be a vector bundle with flat connections
∇. Then for any x, y ∈ M , the induced parallel transport from Ex to Ey only depends on
the homotopy class of the path from x to y.

A connection is called G-connection if, for instance, the associated parallel transports
induce isomorphisms of the fibres which are in G as a subgroup of GL(Rm) (this will always
be the case for G compact), for m the rank of the bundle. With this lemma, we can write
the following identification.

Proposition 3.2 ([DK97], proposition 2.2.3). There is a one-to-one correspondence between
conjugacy classes of homomorphisms ρ : π1(M) → G and gauge equivalence classes of flat
G-connections on M .

Sketch of proof. Let∇ be a flat G-connection, then the associated parallel transport induces
a representation ρ∇ : π1(M,x)→ G by defining, for each loop γ based at x ∈M ,

ρ∇(bγe) = P∇γ ∈ G ⊆ GL(Ex).

1For ε > 0, take δ = (ε/C)2.
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If we prove compactness of the space of homomorphisms ρ : π1(M) → G when G is
compact, then we are done. We will sketch this proof.

Lemma 3.3. Let G be a compact Lie group, M a smooth manifold. Then Hom(π1(M),G)
G is

compact.

Sketch of proof. We prove that Hom(π1(M), G) is closed in Gπ1(M) with the product topol-
ogy, which is compact by Tychonoff’s theorem and becauseG is compact. Then Hom(π1(M), G)
is compact, as is quotient.

Let f : π1(M)→ G be a function which is not a homomorphism: there exist r, s ∈ π1(M)
such that f(r)f(s) 6= f(rs). Take Uf(r)f(s), Uf(rs) neighbourhoods of f(r)f(s) and f(rs)
which do not intersect. Since G is a topological group, the multiplication is continuous and
the preimage of Uf(r)f(s) gives neighbourhoods of f(r) and f(s), Uf(r) and Uf(s), respectively.
Now, letting pr : Gπ1(M) → G be the continuous projection pr(f) = f(r), we construct a
neighbourhood of f on Gπ1(M),

U = p−1
r (Uf(r)) ∩ p−1

s (Uf(s)) ∩ p−1
f(rs)(Uf(rs)),

such that for any g ∈ U , g cannot be a homomorphism: g(rs) ∈ Uf(rs) and g(r)g(s) ∈
Uf(r)f(s), and therefore g(rs) 6= g(r)g(s). Thus, the complement of the homomorphisms is
open and consequently Hom(π1(M), G) is closed.

Corollary 3.4. The moduli space of flat G-connections on M is compact.

3.1 Weak compactness

Without further ado, we come to the result. LetM be a compact n-manifold with (possibly
empty) boundary, and let P →M be a G-principal bundle.

Theorem 3.5 (Weak compactness). Let n2 < p <∞. A sequence of connections in A1,p(P )
with uniform Lp-bound on the sequence of curvatures has a subsequence which is gauge
equivalent to a weakly convergent sequence, with gauge transformations in G2,p(P ).

For the proof of this theorem we are essentially looking for a sequence of global gauges
such that the gauged connections are uniformly W 1,p-bounded and will therefore, by the
Banach-Alaoglu theorem, converge weakly. For that we will need the gauge fixing theorem
2.2, and a patching lemma 3.10 which we will prove later, but roughly goes as follows.

Lemma 3.6 (cf. lemma 3.10). Two sets of transition functions describe isomorphic bundles
if they are C0-close. Furthermore, there are bounds on the gauge transformations relating
these transition functions; for a sequence of transition functions and transformations, the
bounds are uniform.

The gauge fixing lemma will give us a bundle atlas of P → M such that the local
connections are in Uhlenbeck gauge, and therefore the uniform bound on the curvature will
translate into a uniform bound on the connections. The gauge transformations resulting
from the lemma do not necessarily patch up to a global gauge transformation, however
they do yield new transition functions for a sequence of bundles. While it will be easy to
see that these bundles will all be isomorphic to each other and the original bundle, the
obvious changes to the gauge transformations mess with the uniform bounds, and thus
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the patching lemma will be needed in order to find less straightforward but more suitable
isomorphisms between the bundles, which then can be modified in a uniform way to yield
globally defined uniformly bounded gauge transformations. To get uniform bounds on the
gauge transformations, we will also need the following.
Lemma 3.7 (cf. lemmata 1.33 and 1.34). Bounds on connection forms give bounds on
the gauge transformations relating them, and moreover if two sequences of connections are
uniformly bounded, then the sequence of gauge transformations relating them has a C0-
convergent subsequence.
Proof of weak compactness theorem. Let (Ai)i∈N ⊆ A1,p(P ) be a sequence such that ‖FAi‖p
is uniformly bounded. Choose q < p such that it satisfies the hypotheses of the gauge fixing
lemma 2.2. We can bound the Lq-energy

Eq(Ai|U ) = ‖FAi‖
q
q(U)

(1)
≤ (VolU)

p−q
p ‖FAi‖

q
p(U) ≤ (VolU)1− q

p ‖FAi‖
q
p ,

where (1) is the Hölder inequality for 1
q = 1

p + p−q
pq . With this expression we can make

Eq(Ai|U ) ≤ ε̃ for U of sufficiently small volume, and this is why it is important that q < p
strictly since we need 1− q

p > 0 to make the Lq-energy small. Now we are in the setting of
2.2, and all the Ai may be put in Uhlenbeck gauge on open sets which cover M ; since M is
compact, we can take a finite subcollection M =

⋃N
α=1 Uα.

These Uα form a bundle atlas for P → M , and on each Uα the connections are repre-
sented by connection matrices Aiα ∈ A1,p(Uα). Since Eq(Aiα) = Eq(Ai|Uα) ≤ ε̃, there exist
uiα ∈ G2,p(Uα) such that ui ∗α Aiα is in Uhlenbeck gauge, and in particular

∥∥ui ∗α Aiα∥∥1,p ≤
C̃
∥∥∥FAiα∥∥∥p is uniformly bounded. This is sufficient to find weakly convergent subsequences

on each Uα, however the uα do not necessarily define a global gauge transformation. For
that to be the case we need

uiαβ := (uiα)−1φαβu
i
β (3.1)

to be identical to φαβ, the transition functions of the bundle atlas, see (1.18) and the
discussion in subsection 1.2.1.2 Therefore, the next step in the proof is modifying the uiα
appropriately to achieve this.

In order to use the patching lemma 3.10 we need the transition functions to be C0-close
to each other. To see this, write

ui ∗αβ (ui ∗α Aiα) = (uiαuiαβ)∗Aiα = (φαβuiβ)∗Aiα = ui ∗β (φ∗αβAiα) (3.2)
= ui ∗β A

i
β,

and since all ui ∗α Aiα are uniformly bounded for any α ∈ A, lemma 1.33 tells us that the
gauge transformations relating these connection forms, uiαβ, are also uniformly bounded,
and furthermore there is a subsequence of the uiαβ (also labelled i ∈ N) that converges in
C0. Thus, for a further subsequence, and for each α, β = 1, . . . , N , all the uiαβ can be made
to be within a geodesic δ-ball of each other for any δ > 0; in particular we can single out
the first element of this subsequence gαβ := u1

αβ and denote also gα := u1
α, and we have 34

d(uiαβ, gαβ) ≤ δ,
2Note that if we look at the gauge transformations uiα as local changes of trivialization, then the uiαβ are

new transition functions for an isomorphic bundle for each i ≤ N ; even so, this is not enough.
3See subsection 1.2.2 for the definitions of a geodesic convex ball and this metric.
4Also note that the first element gαβ can only be fixed after the choice of δ.
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3.1. Weak compactness Chapter 3. Compactness

Picking δ = ∆exp the radius of a convex geodesic ball on G, the patching lemma 3.10 gives
us a refinement Vα ⊆ Uα of the original cover and new gauge transformations hiα : Vα → G
with uniform bounds and such that

(hiα)−1uiαβh
i
β = gαβ.

With these new gauge transformations we can now modify the original uiα. Define ũiα :=
uiαh

i
αgα on Vα, and note that this defines a global gauge transformation, as M =

⋃N
α=1 Vα

and on Vα ∩ Vβ

(ũiα)−1φαβũ
i
β = gα(hiα)−1 (uiα)−1φαβu

i
β︸ ︷︷ ︸

ui
αβ

hiβg
−1
β = gαgαβg

−1
β = φαβ. (3.3)

Moreover, ũi as defined by the local ũiα is in G2,p(P ), as lemma 3.10 yields hiα ∈ G2,p(Vα), we
had uiα ∈ G2,p(Vα) from the start and Gk,p is closed under group multiplication for kp > n,
which is the case since p > n

2 .
It remains to prove that ũi ∗α Aiα is uniformly bounded in A1,p(Vα) for all α = 1, . . . , N .

This follows easily from lemma 1.31, which in this case states that for Ai ∈ A1,p(V ) and
ui ∈ G2,p(V ) for some trivializing neighbourhood V , the following holds 5∥∥∥ui ∗Ai∥∥∥

1,p
≤
∥∥∥(ui)−1 dui

∥∥∥
1,p

+ c
∥∥∥Ai∥∥∥(1 + CW

∥∥∥(ui)−1 dui
∥∥∥

1,p

)
, (3.4)

where c, CW are constants. Then writing

ũi ∗α A
i
α = (g−1

α )∗hi ∗α ui ∗α Aiα,

we first note that hi ∗α (ui ∗α Aiα) is uniformly bounded:
∥∥ui ∗α Aiα∥∥1,p is bounded uniformly by

the uniform bound on the curvature (because of the Uhlenbeck gauge), and
∥∥(hiα) dhiα

∥∥
1,p

is uniformly bounded by the patching lemma and the fact that
∥∥∥(uiαβ)−1 duiαβ

∥∥∥
1,p

has a
uniform bound (lemma 1.33). Using (3.4) again, the uniform bound on hi ∗α ui ∗α Aiα and the
fact that g−1

α is independent of i ∈ N, we get a uniform W 1,p-bound on ũi ∗α Aiα.
Finally, we can use the Banach-Alaoglu theorem 1.18 to guarantee that for every α =

1, . . . , N , the sequence ũi ∗α Aiα has a W 1,p-weakly convergent subsequence, and because the
ũi are global gauges, we can choose the same 6 subsequence for all (finite) α, which finally
gives us a weakly convergent subsequence of ũi ∗Ai in A1,p(P ).

Remark 3.8. Note that the choice of ũiα makes sense. In finding a global gauge, the
simplest thing to do would be to take ũiα = 1G, and in order to keep the original uiα around
for the Uhlenbeck gauge, it would have sufficed to have ũiα = 1G = uiα(uiα)−1; however,
there is no uniform bound on (uiα)−1. In the patching lemma, it is already clear that
hiα = (uiα)−1gα would have sufficed for the isomorphism, and if this could be guaranteed to
have a uniform bound in this form then one could naturally write

ũiα = 1G = uiα (uiα)−1gα︸ ︷︷ ︸
hiα

g−1
α .

5We used the Sobolev embedding W 1,p ↪→ L2p, note that 1− n
p
≥ − n

2p .
6For α = 1, there is a convergent subsequence; this subsequence is also uniformly bounded on α = 2, and

so some further subsequence converges. By repeating this process until you find a convergent subsequence
for α = N , this same subsequence can be used for all α. If there were countably many α, a similar argument
would work by taking the diagonal of the subsequences.
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Thus it makes sense to simply substitute the more complicated hiα found in the proof of
the patching lemma in the expression above when choosing a uniformly bounded globally
defined gauge transformation.

3.2 Strong compactness
While the strong compactness theorem is attributed to Uhlenbeck, it is not stated it in any
of her 1982 papers. However, it is a simple corollary from the proof of the weak compactness
theorem and a result on regularity of Yang-Mills connections in Coulomb gauge, which is a
consequence of the gauge fixing lemma and she also stated in her paper [Uhl82]. We show
the adaptation of the proof, sketching the points which are already explained in the proof
of theorem 3.5.7

Theorem 3.9 (Strong compactness). Let M be a compact Riemannian n-manifold with
(possibly empty) boundary, and let 1 < p < ∞ such that p > n

2 and in case n = 2, p ≥ 4
3 .

Suppose a sequence of connections (Ai)i∈N ⊆ A1,p(P ) is such that the Ai are weak Yang-
Mills connections and ‖FAi‖p is uniformly bounded. Then there exists a subsequence (with
same label i ∈ N) and a sequence of gauge transformations (ui)i∈N ⊆ G2,p(P ) such that
ui ∗Ai converges strongly with all derivatives to a smooth Yang-Mills connection.
Proof. Let Ai ∈ A1,p(P ) be as in the statement of the theorem. Choose q to satisfy the
hypotheses of the gauge fixing lemma, then there is a finite cover M =

⋃N
α=1 Uα such that

Eq(Aiα) ≤ ε̃, and therefore there exist sequences of gauge transformations (uiα)i∈N ⊆ G2,p(Uα)
on each Uα such that from the uniform bound on ‖FAi‖p we get a uniform bound on∥∥ui ∗α Aiα∥∥1,p for each α. Since the A

i are weak Yang-Mills connections, then so are the ui ∗α Aiα
(lemma 1.36), and therefore from the regularity theorem 1.39 we find uniform bounds on∥∥ui ∗α Aiα

∥∥
k,p for all k ∈ N.

Once again we look at the transition functions uiαβ as defined in (3.1), where the φαβ are
the transition functions for our bundle. From (3.2) and lemma 1.34 we see uiαβ ∈ Gk,p for all
k, and then from lemma 1.33 we find uniform bounds on

∥∥∥(uiαβ)−1 duiαβ
∥∥∥
k,p

for all k, and a
subsequence of the uiαβ that converges in C0 which can be taken the same subsequence for
all α, β = 1, . . . , N . Therefore there is some i such that all the uiαβ are within a ∆exp sized
C0-ball, for ∆exp the radius of a convex geodesic ball on G, and we take this i to be the
first element of the sequence. Now, instead of fixing u1

α as we did for the proof of 3.5, we
will need to take smooth gα ∈ G(Uα) that are C0-close to u1

α for each α, which will imply
that gαβ := g−1

α φαβgβ will also be C0-close to the uiαβ.
We apply the patching lemma 3.10 to find a refinement Vα ⊆ Uα of the original cover

and hiα ∈ Gk,p(Vα) such that
(hiα)−1uiαβh

i
β = gαβ

on Vα∩Vβ and such that there are uniform bounds on
∥∥(hiα)−1 dhiα

∥∥
k,p(Vα) for all k ∈ N. Then

ũiα := uiαh
i
αg
−1
α will patch to global gauge transformations as in (3.3), and the inequality in

lemma 1.31 will take the form 8∥∥∥ui ∗Ai∥∥∥
k,p
≤
∥∥∥(ui)−1 dui

∥∥∥
k,p

+ c
∥∥∥Ai∥∥∥(1 + CW

∥∥∥(ui)−1 dui
∥∥∥
k,p

)k
,

7Throughout this proof we once again keep taking subsequences and relabelling them the same as the
original sequence, with i ∈ N.

8W k−1,2p ↪→W k,p since p > n
2 .
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slightly more complicated than (3.4), which we use to find uniformW k,p-bounds on ũi ∗α Aiα =
(g−1
α )∗hi ∗α ui ∗α Aiα for all k ∈ N, on each Vα. Here it is important that the giα are smooth in

order to preserve the bounds for all k.
Finally, having obtained uniform bounds on the W k,p-norms of the local gauged con-

nections for all k ∈ N, we may use the Arzelà-Ascoli theorem to find subsequences which
converge uniformly with all derivatives, and then take the same subsequence on all Vα such
that the ũiα patch to a global ũi and ũi ∗Ai converges uniformly with all derivatives to some
smooth connection Ã ∈ A(P ). Then, from lemmata 1.36 and 1.38, ũiAi is weak Yang-Mills
for each i ∈ N and the limit connection Ã will also be weak Yang-Mills; since it is smooth,
it is a Yang-Mills connection.

In the book [Weh04] another approach is used to prove the strong compactness theorem,
due to Dietmar Salamon. Rather than adapt the proof of the weak compactness theorem,
relies on a local slice theorem and then applies theorem 3.5 directly. Observe, however, that
it needs strict inequality p > 4

3 in case n = 2 because there will only be weak convergence
of the connections, see lemma 1.38.(ii).

3.3 Patching
Finally, we prove the patching lemma used in the proofs of the weak and strong compactness
theorems.

Lemma 3.10 (Patching lemma). Let M be an n-manifold, p > n
2 and let M =

⋃
α∈N Uα be

a locally finite open cover by precompact 9 sets. Then there is a refinement Vα ⊆ Uα such
that the following holds:

(i) Let k ∈ N and let gαβ, hαβ ∈ Gk+1,p(Uα ∩ Uβ) be two sets of transition functions for
some principal G-bundle over M such that

d(gαβ, hαβ) ≤ ∆exp, ∀α, β ∈ N. (3.5)

Then there exist gauge transformations hα ∈ Gk+1,p(Vα) for all α ∈ N such that on all
intersections Vα ∩ Vβ

h−1
α hαβhβ = gαβ. (3.6)

(ii) Let K ≥ 2 be an integer or K = ∞. If the hαβ in (i) run through a sequence hiαβ of
sets of transition functions such that hiαβ, gαβ ∈ Gk+1,p(Uα ∩ Uβ) for all k < K, and
moreover for all α, β ∈ N and k < K there is a uniform bound on∥∥∥(hiαβ)−1 dhiαβ

∥∥∥
k,p(Uα∩Uβ)

.

Then the gauge transformations hiα in (i) satisfy, for all α ∈ N and k < K, hiα ∈
Gk+1(Vα) and

sup
i∈N

∥∥∥(hiα)−1 dhiα
∥∥∥
k,p(Vα)

<∞, (3.7)

which is to say that these norms are uniformly bounded for each α and k.
9Closure is compact.
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Proof. Note that we assume the cover is countable. We will first prove (i) by induction on
the cover, and then for a sequence of the constructed hiα constructed in (i), regularity will
follow directly and the uniform bounds will be proved by another induction on the cover.

For (i), on each step j ∈ N, we will construct hj on Vj := Uj , while changing some
(or none) of the previous Vα already constructed for α ≤ j − 1 and keeping hα the same,
albeit with possibly smaller domain. For each Vα, the process will end in finitely many
steps, because as will be seen during the construction, on the j-th step a certain Vα will
only be modified if Vα ∩ Uj 6= ∅, and the cover is locally finite. Moreover, the Vα will not
depend on k ∈ N (from the Sobolev exponent) or the transition functions hαβ, gαβ. For the
hj constructed, we will want three conditions to be satisfied at each step j:

(1) the one we are trying to achieve, that is, condition (3.6),

h−1
α hαβhβ = gαβ,

on Vα ∩ Vβ for all α, β ≤ j,

(2) a technical condition which will be important within the construction,

d(hiαhαgαi,1) ≤ ∆exp, (3.8)

on Vα ∩ Ui for all α ≤ j and i ≥ j,

(3) and regularity, hα ∈ Gk+1(Vα) for all α ≤ j.

For the first step, j = 1, we take V1 := U1 and h1 := 1. Conditions (1) and (3) are
trivially satisfied 10 and for all i ≥ 1, d(hi1h1g1i,1) = d(g1i, h1i) ≤ ∆exp on V1 ∩ Ui by
assumption, therefore condition (2) is also satisfied.

At an arbitrary j-th step, for the induction hypothesis we will assume that for all
α ≤ j − 1 we have constructed Vα ⊆ Uα and hα such that there is still an open cover of M
and the hα respect conditions (1)–(3). That is, M =

⋃
α<j Vα ∪

⋃
α≥j Uα, and conditions

(1)–(3) were met on the (j − 1)-th step.
Then, for α = j, we will take Vj := Uj and construct hj such that (1)–(3) are satisfied.

We will see that there is a natural choice of hj on the intersection with the Vα which will
automatically yield condition (1). We could then take hj = 1 on Uj\

⋃
α<j Vα and be done,

but then hj might not even be continuous, let alone in Gk+1(Uj). The idea, then, is to write
hj := exp(ψjξj) for some ξj ∈ g and a cutoff function ψj . Condition (2) is what is needed
to have a well defined ξj , and the Vα will be modified so that there can be two disjoint
compact sets where ψj will take the values 0 and 1.

Consider ρj : Uj∩
⋃
α<j Vα → G given by ρj := hjαhαgαj on Uj∩Vα. This is well defined,

since (3.6) is satisfied for α, β < j by assumption (condition (1)) and so on intersections
Uj ∩ Vα ∩ Vβ

hjβhβgβj = (hjαhαβ)hβ(gβαgαj) = hjαhαgαj .

This is exactly what we need hj to be on the intersections Uj ∩ Vα, as

h−1
α hαj(hjαhαgαj) = gαj . (3.9)

As a product of Gk+1,p maps,11 ρ ∈ Gk+1,p(Uj ∩
⋃
α<j Vα), and moreover condition (2) for

α ≤ j − 1 guarantees that d(ρ,1) ≤ ∆exp, and therefore ρ takes values in the convex
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Figure 3.1: A sketch of the involved sets on the j-th step, illustrating the reason to make
the Vα into smaller V ′α : so that the hj will be appropriately smooth.

geodesic ball B∆exp(1). Therefore, there exists ξj : W k+1,p(Uj ∩
⋃
α<j Vα) → g such that

ρj = exp(ξj).
Next, we replace the Vα, α < j, by possible smaller V ′α ⊆ Vα, so that we can take (see

Fig. 3.3)

hj =
{
ρj = exp(ξj) on Uj ∩

⋃
α<j V

′
α,

1 = exp(0) on Uj\
⋃
α<j Vα

in a W k+1,p-smooth way. Changing the domains Vα will not interfere with the induction
hypothesis, as conditions (1)–(3) remain valid when diminishing the domain of the hα, so
long as we are still left with an open cover of M .

B := Uj \
⋃
α<j Vα is compact and is where hj = 1. We need to make it disjoint to

C := Uj ∩
⋃
α<j V

′
α, where we will want hj = ρj . Let N = M\

⋃
α≥j Uα ⊆

⋃
α<j Uα. Note

that it is closed and covered by finitely many precompact sets, and therefore it is compact.
For ` = 1, . . . , j − 1, we will change one V` at a time. Define

A` := N \

⋃
α<`

V ′α ∪
⋃

`<α<j

Vα

 .

The A` are compact and
A` ⊆ V` ⊆ Bc.

Then there exists an open set V ′` ⊆ V` such that

A` ⊆ V ′` ⊆ V ′` ⊆ B
c.

The cover is preserved at each step since A` ⊆ V ′` and the A` are chosen such that they
cover whatever parts of N the other Vα and V ′α do not, then

M = N ∪
⋃
α>j

Uα and N ⊆
⋃
α<`

V ′α ∪A` ∪
⋃

`<α<j

Vα.

10Remember hαα = gαα = 1.
11By assumption for the transition functions and by the induction hypothesis for the hα.
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Figure 3.2: A sketch of the construction of the sets B and C, that we need to make disjoint.

Also, C ⊆
⋃
α<j V

′
α ⊆ Bc, and therefore B ∩C = ∅. If V`∩Uj = ∅, also V`∩Uj = ∅ and so

V` makes no difference for the definition of C and does not need to be changed, V ′` := V`,
making the process finite for each α ∈ N.

We can now say that there exists a cutoff function ψj : Uj → [0, 1] such that ψ(B) = 0
and ψ(C) = 1.12 Then let

hj :=
{

exp(ψjξj) on Vj ∩
⋃
α<j Vα,

1 on Vj \
⋃
α<j Vα.

Note that, for x ∈ Vj ∩ Vα, hj(x) = exp(aξ) = φt=aξ (1) for some a ∈ [0, 1] and ξ ∈ g, and
thus hj(x) is part of some geodesic between 1 and exp(ξ) = exp(ξj(x)) = ρj(x). Then

hj(x)


= hjαhαgαj(x) on Vj ∩ V ′α, for α ≤ j − 1,
∈ γ(1, (hjαhαgαj)(x)) on Vj ∩ Vα, for α ≤ j − 1
≡ 1 on Vj \

⋃
α<j Vα.

Now, we check that hj satisfies conditions (1)–(3). The first equality shows that condi-
tion (1) holds now for α, β ≤ j when replacing Vα by V ′α, as we had already seen with (3.9).
Condition (2) remains valid for α ≤ j− 1 from the induction hypothesis with V ′α ⊆ Vα, and
we now check that for i ≥ j+ 1 it is valid on Vj ∩Ui. On Vj ∩Ui\

⋃
α<j Vα, we have hj ≡ 1,

and so
d(hijhjgji,1) = d(hijgji,1) = d(hij , gij) ≤ ∆exp,

from the original assumption on the transition functions. On Vj∩Ui∩Vα for some α ≤ j−1,
we show that hj lies on the convex geodesic ball B∆exp(hjigij), and therefore

d(hijhjgji,1) = d(hj , hjigij) ≤ ∆exp,

as we wish. First, note that we have shown that hj lies on the unique minimal geodesic
from 1 to hjαhαgαj . Now,

d(1, hjigij) = d(hij , gij) ≤ ∆exp

12Take a partition of unity subordinate to the cover Bc and Cc, for instance.
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by assumption on the transition functions, and

d(hjαhαgαj , hjigij) = d(hα, hαjhjigijgjα) = d(hα, hαigiα) = d(hiαhαgαi,1) ≤ ∆exp

by the induction hypothesis for α ≤ j − 1. Both endpoints of γ(1, hjαhαgαj) lie in
B∆exp(hjigij), and therefore the geodesic is entirely contained in the ball. Finally, con-
dition (3) is still met by hα for α ≤ j − 1 because hα ∈ Gk+1,p(Vα) and restricting to
a smaller domain preserves the regularity; for α = j, we know that ψj is smooth and
ξj ∈W k+1,p(Vj , g), and therefore hj = exp(ψjξj) ∈ Gk+1,p(Vj), by lemma 1.21.

We are done with the proof of (i).

For (ii), we have instead of hαβ a sequence of hiαβ, each of which is close to gαβ, the
transition functions gαβ, hiαβ are said to be in the appropriate Sobolev gauge group Gk+1,p

for all k < K, and moreover there are uniform bounds on
∥∥∥(hiαβ)−1 dhiαβ

∥∥∥
k,p (Uα∩Uβ)

for each

α, β. We need to check the regularity of the hiα for all k < K, and that there are uniform
bounds on

∥∥(hiα)−1 dhiα
∥∥
k,p(Vα) for each α.

Since the construction of each hiα in (i) is independent of the Sobolev exponent k and
regularity followed from the original regularity of the transition functions, we have hiα ∈
Gk+1,p(Vα) for all k < K.

For each k < K, the uniform bounds will follow by another induction on the cover. The
first step is trivial, since the construction in (i) begins with hi1 ≡ 1 and so dhi1 = 0 and
the norm is just zero. For the induction hypothesis we will assume that for all α ≤ j − 1
there are uniform bounds on

∥∥(hiα)−1 dhiα
∥∥
k,p (Uα). Note that hij = exp(ψjξij) on Uj and ξij

is defined by ρij = exp(ξij) = hijαh
i
αgαj on Uj ∩Vα for α ≤ j−1. We will show that there are

uniform bounds on ρij on the intersections of Uj with each Vα, which will then give uniform
bounds on ξij on Uj ∩

⋃
α<j Vα, and in turn this will give the uniform bounds on hij .

For the uniform bound for ρij , first note the estimate for u, v ∈ Gk+1,p(U) over some
precompact set U ,∥∥∥(uv)−1 d(uv)

∥∥∥
k,p

=
∥∥∥v−1u−1(udv + du · v)

∥∥∥
k,p

≤
∥∥∥v−1 dv

∥∥∥
k,p

+
∥∥∥v−1(u−1 du)v

∥∥∥
k,p

(1)
≤
∥∥∥v−1 dv

∥∥∥
k,p

+ C
∥∥∥u−1 du

∥∥∥
k,p

(
1 +

∥∥∥v−1 dv
∥∥∥
k−1,2p

)k
(2)
≤
∥∥∥v−1 dv

∥∥∥
k,p

+ C
∥∥∥u−1 du

∥∥∥
k,p

(
1 +

∥∥∥v−1 dv
∥∥∥
k,p

)k
where in (1) we used lemma 1.32, and in (2) we used the Sobolev estimate for W k−1,2p ↪→
W k,p, which is valid over U even if M is not compact. Since we have uniform bounds over
Uj∩Vα on

∥∥∥(hijα)−1 dhijα
∥∥∥
k,p

by assumption, on
∥∥(hiα)−1 dhiα

∥∥
k,p by induction hypothesis and

on
∥∥(gαj)−1 dgαj

∥∥
k,p because it is independent of i, we can apply this estimate to (u, v) =

(hijα, hiα) and then to (u, v) = (hijαhiα, gαj) to get a uniform bound on
∥∥∥(ρij)−1 dρij

∥∥∥
k,p(Uj∩Vα)

.
Because there are finitely many intersections Uj ∩ Vα, this gives an overall uniform bound
for

∥∥∥(ρij)−1 dρij
∥∥∥
k,p

on its whole domain of definition, Uj ∩
⋃
α<j Vα.

Finally, we can use this to get a uniform bound for
∥∥∥ξij∥∥∥k,p on Uj ∩

⋃
α<j Vα in a rather

roundabout way, which we only sketch. First, fix an embedding Φ : B∆exp(1) ⊆ G→ R2d+1,

62



Chapter 3. Compactness 3.3. Patching

which contains the image of every ρij , and use the bound on (ρij)−1 dρij to achieve bounds
on the embedding; this will then give bounds on a global chart φ : B∆exp(1) → Rd, and
subsequently on ξij . To see this more clearly, make the following definitions: let U := Uj ∩⋃
α<j Vα, then let φ̃ : g→ Rd be an isomorphism, and use it to define a chart φ := φ̃◦ exp−1

and an embedding Φ := (φ, 0) = ι◦φ for ι : Rd ↪→ R2d+1. To get from bounds on ρ to bounds
on the embedding, use these definitions and see the calculations on page 189 of [Weh04];
then the calculations on page 187 give estimates on the chart, which gives estimates on ξij
via the isomorphism, and finally see the calculations on page 188 to achieve estimates on
the hij .

U B∆exp g Rd R2d+1ρij exp−1 φ̃

ξij Φ

φ

i

Figure 3.3: Embedding Φ and chart φ of B∆exp ⊆ G. We have dropped the subscript j and
defined U := Uj ∩

⋃
α<j Vα.
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Appendix A

Background material

We will need some results on calculus of Banach spaces. A good source is [AP95].

Definition A.1. Let X and Y be Banach spaces, and U ⊆ X an open subset, and consider
a map F : U → Y . We say that F is Fréchet differentiable at u ∈ U if there exists a
bounded operator A : X → Y such that

lim
‖h‖→0

‖F (u+ h)− F (u)−A(h‖)
‖h‖

= 0.

Such an A is uniquely determined as is called the (Fréchet) differential of F at u.

The following result is the analogous to the usual mean value theorem of calculus.

Proposition A.2 (Mean value inequality). Let F : U → Y be differentiable. For u, v ∈ U
such that the line segment [u, v] is contained in U ,

‖F (u)− F (v)‖ ≤ sup
w∈[u,v]

‖ dF (w)‖ .

And this is the implicit function theorem for Banach spaces.

Theorem A.3 (Implicit function theorem). Let T : X × Y → Z be a continuous map
between Banach spaces that is differentiable with respect to Y , and suppose there is a point
(α, β) ∈ X × Y such that T (α, β) = 0 and ∂Y T |(α,β) is bijective.

Then there exist neighbourhoods U ⊆ X and V ⊆ Y of α and β, respectively, and a
continuous map f : U → V such that for all x ∈ U , T (x, f(x)) = 0.

Lemma A.4. If T is an operator on a Banach space such that ‖T − I‖ < 1, then

∥∥∥T−1
∥∥∥ ≤ 1

1− ‖T − I‖ .

Lemma A.5 ([Weh04], lemma E.4). Let T, S : X → Z be bounded linear operators between
Banach spaces, and suppose that T is bijective and

∥∥T−1∥∥ ‖S‖ < 1. Then the perturbed
operator T + S is also bijective with bounded inverse.
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Chapter A. Background material

The Neumann problem

The first four chapters of [Weh04] are fully devoted to giving a good and thorough introduc-
tion to the Neumann problem, beginning with the L2 theory for the homogeneous problem,
generalization to Lp-spaces and sections of vector bundles, and the inhomogeneous prob-
lem. We quote here only a few results that will be needed in chapter 2. For M a compact
manifold with boundary, the Neumann problem is as follows:{

∆u = f on M,
∂u
∂ν = g on ∂M,

(A.1)

where ν is the exterior normal direction. The problem is said homogeneous when g = 0.
From now on let 1 < p < ∞ and k ∈ N0. If f ∈ W k,p(M), then the natural space for the
boundary values g is

W k+1,p
∂ (M) := W 1,p(M)

W k+1,p
δ (M)

,

whereW k+1,p
δ (M) is defined as the closure inW k+1,p(M) of the smooth functions vanishing

on the boundary. The norm on this space is

‖g‖
Wk+1,p
∂

= inf
{
‖G‖k+1,p : G ∈W k+1,p(M) and g = G|∂M

}
.

Theorem A.6 ([Weh04], theorem 3.1). Let f ∈ Lp(M) and g ∈ W 1,p
∂ (M). Then there

exists a solution u ∈W 2,p(M) the Neumann problem if and only if∫
M
f +

∫
∂M

g = 0.

The solution is unique up to an additive constant.

Proposition A.7 ([Weh04], theorem 3.2). There exist constants C,C ′ such that for all
u ∈W k+2,p(M),

‖u‖k+2,p ≤ C
′
(
‖∆u‖k,p +

∥∥∥∥∂u∂ν
∥∥∥∥
Wk+1,p
∂

+ ‖u‖k+1,p

)
,

‖u‖k+2,p ≤ C
(
‖∆u‖k,p +

∥∥∥∥∂u∂ν
∥∥∥∥
Wk+1,p
∂

)
, if

∫
M
u = 0.

Moreover, for each k ∈ N0, these constants depend continuously on the metric on M . For
C the dependence is with respect to the W k+1,∞-topology, and for C ′ the dependence is with
respect to the W k+2,∞-topology on the space of metrics.

When restricted to functions such that
∫
M u = 0, the second estimate implies that the

operator associated to the Neumann problem has bounded inverse.

Orphaned lemmas and estimates
Finally, we leave in this section a couple of estimates on Sobolev spaces which did not add
to the presentation of the theory in chapter 1, but are nonetheless useful.
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Chapter A. Background material

Lemma A.8 ([Weh04], lemma B.3). Let M be a compact Riemannian n-manifold, and let
k ∈ N0 and 1 ≤ p, r, s <∞ be such that either

r, s ≥ p and 1
r

+ 1
s
<

k

n
+ 1
p
,

or
r, s > p and 1

r
+ 1
s
≤ k

n
+ 1
p
.

Then there is a constant C such that for all α ∈ W k,r(M) and β ∈ W k,s(M) the product
lies in W k,p(M) and satisfies

‖α · β‖k,p ≤ C ‖α‖k,r ‖β‖k,s .

A particular important case is k ≤ 1, r = s = p and kp > n.

Lemma A.9 ([Weh04], lemma 6.5). Let M be a compact Riemannian n-manifold and
1 ≤ q ≤ p < ∞ such that q ≥ n

2 . In case q < n, assume further that p ≤ nq
n−q . Then there

exists a constant Crnpq such that, for all f, g ∈W 1,p(M)

‖f · g‖q ≤ Crnpq ‖f‖r ‖g‖1,q ,
‖f · g‖p ≤ Crnpq ‖f‖r ‖g‖1,p ,
‖f · g‖p ≤ Crnpq ‖f‖1,q ‖g‖1,p ,

where we have:

(i) For q < n, r = nq
n−q ≥ p,

(ii) for q = n, r = 2p,

(iii) and for q > n, r =∞.

Whenever this lemma is used the constant will be called Crnpq. The following lemma is
sometimes called Kato’s inequality, and we prove it in a particular case.

Lemma A.10. Let E → B be a vector bundle over B ⊆ Rn with the Euclidean metric
gij = δij, and choose a metric and a compatible connection for E. Then for a section A of
T ∗M ⊗ E,

|∇ |A|| ≤ |∇A| .

Proof. Write A = Ai dxi, then

(∇A)ij = ∇iA(∂j)−A(∇i∂j) = ∇iAj ,

because ∇i∂j = Γkij∂k and the Christoffel symbols are zero for the Euclidean metric. Then
simply write

∇ |A| = d |A| = 1
2 |A| d〈A,A〉 = 1

2 |A|
∑

∂i〈A,A〉 dxi = 1
|A|

∑
〈∇iA,A〉dxi,

and use the Cauchy-Schwartz inequality in the following:

|∇ |A||2 =
∑ 〈∇iA,A〉2

|A|2
≤
∑ |∇iA|2 |A|2

|A|2
=
∑
|∇iA|2 = |∇A|2 .
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