Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2008.tde-12102008-130822
Document
Author
Full name
Mariana Smit Vega Garcia
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Cordaro, Paulo Domingos (President)
Petronilho, Gerson
Tello, Jorge Manuel Sotomayor
Title in Portuguese
Divisão de distribuições temperadas por polinômios.
Keywords in Portuguese
distribuições
distribuições temperadas
divisão
polinômios
Abstract in Portuguese
Este trabalho apresenta uma demonstração completa do Teorema de L. Hörmander sobre a divisão de distribuições (temperadas) por polinômios. O caso n=1 é apresentado detalhadamente e serve como motivação para as técnicas utilizadas no caso geral. Todos os pré-requisitos para a demonstração de Hörmander (os Teoremas de Seidenberg-Tarski, de Puiseux e da Extensão de Whitney) são discutidos com detalhes. Como conseqüência do Teorema, segue que todo operador diferencial parcial linear com coeficientes constantes não nulo admite solução fundamental temperada.
Title in English
Division of tempered distributions by polynomials.
Keywords in English
Distributions
division
polynomials
tempered distributions.
Abstract in English
This dissertation presents a thorough proof of L. Hörmander's theorem on the division of (tempered) distributions by polynomials. The case n=1 is discussed in detail and serves as a motivation for the techniques that are utilised in the general case. All the prerequisites for Hörmander's proof (the Theorems of Seidenberg-Tarski, of Puiseux and Whitney's Extension Theorem) are discussed in detail. As a consequence of this theorem, it follows that every non zero partial diffe\-rencial operator with constant coefficients has a tempered fundamental solution.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Dissertacao.pdf (455.09 Kbytes)
Publishing Date
2008-11-12