• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2016.tde-12092016-205141
Documento
Autor
Nombre completo
André Silva de Oliveira
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Futorny, Vyacheslav (Presidente)
Bekkert, Viktor
Iusenko, Kostiantyn
Título en portugués
Classificação de módulos de peso sobre álgebras de Weyl
Palabras clave en portugués
Álgebras de Weyl
Módulos de peso indecomponíveis
Módulos de peso simples
Resumen en portugués
Neste trabalho, introduzimos as álgebras de Weyl clássicas A = A_n e as generalizadas A = D(sigma, a). Apresentamos algumas propriedades importantes dessas álgebras, dentre outras, que a n-ésima álgebra de Weyl A_n é um domínio simples Noetheriano à esquerda. Introduzimos os módulos de peso sobre A e estudamos os A-módulos de peso projetivos. Iniciamos a classificação dos A-módulos de peso simples (isto é, irredutíveis) através de uma categoria linear C_O e do seu esqueleto S_O cf. A classificação total dos A_infty-módulos de peso simples é dada utilizando a ação de certas localizações no anel de polinômios cf. Classificamos os blocos do tipo mansa na categoria dos A-módulos de peso localmente finitos e determinamos os A-módulos indecomponíveis nos blocos do tipo mansa. Seguindo, descrevemos os A-módulos de peso injetivos e projetivos indecomponíveis e deduzimos uma descrição dos blocos na categoria dos A-módulos de peso por quivers e relações.
Título en inglés
Classification of weight modules over Weyl algebras
Palabras clave en inglés
Indecomposable weight modules
Simple weight modules
Weyl algebras
Resumen en inglés
In this dissertation, we introduce the classical Weyl algebras A = A_n and the generalized A = D(sigma, a). There are some important properties of these algebras, among others, that the n-th Weyl algebra A_n is a left Noetherian simple domain. We introduced the weight modules over A and study the projective weight A-modules. Started the classification of simple weight A-modules (this is, irreducible) by linear category C_O and its skeleton S_O in accordance with. The complete classification of simple weight A-modules is given using the action of certain localizations in the polynomial ring in accordance with. We classify the tame blocks in the category of locally-finite weight A-modules and determine the indecomposable A-modules in the tame blocks. Following, we describe indecomposable projective and injective weight A-modules and deduce the description of the blocks in the category of weight A-modules by quivers and relations.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2016-09-20
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.