• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2000.tde-11122008-214317
Document
Author
Full name
Antonio Calixto de Souza Filho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
Committee
Juriaans, Orlando Stanley (President)
Dokuchaev, Mikhajolo
Rocco, Norai Romeu
Title in Portuguese
A importância das unidades centrais em anéis de grupo
Keywords in Portuguese
anel de grupo
caracteres
conjectura do isomorfismo
conjectura do normalizador
geradores
unidades
Abstract in Portuguese
Na presente dissertação, discutimos o Problema do Isomorfismo em anéis de grupo para grupos infinitos da forma G × C, apresentado no artigo de Mazur [14], que enuncia um teorema mostrando a equivalência para o Problema do Isomorfismo entre essa classe de grupos infinitos e grupos finitos que satisfaçam a Conjectura do Normalizador. Nossa ênfase concentra-se na relação entre a Conjectura do Isomorfismo e a Conjectura do Normalizador, primeiramente, observada nesse artigo. Em seguida, consideramos um teorema de estrutura para as unidades centrais em anéis de grupo comunicado, pela primeira vez, no artigo de Jespers-Parmenter-Sehgal [9], e generalizado por Polcino Milies-Sehgal em [17], e Jespers-Juriaans em [7]. Evidenciamos a importância desse teorema para a Teoria de Anéis de Grupo e apresentamos uma nova demonstração para o teorema de equivalência de Mazur, considerando, para tanto, uma apropriada unidade central e sua estrutura, caracterizada pelo teorema comunicado para as unidades centrais. Concluímos a dissertação, descrevendo a construção do grupo das unidades centrais para o anel de grupo ZA5 , um grupo livre finitamente gerado de posto 1, utilizando a construção dada no artigo de Aleev [1].
Title in English
The importance of central units in group rings
Keywords in English
characters
generators
group rings
Isomorphism conjecture
normalizer conjecture
units
Abstract in English
In this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
central.pdf (465.13 Kbytes)
Publishing Date
2009-01-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.