
Motivic cohomology, Milnor K-
theory, and Galois cohomology

Daniel de Almeida Souza

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Master of Science

Program: Mathematics

Advisor: Prof. Dr. Hugo Luiz Mariano

During the development of this dissertation the author received

financial support from the São Paulo Research Foundation (FAPESP)

São Paulo

March 24, 2022





Motivic cohomology, Milnor K-
theory, and Galois cohomology

Daniel de Almeida Souza

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the

work, which took place on March 24, 2022.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Hugo Luiz Mariano (advisor) – IME - USP

Prof. Dr. Hugo Rafael de Oliveira Ribeiro – ICTE - UFTM

Prof. Dr. Oliver Lorscheid – University of Groningen/IMPA



Autorizo a reprodução e divulgação total ou parcial deste trabalho, por

qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa,

desde que citada a fonte.



i

Agradecimentos

Eu gostaria de agradecer aos meus pais, Waíra e Vaine, e ao meu irmão João Marcos,

antes de mais nada pelo amor e carinho. Durante a escrita deste trabalho, o incentivo

e o suporte deles foram essenciais. O apoio dos meus demais familiares também foi

extremamente importante.

Agradeço ao professor Hugo Luiz Mariano, meu orientador de iniciação científica e

mestrado, com quem sempre pude contar. Sua generosidade, disposição, abertura e atenção

foram incondicionais. Sempre serei grato pela oportunidade de ter sido seu aluno.

Obrigado aos professores do IME-USP que contribuíram, através de cursos, exposições

e discussões, com a minha formação durante o período de mestrado. Agradeço aos colegas

estudantes do IME com quem tive a oportunidade de interagir; em particular, o contato

com o grupo de orientandos do professor Hugo foi muito agradável e motivador. Sou

grato especialmente ao James pelo convívio e pela ajuda com diversos temas matemáticos.

Obrigado aos meus demais amigos, especialmente ao Matheus pela amizade, apoio e

também pelo interesse neste trabalho.

Além do prof. Hugo, presente decisivamente ao longo de todo o desenvolvimento deste

projeto, outras pessoas foram importantes no meu processo de descoberta e exploração

de temas relacionados diretamente ao trabalho. Destaco os seminários sobre teoria da

homotopia e geometria algébrica organizados pelo Thiago, Kaue e Manoel, e as aulas

sobre teoria da homotopia motívica ministradas pelo Prof. Peter Arndt no IME-USP em

2018.

Aos professores Daniel Levcovitz, Francisco Miraglia, Hugo Mariano, Hugo Ribeiro,

João Fernando Schwarz e Oliver Lorscheid, muito obrigado por terem aceitado participar

da banca, pela leitura atenciosa do trabalho e pelas correções feitas.

Agradeço à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), da qual

fui bolsista durante o mestrado através do projeto "Cohomologia motívica e caracterizações

da conjectura de Bloch-Kato" (2019/09534-4).





Resumo

Daniel de Almeida Souza. Cohomologia motívica, K-teoria de Milnor, e coho-
mologia galoisiana. Dissertação (Mestrado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2022.

Esta dissertação apresenta uma das possíveis fundamentações, baseada em complexos motívicos, para a

cohomologia motívica de variedades lisas sobre um dado corpo base 𝑘. São discutidas suas propriedades

básicas e sua relação com a K-teoria de Milnor e com determinados grupos de cohomologia galoisiana de 𝑘.

Em particular, é discutida a formulação em termos de cohomologia motívica do homomorfismo do resíduo da

norma, que compara os grupos de K-teoria de Milnor módulo um número primo 𝑙 diferente da característica

de 𝑘 com os grupos de cohomologia galoisiana com coeficientes em potências tensoriais do módulo de raízes

𝑙-ésimas da unidade. Por fim, são enunciados alguns resultados preliminares utilizados na caracterização da

conjetura de Bloch-Kato em termos de certas afirmações de natureza motívica.

Palavras-chave: Cohomologia motívica. K-teoria de Milnor. Cohomologia galoisiana.





Abstract

Daniel de Almeida Souza. Motivic cohomology, Milnor K-theory, and Galois coho-
mology. Thesis (Master’s). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2022.

This dissertation presents one of the possible foundations, based on motivic complexes, for the motivic

cohomology of smooth varieties over a given base field 𝑘. Its basic properties are discussed, as well as its

relation to Milnor K-theory and to certain Galois cohomology groups of 𝑘. In particular, we discuss the

formulation in terms of motivic cohomology of the norm residue homomorphism, which compares the

Milnor K-theory groups modulo a prime number 𝑙 different from the characteristic of 𝑘 with the Galois

cohomology groups with coefficients in tensor powers of the module of 𝑙-th roots of unity. Finally, we list

some preliminary results used for characterizing the Bloch-Kato conjecture in terms of certain statements of

motivic nature.

Keywords: Motivic cohomology. Milnor K-theory. Galois cohomology.
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Introduction

0.1 Motivic cohomology, Milnor K- theory, and Galois
cohomology

In 1970, John Milnor introduced (Milnor, 1970) an algebraic invariant for fields which

became known as Milnor K-theory. Given a field 𝑘 and 𝑛 ≥ 1, it is defined as the group

𝐾
𝑛

𝑀
(𝑘) ∶=

𝑛 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑘
×
⊗ ... ⊗ 𝑘

×

(𝑎1 ⊗ ... ⊗ 𝑎𝑛 ∶ ∃𝑖 < 𝑗 with 𝑎𝑖 + 𝑎𝑗 = 1)

.

where 𝑘× denotes the multiplicative group of units of 𝑘; 𝐾 0

𝑀
(𝑘) is defined as ℤ. These

groups may be organized as a graded ring 𝐾 ∗

𝑀
(𝑘) = ⨁

𝑛≥0
𝐾
𝑛

𝑀
(𝑘); namely, one may consider

the quotient of the tensor algebra 𝑇 (𝑘×) by the two-sided homogeneous ideal generated

by all tensors of the form 𝑎 ⊗ (1 − 𝑎) for 𝑎 ∈ 𝑘 ⧵ {0, 1}. These are known as the Steinberg

relations.

Milnor’s notation is due to the fact that these groups serve as an approximation to

the then accepted definition of algebraic K-theory groups of a field in degrees 0, 1, and

2; he refers to works by H. Matsumoto, C. Moore, and R. Steinberg. On the other hand,

in Milnor, 1970, page 319, Milnor describes his construction of 𝐾 𝑛

𝑀
(𝑘) for 𝑛 ≥ 3 as being

"purely ad hoc" in the sense that they are defined not in terms of algebraic K-theory in

higher degrees, but so that 𝐾 ∗

𝑀
(𝑘) corresponds to the quotient of the ring freely generated

by 𝑘
× by the two-sided homogeneous ideal generated by certain relations in 𝑘

×
⊗ 𝑘

×
−

the Steinberg relations − which were known to describe the algebraic K-group 𝐾 2
(𝑘) as a

quotient of 𝑘× ⊗ 𝑘×.

One of the reasons for Milnor’s interest in 𝐾 ∗

𝑀
(𝑘) was its connection, when 𝑐ℎ𝑎𝑟(𝑘) ≠ 2,
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with the Galois cohomology ring

𝐻
∗
(𝑘, ℤ/2) = ⨁

𝑛≥0

𝐻
𝑛
(𝑘, ℤ/2),

with ℤ/2 ∶= ℤ/2ℤ is regarded as a discrete Gal(𝑘𝑠𝑒𝑝/𝑘)-module − where 𝑘𝑠𝑒𝑝 is a previously

chosen separable closure of 𝑘 − by endowing it with the trivial Gal(𝑘𝑠𝑒𝑝/𝑘)-action; note

that as 𝑐ℎ𝑎𝑟(𝑘) ≠ 2, it is isomorphic as a Gal(𝑘𝑠𝑒𝑝/𝑘)-module to the group 𝜇2 of square

roots of unity in 𝑘𝑠𝑒𝑝 . In order to describe this connection, we may first look at a more

general setting. Suppose given a field 𝑘 and a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘). Then we have

the Kummer exact sequence

1 ⟶ 𝜇𝑙 ⟶ 𝑘
×

𝑠𝑒𝑝

∧𝑙

⟶ 𝑘
×

𝑠𝑒𝑝
⟶ 1

of discrete Gal(𝑘𝑠𝑒𝑝/𝑘) modules, where 𝜇𝑙 → 𝑘
×

𝑠𝑒𝑝
is the inclusion of the subgroup of 𝑙-th

roots of unity, and ∧𝑙 denotes the operation of raising to the 𝑙-th power. Then one obtains

a long exact sequence of cohomology groups

0 → 𝐻
0
(𝑘, 𝜇𝑙) → 𝐻

0
(𝑘, 𝑘

×

𝑠𝑒𝑝
)

𝐻
0
(𝑘,∧𝑙)

→ 𝐻
0
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → 𝐻

1
(𝑘, 𝜇𝑙) → 𝐻

1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → ⋯ ,

which is isomorphic to

0 → 𝜇
Gal(𝑘𝑠𝑒𝑝/𝑘)
𝑙

→ 𝑘
×

∧𝑙

→ 𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙) → 𝐻

1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → ⋯ .

A cohomological form of the classical ’theorem 90’ by D. Hilbert, also known as ’Hilbert

90’, states that the group 𝐻 1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) is trivial, so one obtains an isomorphism1

𝜕 ∶ 𝑘
×
/𝑙

≅

⟶ 𝐻
1
(𝑘, 𝜇𝑙).

As the tensor algebra 𝑇 (𝑘×) is generated by degree 1 elements, this map uniquely extends

(see Section 1.2) to a graded ring homomorphism

𝑇 (𝑘
×
)/𝑙 ⟶ 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
).

On the other hand, it may be proved (in Milnor, 1970, Milnor attributes this result to

H. Bass and J. Tate) that the Steinberg relations also hold in the Galois cohomology ring:

given 𝑎 ≠ 0, 1 in 𝑘, one has that 𝜕(𝑎)𝜕(1 − 𝑎) ∈ 𝐻 2
(𝑘, 𝜇

⊗2

𝑙
) is the zero element. Thus one

1 In the exposition in Section 1.2, the isomorphism 𝜕 described here is denoted by 𝜕′, as 𝜕 will then denote
𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙 ).
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obtains a ring homomorphism

𝜈∗ ∶ 𝐾
∗

𝑀
(𝑘)/𝑙 ⟶ 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
), (0.1.1)

known as the norm residue homomorphism. Although Milnor acknowledges inMilnor, 1970

the existence of this map for arbitrary 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), he only studies the case 𝑙 = 2 ≠ 𝑐ℎ𝑎𝑟(𝑘).

By Milnor, 1970, Lemma 6.2, 𝜈∗ ∶ 𝐾 ∗

𝑀
(𝑘)/2 → 𝐻

∗
(𝑘, 𝜇

⊗∗

2
) ≅ 𝐻

∗
(𝑘, ℤ/2) is an isomorphism

whenever 𝑘 is finite, local, global, real closed, or a direct limit of subfields for which 𝜈∗ is

bijective. In Theorem 6.3, Milnor proves that if 𝜈∗ is an isomorphism for a given 𝑘, then

it is also an isomorphism for the field of formal power series 𝑘((𝑡)). He leaves it as an

open question, which became known as the Milnor conjecture, whether 𝜈∗ would be an

isomorphism for any field 𝑘 with 𝑐ℎ𝑎𝑟(𝑘) ≠ 2.

The Milnor conjecture was proved to be true in the mid 1990s by Vladimir Voevodsky

(see Voevodsky, 1997). Before its solution, however, a more general statement had also

been proposed. Although Milnor did not consider the norm residue homomorphism 𝜈∗

for 𝑙 ≠ 2, it was also not clear whether it would be an isomorphism in general. The claim

that 𝜈𝑛 ∶ 𝐾 ∗

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
) for any given field 𝑘, 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘) a prime number, and

𝑛 ≥ 0 later became known as the Bloch-Kato conjecture, named after Spencer Bloch and

Kazuya Kato. In Kato, 1980, Kato states it as Conjecture 1 in page 608. Bloch asked in

Bloch, 2010 (which is the second edition of an exposition based on a series of lectures

given in 1979 at Duke University), Lecture 5, whether the cohomology ring 𝐻 ∗
(𝑘, 𝜇

⊗∗

𝑙
) is

generated by elements of 𝐻 1
(𝑘, 𝜇𝑙), which is equivalent to asking whether 𝜈∗ is surjective

as this was already known in degree 1. His question was motivated by his proof that the

multiplication map

𝐻
1
(𝑘, 𝜇𝑙)

⊗𝑛
∪

⟶ 𝐻
𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
)

is surjective whenever 𝑘 is a function field of transcendence degree 𝑛 over an algebraically

closed field.

Particular cases of the Bloch-Kato (and Milnor) conjecture were proved by A. Merkurjev,

A. Suslin and M. Rost between the 1980s and early 1990s. Firstly, Merkurjev showed in

Merkurjev, 1981 that the Milnor conjecture holds in degree 2, i.e. that

𝐾
2

𝑀
(𝑘)/2

𝜈2

⟶ 𝐻
2
(𝑘, 𝜇

⊗2

2
) ≅ 𝐻

2
(𝑘, ℤ/2)

is an isomorphism for any field 𝑘 such that 𝑐ℎ𝑎𝑟(𝑘) ≠ 2. Merkurjev and Suslin extended

this result in Merkurjev and A. Suslin, 1983 by proving that 𝜈2 is an isomorphism for any

𝑘 and 𝑙 such that 𝑐ℎ𝑎𝑟(𝑘) ≠ 𝑙 . Rost in Rost, 1986 and Merkurjev and Suslin in Merkurjev

and A. Suslin, 1991 showed that 𝜈3 is always an isomorphism for 𝑙 = 2.
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Proofs of the Milnor and Bloch-Kato conjectures were given by Voevodsky in 1996 (see

Voevodsky, 1997) and 2008 (see Voevodsky, 2011), respectively, in the latter case with

a crucial contribution of M. Rost’s work Rost, 2003 on the existence of norm varieties.

Despite the original purely algebraic presentation of the conjectures, their proofs rely

on a series of algebro-geometric concepts developed between the 1990s and 2000s. We

summarize this process below.

The proofs of both conjectures relied on the language and techniques of 𝔸1-homotopy

theory, also known as motivic homotopy theory, a theme relating algebraic geometry

to algebraic topology that emerged in the mid-1990s from the attempt of a group of

mathematicians, particularly F. Morel and V. Voevodsky, to develop a version of homotopy

theory for algebraic varieties analogous to the traditional homotopy theory of topological

spaces. Within this context, the affine line 𝔸
1 over a field 𝑘 assumes, in the category

of varieties over 𝑘, a role analogous to that of the unit interval [0, 1] in the category of

topological spaces. A reference article is Morel and Voevodsky, 1999. 𝔸1-homotopy

theory, in turn, is based on the language of homotopical algebra, introduced by D. Quillen

in 1967 (Quillen, 1967), which establishes the use of a certain kind of additional structure

on a category − rendering it a model category − so that it is endowed with a notion of

homotopy theory and thus may be studied by means of several constructions analogous

to those of classical homotopy theory, such as homotopies, (co)fibrations, homotopies,

cylinders, and path spaces.

Another construction that was important in the proofs of the Milnor and Bloch-Kato

conjectures is motivic cohomology. We now make a digression to describe some of the

general ideas leading to it.

Motivic cohomology

Motivic cohomology is an invariant of smooth algebraic varieties which in certain

ways plays a role analogous to that of singular cohomology in topology. The goals of this

introduction will be to make this statement precise, to describe some of the phenomena

which originally motivated it and provide a concise timeline for its development during

the decades that followed, and also to discuss some of its main connections to phenomena

in algebraic geometry, number theory, and topology.

Its origins can be directly traced back to a conjectural framework of mixed motivic

sheaves proposed in the 1980s independently by A. Beilinson (see Beilinson, A., 1982)

and S. Lichtenbaum (see Lichtenbaum, 1983); their aims were different, but the form

and wished-for properties of such theories may be largely identified up to the choice of a

Grothendieck topology (on suitable categories of schemes over the given variety) with
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respect to which one wishes to define sheaves, complexes, derived functors, etc.

One of the expected features of motivic cohomology is a good relation to the algebraic

K-theory group of the given variety. In fact, we shall firstly discuss some background

motivation from topology (namely, some of the ways in which topological K-theory relates

to singular cohomology), state some of the basic structures known to be available for

algebraic K-groups of schemes (namely, the 𝛾 -filtration), and then, inspired by these,

introduce some of the basic requirements for a motivic cohomology theory (e.g. the fact

that it should be a bigraded module over any chosen ring of coefficients).

In topology, one remarkable fact about generalized cohomology theories is the existence

of a powerful method for approximating (and often actually computing) in such abelian

groups by singular cohomology ones, which turn out to be usually both more elementary

and more approachable. Indeed, let ℎ be a generalized Eilenberg-Steenrod cohomology

theory defined on the category (unpointed) of CW-complexes. Given a CW-complex 𝑋 ,

we may consider its skeleta

⋯ ↪ 𝑋𝑛−1 ↪ 𝑋𝑛 ↪ ⋯

for 𝑛 ∈ ℤ, where we define 𝑋𝑛 = ∅ for 𝑛 < 0. Then this decomposition gives rise to a

spectral sequence of abelian groups, known as the Atiyah-Hirzebruch spectral sequence,

whose 𝐸1-page has terms given by relative (generalized) cohomology groups

𝐸
𝑝,𝑞

1
∶= ℎ

𝑝+𝑞
(𝑋𝑝 , 𝑋𝑝−1)

and with 𝐸2-page

𝐸
𝑝,𝑞

2
∶= 𝐻

𝑝
(𝑋 ; ℎ

𝑞
(∗)),

where ∗ denotes a point. It converges to ℎ𝑝+𝑞(𝑋 ) if, for example, 𝑋 is a finite CW-complex.

The terms 𝐸𝑝,𝑞
∞

, i.e. the associated graded pieces of the corresponding filtration on the

abelian groups ℎ𝑝+𝑞(𝑋 ), are given explicitly by

𝐸
𝑝,𝑞

∞
=

𝐹
𝑝−1
ℎ
𝑝+𝑞

(𝑋 )

𝐹
𝑝
ℎ
𝑝+𝑞

(𝑋 )

,

where 𝐹 ∗
ℎ
𝑝+𝑞

(𝑋 ) is the decreasing filtration

𝐹
𝑛
ℎ
𝑝+𝑞

(𝑋 ) ∶= ker(ℎ
𝑝+𝑞

(𝑋 ) ⟶ ℎ
𝑝+𝑞

(𝑋𝑛))

induced from inclusions of skeleta 𝑋𝑛 ↪ 𝑋 .

In particular, by taking ℎ to be (complex, representable) topological K-theory one
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obtains a spectral sequence

𝐸
𝑝,𝑞

2
= 𝐻

𝑝
(𝑋 ; 𝐾

𝑞
(∗)) ⟹ 𝐾

𝑝+𝑞
(𝑋 ). (0.1.2)

Recall that representable topological K-groups of unpointed CW-complexes may be defined

as follows: one first defines 𝐾 0
(𝑋 ) by endowing with a natural abelian group structure the

set [𝑋 , 𝐵𝑈 × ℤ] of homotopy classes of continuous maps to 𝐵𝑈 × ℤ, where 𝐵𝑈 (usually

presented as an infinite Grassmanian) is a delooping of the infinite unitary group 𝑈 =

lim
−−→

𝑛≥1𝑈 (𝑛), and where ℤ is endowed with the discrete topology. This is motivated by the

fact that if 𝑋 is a compact (e.g. finite) CW-complex, then 𝐾 0
(𝑋 ) is isomorphic to the usual

Grothendieck group completion of the monoid of isomorphism classes of ℂ-vector bundles

on 𝑋 ; for a pointed CW-complex (𝑌 , 𝑦) one defines its reduced (representable) K-theory

in degree 0 as 𝐾̃ 0
(𝑌 , 𝑦) ∶= ker(𝐾

0
(𝑌 ) → 𝐾

0
(𝑦)), so that in particular one has 𝐾 0

(𝑋 ) ≅

𝐾̃
0
(𝑋+), where 𝑋+ = (𝑋+, ∗) is obtained by taking the disjoint union of 𝑋 with a point ∗.

Topological K-theory in negative degrees is then determined by the suspension axiom for

generalized cohomology theories: for each 𝑛 ≥ 0 one defines 𝐾−𝑛
(𝑌 , 𝑦) ∶= 𝐾

0
(Σ

𝑛
(𝑌 , 𝑦))

and 𝐾̃−𝑛
(𝑌 , 𝑦) ∶= 𝐾̃

0
(Σ

𝑛
(𝑌 , 𝑦)), where Σ

𝑛 denotes the 𝑛-fold reduced suspension functor;

for unpointed 𝑋 , one takes 𝐾−𝑛
(𝑋 ) ∶= 𝐾̃

0
(Σ

𝑛
(𝑋+)). Simple connectedness of 𝐵𝑈 may be

used to prove that for each connected (𝑌 , 𝑦) one has (using a ∗ as in [−, −]∗ to denote sets

of pointed homotopy classes)

𝐾̃
0
(𝑌 , 𝑦) = ker([𝑌 , 𝐵𝑈 × ℤ] → [𝑦, 𝐵𝑈 × ℤ]) ≅ [𝑌 , 𝐵𝑈 ]

(!)

≅ [(𝑌 , 𝑦), 𝐵𝑈 ]∗ ≅ [(𝑌 , 𝑦), 𝐵𝑈 × ℤ]∗.

It follows that for any (𝑌 , 𝑦) and 𝑛 > 0 it holds that

𝐾̃
−𝑛
(𝑌 , 𝑦) =≅ [Σ

𝑛
(𝑌 , 𝑦), 𝐵𝑈 ]∗ ≅ [Σ

𝑛
(𝑌 , 𝑦), 𝐵𝑈 × ℤ]∗.

In particular, for 𝑛 > 0 we have bijections

𝐾
−𝑛
(∗) ≅ 𝐾̃

−𝑛
(𝑆

0
, ∗) ≅ 𝐾̃

0
(𝑆

𝑛
, ∗) ≅ 𝜋𝑛(𝐵𝑈 ) ≅ 𝜋𝑛(𝐵𝑈 × ℤ).

For 𝑛 = 0, we directly compute 𝐾 0
(∗) ≅ 𝜋0(𝐵𝑈 × ℤ) ≅ ℤ.

One property which makes topological K-theory greatly more manageable than its

algebraic counterpart is the availability of Raoul Bott’s periodicity theorem, a part of which

may be stated as the claim that the loop space functor has period 2 (up to homotopy
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equivalence) when applied to 𝐵𝑈 × ℤ:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Ω(𝐵𝑈 × ℤ) ≃ 𝑈 ,

Ω
2
(𝐵𝑈 × ℤ) ≃ 𝐵𝑈 × ℤ.

Although we shall not discuss real topological K-theory, it is worth mentioning that a role

analogous to that of 𝐵𝑈 and 𝑈 in the complex case is played by 𝐵𝑂 and 𝑂 in the real one

(where 𝑂 = lim
−−→

𝑛≥1𝑂(𝑛) denotes the infinite orthogonal group). A form of Bott’s result is

also available for the latter spaces, where we instead have 8-fold periodicity:

Ω
8
(𝐵𝑂 × ℤ) ≃ 𝐵𝑂 × ℤ.

The homotopy type of each intermediate 𝑖-fold loop space of 𝐵𝑂 × ℤ (i.e. for 1 ≤ 𝑖 ≤ 7) can

be explicitly described in terms of 𝑂, 𝑈 , and the infinite symplectic group 𝑆𝑝.

Bott periodicity for 𝐵𝑈 ×ℤ immediately implies 2-fold periodicity for homotopy groups

of 𝐵𝑈 × ℤ and 𝑈 , and more generally for complex topological K-theory (in non-positive

degrees):

(i) Since 𝐵𝑈 and 𝑈 are path-connected (equivalently, 𝐵𝑈 is simply connected), for each

𝑛 ≥ 0 we have

𝐾
−𝑛
(∗) ≅ 𝜋𝑛(𝐵𝑈 × ℤ) ≅

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜋0(𝐵𝑈 × ℤ) ≅ ℤ, 𝑛 even,

𝜋0(𝑈 ) ≅ 0, 𝑛 odd.
(0.1.3)

(ii) By the usual reduced suspension-loop space adjunction Σ ⊣ Ω, for each pointed

CW-complex (𝑌 , 𝑦) and 𝑛 > 0 we have

𝐾̃
−𝑛
(𝑌 , 𝑦) ≅ [Σ

𝑛
(𝑌 , 𝑦), 𝐵𝑈×ℤ]∗ ≅ [(𝑌 , 𝑦), Ω

𝑛
(𝐵𝑈×ℤ)]∗ ≅

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[(𝑌 , 𝑦), 𝐵𝑈 × ℤ]∗, 𝑛 even,

[(𝑌 , 𝑦), 𝑈 ]∗, 𝑛 odd.

For an unpointed CW-complex 𝑋 , [𝑋+, 𝐵𝑈 × ℤ]∗ and [𝑋+, 𝑈 ]∗ are further isomorphic

to [𝑋 , 𝐵𝑈 × ℤ] and [𝑋 , 𝑈 ], respectively, hence complex unpointed representable

topological K-theory is given in non-positive degrees by

𝐾
−𝑛
(𝑋 ) ≅

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[𝑋 , 𝐵𝑈 × ℤ], 𝑛 even,

[𝑋 , 𝑈 ], 𝑛 odd.
(0.1.4)

In order to define 𝐾 𝑛 for 𝑛 > 0 in such a way that the data (𝐾
𝑛
)𝑛∈ℤ is part of a generalized
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cohomology theory, one may resort to the representability of generalized (co)homologies

by spectra (in the context of stable homotopy theory), which ultimately follows from

Brown’s representability theorem. Complex (representable) K-theory is defined to be

the generalized cohomology theory represented by the Ω-spectrum 𝐾𝑈 whose entries

are

𝐾𝑈
𝑛
=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐵𝑈 × ℤ, 𝑛 even,

𝑈 , 𝑛 odd.

and whose structure maps are the weak equivalences

𝐾𝑈
2𝑛
= 𝐵𝑈 × ℤ ≃ Ω𝑈 = Ω(𝐾𝑈

2𝑛+1
),

𝐾𝑈
2𝑛−1

= 𝑈 ≃ Ω(𝐵𝑈 × ℤ) = Ω(𝐾𝑈
2𝑛
).

From this we obtain a definition of topological complex (unpointed) K-theory as being

given in all degrees 𝑛 ∈ ℤ by the formula 0.1.4, and in particular by 0.1.3 when applied

to a point. It follows that the 𝐸2-term of the Atiyah-Hirzebruch spectral sequence for

topological complex K-theory, 0.1.2, only depends on ordinary cohomology groups of 𝑋

with integral coefficients: it assumes the form

𝐸
𝑝,𝑞

2
≅

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐻
𝑝
(𝑋 ; ℤ), 𝑞 even,

𝐻
𝑝
(𝑋 ; 0) ≅ 0, 𝑞 odd.

(0.1.5)

Moreover, Atiyah and Hirzebruch proved in M.F. Atiyah and Hirzebruch, 1961 that this

spectral sequence collapes − i.e. the differentials in the 𝐸2-page are zero − after tensoring

withℚ. This implies 𝐸𝑝,𝑞
2

≅ 𝐸
𝑝,𝑞

∞
for all 𝑝, 𝑞, so one obtains a decomposition of the form

𝐾
𝑛
(𝑋 ) ⊗ ℚ ≅ ⨁

𝑝+𝑞=𝑛

𝐸
𝑝,𝑞

∞
⊗ ℚ ≅ ⨁

𝑝+𝑞=𝑛

𝐸
𝑝,𝑞

2
⊗ ℚ ≅ ⨁

𝑞 even

𝐻
𝑛−𝑞

(𝑋 ; ℤ) ⊗ ℚ ≅ ⨁

𝑖∈ℤ

𝐻
𝑛−2𝑖

(𝑋 ; ℤ) ⊗ ℚ.

(0.1.6)

In the 1980s, A. Beilinson (Beilinson, A., 1982, Beilinson, 1987, Beilinson et al.,
1987) and S. Lichtenbaum (Lichtenbaum, 1983) conjectured the existence of a framework

of abelian categories of mixed motives which would, in particular, provide the desired

invariants of algebraic varieties as Ext groups between certain canonical motives. In what

follows, we give a brief and non-exaustive account of the properties initially expected of

such categories and invariants.

As for the properties expected of such conjectural cohomological invariants (which

Beilinson originally referred to as the "absolute cohomology" groups associated to a

given, also conjectural theory of mixed motives), several of them are intrinsic and may
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be stated independently of the desired categorical presentation, while some are of a

structural nature and hence may not. Among the structural ones, some directly concern

the expected property of mixed motives to constitute an abelian category, while others,

quite interestingly, may be entirely formulated in terms of the triangulated structure on

the derived category of such a conjectural abelian category. For example, the Ext groups

expected to characterize such invariants get replaced by shifted Hom groups. This suggests

that it might also be a fruitful task to also look for triangulated categories which, in many

respects, would be a satisfactory partial replacement for the abelian counterpart (whose

existence would in turn depend on deeper issues).

In the following discussion, 𝜋 will always denote the morphism of sites 𝑋ét ⟶ 𝑋Zar

(given by the inclusion functor 𝑋Zar ↪ 𝑋ét) for some scheme 𝑋 which will be clear from

context.

Beilinson’s conjectural framework of motivic complexes and motivic cohomology

of varieties over a field 𝑘 would consist, among others, of the following kinds of struc-

ture:

(i) For each commutative ring with unit 𝐴, a contravariant functor on the category

of smooth varieties over 𝑘 assigning to each 𝑋 a bigraded 𝐴-module 𝐻 ∗,∗

M (𝑋 , 𝐴) ∈

Modℤ×ℤ

𝐴
.

Moreover, there would be homomorphisms

𝐻
𝑚,𝑝

M (𝑋 , 𝐴) ⊗ 𝐻
𝑛,𝑞

M (𝑋 , 𝐴) ⟶ 𝐻
𝑚+𝑛,𝑝+𝑞

M (𝑋 , 𝐴)

for 𝑚, 𝑛, 𝑝, 𝑞 ∈ ℤ endowing 𝐻 ∗,∗

M (𝑋 , 𝐴) with a bigraded ring structure.

The integers 𝑚, 𝑝 as in 𝐻𝑚,𝑝

M (𝑋 , 𝐴) are usually referred to as the cohomological degree
and weight, respectively.

(ii) For each smooth 𝑘-variety 𝑋 , there would exist for 𝑞 ≥ 0 chain complexes

ℤ(𝑞) = (⋯ ⟶ ℤ(𝑞)𝑛

𝑑𝑛+1

⟶ ℤ(𝑞)𝑛−1 ⟶ ⋯)

(with 𝑋 implicit) of Zariski sheaves on 𝑋 , called motivic complexes, satisfying:

(ii).1 Let 𝐴 be a commutative ring with unit; let us denote by 𝐴(𝑞) = ℤ(𝑞) ⊗ 𝐴 the

complex obtained by degreewise tensoring with the constant abelian sheaf 𝐴.

For each 𝑛 ∈ ℤ, Zariski hypercohomology groups 𝐻 𝑛
(𝑋 , 𝐴(𝑞)) of 𝐴(𝑞) are avail-

able (i.e. its corresponding hypercohomology spectral sequence with respect
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to the global section functor converges) and satisfy

𝐻
𝑛
(𝑋 , 𝐴(𝑞)) ≅ 𝐻

𝑛,𝑞

M (𝑋 , 𝐴).

(ii).2 There would be given quasi-isomorphisms ℤ(0) ≅ ℤ, where ℤ denotes the

constant Zariski sheaf, and ℤ(1) ≅ O×
[−1].

(ii).3 For 𝑞 ≥ 1, ℤ(𝑞) would be acyclic in all degrees not in {1, ..., 𝑞}. This became

known as the Beilinson-Soulé vanishing condition (or "conjecture").

(ii).4 For each 𝑞 ∈ ℤ there would be a given a quasi-isomorphism

ℤ(𝑞) ⊗
𝐿
ℤ/𝑙 ≃ 𝜏≤𝑞R𝜋∗(ℤ/𝑙)ét(𝑞).

This became known as the Beilinson-Lichtenbaum condition (or "conjecture").

(ii).5 There would be given maps of complexes

ℤ(𝑝) ⊗ ℤ(𝑞) ⟶ ℤ(𝑝 + 𝑞)

for each 𝑝, 𝑞 ∈ ℤ such that for each commutative ring with unit 𝐴, the induced

homomorphisms

𝐻
𝑛
(𝑋 , 𝐴(𝑝)) ⊗

𝐿
𝐻

𝑚
(𝑋 , 𝐴(𝑞)) ⟶ 𝐻

𝑛+𝑚
(𝑋 , 𝐴(𝑝) ⊗ 𝐴(𝑞)) ⟶ 𝐻

𝑛+𝑚
(𝑋 , 𝐴(𝑝 + 𝑞))

(𝑛, 𝑚 ∈ ℤ) provide, up to the isomorphisms in the previous item, the given

bigraded ring structure on 𝐻 ∗,∗

M (𝑋 , 𝐴).

(ii).6 Motivic cohomology with ℚ-coefficients should be canonically isomorphic, up

to re-indexing, to the rationalized associated graded pieces of the 𝛾 -filtration

on algebraic K-theory groups: for each 𝑛, 𝑝 ∈ ℤ we should have

𝐻
𝑛,𝑝

M (𝑋 , ℚ) ≅ 𝑔𝑟
𝑝

𝛾
𝐾

2𝑝−𝑛
(𝑋 ) ⊗ ℚ

naturally in 𝑋 .

Lichtenbaum, on the other hand, proposed a framework (see Lichtenbaum, 1983)

closely related to Beilinson’s but which would instead rely on the étale topology. His ideas

were were incorporated into Beilinson’s article Beilinson, 1987. We use the following

notation: given a smooth 𝑘-variety 𝑋 as above, for each commutative ring with unit 𝐴

and 𝑞 ∈ ℤ we denote the inverse image complex of étale sheaves 𝜋 ∗
(𝐴(𝑞)) by 𝐴(𝑞)ét. Then

the following would be desired:
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1. Given 𝑞 ∈ ℤ and a prime 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), there is an exact triangle of the form

ℤ(𝑞)ét
𝑙

⟶ ℤ(𝑞)ét ⟶ (ℤ/𝑙)(𝑞)ét ⟶ ℤ(𝑞)ét[1].

2. For each integer 𝑞, the abelian group R𝑞+1
𝜋∗ℤ(𝑞)ét is trivial.

Higher Chow groups

An important construction in algebraic geometry is that of the Chow groups of a

variety2 over a field 𝑘, denoted by 𝐶𝐻
𝑖
(𝑋 ) for 𝑖 ≥ 0. They are obtained as the quotient

of the free abelian group on the set 𝑖-codimensional closed subvarieties of 𝑋 (i.e. its

group Z𝑖(𝑋 ) of 𝑖-codimensional cycles) by the rational equivalence relation. By using the

intersection product homomorphisms

𝐶𝐻
𝑖
(𝑋 ) ⊗ 𝐶𝐻

𝑗
(𝑋 ) ⟶ 𝐶𝐻

𝑖+𝑗
(𝑋 ),

these groups may be assembled into a graded ring 𝐶𝐻 ∗
(𝑋 ), the Chow ring of 𝑋 . In 1986,

Spencer Bloch (see Bloch, 1986) applied simplicial techniques to the theory of algebraic

cycles to produce a bigraded abelian group-valued invariant of varieties, called higher
Chow groups; they are denoted by 𝐶𝐻 𝑖

(𝑋 , 𝑞) for 𝑖, 𝑞 ≤ 0, and in particular they recover

the classical Chow groups as 𝐶𝐻 𝑖
(𝑋 ) ≅ 𝐶𝐻

𝑖
(𝑋 , 0).

His starting point was the existence for any quasiprojective 𝑘-variety 𝑋 of an isomor-

phism of ℚ-vector spaces, due to P. Baum, W. Fulton, and R. MacPherson (see the theorem

in Baum et al., 1975, III.1), between ⨁
𝑖≥0
(𝐶𝐻

𝑖
(𝑋 ) ⊗ ℚ) and 𝐾 0

𝑐𝑜ℎ
(𝑋 ) ⊗ℤ ℚ, where 𝐾 0

𝑐𝑜ℎ
(𝑋 )

denotes the Grothendieck group of coherent sheaves on 𝑋 . Moreover, the composite of

this isomorphism with the decomposition

𝐾
0

𝑐𝑜ℎ
(𝑋 ) ⊗ ℚ ≅ ⨁

𝑖≥0

(Gr𝑖
𝛾
𝐾

0

𝑐𝑜ℎ
(𝑋 ) ⊗ ℚ)

given by the 𝛾 -filtration on 𝐾 0

𝑐𝑜ℎ
(𝑋 ) defines for each 𝑖 ≥ 0 an isomorphism

𝐶𝐻
𝑖
(𝑋 ) ⊗ ℚ ≅ 𝑔𝑟

𝑖

𝛾
𝐾

0

𝑐𝑜ℎ
(𝑋 ) ⊗ ℚ.

Bloch aimed to define higher Chow groups in such a way that for any quasiprojective

𝑘-variety they satisfied

𝐶𝐻
𝑖
(𝑋 , 𝑞) ⊗ ℚ ≅ 𝑔𝑟

𝑖

𝛾
𝐾
𝑞

𝑐𝑜ℎ
(𝑋 ) ⊗ ℚ

2 By a variety we mean an integral, separated, finite type scheme over a given field 𝑘.



xx

for each 𝑞, 𝑖 ≤ 0, hence

⨁

𝑖≥0

(𝐶𝐻
𝑖
(𝑋 , 𝑞) ⊗ ℚ) ≅ 𝐾

𝑞

𝑐𝑜ℎ
(𝑋 ) ⊗ ℚ.

This property holds for higher Chow groups as defined in Bloch, 1986 (see below), and is

proved in Theorem 9.1 of the same article.

We limit ourselves to giving its definition and stating some of its most important

properties; for a longer discussion of these, we refer the reader to Bloch, 1986, Bloch,

2010, and Part 5 of Mazza et al., 2006.

Firstly, for a given field 𝑘 one considers for each 𝑞 ≤ 0 the 𝑘-variety Δ
𝑞

𝑘
∶=

Spec 𝑘[𝑡0,...,𝑡𝑞]

(𝑡0+...+𝑡𝑞−1)
, which is an algebro-geometric analogue of the standard 𝑞-simplex. These

may be assembled into a cosimplicial 𝑘-variety, i.e. a functor Δ∗

𝑘
∶ Δ → Var𝑘 from the

simplex category to the category of 𝑘-varieties. We refer to Subsection 2.2.1 for a discus-

sion of this construction. Now, if 𝑋 is a 𝑘-variety, composing Δ
∗

𝑘
with the product functor

𝑋 ×𝑘 − ∶ Var𝑘 → Var𝑘 yields a cosimplicial 𝑘-variety given on objects by [𝑞] ↦ 𝑋 ×𝑘 Δ
𝑞

𝑘
.

The idea is to define, for each 𝑖 ≥ 0, a simplicial abelian group Δ
𝑜𝑝
→ Set that associates

to each face inclusion 𝑋 ×𝑘 Δ
𝑟
→ 𝑋 ×𝑘 Δ

𝑞, 𝑟 ≤ 𝑞, a pullback map between groups of

𝑖-codimensional cycles in the opposite direction. The usual pullback is not available for

arbitrary cycles as 𝑋 ×𝑘 Δ
𝑟
→ 𝑋 ×𝑘 Δ

𝑞 is in general not flat; on the other hand, as remarked

in Bloch, 1986, the fact that the image of each face inclusion is a local complete intersection

allows one to define the pullback from 𝑋 ×𝑘 Δ
𝑞 to 𝑋 ×𝑘 Δ

𝑟 of any cycle which intersects

𝑋 ×𝑘 Δ
𝑟 properly. Then one defines for each 𝑖, 𝑞 ≤ 0 a subgroup Z𝑖

(𝑋 , 𝑞) of the group

Z𝑖
(𝑋 ×𝑘 Δ

𝑞
) of 𝑖-codimensional cycles consisting of those cycles that properly intersect all

faces 𝑋 ×𝑘 Δ
𝑟
→ 𝑋 ×𝑘 Δ

𝑞 for 𝑟 ≤ 𝑞. This defines for each 𝑖, 𝑞, 𝑝 ∈ {0, ..., 𝑞} a map

𝜕
𝑝

𝑞
∶ Z𝑖

(𝑋 , 𝑞) → Z𝑖
(𝑋 , 𝑞 − 1),

and by proving that flat pullback under the degeneracy maps 𝑠𝑝
𝑞
∶ 𝑋 ×𝑘 Δ

𝑞+1
→ 𝑋 ×𝑘 Δ

𝑞

for 𝑝 ∈ {0, ..., 𝑞} send cycles in Z𝑖
(𝑋 , 𝑞) to cycles in Z𝑖

(𝑋 , 𝑞 + 1) one obtains for each 𝑖 ≤ 0

a simplicial abelian group

Z𝑖
(𝑋 , ∗).

The (𝑖, 𝑞)-th higher Chow group of 𝑋 , denoted by 𝐶𝐻 𝑖
(𝑋 , 𝑞) is defined as the 𝑞-th homology

group of the chain complex of abelian groups associated with Z𝑖
(𝑋 , ∗).

In particular, by identifying the affine line 𝔸
1

𝑘
with Δ

1

𝑘
via the isomorphism 𝑡 ↦

(𝑡0, 𝑡1) = (𝑡, 1 − 𝑡) it follows that 𝐶𝐻 𝑖
(𝑋 , 0) is the quotient of the group of 𝑖-codimensional

cycles on 𝑋 by its subgroup consisting of cycles of the form 𝛼 ∩ (𝑋 ×𝑘 {0}) − 𝛼 ∩ (𝑋 ×𝑘 {0})
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for 𝛼 ∈ Z(𝑋 ×𝔸
1

𝑘
) intersecting 𝑋 × {0} and 𝑋 × {1} properly. By Fulton, 1984, Prop. 1.6, it

is isomorphic to the classical Chow group 𝐶𝐻 𝑖
(𝑋 ).

Some of the main features of higher Chow groups (see Bloch, 1986) are:

(i) They are defined for any variety over 𝑘.

(ii) For fixed 𝑖, 𝑞 ≤ 0, groups 𝐶𝐻 𝑖
(−, 𝑞) can be made functorial in several different ways,

all of which recover the usual functoriality of classical Chow groups by taking 𝑖 = 0:

• Covariantly with respect to proper morphisms between quasiprojective 𝑘-

varieties.

• Contravariantly w.r.t. flat morphisms between quasiprojective 𝑘-varieties.

• Contravariantly w.r.t. arbitrary morphisms between smooth quasiprojective

𝑘-varieties.

(iii) Higher Chow groups are homotopy invariant: for a (not necessarily quasiprojective)

𝑘-variety 𝑋 , the pullback map 𝐶𝐻
𝑖
(𝑋 , 𝑞)

𝜋
∗

⟶ 𝐶𝐻
𝑖
(𝑋 × 𝔸

1

𝑘
, 𝑞) is an isomorphism

(Bloch, 1986, Theorem 2.1).

(iv) There exist localization sequences of the following form: if 𝑍 ↪ 𝑋 is a closed

immersion between quasiprojective 𝑘-varieties with open complement 𝑈 ↪ 𝑋 ,

then for each 𝑖 ≤ 0, denoting by 𝑛 the codimension of 𝑌 in 𝑋 , there exists an exact

sequence of chain complexes

0 ⟶ Z𝑖−𝑛
(𝑍 , ∗) ⟶ Z𝑖

(𝑋 , ∗) ⟶ Z𝑖
(𝑈 , ∗)

such that the induced chain map Z𝑖
(𝑋 , ∗)/Z𝑖−𝑛

(𝑍 , ∗) → Z𝑖
(𝑈 , ∗) is a quasi-

isomorphism. Thus there exists a long exact sequence

⋯ → 𝐶𝐻
𝑖
(𝑈 , 𝑞 + 1) → 𝐶𝐻

𝑖−𝑛
(𝑍 , 𝑞) → 𝐶𝐻

𝑖
(𝑋 , 𝑞) → 𝐶𝐻

𝑖
(𝑈 , 𝑞) → 𝐶𝐻

𝑖−𝑛
(𝑍 , 𝑞 − 1) → ⋯ .

This is proved in Bloch, 1986, 3.1-3.3.

(v) If 𝑋 is a smooth quasiprojective variety over 𝑘, one may define homomorphisms of

the form

𝐶𝐻
𝑖
(𝑋 , 𝑞) ⊗ 𝐶𝐻

𝑗
(𝑋 , 𝑟) ⟶ 𝐶𝐻

𝑖+𝑗
(𝑋 , 𝑞 + 𝑟)

that turn 𝐶𝐻 ∗
(−, ∗) into a bigraded ring. This construction is performed in section 5

of Bloch, 1986.

In the late 1990s, A. Suslin and V. Voevodsky (A. Suslin and Voevodsky, 1996) used a

different approach to produce an invariant for smooth varieties over a field 𝑘 satisfying
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many of Beilinson-Lichtenbaum’s conditions. Although it is not defined for arbitrary

𝑘-schemes, when it does it coincides with Bloch’s higher Chow groups. Moreover, it was a

significant step towards establishing a cohomological invariant satisfying the structural

part of Beilinson-Lichtenbaum’s conditions. Firstly, it is indeed computable for each 𝑋 as

the hypercohomology groups (or modules) of certain complexes ℤ(𝑛) of Zariski sheaves

of abelian groups (or complexes 𝐴(𝑛) of sheaves of 𝐴-modules) on 𝑋 ; furthermore, such

complexes are naturally obtained by restriction of certain complexes of presheaves with
transfers, which are by definition presheaves on an additive category (of finite correspon-
dences over 𝑘) in which the category of smooth 𝑘-varieties is canonically embedded. Two

major consequences of this presentation are:

(i) One is able to produce both Zariski and étale variants of such invariants, as well as

canonical change-of-topology maps between them.

(ii) Such invariants arise as (shifted) Hom groups (or modules) in a certain triangulated

category 𝐷𝑀(𝑘, ℤ) (or 𝐷𝑀(𝑘, 𝐴) for a given commutative ring 𝐴). As we shall see,

the latter are, roughly speaking, obtained by imposing homotopy invariance (with

respect to the affine line) to the derived category of sheaves with transfers for the

Nisnevich topology. We note that while this procedure (which may be obtained

as a Verdier quotient done at the triangulated level, or equivalently as a Bousfield

localization on a suitable model structure on the category of complexes of Nisnevich

sheaves with transfers) solves the representability issue, it produces a triangulated

category which need not arise as the derived category of an abelian category (it

remains an open question).

In accordance with current mathematical practice, we will refer to these (and only

these) as (ordinary) motivic cohomology and étale motivic cohomology groups (or modules),

respectively. We also refer to the canonical complexes of sheaves computing them as

motivic complexes, and to categories of the form 𝐷𝑀(𝑘, 𝐴) as (triangulated) categories of
Voevodsky (mixed) motives. The Beilinson-Lichtenbaum conditions previously stated are

often regarded as axioms for to-be-constructed "motivic cohomology theory" and "motivic

complexes", but in order to avoid ambiguity we shall strictly reserve this terminology for

Suslin-Voevodsky’s construction; this then allows us to regard the former conditions as

propositions or conjectures on motivic cohomology/motivic complexes in our sense.

Similarly, the notationℤ(𝑛) (or𝐴(𝑛) for an abelian group or ring𝐴) will also be reserved

throughout the text for the (motivic) complexes as constructed by Suslin-Voevodsky.

Motivic cohomology in this sense may be compared with Bloch’s higher Chow groups,

and this allows one to exchange properties from one construction to the other. By Mazza
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et al., 2006, Theorem 19.1, if 𝑘 is a perfect field, then for any smooth, separated, finite type

𝑘-scheme 𝑋 there is an isomorphism

𝐶𝐻
𝑞
(𝑋 , 𝑝) ≅ 𝐻

𝑝+2𝑞,𝑞
(𝑋 , ℤ)

for all 𝑝, 𝑞 ∈ ℤ. This is done by constructing (Mazza et al., 2006, 19.8) for perfect 𝑘 and

each 𝑞 ∈ ℤ a quasi-isomorphism of complexes of Zariski sheaves

ℤ(𝑞)[2𝑞] ≃ Z𝑞
(− × 𝔸

𝑞

𝑘
, ∗)

on the category Sm𝑘 of smooth, separated, finite type 𝑘-schemes, and by proving (Mazza

et al., 2006, 19.12) that for each 𝑝 ∈ ℤ the Zariski cohomology group 𝐻 𝑝

Zar(𝑋 ,Z
𝑞
(− × 𝔸

𝑞

𝑘
, ∗))

is isomorphic to 𝐶𝐻 𝑞
(𝑋 , 𝑝).

0.1.1 Concluding remarks on the use of motivic cohomology for
proving the Milnor and Bloch-Kato conjectures

In 2000, Voevodsky published the article Voevodsky, 2000, which presented in a unified

way four distinct theories in accordance with the proposal of Beilinson and Lichtenbaum:

motivic homology, motivic homology with compact support, motivic cohomology, and

motivic cohomology with compact support, with the first one corresponding to the groups

defined by Bloch. For that purpose, Voevodsky constructed, for any field 𝑘 and any abelian

group 𝐴, a triangulated category known as the category of Voevodsky motives over 𝑘 (with

coefficients in 𝐴), denoted by 𝐷𝑀(𝑘, 𝐴). For each 𝑘-scheme 𝑋 , two objects are functorially

associated in 𝐷𝑀(𝑘, 𝐴): the motive of 𝑋 , denoted 𝑀(𝑋), and the motive of 𝑋 with compact

support, denoted by 𝑀 𝑐
(𝑋 ). Thus, the four theories mentioned above are given by functors

representable in 𝐷𝑀(𝑘, 𝐴) (after the association 𝑋 ⟼ 𝑀(𝑋) or 𝑋 ⟼ 𝑀
𝑐
(𝑋 )). The

representing object for 𝐻 𝑛,𝑞 is the 𝑛-th shift (in the triangulated category) of the Tate

motive 𝐴(𝑞). Then one obtains another formulation of the motivic cohomology groups

𝐻
𝑛,𝑞
(𝑋 , 𝐴), which in this case is also denoted by 𝐻 𝑛

(𝑋 , 𝐴(𝑞)).

Voevodsky’s strategy to prove the Bloch-Kato conjecture consisted in translating the

homomorphisms of the form 0.1.1 above as comparison homomorphisms between ordinary

and étale motivic cohomology groups.

Firstly, one analyzes the codomain of 0.1.1. A foundational result on étale cohomology

shows that when it is computed for étale sheaves on Spec 𝑘, it coincides, in a certain sense,

with the Galois cohomology groups of 𝑘. In the present setting, the Galois cohomology

group 𝐻 𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
) is canonically isomorphic to an étale cohomology group 𝐻 𝑛

ét(Spec 𝑘,F ),
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where F is a sheaf ("of coefficients") canonically determined by the Gal(𝑘𝑠𝑒𝑝/𝑘)-module

𝜇
⊗𝑛

𝑙
. It is also worth noting that it is possible to define (cf. Mazza et al., 2006, for example)

a variation of the motivic cohomology called étale motivic cohomology. As a result, the

group 𝐻
𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
) also becomes canonically isomorphic to a (motivic étale) cohomology

group 𝐻 𝑛,𝑛

ét (Spec 𝑘, ℤ/𝑙).

In a less elementary way, the domain, 𝐾 𝑛

𝑀
(𝑘)/𝑙, is also interpreted as a motivic coho-

mology group. It can be shown that for a 𝑑-dimensional variety 𝑋 over 𝑘, for every 𝑛 ≥ 0,

there exists a canonical homomorphism 𝜕 such that

𝐻
2𝑑+𝑛,𝑑+𝑛

(𝑋 ) ≅ Coker
(

∐

𝑥∈𝑋
(𝑑−1)

𝐾
𝑛+1

𝑀
(𝜅(𝑥))

𝜕

⟶ ∐

𝑥∈𝑋
(𝑑)

𝐾
𝑛

𝑀
(𝜅(𝑥))

)

,

where: 𝑋 (𝑑−1) (resp. 𝑋 (𝑑)) is the set of 𝑑 − 1 (resp. 𝑑) codimensional points of the scheme

𝑋 , i.e. the closed points (resp. irreducible curves) in 𝑋 ; and 𝜅(𝑥) is the residue field of 𝑋

at 𝑥 . In particular, taking 𝑋 = Spec 𝑘 (which has a single point, of zero dimension) yields

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ) = 𝐾 𝑛

𝑀
(𝑘) and that 𝐻 𝑛,𝑛

(Spec 𝑘, ℤ/𝑙ℤ) = 𝐾 𝑛

𝑀
(𝑘)/𝑙.

Thus, the Bloch-Kato conjecture claims the existence of certain isomorphisms of the

form

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ/𝑙) ⟶ 𝐻

𝑛,𝑛

ét (Spec 𝑘, ℤ/𝑙).

More generally, given a smooth variety 𝑋 over 𝑘 and 𝑙 a prime number different from

𝑐ℎ𝑎𝑟(𝑘), there exist canonical homomorphisms

𝐻
𝑛,𝑞
(𝑋 , ℤ/𝑙ℤ) ⟶ 𝐻

𝑛,𝑞

ét (𝑋 , ℤ/𝑙). (0.1.7)

between ordinary and étale motivic cohomology. Thus the Bloch-Kato conjecture

may be characterized as a claim about a particular map within a family of comparison

homomorphisms. Such an observation suggests, more generally, the search for conditions

on 𝑋 , 𝑙, 𝑛 and 𝑞 under which 0.1.7 would be an isomorphism.

The so-called Beilinson-Lichtenbaum conjecture, predicted even before Voevodsky’s

definition of motivic cohomology in Voevodsky, 2000, is the statement that 0.1.7 is an

isomorphism whenever 𝑛 ≤ 𝑞. In 1996, Voevodsky and Suslin showed in A. Suslin and Vo-

evodsky, 1996 that the Bloch-Kato conjecture partially implies the Beilinson-Lichtenbaum

conjecture (with the abstract properties of the then conjectural motivic cohomology).

Shortly afterwards, T. Geisser and M. Levine proved in Geisser and Levine, 2001 that the

implication holds in general.
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Another condition turns out to be fundamental for studying the Bloch-Kato conjecture.

By taking 𝑋 = Spec 𝑘 and 𝑛 = 𝑞 + 1 in 0.1.7, one obtains a map from 𝐻
𝑞+1,𝑞

(Spec 𝑘, ℤ/𝑙)

− which is trivial group − to 𝐻 𝑞+1,𝑞

ét (Spec 𝑘, ℤ/𝑙). The claim that 𝐻 𝑞+1,𝑞

ét (Spec 𝑘, ℤ/𝑙) is also

trivial may be regarded as a generalization of the classical ’theorem 90’ by D. Hilbert (also

known as ’Hilbert 90’), which states, if framed in terms of Galois cohomology, that the

group 𝐻 1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) is trivial. Here, the crucial fact is that this conjectural generalized form

of Hilbert 90 implies the Bloch-Kato Conjecture (cf. Voevodsky, 2003, for example), and

hence the Beilinson-Lichtenbaum Conjecture.

In Voevodsky, 2000, Voevodsky proved that the generalized Hilbert 90 condition would

follow from the existence of certain algebraic varieties, called norm varieties. Its existence

has been showed, although not to the full extent originally envisaged, by M. Rost (cf. Rost,

2003, A. Suslin and Joukhovitski, 2006). Based on this, the article Voevodsky, 2011

by Voevodsky, originally published in 2008, makes a series of needed adaptations to the

previous text and concludes the proof of the three conjectures.

0.2 Structure of the dissertation; conventions

This text is divided into three chapters.

Chapter 1 discusses Galois cohomology and Milnor K-theory from a classical point of

view. In the first section we study the cohomology of discrete groups and of Galois groups.

In the second one, the Kummer exact sequence and the ’Hilbert 90’ theorem are used to

produce, for a given field 𝑘, a ring homomorphism from the tensor algebra 𝑇 (𝑘×) of its

group of units to a Galois cohomology ring with coefficients in modules of roots of unity.

Finally, the vanishing of certain elements of this Galois cohomology ring provides a map

from the Milnor K-theory ring to it.

Chapter 2 is an introduction to motivic cohomology in terms of motivic complexes. It is

dedicated to presenting general constructions and properties. First we define the additive

category of finite correspondences over a given field 𝑘, denoted by Cor𝑘 , which can be

regarded as an extension of the category of smooth varieties over 𝑘. Then we discuss

presheaves with transfers, which are additive presheaves of abelian groups (or of modules

over a ring) on Cor𝑘 ; sheaves with transfers are those presheaves with transfers which

satisfy the usual sheaf condition when restricted to the subcategory of Cor𝑘 consisting of

usual morphisms of schemes. We define the chain complexes of presheaves with transfers

𝐴(𝑞) (which are in fact étale − hence Zariski − sheaves with transfers), where 𝐴 is an

abelian group and 𝑞 ≤ 0 is an integer. For an abelian group 𝐴 and integers 𝑝, 𝑞 ≤ 0, the

motivic cohomology group 𝐻 𝑝,𝑞
(𝑋 , 𝐴) is defined as the 𝑝-th Zariski cohomology of 𝑋 with
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respect to the restriction of 𝐴(𝑞) to its Zariski site. As 𝐴(𝑞) is an étale sheaf, so we also

consider étale motivic cohomology groups 𝐻 𝑝,𝑞

ét (𝑋 , 𝐴), which is defined analogously in

terms of the étale site of 𝑋 . We discuss the existence of a quasi-isomorphism from ℤ(1) to

the presheaf with transfers of global units, O×, placed in cohomological degree 1. Finally,

we present some constructions concerning a notion of étale sheafification for presheaves

with transfers, and the notion of homotopy invariance of presheaves with transfers.

In Chapter 3 we sketch how motivic cohomology and Voevodsky’s theory of mixed

motives may be used for providing alternative characterizations of the objects involved in

the (former) Bloch-Kato conjecture as well as the conjecture itself. The Milnor K-theory

groups of a given 𝑘 are identified with certain motivic cohomology groups of Spec 𝑘;

similarly, étale cohomology with coefficients in sheaves of roots of unity are identified

with certain étale motivic cohomology groups. The norm residue homomorphism is then

characterized as a ’change of topology’ map constructed via the adjunction between the

category of Zariski sheaves and that of étale sheaves.

We now list some preliminary material and conventions that will be used throughout

the text.

We will assume some familiarity with general topology, group theory and ring theory

(particularly introductory commutative algebra and Galois theory − see Jacobson, 1964

and M. Atiyah, 1969), as well as with algebraic geometry via schemes. For the latter we

refer the reader to Hartshorne, 1977, chapters 1 and 2, and Mumford, 1988. We will also

the concepts of smooth and étale morphism of schemes, for which we refer to Mumford,

1988, chapter 3 of Hartshorne, 1977, and Milne, 1980.

Several concepts from category theory will be used throughout the text: categories, func-

tors, natural transformations, adjunctions, representable functors and the Yoneda lemma,

limits and colimits; comma categories (especially overcategories); localization of categories;

monoidal categories. We will also consider sheaf theory in terms of Grothendieck topolo-

gies will be needed: sieves, Grothendieck pretopologies and topologies, sites, (pre)sheaves

and categories of (pre)sheaves, direct and inverse image sheaf functors. We refer the reader

to Lane, 1971 and Artin et al., 1973.

From homological algebra, we will use additive and abelian categories, categories

of (co)chain complexes, (co)homology of complexes and quasi-isomorphisms; additive,

left/right exact, and exact functors; derived categories and derived functors; triangulated

categories. We refer the reader to C.A. Weibel, 1995, Gelfand and Manin, 2003, Cartan

and Eilenberg, 1956, Grothendieck, 1957.

Moreover, the following conventions will be used:
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• If C is a category, we will write 𝑎 ∈ C (instead of 𝑎 ∈ Ob(C), for example) when 𝑎 is

an object of C. We will not use a similar abuse of notation for arrows in a category.

• If C and D are categories, the notation 𝐹 ∶ C → D refers to a functor in the covariant

sense. By a contravariant functor from C to D we will mean a functor 𝐹 ∶ C𝑜𝑝 → D,

where C𝑜𝑝 denotes the opposite category of C.

The category of functors and natural transformations from C to D will be denoted

by Fun(C,D).

We will often refer to a contravariant functor from C to D (particularly when D = Set

or Ab) as a D-valued presheaf on C. The corresponding category of presheaves is

defined as

PSh(C, 𝐷) ∶= Fun(C𝑜𝑝 ,D).

• By a chain complex in an abelian category A we will mean a pair ((𝐶𝑖)𝑖∈ℤ, (𝑑𝑖)𝑖∈ℤ)

consisting of a ℤ-indexed family of objects 𝐶𝑖 of A and a ℤ-indexed family of arrows

in A of the form 𝑑𝑖 ∶ 𝐶𝑖 → 𝐶𝑖−1 with the property that 𝑑𝑖 ◦ 𝑑𝑖+1 = 0 for every 𝑖 ∈ ℤ. A

cochain complex is a pair ((𝐶 𝑖
)𝑖∈ℤ, (𝑑

𝑖
)𝑖∈ℤ) consisting of a ℤ-indexed family of objects

𝐶
𝑖 of A and a ℤ-indexed family of arrows in A of the form 𝑑

𝑖
∶ 𝐶

𝑖
→ 𝐶

𝑖+1 such

that 𝑑 𝑖+1 ◦ 𝑑 𝑖 for every 𝑖 ∈ ℤ.

The term complex will be used to refer to a cochain complex.

In the above notation, a (cochain) complex is said to be bounded below (resp. bounded
above) if there exists 𝑛 ∈ ℤ such that 𝐶𝑖 ≅ 0 for every 𝑖 ≤ 𝑛 (resp. for every 𝑖 ≥ 𝑛). A

complex is said to be bounded if it is both bounded below and bounded above.

We will sometimes say that a complex (𝐶 ∗
, 𝑑

∗
) is concentrated in a given set of integers

to mean that 𝐶𝑛
≅ 0 whenever 𝑛 does not belong to that set. For example, being

concentrated in degree 0 means that 𝐶𝑛
≅ 0 for every 𝑛 ≠ 0, and being concentrated

in non-negative degrees means that 𝐶𝑛
≅ 0 for every 𝑛 < 0.

The category of complexes and chain maps in A will be denoted by Ch(A). The

full subcategories of Ch(A) whose objects are the bounded below, bounded above,

bounded complexes, resp. are denoted by Ch+

(A), Ch−

(A), Ch𝑏(A). The correspond-

ing derived categories, i.e. the categories obtained from Ch+

(A), Ch−

(A), Ch𝑏(A) by

localization at the quasi-isomorphisms, are denoted by 𝐷+
(A), 𝐷−

(A), 𝐷𝑏
(A), resp.

• A set 𝑋 endowed with a left action of a group 𝐺 will be referred to as a 𝐺-set. The

category of 𝐺-sets and functions which preserve the action of 𝐺 will be denoted by

Set𝐺 .
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• By a module over a group 𝐺 we will always mean a left module, i.e. an abelian group

𝑀 endowed with a left group action 𝜇 ∶ 𝐺 ×𝑀 → 𝑀 , say denoted by (𝑔, 𝑚) ↦ 𝑔 ⋅𝑚,

such that 𝑔 ⋅ (𝑎 + 𝑏) = 𝑔 ⋅ 𝑎 + 𝑔 ⋅ 𝑏 for every 𝑔 ∈ 𝐺 and 𝑎, 𝑏 ∈ 𝑀 . We use the notation

Mod𝐺 for the category of (left) 𝐺-modules and module homomorphisms. Similarly,

given a (not necessarily commutative) unital ring 𝑅, we use the the module to refer

to a left module, and the category of (left) 𝑅-modules will be denoted by Mod𝑅 .

• We will denote the category of schemes by Sch. For a given scheme 𝑋 , we denote

by Sch𝑋 the category of schemes over 𝑋 : its objects are pairs (𝑌 , 𝑓 ) where 𝑌 is a

scheme and 𝑓 is a scheme morphism from 𝑌 to 𝑋 ; morphisms from (𝑌 , 𝑓 ) to (𝑌
′
, 𝑓

′
)

are scheme morphisms 𝑔 ∶ 𝑌 → 𝑌
′ such that 𝑓 ′ ◦ 𝑔 = 𝑓 . We will usually refer to an

object of Sch𝑋 as an 𝑋 -scheme; by abuse of notation, we will often denote (𝑌 , 𝑓 ) by

𝑌 .

The full subcategory of Sch𝑋 whose objects are the finite type 𝑋 -schemes (i.e. those

(𝑌 , 𝑓 ) such that 𝑓 is a finite type morphism) will be denoted by FTSch𝑋 .

We will denote by Sm𝑋 the full subcategory of Sch𝑋 whose objects are smooth,

separated, finite type schemes over 𝑋 .

In case 𝑋 is an affine scheme Spec 𝐴, we denote these categories by Sch𝐴, FTSch𝐴,

Sm𝐴 (we will mostly deal with the case 𝑋 = Spec 𝑘 for a field 𝑘).

• For a given field 𝑘: 𝔸
𝑛

𝑘
denotes the 𝑛-dimensional affine space over 𝑘, i.e.

Spec 𝑘[𝑥1, ..., 𝑥𝑛]; ℙ𝑛𝑘 denotes the 𝑛-dimensional projective space over 𝑘; following

Mazza et al., 2006, the notation 𝔾𝑚,𝑘 will be used exclusively for the pointed
𝑘-scheme (𝔸

1

𝑘
⧵ {0}, 𝑠1), where the 𝑘-morphism 𝑠1 ∶ Spec 𝑘 → 𝔸

1

𝑘
is the inclusion

of the point {1}; the unpointed version will be denoted by 𝔸
1

𝑘
⧵ {0}.

When 𝑘 is clear from the context, these will be denoted by 𝔸
𝑛, ℙ𝑛, 𝔾𝑚.
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Chapter 1

Galois cohomology, Milnor
K-theory, and the norm residue
homomorphism: the classical point
of view

In 1970, when Quillen’s general and now widely accepted definition of higher K-
theory was still not available, Milnor introduced (see Milnor, 1970) a certain algebraic
invariant for fields 𝑘 which provided an ad-hoc generalization of the algebraic K-theory
groups 𝐾 0

(𝑘), 𝐾 1
(𝑘), and 𝐾 2

(𝑘) to higher degrees. More precisely, he defined for each 𝑘 a
graded-commutative ring 𝐾 ∗

𝑀
(𝑘) such that 𝐾 𝑖

𝑀
(𝑘) ≅ 𝐾

𝑖
(𝑘), as abelian groups, for 𝑖 = 0, 1, 2.

Although it may be defined in terms of generators and relations, as we shall see, it did not
seem to provide an adequate definition of higher K-theory in the sense mathematicians
were looking for, since it apparently could not be extended to general rings and it lacked
the expected homotopical and homological properties. Despite its external appearance,
it turns out that to give a finer description of the internal structure of Milnor’s K-theory
ring is a problem far from elementary. One particularly striking attempt at (partially)
characterizing Milnor’s K-groups, already suggested by Milnor himself, was a conjecture
claiming that if we reduced Milnor’s K-theory ring modulo 2, that is, if we took the quotient
𝐾

∗

𝑀
(𝑘)/2 ≅ ⨁

𝑛≥0
𝐾
𝑛

𝑀
(𝑘)/2, denoted simply 𝑘∗

𝑀
(𝑘) ≅ ⨁

𝑛≥0
𝑘
𝑛

𝑀
(𝑘), then each 𝑘

𝑛

𝑀
(𝑘) would be

given a certain Galois cohomology group of 𝑘, and the product operation on the ring 𝑘∗
𝑀
(𝑘)

would even correspond to the usual cup-product in Galois cohomology. As we shall see,
this is motivated by the existence, for each 𝑛 ≥ 0, of a certain map

𝐾
𝑛

𝑀
(𝑘) ⟶ 𝐻

𝑛
(𝑘, ℤ/2)

sending 2𝑎 to zero for every 𝑎 ∈ 𝐾
𝑛

𝑀
(𝑘), where the group on the right is the 𝑛-th

Galois cohomology of 𝑘 with respect to the abelian group ℤ/2 (endowed with the trivial
action of the absolute Galois group of 𝑘). The corresponding homomorphisms 𝑘𝑛

𝑀
(𝑘) ⟶

𝐻
𝑛
(𝑘, ℤ/2) can be assembled into homomorphism of graded rings 𝜇 ∶ 𝑘

∗

𝑀
(𝑘) ⟶ 𝐻

∗
(𝑘, ℤ/2).

(Note that the ring structure on 𝐻
∗
(𝑘, ℤ/2) relies on the canonical isomorphism ℤ/2 ⊗ℤ
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ℤ/2 ≅ ℤ/2, as the cup product will be given by maps 𝐻𝑚
(𝑘, (ℤ/2)

⊗𝑚
) ⊗ 𝐻

𝑛
(𝑘, (ℤ/2)

⊗𝑛
) ⟶

𝐻
𝑚+𝑛

(𝑘, (ℤ/2)
⊗𝑚+𝑛

).) No field 𝑘 was ever discovered for which the map 𝜇 was not an
isomorphism, and the claim that it is always an isomorphism became known as the Milnor
conjecture.

1.1 Group cohomology

In this section, we provide an overview of some constructions and results on group
cohomology. First we consider a definition which is applicable to groups in general, and
then we present a particular notion of cohomology − which is based on the previous one
− that is suitable to the study of Galois groups.

1.1.1 Cohomology of abstract groups
Let 𝐺 be a group. We denote by ℤ[𝐺] its corresponding group ring. Recall that it is the

(non-commutative, with unit) ring whose underlying additive group is the free abelian
group on the set of elements of𝐺, and whose multiplicative structure is given by the unique
linear extension of the operation (1 ⋅𝑔, 1 ⋅ℎ) ⟼ 𝑔ℎ on generators. This construction yields
a functor Grp ⟶ Ring which is left adjoint to the functor Ring ⟶ Grp taking a ring 𝑅
to 𝑅×, its multiplicative group of units. For any such 𝐺, there is a canonical isomorphism
of categories Mod𝐺 ≅ Modℤ[𝐺]: given a (left) 𝐺-module, the multiplication by elements of
𝐺 extends uniquely, by linearity, to a multiplication by elements of ℤ[𝐺]; conversely, for
any left ℤ[𝐺]-module we obtain a 𝐺-module by restriction, and one may check that these
two constructions are inverse to each other as functors. For this reason, we shall always
use the same notation for any 𝐺-module and its corresponding left ℤ[𝐺]-module. We will
need the following theorem (see C.A. Weibel, 1995, 2.3):

Proposition 1.1.1. For any (not necessarily commutative) unital ring 𝑅, the category
Mod𝑅 , of left 𝑅-modules, is abelian with enough injectives.

In particular, Modℤ[𝐺] and Mod𝐺 are both abelian categories with enough injectives.
We recall that given abelian categories A and B, where A has enough injectives, and a
left exact functor 𝐹 ∶ A ⟶ B, then we can define (up to natural isomorphism) its right
derived functors R𝑖

𝐹 ∶ A ⟶ B (where 𝑖 ≥ 0). Equivalently, we can define (again, up to
natural isomorphism) its so-called total derived functor R𝐹 ∶ 𝐷

+
(A) ⟶ 𝐷

+
(B), where

𝐷
+
(A) denotes the full subcategory of 𝐷(A), the derived category of A, having as objects

the bounded below complexes in A, and analogously for 𝐵. In this case, the classical
derived functors R𝑖

𝐹 can be recovered as the cohomology objects R𝑖
𝐹 (𝐴) ≅ 𝐻

𝑖
(𝑅𝐹 (𝐴))

(𝑖 ≥ 0, 𝐴 ∈ A), where the argument 𝐴 in 𝑅𝐹(𝐴) denotes the complex consisting of the
object 𝐴 in degree 0, and zero elsewhere. For a full account of these facts, see Gelfand
and Manin, 2003.

For any 𝐺-module 𝐴, we denote by 𝐴
𝐺 the subgroup of 𝐺-invariant elements in 𝐴.

Now, let ℤ denote the additive group of integers with the trivial action of 𝐺. Then there is
a canonical isomorphism
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𝐴
𝐺

≅

⟶ Hom𝐺(ℤ, 𝐴) ≅ Homℤ[𝐺](ℤ, 𝐴),

given by 𝑎 ⟼ 𝜑𝑎, where 𝜑𝑎(𝑛) = 𝑛𝑎 for 𝑛 ∈ ℤ. The naturality of this isomorphism
can be rephrased by saying that the diagram of additive functors

Mod𝐺

Ab

Modℤ[𝐺],

≅

Γ𝐺

Γ
ℤ[𝐺]

where Γ𝐺 ∶ 𝐴 ⟼ 𝐴
𝐺 and Γℤ[𝐺] ∶ 𝐴 ⟼ Homℤ[𝐺](ℤ, 𝐴), is commutative up to natural

isomorphism. Since Γ𝐺 and Γℤ[𝐺] are left exact (as is any functor HomA(𝐴, −) ∶ A ⟶ Ab
for 𝐴 in an abelian category A), we can define their right derived functors, and the above
isomorphism implies that

Mod𝐺

Ab

Modℤ[𝐺]

≅

R𝑖
Γ𝐺

R𝑖
Γ
ℤ[𝐺]

commutes up to natural isomorphism for each 𝑖 ≥ 0, or equivalently that the same
holds for

𝐷
+
(Mod𝐺)

𝐷
+
(Ab)

𝐷
+
(Modℤ[𝐺]).

≅

𝑅Γ𝐺

𝑅Γ
ℤ[𝐺]

Definition 1.1.2. Let 𝐺 be an abstract group. For each 𝑖 ≥ 0, either of the functors
R𝑖
Γ𝐺 ∶ Mod𝐺 ⟶ Ab and R𝑖

Γℤ[𝐺] ∶ Modℤ[𝐺] ⟶ Ab is called the 𝑖-th (group) cohomology
functor of 𝐺 and is denoted by 𝐻 𝑖

(𝐺, −). For each 𝐺-module 𝐴, 𝐻 𝑖
(𝐺, 𝐴) is called the 𝑖-th
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(group) cohomology group of 𝐺 with coefficients in 𝐴.

In order to better describe such functors, we remark that they are a particular case
of the Ext functor construction from homological algebra. More precisely, suppose A is
an abelian category. Then we have a functor HomA(−, −) ∶ A𝑜𝑝

× A ⟶ Ab with the
properties that

• For any fixed 𝐴 ∈ A, the functor HomA(𝐴, −) ∶ A ⟶ Ab is left exact.

• 𝐴𝑜𝑝 is also an abelian category, and for any fixed 𝐵 ∈ A, the functor HomA(−, 𝐵) ∶

A𝑜𝑝
⟶ Ab is left exact.

Assuming that A has enough injectives, the right derived functors R𝑖HomA(𝐴, −) ∶

A ⟶ Ab are denoted by Ext𝑖A(𝐴, −). Analogously, if A𝑜𝑝 has enough injectives, which
means that A has enough projectives, then the right derived functors R𝑖HomA(−, 𝐵) ∶

A𝑜𝑝
⟶ Ab are denoted by Ext𝑖A(−, 𝐵). Since this notation is ambiguous, we will (tem-

porarily) denote Ext𝑖A(𝐴, −) by I-Ext𝑖A(𝐴, −) and Ext𝑖A(−, 𝐵) by II-Ext𝑖A(−, 𝐵), respectively.
An astonishing feature of the language of derived categories is that it allows for a clean
treatment of Ext functors and leads to the conclusion that in case A has both enough
injectives and enough projectives, we actually have I-Ext𝑖A(𝐴, 𝐵) ≅ II-Ext𝑖A(𝐴, 𝐵) and that
this defines a functor Ext𝑖A(−, −) ∶ A𝑜𝑝

×A ⟶ Ab.

Proposition 1.1.3. Let A be an abelian category. If A has enough injectives (resp. enough
projectives), then for any 𝐴, 𝐵 ∈ A, we have

I-Ext𝑖A(𝐴, 𝐵) ≅ Hom𝐷
+
(A)(𝐴, 𝐵[𝑛])

(resp. II-Ext𝑖A(𝐴, 𝐵) ≅ Hom𝐷
+
(A)(𝐴, 𝐵[𝑛]))

naturally in 𝐴 and 𝐵. Hence if A has both enough injectives and enough projectives,
we denote by Ext either of the functors I-Ext and II-Ext.

We shall deduce it from the following lemma:

Lemma 1.1.4. Let A be an abelian category and 𝑋 ∗ a complex in A. Then

1. If 𝐼 ∗ is a bounded below complex of injective objects in A, then the canonical map
Hom𝐾(A)(𝑋

∗
, 𝐼

∗
) ⟶ Hom𝐷(A)(𝑋

∗
, 𝐼

∗
) is an isomorphism.

2. If 𝑃 ∗ is a bounded above complex of projective objects in A, then the canonical map
Hom𝐾(A)(𝑃

∗
, 𝑋

∗
) ⟶ Hom𝐷(A)(𝑃

∗
, 𝑋

∗
) is an isomorphism.

Proof. See Gelfand and Manin, 2003, p. 183.

Proof of Proposition 1.1.3. Suppose A has enough injectives, and let us prove that
I-Ext𝑖A(𝐴, 𝐵) ≅ Hom𝐷

+
(A)(𝐴, 𝐵[𝑛]). Let 𝐼 ∗

𝐵
be an injective resolution of 𝐵 (recall that

this means we have an exact sequence

⋯ ⟶ 0 ⟶ 𝐵 ⟶ 𝐼
0

𝐵
⟶ 𝐼

1

𝐵
⟶ ⋯,

with 𝐵 in degree 0, whereas 𝐼 ∗
𝐵

is
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⋯ ⟶ 0 ⟶ 𝐼
0

𝐵
⟶ 𝐼

1

𝐵
⟶ ⋯

with 𝐼 0
𝐵

in degree 0). We have 𝐵 ≅ 𝐼
∗

𝐵
in𝐷(A) (since they are quasi-isomorphic in 𝐶ℎ(A)),

whence

Hom𝐷(A)(𝐴, 𝐵[𝑖]) ≅ Hom𝐷(A)(𝐴, 𝐼
∗

𝐵
[𝑖]) ≅ Hom𝐾(A)(𝐴, 𝐼

∗

𝐵
[𝑖]),

where the last isomorphism from Lemma 1.1.4. On the other hand, we have

I-Ext𝑖A(𝐴, 𝐵) ≅ 𝐻
𝑖
(

∈𝐶ℎ(Ab)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

HomA(𝐴, 𝐼
∗

𝐵
). Now, define for any complexes 𝑋

∗, 𝑌 ∗
∈ 𝐶ℎ(A) a

complex Hom∗
(𝑋

∗
, 𝑌

∗
) ∈ 𝐶ℎ(Ab) in the following way: for each 𝑖 ∈ ℤ, we take

Hom𝑖
(𝑋

∗
, 𝑌

∗
) = ∏

𝑗∈ℤ
HomA(𝑋

𝑖
, 𝑌

𝑖+𝑗
), and the differential 𝑑 is given by

𝑑
𝑖
∶ Hom𝑖

(𝑋
∗
, 𝑌

∗
) ⟶ Hom𝑖+1

(𝑋
∗
, 𝑌

∗
)

𝑓 ⟼ 𝑑𝑓 = 𝑑𝑌 ◦ 𝑓 − (−1)
𝑛
𝑓 ◦ 𝑑𝑋 .

It is immediate to check that this is indeed a complex, and that for each 𝑖 ∈ ℤ,
𝑍
𝑖
(Hom∗

(𝑋
∗
, 𝑌

∗
)) ≅ Hom𝐶ℎ(A)(𝑋

∗
, 𝑌

∗
[𝑖]) with 𝐵

𝑖
(Hom∗

(𝑋
∗
, 𝑌

∗
)) corresponding to those

chain maps which are homotopic to zero. Hence 𝐻 𝑖
(Hom∗

(𝑋
∗
, 𝑌

∗
)) ≅ Hom𝐾(A)(𝑋

∗
, 𝑌

∗
[𝑖]),

and in particular we conclude that

Hom𝐷(A)(𝐴, 𝐵[𝑖]) ≅ Hom𝐾(A)(𝐴, 𝐼
∗

𝐵
[𝑖]) ≅ 𝐻

𝑖
(Hom∗

(𝐴, 𝐼
∗

𝐵
)) ≅ I-Ext𝑖A(𝐴, 𝐵).

It follows analogously that assuming that A has enough projectives instead of enough
injectives, II-Ext𝑖A(𝐴, 𝐵) ≅ Hom𝐷(A)(𝐴[−𝑖], 𝐵) ≅ Hom𝐷(A)(𝐴, 𝐵[𝑖]).

Now we return to group cohomology.

Corollary 1.1.5. For any abstract group 𝐺 and 𝑖 ≥ 0, we have an isomorphism of functors

𝐻
𝑖
(𝐺, −) ≅ Ext𝑖Mod

ℤ[𝐺]

(ℤ, −) ∶ Modℤ[𝐺] ⟶ Ab.

Thus we can compute cohomology groups 𝐻 𝑖
(𝐺, 𝐴) either by

• Choosing an injective resolution 𝐼
∗

𝐴
of 𝐴 in Modℤ[𝐺] and taking 𝐻

𝑖
(𝐺, 𝐴) ≅

𝐻
𝑖
(Homℤ[𝐺](ℤ, 𝐼

∗

𝐴
)), or

• Choosing a projective resolution 𝑃
∗

ℤ
of ℤ in Modℤ[𝐺] and taking 𝐻

𝑖
(𝐺, 𝐴) ≅

𝐻
𝑖
(Homℤ[𝐺](𝑃

∗

ℤ
, 𝐴)).

The second option has the great advantage that we can choose a single 𝑃 ∗

ℤ
once and

for all, and it is the one we shall use in practice. In the following we define a particularly
convenient projective resolution of ℤ. For any 𝑖 ≥ 0, the underlying abelian group of
ℤ[𝐺

𝑖+1
] has a 𝐺-module structure induced by 𝑔 ⋅ (ℎ0, ..., ℎ𝑖) = (𝑔ℎ0, ..., 𝑔ℎ𝑖) (equivalently,
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the group ring construction induces by functoriality a ℤ[𝐺]-algebra structure on ℤ[𝐺
𝑖+1

from the diagonal group homomorphism 𝐺 ⟶ 𝐺
𝑖+1). Then define 𝐺-homomorphisms

𝑑
𝑖
∶ ℤ[𝐺

𝑖+1
] ⟶ ℤ[𝐺

𝑖
] for 𝑖 ≥ 1 given by 𝑑

𝑖
= ∑

𝑖

𝑗=0
(−1)

𝑖
𝑟
𝑖

𝑗
, where 𝑟

𝑖

𝑗
is induced by

𝑟
𝑖

𝑗
(ℎ0, ..., ℎ𝑖) = (ℎ0, ..., ℎ𝑗−1, ℎ𝑗+1, ..., ℎ𝑖). Define also 𝑑0

∶ ℤ[𝐺] ⟶ ℤ induced by 1 ⋅ ℎ ⟼ 1

for each ℎ ∈ 𝐺.

Lemma 1.1.6. For each 𝑖 ≥ 0, the ℤ[𝐺]-module ℤ[𝐺
𝑖+1
] is free (hence projective) with a

basis in bijection with 𝐺 𝑖 . Also,

⋯

𝑑
3

⟶ ℤ[𝐺
3
]

𝑑
2

⟶ ℤ[𝐺
2
]

𝑑
1

⟶ ℤ[𝐺]

𝑑
0

⟶ ℤ ⟶ 0 ⟶ ⋯

is an exact sequence of ℤ[𝐺]-modules, and thus yields a projective resolution of ℤ,
which will be called the standard resolution of ℤ and it will be denoted by 𝐸∗

ℤ
.

Proof. See Gille and Szamuely, 2006, p. 56.

We thus obtain for each 𝐺-module 𝐴 a complex Homℤ[𝐺](𝐸
∗

ℤ
, 𝐴) given by

⋯ ⟶ 0 ⟶

degree 0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Homℤ[𝐺](ℤ[𝐺], 𝐴)

Hom(𝑑
1
,𝐴)

⟶ Homℤ[𝐺](ℤ[𝐺
2
], 𝐴)

Hom(𝑑
2
,𝐴)

⟶ ⋯.

The differentials Hom(𝑑
𝑖+1
, 𝐴) will be denoted by 𝛿

𝑖 . For each 𝑖 ≥ 0, the abelian
groups Homℤ[𝐺](ℤ[𝐺], 𝐴), 𝑍 𝑖

(Homℤ[𝐺](𝐸
∗

ℤ
, 𝐴)) and 𝐵

𝑖
(Homℤ[𝐺](𝐸

∗

ℤ
, 𝐴)) will be called the

(homogeneous) 𝑖-cochains, 𝑖-cocycles and 𝑖-coboundaries of 𝐴, respectively, and will be de-
noted by 𝐶 𝑖

(𝐺, 𝐴), 𝑍 𝑖
(𝐺, 𝐴) and 𝐵𝑖(𝐺, 𝐴). Hence we have 𝐻 𝑖

(𝐺, 𝐴) ≅ 𝐻
𝑖
(Homℤ[𝐺](𝐸

∗

ℤ
, 𝐴)) ≅

𝑍
𝑖
(𝐺, 𝐴)/𝐵

𝑖
(𝐺, 𝐴).

To compute cohomology, we may use the fact that the ℤ[𝐺
𝑖+1
] (𝑖 ≥ 0) are free ℤ[𝐺]-

modules to describe homomorphisms ℤ[𝐺 𝑖+1
] ⟶ 𝐴 as certain maps of sets 𝐺 𝑖

⟶ 𝐴. For
each ℎ1, ..., ℎ𝑖 ∈ 𝐺, denote by [ℎ1, ..., ℎ𝑛] the element (1, ℎ1, ℎ1ℎ2, ..., ℎ1ℎ2 ⋯ℎ𝑛) of ℤ[𝐺 𝑖+1

]. It
may be proved that such [ℎ1, ..., ℎ𝑛] form a basis for ℤ[𝐺 𝑖+1

] as a free ℤ[𝐺]-module. Also,
the differentials are given in this notation by

𝑑
𝑖
([ℎ1, ..., ℎ𝑖]) = 𝑑

𝑖
((1, ℎ1, ℎ1ℎ2, ..., ℎ1ℎ2 ⋯ℎ𝑖))

= (ℎ1, ..., ℎ1 ⋯ℎ𝑖) +

𝑖−1

∑

𝑗=1

(−1)
𝑗+1
(1, ..., ℎ1 ⋯ℎ𝑗−1, ℎ1⋯ℎ𝑗+1, ..., ℎ1 ⋯ℎ𝑖)

+ (−1)
𝑖+1
(1, ..., ℎ1⋯ℎ𝑖−1)

= ℎ1[ℎ2, ..., ℎ𝑖] +

𝑖−1

∑

𝑗=1

(−1)
𝑗+1
[ℎ1, ..., ℎ𝑗ℎ𝑗+1, ..., ℎ𝑖] + (−1)

𝑖+1
[ℎ1, ..., ℎ𝑖−1].

Identifying 𝐺
𝑖 (as a set) with this basis through (ℎ1, ..., ℎ𝑖) ⟷ [ℎ1, ..., ℎ𝑖], we obtain

a bijection 𝐶
𝑖
(𝐺, 𝐴) = Homℤ[𝐺](ℤ[𝐺

𝑖+1
], 𝐴) ≅ Maps(𝐺 𝑖

, 𝐴). Such maps 𝑎 ∶ 𝐺
𝑖
⟶ 𝐴 are
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usually called inhomogeneous cochains, and we will denote them by [ℎ1, ..., ℎ𝑖] ⟼ 𝑎ℎ1...,ℎ𝑖
.

It follows from above formula that the differential 𝛿 𝑖 ∶ 𝐶 𝑖
(𝐺, 𝐴) ⟶ 𝐶

𝑖+1
(𝐺, 𝐴) associates

to a cochain 𝑎 ∶ 𝐺
𝑖
⟶ 𝐴 the cochain given by

[ℎ1, ..., ℎ𝑖+1] ⟼ ℎ1𝑎ℎ2,...,ℎ𝑖+1
+

𝑖−1

∑

𝑗=1

(−1)
𝑗+1
𝑎ℎ1,...,ℎ𝑗ℎ𝑗+1,...,ℎ𝑖+1

+ (−1)
𝑖+1
𝑎ℎ1,...,ℎ𝑖

.

In particular, elements of 𝑍 𝑖
(𝐺, 𝐴) correspond precisely to those maps 𝑎 ∶ 𝐺

𝑖
⟶ 𝐴

satisfying ℎ1𝑎ℎ2,...,ℎ𝑖+1
+ ∑

𝑖−1

𝑗=1
(−1)

𝑗+1
𝑎ℎ1,...,ℎ𝑗ℎ𝑗+1,...,ℎ𝑖+1

+ (−1)
𝑖+1
𝑎ℎ1,...,ℎ𝑖

= 0 for every ℎ1, ..., ℎ𝑖+1 ∈

𝐺.

Example 1.1.7. Note that elements of 𝑍 0
(𝐺, 𝐴) correspond to inhomogeneous cocycles of

degree 0, i.e. maps 𝑎 ∶ {1} ⟶ 𝐴 with the property that ℎ1𝑎1 − 𝑎1 = 0 for every ℎ1 ∈ 𝐺, i.e.
such that 𝑎1 is 𝐺-invariant. Hence 𝐻 0

(𝐺, 𝐴) ≅ 𝑍
0
(𝐺, 𝐴)/𝐵

0
(𝐺, 𝐴) ≅ 𝐴

𝐺 .

Elements of 𝑍 1
(𝐺, 𝐴) correspond to inhomogeneous cocycles of degree 1, i.e. maps

𝑎 ∶ 𝐺 ⟶ 𝐴 satisfying ℎ1𝑎ℎ2
− 𝑎ℎ1ℎ2

+ 𝑎ℎ1
= 0 for every ℎ1, ℎ2 ∈ 𝐺 − or equivalently,

𝑎𝑔ℎ = 𝑎𝑔 + 𝑔𝑎ℎ for every 𝑔, ℎ ∈ 𝐺. Elements of 𝐵1
(𝑍 , 𝐴) correspond to maps 𝑎 ∶ 𝐺 ⟶ 𝐴

satisfying 𝑎ℎ1 = ℎ1𝑎1 − 𝑎1 for some 𝑎1 ∈ 𝐴 (seen as a map 1 ⟶ 𝐴).

Comparison maps in group cohomology

In what follows, we indicate the existence of certain homomorphisms relating the
cohomology of a group with that of a given subgroup. Then we finish this subsection by
discussing the cup product operation in group cohomology.

Definition 1.1.8. Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a subgroup. For each 𝐻 -module 𝐴, we
define a 𝐺-module structure on the abelian group Hom𝐻 (ℤ[𝐺], 𝐴) (where we see ℤ[𝐺]

as an 𝐻 -module by restricting scalars) with 𝐺-action given by (𝑔 ⋅ 𝜑)(𝑥) = 𝜑(𝑥𝑔) (where
we see ℤ[𝐺] as a right 𝐺-module). Note that 𝑔 ⋅ 𝜑 is indeed an 𝐻 -homomorphism, since
(𝑔 ⋅ 𝜑)(ℎ𝑥) = 𝜑(ℎ𝑥𝑔) = ℎ𝜑(𝑥𝑔) = ℎ((𝑔 ⋅ 𝜑)(𝑥)), and we indeed have a 𝐺-action, since
(𝑔𝑔

′
⋅ 𝜑)(𝑥) = 𝜑(𝑥𝑔𝑔

′
) = (𝑔

′
⋅ 𝜑)(𝑥𝑔) = (𝑔 ⋅ (𝑔

′
⋅ 𝜑))(𝑥). This 𝐺-module is denoted by 𝑀𝐺

𝐻
(𝐴)

and called the coinduced module of 𝐴 (with 𝐺 and 𝐻 implicit). If 𝐻 is the trivial subgroup,
then 𝐴 is simply an abelian group, and 𝑀𝐺

𝐻
(𝐴) is denoted by 𝑀𝐺

(𝐴).

It is clear that this construction defines a functor 𝑀𝐺

𝐻
∶ Mod𝐻 ⟶ Mod𝐺 . The reason

why it is useful is that it is right adjoint to the functor Mod𝐺 ⟶ Mod𝐻 given by restricting
scalars:

Lemma 1.1.9. Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a subgroup. Then for any 𝐴 ∈ Mod𝐺 and
𝐵 ∈ Mod𝐻 , there is an isomorphism Hom𝐻 (𝐴, 𝐵) ≅ Hom𝐺(𝐴,𝑀

𝐺

𝐻
(𝐵)) natural in 𝐴 and 𝐵.

The unit of the corresponding adjunction is given by the 𝐺-homomorphism

𝐴 ≅ Hom𝐺(ℤ[𝐺], 𝐴) ↪ Hom𝐻 (ℤ[𝐺], 𝐴) = 𝑀
𝐺

𝐻
(𝐴),

where the first isomorphism sends 𝑎 to the unique 𝐺-homomorphism which sends 1
to 𝑎.
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Proof. See Gille and Szamuely, 2006, p. 60.

A consequence of this result is:

Lemma 1.1.10 (Shapiro’s Lemma). Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a subgroup. Then for any
𝐴 ∈ Mod𝐻 and 𝑖 ≥ 0, there is an isomorphism 𝐻

𝑖
(𝐺,𝑀

𝐺

𝐻
(𝐴)) ≅ 𝐻

𝑖
(𝐻 , 𝐴), natural in 𝐴.

Proof. It suffices to note that any projective resolution of ℤ as a ℤ[𝐺]-module is also a
projective ℤ[𝐻]-resolution, since ℤ[𝐺] − and thus any free ℤ[𝐺]-module − is free as a
ℤ[𝐻]-module, by taking as a basis a set of left coset representatives. The naturality in 𝐴

follows from that of the adjunction.

Definition 1.1.11 (Restriction map). Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a subgroup. For any
𝐺-module 𝐴, the adjunction unit from Lemma 1.1.9 induces maps in cohomology for each
𝑖 ≥ 0, naturally in 𝐴:

𝐻
𝑖
(𝐺, 𝐴) ⟶ 𝐻

𝑖
(𝐺,𝑀

𝐺

𝐻
(𝐴)) ≅ 𝐻

𝑖
(𝐻 , 𝐴),

where the last isomorphism comes from Lemma 1.1.10. These are called restriction
maps and are denoted by 𝑅𝑒𝑠 ∶ 𝐻 𝑖

(𝐺, 𝐴) ⟶ 𝐻
𝑖
(𝐻 , 𝐴).

Definition 1.1.12 (Corestriction map). Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a subgroup of finite
index, say 𝑛. For each 𝐺-module 𝐴, we define a 𝐺-homomorphism Hom𝐻 (ℤ[𝐺], 𝐴) =

𝑀
𝐺

𝐻
(𝐴) ⟶ Hom𝐺(ℤ[𝐺], 𝐴) ≅ 𝐴 in the following way: for every 𝐻 -homomorphism

𝜙 ∶ ℤ[𝐺] ⟶ 𝐴, it may be proved that

𝑛

∑

𝑗=1

𝜌𝑗𝜙(𝜌
−1

𝑗
𝑥),

where {𝜌𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛} is a system of left coset representatives for 𝐻 in 𝐺, does not depend
on the choice of the 𝜌𝑗 . Define a 𝐺-homomorphism 𝜙

𝐺

𝐻
∶ ℤ[𝐺] ⟶ 𝐴 by

𝜙
𝐺

𝐻
(𝑥) =

𝑛

∑

𝑗=1

𝜌𝑗𝜙(𝜌
−1

𝑗
𝑥),

where {𝜌𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛} is as above. It may be proved that 𝜙𝐺
𝐻

is a 𝐺-homomorphism, that
𝜙 ⟼ 𝜙

𝐺

𝐻
is a 𝐺-homomorphism, and that it is natural in 𝐴. Applying cohomology to

𝑀
𝐺

𝐻
(𝐴) ⟶ 𝐴 and using Lemma 1.1.10, we obtain natural morphisms

𝐻
𝑖
(𝐻 , 𝐴) ⟶ 𝐻

𝑖
(𝐺, 𝐴)

for 𝑖 ≥ 0. These are called corestriction maps and are denoted by 𝐶𝑜𝑟 ∶ 𝐻 𝑖
(𝐻 , 𝐴) ⟶

𝐻
𝑖
(𝐺, 𝐴).

Definition 1.1.13 (Inflation map). Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a normal subgroup. Note
that for each 𝐺-module 𝐴, the subgroup 𝐴𝐻 of 𝐴 consisting of its 𝐻 -invariant elements
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is stable under the action of 𝐺. Hence 𝐴𝐻 is a 𝐺-module on which 𝐻 acts trivially, so it
inherits a 𝐺/𝐻 -module structure. We now define natural morphisms

𝐼 𝑛𝑓 ∶ 𝐻
𝑖
(𝐺/𝐻 , 𝐴

𝐻
) ⟶ 𝐻

𝑖
(𝐺, 𝐴)

for 𝑖 ≥ 0, called inflation maps. Observe that if 𝑃 ∗

ℤ
and 𝑄∗

ℤ
are projective resolutions

of ℤ as a 𝐺-module and as a 𝐺/𝐻 -module, respectively, then the map 𝐺 ⟶ 𝐺/𝐻 allows
us to regard 𝑄∗

ℤ
also as a 𝐺-module, so we can extend (by projectivity of 𝑃 ∗

ℤ
) the identity

ℤ ⟶ ℤ to a map 𝑃
∗

ℤ
⟶ 𝑄

∗

ℤ
of complexes of 𝐺-modules which is unique up to chain

homotopy. Then for our given 𝐺-module 𝐴 we obtain a chain map Hom𝐺/𝐻 (𝑄
∗

ℤ
, 𝐴

𝐻
) ≅

Hom𝐺(𝑄
∗

ℤ
, 𝐴) ⟶ Hom𝐺(𝑃

∗

ℤ
, 𝐴), where the isomorphism comes from the fact that if 𝑄 is

a 𝐺-module on which 𝐻 acts trivially, then Hom𝐺(𝑄, 𝐴) ≅ Hom𝐺/𝐻 (𝑄, 𝐴
𝐻
). By applying

cohomology, we obtain the desired morphisms 𝐼 𝑛𝑓 ∶ 𝐻 𝑖
(𝐺/𝐻 , 𝐴

𝐻
) ⟶ 𝐻

𝑖
(𝐺, 𝐴).

Definition 1.1.14 (Conjugation action). Let 𝐺 be a group and 𝐻 ⊂ 𝐺 a normal subgroup.
We shall define for each 𝐺-module 𝐴 a 𝐺/𝐻 -module structure on 𝐻 𝑖

(𝐻 , 𝐴) (𝑖 ≥ 0) which is
compatible with long exact sequences in cohomology induced from short exact sequences
of 𝐺-modules. (One may reframe this as follows: whenever 𝐴 is an 𝐻 -module for some
group 𝐻 , then for each way of extending its action to a 𝐺-action for some group 𝐺 such
that 𝐻 is identified with a normal subgroup of 𝐺, we obtain an action of 𝐺/𝐻 on 𝐻 𝑖

(𝐻 , 𝐴).)

Note that for any 𝐺-modules 𝑃 and 𝐴, the abelian group Hom𝐻 (𝑃 , 𝐴) carries a 𝐺-action
given by (𝑔 ⋅ 𝜙)(𝑥) = 𝑔

−1
𝜙(𝑔𝑥). Then we have a 𝐺/𝐻 , since 𝐻 acts trivially. Now take a

projective resolution 𝑃
∗

ℤ
of ℤ as a 𝐺-module, which is also an 𝐻 -projective resolution

(as in Lemma 1.1.10), to get a complex Hom𝐻 (𝑃
∗

ℤ
, 𝐴) of 𝐺/𝐻 -modules through the action

defined above. By taking cohomology, we obtain the desired action of 𝐺/𝐻 on 𝐻
𝑖
(𝐻 , 𝐴)

for 𝑖 ≥ 0, which is called the conjugation action. Moreover, it follows analogously (using
the functoriality of long exact sequences in cohomology with respect to morphisms
of short exact sequences of modules) that for any short exact sequence of 𝐺-modules
0 ⟶ 𝐴

′
⟶ 𝐴 ⟶ 𝐴

′′
⟶ 0, all the maps in the induced long exact sequence are

𝐺/𝐻 -equivariant.

The cup product operation

We now proceed to define the cup product operation in group cohomology. Re-
call that given 𝐺-modules 𝐴 and 𝐵, in order to describe their cohomologies by us-
ing cochains coming from the standard projective resolution 𝐸

∗

ℤ
of ℤ, we consider

abelian groups of cochains 𝐶 𝑖
(𝐺, 𝐴) = Hom𝐺(ℤ[𝐺

𝑖+1
], 𝐴) ≅ Maps(𝐺 𝑖

, 𝐴) (𝑖 ≥ 0) and
𝐶
𝑗
(𝐺, 𝐵) = Hom𝐺(ℤ[𝐺

𝑗+1
], 𝐵) ≅ Maps(𝐺 𝑗

, 𝐵) (𝑗 ≥ 0). For fixed 𝑖 and 𝑗, define a bilinear
map 𝐶 𝑖

(𝐺, 𝐴) × 𝐶
𝑗
(𝐺, 𝐵) ⟶ 𝐶

𝑖+𝑗
(𝐺, 𝐴 ⊗ℤ 𝐵) (note that the tensoring is over ℤ and that the

𝐺-action is given by 𝑔(𝑎 ⊗ 𝑏) = 𝑔𝑎 ⊗ 𝑔𝑏) by the composite

Hom𝐺(ℤ[𝐺
𝑖+1
], 𝐴) × Hom𝐺(ℤ[𝐺

𝑗+1
], 𝐵) ⟶ Hom𝐺(ℤ[𝐺

𝑖+1
] ⊗ℤ ℤ[𝐺

𝑗+1
], 𝐴 ⊗ℤ 𝐵)

⟶ Hom𝐺(ℤ[𝐺
𝑖+𝑗+1

], 𝐴 ⊗ℤ 𝐵),
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where the first map comes from the fact that the tensor product is a bifunctor, and the
second map is given by precomposition with

ℤ[𝐺
𝑖+𝑗+1

] ⟶ ℤ[𝐺
𝑖+1
] ⊗ℤ ℤ[𝐺

𝑗+1
]

(𝑔0, ..., 𝑔𝑖+𝑗) ⟼ (𝑔0, ..., 𝑔𝑖) ⊗ (𝑔𝑖 , ..., 𝑔𝑖+𝑗).

Hence we have a homomorphism of abelian groups

Hom𝐺(ℤ[𝐺
𝑖+1
], 𝐴) ⊗ℤ Hom𝐺(ℤ[𝐺

𝑗+1
], 𝐵) ⟶ Hom𝐺(ℤ[𝐺

𝑖+𝑗+1
], 𝐴 ⊗ℤ 𝐵),

called the cup product of cochains and denoted by

∪ ∶ 𝐶
𝑖
(𝐺, 𝐴) ⊗ℤ 𝐶

𝑗
(𝐺, 𝐵) ⟶ 𝐶

𝑖+𝑗
(𝐺, 𝐴 ⊗ℤ 𝐵).

Explicitly, given cochains 𝜑 ∶ ℤ[𝐺
𝑖+1
] ⟶ 𝐴 and 𝜓 ∶ ℤ[𝐺

𝑗+1
] ⟶ 𝐵, it sends 𝜑 ⊗ 𝜓

to

𝜑 ∪ 𝜓 ∶ ℤ[𝐺
𝑖+𝑗+1

] ⟶ 𝐴 ⊗ℤ 𝐵

(𝑔0, ..., 𝑔𝑖+𝑗) ⟼ 𝜑(𝑔0, ..., 𝑔𝑖) ⊗ 𝜓(𝑔𝑖 , ..., 𝑔𝑖+𝑗).

We would like to prove that the cup product operation passes to the level of cohomology.
For this to happen, it is necessary and sufficient to check that (i) the cup product of two
cocycles is also a cocycle, and (ii) that the cup product of a cocycle with a coboundary −

in either order − is a coboundary.

It may be proved that:

Lemma 1.1.15. Let 𝐺 be a group, and 𝐴, 𝐵 ∈ Mod𝐺 . Then for any cochains 𝜑 ∈ 𝐶
𝑖
(𝐺, 𝐴)

and 𝜓 ∈ 𝐶
𝑗
(𝐺, 𝐵), the following formula holds:

𝛿
𝑖+𝑗
(𝜑 ∪ 𝜓) = 𝛿

𝑖
(𝜑) ∪ 𝜓 + (−1)

𝑖
𝜑 ∪ 𝛿

𝑗
(𝜓 )

Corollary 1.1.16. In the notation of Lemma 1.1.15, if 𝛿 𝑖(𝜑) = 0 and 𝛿
𝑗
(𝜓 ) = 0, then

𝛿
𝑖+𝑗
(𝜑 ∪ 𝜓) = 0. Also, if 𝜑 = 𝛿

𝑖−1
(𝜑

′
) for some 𝜑′ and 𝛿 𝑗(𝜓 ) = 0, then 𝜑 ∪ 𝜓 = 𝛿

𝑖+𝑗−1
(𝜃) for

some 𝜃 (and vice-versa, if 𝜑 is a cocycle and 𝜓 a coboundary).

Definition 1.1.17. Corollary 1.1.16 implies the existence of a homomorphism

∪ ∶ 𝐻
𝑖
(𝐺, 𝐴) ⊗ℤ 𝐻

𝑗
(𝐺, 𝐵) ⟶ 𝐻

𝑖+𝑗
(𝐺, 𝐴 ⊗ℤ 𝐵),

called the cup product.

Proposition 1.1.18. The cup product operation has the following properties:

(i) For fixed 𝐺, 𝑖, 𝑗, the map ∪ ∶ 𝐻
𝑖
(𝐺, 𝐴) ⊗ℤ 𝐻

𝑗
(𝐺, 𝐵) ⟶ 𝐻

𝑖+𝑗
(𝐺, 𝐴 ⊗ℤ 𝐵) is natural in

𝐴 and 𝐵.
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(ii) It is associative, i.e. for any𝐴, 𝐵, 𝐶 ∈ Mod𝐺 , 𝑖, 𝑗, 𝑘 ≥ 0, and 𝛼 ∈ 𝐻
𝑖
(𝐺, 𝐴), 𝛽 ∈ 𝐻

𝑗
(𝐺, 𝐵),

𝛾 ∈ 𝐻
𝑘
(𝐺, 𝐶), we have (𝛼 ∪ 𝛽) ∪ 𝛾 = 𝛼 ∪ (𝛽 ∪ 𝛾).1

(iii) It is graded-commutative, in the sense that for any 𝛼 ∈ 𝐻
𝑖
(𝐺, 𝐴) and 𝛽 ∈ 𝐻

𝑗
(𝐺, 𝐵),

we have 𝛼 ∪ 𝛽 = (−1)
𝑖𝑗
(𝛽 ∪ 𝛼).2

(iv) If 𝑖 = 𝑗 = 0, then ∪ ∶ 𝐻
0
(𝐺, 𝐴)⊗ℤ𝐻

0
(𝐺, 𝐵) ⟶ 𝐻

0
(𝐺, 𝐴⊗ℤ𝐵) is the map𝐴𝐺

⊗ℤ𝐵
𝐵
⟶

(𝐴 ⊗ℤ 𝐵)
𝐺 given by restricting 𝑖𝑑𝐴⊗ℤ𝐵.

(v) Given a finite index subgroup 𝐻 ⊂ 𝐺, for any 𝛼 ∈ 𝐻
𝑖
(𝐻 , 𝐴) and 𝛽 ∈ 𝐻

𝑗
(𝐺, 𝐵) it holds

that 𝐶𝑜𝑟(𝑅𝑒𝑠(𝛼) ∪ 𝛽) = 𝐶𝑜𝑟(𝛼) ∪ 𝛽 . This is known as the projection formula.

(vi) Given a subgroup 𝐻 ⊂ 𝐺, for any 𝛼 ∈ 𝐻
𝑖
(𝐺, 𝐴) and 𝛽 ∈ 𝐻

𝑗
(𝐺, 𝐵) it holds that

𝑅𝑒𝑠(𝛼 ∪ 𝛽) = 𝑅𝑒𝑠(𝛼) ∪ 𝑅𝑒𝑠(𝛽).

(vii) Given a normal subgroup 𝐻 ⊂ 𝐺, for any 𝛼 ∈ 𝐻
𝑖
(𝐺/𝐻 , 𝐴

𝐻
) and 𝛽 ∈ 𝐻

𝐽
(𝐺/𝐻 , 𝐵

𝐻
) it

holds that 𝐼 𝑛𝑓 (𝑎 ∪ 𝑏) = 𝐼𝑛𝑓 (𝑎) ∪ 𝐼𝑛𝑓 (𝑏).

Proof. See Gille and Szamuely, 2006, 3.4.

1.1.2 Galois cohomology
Galois cohomology studies the cohomology of modules over Galois groups. Firstly, let

us consider a finite Galois extension of fields 𝐾/𝑘. Then we may use the above definition
of group cohomology and consider for any module 𝑀 over the Galois group Gal(𝐾/𝑘) its
cohomology groups

𝐻
𝑛
(Gal(𝐾 , 𝑘), 𝑀), 𝑛 ≥ 0.

We may also be interested in certain systems of modules over Galois groups Gal(𝐾/𝑘)
where 𝐾 ranges over all finite Galois extensions of 𝑘. To study this setting, we fix a
separable closure 𝑘𝑠𝑒𝑝 of 𝑘, and throughout this subsection we will only deal with finite
Galois extensions of 𝑘 which are contained in 𝑘𝑠𝑒𝑝 .

Let us denote by FinGal𝑘 the direct system of all finite Galois extensions 𝑘 ⊂ 𝐾 ⊂ 𝑘𝑠𝑒𝑝

ordered by inclusion. Then restriction of 𝑘-automorphisms defines for each inclusion
𝐾 ⊂ 𝐿 of two such finite Galois extensions a group homomorphism Gal(𝐿/𝑘) → Gal(𝐾/𝑘);
this yields a functor

Gal(−/𝑘) ∶ FinGal𝑜𝑝 ⟶ Grp.

It has the property that the absolute Galois group Gal(𝑘𝑠𝑒𝑝/𝑘) is isomorphic, via the maps
Gal(𝑘𝑠𝑒𝑝/𝑘) → Gal(𝐾/𝑘) also given by restriction of automorphisms, to the limit

lim
←−−

𝐾∈FinGal𝑜𝑝Gal(𝐾/𝑘)

of Gal(−, 𝑘) in the category of groups.

1 Note the abuse of notation in this equality, since it only holds up to the isomorphism𝐻
𝑖+𝑗+𝑘

(𝐺, (𝐴⊗ℤ𝐵)⊗ℤ𝐶) ≅

𝐻
𝑖+𝑗+𝑘

(𝐺, 𝐴 ⊗ℤ (𝐵 ⊗ℤ 𝐶)).
2 It holds up to the isomorphism 𝐻

𝑖+𝑗
(𝐺, 𝐴 ⊗ℤ 𝐵) ≅ 𝐻

𝑖+𝑗
(𝐺, 𝐵 ⊗ℤ 𝐴).
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Suppose given a Gal(𝑘𝑠𝑒𝑝/𝑘)-module 𝑀 . For each finite Galois extension 𝐾/𝑘 contained
in 𝑘𝑠𝑒𝑝 we may consider the submodule 𝑀Gal(𝑘𝑠𝑒𝑝/𝐾) of elements fixed under the action
of the normal subgroup Gal(𝑘𝑠𝑒𝑝/𝐾) ⊂ Gal(𝑘𝑠𝑒𝑝/𝑘). Then the isomorphism Gal(𝐾/𝑘) ≅

Gal(𝑘𝑠𝑒𝑝/𝑘)/Gal(𝑘𝑠𝑒𝑝/𝐾) endows 𝑀Gal(𝑘𝑠𝑒𝑝/𝐾) with a Gal(𝐾/𝑘)-module structure. Moreover,
note that if 𝐿/𝑘 is another finite Galois extension such that 𝐾 ⊂ 𝐿 ⊂ 𝑘𝑠𝑒𝑝 , then by similarly
endowing 𝑀Gal(𝑘𝑠𝑒𝑝/𝐿) with a Gal(𝐿/𝑘)-module structure we have that

(𝑀
Gal(𝑘𝑠𝑒𝑝/𝐿)

)
Gal(𝐿/𝐾)

= (𝑀
Gal(𝑘𝑠𝑒𝑝/𝐿)

)
Gal(𝑘𝑠𝑒𝑝/𝐾)

= 𝑀
Gal(𝑘𝑠𝑒𝑝/𝐾)

.

For each finite Galois extension 𝐾/𝑘 contained in 𝑘𝑠𝑒𝑝 , let us denote by 𝑀𝐾 the Gal(𝐾/𝑘)-
module 𝑀Gal(𝑘𝑠𝑒𝑝/𝐾). Then Definition 1.1.13 provides inflation maps of the following two
kinds:

(i) If 𝐾 and 𝐿 are finite Galois extensions of 𝑘 such that 𝑘 ⊂ 𝐾 ⊂ 𝐿 ⊂ 𝑘𝑠𝑒𝑝 , we have for
each 𝑛 ≥ 0 a map

𝐼 𝑛𝑓𝐿/𝐾 ∶ 𝐻
𝑛
(Gal(𝐾/𝑘), 𝑀𝐾 ) = 𝐻

𝑛
(Gal(𝐾/𝑘), (𝑀𝐿)

Gal(𝐿/𝐾)
) ⟶ 𝐻

𝑛
(Gal(𝐿/𝑘), 𝑀𝐿).

(ii) If 𝐾 is a finite Galois extension of 𝑘 contained in 𝑘𝑠𝑒𝑝 , we have for each 𝑛 ≥ 0 a map

𝐼 𝑛𝑓𝐾 ∶ 𝐻
𝑛
(Gal(𝐾/𝑘), 𝑀𝐾 ) = 𝐻

𝑛
(Gal(𝐾/𝑘), 𝑀Gal(𝑘𝑠𝑒𝑝/𝐾)

) ⟶ 𝐻
𝑛
(Gal(𝑘𝑠𝑒𝑝/𝑘), 𝑀).

It may be proved that these satisfy 𝐼 𝑛𝑓𝑆/𝐿 ◦ 𝐼 𝑛𝑓𝐿/𝐾 = 𝐼𝑛𝑓𝑆/𝐾 whenever 𝐾 ⊂ 𝐿 ⊂ 𝑆, and
𝐼 𝑛𝑓𝐿 ◦ 𝐼 𝑛𝑓𝐿/𝐾 whenever 𝐾 ⊂ 𝐿. Thus we obtain for each 𝑛 ≥ 0 a functor

𝐻
𝑛
(Gal(−/𝑘), 𝑀−) ∶ FinGal𝑘 ⟶ Ab

and a cocone from the diagram𝐻
𝑛
(Gal(−/𝑘), 𝑀−) to the abelian group𝐻 𝑛

(Gal(𝑘𝑠𝑒𝑝/𝑘), 𝑀).

This defines for each 𝑛 an abelian group

lim
−−→

𝐾∈FinGal𝐻
𝑛
(Gal(𝐾/𝑘), 𝑀𝐾 ) (1.1.1)

endowed with a homomorphism

lim
−−→

𝐾∈FinGal𝐻
𝑛
(Gal(𝐾/𝑘), 𝑀𝐾 ) ⟶ 𝐻

𝑛
(Gal(𝑘𝑠𝑒𝑝/𝑘), 𝑀).

Profinite groups

Definition 1.1.19. Recall that a topological group is a group 𝐺 endowed with a topology
on its underlying set such that the multiplication map

⋅ ∶ 𝐺 × 𝐺 ⟶ 𝐺

and the inversion map
(−)

−1
∶ 𝐺 ⟶ 𝐺

are both continuous, where 𝐺 × 𝐺 is given the product topology.
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We will use the term 𝐺-set (resp. 𝐺-module) to refer to a set endowed with a left action
of (resp. to a left module over) the underlying (non-topological) group of 𝐺.

A discrete 𝐺-set is defined to be a 𝐺-set 𝑋 such that the action map

𝐺 × 𝑋 ⟶ 𝑋

is continuous when 𝑋 is given the discrete topology. The category whose objects are the
discrete 𝐺-sets and whose morphisms are the functions that preserve the action of 𝐺 (also
known as 𝐺-equivariant functions) will be denoted by C Set𝐺 .

Analogously, a discrete 𝐺-module is defined to be a 𝐺-module 𝑀 such that the action
map

𝐺 × 𝑀 ⟶ 𝑀

is continuous when 𝑀 is given the discrete topology. The category consisting of discrete
𝐺-modules and 𝐺-module homomorphisms will be denoted by C Mod𝐺 .

Remark 1.1.20. Suppose given a topological group 𝐺. If 𝑋 is a 𝐺-set (resp. 𝐺-module), then
it is a discrete 𝐺-set (resp. discrete 𝐺-module) if and only if the stabilizer 𝑆𝑡𝑎𝑏𝑥 of every
point 𝑥 of 𝑋 under the action of 𝐺 (i.e. the subgroup of 𝐺 consisting of those 𝑔 such that
𝑔 ⋅ 𝑥 = 𝑥) is open in 𝐺. Indeed, if 𝑋 is a discrete 𝐺-set (resp. module), continuity of the
action map

𝜇 ∶ 𝐺 × 𝑋 → 𝑋

and discreteness of 𝑋 as a topological space implies that for each 𝑥 ∈ 𝑋 , 𝑆𝑡𝑎𝑏𝑥 × {𝑥} =

𝜇
−1
({𝑥}) ∩ (𝐺 × {𝑥}) is an open subset of 𝐺 × {𝑥}, which in turn is homeomorphic to 𝐺 by

projection onto the first coordinate. Hence 𝑆𝑡𝑎𝑏𝑥 is open in 𝐺. Conversely, assume 𝑆𝑡𝑎𝑏𝑥
is open for every 𝑥 ∈ 𝑋 . As the sets {𝑥} form a base for the topology on 𝑋 , it suffices to
check that each 𝜇−1({𝑥}) is open in 𝐺 × 𝑋 . Since

𝜇
−1
({𝑥}) = ⋃

𝑦∈𝑋

{(𝑔, 𝑦) ∈ 𝐺 × 𝑋 |𝑔 ⋅ 𝑦 = 𝑥}

and 𝑋 is a discrete topological space, it suffices to prove that {𝑔 ∈ 𝐺|𝑔 ⋅ 𝑦 = 𝑥} is open for
each 𝑦 ∈ 𝑋 . But for fixed 𝑦, if {𝑔 ∈ 𝐺|𝑔 ⋅ 𝑦 = 𝑥} is nonempty − say it has an element ℎ −

then

{𝑔 ∈ 𝐺|𝑔 ⋅ 𝑦 = 𝑥} = {𝑔 ∈ 𝐺|𝑔 ⋅ (ℎ ⋅ 𝑥) = 𝑥} = {𝑔 ∈ 𝐺|𝑔ℎ ⋅ 𝑥 = 𝑥} = 𝑆𝑡𝑎𝑏𝑥ℎ
−1
,

which is open in 𝐺 as right multiplication by ℎ
−1 is a homeomorphism 𝐺 → 𝐺. We

conclude that the action is continuous.

This is also equivalent to the condition that for each 𝑥 ∈ 𝑋 there exists an open
subgroup 𝐻 ⊂ 𝐺 such that 𝐻 stabilizes 𝑥 (i.e. ℎ ⋅ 𝑥 = 𝑥 for every ℎ ∈ 𝐻 ). If Stab𝑥 is open,
this condition holds as we can take 𝐻 = Stab𝑥 . Conversely, if there exists one such 𝐻 , then
for every 𝑔 ∈ Stab𝑥 we have 𝑔 ∈ 𝑔𝐻 ⊂ Stab𝑥 , so Stab𝑥 = ⋃

𝑔∈Stab𝑥 𝑔𝐻 is open.

Definition 1.1.21. A topological group 𝐺 is said to be profinite if it can be expressed as a
limit of an inverse system of discrete finite groups.

It may be proved (see for example Ribes and Zalesskii, 2013, Th. 2.1.3) that profinite
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groups may be characterized as those topological groups whose underlying topological
space is compact, Hausdorff, and totally disconnected (i.e. its only nonempty connected
subspaces are the singletons).

In the above notation, the isomorphism between the Galois group Gal(𝑘𝑠𝑒𝑝/𝑘) and the
limit of the inverse system of finite groups Gal(−/𝑘) ∶ FinGal𝑜𝑝 → Grp gives Gal(𝑘𝑠𝑒𝑝/𝑘)
a profinite group structure by endowing Gal(𝐾/𝑘) with the discrete topology for each
𝐾 ∈ FinGal.

Theorem 1.1.22. Let 𝐺 be a profinite group. Then the category C Mod𝐺 is abelian and
has enough injectives.

Proof. See Ribes and Zalesskii, 2013, Ex. 5.3.2 and Prop. 5.4.5.

Given a profinite group 𝐺, let us denote by

Γ ∶ C Mod𝐺 ⟶ Ab

the functor given on objects by sending each discrete 𝐺-module 𝑀 to its subgroup 𝑀
𝐺

of 𝐺-invariant elements, and on arrows by restriction. Note that Γ is isomorphic to the
functor HomC Mod𝐺 (ℤ, −), where ℤ is regarded as a discrete trivial𝐺-module, via the natural
transformation whose 𝑀-component HomC Mod𝐺 (ℤ,𝑀) → 𝑀

𝐺 sends each 𝑓 ∶ ℤ → 𝑀 to
𝑓 (1).

Cohomology of a profinite group 𝐺 is defined as the right derived functor

RΓ ∶ 𝐷
+
(C Mod𝐺) ⟶ 𝐷

+
(Ab).

Given a bounded below complex 𝑀 of discrete 𝐺-modules (or a discrete 𝐺-module, which
we then identify with a complex concentrated in degree 0), the 𝑛-th (profinite group)
cohomology group of 𝐺 with coefficients in 𝑀 is defined for each integer 𝑛 as the 𝑛-th
cohomology group of RΓ(𝑀),

𝐻
𝑛

𝑑𝑖𝑠𝑐
(𝐺,𝑀) ∶= 𝐻

𝑛
(RΓ(𝑀)).

By composing RΓ with 𝐻
𝑛
∶ 𝐷

+
(Ab) → Ab, these groups may be assembled into func-

tors
𝐻

𝑛

𝑑𝑖𝑠𝑐
(𝐺, −) ∶ 𝐷

+
(C Mod𝐺) ⟶ Ab.

If 𝑘 is a field endowed with a separable closure 𝑘𝑠𝑒𝑝 , profinite group cohomology of
Gal(𝑘𝑠𝑒𝑝/𝑘) with coefficients in discrete modules is known as Galois cohomology. We will
use the notation

𝐻
𝑛
(𝑘, 𝑀)

for 𝐻 𝑛

𝑑𝑖𝑠𝑐
(𝐺,𝑀), with the extension 𝑘𝑠𝑒𝑝/𝑘 implicit.

The following proposition establishes that Galois cohomology is given by the abelian
group considered in 1.1.1:

Proposition 1.1.23. Let 𝑘 be a field endowed with a separable closure 𝑘𝑠𝑒𝑝 , and 𝑀 a
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discrete Gal(𝑘𝑠𝑒𝑝/𝑘)-module. For each 𝑛 ≥ 0 there exists an isomorphism

𝐻
𝑛
(𝑘, 𝑀) ≅ lim

−−→
𝐾∈FinGal𝐻

𝑛
(Gal(𝐾/𝑘), 𝑀𝐾 ).

Proof. See Ribes and Zalesskii, 2013, 6.5.

1.2 Galois cohomology applied to the Kummer exact
sequence; Milnor K-theory

Throughout this section, 𝑘 denotes a field and 𝑘𝑠𝑒𝑝 a separable closure of 𝑘.

We consider the category Mod𝐺 of discrete modules over 𝐺 regarded as a topological
group via the profinite topology. Firstly, note that the multiplicative group of units 𝑘×

𝑠𝑒𝑝

has a canonical 𝐺-module structure given by the action 𝐺 × 𝑘
×

𝑠𝑒𝑝
→ 𝑘

×

𝑠𝑒𝑝
, (𝜑, 𝑎) ↦ 𝜑(𝑎).

Now, suppose 𝑙 is a prime number different from the characteristic of 𝑘. Note that the
group 𝜇𝑙 of 𝑙-th roots of unity admits a (non-canonical) embedding into the multiplicative
group of units 𝑘×

𝑠𝑒𝑝
given by sending any generator of 𝜇𝑙 to a primitive 𝑙-th root of unity in

𝑘
×

𝑠𝑒𝑝
. Since elements of the image of 𝜇𝑙 ↪ 𝑘

×

𝑠𝑒𝑝
are precisely the zeros of 𝑥 𝑙 − 1 ∈ 𝑘[𝑥], they

are permuted under the canonical action of 𝐺 on 𝑘
×

𝑠𝑒𝑝
, so the canonical 𝐺-action on 𝑘

×

𝑠𝑒𝑝

restricts to a 𝐺-module structure on 𝜇𝑙 .

This defines a short exact sequence

1 ⟶ 𝜇𝑙 ⟶ 𝑘
×

𝑠𝑒𝑝

∧𝑙

⟶ 𝑘
×

𝑠𝑒𝑝
⟶ 1, (1.2.1)

where 𝑛 denotes the operation 𝑎 ↦ 𝑎
𝑙 . It is known as the Kummer exact sequence.

Now, by regarding ℤ as a discrete 𝐺-module via the trivial action 𝑔 ⋅ 𝑎 = 𝑎, we consider
the functor

Hom𝐺(ℤ, −) ∶ Mod𝐺 ⟶ Ab,

which up to natural isomorphism sends each 𝐺-module𝑀 to its subgroup𝑀𝐺 consisting of
those elements which are fixed under the action of 𝐺 (i.e. 𝑔 ⋅ 𝑎 = 𝑎). By applying the group
cohomology functors 𝐻 𝑛

(𝑘, −) to 1.2.1, we obtain a long exact sequence of cohomology
groups

0 → 𝐻
0
(𝑘, 𝜇𝑙) → 𝐻

0
(𝑘, 𝑘

×

𝑠𝑒𝑝
)

𝐻
0
(𝑘,∧𝑙)

→ 𝐻
0
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → 𝐻

1
(𝑘, 𝜇𝑙) → 𝐻

1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → ⋯ ,

which is isomorphic to

0 → 𝜇
𝐺

𝑙
→ (𝑘

×

𝑠𝑒𝑝
)
𝐺

∧𝑙

→ (𝑘
×

𝑠𝑒𝑝
)
𝐺
→ 𝐻

1
(𝑘, 𝜇𝑙) → 𝐻

1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → ⋯ ,

and hence to

0 → 𝜇
𝐺

𝑙
→ 𝑘

×
∧𝑙

→ 𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙) → 𝐻

1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) → ⋯ .

Moreover, 𝐻 1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) may be computed explicitly by means of a classical result in
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Galois theory, known as Hilbert’s theorem 90, or simply Hilbert 90.

Before stating it, we recall that if 𝐾/𝑘 is a finite field extension of degree 𝑛, the norm
map

𝑁𝐾/𝑘 ∶ 𝐾 ⟶ 𝑘

is the function sending each element 𝑎 of 𝐾 to the determinant of the linear endomorphism
𝐾 → 𝐾 , 𝑐 ↦ 𝑎𝑐, of 𝐾 as a finite-dimensional 𝑘-vector space. As the determinant of a
composite of linear maps equals the product of their determinants, we have that 𝑁𝐾/𝑘(𝑎𝑏) =

𝑁𝐾/𝑘(𝑎)𝑁𝐾/𝑘(𝑏). If 𝑎 ∈ 𝑘, then 𝑁𝐾/𝑘(𝑎) = 𝑎
𝑛, and in particular 𝑁𝐾/𝑘(1) = 1. It follows that

if 𝑎 ≠ 0, we have 𝑁𝐾/𝑘(𝑎)𝑁𝐾/𝑘(𝑎
−1
) = 1, so 𝑁𝐾/𝑘(𝑎) ≠ 0. Thus 𝑁𝐾/𝑘 restricts to a group

homomorphism
𝐾

×
⟶ 𝑘

×
,

which will also be denoted by 𝑁𝐾/𝑘 .

It may also be proved (see Jacobson, 1964, I.14) that if 𝐾/𝑘 is a Galois extension, then
for each 𝑎 ∈ 𝐾 ,

∏

𝜑∈Gal(𝐾/𝑘)

𝜑(𝑎),

belongs to 𝑘 and equals 𝑁𝐾/𝑘(𝑎). It follows in this case that given 𝑎 ∈ 𝐾 and 𝜃 ∈ Gal(𝐾/𝑘),
the fact that the function Gal(𝐾/𝑘) → Gal(𝐾/𝑘), 𝜑 ↦ 𝜑 ◦𝜃 is a bijection implies that

𝑁𝐾/𝑘(𝜃(𝑎)) = ∏

𝜑∈Gal(𝐾/𝑘)

𝜑(𝜃(𝑎)) = ∏

𝜑∈Gal(𝐾/𝑘)

𝜑(𝑎) = 𝑁𝐾/𝑘(𝑎).

Thus we also have 𝑁𝐾/𝑘(𝜃(𝑎)/𝑎) = 1 whenever 𝑎 ∈ 𝐾
×.

We will use the following lemma:

Lemma 1.2.1. Let 𝐾 be a field. Suppose given 𝑛 ≥ 1, distinct automorphisms 𝜑1, ..., 𝜑𝑛,
and 𝑎1, ..., 𝑎𝑛 ∈ 𝐾 . If ∑𝑛

𝑖=1
𝑎𝑖𝜑𝑖 = 0, then 𝑎1 = ⋯ = 𝑎𝑛 = 0.

Proof. Suppose that this is not the case. Let 𝑛 ≥ 1 be the smallest number such that there
exist distinct automorphisms 𝜑1, ..., 𝜑𝑛, and 𝑎1, ..., 𝑎𝑛 ∈ 𝐾 not all zero such that ∑𝑛

𝑖=1
𝑎𝑖𝜑𝑖 = 0.

Then by minimality of 𝑛 we have that 𝑎1, ..., 𝑎𝑛 are all nonzero. Moreover, note that 𝑛 ≥ 2,
as if 𝑎1 ≠ 0 then 𝑎1𝜑1 cannot be zero since 𝑎1𝜑1(1) = 𝑎1. It follows that 𝜑1 ≠ 𝜑𝑛, so there
exists 𝑏 ∈ 𝐾 such that 𝜑1(𝑏) ≠ 𝜑𝑛(𝑏).

Now, for every 𝑐 ∈ 𝐾 we have

0 =

𝑛

∑

𝑖=1

𝑎𝑖𝜑𝑖(𝑏𝑐) =

𝑛

∑

𝑖=1

𝑎𝑖𝜑𝑖(𝑏)𝜑𝑖(𝑐).

On the other hand,

0 = 𝜑𝑛(𝑏)

𝑛

∑

𝑖=1

𝑎𝑖𝜑𝑖(𝑐) =

𝑛

∑

𝑖=1

𝑎𝑖𝜑𝑛(𝑏)𝜑𝑖(𝑐).

Thus 0 = ∑
𝑛

𝑖=1
𝑎𝑖𝜑𝑖(𝑏)𝜑𝑖(𝑐) − ∑

𝑛

𝑖=1
𝑎𝑖𝜑𝑛(𝑏)𝜑𝑖(𝑐) = ∑

𝑛

𝑖=1
𝑎𝑖(𝜑𝑖(𝑏) − 𝜑𝑛(𝑏))𝜑𝑖(𝑐) = ∑

𝑛−1

𝑖=1
𝑎𝑖(𝜑𝑖(𝑏) −

𝜑𝑛(𝑏))𝜑𝑖(𝑐). But this holds for all 𝑐 ∈ 𝐾 and 𝜑1(𝑏) − 𝜑𝑛(𝑏) ≠ 0, which contradicts the
minimality of 𝑛.
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Theorem 1.2.2 (Hilbert 90). If 𝐾/𝑘 is a finite Galois extension, then 𝐻 1
(Gal(𝐾/𝑘), 𝐾 ×

) ≅ 0.

Proof. Throughout this proof, let 𝐺 denote 𝐻 1
(Gal(𝐾/𝑘), 𝐾 ×

).

We have to prove that every inhomogeneous cocycle in degree 1 is a coboundary.
Suppose given an inhomogeneous cocycle 𝑎 ∶ 𝐺 → 𝐾

×; it satisfies 𝑎𝑔ℎ = 𝑎𝑔𝑔(𝑎ℎ) for all 𝑔,
ℎ ∈ 𝐺. We need to show that there exists 𝑑 ∈ 𝐾

× such that 𝑎ℎ = ℎ(𝑑)/𝑑 for every ℎ ∈ 𝐺.

By the previous lemma, the function ∑
𝑔∈𝐺

𝑎𝑔𝑔 is nonzero, so there exists 𝑏 ∈ 𝐾
× such

that ∑
𝑔∈𝐺

𝑎𝑔𝑔(𝑏) ≠ 0. Denoting ∑
𝑔∈𝐺

𝑎𝑔𝑔(𝑏) by 𝑐, for each ℎ ∈ 𝐺 we have

ℎ(𝑐) = ℎ
(
∑

𝑔∈𝐺

𝑎𝑔𝑔(𝑏)
)

= ∑

𝑔∈𝐺

ℎ(𝑎𝑔𝑔(𝑏))

= ∑

𝑔∈𝐺

ℎ(𝑎𝑔)ℎ𝑔(𝑏)

= ∑

𝑔∈𝐺

𝑎ℎ𝑔𝑎
−1

ℎ
ℎ𝑔(𝑏)

= 𝑎
−1

ℎ
∑

𝑔∈𝐺

𝑎ℎ𝑔ℎ𝑔(𝑏)

= 𝑎
−1

ℎ
∑

𝑔∈𝐺

𝑎𝑔𝑔(𝑏)

= 𝑎
−1

ℎ
𝑐.

Thus we have 𝑎ℎ = 𝑐

ℎ(𝑐)
=

ℎ(𝑐
−1
)

𝑐
−1

for every ℎ ∈ 𝐺, and we may take 𝑑 = 𝑐
−1.

Theorem 1.2.3 (Hilbert 90, second version). 𝐻 1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) ≅ 0.

Proof. Follows from Theorem 1.2.2 by taking the direct limit over all finite Galois extensions
of 𝑘 contained in 𝑘𝑠𝑒𝑝 .

We may use this to prove the following classical theorem:

Theorem 1.2.4 (Hilbert 90, classical version). Suppose 𝐾/𝑘 is a finite Galois extension
such that Gal(𝐾/𝑘) (which is finite) is a cyclic group, and let 𝜃 be any generator of Gal(𝐾/𝑘).
If 𝑎 ∈ 𝐾

× satisfies 𝑁𝐾/𝑘(𝑎) = 1, then there exists 𝑏 ∈ 𝐾
× such that 𝑎 = 𝜃(𝑏)/𝑏.

Proof. Let 𝑛 be the degree of the extension. We have 𝑎𝜃(𝑎)𝜃2(𝑎) ⋯ 𝜃
𝑛
(𝑎) = 1. This assump-

tion allows us to define a function 𝛼 ∶ Gal(𝐾/𝑘) → 𝐾
× such that

𝛼𝜃𝑚 = 𝑎𝜃(𝑎)⋯ 𝜃
𝑚
(𝑎)

for each 𝑚 ≥ 0. It is a cocycle since

𝛼𝜃𝑚𝜃𝑝 = 𝑎𝜃(𝑎)⋯ 𝜃
𝑚+𝑝

(𝑎) = 𝑎𝜃(𝑎)⋯ 𝜃
𝑚
(𝑎)𝜃

𝑚
(𝑎𝜃(𝑎)⋯ 𝜃

𝑝
(𝑎)) = 𝛼𝜃𝑚𝜃

𝑚
(𝛼𝜃𝑝 ).
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By Theorem 1.2.2, 𝛼 is a coboundary, so there exists 𝑏 ∈ 𝐾
× such that 𝛼𝜃 = 𝜃(𝑏)/𝑏. Hence

𝑎 = 𝜃(𝑏)/𝑏.

Now, the initial segment of the long exact sequence of cohomology groups associated
to the Kummer exact sequence is isomorphic to

0 → 𝜇
𝐺

𝑙
→ 𝑘

×
∧𝑙

→ 𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙) → 0. (1.2.2)

Let us denote the connecting homomorphism 𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙) by 𝜕.

It then follows that we have an isomorphism3

𝜕
′
∶ 𝑘

×
/𝑙

≅

⟶ 𝐻
1
(𝑘, 𝜇𝑙).

By using 1.2.2 and the cup product structure on Galois cohomology, we may also obtain
comparison maps between tensor powers of 𝑘× (and 𝑘×/𝑙) and higher Galois cohomology
groups with coefficients in tensor powers of 𝜇⊗𝑛

𝑙
. Indeed, recall that the tensor algebra

𝑇 (𝐴) of an abelian group 𝐴 is defined as the ring (or ℤ-algebra) whose underlying abelian
group (corresponding to the sum operation) is

⨁

𝑛≥0

𝐴
⊗𝑛
,

where 𝐴⊗0 denotes ℤ, and whose product operation is given on generators by (𝑎1 ⊗ ⋯ ⊗

𝑎𝑚, 𝑏1⊗⋯⊗𝑏𝑛) ↦ 𝑎1⊗⋯⊗𝑎𝑚⊗𝑏1⊗⋯⊗𝑏𝑛 and (1, 𝑎1⊗⋯⊗𝑎𝑚) ↦ 𝑎1⊗⋯⊗𝑎𝑚 (where 1 ∈ 𝐴⊗0
= ℤ,

and on general elements by linearly extending these rules. It is the free associative ring on
the abelian group 𝐴, in the sense that if 𝑅 is an associative ring, then any abelian group
morphism 𝑓 ∶ 𝐴 → 𝑅 extends uniquely to a ring morphism 𝑓 ∶ 𝑇 (𝐴) → 𝑅. Explicitly, 𝑓 is
given on each component 𝐴⊗𝑛 by the abelian group homomorphism corresponding to the
𝑛-linear map 𝐴𝑛

→ 𝑅 which sends (𝑎1, ..., 𝑎𝑛) to 𝑓 (𝑎1) ⋯ 𝑓 (𝑎𝑛), for 𝑛 ≥ 1, and 1 ∈ 𝐴
⊗0

= ℤ

to 1𝑅 .

𝑇 (𝐴) is a graded ring whose homogeneous elements of degree 𝑛 are the nonzero
elements of 𝐴⊗𝑛. Hence if in the above notation 𝑅 is a graded ring ⨁

𝑛≥0
𝑅𝑛 and the image of

𝐴
⊗1

≅ 𝐴 under 𝑓 is contained in 𝑅1, then for each 𝑛 ≥ 1, the fact that every generating tensor
in 𝐴

⊗𝑛 is a product in 𝑇 (𝐴) of 𝑛 elements of 𝐴⊗1 implies that 𝑓 (𝐴⊗𝑛
) ⊂ 𝑅𝑛 for each 𝑛 ≥ 1;

moreover, 𝑓 (1) = 1𝑅 implies that 𝑓 (𝐴⊗0
) ⊂ 𝑅0. Thus 𝑓 is a graded homomorphism.

In our setting, the map of abelian groups 𝜕 ∶ 𝑘
×
→ 𝐻

1
(𝑘, 𝜇𝑙) induces a graded ring

homomorphism
𝜕∗ ∶ 𝑇 (𝑘

×
) → 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
)

from the tensor algebra of 𝑘× to the Galois cohomology ring 𝐻 ∗
(𝑘, 𝜇

⊗∗

𝑙
). Explicitly, for each

𝑛 ≥ 0 its 𝑛-th component is the map of abelian groups 𝜕𝑛 ∶ (𝑘
×
)
⊗𝑛

→ 𝐻
𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
) given by

3 Where 𝑘×/𝑙 denotes the quotient of 𝑘× by the sub-abelian group, or sub-ℤ-module, consisting of elements
of the form 𝑙 × 𝑎 (in additive notation) for 𝑎 ∈ 𝑘

×, i.e. of 𝑙-th powers (in multiplicative notation) of elements
of 𝑘×.
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the composite

(𝑘
×
)
⊗𝑛

𝜕
⊗𝑛

⟶ 𝐻
1
(𝑘, 𝜇𝑙)

⊗𝑛
∪

⟶ 𝐻
𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
).

Moreover, for any tensor 𝑎1⊗𝑎2⊗⋯⊗𝑎𝑛 ∈ (𝑘
×
)
⊗𝑛, we have 𝑙⋅(𝑎1⊗𝑎2⊗⋯⊗𝑎𝑛) = 𝑎𝑙1⊗𝑎2⊗⋯⊗𝑎𝑛,

so 𝑙 ⋅ (𝑎1 ⊗ 𝑎2 ⊗ ⋯ ⊗ 𝑎𝑛) is sent under 𝜕⊗𝑛 to

𝜕(𝑎
𝑙

1
) ⊗ 𝜕(𝑎2) ⊗ ⋯ ⊗ 𝜕(𝑎𝑛) = 0 ⊗ 𝜕(𝑎2) ⊗ ⋯ ⊗ 𝜕(𝑎𝑛) = 0.

Since (𝑘×)⊗𝑛 is generated by such tensors, the kernel of 𝜕𝑛 contains all elements of the form
𝑙 ⋅ 𝛼 for 𝛼 ∈ (𝑘

×
)
⊗𝑛. By passing to the quotient, we obtain a map of abelian groups

𝜕
′

𝑛
∶ (𝑘

×
)
⊗𝑛
/𝑙 ⟶ 𝐻

𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
).

As 𝑇 (𝑘×)/𝑙 ≅ ⨁
𝑛≥0

((𝑘
×
)
⊗𝑛
/𝑙), these define a ring homomorphism

𝜕
′

∗
∶ 𝑇 (𝑘

×
)/𝑙 ⟶ 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
).

We now show that certain equalities, called the Steinberg relations, hold in
𝐻

2
(𝑘, 𝜇

⊗2

𝑙
).

Proposition 1.2.5 (Gille and Szamuely, 2006, 4.6.1). For each 𝑎 ≠ 0, 1 in 𝑘, we have
𝜕(𝑎) ∧ 𝜕(1 − 𝑎) = 0 in 𝐻 2

(𝑘, 𝜇
⊗2

𝑙
).

Proof. Let 𝑥 𝑙 − 𝑎 = 𝑝1(𝑥) ⋯ 𝑝𝑛(𝑥) be a factorization into irreducible monic polynomials in
𝑘[𝑥]. By definition, 𝑎 equals the 𝑙-th power of each zero in 𝑘𝑠𝑒𝑝 of each of the 𝑝𝑖(𝑥). On the
other hand, note that 1 − 𝑎 = 𝑝1(1) ⋯ 𝑝𝑛(1).

We may describe the factors 𝑝𝑖(1) as follows: for each 𝑖, let 𝑎𝑖 ∈ 𝑘𝑠𝑒𝑝 be a zero of 𝑝𝑖 .
Hence 𝑝𝑖 is the minimal polynomial of 𝑎𝑖 over 𝑘. Moreover, note that (i) 1 − 𝑎𝑖 is a zero
of 𝑝𝑖(1 − 𝑥), so the minimal polynomial of 1 − 𝑎𝑖 over 𝑘 divides 𝑝𝑖(1 − 𝑥), and (ii) since
𝑘(𝑎𝑖) = 𝑘(1 − 𝑎𝑖), the minimal polynomial of 1 − 𝑎𝑖 over 𝑘 has degree [𝑘(1 − 𝑎𝑖) ∶ 𝑘] =

[𝑘(𝑎𝑖) ∶ 𝑘] = deg(𝑝𝑖). It follows that (−1)deg(𝑝𝑖 )𝑝𝑖(1 − 𝑥) is the minimal polynomial of 1 − 𝑎𝑖
over 𝑘, so 𝑁𝑘(𝑎𝑖 )/𝑘

= 𝑝𝑖(1 − 𝑥)(0) = 𝑝𝑖(1).

Thus 1 − 𝑎 = 𝑁𝑘(𝑎1)/𝑘
(1 − 𝑎1) ⋯𝑁𝑘(𝑎𝑛)/𝑘

(1 − 𝑎𝑛), so

𝜕(𝑎) ∪ 𝜕(1 − 𝑎) = 𝜕(𝑎) ∪

𝑛

∑

𝑖=1

𝜕(𝑁𝑘(𝑎𝑖 )/𝑘
(1 − 𝑎𝑖)) =

𝑛

∑

𝑖=1

𝜕(𝑎) ∪ 𝜕(𝑁𝑘(𝑎𝑖 )/𝑘
(1 − 𝑎𝑖)).

Now, for each 𝑖 we have 𝜕(𝑁𝑘(𝑎𝑖 )/𝑘
(1 − 𝑎𝑖)) = 𝐶𝑜𝑟(𝜕(1 − 𝑎𝑖)), where 𝐶𝑜𝑟 denotes the core-

striction map 𝐻 1
(𝑘(𝑎𝑖), 𝜇𝑙) → 𝐻

1
(𝑘, 𝜇𝑙) (see Gille and Szamuely, 2006, 4.6.2), hence the

projection formula (Proposition 1.1.18(v)) yields

𝜕(𝑎) ∪ 𝜕(𝑁𝑘(𝑎𝑖 )/𝑘
(1 − 𝑎𝑖)) = 𝜕(𝑎) ∪ 𝐶𝑜𝑟(𝜕(1 − 𝑎𝑖)) = 𝐶𝑜𝑟(𝑅𝑒𝑠(𝜕(𝑎)) ∪ 𝜕(1 − 𝑎𝑖)).

But denoting by 𝜕𝑖 ∶ 𝑘(𝑎𝑖)× → 𝐻
1
(𝑘(𝑎𝑖), 𝜇𝑙) the boundary map corresponding to 𝑘(𝑎𝑖), we

have 𝑅𝑒𝑠(𝜕(𝑎)) = 𝜕𝑖(𝑎) by Gille and Szamuely, 2006, Lemma 4.6.2, which in turn equals 0
as 𝑎 is an 𝑙-th power in 𝑘(𝑎𝑖).
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Hence 𝜕(𝑎) ∪ 𝜕(𝑁𝑘(𝑎𝑖 )/𝑘
(1 − 𝑎𝑖)) = 0 for each 𝑖, so 𝜕(𝑎) ∪ 𝜕(1 − 𝑎) = 0 as desired.

1.2.1 Milnor K-theory
Definition 1.2.6. Let 𝑘 be a field. The Milnor K-theory ring of 𝑘, denoted by 𝐾 ∗

𝑀
(𝑘), is the

graded associative ring defined as the quotient of the tensor algebra of the abelian group
𝑘
×,

𝑇 (𝑘
×
) = ⨁

𝑛≥0

(𝑘
×
)
⊗𝑛
,

by the two-sided homogeneous ideal generated by all tensors of the form 𝑎 ⊗ (1 − 𝑎) for
𝑎 ≠ 1 in 𝑘×.

For each 𝑛 ≥ 0, the abelian group 𝐾 𝑛

𝑀
(𝑘) is called the 𝑛-th Milnor K-theory group of 𝑘.

For each 𝑛 ≥ 1, the image of a tensor 𝑎1 ⊗ ⋯ ⊗ 𝑎𝑛 under the quotient map 𝑇 (𝑘×) → 𝐾
∗

𝑀
(𝑘)

will be denoted by {𝑎1, ..., 𝑎𝑛}. Elements of this form will be called 𝑛-symbols.

We remark that we use multiplicative and additive notation for the corresponding
operations both between elements of the field and between symbols. For example, given
𝑎, 𝑏 ∈ 𝑘

×, we have {𝑎} + {𝑏} = {𝑎𝑏} and {𝑎}{𝑏} = {𝑎, 𝑏}, while {𝑎 + 𝑏} is only defined if
𝑎 + 𝑏 ≠ 0 in 𝑘.

In the following proposition, we list several properties of Milnor K-theory rings.

Proposition 1.2.7. Let 𝑘 be a field. Then

(i) For each 𝑛 ≥ 0, 𝐾 𝑛

𝑀
(𝑘) is isomorphic to the abelian group given by gener-

ators all the 𝑛-symbols {𝑎1} ⊗ ⋯ ⊗ {𝑎𝑛}, and by all relations of the form
{𝑎1} ⊗⋯⊗ {𝑎𝑖𝑏𝑖} ⊗⋯⊗ {𝑎𝑛} − {𝑎1} ⊗⋯⊗ {𝑎𝑖} ⊗⋯⊗ {𝑎𝑛} − {𝑎1} ⊗⋯⊗ {𝑏𝑖} ⊗⋯⊗ {𝑎𝑛}

and {𝑎1} ⊗ ⋯ ⊗ {𝑎𝑖} ⊗ {1 − 𝑎𝑖} ⊗ ⋯ ⊗ {𝑎𝑛}.

(ii) 𝐾 0

𝑀
(𝑘) ≅ ℤ, 𝐾 1

𝑀
(𝑘) ≅ 𝑘

×, and 𝐾 2

𝑀
(𝑘) ≅

𝑘
×
⊗𝑘

×

⟨𝑎⊗(1−𝑎) : 𝑎≠1⟩ .

(iii) For all 𝑎 ∈ 𝑘
×, {𝑎, −𝑎} = 0.

(iv) For all 𝑎 ∈ 𝑘
×, {𝑎, −1} = {𝑎}

2
= {−1, 𝑎}.

(v) For all 𝑎, 𝑏 ∈ 𝑘
×, {𝑎, 𝑏} = −{𝑏, 𝑎}.

(vi) 𝐾 ∗

𝑀
(𝑘) is a graded-commutative ring, i.e. for all 𝛼 ∈ 𝐾

𝑚

𝑀
(𝑘) and 𝛽 ∈ 𝐾

𝑛

𝑀
(𝑘) we have

𝛼𝛽 = (−1)
𝑚𝑛
𝛽𝛼 .

(vii) If 𝑎1, ..., 𝑎𝑛 ∈ 𝑘× are such that 𝑎𝑖+𝑎𝑗 is 0 or 1 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, then {𝑎1, ..., 𝑎𝑛} = 0.

(viii) If 𝑎1, ..., 𝑎𝑛 ∈ 𝑘× are such that 𝑎1 + ⋯ + 𝑎𝑛 is 0 or 1, then {𝑎1, ..., 𝑎𝑛} = 0.
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Proof.

(i) Follows from a well-known fact about graded rings. Since 𝐾 ∗

𝑀
(𝑘) is the quotient of

𝑇 (𝐾
1

𝑀
(𝑘)) by the homogeneous ideal, say 𝐼 , generated by tensors {𝑎} ⊗ {1 − 𝑎}, then

its 𝑛-th graded component is isomorphic to 𝐾 1

𝑀
(𝑘)

⊗𝑛
/(𝐼 ∩ 𝐾

1

𝑀
(𝑘)

⊗𝑛
).

(ii) Is a particular case of (i).

(iii) By definition, we know that {𝑎, 𝑎 − 1} = {𝑎
−1
, 𝑎

−1
− 1} = 0. But {𝑎−1, 𝑎−1 − 1} =

(−1)
2
{𝑎,

1

𝑎
−1
−1
} = {𝑎,

1

𝑎
−1
−1
} by bilinearity, hence

0 = {𝑎, 𝑎 − 1} + {𝑎
−1
, 𝑎

−1
− 1} = {𝑎,

𝑎 − 1

𝑎
−1
− 1

} = {𝑎, −𝑎}.

(iv) {𝑎, 𝑎} = {𝑎, (−1)(−𝑎)} = {𝑎, −1} + {𝑎, −𝑎}
item (𝑖𝑖𝑖)

= {𝑎, −1}, and analogously for the
other equality.

(v) Follows by expanding {𝑎𝑏, −𝑎𝑏} and using (iii).

(vi) It suffices to prove it for symbols 𝛼 = {𝑎1, ..., 𝑎𝑚} and 𝛽 = {𝑏1, ..., 𝑏𝑛}, and this case is
immediate from (e).

(vii) Follows from (f).

(viii) We use induction on 𝑛 ≥ 2. The case 𝑛 = 2 is item (iii). Suppose the result is known
for some 𝑛 − 1 ≥ 2 and consider 𝑎1 + 𝑎2. If it equals 0, then {𝑎1, ..., 𝑎𝑛} = 0 by (g).
Otherwise, it follows from 𝑎1

𝑎1+𝑎2

+
𝑎2

𝑎1+𝑎2

= 1 that

0 = {

𝑎1

𝑎1 + 𝑎2

,

𝑎2

𝑎1 + 𝑎2

} = {𝑎1, 𝑎2} − {𝑎1, 𝑎1 + 𝑎2} − {𝑎1 + 𝑎2, 𝑎2} + {𝑎1 + 𝑎2, 𝑎1 + 𝑎2}.

Multiplying both sides by {𝑎3, ..., 𝑎𝑛}, the induction hypothesis for {𝑎1 + 𝑎2, 𝑎3, ..., 𝑎𝑛}
implies that {𝑎1, ..., 𝑎𝑛} = 0.

The norm residue homomorphism

By Proposition 1.2.5, the homomorphism

𝜕∗ ∶ 𝑇 (𝑘
×
) → 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
)



22

1 | GALOIS COHOMOLOGY, MILNOR K-THEORY, AND THE NORM RESIDUE HOMOMORPHISM: THE CLASSICAL POINT OF VIEW

factors uniquely through the quotient map 𝑇 (𝑘
×
) → 𝐾

∗

𝑀
(𝑘), thus defining a ring homo-

morphism
𝐾

∗

𝑀
(𝑘) ⟶ 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
).

The kernel of the latter contains all multiples of 𝑙, since 𝜕∗ has this property. Thus one
obtains a further ring homomorphism

𝜈∗ ∶ 𝐾
∗

𝑀
(𝑘)/𝑙 ⟶ 𝐻

∗
(𝑘, 𝜇

⊗∗

𝑙
),

which is known as the norm residue homomorphism.

Definition 1.2.8. Given a field 𝑘 and an integer 𝑛 ≥ 0, we say that the Bloch-Kato
condition 𝐵𝐾(𝑘, 𝑛) holds if and only if for every prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), the norm
residue homomorphism 𝜈𝑛 ∶ 𝐾

𝑛

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛
(𝑘, 𝜇

⊗𝑛

𝑙
) is an isomorphism.

Given 𝑛 ≥ 0, we say that 𝐵𝐾(𝑛) holds if and only if for every field 𝑘, 𝐵𝐾(𝑘, 𝑛) holds.

The statement that 𝐵𝐾(𝑛) holds for every 𝑛 ≥ 0 has been known as the Bloch-Kato
conjecture.

1.3 The Zariski, Nisnevich and étale topologies; Galois
cohomology via étale cohomology

1.3.1 The Zariski, Nisnevich and étale topologies
We denote by Ét𝑋 the full subcategory of the category Sch𝑋 of schemes over 𝑋 whose

objects are those (𝑌 , 𝑓 ) (where 𝑓 ∶ 𝑌 → 𝑋 is a scheme morphism) such that 𝑓 is étale. In
what follows we will usually denote an 𝑋 -morphism (𝑌 , 𝑓 ) by 𝑌 .

An étale covering in Ét𝑋 is defined to be a family

(𝑓𝑖 ∶ 𝑌𝑖 → 𝑌)𝑖∈𝐼

of morphisms in Ét/𝑋 , where 𝐼 is a small set, which are jointly surjective in the sense that
𝑌 = ⋃

𝑖∈𝐼
𝑓𝑖(𝑌𝑖). It is said to be a Nisnevich covering if the following additional condition is

satisfied: for every point 𝑦 ∈ 𝑌 , there exist 𝑖 ∈ 𝐼 and a point 𝑧 ∈ 𝑌𝑖 such that 𝑓𝑖(𝑧) = 𝑦 and
the homomorphism between residue fields 𝜅(𝑦) → 𝜅(𝑧) is an isomorphism.

The étale topology on 𝑋 is defined as the Grothendieck topology on Ét/𝑋 generated by
the pretopology given by étale coverings. The site thus obtained will be denoted by 𝑋ét.
Similarly, the Nisnevich topology4 is the Grothendieck topology on Ét/𝑋 induced by the
pretopology whose coverings are the Nisnevich coverings. The corresponding site will be
denoted by 𝑋Nis.

We denote the categories of presheaves of sets and of abelian groups on Ét𝑋 by PSh(𝑋 )
and PSh𝐽 (𝑋 ,Ab), respectively. For 𝐽 = Nis or ét, the categories of sheaves of sets and of
abelian groups on 𝑋𝐽 will be denoted by Sh𝐽 (𝑋 ) and Sh𝐽 (𝑋 ,Ab).

4 It is named after Yevsey Nisnevich, who introduced it in Nisnevich, 1989 and called it the completely
decomposed (or cd) topology.
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As every Nisnevich covering is also an étale covering, the identity functor of Ét𝑋
defines a morphism of sites

𝜖 ∶ 𝑋ét ⟶ 𝑋Nis.

These topologies may be compared with the usual Zariski site 𝑋Zar of 𝑋 , whose under-
lying category is the category Op

𝑋
of open subsets of 𝑋 and inclusion maps, and whose

topology is generated by the pretopology whose coverings of an open subset 𝑈 ⊂ 𝑋 are
families

(𝑓𝑖 ∶ 𝑈𝑖 → 𝑈)𝑖∈𝐼

of inclusions such that 𝑈 = ⋃
𝑖∈𝐼
𝑓𝑖(𝑈𝑖) (= ⋃

𝑖∈𝐼
𝑈𝑖).

The comparison between 𝑋Zar, 𝑋Nis and 𝑋ét is obtained by regarding open subsets of 𝑋
as schemes over 𝑋 :

An open subscheme of 𝑋 is an open subset 𝑈 ⊂ 𝑋 endowed with the scheme structure
whose structure sheaf O𝑈 is the restriction to 𝑈 of the structure sheaf of 𝑋 : for each open
subset 𝑉 ⊂ 𝑈 we have O𝑈 (𝑉 ) ∶= O𝑋 |𝑈 (𝑉 ) = O𝑋 (𝑉 ). The inclusion 𝑖 ∶ 𝑈 ↪ 𝑋 defines a
scheme morphism via the morphism of sheaves of rings O𝑋 → 𝑖∗O𝑈 whose 𝑉 -component
is the restriction map O𝑋 (𝑉 ) → O𝑋 (𝑉 ∩ 𝑈 ) = O𝑈 (𝑉 ∩ 𝑈 ) = O𝑈 (𝑖

−1
(𝑉 )) = 𝑖∗O𝑈 (𝑉 ).

Note that given a further open subset 𝑈 ′
⊂ 𝑈 , its scheme structure induced from 𝑋 is

equal to that induced from 𝑈 . Denoting by 𝑗 the inclusion of 𝑈 ′ into 𝑈 and by 𝑖, 𝑗, 𝑖 ◦ 𝑗 the
scheme morphisms corresponding to 𝑖, 𝑗, 𝑖 ◦ 𝑗, we have that the composite

𝑈
′

𝑗

⟶ 𝑈

𝑖

⟶ 𝑋

is given at the level of structure sheaves by

O𝑋

𝑖
#

⟶ 𝑖∗O𝑈

𝑖∗(𝑗
#

)

⟶ 𝑖∗(𝑗∗O𝑈
′),

which is given at each open 𝑉 ⊂ 𝑋 by composing the restriction map O𝑋 (𝑉 ) → O𝑋 (𝑉 ∩𝑈 )

with the 𝑉 ∩ 𝑈 -component of 𝑗#. The latter equals the restriction map O𝑈 (𝑉 ∩ 𝑈 ) →

O𝑈 ((𝑉 ∩𝑈 )∩𝑈
′
), hence the restriction map O𝑋 (𝑉 ∩𝑈 ) → O𝑋 (𝑉 ∩𝑈

′
). Thus (by functoriality

of O𝑋 ) the above composite equals the restriction map O𝑋 (𝑉 ) → O𝑋 (𝑉 ∩ 𝑈
′
), and we

conclude that 𝑖 ◦ 𝑗 = 𝑖 ◦ 𝑗.

From this we obtain a functor

𝐼 ∶ Op
𝑋
⟶ Sch𝑋 .

It may be proved that it restricts to a functor Op
𝑋
→ Ét𝑋 which sends Zariski coverings

to Nisnevich (hence étale) coverings and preserves finite limits (which in Op
𝑋

are given
by intersections). This induces a morphism of sites

𝜈 ∶ 𝑋Nis ⟶ 𝑋Zar,

𝜋 = 𝜈 ◦ 𝜖 ∶ 𝑋ét ⟶ 𝑋Zar.
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Thus we obtain the following adjunctions between categories of sheaves of abelian
groups:

ShZar(𝑋 ,Ab) Shét(𝑋 ,Ab),
𝜋
∗

𝜋∗

(1.3.1)

ShZar(𝑋 ,Ab) ShNis(𝑋 ,Ab),
𝜈
∗

𝜈∗

(1.3.2)

ShNis(𝑋 ,Ab) Shét(𝑋 ,Ab).
𝜖
∗

𝜖∗

(1.3.3)

By definition, the direct image functors 𝜋∗, 𝜈∗ are both given by precomposing sheaves
with 𝐼 𝑜𝑝 ∶ Op𝑜𝑝

𝑋
→ Ét𝑋 . On the other hand, 𝜖∗ is given by precomposition with the identity

functor, so it sends an étale sheaf to itself regarded as a Nisnevich sheaf.

ShZar(𝑋 ,Ab) Shét(𝑋 ,Ab),
𝜋
∗

𝜋∗

(1.3.4)

ShZar(𝑋 ,Ab) ShNis(𝑋 ,Ab),
𝜈
∗

𝜈∗

(1.3.5)

ShNis(𝑋 ,Ab) Shét(𝑋 ,Ab).
𝜖
∗

𝜖∗

(1.3.6)

Cohomology groups

Definition 1.3.1. Suppose given a scheme 𝑋 , and let us consider the site 𝑋𝐽 where 𝐽 either
be the Zariski, Nisnevich or étale topology. Then we may consider the functor

Γ ∶ Sh𝐽 (𝑋 ,Ab) → Ab

given by evaluation at 𝑋 . Cohomology of 𝑋 with respect to 𝐽 is defined as the right derived
functor

RΓ ∶ 𝐷
+
(Sh𝐽 (𝑋 ,Ab)) ⟶ 𝐷

+
(Ab).

If F is a complex of 𝐽 -sheaves (or a 𝐽 -sheaf, which we identify with a complex concentrated
in degree 0), the 𝑛-th 𝐽 -cohomology group of 𝑋 with coefficients in F is defined for each
integer 𝑛 as the 𝑛-th cohomology group of RΓ(F ),

𝐻
𝑛

𝐽
(𝑋 ,F ) ∶= 𝐻

𝑛
(RΓ(F )).

𝐽 -cohomology groups of 𝑋 may be assembled into functors

𝐻
𝑛

𝐽
(𝑋 , −) ∶ 𝐷

+
(Sh𝐽 (𝑋 ,Ab)) ⟶ Ab.

by composing RΓ with each 𝐻 𝑛
∶ 𝐷

+
(Ab) → Ab.

1.3.2 Étale cohomology and Galois cohomology
We will now state a classical result according to which Galois cohomology of a field 𝑘

endowed with a separable closure 𝑘𝑠𝑒𝑝 , i.e. profinite group cohomology of 𝐺 = Gal(𝑘𝑠𝑒𝑝/𝑘)



1.3 | THE ZARISKI, NISNEVICH AND ÉTALE TOPOLOGIES; GALOIS COHOMOLOGY VIA ÉTALE COHOMOLOGY

25

with coefficients in discrete 𝐺-modules, is in a certain sense equivalent equivalent to étale
cohomology of the scheme Spec 𝑘, which is by definition cohomology of sheaves of abelian
groups on the étale site Spec (𝑘)ét.

Let 𝐹 be a presheaf of sets on ÉtSpec 𝑘 . If 𝐾/𝑘 is a finite Galois extension contained in
𝑘𝑠𝑒𝑝 , we obtain a left action of Gal(𝐾/𝑘) on 𝐹 (Spec 𝐾) given by

𝑔 ⋅ 𝑥 = 𝐹(Spec 𝑔)(𝑥).

(Note that 𝐹 (Spec 𝑖𝑑𝐾 ) = 𝐹 (𝑖𝑑Spec 𝐾 ) = 𝑖𝑑𝐹 (Spec 𝐾), and for each 𝑔, ℎ ∈ Gal(𝐾/𝑘) we have
𝐹 (Spec (𝑔 ◦ ℎ)) = 𝐹 (Spec ℎ ◦ Spec 𝑔) = 𝐹(Spec 𝑔) ◦ 𝐹 (Spec ℎ) since Spec and 𝐹 are both
contravariant functors.)

If 𝐾 ⊂ 𝐿 are two finite Galois extensions of 𝑘 contained in 𝑘𝑠𝑒𝑝 , the inclusion 𝑖 ∶ 𝐾 → 𝐿

induces a function 𝐹 (𝑖) ∶ 𝐹 (𝐿) → 𝐹(𝐾). Denoting by 𝑝 ∶ Gal(𝐿/𝑘) → Gal(𝐾/𝑘) the
homomorphism given by restricting automorphisms to 𝐾 , for each 𝑔 ∈ Gal(𝐿/𝑘) we have
𝑖 ◦ 𝑝(𝑔) = 𝑔 ◦ 𝑖, so

𝐹 (Spec 𝑖) ◦ 𝐹 (Spec 𝑝(𝑔)) = 𝐹 (Spec 𝑔) ◦ 𝐹 (Spec 𝑖). (1.3.7)

Now, let us consider the set lim
−−→

𝐾∈FinGal𝐹 (Spec 𝐾), which can be identified with the
quotient of

∐

𝐾∈Ob(FinGal)

𝐹 (Spec 𝐾) = {(𝐾, 𝑥) ∈ Ob(FinGal) × ⋃

𝐿∈Ob(FinGal)

𝐹 (Spec 𝐿)|𝑥 ∈ 𝐹 (Spec 𝐾)}

by the equivalence relation ∼ given by (𝐾 , 𝑥) ∼ (𝐾
′
, 𝑥

′
) if and only if there exists 𝐾 ′′

containing both 𝐾 and 𝐾 ′, say with inclusions 𝑖 ∶ 𝐾 → 𝐾
′′ and 𝑖′ ∶ 𝐾 ′

→ 𝐾
′′, such that

𝐹 (Spec 𝑖(𝑥)) = 𝐹 (Spec 𝑖′(𝑥 ′)). Note that by equation 1.3.7, if (𝐾 , 𝑥) ∼ (𝐿, 𝑥
′
) for 𝐾 ⊂ 𝐿, then

for each 𝑔 ∈ Gal(𝐿/𝑘) it holds that

𝐹 (Spec 𝑖)(𝐹 (Spec 𝑝(𝑔))(𝑥)) = 𝐹 (Spec 𝑔)(𝐹 (Spec 𝑖)(𝑥)) = 𝐹 (Spec 𝑔)(𝑥 ′).

Then (𝐾 , 𝐹 (Spec 𝑝(𝑔))(𝑥)) ∼ (𝐿, 𝐹 (Spec 𝑔)(𝑥 ′)), which we rewrite as (𝐾 , 𝑝(𝑔) ⋅ 𝑥) ∼ (𝐿, 𝑔 ⋅ 𝑥
′
).

This induces an action of Gal(𝑘𝑠𝑒𝑝/𝑘) ≅ lim
←−−

𝐾∈FinGal𝑜𝑝Gal(𝐾/𝑘) on lim
−−→

𝐾∈FinGal𝐹 (Spec 𝐾) with

the property that each class (𝐾 , 𝑥) is stabilized by Gal(𝑘𝑠𝑒𝑝/𝐾), which is an open subgroup.
Hence by Remark 1.1.20, lim

−−→
𝐾∈FinGal𝐹 (Spec 𝐾) is a discrete Gal(𝑘𝑠𝑒𝑝/𝑘)-set.

We have an analogous construction with sheaves of sets replaced by sheaves of abelian
groups and actions on sets replaced by modules.

Theorem 1.3.2 (Milne, 1980, Lemma 1.8 and Theorem 1.9). Let us denote the profinite
group Gal(𝑘𝑠𝑒𝑝/𝑘) by 𝐺. The above construction extends to a functor PSh(ÉtSpec 𝑘 ,Ab) →
C Mod𝐺 that restricts to an equivalence of categories 𝜑 ∶ Shét(Spec 𝑘,Ab)

≃

→ C Mod𝐺 .
Moreover, consider the functor

𝑃 ∶ ÉtSpec 𝑘 ⟶ C Set𝐺

given by sending each 𝑋 ∈ ÉtSpec 𝑘 to the set HomSch𝑘 (Spec (𝑘𝑠𝑒𝑝), 𝑋 ) endowed with the
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𝐺-action 𝑔 ⋅ 𝑓 = 𝑓 ◦ Spec 𝑔. Then defining

𝜓 ∶ C Mod𝐺 ⟶ PSh(ÉtSpec 𝑘 ,Ab),

by 𝑀 ↦ HomC Set𝐺 (𝑃(−), 𝑀), it holds that

(i) 𝜓(𝑀) is an étale sheaf for every discrete 𝐺-module 𝑀 .

(ii) The restricted functor C Mod𝐺 ⟶ Shét(Spec 𝑘,Ab) is an equivalence of categories.

(iii) For each finite 𝐾/𝑘, 𝜓(𝑀)(Spec 𝐾) is isomorphic to 𝑀Gal(𝑘𝑠𝑒𝑝/𝐾).

(iv) Products of finite extensions satisfy 𝜓(𝑀)(Spec ∏
𝑖∈𝐼
𝐾𝑖) = ∏

𝑖∈𝐼
𝜓(𝑀)(Spec 𝐾𝑖).

As a consequence, denoting by Γ ∶ Shét(Spec 𝑘,Ab) → Ab the functor given by
evaluation at Spec 𝑘 and by Γ

′
∶ C Mod𝐺 → Ab the functor of 𝐺-invariants 𝑀 ↦ 𝑀

𝐺 ,
we have an isomorphism

RΓ
′
◦ 𝜑 ≅ RΓ

between functors from 𝐷
+
(Shét(Spec 𝑘,Ab)) to 𝐷+

(Ab), where 𝜑 ∶ 𝐷
+
(Shét(Spec 𝑘,Ab)) →

𝐷
+
(C Mod𝐺) is induced from the universal property of the derived category as a localization

(being an equivalence of categories, 𝜑 preserves quasi-isomorphisms). By construction, the
latter coincides on objects with the extension of 𝜑 to a functor Ch+

(Shét(Spec 𝑘,Ab)) →
Ch+

(C Mod𝐺), which we also denote by 𝜑 by abuse of notation.

It follows that for each bounded below complex F of sheaves on (Spec 𝑘)ét there exists
for each integer 𝑛 an isomorphism

𝐻
𝑛

ét(Spec 𝑘,F ) ≅ 𝐻
𝑛

𝑑𝑖𝑠𝑐
(𝐺, 𝜑(F )) = 𝐻

𝑛
(𝑘, 𝜑(F )).

It may be checked via the above description of the equivalence between étale sheaves
and discrete 𝐺-modules that the module of units 𝑘×

𝑠𝑒𝑝
corresponds, up to isomorphism, to

the étale sheaf of units O× on ÉtSpec 𝑘 . For a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), the module of 𝑙-th
roots of unity 𝜇𝑙 corresponds to the étale sheaf 𝜇𝑙 .

Thus the short exact sequence

1 ⟶ 𝜇𝑙 ⟶ 𝑘
×

𝑠𝑒𝑝

∧𝑙

⟶ 𝑘
×

𝑠𝑒𝑝
⟶ 1

of discrete 𝐺-modules corresponds, up to isomorphism, to the short exact sequence

0 ⟶ 𝜇𝑙 ⟶ O×
∧𝑙

⟶ O×
⟶ 0

of étale sheaves.
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Chapter 2

Motivic cohomology

In this chapter we discuss motivic cohomology defined in terms of Voevodsky’s motivic
complexes, having as our main reference the Lecture Notes on Motivic Cohomology by
Mazza, Voevodsky and Weibel (Mazza et al., 2006).

Some preliminary constructions will be necessary for discussing motivic complexes
and motivic cohomology. The first step will be to define finite correspondences over a
given field 𝑘. They constitute an additive category whose objects are the smooth, separated,
finite type 𝑘-schemes and whose morphisms are given by a generalization of the usual
morphisms of schemes. It is a cycle-theoretic construction that allows, on the one hand, to
consider usual scheme morphisms by identifying them with their graphs, but on the other
hand there are additional ’transpose’ maps associated to finite surjective morphisms of
schemes. Then we discuss presheaves with transfers, which are additive presheaves on
the category of finite correspondences, and sheaves with transfers, which are presheaves
with transfers whose restriction to the usual category of smooth schemes is a sheaf for a
given Grothendieck topology. Then motivic complexes are introduced by using a certain
simplicial construction on presheaves with transfers, and motivic cohomology groups of a
(smooth, separated, finite type) 𝑘-scheme 𝑋 are defined as hypercohomology groups of
the restriction of motivic complexes to either the Zariski or the étale topology on 𝑋 . As
we shall see, the distinction between the invariants provided by these two topologies is an
important feature.

Then we will outline a characterization, following Mazza et al., 2006, of the weight 1
motivic complex ℤ(1). Namely, it will be quasi-isomorphic as a presheaf with transfers to
O×. This result provides important information on Zariski motivic cohomology and on
étale motivic cohomology with torsion coefficients. In the remainder of the chapter, we
briefly discuss the existence of a sheafification functor for presheaves with transfers with
respect to the étale topology, the construction of comparison (’change of topology’) maps
between Zariski cohomology and étale cohomology, and also the definition of a homotopy
invariant presheaf with transfers.
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2.1 Correspondences, (pre)sheaves with transfers

Throughout this section, we let 𝑘 denote a given field.

Convention 2.1.1. Recall from our conventions that Sm𝑘 denotes the category of smooth,
separated, finite type 𝑘-schemes. Structure morphisms 𝑋 ⟶ Spec 𝑘 will be omitted when
this causes no confusion. Note that several properties hold for any such 𝑋 :

(i) It is regular, as is any smooth scheme over a field. See Raynaud and Grothendieck,
1971, Exposé II, 3.1.

(ii) It is noetherian.

(iii) It is separated, since Spec 𝑘 → Spec ℤ is separated. See Grothendieck, 1960, Chap.
I, 5.5.1(ii).

(iv) If it is connected, then it is irreducible.

(v) It can be expressed as a finite disjoint union of smooth, separated, integral, finite type
𝑘-schemes; these are both its irreducible components and its connected components.

Moreover, by the cancellation property for separated morphisms (i.e. if a composite
𝑔 ◦ 𝑓 of morphisms of schemes is separated, then so is 𝑓 ; see Grothendieck, 1960, Chap. I,
5.5.1(v)), the underlying morphism of schemes of any morphism in Sm𝑘 is separated.

When it is convenient, we denote finite products in Sm𝑘 (i.e. fibered products over
Spec 𝑘) by 𝑋𝑌 , 𝑋𝑌𝑍 , etc., and by 𝜋

𝑋𝑌

𝑋
, 𝜋𝑋𝑌𝑍

𝑋
, 𝜋𝑋𝑌𝑍

𝑋𝑌
(or by 𝜋𝑋 , 𝜋𝑋 , 𝜋𝑋𝑌 , resp., when the

domains cause no confusion), and so on the corresponding canonical projections.

2.1.1 Finite correspondences
In the theory of algebraic cycles, given a field 𝑘 and 𝑘-varieties 𝑋 and 𝑌 , a correspon-

dence, as discussed for example in Fulton, 1984, is defined as a cycle on 𝑋 ×𝑘 𝑍 . When one
considers correspondences between smooth 𝑘-varieties up to rational equivalence, one
may use the intersection product, pullback, and pushforward of cycles to define (Fulton,
1984, Def. 16.6.1) a composition operation on groups of rational equivalence classes of
correspondences. We will use a variant of this construction following Mazza et al., 2006,
Lecture 1. We will only consider (see Definition) 2.1.2) cycles on a product 𝑋 ×𝑘 𝑌 in Sm𝑘

whose subvarieties 𝑍 ⊂ 𝑋 ×𝑘 𝑌 occurring with nonzero coefficient are finite and surjective
onto a connected component of𝑋 . These are called finite correspondences. Composition may
be defined for finite correspondences (see Corollary 2.1.6) by following the aforementioned
definition of composition of correspondence classes given in Fulton, 1984. However,
for finite correspondences, by virtue of Lemma 2.1.5, the cycles between which we need
to take the intersection product intersect properly, so in this case composition may be
defined at the level of cycles, with no need to identify those which are pairwise rationally
equivalent.

Definition 2.1.2. Suppose given 𝑋 , 𝑌 ∈ Sm𝑘 . A finite 𝑘-correspondence from 𝑋 to 𝑌 is
defined to be a cycle 𝛼 = ∑

𝑖∈𝐼
𝑛𝑖𝑧𝑖 ∈ Z(𝑋 ×𝑘 𝑌 ) such that for each 𝑖 with 𝑛𝑖 ≠ 0, denoting
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by 𝑍𝑖 ↪ 𝑋 the induced integral closed subscheme structure on {𝑧𝑖}, the composite

𝑍𝑖 ↪ 𝑋 ×𝑘 𝑌

𝜋𝑋

⟶ 𝑋

is finite and its image is an irreducible component of 𝑋 . Note that since finite morphisms
are proper, for each 𝑧𝑖 this is equivalent to requiring that the following both hold:

(i) The above composite is finite.

(ii) 𝜋𝑋 (𝑧𝑖) is the generic point of an irreducible component of 𝑋 .

Following Cisinski and Déglise, 2019, we denote it by

𝛼 ∶ 𝑋 ∙⟶ 𝑌.

Note that the set of finite 𝑘-correspondences from 𝑋 to 𝑌 is a subgroup of Z(𝑋 ×𝑘 𝑌 ); we
will denote it by 𝐶𝑘(𝑋 , 𝑌 ).

Suppose 𝑓 ∶ 𝑋 ⟶ 𝑌 is a morphism in Sm𝑘 . Since 𝑋 is separated over 𝑘, the graph

morphism 𝛾𝑓 ∶ Γ𝑓 ⟶ 𝑋 ×𝑘 𝑌 is a closed immersion, and the composite Γ𝑓
𝛾𝑓

→ 𝑋 ×𝑘 𝑌

𝜋𝑋

→ 𝑋

is an isomorphism. Hence the associated cycle [Γ𝑓 ]𝑋×𝑘𝑌
is a finite correspondence.

Note that 𝑓 can be recovered from [Γ𝑓 ]𝑋×𝑘𝑌
as

𝑋

≅

→ Γ𝑓

𝛾𝑓

⟶ 𝑋 ×𝑘 𝑌

𝜋𝑌

⟶ 𝑌,

where 𝛾𝑓 is the closed immersion associated to [Γ𝑓 ]𝑋×𝑘𝑌
, and the first map is inverse to the

isomorphism

Γ𝑓

𝛾𝑓

⟶ 𝑋 ×𝑘 𝑌

𝜋𝑋

⟶ 𝑋.

We will often abuse notation and denote Γ𝑓 by 𝑓 in the context of finite correspon-
dences.

One would like to define composition of finite correspondences by extending the
usual composition operation in Sm𝑘 , i.e. one wishes to construct a category of finite
correspondences (over 𝑘) in such a way that (i) [Γ𝑔]𝑌×𝑘𝑍 ◦ [Γ𝑓 ]𝑋×𝑘𝑌

= [Γ𝑔◦𝑓 ]𝑋×𝑘𝑍
for any

𝑋

𝑓

→ 𝑌

𝑔

→ 𝑍 , and (ii) [Γ𝑖𝑑𝑋 ]𝑋×𝑘𝑋 ∶ 𝑋 ∙⟶ 𝑋 is a two-sided identity for any 𝑋 .

Lemma 2.1.3. Let 𝑆 be a Noetherian scheme, and 𝑓 ∶ 𝑋 ⟶ 𝑌 a morphism of separated
finite type 𝑆-schemes. If 𝑍 ⊂ 𝑋 is an irreducible closed subset which is finite over 𝑆, then
𝑓 (𝑍 ) ⊂ 𝑌 is closed, irreducible, and finite over 𝑆.

Proof. See Mazza et al., 2006, Lemma 1.4.

Lemma 2.1.4. Let 𝑆 be a normal scheme, and 𝑋 an integral 𝑆-scheme with 𝑋 → 𝑆 finite
and surjective over a connected component of 𝑆. Then for any connected 𝑆-scheme 𝑌 ,
every connected component of 𝑋 ×𝑆 𝑌 is finite and surjective over 𝑌 .

Proof. See Mazza et al., 2006, Lemma 1.6.
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Lemma 2.1.5. Suppose given 𝑋 , 𝑌 , 𝑍 ∈ Sm𝑘 , and integral closed subschemes 𝑈 ↪ 𝑋 ×𝑘 𝑌 ,
𝑉 ↪ 𝑌 ×𝑘 𝑍 which are finite and surjective over some connected component of 𝑋 , 𝑌 ,
respectively (hence these define finite correspondences [𝑈 ] ∶ 𝑋 ∙⟶ 𝑌 and [𝑉 ] ∶ 𝑌 ∙⟶

𝑍 ). Then any irreducible component of the image of 𝑈 ×𝑘 𝑍 ↪ 𝑋 ×𝑘 𝑌 ×𝑘 𝑍 properly
intersects any irreducible component of the image of 𝑋 ×𝑘 𝑉 ↪ 𝑋 ×𝑘 𝑌 ×𝑘 𝑍 , so the
intersection product [𝑋 ×𝑘 𝑉 ] ⋅ [𝑈 ×𝑘 𝑍] is defined. Moreover, the pushforward

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
([𝑋 ×𝑘 𝑉 ] ⋅ [𝑈 ×𝑘 𝑍])

is a finite correspondence from 𝑋 to 𝑍 .

Proof. Firstly, note that the scheme-theoretic intersection of 𝑈 ×𝑘𝑍 and 𝑋 ×𝑘𝑉 in 𝑋 ×𝑘𝑌 ×𝑘𝑍

is equivalently given by the pullback 𝑈 ×𝑌 𝑉 (with respect to the projections 𝑈
𝜋2

→ 𝑌 and
𝑉

𝜋1

→ 𝑌 ). Hence after taking the respective images in 𝑋 ×𝑘 𝑌 ×𝑘 𝑍 , irreducible components
of 𝑈 ×𝑌 𝑉 are precisely the irreducible components of those subsets given by intersecting
an irreducible component of 𝑈 ×𝑘 𝑍 with one of 𝑋 ×𝑘 𝑍 . Now, we have

(i) Since 𝑉 → 𝑌 is finite and surjective over a connected component, it follows from
Lemma 2.1.4 that each irreducible component of 𝑈 ×𝑌 𝑉 is finite and surjective over
some connected component of 𝑈 , hence also over some connected component of 𝑋
by the assumption on 𝑈 . In particular, these have dimension equal to dim𝑋 , so the
desired intersection is proper; also, the intersection product [𝑋 ×𝑘 𝑉 ] ⋅ [𝑈 ×𝑘 𝑍] is
defined (by Serre’s formula), and the points occurring in it with non-zero coefficient
are the same as those in [𝑈 ×𝑌 𝑉 ].

(ii) By applying Lemma 2.1.3 to the morphism 𝜋
𝑋𝑌𝑍

𝑋𝑍
∶ 𝑋 ×𝑘 𝑌 ×𝑘 𝑍 → 𝑋 ×𝑘 𝑍 of 𝑋 -

schemes, the image in 𝑋 ×𝑘𝑍 of each irreducible component of the image of 𝑈 ×𝑌 𝑉 in
𝑋 ×𝑘 𝑌 ×𝑘 𝑍 is closed, irreducible, finite, and surjective over a connected component
of 𝑋 .

Since the subspaces of 𝑋 ×𝑘 𝑍 obtained in (ii) are precisely the supports of points occurring
with non-zero coefficient in 𝜋𝑋𝑌𝑍

𝑋𝑍∗
([𝑈 ×𝑌 𝑉 ]), we conclude (by using the remark in (i)) that

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
([𝑋 ×𝑘 𝑉 ] ⋅ [𝑈 ×𝑘 𝑍]) is a finite correspondence from 𝑋 to 𝑍 .

Corollary 2.1.6. Suppose given 𝑋 , 𝑌 , 𝑍 ∈ Sm𝑘 , and finite correspondences 𝛼 ∶ 𝑋 ∙⟶ 𝑌 ,
𝛽 ∶ 𝑌 ∙⟶ 𝑍 . Then the intersection product 𝜋𝑋𝑌𝑍∗

𝑌𝑍
𝛽 ⋅ 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
𝛼 is defined, and

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
(𝜋

𝑋𝑌𝑍∗

𝑌𝑍
𝛽 ⋅ 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
𝛼)

is a finite correspondence from 𝑋 to 𝑍 .

Now, for any such 𝑋 , 𝑌 , 𝑍 , 𝛼 , 𝛽 , let us define the composite 𝛽 ◦ 𝛼 ∈ 𝐶𝑘(𝑋 , 𝑍) of 𝛼
and 𝛽 as the above cycle. Then composition is bilinear and associative, and [Γ𝑖𝑑𝑋 ]𝑋×𝑘𝑋

is a
two-sided identity for each 𝑋 ∈ Sm𝑘 .

Proof. The first part follows from the linearity of pullbacks and pushforwards, the bilin-
earity of intersection products, and the fact that 𝛼 , 𝛽 are linear combinations of cycles of
the form [𝑈 ], [𝑉 ], resp., as in Lemma 2.1.5.
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For the second part, we refer to Fulton, 1984, Prop. 16.1.1, where the computations
are performed more generally for (not necessarily finite) correspondences.

Definition 2.1.7. Composition of correspondences as in Corollary 2.1.6 defines a
(Ab-enriched) category, which we denote by Cor𝑘 and call the category of finite 𝑘-
correspondences, having the same objects as Sm𝑘 and abelian groups of morphisms given
by HomCor𝑘 (𝑋 , 𝑌 ) ∶= 𝐶𝑘(𝑋 , 𝑌 ).

Proposition 2.1.8. Cor𝑘 is an additive category with finite biproducts given by disjoint
unions (in particular, the empty scheme is a zero object). Moreover, the data 𝑋 ⟼ 𝑋 and
(𝑔 ∶ 𝑋 → 𝑌) ⟼ ([Γ𝑔]𝑋×𝑘𝑌

∶ 𝑋 ∙⟶ 𝑌) define a faithful functor Γ ∶ Sm𝑘 ⟶ Cor𝑘 .

Proof. It remains to check that for any 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍 in Sm𝑘 , it holds
that [Γ𝑔]𝑌×𝑘𝑍 ◦ [Γ𝑓 ] = [Γ𝑔◦𝑓 ]𝑋×𝑘𝑍

. For this computation, we refer to Fulton, 1984, Prop.
16.1.1(c).

Proposition 2.1.9. Suppose given finite 𝑘-correspondences 𝛼 ∶ 𝑋 ∙⟶ 𝑌 and 𝛽 ∶

𝑌 ∙⟶ 𝑍 . Then 𝜋
𝑋𝑌𝑍∗

𝑌𝑍
(𝛽) and 𝜋𝑋𝑌𝑍∗

𝑋𝑌
(𝛼) intersect properly. Moreover, the support of the

cycle 𝜋
𝑋𝑌𝑍

𝑋𝑍∗
(𝜋

𝑋𝑌𝑍∗

𝑌𝑍
(𝛽) ⋅ 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
(𝛼)) is finite and pseudo-dominant over 𝑋 . It follows that

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
(𝜋

𝑋𝑌𝑍∗

𝑌𝑍
(𝛽) ⋅ 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
(𝛼)) is a finite 𝑆-correspondence 𝑋 ∙⟶ 𝑍 .

Given such 𝑓 and 𝑔, an intersection-theoretic interpretation of (the graph of) 𝑔 ◦ 𝑓 is
provided by the formula

[Γ𝑔◦𝑓 ]𝑋×𝑘𝑍
= 𝜋

𝑋𝑌𝑍

𝑋𝑍∗
(𝜋

𝑋𝑌𝑍∗

𝑌𝑍
([Γ𝑔]𝑌×𝑘𝑍

) ⋅ 𝜋
𝑋𝑌𝑍∗

𝑋𝑌
([Γ𝑓 ]𝑋×𝑘𝑌

))

Transposes and transfers

Note that for any 𝑋 , 𝑌 ∈ Sm𝑘 pullback of cycles along the canonical isomorphism
𝑌 ×𝑘𝑋

≅

→ 𝑋×𝑘𝑌 defines an isomorphism between cycle groups Z(𝑋 ×𝑘𝑌 )

≅

→ Z(𝑌 ×𝑘𝑋); the
image of a cycle 𝛼 under this map will be called its transpose and will be denoted by 𝛼 𝑡 . One
of the motivations for considering finite correspondences instead of just ordinary scheme
morphisms is the fact that under certain assumptions, the transpose of a correspondence
𝛼 ∶ 𝑋 ∙⟶ 𝑌 defines a correspondence 𝑌 ∙⟶ 𝑋 . The case we will be most interested in
is the following: if 𝑓 ∶ 𝑋 ⟶ 𝑌 in Sm𝑘 is finite and surjective, then the transpose [Γ𝑓 ]𝑡𝑋×𝑘𝑌
of its graph is a correspondence 𝑌 ∙⟶ 𝑋 ; more explicitly, it is the cycle associated to the
composite closed immersion

Γ𝑓

𝛾𝑓

⟶ 𝑋 ×𝑘 𝑌 ≅ 𝑌 ×𝑘 𝑋.

For any 𝑓 in Sm𝑘 , we usually denote the cycle [Γ𝑓 ]𝑡𝑋×𝑘𝑌 ∈ Z(𝑌 ×𝑘 𝑋) by 𝑓 𝑡 (even in case it is
not a correspondence).

Monoidal structure

Given 𝑋 , 𝑌 ∈ Cor𝑘 , let us denote by 𝑋 ⊗ 𝑌 the fibered product of schemes 𝑋 ×𝑘 𝑌

(which is not a cartesian product in Cor𝑘 ; see Proposition 2.1.8).
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We now consider for each 𝑋 , 𝑌 , 𝑋 ′, 𝑌 ′
∈ Cor𝑘 the bilinear composite

Z(𝑋 ×𝑘 𝑋
′
) × Z(𝑌 ×𝑘 𝑌

′
) ⟶ Z((𝑋 ×𝑘 𝑋

′
) ×𝑘 (𝑌

′
×𝑘 𝑌

′
))

≅

→ Z((𝑋 ×𝑘 𝑌 ) ×𝑘 (𝑋
′
×𝑘 𝑌

′
)),

where the first map is given by bilinearly extending the function ([𝑈 ], [𝑉 ]) ⟼ [𝑈 ×𝑘 𝑉 ]

defined on the product of the respective freely generating subsets consisting of cycles
associated to integral closed subschemes, i.e. by

(
∑

𝑖∈𝐼

[𝑈𝑖],∑

𝑗∈𝐽

[𝑉𝑗]
)

⟼ ∑

(𝑖,𝑗)∈𝐼 ×𝐽

[𝑈𝑖 ×𝑘 𝑉𝑗],

and the second one is given by pulling-back along the canonical isomorphism. Then for
any finite correspondences 𝛼 ∈ 𝐶𝑘(𝑋 , 𝑋

′
) and 𝛽 ∈ 𝐶𝑘(𝑌 , 𝑌

′
), the image of (𝛼, 𝛽) under this

composite is a finite correspondence from 𝑋 ⊗𝑌 to 𝑋 ′
⊗𝑌

′. Let us denote it by 𝛼 ⊗ 𝛽 .

It may be proved that:

Proposition 2.1.10 (Mazza et al., 2006). The above data define a functor ⊗ ∶ Cor𝑘 ×
Cor𝑘 ⟶ Cor𝑘 . By also considering the usual associativity and unit isomorphisms for
cartesian products of 𝑘-schemes, this defines a symmetric monoidal structure on Cor𝑘 .

2.1.2 (Pre)sheaves with transfers
Definition 2.1.11. A presheaf with transfers (with respect to 𝑘) is defined to be an additive
functor

𝐹 ∶ Cor𝑜𝑝
𝑘
⟶ Ab.

If 𝐽 is a Grothendieck topology on Sm𝑘 (for our purposes, 𝐽 will be either the Zariski,
Nisnevich, or étale topology), such an 𝐹 is said to be a 𝐽 -sheaf with transfers if its restriction
𝐹 ◦ 𝛾 to Sm𝑜𝑝

𝑘
is a 𝐽 -sheaf.

A morphism of presheaves with transfers (resp. 𝐽 -sheaves with transfers) is defined
to be a natural transformation. The Ab-enriched category thus obtained is denoted by
PST(𝑘) (resp. ST𝐽 (𝑘)).

More generally, whenever A is an abelian category, we define the Ab-enriched category
of A-valued presheaves with transfers as that consisting of additive functors Cor𝑜𝑝

𝑘
→ A

and natural transformations between them. It will be denoted by PST(𝑘,A).

If A is a complete abelian category − so we are able to consider the sheaf condition for
presheaves Sm𝑜𝑝

𝑘
→ A −, the category of A-valued 𝐽 -sheaves with transfers, where 𝐽 is a

Grothendieck topology on Sm𝑘 , is defined as that whose objects are A-valued presheaves
with transfers 𝐹 ∶ Cor𝑜𝑝

𝑘
→ A such that 𝐹 ◦ 𝛾 is an A-valued 𝐽 -sheaf on Sm𝑘 , and whose

morphisms are natural transformations. We denote it by ST𝐽 (𝑘,A).

In case A is the category Mod𝐴 of modules over a commutative ring with unit 𝐴, we
denote PST(𝑘,Mod𝐴) and ST𝐽 (𝑘,Mod𝐴) by PST(𝑘, 𝐴) and ST𝐽 (𝑘, 𝐴), respectively.

Whenever 𝜑 ∶ A → B is an additive functor between abelian categories, composition
with 𝜑 defines a functor PST(𝑘,A) → PST(𝑘,B). If 𝑓 ∶ 𝐴 → 𝐵 is a homomorphism of
commutative rings with unit, then the extension of scalars functor −⊗𝐴𝐵 ∶ Mod𝐴 → Mod𝐵
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has a right adjoint given by restriction of scalars (the abelian group underlying a 𝐵-
module 𝑀 is endowed with an 𝐴-module structure 𝑓 ∗(𝑀) with multiplication defined by
𝑎 ⋅𝑓 ∗(𝑀)𝑚 ∶= 𝑓 (𝑎) ⋅𝑀 𝑚). Thus − ⊗𝐴 𝐵 preserves small colimits, and in particular it preserves
binary direct sums and the zero object. It follows that − ⊗𝐴 𝐵 is additive, so composition of
presheaves with transfers with − ⊗𝐴 𝐵 defines a functor PST(𝑘, 𝐴) → PST(𝑘, 𝐵); we denote
it on objects by 𝐹 ↦ 𝐹 ×𝐴 𝐵, or by 𝐹 ⊗ 𝐵 when 𝐴 = ℤ. Similarly, if 𝑀 is an 𝐴-module, then
the tensor product functor − ⊗𝐴 𝑀 ∶ Mod𝐴 → Mod𝐴 has a right adjoint Hom𝐴(𝑀, −), so
composition with − ⊗𝐴 𝑀 defines a functor PST(𝑘, 𝐴) → PST(𝑘, 𝐴); it will be denoted on
objects by 𝐹 ↦ 𝐹 ⊗𝐴 𝑀 , or by 𝐹 ⊗ 𝑀 when 𝐴 = ℤ.

Definition 2.1.12. Given a scheme 𝑋 ∈ Sm𝑘 , the presheaf with transfers 𝐶𝑘(−, 𝑋 ) ∶

Sm𝑜𝑝

𝑘
⟶ Ab will be denoted by ℤ

𝑡𝑟

𝑘
(𝑋 ). More generally, if 𝐴 is an abelian group, we

denote ℤ
𝑡𝑟

𝑘
(𝑋 ) ⊗ℤ 𝐴 by 𝐴𝑡𝑟

𝑘
(𝑋 ).

By definition, for each 𝑌 ∈ Sm𝑘 we have 𝐴
𝑡𝑟

𝑘
(𝑋 )(𝑌 ) = 𝐶𝑘(𝑌 , 𝑋 ) ⊗ℤ 𝐴. Now, since

− ⊗ℤ 𝐴 ∶ Ab → Ab, being a left adjoint, preserves small colimits and in particular small
direct sums, we have isomorphisms ⨁

𝑖∈𝐼
𝐴 ≅ ⨁

𝑖∈𝐼
(ℤ ⊗ℤ 𝐴) ≅ (⨁

𝑖∈𝐼
ℤ) ⊗ℤ 𝐴 for any

small set 𝐼 . Hence by definition of 𝐶𝑘(𝑌 , 𝑋 ) it follows that 𝐴𝑡𝑟

𝑘
(𝑋 )(𝑌 ) is isomorphic to the

free 𝐴-module generated by points 𝑧 ∈ 𝑌 ×𝑘 𝑋 such that the integral closed subscheme

𝑍 ∶= {𝑧} ⊂ 𝑌 ×𝑘 𝑋 has the property that the composite 𝑍 ↪ 𝑌 ×𝑘 𝑋

𝜋
𝑌𝑋

𝑌

→ 𝑌 is finite and its
image is a connected component of 𝑌 .

It may be proved that:

Proposition 2.1.13 (Mazza et al., 2006, 6.2). Given a scheme 𝑋 ∈ Sm𝑘 and an abelian
group 𝐴, the functor Cor𝑘(−, 𝑋 ) ⊗ℤ 𝐴 ∶ Sm𝑜𝑝

𝑘
⟶ Ab is an étale (hence Nisnevich, Zariski)

sheaf. It follows that the representable presheaf with transfers 𝐴𝑡𝑟

𝑘
(𝑋 ) ∶ Cor𝑘 ⟶ Ab is an

étale (hence Nisnevich, Zariski) sheaf with transfers.

Thus for each abelian group 𝐴 and 𝐽 = étale, Nisnevich, Zariski, we obtain a func-
tor

𝐴
𝑡𝑟

𝑘
(−) ∶ Sm𝑘 ⟶ ST𝐽 (𝑘).

Example 2.1.14. We now sketch a few examples of presheaves with transfers. For a more
detailed description we refer to Mazza et al., 2006.

(a) The sheaf of invertible global sections O×
∶ Sm𝑜𝑝

𝑘
⟶ Ab extends to a presheaf

with transfers as follows: 𝑝 ∶ 𝑊 ⟶ 𝑋 is a (any) finite and surjective morphism of
schemes where 𝑋 is normal, then the extension 𝐾(𝑋) → 𝐾(𝑊) of function fields
induces a norm map

𝑁 ∶ 𝐾(𝑊 )
∗
⟶ 𝐾(𝑋)

∗
.

Since O(𝑋 ) is integrally closed in 𝐾(𝑋), it follows that for each 𝑓 ∈ O(𝑊 )
∗, both

𝑁(𝑓 ) and 𝑁(𝑓
−1
) belong to O(𝑋 )

∗. We also denote the induced restricted map by

𝑁 ∶ O(𝑊 )
∗
⟶ O(𝑋 )

∗
.

Now, given 𝑋 , 𝑌 ∈ Sm𝑘 and an integral closed subscheme 𝑊 ⊂ 𝑋 × 𝑌 such that the
projection 𝑝 ∶ 𝑊 ⟶ 𝑋 is finite and pseudo-dominant (recall that 𝑋 is regular,
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hence normal), we obtain a composite map of groups

O×
(𝑌 ) ⟶ O×

(𝑊 )

𝑁

⟶ O×
(𝑋 ).

A presheaf with transfers
O×

∶ Cor𝑜𝑝
𝑘
⟶ Ab

may be defined by sending each 𝑋 ∈ Sm𝑘 to O(𝑋 ); for each 𝑊 as above, by sending

1 ⋅ [𝑊 ]𝑋𝑌 to O×
(𝑌 ) → O×

(𝑊 )

𝑁

→ O×
(𝑋 ), and by linearly extending to general finite

𝑘-correspondences.

(b) Analogously to the above item (and in the same notation), 𝐾(𝑋) → 𝐾(𝑊) induces a
trace map (of groups)

𝑇𝑟 ∶ 𝐾(𝑊 ) ⟶ 𝐾(𝑋),

which in turn restricts to a map (also denoted by)

𝑇𝑟 ∶ O(𝑊 ) ⟶ O(𝑋 ).

This provides a map

O(𝑌 ) ⟶ O(𝑊 )

𝑇𝑟

⟶ O(𝑋 ).

By extending linearly as in the above item, we may define a presheaf with transfers

O ∶ Cor𝑜𝑝
𝑘
⟶ Ab.

(c) Chow groups provide another example of presheaf with transfers. Suppose given
𝑊 ⊂ 𝑋 × 𝑌 as above. Then for each 𝑖 ≤ 0, we obtain a map

𝜙𝑊 ∶ CH𝑖
(𝑌 ) ⟶ CH𝑖

(𝑋 )

given by sending each cycle class 𝛼 to 𝜋𝑋𝑌
𝑋∗

(𝑊 ⋅ 𝜋
𝑋𝑌∗

𝑌
(𝛼)).

2.2 Motivic complexes
Throughout this section, we let 𝑘 denote a given field.

2.2.1 A simplicial construction on presheaves with transfers
Recall that the simplex category, denoted by Δ, is defined as follows:

1. Objects are the linearly ordered sets of the form [𝑛] ∶= {0 < 1 < ⋯ < 𝑛} for integers
𝑛 ≥ 0.

2. Morphisms are order-preserving functions, with composites defined as usual com-
posites of functions.

Given a category C, the presheaf category PSh(Δ,C) = Fun(Δ𝑜𝑝
,C) is called the category

of simplicial objects of C, and the functor category Fun(Δ,C) is called the category of
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cosimplicial objects of C. For example, if C = Set, Ab, Top, or some category of schemes,
such a (co)simplicial object is usually referred to as a (co)simplicial set, (co)simplicial
abelian group, (co)simplicial topological space, or (co)simplicial scheme.

In topology, one defines for each integer 𝑛 ≥ 0 the standard 𝑛-simplex as the following
subspace of ℝ𝑛+1:

Δ
𝑛

𝑡𝑜𝑝
= {(𝑥0, ..., 𝑥𝑛) ∈ ℝ

𝑛+1
|0 ≤ 𝑥𝑖 ≤ 1 for each 𝑖,

𝑛

∑

𝑖=0

𝑥𝑖 = 1}.

This defines a cosimplicial topological space Δ
∗

𝑡𝑜𝑝
∶ Δ → Top as follows: each [𝑛] ∈ Δ is

sent to Δ
𝑛

𝑡𝑜𝑝
, and each order-preserving function 𝑓 ∶ [𝑚] → [𝑛] is sent to the map

Δ
𝑚

𝑡𝑜𝑝
⟶ Δ

𝑛

𝑡𝑜𝑝

(𝑥0, ..., 𝑥𝑚) ⟼ ( ∑

𝑖∈𝑓
−1
(0)

𝑥𝑖 , ..., ∑

𝑖∈𝑓
−1
(𝑗)

𝑥𝑖 , ..., ∑

𝑖∈𝑓
−1
(𝑛)

𝑥𝑖).

We now consider an analogous construction in the context of algebraic geometry. For
each 𝑛 ≥ 0, we define the standard algebraic 𝑛-simplex to be the scheme

Δ
𝑛

𝑎𝑙𝑔
∶= Spec

ℤ[𝑡0, ..., 𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖 − 1)

.

These can be organized as a cosimplicial scheme

Δ
∗

𝑎𝑙𝑔
∶ Δ ⟶ Sch

by sending each [𝑛] ∈ Δ to Δ
𝑛

𝑎𝑙𝑔
, and each order-preserving function 𝑓 ∶ [𝑚] → [𝑛] to the

morphism of schemes Δ𝑚

𝑎𝑙𝑔
→ Δ

𝑛

𝑎𝑙𝑔
corresponding to the ring homomorphism

ℤ[𝑡0, ..., 𝑡𝑚]

(∑
𝑚

𝑖=0
𝑡𝑖 − 1)

⟶

ℤ[𝑡0, ..., 𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖 − 1)

given on generators by sending the class of 𝑡𝑗 to that of ∑
𝑖∈𝑓

−1
(𝑗)
𝑡𝑖 .

Given a scheme 𝑋 and 𝑛 ≥ 0, the product of schemes Δ𝑛

𝑎𝑙𝑔
× 𝑋 will be denoted by Δ

𝑛

𝑋

and called the standard algebraic 𝑛-simplex over 𝑋 . If 𝑋 = Spec 𝐴 for some ring 𝐴, Δ𝑛

𝑋
will

be denoted by Δ
𝑛

𝐴
. Note that

Δ
𝑛

𝐴
= Spec 𝐴 × Δ

𝑛

𝑋
= Spec (𝐴 ⊗

ℤ[𝑡0, ..., 𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖 − 1)

) ≅ Spec
𝐴[𝑡0, ..., 𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖 − 1)

.

In particular, Δ𝑛

𝑎𝑙𝑔
≅ Δ

𝑛

ℤ
.

We also remark that Δ𝑛

𝑎𝑙𝑔
is (non-canonically) isomorphic to the 𝑛-dimensional affine

space over ℤ, 𝔸𝑛

ℤ
= Spec ℤ[𝑥1, ..., 𝑥𝑛]. For example, consider the ring homomorphism

ℤ[𝑥1, ..., 𝑥𝑛] → ℤ[𝑡0, ..., 𝑡𝑛] given on generators by 𝑥𝑖 ↦ 𝑡𝑖 for each 𝑖; by composing with
the quotient map, we obtain a homomorphism ℤ[𝑥1, ..., 𝑥𝑛] →

ℤ[𝑡0,...,𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖−1)

which can be proved
to be an isomorphism.
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Thus the corresponding morphism of schemesΔ𝑛

𝑎𝑙𝑔
→ 𝔸

𝑛

ℤ
is an isomorphism. It follows

that for any scheme 𝑋 there exists an isomorphism Δ
𝑛

𝑋
= 𝑋 × Δ

𝑛

𝑎𝑙𝑔
≅ 𝑋 × 𝔸

𝑛

ℤ
= 𝔸

𝑛

𝑋
. In

particular, since any pullback of a smooth, separated, or finite type morphism of schemes
also has the corresponding property, it follows that Δ𝑛

𝑋
is an object of Sm𝑋 for each 𝑛, so

we obtain a cosimplicial object
Δ
∗

𝑋
∶ Δ ⟶ Sm𝑋 (2.2.1)

given by composing Δ
∗

𝑎𝑙𝑔
∶ Δ → Sch with the product functor 𝑋 × − ∶ Sch → Sch𝑋 and

then restricting the codomain.

We recall that in the simplex category Δ, one may consider the following two classes
of morphisms:

(i) For each 𝑛 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑛, the face map 𝑑 𝑖
𝑛
∶ [𝑛 − 1] → [𝑛] is given by 𝑑 𝑖

𝑛
(𝑗) = 𝑗

for 0 ≤ 𝑗 ≤ 𝑖 − 1, and 𝑑 𝑖
𝑛
(𝑗) = 𝑗 + 1 for 𝑖 ≤ 𝑗 ≤ 𝑛 − 1. One may show that it is the unique

order-preserving injection [𝑛 − 1] → [𝑛] such that 𝑖 does not belong to its image.

(ii) For each 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑛, the degeneracy map 𝑠
𝑖

𝑛
∶ [𝑛 + 1] → [𝑛] is given by

𝑠
𝑖

𝑛
(𝑗) = 𝑗 for 0 ≤ 𝑗 ≤ 𝑖, and 𝑑 𝑖

𝑛
(𝑗) = 𝑗 − 1 for 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 + 1. One may show that it is

the unique order-preserving surjection [𝑛 + 1] → [𝑛] for which 𝑖 is the image of
two elements of [𝑛 + 1].

Given a category C and a cosimplicial object 𝐹 ∶ Δ → C, the images 𝐹 (𝑑 𝑖
𝑛
) ∶ 𝐹 ([𝑛 −

1]) → 𝐹([𝑛]) and 𝐹 (𝑠𝑖
𝑛
) ∶ 𝐹 ([𝑛 + 1]) → 𝐹([𝑛]) of the face and degeneracy maps are usually

also denoted by 𝑑 𝑖
𝑛

and 𝑠𝑖
𝑛
, with 𝐹 implicit, and referred to as face and degeneracy maps,

respectively. For a simplicial object 𝐹 ∶ Δ
𝑜𝑝
→ C, morphisms of the form 𝐹 (𝑑

𝑖

𝑛
) ∶ 𝐹 ([𝑛]) →

𝐹([𝑛−1]) and 𝐹 (𝑠𝑖
𝑛
) ∶ 𝐹 ([𝑛]) → 𝐹([𝑛+1]) are usually also referred to as face and degeneracy

maps, but are denoted by 𝜕𝑛
𝑖

and 𝜎𝑛
𝑖
, respectively. In any of these cases, we often omit 𝑛

from the notation when it is clear from the context (e.g. 𝑑 𝑖 denotes 𝑑 𝑖
𝑛
).

Suppose A is an abelian category. For a simplicial object 𝐹 ∶ Δ
𝑜𝑝
→ A, one defines for

each 𝑛 ≥ 0 the boundary map

𝜕
𝑛
∶ 𝐹([𝑛]) ⟶ 𝐹([𝑛 − 1])

as the alternating sum ∑
𝑛

𝑖=0
(−1)

𝑖
𝜕
𝑛

𝑖
. It may be proved that

⋯

𝜕
𝑛+1

→ 𝐹([𝑛])

𝜕
𝑛

→ 𝐹([𝑛 − 1])

𝜕
𝑛−1

→ ⋯ → 𝐹([0]) → 0 → ⋯

is a chain complex in A, which we will regard as a cochain complex concentrated in
non-positive degrees, with 𝐹 ([𝑛]) placed in degree −𝑛 for each 𝑛 ≥ 0. We will denote it
by 𝑐ℎ(𝐹 ). Moreover, any natural transformation 𝜂 ∶ 𝐹 → 𝐹

′ in PSh(Δ,A) defines a chain
map 𝑐ℎ(𝜂) ∶ 𝑐ℎ(𝐹 ) → 𝑐ℎ(𝐹

′
) whose 𝑛-th component is 𝜂[−𝑛] for 𝑛 ≤ 0, and 0 for 𝑛 ≥ 0. This

defines a functor
𝑐ℎ ∶ PSh(Δ,A) ⟶ Ch−

(A). (2.2.2)

Construction 2.2.1. Let C be a category, ⊗ ∶ C × C → C a functor, A an abelian category,
𝐹 ∶ C𝑜𝑝 → A an A-valued presheaf, and 𝐷 ∶ Δ → C a cosimplicial object. Consider the
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composite functor

Δ
𝑜𝑝
× C𝑜𝑝

𝐷
𝑜𝑝
×𝑖𝑑

⟶ C𝑜𝑝 × C𝑜𝑝
⊗
𝑜𝑝

⟶ C𝑜𝑝
𝐹

⟶ A. (2.2.3)

By considering the isomorphism Fun(Δ𝑜𝑝
×C𝑜𝑝 ,A) ≅ Fun(C𝑜𝑝 , Fun(Δ𝑜𝑝

,A)) between functor
categories, we obtain a functor

𝑆
⊗,𝐷

∗
(𝐹 ) ∶ C ⟶ Fun(Δ𝑜𝑝

,A)

from C to the category of simplicial objects of A. Explicitly:

(i) Each object 𝑐 ∈ C is sent to the functor 𝑆⊗,𝐷
∗

(𝐹 )(𝑐) = 𝐹 (𝐷(∗) ⊗ 𝑐) ∶ Δ
𝑜𝑝
→ A.

(ii) Each morphism 𝑓 ∶ 𝑐 → 𝑑 in C is sent to the natural transformation 𝑆
⊗,𝐷

∗
(𝐹 )(𝑓 ) ∶

𝐹 (𝐷(∗) ⊗ 𝑑) → 𝐹(𝐷(∗) ⊗ 𝑐) whose [𝑛]-component for each 𝑛 ≥ 0 is 𝐹 (𝑖𝑑𝐷([𝑛]) ⊗ 𝑓 ).

We remark that for fixed C, A, and 𝐷, this construction is functorial in 𝐹 as an object
of the presheaf category PSh(C,A): this follows from the fact that the composite 2.2.3
is functorial in 𝐹 by horizontally composing natural transformations 𝐹 → 𝐹

′ with the
identity natural transformations of 𝐷𝑜𝑝

× 𝑖𝑑 and ⊗𝑜𝑝 .

Moreover, recall from the above discussion (see 2.2.2) that any simplicial object of an
abelian category gives rise, by taking alternating sums of face maps, to a cochain complex
concentrated in non-positive degrees. We apply it to our current setting by considering
the composite functor

PSh(C,A)

𝑆
⊗,𝐷

∗
(−)

⟶ PSh(C, PSh(Δ,A))

𝑐ℎ◦−

⟶ PSh(C,Ch−

(A)),

which we will denote by 𝐶⊗,𝐷

∗
(−).

Construction 2.2.2. We now apply the above categorical construction to the study of
presheaves with transfers over a field 𝑘. Following the previous notation, we take C to be
PST(𝑘), ⊗ to be the monoidal product on Cor𝑘 (which restricts to the cartesian product on
Sm𝑘), A to be the category Ab of abelian groups, and 𝐷 to be the cosimplicial presheaf
with transfers given by the composite

Δ

Δ
∗

𝑘

⟶ Sm𝑘

Γ

⟶ Cor𝑘 .

Hence we obtain functors

𝑆
⊗,𝐷

∗
(−) ∶ PSh(Cor𝑘 ,Ab) ⟶ PSh(Cor𝑘 , PSh(Δ,Ab)),

𝐶
⊗,𝐷

∗
(−) ∶ PSh(Cor𝑘 ,Ab) ⟶ PSh(Cor𝑘 ,Ch−

(Ab)).

Note that if 𝐹 is a presheaf with transfers, i.e. an additive functor Cor𝑜𝑝
𝑘
→ Ab, then for

each 𝑛 ≥ 0, 𝑆⊗,𝐷
−𝑛

(𝐹 ) ∶ Cor𝑜𝑝
𝑘
→ Ab is given by 𝐹 (Δ𝑛

𝑘
⊗𝑘 −). The latter functor is additive, as

𝐹 is additive and Δ
𝑛

𝑘
⊗𝑘 − ∶ Cor𝑘 → Cor𝑘 preserves the zero object (the empty scheme)

and binary (co)products (given by disjoint unions of schemes). As finite (co)products in
PSh(Δ,Ab) and Ch−

(Ab) are computed entrywise, it follows that 𝑆⊗,𝐷
∗

(𝐹 ) is a PSh(Δ,Ab)-
valued presheaf with transfers, and 𝐶⊗,𝐷

∗
(𝐹 ) is a Ch−

(Ab)-valued presheaf with transfers.
Thus by restricting the domain and codomain categories, we obtain functors which will
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be denoted by
𝑆∗(−) ∶ PST(𝑘) ⟶ PST(𝑘, PSh(Δ,Ab)),

𝐶∗(−) ∶ PST(𝑘) ⟶ PST(𝑘,Ch−

(Ab)).

We also note that as (i) PST(𝑘,A) is closed under (co)limits in PSh(Cor𝑘 ,A) for any
(co)complete abelian category A, and (ii) (co)limits in categories of presheaves or chain
complexes are computed entrywise, both 𝑆∗ and 𝐶∗ preserve (co)limits.1

Remark 2.2.3. Suppose (𝑈𝑖

𝑓𝑖

→ 𝑋)𝑖∈𝐼 is an étale (resp. Nisnevich, Zariski) covering in Sm𝑘 .
Since surjective and étale (resp. Nisnevich, Zariski) morphisms of schemes are stable under

base change, we have that (Δ𝑛

𝑘
×𝑘 𝑈𝑖

𝑓𝑖

→ Δ
𝑛

𝑘
× 𝑋) is also an étale (resp. Nisnevich, Zariski)

covering.

If 𝐹 is a presheaf with transfers, by noting that for each 𝑛 ≥ 0 and 𝑖, 𝑗 ∈ 𝐼 it holds that
Δ
𝑛

𝑘
×𝑘 (𝑈𝑖 ×𝑋 𝑈𝑗) ≅ (Δ

𝑛

𝑘
×𝑘 𝑈𝑖) ×Δ𝑛

𝑘
×𝑘𝑋

(Δ
𝑛

𝑘
×𝑘 𝑈𝑗), it follows that the sheaf condition for 𝐹 (Δ𝑛

𝑘
×𝑘 −)

corresponding to (𝑈𝑖

𝑓𝑖

→ 𝑋)𝑖∈𝐼 ) is given by the sheaf condition for 𝐹 corresponding to

(Δ
𝑛

𝑘
× 𝑈𝑖

Δ
𝑛

𝑘
×𝑘 𝑓𝑖

→ Δ
𝑛

𝑘
×𝑘 𝑋)𝑖∈𝐼 ). Thus if F is an étale (resp. Nisnevich, Zariski) sheaf with

transfers, then 𝐶∗(𝐹 ) is a complex of étale (resp. Nisnevich, Zariski) sheaves with transfers.

2.2.2 Motivic complexes

Presheaves with transfers associated to finite families of pointed schemes

Definition 2.2.4. Suppose given a pointed object in Sm𝑘 : a pair (𝑋 , 𝑥) where 𝑋 and
𝑥 ∶ Spec (𝑘) ⟶ 𝑋 are in Sm𝑘 . Then we denote by ℤ

𝑡𝑟

𝑘
(𝑋 , 𝑥) the cokernel in PST(𝑘) of

ℤ
𝑡𝑟

𝑘
(Spec 𝑘)

ℤ
𝑡𝑟

𝑘
(𝑥)

⟶ ℤ
𝑡𝑟

𝑘
(𝑋 ). Notice that if 𝑡 ∶ 𝑋 ⟶ Spec 𝑘 is the structure map of𝑋 regarded

as a morphism in Sm𝑘 , then ℤ
𝑡𝑟

𝑘
(𝑥) is a section of ℤ𝑡𝑟

𝑘
(𝑡) ∶ ℤ

𝑡𝑟

𝑘
(𝑋 ) ⟶ ℤ

𝑡𝑟

𝑘
(Spec 𝑘), from

which the splitting lemma provides a canonical decomposition

ℤ
𝑡𝑟

𝑘
(𝑋 ) ≅ ℤ

𝑡𝑟

𝑘
(Spec 𝑘) ⊕ ℤ

𝑡𝑟

𝑘
(𝑋 , 𝑥)

In particular, the (pointed) multiplicative group scheme 𝔾𝑚 = (𝔸
1
⧵ {0}, 𝑠1), where 𝑠1 ∶

Spec 𝑘 ⟶ 𝔸
1

𝑘
⧵ {0} is the inclusion of {1}, defines a presheaf with transfers ℤ𝑡𝑟

𝑘
(𝔾𝑚).

Definition 2.2.5. Suppose given 𝑛 ≥ 1 and a family {(𝑋𝑖 , 𝑥𝑖)|1 ≤ 𝑖 ≤ 𝑛} of pointed objects
in Sm𝑘 . Then the smash product ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) is defined as

Coker
(

𝑛

⨁

𝑖=1

ℤ
𝑡𝑟

𝑘
(𝑋

(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
)

⊕𝑖 (𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)

⟶ ℤ
𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛)

)

.

We denote ℤ𝑡𝑟

𝑘
((𝑋 , 𝑥)

(1)
∧⋯∧(𝑋 , 𝑥)

(𝑛)
) by ℤ

𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧𝑛
). In particular, note that ℤ𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧1
) =

ℤ
𝑡𝑟

𝑘
(𝑋 , 𝑥). We moreover define ℤ

𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧0
) ∶= ℤ

𝑡𝑟

𝑘
(Spec 𝑘) and ℤ

𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧𝑛
) ∶= 0 for

1 Although Ch−
(Ab) is neither complete nor cocomplete, we can work with Ch≤0

(Ab): it is (co)complete,
and the inclusion Ch≤0

(Ab) ↪ Ch−
(Ab) preserves (co)limits; now, as 𝐶∗(𝐹 ) is also an object of Ch≤0

(Ab)
by construction, the claim follows by expressing 𝐶∗(−) as a composite PST(𝑘) → PST(𝑘,Ch≤0

(Ab)) ↪
PST(𝑘,Ch−

(Ab)).
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𝑛 < 0.2

If 𝐴 is an abelian group, one defines

𝐴
𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) = ℤ

𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) ⊗ℤ 𝐴.

We now show, following Mazza et al., 2006, that ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) may be

given a convenient presentation by means of a particular description of the image of the
morphism of presheaves with transfers

𝑛

⨁

𝑖=1

ℤ
𝑡𝑟

𝑘
(𝑋

(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
)

⊕𝑖 (𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)

⟶ ℤ
𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛).

For that purpose, let us introduce the following notation: given 𝑌 ∈ Sm𝑘 and 𝑖 ∈ {1, ..., 𝑛},
we say a finite correspondence 𝛼 ∶ 𝑌 ∙⟶ 𝑋1 ×⋯ × 𝑋𝑛 is 𝑖-trivial if it belongs to the image
of

Cor𝑘(𝑌 , 𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
)

Cor𝑘 (𝑌 ,𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)
⟶ Cor𝑘(𝑌 , 𝑋1 × ⋯ × 𝑋𝑛).

Now, let us denote by 𝜃𝑖 the idempotent morphism in Sm𝑘 given by the composite

𝑋1 × ⋯ × 𝑋𝑛

(𝑖𝑑,...,!𝑖 ,...,𝑖𝑑)

⟶ 𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛

(𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)

⟶ 𝑋1 × ⋯ × 𝑋𝑛,

where !𝑖 denotes the unique morphism 𝑋𝑖 → Spec 𝑘. Note that if 𝛼 is an arbitrary finite
correspondence from 𝑌 to 𝑋1 × ⋯ × 𝑋𝑛, then

𝜃𝑖 ◦ 𝛼 = (𝑖𝑑, ..., 𝑥𝑖 , ..., 𝑖𝑑) ◦ ((𝑖𝑑, ..., !𝑖 , ..., 𝑖𝑑) ◦ 𝛼)

is 𝑖-trivial. On the other, if 𝛼 is 𝑖-trivial then there exists 𝛽 ∶ 𝑌 ∙⟶ 𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) ×

⋯ × 𝑋
(𝑛)

𝑛
such that

𝛼 = (𝑖𝑑, ..., 𝑥𝑖 , ..., 𝑖𝑑) ◦ 𝛽,

so

𝜃𝑖 ◦ 𝛼 = (𝑖𝑑, ..., 𝑥𝑖 , ..., 𝑖𝑑)(◦(𝑖𝑑, ..., !𝑖 , ..., 𝑖𝑑) ◦ (𝑖𝑑, ..., 𝑥𝑖 , ..., 𝑖𝑑)) ◦ 𝛽 = (𝑖𝑑, ..., 𝑥𝑖 , ..., 𝑖𝑑) ◦ 𝛽 = 𝛼.

Hence 𝛼 is 𝑖-trivial if and only if 𝜃𝑖 ◦ 𝛼 = 𝛼 .

If for each 𝑖 we denote by 𝜂𝑖 the composite 𝑋𝑖
!𝑖

→ Spec 𝑘
𝑥𝑖

→ 𝑋𝑖 , then 𝜃𝑖 is given in
coordinates by (𝑖𝑑, ..., 𝜂𝑖 , ..., 𝑖𝑑), so 𝛼 is 𝑖-trivial if and only if it satisfies

0 = 𝛼 − 𝜃𝑖 ◦ 𝛼 = (𝑖𝑑 − 𝜃𝑖) ◦ 𝛼 = (𝑖𝑑, ..., 𝑖𝑑 − 𝜂𝑖 , ..., 𝑖𝑑) ◦ 𝛼,

where the differences 𝑖𝑑 − 𝜃𝑖 and 𝑖𝑑 − 𝜂𝑖 are taken in Cor𝑘(𝑋1 × ⋯ × 𝑋𝑛, 𝑋1 × ⋯ × 𝑋𝑛) and
Cor𝑘(𝑋𝑖 , 𝑋𝑖), respectively. Defining 𝜃 ′

𝑖
= 𝑖𝑑𝑋1×⋯×𝑋𝑛

− 𝜃𝑖 , we have that 𝛼 is 𝑖-trivial if and only
if 𝜃 ′

𝑖
◦ 𝛼 = 0.

2 From a categorical point of view, the empty cartesian product in Sm𝑘 is the terminal object, which is Spec 𝑘;
similarly, the empty direct sum of abelian groups is trivial. This is a way of rendering the definition of
ℤ
𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧0
) compatible with that of ℤ𝑡𝑟

𝑘
((𝑋 , 𝑥)

∧𝑛
) for 𝑛 ≥ 1.
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Note moreover that by commutativity of the diagram

𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
𝑋1 × ⋯ × 𝑋𝑛

𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × Spec 𝑘(𝑗) × ⋯ × 𝑋

(𝑛)

𝑛
𝑋

(1)

1
× ⋯ × Spec 𝑘(𝑗) × ⋯ × 𝑋

(𝑛)

𝑛

𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
𝑋1 × ⋯ × 𝑋𝑛,

(𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)

(𝑖𝑑,...,!𝑗 ,...,𝑖𝑑) (𝑖𝑑,...,!𝑗 ,...,𝑖𝑑)

(𝑖𝑑,...,𝑥𝑗 ,...,𝑖𝑑) (𝑖𝑑,...,𝑥𝑗 ,...,𝑖𝑑)

(𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)

where the right vertical composite is 𝜃𝑗 , if 𝛼 ∶ 𝑌 ∙⟶ 𝑋1 × ⋯ × 𝑋𝑛 is 𝑖-trivial, then 𝜃𝑗 ◦ 𝛼 is
both 𝑖-trivial and 𝑗-trivial. It follows in this case that

𝜃𝑖 ◦ (𝜃
′

𝑗
◦ 𝛼) = 𝜃𝑖 ◦ ((𝑖𝑑 − 𝜃𝑗) ◦ 𝛼) = 𝜃𝑖 ◦ 𝛼 − 𝜃𝑖 ◦ (𝜃𝑗 ◦ 𝛼) = 𝛼 − 𝜃𝑗 ◦ 𝛼 = (𝑖𝑑 − 𝜃𝑗) ◦ 𝛼 = 𝜃

′

𝑗
◦ 𝛼,

so 𝜃 ′
𝑗
◦ 𝛼 is 𝑖-trivial.

This allows us to describe when a given 𝛼 can be expressed as a sum ∑
𝑖
𝛼𝑖 where 𝛼𝑖 is

𝑖-trivial for each 𝑖. Define
𝜔 = 𝜃

′

𝑛
◦ ⋯ ◦ 𝜃

′

1
,

which is equal to
(𝑖𝑑𝑋1×⋯×𝑋𝑛

− 𝜃𝑛) ◦ ⋯ ◦ (𝑖𝑑𝑋1×⋯×𝑋𝑛
− 𝜃1),

hence to
(𝑖𝑑 − 𝜂1, ..., 𝑖𝑑 − 𝜂𝑛).

Given 𝛽 ∶ 𝑌 ∙⟶ 𝑋1 × ⋯ × 𝑋𝑛, let us define

𝛽
𝑗
= 𝜃

′

𝑗
◦ ⋯ ◦ 𝜃

′

1
◦ 𝛽

for 𝑗 = 1, ..., 𝑛, and 𝛽0 = 𝛽 .

By the previous remark, 𝛼 𝑗
𝑖

is 𝑖-trivial for any 𝑖, 𝑗. Thus

𝜔 ◦ 𝛼𝑖 = 𝜃
′

𝑛
◦ ⋯ ◦ (𝜃

′

𝑖
◦ 𝛼

𝑖−1

𝑖
) = 𝜃

′

𝑛
◦ ⋯ ◦ 0 = 0.

Thus 𝜔 ◦ 𝛼 = 𝜔 ◦ (∑
𝑖
𝛼𝑖) = 0.

Conversely, suppose given 𝛼 ∶ 𝑌 ∙⟶ 𝑋1 × ⋯ × 𝑋𝑛 such that 𝜔 ◦ 𝛼 = 0. By induction
we obtain that for each 𝑗 = 1, ..., 𝑛, 𝛼 𝑗 can be written as 𝛼 + 𝛽𝑗 , where 𝛽𝑗 is a sum of 𝑖-trivial
correspondences for 𝑖 = 1, ..., 𝑗. Indeed, 𝛼1

= 𝛼 − 𝜃1 ◦ 𝛼 , so we may take 𝛽1 = −𝜃1 ◦ 𝛼 ; and
for 𝑗 = 2, ..., 𝑛 we have

𝛼
𝑗
= (𝛼 + 𝛽𝑗−1) − 𝜃𝑗 ◦ (𝛼 + 𝛽𝑗−1),

so we may take 𝛽𝑗 = 𝛽𝑗−1 − 𝜃𝑗 ◦ (𝛼 + 𝛽𝑗−1). Thus we have

0 = 𝜔 ◦ 𝛼 = 𝛼
𝑛
= 𝛼 + 𝛽𝑛,

so 𝛼 = −𝛽𝑛 and there exist 𝑖-trivial 𝛼𝑖 for 𝑖 = 1, ..., 𝑛 such that 𝛼 = ∑
𝑖
𝛼𝑖 .
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It follows that the image of

𝑛

⨁

𝑖=1

Cor𝑘(𝑌 , 𝑋
(1)

1
× ⋯ × Spec 𝑘(𝑖) × ⋯ × 𝑋

(𝑛)

𝑛
)

⊕𝑖Cor𝑘 (𝑌 ,𝑖𝑑,...,𝑥𝑖 ,...,𝑖𝑑)
⟶ Cor𝑘(𝑌 , 𝑋1 × ⋯ × 𝑋𝑛)

equals the kernel of Cor𝑘(𝑌 , 𝜔). Since 𝜔 is idempotent, we obtain a splitting

Cor𝑘(𝑌 , 𝑋1 × ⋯ × 𝑋𝑛) ≅ Ker(Cor𝑘(𝑌 , 𝜔)) ⊕ Im(Cor𝑘(𝑌 , 𝜔)).

Thus Im(Cor𝑘(𝑌 , 𝜔)) is the cokernel of Ker(Cor𝑘(𝑌 , 𝜔)) ↪ Cor𝑘(𝑌 , 𝑋1 × ⋯ × 𝑋𝑛), which in
turn is ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛))(𝑌 ). In particular, ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛))(𝑌 ) is a direct

summand of Cor𝑘(𝑌 , 𝑋1 × ⋯ × 𝑋𝑛). This defines a functor

Im(Cor𝑘(−, 𝜔)) ∶ Cor𝑘 ⟶ Ab

which is isomorphic to ℤ
𝑡𝑟

𝑘
((𝑋1, 𝑥1)∧⋯∧(𝑋𝑛, 𝑥𝑛)) and is a direct summand of ℤ𝑡𝑟

𝑘
(𝑋1 ×⋯×𝑋𝑛)

in PST(𝑘). Since ℤ𝑡𝑟

𝑘
(𝑋1 ×⋯ ×𝑋𝑛) is an étale (hence Nisnevich, Zariski) sheaf with transfers,

it follows that so is ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)). To see this directly, note that Im(Cor𝑘(−, 𝜔))

is the kernel in PST(𝑘) of

ℤ
𝑡𝑟

𝑘
(𝑋1×⋯×𝑋𝑛) ≅ Ker(Cor𝑘(−, 𝜔))⊕Im(Cor𝑘(−, 𝜔))

proj.
⟶ Ker(Cor𝑘(−, 𝜔)) ↪ ℤ

𝑡𝑟

𝑘
(𝑋1×⋯×𝑋𝑛).

The claim follows from the fact that the kernel of a morphism of sheaves coincides with
the kernel of the underlying morphism of presheaves.

This description may be extended to general coefficient groups. Suppose given an
abelian group 𝐴. Then since tensor products commute with direct sums, 𝐴𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧

(𝑋𝑛, 𝑥𝑛)) = ℤ
𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) ⊗ℤ 𝐴, we have

Ker(Cor𝑘(−, 𝜔) ⊗ℤ 𝐴) ⊕ 𝐴
𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛))

≅ Ker(Cor𝑘(−, 𝜔) ⊗ℤ 𝐴) ⊕ (ℤ
𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) ⊗ℤ 𝐴)

≅ Ker(Cor𝑘(−, 𝜔) ⊗ℤ 𝐴) ⊕ Im(Cor𝑘(−, 𝜔) ⊗ℤ 𝐴)

≅ (Ker(Cor𝑘(−, 𝜔)) ⊕ Im(Cor𝑘(−, 𝜔))) ⊗ℤ 𝐴

≅ ℤ
𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛) ⊗ 𝐴

≅ 𝐴
𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛).

Hence 𝐴𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑛, 𝑥𝑛)) is a direct summand of 𝐴𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛) and, by the same

argument used for ℤ-coefficients, it is an étale (hence Nisnevich, Zariski) sheaf with
transfers.

Remark 2.2.6. We make a remark, which will be needed later, on the projectivity and
flatness of certain presheaves with transfers.

For any 𝑋 ∈ Sm𝑘 , the presheaf with transfers ℤ𝑡𝑟

𝑘
(𝑋 ) = Cor𝑘(−, 𝑋 ) ∶ Cor𝑘 ⟶ Ab has

the property, by the Yoneda lemma, that the functor HomPST(𝑘)(ℤ
𝑡𝑟

𝑘
(𝑋 ), −) from PST(𝑘) to

large abelian groups is naturally isomorphic to the one given by evaluation at 𝑋 ; for each
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𝐹 ∈ PST(𝑘), the 𝐹 -component of this natural isomorphism is given by

HomPST(𝑘)(ℤ
𝑡𝑟

𝑘
(𝑋 ), 𝐹 ) ⟶ 𝐹(𝑋)

𝜂 ⟼ 𝜂𝑋 (𝑖𝑑𝑋 ).

Since a morphism 𝑓 ∶ 𝐹 → 𝐺 in PST(𝑘) is an epimorphism if and only if 𝑓𝑌 ∶ 𝐹(𝑌 ) → 𝐺(𝑌 )

is surjective for all 𝑌 ∈ PST(𝑘), it follows from the naturality of the above isomorphism
that any epimorphism of presheaves with transfers is sent under HomPST(𝑘)(ℤ

𝑡𝑟

𝑘
(𝑋 ), 𝐹 ) to a

surjective map. Thus ℤ𝑡𝑟

𝑘
(𝑋 ) is a projective object of PST(𝑘).

Given pointed schemes (𝑋1, 𝑥1), ..., (𝑋𝑛, 𝑥𝑛) in Sm𝑘 , we have thatℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1)∧⋯∧(𝑋𝑛, 𝑥𝑛))

is a projective object of PST(𝑘) as it is a direct summand of ℤ𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛).

If 𝐹 is a presheaf with transfers such that 𝐹 (𝑋 ) is a torsion-free, hence flat abelian
group for every 𝑋 ∈ Sm𝑘 , then 𝐹 is flat as a presheaf with transfers, i.e. the functor

𝐹 ⊗ − ∶ PST(𝑘) ⟶ PST(𝑘)

given by taking objectwise tensor products of abelian groups is exact. Conversely, by
considering constant presheaves with transfers it follows that any flat presheaf with
transfers associates to each object a flat, hence torsion-free abelian group.

In particular, presheaves with transfers of the form ℤ
𝑡𝑟

𝑘
(𝑋 ) or ℤ𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧⋯ ∧ (𝑋𝑛, 𝑥𝑛))

flat: the former is a sheaf of free, hence torsion-free abelian groups; the latter is torsion-free
as it is a sub-presheaf with transfers of ℤ𝑡𝑟

𝑘
(𝑋1 × ⋯ × 𝑋𝑛).

If 𝐹 is a flat presheaf with transfers, then 𝐶∗𝐹 is a complex of flat presheaves with
transfers.

Motivic complexes

Recall from our conventions that 𝔾𝑚 denotes the pointed 𝑘-scheme (𝔸1
⧵{0}, 𝑠1), where

𝑠1 ∶ Spec 𝑘 → 𝔸
1
⧵ {0} is the inclusion of {1}.

Definition 2.2.7. For each integer 𝑞 ≥ 0, the (bounded above) cochain complex of
presheaves with transfers

ℤ(𝑞) ∈ Ch−

(PST(𝑘))

is defined as 𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)[−𝑞]. For 𝑛 < 0 we define ℤ(𝑞) = 0. Given any abelian group 𝐴, we

define
𝐴(𝑞) ∶= ℤ(𝑞) ⊗ 𝐴.

When we need to make the base field 𝑘 explicit, we will denote ℤ(𝑞) by ℤ(𝑞)𝑘 .

Remark 2.2.8. Unraveling the definition degreewise, for each 𝑞 ≥ 0 and 𝑛 ∈ ℤ we have
ℤ(𝑞)

𝑛
= 𝐶𝑞−𝑛ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
) (in particular, ℤ𝑡𝑟

𝑘
(𝑞)

𝑛
= 0 for 𝑛 > 𝑞), hence for each 𝑋 ∈ Sm𝑘 and

𝑛 ≤ 𝑞,
ℤ
𝑡𝑟

𝑘
(𝑞)

𝑛
(𝑋 ) = ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑛

𝑚
)(𝑋 × Δ

𝑞−𝑛
)

=

[

Coker
(

𝑞

⨁

𝑖=1

ℤ
𝑡𝑟

𝑘
(𝔾

(1)

𝑚
×⋯×Spec 𝑘(𝑖)×⋯×𝔾

(𝑞)

𝑚
)

⊕𝑖ℤ
𝑡𝑟

𝑘
(𝑖𝑑,...,𝑠1,...,𝑖𝑑)

⟶ ℤ
𝑡𝑟

𝑘
(𝔾

(1)

𝑚
×⋯×𝔾

(𝑞)

𝑚
)

)]

(𝑋 ×Δ
𝑞−𝑛

),
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which in turn equals the cokernel of

𝑞

⨁

𝑖=1

Cor𝑘(𝑋×Δ𝑞−𝑛
, 𝔾

(1)

𝑚
×⋯×Spec 𝑘(𝑖)×⋯×𝔾

(𝑞)

𝑚
)

⊕𝑖Cor𝑘 (𝑋×Δ𝑞−𝑛 ,𝑖𝑑,...,𝑠1,...,𝑖𝑑)
⟶ Cor𝑘(𝑋×Δ𝑞−𝑛

, 𝔾
(1)

𝑚
×⋯×𝔾

(𝑞)

𝑚
).

Note that ℤ(0) = 𝐶∗(ℤ
𝑡𝑟

𝑘
(Spec 𝑘)), i.e. the chain complex associated to the presheaf with

transfers ℤ𝑡𝑟

𝑘
(Spec 𝑘) as in Construction 2.2.2.

Moreover, we have 𝐴(𝑞)𝑛 ≅ ℤ(𝑞)
𝑛
⊗ 𝐴 = 𝐶𝑞−𝑛ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
) ⊗ 𝐴 ≅ 𝐶𝑞−𝑛𝐴

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
), so

𝐴(𝑞) ≅ 𝐶∗𝐴
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)[−𝑞].

We have previously seen that: (i) given pointed schemes (𝑋1, 𝑥1), (𝑋𝑞, 𝑥𝑞) in Sm𝑘 ,
𝐴
𝑡𝑟

𝑘
((𝑋1, 𝑥1) ∧ ⋯ ∧ (𝑋𝑞, 𝑥𝑞)) is an étale (hence Nisnevich, Zariski) sheaf with transfers (2.2.2),

and (ii) if 𝐹 is an étale (resp. Nisnevich, Zariski) sheaf with transfers, then 𝐶∗𝐹 is a complex
of étale (resp. Nisnevich, Zariski) sheaves with transfers (Remark 2.2.3). It follows that
𝐴(𝑞) is a complex of étale (hence Nisnevich, Zariski) sheaves with transfers.

Suppose 𝐴 is a torsion-free abelian group. Then (see Remark 2.2.6) 𝐴𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
), hence

𝐶∗𝐴
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
), hence 𝐴(𝑞) is a complex of flat presheaves with transfers.

Definition 2.2.9. Let 𝐴 be an abelian group. For each 𝑋 ∈ Sm𝑘 and 𝑝, 𝑞 ∈ ℤ, the (ordinary)
motivic cohomology group 𝐻 𝑝,𝑞

(𝑋 , 𝐴) is defined as the hypercohomology group

𝐻
𝑝

Zar(𝑋 , 𝐴(𝑞)|𝑋Zar),

where 𝐴(𝑞)|𝑋Zar denotes the complex of Zariski sheaves obtained by restricting 𝐴(𝑞) to the
Zariski site of 𝑋 . Similarly, the étale motivic cohomology group 𝐻 𝑝,𝑞

(𝑋 , 𝐴) is defined as

𝐻
𝑝

Zar(𝑋 , 𝐴(𝑞)|𝑋ét),

where 𝐴(𝑞)|𝑋Zar is the restriction of 𝐴(𝑞) to the étale site of 𝑋 . We will also denote these
groups by 𝐻 𝑝

(𝑋 , 𝐴(𝑞)) and 𝐻 𝑝

ét(𝑋 , 𝐴(𝑞)|𝑋Zar), respectively.

It may be proved that ordinary motivic cohomology of a given 𝑋 ∈ Sm𝑘 satisfies a
boundedness condition depending on the usual dimension of 𝑋 as a scheme: given an
abelian group 𝐴 and 𝑝, 𝑞 ∈ ℤ, it holds that

𝐻
𝑝,𝑞
(𝑋 , 𝐴) = 0

whenever 𝑝 > 𝑞 + dim(𝑋); we refer to Mazza et al., 2006, Theorem 3.6. Moreover, Mazza
et al., 2006, Theorem 3.8 shows that motivic cohomology does not depend, in a certain
sense, on the choice of a base field: if 𝐾 is a finite separable extension of 𝑘, then any
𝑋 → Spec 𝐾 in Sm𝐾 defines an object of Sm𝑘 by composing its structure morphism with
Spec 𝐾 → Spec 𝑘 (which is smooth, separated, and of finite type), and the complexes
𝐴(𝑞)

𝐾
|𝑋Zar and 𝐴(𝑞)𝑘 |𝑋Zar are isomorphic.

Moreover, one may construct (see Mazza et al., 2006, Corollary 3.12) for each 𝑋 ∈ Sm𝑘
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and 𝑝, 𝑝′, 𝑞, 𝑞′ ∈ ℤ a pairing

𝐻
𝑝,𝑞
(𝑋 , 𝐴) ⊗ 𝐻

𝑝
′
,𝑞
′

(𝑋 , 𝐴) ⟶ 𝐻
𝑝+𝑝

′
,𝑞+𝑞

′

(𝑋 , 𝐴)

endowing motivic cohomology with a bigraded ring structure.

2.3 A characterization of ℤ(1) up to
quasi-isomorphism

This subsection aims to study the proof given in Mazza et al., 2006 that the motivic
complex ℤ(1) is quasi-isomorphic to the presheaf with transfers O× regarded as a complex
concentrated in degree 1.

Outline of the result

Throughout this subsection, 𝑘 denotes a given field.

Recall that ℤ(1) ∈ Ch−

(PST(𝑘)) is the cochain complex of presheaves with transfers
over 𝑘 defined as

ℤ(1) ∶= 𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧1

𝑚
)[−1] ≅ 𝐶∗ℤ

𝑡𝑟

𝑘
(𝔾𝑚)[−1].

More explicitly, we have

⋯

𝜕
𝑛+1

→ ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(Δ

𝑛

𝑘
×𝑘 −)

𝜕
𝑛

→ ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(Δ

𝑛−1

𝑘
×𝑘 −)

𝜕
𝑛−1

→ ⋯ → ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(Δ

0

𝑘
×𝑘 −) → 0 → ⋯

with ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(Δ

𝑛

𝑘
×𝑘 −) placed in degree 1 − 𝑛, where:

(i) 𝜕𝑛 is the natural transformation whose 𝑋 -component for each 𝑋 ∈ Cor𝑘 is the
alternating sum ∑

𝑛

𝑖=0
ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(𝑑

𝑖

𝑛
×𝑘 𝑋), where 𝑑 𝑖

𝑛
∶ Δ

𝑛−1

𝑘
→ Δ

𝑛

𝑘
is the (𝑛, 𝑖)-th face

map of the cosimplicial object Δ∗

𝑘
defined in Section 2.2.

(ii) ℤ
𝑡𝑟

𝑘
(𝔾𝑚) is the cokernel

Coker(ℤ𝑡𝑟

𝑘
(Spec 𝑘)

ℤ
𝑡𝑟

𝑘
(𝑠1)

→ ℤ
𝑡𝑟

𝑘
(𝔸

1
⧵{0})) = Coker(Cor𝑘(−, Spec 𝑘)

𝑠1◦−

→ Cor𝑘(−,𝔸1
⧵{0}))

in PST(𝑘), where 𝑠1 ∶ Spec 𝑘 → 𝔸
1
⧵ {0} is the inclusion of {1}.

In order to study ℤ(1), let us first deal with ℤ
𝑡𝑟

𝑘
(𝔾𝑚). As described in Definition 2.2.4,

𝑠1 has a retraction 𝜋 ∶ 𝔸
1
⧵ {0} → Spec 𝑘, whence the following is a split exact se-

quence:

0 ⟶ ℤ
𝑡𝑟

𝑘
(Spec 𝑘)

ℤ
𝑡𝑟

𝑘
(𝑠1)

⟶ ℤ
𝑡𝑟

𝑘
(𝔸

1
⧵ {0})

ℤ
𝑡𝑟

𝑘
(𝜋)

⟶ ℤ
𝑡𝑟

𝑘
(𝔾𝑚) ⟶ 0.

We will follow the approach used in Mazza et al., 2006. As 𝔸1
⧵ {0} has dimension

1, a finite correspondence from a given scheme 𝑋 ∈ Sm𝑘 to 𝔸
1
⧵ {0} is a particular kind

of codimension 1 cycle, i.e. of (Weil) divisor (see below), on 𝑋 × (𝔸
1
⧵ {0}). Such finite

correspondences may moreover be identified with divisors on 𝑋 × 𝔸
1 or on 𝑋 × ℙ

1, so we
may use a description of a certain quotient − the divisor class group Cl(−) − of the divisor
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groups of 𝑋 × 𝔸
1 and 𝑋 × ℙ

1 in terms of that of 𝑋 : for 𝑋 connected, one may construct
isomorphisms

ℤ ⊕ Cl(𝑋 ) ≅ Cl(𝑋 × ℙ
1
),

Cl(𝑋 ) ≅ Cl(𝑋 × 𝔸
1
).

As a consequence, for connected 𝑋 it is possible to describe finite correspondences from
𝑋 to 𝔸

1
⧵ {0}, regarded as divisors on 𝑋 × ℙ

1, as divisors associated to rational functions
on 𝑋 × ℙ

1 up to sum with (i) a specific multiple of the divisor 𝑋 × {∞} and (ii) a divisor of
the form 𝐷 × (𝔸

1
⧵ {0}), where 𝐷 is a divisor on 𝑋 which in turn is unique up to sum with

a divisor associated to a rational function on 𝑋 .

This allows to construct a certain split epimorphism

𝑃𝑋 ∶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}) ⟶ ℤ ⊕ O×

(𝑋 ).

whose ℤ-coordinate amounts to the above construction. Then one obtains a decomposi-
tion

Cor𝑘(𝑋 ,𝔸1
⧵ {0}) ≅ Ker(𝑃𝑋 ) ⊕ ℤ ⊕ O×

(𝑋 )

with the property that the corresponding injection ℤ → Cor𝑘(𝑋 ,𝔸1
⧵ {0}) sends 1 to the

finite correspondence 𝑋 × {1}; hence up to isomorphism it describes the injection

Cor𝑘(𝑋 , Spec 𝑘) ⟶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}).

This yields a decomposition

ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(𝑋 ) ≅ Ker(𝑃𝑋 ) ⊕ O×

(𝑋 ),

and by varying 𝑋 it follows that there exists a short exact sequence

0 ⟶ Ker(𝑃−) ⟶ ℤ
𝑡𝑟

𝑘
(𝔾𝑚) ⟶ O×

⟶ 0.

Moreover, it is possible to give for each 𝑋 an explicit description of Ker(𝑃𝑋 ) in terms of
particular rational functions on 𝑋 × ℙ

1. Then one applies the functor 𝐶∗ ∶ PST(𝑘) ⟶
PST(𝑘,Ch−

(Ab)) and checks that (i) 𝐶∗Ker(𝑃−) is quasi-isomorphic to the zero complex,
and (ii) 𝐶∗O× is quasi-isomorphic to O×. This defines a quasi-isomorphism

𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾𝑚) ⟶ O×

,

and thus also a quasi-isomorphism

ℤ(1) ≅ 𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾𝑚)[−1] ⟶ O×

[−1].

Overview of Weil divisors

We recall that any scheme in Sm𝑘 − a smooth, separated, finite type 𝑘-scheme − can be
expressed as a finite disjoint union of smooth, integral, separated, finite type 𝑘-schemes (i.e.
of smooth varieties over 𝑘). In particular, if 𝑌 ⊂ 𝑋 is a connected (equivalently, irreducible)
component, then for every open subset 𝑈 ⊂ 𝑌 the ring of regular functions O𝑋 (𝑈 ) is an
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integral 𝑘-algebra. For a connected component 𝑌 ⊂ 𝑋 , we denote by O𝑋,𝑌 the local ring
O𝑋,𝜂(𝑌 ) of 𝑋 at the generic point 𝜂(𝑌 ) of 𝑌 . It is defined as the colimit of rings

lim
−−→

𝑈O𝑋 (𝑈 )

where 𝑈 ranges over the direct system of all nonempty open neighborhoods of 𝜂(𝑌 ) in
𝑋 (ordered by reverse inclusion). As any such 𝑈 contains a nonempty neighborhood
of 𝜂(𝑌 ) that is contained in 𝑌 , e.g. 𝑌 ∩ 𝑈 , we may (up to isomorphism) compute O𝑋,𝑌

by ranging 𝑈 over nonempty open neighborhoods of 𝜂(𝑌 ) contained in 𝑌 , i.e. over all
nonempty open subsets of 𝑌 . By regarding 𝑌 as an open subscheme, this is precisely
O𝑌 ,𝑌 = O𝑌 ,𝜂(𝑌 ). A further characterization of O𝑋,𝑌 may be given as follows: let Spec 𝐴 ≅

𝑈 ⊂ 𝑌 be any nonempty affine open subset. As 𝐴 is an integral domain and OSpec 𝐴,𝜂(Spec ,𝐴)

is isomorphic to the fraction field Frac(𝐴) of 𝐴, the fact that any nonempty open subset
of 𝑌 has nonempty intersection with 𝑈 (as 𝑌 is irreducible) implies the existence of an
isomorphism Frac(𝐴)

≅

→ O𝑋,𝑌 .

Given 𝑋 ∈ Sm𝑘 , let us denote by 𝑐(𝑋 ) the set of connected components of 𝑋 . We define
R(𝑋 ), the ring of rational functions on 𝑋 , as the product

R(𝑋 ) = ∏

𝑌∈𝑐(𝑋 )

O𝑋,𝑌

of the local rings (which are fields, as noted above) of its connected components.

Now, suppose given a point 𝑥 ∈ 𝑋 , say 𝑥 ∈ 𝑌 where 𝑌 is a connected component,
and a rational function 𝑓 , whose 𝑌 -component in O𝑋,𝑌 we denote by 𝑓 |𝑌 . We say that 𝑓 is
defined at 𝑥 if 𝑓 |𝑌 is in the image of the localization map

O𝑋,𝑥 ↪ O𝑋,𝑌 .

In this case, by abuse of notation we also denote by 𝑓 |𝑌 the unique element of O𝑋,𝑥

corresponding to 𝑓 |𝑌 , and we write 𝑓 |𝑌 ∈ O𝑋,𝑥 . If this holds, we say that the value of 𝑓 at 𝑥
is the image of 𝑓 |𝑌 under the quotient map

O𝑋,𝑥 ⟶ 𝜅(𝑥) =

O𝑋,𝑥

m𝑥

.

We also recall that a (Weil) divisor on 𝑋 is a cycle ∑
𝑖∈𝐼
𝑛𝑖𝑥𝑖 such that each irreducible closed

subset 𝑍𝑖 = {𝑥𝑖} has codimension 1 in 𝑋 . A point 𝑥 ∈ 𝑋 such that {𝑥} has codimension
1 in 𝑋 is said to be a prime divisor on 𝑋 . Under addition, divisors on 𝑋 form an abelian
group, denoted by Div(𝑋 ) and called the (Weil) divisor group of 𝑋 .

With 𝑥𝑖 and 𝑍𝑖 as above, when it is convenient we will identify a divisor ∑
𝑖∈𝐼
𝑛𝑖𝑥𝑖 with

the corresponding linear combination ∑
𝑖∈𝐼
𝑛𝑖𝑍𝑖 of irreducible closed subsets of 𝑋 .

Suppose given a rational function 𝑓 ∈ R(𝑋 ), a prime divisor 𝑥 ∈ 𝑋 whose connected
component is 𝑌 ⊂ 𝑋 , and suppose that 𝑓 is defined at 𝑥 (i.e. 𝑓 |𝑌 ∈ O𝑋,𝑥 ), and that 𝑓|𝑌 ≠ 0

in O𝑋,𝑥 . The order of vanishing of 𝑓 at 𝑥 , denoted by ord𝑥 (𝑓 ), is defined as the length
of O𝑋,𝑥/(𝑓 ) as an O𝑋,𝑥-module. It may be proved that given another 𝑓 ′ subject to the
same conditions, it holds that ord𝑥 (𝑓 𝑓 ′) = ord𝑥 (𝑓 ) + ord𝑥 (𝑓 ′). More generally, if 𝑓 is a
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rational function and 𝑥 ∈ 𝑋 is a prime divisor with connected component 𝑌 such that
𝑓 |𝑌 ≠ 0 in O𝑋,𝑌 (but not necessarily 𝑓 |𝑌 ∈ O𝑋,𝑥 ), we may express 𝑓 as a fraction 𝑔/ℎ

with 𝑔, ℎ ∈ O𝑋,𝑥 . Note that the difference ord𝑥 (𝑔) − ord𝑥 (ℎ) does not depend on the
choice of 𝑔 and ℎ: indeed, given 𝑔

′, ℎ′ subject to the same conditions, we have 𝑔ℎ′ = 𝑔′ℎ,
hence ord𝑥 (𝑔) + ord𝑥 (ℎ′) = ord𝑥 (𝑔ℎ′) = ord𝑥 (𝑔′ℎ) = ord𝑥 (𝑔′) + ord𝑥 (ℎ). Thus we define
ord𝑥 (𝑓 ) = ord𝑥 (𝑔) − ord𝑥 (ℎ).

It may be proved that for any rational function 𝑓 ∈ R(𝑋 ) such that 𝑓 |𝑌 ≠ 0 ∈ O𝑋,𝑌 for
every connected component 𝑌 ⊂ 𝑋 (equivalently, ord𝑥 (𝑓 ) is defined for every 𝑥 ∈ 𝑋 ), there
only exist a finite number of prime divisors 𝑥 ∈ 𝑋 for which ord𝑥 (𝑓 ) is nonzero. Let 𝑃(𝑓 )
be the set of such points. The (Weil) divisor associated to 𝑓 is defined as

div(𝑓 ) = ∑

𝑥∈𝑃(𝑓 )

ord𝑥 (𝑓 )𝑥.

Divisors of this form are said to be principal. Note that whenever div(𝑓 𝑔) is defined, then
div(𝑓 ) and div(𝑔) are both defined and (using that 𝑃(𝑓 𝑔) ⊂ 𝑃(𝑓 ) ∪ 𝑃(𝑔)) it holds that

div(𝑓 𝑔) = ∑

𝑥∈𝑃(𝑓 𝑔)

ord𝑥 (𝑓 𝑔)𝑥

= ∑

𝑥∈𝑃(𝑓 )∪𝑃(𝑔)

ord𝑥 (𝑓 𝑔)𝑥

= ∑

𝑥∈𝑃(𝑓 )∪𝑃(𝑔)

(ord𝑥 (𝑓 ) + ord𝑥 (𝑔))𝑥

= ∑

𝑥∈𝑃(𝑓 )∪𝑃(𝑔)

ord𝑥 (𝑓 )𝑥 + ∑

𝑥∈𝑃(𝑓 )∪𝑃(𝑔)

ord𝑥 (𝑔)𝑥

= ∑

𝑥∈𝑃(𝑓 )

ord𝑥 (𝑓 )𝑥 + ∑

𝑥∈𝑃(𝑔)

ord𝑥 (𝑔)𝑥

= div(𝑓 ) + div(𝑔).

Also, the zero divisor equals div(1). Thus principal divisors form a subgroup of Div(𝑋 ).
The quotient group, denoted by Cl(𝑋 ), is called the (Weil) divisor class group of 𝑋 , and
two divisors belonging to the same class in Cl(𝑋 ) (equivalently, whose difference is a
principal divisor) are said to be linearly equivalent. Given a divisor 𝐷, its class in Cl(𝑋 )
will be denoted by [𝐷].

The following notation will be useful: given 𝐷 = ∑
𝑖∈𝐼
𝑛𝑖𝑍𝑖 ∈ Div(𝑋 ) and a connected

scheme 𝑌 ∈ Sm𝑘 , we write 𝐷 × 𝑌 for ∑
𝑖∈𝐼
𝑛𝑖(𝑍𝑖 ×𝑘 𝑌 ) ∈ Div(𝑋 ×𝑘 𝑌 ).

A decomposition of Cor𝑘(𝑋 ,𝔸1
⧵ {0})

When 𝑋 ∈ Sm𝑘 is connected one may use Hartshorne, 1977, Chapter II, propositions
6.5 and 6.6, to describe the divisor class group of 𝑋 in terms of that of 𝑋 × ℙ

1 and the
divisor class of 𝑋 × {∞} in Cl(𝑋 × ℙ

1
).

More precisely, by Hartshorne, 1977, II, Prop. 6.5 there exists an exact sequence

ℤ ⟶ Cl(𝑋 × ℙ
1
) ⟶ Cl(𝑋 × 𝔸

1
) ⟶ 0
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in which the first map sends 𝑛 to 𝑛 ⋅ [𝑋 × {∞}], and the second one is characterized by
the fact that for any codimension 1 irreducible closed subset 𝑍 ⊂ 𝑋 × ℙ

1, it sends [𝑍] to
[𝑍 ∩ (𝑋 × 𝔸

1
), if 𝑍 ∩ (𝑋 × 𝔸

1
) is nonempty, and to 0 otherwise.

On the other hand, by Hartshorne, 1977, II, Prop. 6.6, the map Div(𝑋 ) → Div(𝑋 ×𝔸
1
)

given by 𝐷 ↦ 𝐷 × 𝔸
1 induces an isomorphism Cl(𝑋 ) ≅ Cl(𝑋 × 𝔸

1
).

Note that the map Cl(𝑋 ) → Cl(𝑋 × ℙ
1
) given by [𝐷] ↦ [𝐷 × ℙ

1
] is a section of the

composite Cl(𝑋 × ℙ
1
) ≅ Cl(𝑋 × 𝔸

1
) → Cl(𝑋 ). It may also be proved that ℤ → Cl(𝑋 × ℙ

1
)

is injective. This yields an isomorphism ℤ ⊕ Cl(𝑋 ) ≅ Cl(𝑋 × ℙ
1
) given by sending each

(𝑛, [𝐷]) to 𝑛 ⋅ [𝑋 × {∞}] + [𝐷 × ℙ
1
].

This implies that for every finite correspondence 𝛼 ∈ Cor𝑘(𝑋 ,𝔸1
), identified with an

element of Div(𝑋 × ℙ
1
), the set of

• triples (𝐷, 𝑛, 𝐷′
), where 𝐷 is a principal divisor on 𝑋 × ℙ

1, 𝑛 is an integer, and 𝐷′ is a
divisor on 𝑋 such that 𝛼 = 𝐷 + 𝑛 ⋅ (𝑋 × {∞}) + (𝐷

′
× ℙ

1
) − let us call these 𝛼-triples −

is nonempty and admits a non-canonical bijective correspondence with the set of principal
divisors on 𝑋 as follows: noting that 𝑛 does not depend on the given 𝛼-triple, for an
arbitrary fixed 𝛼-triple (𝐷0, 𝑛, 𝐷

′

0
), we send each 𝛼-triple (𝐷, 𝑛, 𝐷

′
) to 𝐷′

0
− 𝐷

′ (note that
𝐷 − 𝐷0 = (𝐷

′

0
− 𝐷

′
) × ℙ

1). Thus a principal divisor 𝐷 on 𝑋 is such that there exists an
𝛼-triple of the form (𝐷, 𝑛, 𝐷

′
) if and only if there exists a principal divisor 𝐸 on 𝑋 such

that 𝐷 = 𝐷0 + (𝐸 × ℙ
1
). By choosing 𝑓0 ∈ R(𝑋 × ℙ

1
) such that 𝐷0 = div(𝑓0), we have that

principal divisors 𝐷 with this property are those of the form 𝐷0 + div(𝑓 ) = div(𝑓0𝑓 ) for
some invertible regular function 𝑓 on 𝑋 , which we identify with a regular function on
𝑋 × ℙ

1. It follows that there exists a unique rational function 𝑔R(𝑋 × ℙ
1
) of the form 𝑓0𝑓

satisfying the normalization condition that 𝑔/𝑡𝑛 restricts to the constant function 1 on
𝑋 × {∞}, namely by taking 𝑓 as the restriction of 𝑡𝑛/𝑓0 to 𝑋 × {∞}. As 𝑔 only depends on
𝛼 , let us denote it by 𝑔𝛼 .

Then for 𝑋 ∈ Sm𝑘 connected we have (as in Mazza et al., 2006, 4.4) a homomor-
phism

𝑃𝑋 ∶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}) ⟶ ℤ ⊕ O×

(𝑋 )

which, in the above notation, sends each 𝛼 to (𝑛, (−1)
𝑛
𝑔𝛼 (0)), where 𝑔𝛼 (0) denotes the

restriction of 𝑔𝛼 to 𝑋 × {0} ≅ 𝑋 − it is defined and is invertible in O(𝑋 ) as 𝛼 does not
intersect 𝑋 × {0}.

Note that for each 𝑔 ∈ 𝕆
∗
(𝑋 ), by defining 𝛼 = div(𝑡 − 𝑔), which is the graph of 𝑔, we

have 𝑔𝛼 = 𝑡 − 𝑔 and 𝑃𝑋 (𝛼) = (1, (−1)
1
(−𝑔)) = (1, 𝑔). So by taking 𝛽 = div(𝑡 − 1), we have

𝑃𝑋 (𝛽) = (1, 1), hence 𝑃𝑋 (𝛼 − 𝛽) = (1 − 1, 𝑢/1) = (0, 𝑢). This allows us to construct a section
of 𝑃𝑋 given by

𝑆𝑋 ∶ ℤ ⊕ O×
(𝑋 ) ⟶ Cor𝑘(𝑋 ,𝔸1

⧵ {0})

(𝑛, 𝑔) ⟼ 𝑛 ⋅ div(𝑡 − 1) + (div(𝑡 − 𝑔) − div(𝑡 − 1)) = div((𝑡 − 𝑔)(𝑡 − 1)
𝑛−1

).

Thus 𝑃𝑋 is a surjection and Cor𝑘(𝑋 ,𝔸1
⧵ {0}) can be expressed as

Cor𝑘(𝑋 ,𝔸1
⧵ {0}) ≅ Ker(𝑃𝑋 ) ⊕ ℤ ⊕ O×

(𝑋 ).
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Let us consider the corresponding short exact sequence

0 ⟶ ℤ ⟶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}) ⟶ Ker(𝑃𝑋 ) ⊕ O×

(𝑋 ) ⟶ 0.

By construction, ℤ ⟶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}) sends 1 to ÷(𝑡 − 1) = 𝑋 × {1}, which is equal to

the image under 1 of the composite

ℤ ≅ Cor𝑘(𝑋 , Spec 𝑘)
Cor𝑘 (𝑠1,𝔸1

⧵{0})

⟶ Cor𝑘(𝑋 ,𝔸1
⧵ {0}),

where the first map sends 1 to 𝑋 ×𝑘 Spec 𝑘 regarded as a cycle on itself.

By comparing cokernels, we obtain an isomorphism

ℤ
𝑡𝑟

𝑘
(𝔾𝑚)(𝑋 ) ≅ Ker(𝑃𝑋 ) ⊕ O×

(𝑋 ).

It may be checked that the above constructions are natural in 𝑋 ∈ Cor𝑘 , so there exists
an isomorphism

ℤ
𝑡𝑟

𝑘
(𝔾𝑚) ≅ Ker(𝑃−) ⊕ O×

of presheaves with transfers, hence a short exact sequence

0 ⟶ Ker(𝑃−) ⟶ ℤ
𝑡𝑟

𝑘
(𝔾𝑚) ⟶ O×

⟶ 0.

The kernel of 𝑃𝑋

In what follows, we will need to consider rational functions on a scheme in Sm𝑘 which
are defined at every point of a given subset. We also establish a suitable form of functoriality
for this construction.

Construction 2.3.1. Suppose given 𝑋 ∈ Sm𝑘 , and 𝑈 ⊂ 𝑋 an arbitrary nonempty subset.
For each connected component 𝑌 ⊂ 𝑋 , let us consider the intersection ⋂

𝑥∈𝑈∩𝑌
O𝑋,𝑥 of

subrings of O𝑋,𝑌 . We denote by O(𝑋 , 𝑈 ) the product of these:

O(𝑋 , 𝑈 ) ∶= ∏

𝑌∈𝑐(𝑋 )

⋂

𝑥∈𝑈∩𝑌

O𝑋,𝑥 .

We may regard this construction as a contravariant functor on pairs (𝑋 , 𝑈 ), where mor-
phisms (𝑋 , 𝑈 ) → (𝑋

′
, 𝑈

′
) are morphisms 𝑓 ∶ 𝑋 → 𝑋

′ in Sm𝑘 such that 𝑓 (𝑈 ) ⊂ 𝑈
′. We

proceed in the following way: for each connected component 𝑌 ⊂ 𝑋 , there exists a unique
connected component 𝑠(𝑌 ) ⊂ 𝑋 ′ such that 𝑓 (𝑌 ) ⊂ 𝑠(𝑌 ). For each 𝑥 ∈ 𝑈 ∩ 𝑌 it holds that
𝑓 (𝑥) ∈ 𝑈

′
∩ 𝑠(𝑌 ), and moreover we have a homomorphism O𝑋

′
,𝑓 (𝑥) → O𝑋,𝑥 from a subring

of O𝑋
′
,𝑠(𝑌 ) to a subring of O𝑋,𝑌 . By ranging 𝑥 over 𝑈 ∩𝑌 and taking intersections, we obtain

a homomorphism
⋂

𝑥
′
∈𝑈

′
∩𝑠(𝑌 )

O𝑋
′
,𝑥

′ ⟶ ⋂

𝑥∈𝑈∩𝑌

O𝑋,𝑥 .

By composing with the projection O(𝑋
′
, 𝑈

′
) → ⋂

𝑥
′
∈𝑈

′
∩𝑠(𝑌 )

O𝑋
′
,𝑥

′ , this defines a homomor-
phism O(𝑋

′
, 𝑈

′
) → ⋂

𝑥∈𝑈∩𝑌
O𝑋,𝑥 . Finally, ranging 𝑌 over 𝑐(𝑋 ) yields a map

O(𝑋
′
, 𝑈

′
) → O(𝑋

′
, 𝑈

′
).
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Definition 2.3.2. For the purposes of this subsection, for each 𝑋 ∈ Sm𝑘 we denote by
R′

(𝑋 ) the set of rational functions on 𝑋 ×ℙ
1 which are defined at every point of 𝑋 ×{0,∞},

and whose value at each point of 𝑋 × {0,∞} is 1. It is a submonoid of the underlying
multiplicative monoid of the ring O(𝑋 × ℙ

1
, 𝑋 × {0,∞}). Note that for any 𝑓 ∶ 𝑋 → 𝑌 in

Sm𝑘 , the morphism 𝑓 × 𝑖𝑑ℙ1 ∶ 𝑋 × ℙ
1
→ 𝑌 × ℙ

1 sends 𝑋 × {0,∞} to 𝑌 × {0,∞}, so we have
a map

O(𝑌 × ℙ
1
, 𝑌 × {0,∞}) ⟶ O(𝑋 × ℙ

1
, 𝑋 × {0,∞})

as in the previous construction, which then restricts to a map

R′
(𝑌 ) → R′

(𝑋 ).

Note that R′
(𝑋 ) is actually an abelian group, since 𝑋 × {0,∞} intersects every connected

component of 𝑋 × ℙ
1.

In what follows, we identify 𝔸
1
⧵ {0} with the open subscheme ℙ1

⧵ {0, ∞} of ℙ1.

Remark 2.3.3. As for any 𝑓 ∈ R′
(𝑋 ) the value of 𝑓 at every 𝑥 ∈ 𝑋 × {0,∞} is 1, it holds in

particular that for each such 𝑓 , ord𝑥 (𝑓 ) = 0 whenever 𝑥 ∈ 𝑋 × {0,∞} is a prime divisor on
𝑋 ×ℙ

1. Hence div(𝑓 ) may be identified with a divisor on 𝑋 ×(𝔸
1
⧵{0}) ≅ 𝑋 ×(ℙ

1
⧵{0,∞}) ↪

𝑋 × ℙ
1, so we obtain a map

div ∶ R′
(𝑋 ) ⟶ Div(𝑋 × (𝔸

1
⧵ {0})).

The following lemma, which relies on the above remark, allows us to construct finite
correspondences from a given 𝑋 ∈ Sm𝑘 to 𝔸

1
⧵ {0} in terms of elements of R′

(𝑋 ).

Lemma 2.3.4 (Mazza et al., 2006, Lemma 4.3). Given 𝑋 ∈ Sm𝑘 and 𝑓 ∈ R′
(𝑋 ), it holds

that div(𝑓 ) ∈ Div(𝑋 × (𝔸
1
⧵ {0})) is a finite correspondence from 𝑋 to 𝔸

1
⧵ {0}.

Proof. Let us write div(𝑓 ) = ∑
𝑖∈𝐼
𝑛𝑖𝑥𝑖 , where each 𝑥𝑖 is a prime divisor on 𝑋 × (𝔸

1
⧵ {0}).

We must prove that each 𝑍𝑖 ∶= {𝑥𝑖}, where the closure is taken in 𝑋 × 𝔸
1
⧵ {0}), is such

that the composite 𝑍𝑖 → 𝑋 × 𝔸
1
⧵ {0}) → 𝑋 of the integral closed subscheme inclusion

with the canonical projection is finite and its image is a connected component of 𝑋 .

Firstly, note that since the property of a morphism of schemes being finite and surjective
is Zariski-local on the target, we may reduce the problem to the case where 𝑋 is integral
and affine, say 𝑋 ≅ Spec 𝐴 for an integral domain 𝐴. Since Spec 𝐴×𝔸

1
≅ Spec (𝐴⊗𝑘 𝑘[𝑡]) ≅

Spec 𝐴[𝑡], we haveR(𝑋 ×ℙ
1
) ≅ 𝑅(𝑋 ×𝔸

1
) ≅ Frac(𝐴[𝑡]). Then any given 𝑓 ∈ R(𝑋 ×(𝔸

1
⧵{0}))

may be expressed as 𝑔/ℎ for 𝑔, ℎ ∈ 𝐴[𝑡], say 𝑔 = 𝑐𝑚𝑡
𝑚
+⋯ + 𝑐1𝑡 + 𝑐0, ℎ = 𝑑𝑛𝑡

𝑛
+⋯ + 𝑑1𝑡 + 𝑑0.

As 𝑔 and ℎ are both nonzero, we assume 𝑐𝑚 and 𝑑𝑛 are both nonzero. We also assume 𝑐0
and 𝑑0 are not both 0, as otherwise we reduce to this case by dividing both 𝑔 and ℎ by
some power of 𝑡 . Then as the restriction of 𝑓 to 𝑋 × {0} equals 1, by taking 𝑡 = 0 we obtain
that 𝑐0 = 𝑑0; hence 𝑐0 and 𝑑0 are both nonzero.

On the other hand, by defining 𝑢 = 1/𝑡 we obtain

𝑔(𝑡) = 𝑐𝑚(1/𝑢)
𝑚
+ ⋯ + 𝑐1(1/𝑢) + 𝑐0 = (1/𝑢)

𝑚
(𝑐𝑚 + ⋯ + 𝑐1𝑢

𝑚−1
+ 𝑐0𝑢

𝑚
),

ℎ(𝑡) = 𝑑𝑛(1/𝑢)
𝑛
+ ⋯ + 𝑑1(1/𝑢) + 𝑑0 = (1/𝑢)

𝑛
(𝑑𝑛 + ⋯ + 𝑑1𝑢

𝑛−1
+ 𝑑0𝑢

𝑛
),
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hence
𝑔(𝑡)

ℎ(𝑡)

= 𝑢
𝑛−𝑚

𝑐𝑚 + ⋯ + 𝑐1𝑢
𝑚−1

+ 𝑐0𝑢
𝑚

𝑑𝑛 + ⋯ + 𝑑1𝑢
𝑛−1

+ 𝑑0𝑢
𝑛
.

By evaluating at 𝑢 = 0, the assumption that 𝑓 restricts to 1 on 𝑋 ×{∞} implies that: (i) as in
particular its order of vanishing at 𝑋 × {∞} is zero, it holds that 𝑚 = 𝑛 and (ii) as its value
must then be given by 𝑐𝑚/𝑑𝑛, we have 𝑐𝑚 = 𝑑𝑛. Then we may reduce to the case where 𝑐𝑚 =

𝑑𝑛 = 1, in which div(𝑔) and div(ℎ) are both finite correspondences. Indeed, by restricting
𝑔, which is monic by assumption, to the fiber over any point 𝑥 ∈ 𝑋 we obtain a monic,
hence nonzero polynomial over the residue field 𝜅(𝑥); thus div(𝑔) ∈ Div(𝑋 × (𝔸

1
⧵ {0}))

cannot contain any divisor of the form 𝐷 × (𝔸
1
⧵ {0}) for 𝐷 ∈ Div(𝑋 ). Similarly for 𝑔.

Thus we obtain a homomorphism of abelian groups

𝑄𝑋 ∶ R′
(𝑋 ) ⟶ Cor𝑘(𝑋 ,𝔸1

⧵ {0}).

As a rational function 𝑓 ∈ R′
(𝑋 ) has the property that its restrictions to 𝑋 × {∞} and

𝑋 × {0} are both equal to 1, its image in Cor𝑘(𝑋 ,𝔸1
⧵ {0}) belongs to Ker(𝑃𝑋 ).

This provides a short exact sequence

0 ⟶ R′
⟶ ℤ

𝑡𝑟

𝑘
(𝔾𝑚) ⟶ O×

⟶ 0

of presheaves with transfers and, as outlined in the beginning of this section, a short exact
sequence of complexes

0 ⟶ 𝐶∗R
′
⟶ 𝐶∗ℤ

𝑡𝑟

𝑘
(𝔾𝑚) ⟶ 𝐶∗O

×
⟶ 0.

By Mazza et al., 2006, 4.6, 𝐶∗R
′ is acyclic, so one obtains:

Proposition 2.3.5. Let 𝑘 be a field. Then the chain map of complexes of presheaves with
transfers

ℤ(1) ⟶ O×
[−1]

constructed above is a quasi-isomorphism. For each 𝑋 ∈ Sm𝑘 and 𝑛 ≥ 0,

𝐻
𝑛,1
(𝑋 , ℤ) = 𝐻

𝑛

Zar(𝑋 , ℤ(1)|𝑋Zar) ≅ 𝐻
𝑛

Zar(𝑋 ,O
×
[−1]) ≅ 𝐻

𝑛−1

Zar (𝑋 ,O
×
).

Hence 𝐻 1,1
(𝑋 , ℤ) ≅ O×

(𝑋 ), and in particular 𝐻 1,1
(Spec 𝑘, ℤ) ≅ 𝑘∗.

A description of ℤ/𝑙(1) as an étale sheaf

The above result characterizes ℤ(1) up to quasi-isomorphism in the category of
presheaves with transfers, namely, as ℤ(1) ≃ O×

[−1]. Now, let 𝑙 be a prime number
different from the characteristic of 𝑘. Note that the constant presheaf with transfers ℤ/𝑙
admits a projective resolution

⋯ ⟶ 0 ⟶

(−1)

ℤ

𝑙

⟶

(0)

ℤ ⟶ 0 ⟶ ⋯
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in PST(𝑘). Let us denote it by 𝑃 . Then we obtain a quasi-isomorphism

ℤ(1) ⊗ 𝑃 ≃ O×
[−1] ⊗ 𝑃,

where the right hand complex is isomorphic to

⋯ ⟶ 0 ⟶

(0)

O×
𝑙

⟶

(1)

O×
⟶ 0 ⟶ ⋯.

On the other hand, since ℤ(1) is a complex of flat presheaves with transfers, the
quasi-isomorphism 𝑃 → ℤ/𝑙 defines a quasi-isomorphism

ℤ(1) ⊗ 𝑃 ≃ ℤ(1) ⊗ ℤ/𝑙 = ℤ/𝑙(1).

Let us use the subscripts 𝑠𝑚 and 𝑒𝑡 to regard a bounded above complex of étale sheaves
with transfers as an object of Ch−

(PST(𝑘)) to Ch−

(STét(𝑘)), respectively. Working in the
derived category D−PST(𝑘), we have an isomorphism

ℤ/𝑙(1)𝑠𝑚 ≅ (O×
[−1] ⊗ 𝑃)𝑠𝑚.

By applying the sheafification functor from presheaves with transfers to étale sheaves
with transfers, which is exact, one obtains an isomorphism

ℤ/𝑙(1)ét ≅ (O×
[−1] ⊗ 𝑃)ét.

in D−STét(𝑘). The complex (O×
[−1] ⊗ 𝑃)ét may be described by noting that

O×

ét
𝑙

⟶ O×

ét

is an epimorphism of étale sheaves with transfers (equivalently, the étale sheafification of

the presheaf cokernel of O×

𝑠𝑚

𝑙

⟶ O×

𝑠𝑚
is zero). The short exact sequence of étale sheaves

with transfers
0 ⟶ 𝜇𝑙,𝑒𝑡 ⟶ O×

ét
𝑙

⟶ O×

ét ⟶ 0

defines a quasi-isomorphism
𝜇𝑙,𝑒𝑡 ≃ (O×

[−1] ⊗ 𝑃)ét.

Then one obtains isomorphisms

𝜇𝑙,𝑒𝑡 ≅ (O×
[−1] ⊗ 𝑃)ét ≅ ℤ/𝑙(1)ét

in D−STét(𝑘).

This provides the following result on motivic étale cohomology: for each 𝑋 ∈ Sm𝑘 and
𝑝 ≥ 0 we have isomorphisms

𝐻
𝑝,1

ét (𝑋 , ℤ/𝑙) = 𝐻
𝑝

ét(𝑋 , ℤ/𝑙(1)) ≅ 𝐻
𝑝

ét(𝑋 , 𝜇𝑙).

Remark 2.3.6. This may be generalized to the following result (see Mazza et al., 2006): for
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every 𝑞 ≤ 1, there exists a quasi-isomorphism

𝜇
⊗𝑞

𝑙
≃ ℤ/𝑙(𝑞)

of complexes of étale sheaves with transfers. Thus for each 𝑋 ∈ Sm𝑘 and 𝑝 ≥ 0 one obtains

𝐻
𝑝,𝑞

ét (𝑋 , ℤ/𝑙) = 𝐻
𝑝

ét(𝑋 , ℤ/𝑙(𝑞)) ≅ 𝐻
𝑝

ét(𝑋 , 𝜇
⊗𝑞

𝑙
).

2.4 Étale sheafification with transfers, change of
topology

We let 𝑘 be a fixed base field throughout this section. The morphism of sites 𝜋 ∶

(Sm𝑘)ét ⟶ (Sm𝑘)Zar (given on underlying categories by the identity functor) induces a
geometric morphism between the corresponding Grothendieck topoi of sheaves of sets,
that is, an adjunction 𝜋 ∗

⊣ 𝜋∗ where 𝜋∗ ∶ Shét(Sm𝑘) ⟶ ShZar(Sm𝑘) is given by restriction
(i.e. by precomposition with the identity functor), and 𝜋 ∗

∶ ShZar(Sm𝑘) ⟶ Shét(Sm𝑘) is
the left exact functor given by regarding each Zariski sheaf as a presheaf and then taking
its usual étale sheafification. These induce further adjunctions (which we also denote by
𝜋
∗
⊣ 𝜋∗) between categories of (cochain complexes of) abelian sheaves:

ShZar(Sm𝑘 ,Ab) Shét(Sm𝑘 ,Ab),
𝜋
∗

𝜋∗

(2.4.1)

𝐶ℎ
?
(ShZar(Sm𝑘 ,Ab)) 𝐶ℎ

?
(Shét(Sm𝑘 ,Ab)),

𝜋
∗

𝜋∗

(2.4.2)

where ? in 2.4.2 denotes either +, −, or no boundedness assumption. In each case, 𝜋∗ is left
exact and 𝜋 ∗ is exact.

2.4.1 Étale sheafification with transfers
A similar framework is available when considering étale sheaves with transfers. The

reference for the following results is Mazza et al., 2006, Lec. 6.

Lemma 2.4.1. Suppose given a finite 𝑘-correspondence 𝛼 ∶ 𝑋 ∙⟶ 𝑌 and a surjective
étale map 𝑝 ∶ 𝑌

′
⟶ 𝑌 in Sm𝑘 (identified with its graph in Cor𝑘). Then there exists in

Cor𝑘 a commutative diagram

𝑋
′

𝑌
′

𝑋 𝑌

𝑝
′

𝛼
′

𝑝

𝛼

with 𝑝′ a surjective étale map.

Proof. Note that it suffices to consider the case where 𝛼 = [𝑍]𝑋×𝑘𝑌
for some integral closed

subscheme 𝑖 ∶ 𝑍 → 𝑋 ×𝑘 𝑌 . Indeed, by bilinearity of composition and existence of finite
coproducts (given by disjoint unions) in Cor𝑘 , the general case follows by considering the
coproduct of the schemes 𝑋 ′ obtained for each term of the form [𝑍]𝑋×𝑘𝑌

occurring in 𝛼 .
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The pullback 𝑍 ×𝑌 𝑌
′ of 𝑍 → 𝑋 ×𝑘 𝑌 → 𝑌 along 𝑝 ∶ 𝑌

′
→ 𝑌 is étale over 𝑍 , so

𝑍 ×𝑌 𝑌
′
→ 𝑍 has the property that (by finiteness of 𝑍 → 𝑋 ) each 𝑥 ∈ 𝑋 has an étale

neighborhood 𝑈 → 𝑋 such that (𝑍 ×𝑌 𝑌
′
) ×𝑋 𝑈 → 𝑍 ×𝑋 𝑈 has a section.

Since 𝑋 is noetherian, hence quasi-compact, by choosing a finite family of such maps
and taking the disjoint union of their domains, which we define to be 𝑋 ′, we obtain a
surjective étale map 𝑝′ ∶ 𝑋 ′

→ 𝑋 such that (𝑍 ×𝑌 𝑌
′
) ×𝑋 𝑋

′
→ 𝑍 ×𝑋 𝑋

′ has a section, say
𝑠. See the diagram

(𝑍 ×𝑌 𝑌
′
) ×𝑋 𝑋

′
𝑍 ×𝑌 𝑌

′
𝑋 ×𝑘 𝑌

′

𝑍 ×𝑋 𝑋
′

𝑍 𝑋 ×𝑘 𝑌

𝑋
′

𝑋,

𝑖
′

𝑖𝑑×𝑝

(𝜋◦𝑖)
∗
(𝑝

′
)

𝑝

′
∗
(𝜋◦𝑖)

𝑠

𝑖

𝜋◦𝑖

𝜋

𝑝
′

where we have denoted by 𝑖′ the pullback of 𝑖 along 𝑖𝑑 × 𝑝. Let us also denote by 𝜋 ′ the
projection 𝑋 ×𝑘 𝑌

′
→ 𝑋 .

Now, note that by the pullback lemma, the unique arrow 𝑗 filling the diagram

(𝑍 ×𝑌 𝑌
′
) ×𝑋 𝑋

′
𝑋

′
×𝑘 𝑌

′
𝑋

′

𝑍 ×𝑌 𝑌
′

𝑋 ×𝑘 𝑌
′

𝑋

(𝜋
′
◦𝑖
′
)
∗
(𝑝

′
)

𝑝

′
∗
(𝜋

′
◦𝑖
′
)

𝑗

𝜋

′
∗
(𝑝

′
)=𝑝

′
×𝑖𝑑

𝑝

′
∗
(𝜋

′
)

𝑝
′

𝑖
′

𝜋
′

is the pullback of 𝑖′ along 𝜋
′
∗
(𝑝

′
), hence a closed immersion. Moreover, since the projection

(𝑍 ×𝑌 𝑌
′
) ×𝑋 𝑋

′
→ 𝑍 ×𝑋 𝑋

′ is separated (as any morphism in Sm𝑘), 𝑠 is a closed immersion.
We define 𝛼 ′ to be the cycle associated to the closed immersion 𝑗 ◦ 𝑠 ∶ 𝑍 ×𝑋 𝑋

′
⟶ 𝑋

′
×𝑘 𝑌

′.
Since any pullback of a finite (resp. surjective) scheme morphism is finite (resp. surjective),
𝛼
′ is a finite correspondence from 𝑋

′ to 𝑌 ′.

It remains to show that 𝛼 ◦ 𝑝
′
= 𝑝 ◦ 𝛼

′. The unique filler 𝑘 in

𝑍 ×𝑋 𝑋
′

𝑋
′
×𝑘 𝑌 𝑋

′

𝑍 𝑋 ×𝑘 𝑌 𝑋

(𝜋◦𝑖)
∗
(𝑝

′
)

𝑝

′
∗
(𝜋◦𝑖)

𝑘

𝜋
∗
(𝑝

′
)=𝑝

′
×𝑖𝑑

𝑝

′
∗
(𝜋)

𝑝
′

𝑖 𝜋

is the pullback of 𝑖 along 𝑝′ × 𝑖𝑑 , hence it is a closed immersion whose associated cycle
is 𝛼 ◦ 𝑝

′. On the other hand, 𝑝 ◦ 𝛼
′ may be computed as the pushforward of 𝛼 along
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𝑖𝑑 × 𝑝 ∶ 𝑋 ×𝑘 𝑌
′
→ 𝑋 ×𝑘 𝑌 ; since 𝛼 ′

= (𝑗 ◦ 𝑠)∗[𝑍 ×𝑋 𝑋
′
]𝑍×𝑋𝑋

′ , it follows that

𝑝 ◦ 𝛼
′
= ((𝑖𝑑 × 𝑝) ◦ 𝑗 ◦ 𝑠)∗[𝑍 ×𝑋 𝑋

′
]𝑍×𝑋𝑋

′ = 𝑘∗[𝑍 ×𝑋 𝑋
′
]𝑍×𝑋𝑋

′ = 𝛼 ◦ 𝑝
′
.

Lemma 2.4.2. Suppose given an Ab-enriched category C, a (Set-enriched) subcategory
C′

↪ C such that Ob(C) = Ob(C′
), a presheaf 𝐹 ∶ C𝑜𝑝 ⟶ Ab whose restriction to C′ we

denote by 𝐹
′, a presheaf 𝐺′

∶ C
′
𝑜𝑝

⟶ Ab, and a natural transformation 𝜂 ∶ 𝐹
′
→ 𝐺

′.
For each 𝑋 ∈ Ob(C) = Ob(C′

), we use the notations ℎ𝑋 ∶= HomC(−, 𝑋 ) ∶ C𝑜𝑝 → Ab,
ℎ
′

𝑋
∶= HomC′(−, 𝑋 ) ∶ C

′
𝑜𝑝
→ Set for the corresponding represented presheaves. Then it is

equivalent to provide the following data:

(i) A presheaf 𝐺 ∶ C𝑜𝑝 ⟶ Ab whose restriction to C
′
𝑜𝑝 equals 𝐺′ and such that the

components of 𝜂 ∶ 𝐹 ′
→ 𝐺

′ define a natural transformation 𝜂̃ ∶ 𝐹 → 𝐺.

(ii) A choice of abelian group morphisms

𝜑𝑋 ∶ 𝐺
′
(𝑋 ) ⟶ HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
)

for each 𝑋 ∈ C subject to the following conditions:

(ii.a) For each 𝑋 ∈ C, the diagram

𝐹
′
(𝑋 ) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐹
′
)

𝐺
′
(𝑋 ) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
)

𝜓𝑋

𝜂𝑋 𝜂◦−

𝜑𝑋

commutes, where 𝜓𝑋 denotes the composite

𝐹
′
(𝑋 ) = 𝐹(𝑋 )

Yoneda
≅ HomPSh(C,Ab)(ℎ𝑋 , 𝐹 )

restriction
⟶ HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐹
′
).

(ii.b) Given 𝑓 ∶ 𝑋 ⟶ 𝑌 in C, let us denote by

𝑒𝑣𝑓 ∶ HomPSh(C′
,Ab)(ℎ𝑌 |C′ , 𝐺

′
) ⟶ 𝐺

′
(𝑋 )

the map given by evaluation at 𝑓 ∈ ℎ𝑌 |C′(𝑌 ) = HomC(𝑋 , 𝑌 ), and by

𝜇𝑓 ∶ HomPSh(C′
,Ab)(ℎ𝑌 |C′ , 𝐺

′
) ⟶ HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
)

the one given by precomposition with the restriction of HomC(−, 𝑓 ) to C
′
𝑜𝑝 .

Then the diagram

𝐺
′
(𝑌 ) HomPSh(C′

,Ab)(ℎ𝑌 |C′ , 𝐺
′
)

𝐺
′
(𝑋 ) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
)

𝑒𝑣𝑓 ◦𝜑𝑌

𝜑𝑌

𝜇𝑓

𝜑𝑋
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commutes.

(ii.c) For each 𝑋 ∈ C, 𝑒𝑣𝑖𝑑𝑋 ◦ 𝜑𝑋 ∶ 𝐺
′
(𝑋 ) → 𝐺

′
(𝑋 ) is the identity map.

Proof. Suppose given 𝐺 as in (i). Then for each 𝑋 ∈ C we define 𝜑𝑋 as in the following
commutative diagram:

𝐹
′
(𝑋 ) = 𝐹(𝑋 ) HomPSh(C,Ab)(ℎ𝑋 , 𝐹 ) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐹
′
)

𝐺
′
(𝑋 ) = 𝐺(𝑋) HomPSh(C,Ab)(ℎ𝑋 , 𝐺) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
).

≅

𝜂𝑋

restriction

𝜂̃◦− 𝜂◦−

𝜑𝑋

≅ restriction

Then (ii.a) holds by construction. For (ii.b), note that for any 𝑓 ∶ 𝑋 ⟶ 𝑌 in C, the compos-
ite 𝑒𝑣𝑓 ◦𝜑𝑌 equals𝐺(𝑓 ) by definition of the Yoneda isomorphism𝐺(𝑌 ) ≅ HomPSh(C,Ab)(ℎ𝑌 , 𝐺);
the desired equality 𝜇𝑓 ◦ 𝜑𝑌 = 𝜑𝑋 ◦ 𝐺(𝑓 ) now follows by naturality in 𝑋 (as an object of C)
of both arrows in the definition of 𝜑𝑋 . The equality 𝑒𝑣𝑖𝑑𝑋 ◦ 𝜑𝑋 = 𝐺(𝑖𝑑𝑋 ) = 𝑖𝑑𝐺(𝑋) for each
𝑋 ∈ C yields (ii.c).

Conversely, suppose given (𝜑𝑋 )𝑋∈Ob(C) as in (ii). We would like to define𝐺 ∶ C𝑜𝑝 ⟶ Ab
on arrows by sending each 𝑓 ∶ 𝑋 ⟶ 𝑌 to 𝐺(𝑓 ) ∶= 𝑒𝑣𝑓 ◦ 𝜑𝑌 ; let us then verify the desired
properties:

• Functoriality. (ii.c) states precisely that 𝐺 preserves identity morphisms. For compat-
ibility with composition, suppose given 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 in C; then we
use (ii.b) to obtain

𝐺(𝑓 ) ◦ 𝐺(𝑔) = (𝑒𝑣𝑓 ◦ 𝜑𝑌 ) ◦ (𝑒𝑣𝑔 ◦ 𝜑𝑍 )

= 𝑒𝑣𝑓 ◦ (𝜑𝑌 ◦ 𝑒𝑣𝑔 ◦ 𝜑𝑍 )

= 𝑒𝑣𝑓 ◦ (𝜇𝑔 ◦ 𝜑𝑍 )

= 𝑒𝑣𝑔◦𝑓 ◦ 𝜑𝑍

= 𝐺(𝑔 ◦ 𝑓 ).

• The restriction of 𝐺 to C
′
𝑜𝑝 equals 𝐺′. Suppose given 𝑓 ∶ 𝑋 → 𝑌 in C′. Then we may

consider the diagram

𝐺
′
(𝑌 ) HomPSh(C′

,Ab)(ℎ𝑌 |C′ , 𝐺
′
) HomPSh(C′

,Ab)(ℎ
′

𝑌
, 𝐺

′
) 𝐺

′
(𝑌 )

𝐺
′
(𝑋 ) HomPSh(C′

,Ab)(ℎ𝑋 |C′ , 𝐺
′
) HomPSh(C′

,Ab)(ℎ
′

𝑋
, 𝐺

′
) 𝐺

′
(𝑋 ),

𝜑𝑌

𝐺(𝑓 )

𝜈𝑌

𝜇𝑓 𝜇
′

𝑓

Yoneda ≅

𝐺
′
(𝑓 )

𝜑𝑋 𝜈𝑋 Yoneda ≅

where 𝜇
′

𝑓
denotes precomposition with HomC′(−, 𝑓 ), and 𝜈𝑋 (analogously for 𝜈𝑌 )

is given by precomposition with the natural transformation ℎ
′

𝑋
→ ℎ𝑋 |C′ which

sends morphisms in C′ to themselves as morphisms in C. Note that it commutes:
the left-hand square commutes by definition of 𝐺(𝑓 ) and (ii.b), the middle one by
construction, and the right-hand one by naturality of the Yoneda isomorphism. But
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by (ii.c), the composites of the upper and lower rows are equal to 𝑒𝑣𝑖𝑑𝑌 ◦ 𝜑𝑌 = 𝑖𝑑𝐺′
(𝑌 )

and 𝑒𝑣𝑖𝑑𝑋 ◦ 𝜑𝑋 = 𝑖𝑑𝐺′
(𝑋 ), respectively, so it follows that 𝐺(𝑓 ) = 𝐺′

(𝑓 ).

• 𝜂 defines a natural transformation 𝜂̃ ∶ 𝐹 → 𝐺. Given 𝑓 ∶ 𝑋 → 𝑌 in C, let us consider
the diagram

𝐹
′
(𝑌 ) HomPSh(C′

,Ab)(ℎ𝑌 |C′ , 𝐹
′
) 𝐹

′
(𝑋 )

𝐺
′
(𝑌 ) HomPSh(C′

,Ab)(ℎ𝑌 |C′ , 𝐺
′
) 𝐺

′
(𝑋 ).

𝜓𝑌

𝜂𝑌

𝑒𝑣𝑓

𝜂◦− 𝜂𝑋

𝜑𝑌 𝑒𝑣𝑓

The left-hand square commutes by (ii.a), and so does the right-hand one as for each
𝜀 ∈ HomPSh(C′

,Ab)(ℎ𝑌 |C′ , 𝐹
′
) we have

𝑒𝑣𝑓 (𝜂 ◦ 𝜀) = (𝜂 ◦ 𝜀)𝑋 (𝑓 ) = 𝜂𝑋 (𝜀𝑋 (𝑓 )) = 𝜂𝑋 (𝑒𝑣𝑓 (𝜀)).

But the outer square is precisely the desired naturality square for 𝑓 , since 𝑒𝑣𝑓 ◦ 𝜓𝑌 =

𝐹(𝑓 ) and 𝑒𝑣𝑓 ◦ 𝜑𝑌 = 𝐺(𝑓 ).

It is immediate that the constructions described above are inverse to each other.

Theorem 2.4.3. Suppose given a presheaf with transfers 𝐹 ∶ Cor𝑜𝑝
𝑘
⟶ Ab. Let 𝐹 ′

∶= 𝐹 ◦𝛾

be its restriction to Sm𝑜𝑝

𝑘
along the graph functor, and let 𝐹 ′

ét ∈ Shét(Sm𝑘 ,Ab) be its étale
sheafification. Then there exists a unique étale sheaf with transfers 𝐹ét ∈ STét(𝑘) satisfying
the following properties:

(i) 𝐹 ′

ét = 𝐹ét ◦ 𝛾 .

(ii) Let 𝜂 ∶ 𝐹
′
⟶ 𝐹

′

ét be the usual sheafification morphism. Then 𝜂 (recall that Sm𝑘

and Cor𝑘 have the same objects) defines a morphism of presheaves with transfers
𝜂
𝑡𝑟
∶ 𝐹 ⟶ 𝐹ét. In other words, for any finite correspondence 𝛼 ∈ Cor𝑘(𝑋 , 𝑌 ), the

following diagram commutes:

𝐹 (𝑌 ) = 𝐹
′
(𝑌 ) 𝐹ét(𝑌 ) = 𝐹

′

ét(𝑌 )

𝐹 (𝑋 ) = 𝐹
′
(𝑋 ) 𝐹ét(𝑋 ) = 𝐹

′

ét(𝑋 ).

𝐹 (𝛼)

𝜂𝑌

𝐹ét(𝛼)

𝜂𝑋

Sketch. We begin by showing that if there exist étale sheaves with transfers 𝐹1, 𝐹2 satisfying
the above properties, then 𝐹1 = 𝐹2. By (i), 𝐹1 and 𝐹2 coincide on objects and on graphs
of scheme morphisms. Let us prove that 𝐹1(𝛼) = 𝐹2(𝛼) for any finite 𝑘-correspondence
𝛼 ∶ 𝑋 ∙⟶ 𝑌 .

Suppose given 𝑠 ∈ 𝐹1(𝑌 ) = 𝐹2(𝑌 ). Note that there exists a surjective étale map 𝑝 ∶

𝑌
′
⟶ 𝑌 in Sm𝑘 such that 𝐹1(𝑝)(𝑠) = 𝐹2(𝑝)(𝑠) belongs to the image of the sheafification

map 𝐹
′
(𝑌

′
) ⟶ 𝐹

′

ét(𝑌
′
). Indeed, there exists an étale covering {𝑝𝑖 ∶ 𝑌𝑖 ⟶ 𝑌}𝑖∈𝐼 in Sm𝑘

such that for each 𝑖 ∈ 𝐼 , 𝐹 ′

ét(𝑝𝑖)(𝑠) is the image of some 𝑠𝑖 along 𝐹
′
(𝑌𝑖) ⟶ 𝐹

′

ét(𝑌𝑖); since
𝑌 is noetherian, hence quasi-compact, and every étale map is open, there exists a finite
𝐽 ⊂ 𝐼 such that {𝑝𝑗 ∶ 𝑌𝑗 ⟶ 𝑌}𝑗∈𝐽 is an étale covering. It follows that the disjoint union of
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schemes ∐
𝑗∈𝐽
𝑌𝑗 belongs to Sm𝑘 , and since presheaves with transfers send finite coproducts

in Cor𝑘 to products (being additive by definition), 𝑠 restricts via 𝐹 ′

ét(𝑌 ) → 𝐹
′

ét(∐𝑗∈𝐽
𝑌𝑗) to

the section corresponding to (𝐹
′

ét(𝑝𝑗)(𝑠))𝑗∈𝐽 , which is in turn in the image of

𝐹
′
(∐

𝑗∈𝐽

𝑌𝑗) ≅ ∏

𝑗∈𝐽

𝐹
′
(𝑌𝑗) ⟶ ∏

𝑗∈𝐽

𝐹
′

ét(𝑌𝑗) ≅ 𝐹
′

ét(∐

𝑗∈𝐽

𝑌𝑗).

We then take 𝑌 ′ to be ∐
𝑗∈𝐽
𝑌𝑗 .

By Lemma 2.4.1, there exists a commutative diagram

𝑋
′

𝑌
′

𝑋 𝑌

𝑝
′

𝛼
′

𝑝

𝛼

with 𝑝
′ surjective étale. Then naturality of 𝐹 → 𝐹1 and 𝐹 → 𝐹2 (which have the same

components, namely, those of 𝜂) applied to 𝛼
′ plus the assumption on 𝑌

′ show that
𝐹1(𝑝 ◦ 𝛼

′
)(𝑠) = 𝐹2(𝑝 ◦ 𝛼

′
)(𝑠), hence 𝐹1(𝛼 ◦ 𝑝

′
)(𝑠) = 𝐹2(𝛼 ◦ 𝑝

′
)(𝑠). But 𝐹 ′

ét(𝑝
′
) = 𝐹1(𝑝

′
) = 𝐹2(𝑝

′
) is

injective, since 𝐹 ′

ét is an étale sheaf and 𝑝′ is surjective étale, so 𝐹1(𝛼)(𝑠) = 𝐹1(𝛼)(𝑠). Since 𝛼
and 𝑠 were chosen arbitrarily, it follows that 𝐹1 = 𝐹2.

We now sketch the proof of existence of one such 𝐹ét; see Mazza et al., 2006. For that
purpose we use Lemma 2.4.2 with Cor𝑘 , Sm𝑘 , 𝐹 , 𝐹ét, 𝐹 ′, 𝐹 ′

ét, 𝜂 in place of C, C′, 𝐹 , 𝐺, 𝐹 ′, 𝐺′,
𝜂, respectively. Let us denote by 𝑃(𝑋 ) the abelian presheaf on Sm𝑘 obtained by restriction
of ℤ𝑡𝑟

𝑘
(𝑋 ). One needs to define for each 𝑋 ∈ Sm𝑘 a morphism of abelian groups

𝜑𝑋 ∶ 𝐹
′

ét(𝑋 ) ⟶ HomPSh(Sm𝑘 ,Ab)(𝑃(𝑋 ), 𝐹
′

ét)

in such a way that they satisfy (ii.a), (ii.b), (ii.c) in 2.4.2. Given 𝑠 ∈ 𝐹
′

ét(𝑋 ), one chooses
a surjective étale map 𝑝 ∶ 𝑌 → 𝑋 such that there exists a section 𝑡 ∈ 𝐹

′
(𝑌 ) with the

following two properties: (i) 𝐹 ′

ét(𝑝)(𝑠) ∈ 𝐹
′

ét(𝑌 ) equals 𝜂𝑌 (𝑡), and (ii) 𝑡 belongs to the kernel
of 𝐹 ′

(𝜋1) − 𝐹 (𝜋2) ∶ 𝐹
′
(𝑌 ) ⟶ 𝐹

′
(𝑌 ×𝑋 𝑌 ). Then the image of 𝑡 under

𝐹
′
(𝑌 ) = 𝐹 (𝑌 ) ≅ HomPSh(Cor𝑘 ,Ab)(ℤ

𝑡𝑟

𝑘
(𝑌 ), 𝐹 ) ⟶ HomPSh(Sm𝑘 ,Ab)(𝑃(𝑌 ), 𝐹

′
)

𝜂𝑌 ◦−

⟶ HomPSh(Sm𝑘 ,Ab)(𝑃(𝑌 ), 𝐹
′

ét)

belongs to the kernel of

HomPSh(Sm𝑘 ,Ab)(𝑃(𝑌 ), 𝐹
′

ét) ⟶ HomPSh(Sm𝑘 ,Ab)(𝑃(𝑌 ×𝑋 𝑌 ), 𝐹
′

ét).

So it equals the image of a unique element of HomPSh(Sm𝑘 ,Ab)(𝑃(𝑋 ), 𝐹
′

ét) under

HomPSh(Sm𝑘 ,Ab)(𝑃(𝑋 ), 𝐹
′

ét) ⟶ HomPSh(Sm𝑘 ,Ab)(𝑃(𝑌 ), 𝐹
′

ét)

by Mazza et al., 2006, 6.12, which in particular states that ℤ𝑡𝑟

𝑘
(𝑌 ×𝑋 𝑌 ) → ℤ

𝑡𝑟

𝑘
(𝑌 ) →

ℤ
𝑡𝑟

𝑘
(𝑋 ) → 0 is exact in STét(𝑘), so it is sent to a left exact sequence of abelian groups

under HomPSh(Sm𝑘 ,Ab)(−, 𝐹
′

ét). Proving that the element of HomPSh(Sm𝑘 ,Ab)(𝑃(𝑋 ), 𝐹
′

ét) thus ob-
tained only depends on 𝑠 yields a map 𝜑𝑋 . The claim follows by checking that the 𝜑𝑋 are
homomorphisms and that they satisfy the conditions in 2.4.2.



2.4 | ÉTALE SHEAFIFICATION WITH TRANSFERS, CHANGE OF TOPOLOGY

59

By proving that for any morphism of presheaves with transfers 𝜑 ∶ 𝐹 → 𝐺 there
exists a unique morphism 𝜑ét ∶ 𝐹ét → 𝐺ét such that the diagram

𝐹 𝐹ét

𝐺 𝐺ét

𝜑 𝜑ét

commutes, it follows that mapping each 𝐹 to 𝐹ét and each 𝜑 to 𝜑ét defines a functor 𝜋 𝑡𝑟∗ ∶
PST(𝑘) → STét(𝑘). Then it is a left adjoint of the inclusion 𝜋

𝑡𝑟

∗
∶ STét(𝑘) → PST(𝑘), as in

particular for any morphism 𝜑 ∶ 𝐹 → 𝐺 in PST(𝑘) where 𝐺 is an étale sheaf with transfers,
there exists a unique morphism 𝜓 such that the following diagram commutes:

𝐹 𝐹ét

𝐺 𝐺.

𝜑 𝜓

𝑖𝑑

We refer to it as the sheafification functor. By restricting 𝜋
𝑡𝑟∗ to Zariski sheaves with

transfers, one obtains a similar adjunction between STZar(𝑘) and STét(𝑘); the latter will
also be denoted by 𝜋 𝑡𝑟∗ ⊣ 𝜋

𝑡𝑟

∗
.

2.4.2 Change of topology
By Subsection 2.4.1, there exist pairs of adjoint functors

ShZar(Sm𝑘 ,Ab) Shét(Sm𝑘 ,Ab),
𝜋
∗

𝜋∗

STZar(𝑘) STét(𝑘),
𝜋
𝑡𝑟∗

𝜋
𝑡𝑟

∗

where the right adjoints 𝜋∗, 𝜋 𝑡𝑟∗ are given by restriction, 𝜋 ∗ is the usual sheafification functor
for étale sheaves, and 𝜋 𝑡𝑟∗ is characterized by the property that for each F ∈ STZar(𝑘), the
F -component of the adjunction unit 1STZar(𝑘) ⟹ 𝜋

𝑡𝑟

∗
𝜋
𝑡𝑟∗ restricts along Sm𝑜𝑝

𝑘
↪ Cor𝑜𝑝

𝑘
to

the F |Sm𝑘
-component of the adjunction unit 1ShZar(Sm𝑘 )

⟹ 𝜋∗𝜋
∗ (see Theorem 2.4.3). In

particular, for each F ∈ STét(𝑘) we have

(𝜋∗F )|Sm𝑘
= 𝜋

𝑡𝑟

∗
(F |Sm𝑘

),

and for each F ∈ STZar(𝑘) we have

(𝜋
∗F )|Sm𝑘

= 𝜋
𝑡𝑟∗
(F |Sm𝑘

).

Convention 2.4.4. Due to the above remark, we shall abuse notation and drop the superscript
‘tr’ and denote 𝜋 𝑡𝑟

∗
, 𝜋 𝑡𝑟∗ simply by 𝜋∗, 𝜋 ∗, respectively. If F is an object or complex in

ShZar(Sm𝑘 ,Ab) (resp. STZar(𝑘)), its étale sheafification 𝜋
∗F (resp. 𝜋 ∗F ∶= 𝜋

𝑡𝑟∗F ) will be
denoted by Fét.
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If F is an object or complex in STét(𝑘) or STZar(𝑘), we will often denote its restriction
F |Sm𝑘

by F in case it is clear from the context that we are dealing with objects or complexes
in Shét(Sm𝑘 ,Ab) or ShZar(Sm𝑘 ,Ab). In particular, if F is an object or complex in STét(𝑘)

such that R𝜋∗(F |Sm𝑘
) is defined (i.e. such that there exists a quasi-isomorphism F → I

in Ch(Shét(Sm𝑘 ,Ab)) with a complex of injectives I ), we will denote R𝜋∗(F |Sm𝑘
) (which

belongs to 𝐷(ShZar(Sm𝑘 ,Ab))) by R𝜋∗F .

Now we will discuss the fact that given 𝑋 ∈ Sm𝑘 and a complex F ∈ Ch(Shét(Sm𝑘 ,Ab))
which has an injective resolution, any choice of injective resolution F → I induces an
isomorphism

𝐻
∗

Zar(𝑋 ,R𝜋∗F ) ≅ 𝐻
∗

ét(𝑋 ,F ).

Recall that if an additive functor between abelian categories has an exact left adjoint
(which is the case for 𝜋∗ ∶ Shét(Sm𝑘 ,Ab) → ShZar(Sm𝑘 ,Ab)), then it preserves injec-
tive objects. Hence for any complex F ∈ Ch(Shét(Sm𝑘 ,Ab)) endowed with an injective
resolution 𝜌 ∶ F

≃

⟶ I (regarded as an isomorphism in 𝐷
+
(Shét(Sm𝑘 ,Ab))), we have

isomorphisms
R𝜋∗(F )

≅

⟶

R𝜋∗(𝜌)
R𝜋∗(I )

≅

⟶ 𝜋∗(I )

in 𝐷
+
(ShZar(Sm𝑘 ,Ab)), i.e. 𝜋∗(I ) is an injective resolution of R𝜋∗(F ). Now, fix 𝑋 ∈ Sm𝑘 ,

and let ΓZar ∶ ShZar(Sm𝑘 ,Ab) ⟶ Ab, Γét ∶ Shét(Sm𝑘 ,Ab) ⟶ Ab be the respective
functors given by evaluation at 𝑋 . Since Γét = ΓZar ◦ 𝜋∗, we conclude that étale cohomology
of F is isomorphic to Zariski cohomology of R𝜋∗(F ):

𝐻
𝑖

ét(𝑋 ,F ) ≅ 𝐻
𝑖
(Γét(I )) ≅ 𝐻

𝑖
(ΓZar(𝜋∗(I )) ≅ 𝐻

𝑖

Zar(𝑋 ,R𝜋∗(F )). (2.4.3)

Moreover, this allows us to produce canonical comparison maps between Zariski and
étale cohomology.

If F is a complex in Ch(ShZar(Sm𝑘 ,Ab)) such that 𝜋 ∗F has an injective resolution,
then we may compose the adjunction unit component F → 𝜋∗𝜋

∗F with 𝜋∗(𝜋
∗F ) →

R𝜋∗(𝜋 ∗F ) − given by applying 𝜋∗ to an injective resolution of 𝜋 ∗F − to obtain a chain map
F → R𝜋∗(𝜋 ∗F ) of complexes of Zariski sheaves. By taking cohomology with respect to a
scheme 𝑋 ∈ Sm𝑘 , we obtain a homomorphism

𝐻
𝑖

Zar(𝑋 ,F ) ⟶ 𝐻
𝑖

Zar(𝑋 ,R𝜋∗(𝜋 ∗F )) ≅ 𝐻
𝑖

ét(𝑋 , 𝜋
∗F ).

We will refer to maps of this form as change of topology maps.

If F is moreover a complex of étale sheaves, then the isomorphism F ≅ 𝜋
∗F induces

an isomorphism𝐻
𝑖

ét(𝑋 ,F ) ≅ 𝐻
𝑖

ét(𝑋 , 𝜋
∗F ), so the change of topology map may be identified

up to isomorphism with a homomorphism

𝐻
𝑖

Zar(𝑋 ,F ) ⟶ 𝐻
𝑖

ét(𝑋 ,F ).



2.5 | HOMOTOPY INVARIANT (PRE)SHEAVES WITH TRANSFERS

61

2.5 Homotopy invariant (pre)sheaves with
transfers

Throughout this section, we let 𝑘 be a fixed field. For any 𝑋 ∈ Sm𝑘 , we denote by
𝜋 ∶ 𝑋 × 𝔸

1

𝑘
→ 𝑋 the canonical projection, and by 𝜄0, 𝜄1 ∶ 𝑋 → 𝑋 × 𝔸

1

𝑘
the morphisms

given by 𝑥 ↦ (𝑥, 0) and 𝑥 ↦ (𝑥, 1), respectively.

Definition 2.5.1. A presheaf with transfers 𝐹 ∈ PST(𝑘) is said to be homotopy invariant if
for every 𝑋 ∈ Sm𝑘 , 𝐹 (𝜋) ∶ 𝐹 (𝑋 ) → 𝐹(𝑋 ×𝔸

1

𝑘
) is an isomorphism. A complex of presheaves

with transfers is said to be homotopy invariant if the cohomology presheaf with transfers
𝐻

𝑛
𝐹 is homotopy invariant for every integer 𝑛.

Remark 2.5.2. If 𝐹 is a complex of presheaves with transfers, we shall denote by 𝐹
𝔸

1

𝑘

the
complex of presheaves with transfers given by 𝐹

𝔸
1

𝑘

(−) = 𝐹 (− × 𝔸
1

𝑘
). This construction

extends to a functor Ch(PST(𝑘)) → Ch(PST(𝑘)) given by precomposition with − × 𝔸
1

𝑘
∶

Cor𝑘 → Cor𝑘 . Moreover, for each 𝐹 we have a chain map Π𝐹 ∶ 𝐹 ⟶ 𝐹
𝔸

1

𝑘

given on each
integer 𝑛 and each 𝑋 ∈ Sm𝑘 by the map 𝐹 𝑛(𝜋) ∶ 𝐹 𝑛(𝑋 ) → 𝐹

𝑛
(𝑋 × 𝔸

1

𝑘
) = 𝐹

𝑛

𝔸
1

𝑘

(𝑋 ) induced
by the projection 𝜋 ∶ 𝑋 × 𝔸

1

𝑘
→ 𝑋 . It is natural in 𝐹 , being given by precomposition with

the natural transformation 1Cor𝑜𝑝
𝑘

⇒ −×𝔸
1

𝑘
of endofunctors on Cor𝑜𝑝

𝑘
whose 𝑋 -component

is the arrow dual to the canonical projection 𝑋 × 𝔸
1

𝑘
→ 𝑋 .

By construction, a presheaf with transfers 𝐹 , which we identify with a complex concen-
trated in degree 0, is homotopy invariant if and only if Π𝐹 ∶ 𝐹 ⟶ 𝐹

𝔸
1

𝑘

is an isomorphism.

Since small limits and colimits in the category PSh(Cor𝑘 ,Ab) of (not necessarily addi-
tive) abelian presheaves are computed pointwise and finite finite (co)products commute
with arbitrary (co)limits in Ab, it follows that any (co)limit in PSh(Cor𝑘 ,Ab) of a small
diagram additive presheaves is additive. Hence small (co)limits in PST(𝑘) exist and are
computed pointwise. This implies that small (co)limits, cohomology objects, shifts, and
mapping cones in Ch(PST(𝑘)) commute with the functor 𝐹 ⟼ 𝐹

𝔸
1

𝑘

defined above.

As a consequence, a complex of presheaves with transfers 𝐹 is homotopy invariant
if and only if Π𝐹 ∶ 𝐹 ⟶ 𝐹

𝔸
1

𝑘

is sent to an isomorphism under the cohomology functor
𝐻

𝑛 for every integer 𝑛, i.e. if Π𝐹 is a quasi-isomorphism, or equivalently, if Π𝐹 becomes an
isomorphism in 𝐷(PST(𝑘)).

Lemma 2.5.3. Suppose 𝜑 ∶ 𝐹 → 𝐺 is a morphism of complexes of presheaves with
transfers (with respect to 𝑘) such that:

(i) 𝐹 and 𝐺 are homotopy invariant.

(ii) For every field extension 𝐾/𝑘 such that Spec (𝐾) ∈ Sm𝑘 , i.e. 𝐾/𝑘 is finite and separa-
ble, the map of complexes of abelian groups 𝜑(Spec 𝐾) ∶ 𝐹(Spec 𝐾) → 𝐺(Spec 𝐾)
is a quasi-isomorphism.

Then the Zariski sheafification 𝜑Zar of the restriction of 𝐹 to Sm𝑘 is a quasi-isomorphism
in Ch(ShZar(Sm𝑘 ,Ab)).
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Proof. In the notation of Remark 2.5.2, we have a morphism

𝐹 𝐺 Cone(𝜑) 𝐹 [1]

𝐹
𝔸

1

𝑘

𝐺
𝔸

1

𝑘

Cone(𝜑)
𝔸

1

𝑘

= Cone(𝜑
𝔸

1

𝑘

) 𝐹 [1]
𝔸

1

𝑘

= 𝐹
𝔸

1

𝑘

[1].

𝜑

Π𝐹 Π𝐺 ΠCone(𝜑) Π
𝐹[1]

=Π𝐹 [1]

𝜑
𝔸
1

𝑘

of distinguished triangles in𝐷(PST(𝑘)). Also by Remark 2.5.2, assumption (i) implies thatΠ𝐹

and Π𝐺 are isomorphisms in 𝐷(PST(𝑘)). By the five lemma, ΠCone(𝜑) is also an isomorphism
in 𝐷(PST(𝑘)), so Cone(𝜑) is a homotopy invariant complex of presheaves with transfers.
Moreover, assumption (ii) implies that for each integer 𝑛, the cohomology presheaf with
transfers 𝐻 𝑛Cone(𝜑) vanishes on the spectrum of every finite separable extension of 𝑘. By
Mazza et al., 2006, Corollary 11.2, 𝐻 𝑛

Zar(Cone(𝜑)Zar) = (𝐻
𝑛

PST(𝑘)Cone(𝜑))Zar is trivial. Hence
Cone(𝜑Zar) ≅ Cone(𝜑)Zar is quasi-isomorphic to 0 in Ch(ShZar(Sm𝑘 ,Ab)), and we conclude
that 𝜑Zar is a quasi-isomorphism in Ch(ShZar(Sm𝑘 ,Ab)).
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Chapter 3

Milnor K-theory via motivic
cohomology; variants of the
Bloch-Kato conjecture

In this chapter we outline, following mainly Mazza et al., 2006 and Haesemeyer and
C. Weibel, 2019, some preliminary results related to the application of motivic cohomology
to the study of the classical comparison problem between Milnor K-theory and Galois
cohomology discussed in Chapter 1.

We begin by discussing the characterization of Milnor K-theory groups of a field 𝑘 as
certain motivic cohomology groups of Spec 𝑘 with respect to the Zariski topology. Then
we define Voevodsky’s triangulated category of mixed motives over a field and state the
property of motivic cohomology being representable in it. In the last section we study
how the norm residue homomorphism may be described as a change of topology map
from Zariski to étale motivic cohomology groups of the given field. We conclude with a
succinct exposition, based on the first two chapters of Haesemeyer and C. Weibel, 2019,
of some results relating the Bloch-Kato, Beilinson-Lichtenbaum and generalized Hilbert
90 conditions.

3.1 Milnor K-theory as motivic cohomology
In this section, which is based on Mazza et al., 2006, Lecture 5, we aim to compute

the motivic cohomology groups 𝐻 𝑛,𝑛
(Spec 𝑘, ℤ) of a given field 𝑘 in bidegrees of the form

(𝑛, 𝑛) for 𝑛 ≥ 0. More precisely, it will follow from the study of these groups that they are
canonically isomorphic to the Milnor K-groups of 𝑘; moreover, such isomorphisms will be
compatible with the corresponding multiplicative structures (Theorem 3.1.6).

Convention 3.1.1. Throughout this section, 𝑆 will be used as an abbreviation for the 𝑘-
scheme 𝔸

1

𝑘
⧵ {0}.

We start by recalling that for 𝑞 = 0, 1, previous results provide a characterization of
motivic cohomology groups of the form 𝐻

𝑝,𝑞
(Spec 𝑘, ℤ):
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(i) As in Remark 2.2.8, we have ℤ(0) = 𝐶∗(ℤ
𝑡𝑟

𝑘
(Spec 𝑘)) ≃ ℤ

𝑡𝑟

𝑘
(Spec 𝑘). Hence for each

scheme 𝑋 ∈ Sm𝑘 and 𝑝 ∈ ℤ,

𝐻
𝑝,0
(𝑋 , ℤ) ≅ 𝐻

𝑝

Zar(𝑋 , 𝐶∗(ℤ
𝑡𝑟

𝑘
(Spec 𝑘))|𝑋Zar) ≅ 𝐻

𝑝

Zar(𝑋 , ℤ
𝑡𝑟

𝑘
(Spec 𝑘)|𝑋Zar),

and in particular

𝐻
0,0
(𝑋 , ℤ) ≅ 𝐻

0

Zar(𝑋 , ℤ
𝑡𝑟

𝑘
(Spec 𝑘)|𝑋Zar) ≅ ℤ

𝑡𝑟

𝑘
(Spec 𝑘)(𝑋 ) = Cor𝑘(𝑋 , Spec 𝑘) ≅ ℤ

𝑐(𝑋 )
,

where 𝑐(𝑋 ) denotes the (finite) set of connected components of 𝑋 . Thus for Spec 𝑘
we obtain

𝐻
0,0
(Spec 𝑘, ℤ) ≅ ℤ.

(ii) By Proposition 2.3.5, we haveℤ(1) ≃ O×. So (as in Proposition 2.3.5) for each𝑋 ∈ Sm𝑘

and 𝑝 ∈ ℤ,

𝐻
𝑝,1
(𝑋 , ℤ) = 𝐻

𝑝

Zar(𝑋 , ℤ(1)|𝑋Zar) ≅ 𝐻
𝑝

Zar(𝑋 ,O
×
[−1]) ≅ 𝐻

𝑝−1

Zar (𝑋 ,O
×
),

and in particular
𝐻

1,1
(𝑋 , ℤ) ≅ 𝐻

0

Zar(𝑋 ,O
×
) ≅ O×

(𝑋 ).

For Spec 𝑘 we obtain
𝐻

1,1
(Spec 𝑘, ℤ) ≅ 𝑘×.

Denoting by 𝜏 ∶ 𝑘
×

≅

→ 𝐻
1,1
(Spec 𝑘, ℤ) the latter isomorphism, we obtain a graded ring

homomorphism
𝜏∗ ∶ 𝑇 (𝑘

×
) ⟶ ⨁

𝑛≥0

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ)

which by construction satisfies 𝜏𝑛(𝑎1⊗⋯⊗𝑎𝑛) = 𝜏(𝑎1) ⋯ 𝜏(𝑎𝑛) for 𝑎1, ... 𝑎𝑛 ∈ 𝑘×. We may then
ask whether 𝜏∗ fails to be an isomorphism and, if it does, what is its (co)kernel. Following
Mazza et al., 2006, we denote 𝜏𝑛(𝑎1 ⊗ ⋯ ⊗ 𝑎𝑛) as above by [𝑎1, ..., 𝑎𝑛]. Next we discuss an
alternative description of 𝜏∗ which allows us to explicitly describe [𝑎1, ..., 𝑎𝑛] in terms of
the definition of motivic cohomology for arbitrary 𝑛.

One key aspect of the spectrum of a field − which is absent for general schemes
− that allows us to study its motivic cohomology (or the Zariski cohomology of other
complexes of sheaves) in higher degrees is the fact that its Zariski site (Spec 𝑘)Zar is
equivalent to the lattice {∅ ⊂ Spec 𝑘} of open subsets of Spec 𝑘, so the global section
functor Γ(Spec 𝑘, −) ∶ ShZar(Spec 𝑘,Ab) → Ab (given by evaluation at Spec 𝑘) is an
equivalence of categories.

Thus for each 𝑞 ∈ ℤ, the restriction of the motivic complex ℤ(𝑞) to the Zariski site of
Spec 𝑘 corresponds to the complex of abelian groups given by evaluation at Spec 𝑘:

𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)[−𝑞](Spec 𝑘).

Moreover, its hypercohomology with respect to Γ(Spec 𝑘, −) is given by the usual coho-
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mology groups

𝐻
𝑝
(𝐶∗ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)[−𝑞](Spec 𝑘)) ≅ 𝐻 𝑝−𝑞

(𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)).

In other words, for all 𝑝, 𝑞 ∈ ℤ we have an isomorphism

𝐻
𝑝,𝑞
(Spec 𝑘, ℤ) ≅ 𝐻 𝑝−𝑞

(𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)). (3.1.1)

In particular, motivic cohomology in bidegrees (𝑛, 𝑛) for 𝑛 ≥ 0 acquire the following
convenient form:

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ) ≅ 𝐻 0

(𝐶∗ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑛

𝑚
)(Spec 𝑘)) ≅ Coker

(

ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑛

𝑚
)(𝔸

1

𝑘
)

𝜕0−𝜕1

⟶ ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑛

𝑚
)(Spec 𝑘)

)

.

(3.1.2)

In what follows, it will be necessary to use a more explicit description of the complexes
of abelian groups 𝐶∗ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘) which compute the (Zariski) motivic cohomology of

Spec 𝑘. We begin with the following lemma:

Lemma 3.1.2. For any 𝑋 ∈ Sm𝑘 , ℤ𝑡𝑟

𝑘
(𝑋 )(Spec 𝑘) = Cor𝑘(Spec 𝑘, 𝑋 ) is the subgroup of

Z(Spec 𝑘 ×𝑘 𝑋) ≅ Z(𝑋 ) generated by the closed points of Spec 𝑘 ×𝑘 𝑋 ≅ 𝑋 .

Proof. If the integral closed subscheme corresponding to a point 𝑥 ∈ 𝑋 is finite (and
surjective) over Spec 𝑘, then it is zero-dimensional, so 𝑥 is closed. Conversely, if 𝑥 is closed,
then its residue field is finitely generated as a 𝑘-algebra, hence by Zariski’s lemma it is
finite as a 𝑘-vector space.

Now, given 𝑞 ≥ 0 and an integer 𝑖 ≤ 𝑞, we obtain that the 𝑖-th entry of ℤ(𝑞)(Spec 𝑘)
is

ℤ(𝑞)
𝑖
(Spec 𝑘) = ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘 × Δ𝑞−𝑖)

= Coker
(

𝑞

⨁

𝑗=1

Cor𝑘(Spec 𝑘 × Δ𝑞−𝑖 , 𝑆(1) × ⋯ × Spec 𝑘(𝑗) × ⋯ × 𝑆
(𝑞)
) ⟶

⨁
𝑗
Cor𝑘 (Spec 𝑘×Δ𝑞−𝑖 ,𝑖𝑑,...,𝑠1,...,𝑖𝑑)

⟶ Cor𝑘(Spec 𝑘 × Δ𝑞−𝑖 , 𝑆(1) × ⋯ × 𝑆
(𝑞)
)

)

≅ Coker
(

𝑞

⨁

𝑗=1

Cor𝑘(Δ𝑞−𝑖 , 𝑆(1)×⋯×Spec 𝑘(𝑗)×⋯×𝑆
(𝑞)
)

⨁
𝑗
Cor𝑘 (Δ𝑞−𝑖 ,𝑖𝑑,...,𝑠1,...,𝑖𝑑)

⟶ Cor𝑘(Δ𝑞−𝑖 , 𝑆(1)×⋯×𝑆
(𝑞)
)

)

.

In order to compute 𝐻 𝑞,𝑞
(Spec 𝑘, ℤ), we need the particular cases 𝑖 = 𝑞 − 1, 𝑞, 𝑞 + 1, which

are given by

ℤ(𝑞)
𝑞−1

(Spec 𝑘) ≅ Coker
(

𝑞

⨁

𝑗=1

Cor𝑘(Δ1
, 𝑆

(1)
×⋯×Spec 𝑘(𝑗)×⋯×𝑆

(𝑞)
)

⨁
𝑗
Cor𝑘 (Δ1

,𝑖𝑑,...,𝑠1 ,...,𝑖𝑑)

⟶ Cor𝑘(Δ1
, 𝑆

(1)
×⋯×𝑆

(𝑞)
)

)

,

ℤ(𝑞)
𝑞
(Spec 𝑘) ≅ Coker

(

𝑞

⨁

𝑗=1

Cor𝑘(Δ0
, 𝑆

(1)
×⋯×Spec 𝑘(𝑗)×⋯×𝑆

(𝑞)
)

⨁
𝑗
Cor𝑘 (Δ0

,𝑖𝑑,...,𝑠1 ,...,𝑖𝑑)

⟶ Cor𝑘(Δ0
, 𝑆

(1)
×⋯×𝑆

(𝑞)
)

)

,
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ℤ(𝑞)
𝑞+1

(Spec 𝑘) ≅ 0.

Thus 𝐻 𝑞,𝑞
(Spec 𝑘, ℤ) is the cokernel of

𝜕 ∶ ℤ(𝑞)
𝑞−1

(Spec 𝑘) ⟶ ℤ(𝑞)
𝑞
(Spec 𝑘),

where 𝜕 is induced by the face maps 𝜕0 and 𝜕1 as in the commutative diagram

⨁
𝑞

𝑗=1
Cor𝑘(Δ1

, 𝑆
(1)

× ⋯ × Spec 𝑘(𝑗) × ⋯ × 𝑆
(𝑞)
) Cor𝑘(Δ1

, 𝑆
(1)

× ⋯ × 𝑆
(𝑞)
) ℤ(𝑞)

𝑞−1
(Spec 𝑘)

⨁
𝑞

𝑗=1
Cor𝑘(Δ0

, 𝑆
(1)

× ⋯ × Spec 𝑘(𝑗) × ⋯ × 𝑆
(𝑞)
) Cor𝑘(Δ0

, 𝑆
(1)

× ⋯ × 𝑆
(𝑞)
) ℤ(𝑞)

𝑞
(Spec 𝑘).

𝜕
0
−𝜕

1 𝜕
0
−𝜕

1
𝜕

As a first step towards comparing Milnor K-groups with motivic cohomology groups
of 𝑘, note that this provides for each 𝑞 ≥ 0 a map of abelian groups

(𝑘
×
)
𝑞
→ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) (3.1.3)

given by the composite

(𝑘
×
)
𝑞
≅ Sm𝑘(Spec 𝑘, 𝑆𝑞) → Cor𝑘(Spec 𝑘, 𝑆𝑞) ≅ Cor𝑘(Δ0

, 𝑆
𝑞
)

⟶ ℤ(𝑞)
𝑞
(Spec 𝑘) ⟶ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ),

where the first map identifies 𝑘-tuples of units in 𝑘 with 𝑘-valued points of 𝑆𝑞 (which are
classified by 𝑘-algebra homomorphisms 𝑘[𝑡, 𝑡−1]⊗𝑞 → 𝑘), the second one sends morphisms
of schemes to finite correspondences via the graph functor, the third one is defined by
Spec 𝑘 ≅ Δ

0, and the fourth and fifth ones are given by the above construction.

Let us denote this map by 𝜏 ′
𝑞
. It follows from Remark 2.2.8 and Corollary Mazza et al.,

2006 that 𝜏 ′
0

and 𝜏
′

1
are isomorphisms. By definition of the multiplicative structure on

motivic cohomology (Mazza et al., 2006, 3.11, 3.12), the map of abelian groups

⨁

𝑞≥0

𝜏
′

𝑞
∶ ⨁

𝑞≥0

(𝑘
×
)
𝑞
⟶ ⨁

𝑞≥0

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ)

defines a graded ring homomorphism 𝜏
′

∗
∶ 𝑇 (𝑘

×
) → ⨁

𝑞≥0
𝐻

𝑞,𝑞
(Spec 𝑘, ℤ). As 𝜏 ′ coincides

in degree 1 with the homomorphism 𝜏∗ defined above, the fact that the tensor algebra is
generated by degree 1 elements implies 𝜏∗ = 𝜏 ′∗ . This provides the desired characterization
of 𝜏∗ in terms of the definition of motivic cohomology groups in arbitrary degrees. In
particular, this allows us to use finite correspondences to study certain relations between
elements of the form [𝑎1, ..., 𝑎𝑞] ∈ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ).
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3.1.1 A comparison map in motivic cohomology associated to a
finite field extension

In order to study the motivic cohomology groups 𝐻 𝑞,𝑞
(Spec 𝑘, ℤ), it will be useful to

construct certain comparison maps of the form

𝐻
𝑞,𝑞
(Spec 𝑙, ℤ) → 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ),

where 𝑙 is a finite extension of 𝑘. The idea, further explored below, is that while
𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) may not be generated by elements of the form [𝑎1, ..., 𝑎𝑞] for 𝑎1, ..., 𝑎𝑞 ∈ 𝑘×,

it is generated by the images under such comparison maps of elements of the form
[𝑏1, ..., 𝑏𝑞] ∈ 𝐻

𝑞,𝑞
(Spec 𝑙, ℤ) for 𝑏1, ..., 𝑏𝑙 ∈ 𝑙×.

Construction 3.1.3. Let 𝑖 ∶ 𝑘 ↪ 𝑙 be a finite field extension. Then Spec 𝑖 ∶ Spec 𝑙 →
Spec 𝑘 is a finite, hence proper, morphism of schemes. It is natural to ask whether this
gives rise to a notion of proper pushforward between finite 𝑙-correspondences and finite
𝑘-correspondences.

For that purpose, suppose given 𝑓 ∶ 𝑋 → Spec 𝑘, 𝑔 ∶ 𝑌 → Spec 𝑘 in Sm𝑘 , and let
us consider the commutative diagram (in which we denote Spec 𝑖 by 𝑖, and canonical
projections by 𝜋 )

𝑋𝑙 ×𝑙 𝑌𝑙 𝑋𝑙 Spec 𝑙

𝑋 ×𝑘 𝑌 𝑋 Spec 𝑘,

𝜋

𝑓
∗
(𝑖)×𝑖𝑔

∗
(𝑖) 𝑓

∗
(𝑖)

𝑖
∗
(𝑓 )

𝑖

𝜋 𝑓

where both inner squares and the outer one are pullbacks. Since Spec 𝑖 is finite, hence
proper, so is 𝑓 ∗(𝑖) ×𝑖 𝑔∗(𝑖). Let us denote this morphism by 𝑝. This allows us to define a
pushforward map of abelian groups

𝑝∗ ∶ Z(𝑋𝑙 ×𝑙 𝑌𝑙) ⟶ Z(𝑋 ×𝑘 𝑌 )

given on generators as follows: for any irreducible closed subset 𝑍 ⊂ 𝑋𝑙 ×𝑙 𝑌𝑙 , its image
along 𝑝 is closed in 𝑋 ×𝑘 𝑌 (by properness) and irreducible (by continuity); the associated
cycle [𝑍]𝑋𝑙×𝑙𝑌𝑙

is sent to
[𝜅(𝑍) ∶ 𝜅(𝑓 (𝑍 )] ⋅ [𝑝(𝑍)]𝑋×𝑘𝑌

.

Let us now show that 𝑝∗ sends finite 𝑙-correspondences to finite 𝑘-correspondences. Sup-
pose given a generating finite 𝑙-correspondence of the form [𝑍]𝑋𝑙×𝑙𝑌𝑙

as above. This means
that by endowing 𝑍 with the reduced closed subscheme structure, the composite

𝑍 ↪ 𝑋𝑙 ×𝑙 𝑌𝑙

𝜋

⟶ 𝑋𝑙

is a finite morphism and its image is an irreducible component of 𝑋𝑙 . Moreover, since
Spec 𝑖 ∶ Spec 𝑙 → Spec 𝑘 is flat and flatness is preserved under base change, 𝑓 ∗(𝑖) ∶ 𝑋𝑙 →
𝑋 is also flat. By Grothendieck, 1965, Cor. 2.3.5(ii), it follows that the image, say 𝑊 ⊂ 𝑋 ,
of the composite

𝑍 ↪ 𝑋𝑙 ×𝑙 𝑌𝑙

𝜋

⟶ 𝑋𝑙

𝑓
∗
(𝑖)

⟶ 𝑋
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is such that 𝑊 is an irreducible component of 𝑋 . On the other hand, 𝑓 ∗(𝑖) is finite (being a
base change of the finite morphism Spec (𝑖)), hence proper, hence in particular closed. Thus
𝑊 = 𝑊 , and 𝑊 is an irreducible component of 𝑋 . Furthermore, since finite morphisms
are stable under composition, we have that

𝑍 ↪ 𝑋𝑙 ×𝑙 𝑌𝑙

𝜋

⟶ 𝑋𝑙

𝑓
∗
(𝑖)

⟶ 𝑋

is finite. Now, since this equals the composite

𝑍 ↪ 𝑋𝑙 ×𝑙 𝑌𝑙

𝑝

⟶ 𝑋 ×𝑘 𝑌

𝜋

⟶ 𝑋,

it follows from Lemma 2.1.3 that the integral closed subscheme 𝑝(𝑍) → 𝑋 ×𝑘 𝑌 has the
property that the composite

𝑝(𝑍) ⟶ 𝑋 ×𝑘 𝑌

𝜋

⟶ 𝑋

is finite and its image is an irreducible component of 𝑋 . Thus [𝑝(𝑍)]𝑋×𝑘𝑌 is a generating
finite 𝑘-correspondence, and the proper pushforward [𝜅(𝑍) ∶ 𝜅(𝑓 (𝑍 )] ⋅ [𝑝(𝑍)]𝑋×𝑘𝑌

is a finite
𝑘-correspondence. This defines a map of abelian groups

𝑖! ∶ Cor𝑙(𝑋𝑙 , 𝑌𝑙) ⟶ Cor𝑘(𝑋 , 𝑌 ).

By construction, it is given by restriction of the proper pushforward map 𝑝∗ considered
above; by abuse of notation, we will sometimes also denote it by 𝑝∗.

Let us now consider the following setting, from which we will establish a useful
naturality property for maps of the form 𝑖!: suppose given 𝑋 , 𝑌 , 𝑍 ∈ Sm𝑘 , and let us denote
the corresponding base field change maps by

𝑝 ∶ 𝑋𝑙 ×𝑙 𝑌𝑙 ⟶ 𝑋 ×𝑘 𝑌 ,

𝑞 ∶ 𝑌𝑙 ×𝑙 𝑍𝑙 ⟶ 𝑌 ×𝑘 𝑍,

𝑟 ∶ 𝑋𝑙 ×𝑙 𝑍𝑙 ⟶ 𝑋 ×𝑘 𝑍,

𝑠 ∶ 𝑋𝑙 ×𝑙 𝑌𝑙 ×𝑙 𝑍𝑙 ⟶ 𝑋 ×𝑘 𝑌 ×𝑘 𝑍.

We now prove that changing the base field is compatible with composition of correspon-
dences in the sense that the diagram

Cor𝑙(𝑋𝑙 , 𝑌𝑙) Cor𝑘(𝑋 , 𝑌 )

Cor𝑙(𝑋𝑙 , 𝑍𝑙) Cor𝑘(𝑋 , 𝑍)

𝑝∗

𝑞
∗
(𝛽)◦− 𝛽◦−

𝑟∗

commutes for each 𝛽 ∈ Cor𝑘(𝑌 , 𝑍 ). We proceed by taking any 𝛼 ∈ Cor𝑙(𝑋𝑙 , 𝑌𝑙), applying
both composite maps, and then comparing the two cycles thus obtained by means of the
functoriality of pullbacks, the base change formula, and the projection formula.
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The left vertical map sends 𝛼 to 𝑞∗(𝛽) ◦ 𝛼 , which is given explicitly by

𝜋
𝑋𝑙𝑌𝑙𝑍𝑙

𝑋𝑙𝑍𝑙 ∗
(𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑌𝑙𝑍𝑙
𝑞
∗
(𝛽)).

It is sent by 𝑟∗ to
𝑟∗𝜋

𝑋𝑙𝑌𝑙𝑍𝑙

𝑋𝑙𝑍𝑙 ∗
(𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑌𝑙𝑍𝑙
𝑞
∗
(𝛽)). (3.1.4)

On the other hand, 𝛼 is sent by the top horizontal map to 𝑝∗(𝛼), which is in turn sent by
the right vertical map to

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
(𝜋

𝑋𝑌𝑍∗

𝑋𝑌
𝑝∗(𝛼) ⋅ 𝜋

𝑋𝑌𝑍∗

𝑌𝑍
(𝛽)). (3.1.5)

Since 𝑟∗𝜋
𝑋𝑙𝑌𝑙𝑍𝑙

𝑋𝑙𝑍𝑙 ∗
= (𝑟 ◦ 𝜋

𝑋𝑙𝑌𝑙𝑍𝑙

𝑋𝑙𝑍𝑙
)∗ = (𝜋

𝑋𝑌𝑍

𝑋𝑍
◦ 𝑠)∗ = 𝜋

𝑋𝑌𝑍

𝑋𝑍∗
𝑠∗, we have that 3.1.4 equals

𝜋
𝑋𝑌𝑍

𝑋𝑍∗
𝑠∗(𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑌𝑙𝑍𝑙
𝑞
∗
(𝛽)).

Thus by comparing it with 3.1.5, it suffices to show that

𝑠∗(𝜋
𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝜋

𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑌𝑙𝑍𝑙
𝑞
∗
(𝛽)) = 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
𝑝∗(𝛼) ⋅ 𝜋

𝑋𝑌𝑍∗

𝑌𝑍
(𝛽).

But 𝜋𝑋𝑙𝑌𝑙𝑍𝑙 ∗
𝑌𝑙𝑍𝑙

𝑞
∗
= (𝜋

𝑋𝑙𝑌𝑙𝑍𝑙

𝑌𝑙𝑍𝑙
◦ 𝑞)

∗
= (𝑠 ◦ 𝜋

𝑋𝑌𝑍

𝑌𝑍
)
∗
= 𝑠

∗
𝜋
𝑋𝑌𝑍∗

𝑌𝑍
, so the left hand side equals

𝑠∗(𝜋
𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝑠

∗
𝜋
𝑋𝑌𝑍∗

𝑌𝑍
(𝛽)),

which by the projection formula equals

𝑠∗𝜋
𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
(𝛼) ⋅ 𝜋

𝑋𝑌𝑍∗

𝑌𝑍
(𝛽).

The claim then follows by using the base change formula 𝑠∗𝜋
𝑋𝑙𝑌𝑙𝑍𝑙 ∗

𝑋𝑙𝑌𝑙
= 𝜋

𝑋𝑌𝑍∗

𝑋𝑌
𝑝∗.

An analogous computation shows that the diagram

Cor𝑙(𝑌𝑙 , 𝑍𝑙) Cor𝑘(𝑌 , 𝑍 )

Cor𝑙(𝑋𝑙 , 𝑍𝑙) Cor𝑘(𝑋 , 𝑍)

𝑞∗

−◦𝑝
∗
(𝛼) −◦𝛼

𝑟∗

commutes for each 𝛼 ∈ Cor𝑘(𝑋 , 𝑌 ).

Construction 3.1.4. As above, let 𝑖 ∶ 𝑘 ↪ 𝑙 be a finite field extension. We will now use
the previous construction to compare certain chain complexes of abelian groups obtained
from the complexes of presheaves with transfers ℤ(𝑞) for the two fields. In what follows,
we shall denote such complexes by ℤ(𝑞)𝑘 and ℤ(𝑞)𝑙 when necessary, in order to avoid
ambiguity. We recall that the base change functor (Spec 𝑖)∗ ∶ Sm𝑘 ⟶ Sm𝑙 : preserves
finite products; sends Spec 𝑘 to Spec 𝑙; sends the algebraic 𝑛-simplices over 𝑘, Δ𝑛

𝑘
, to the

respective ones over 𝑙, Δ𝑛

𝑙
; sends the scheme 𝔸

1

𝑘
⧵ {0} to 𝔸

1

𝑙
⧵ {0}. By using the above

naturality property for maps 𝑖!, this allows us to define for each 𝑋 ∈ Sm𝑘 , 𝑞 ≥ 0, a chain
map of abelian groups

ℤ(𝑞)𝑙(𝑋𝑙) ⟶ ℤ(𝑞)𝑘(𝑋 ).

We will be mainly interested in the case 𝑋 = Spec 𝑘, in which we have 𝑋𝑙 ≅ Spec 𝑙: the
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above chain maps then yield, by varying 𝑞 and taking the 𝑝-th cohomology group for each
integer 𝑝, comparison homomorphisms

𝐻
𝑝,𝑞
(Spec 𝑙, ℤ) ⟶ 𝐻

𝑝,𝑞
(Spec 𝑘, ℤ).

In particular, for each 𝑞 ≥ 0 we obtain a map

𝐻
𝑞,𝑞
(Spec 𝑙, ℤ) ⟶ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ), (3.1.6)

which is called the norm map and is denoted by 𝑁𝑙/𝑘 due to the following proper-
ties:

Lemma 3.1.5 (Mazza et al., 2006, 5.3).

(i) 𝑁 0

𝑙/𝑘
equals the composite

𝐻
0,0
(Spec 𝑙, ℤ) ≅ ℤ

⋅[𝑙∶𝑘]

⟶ ℤ ≅ 𝐻
0,0
(Spec 𝑘, ℤ).

(ii) 𝑁 1

𝑙/𝑘
equals the composite

𝐻
1,1
(Spec 𝑙, ℤ) ≅ 𝑙×

𝑁𝑙/𝑘

⟶ 𝕜
×
≅ 𝐻

1,1
(Spec 𝑘, ℤ),

where 𝑁𝑙/𝑘 denotes the usual norm map.

(iii) For any 𝑥 ∈ 𝐻
∗,∗
(Spec 𝑙, ℤ) and 𝑦 ∈ 𝐻

∗,∗
(Spec 𝑘, ℤ), 𝑁 ∗

𝑙/𝑘
∶ 𝐻

∗,∗
(Spec 𝑙, ℤ) ⟶

𝐻
∗,∗
(Spec 𝑘, ℤ) satisfies

𝑁
∗

𝑙/𝑘
(𝑦𝑙 ⋅ 𝑥) = 𝑦 ⋅ 𝑁

∗

𝑙/𝑘
(𝑥).

(iv) If 𝐿 is an extension of 𝑙 which is normal over 𝑘, then for any 𝑥 ∈ 𝐻
∗,∗
(Spec 𝑙, ℤ) it

holds that
𝑁𝑙/𝑘(𝑥)𝐿 = [𝑙 ∶ 𝑘]𝑖𝑛𝑠𝑒𝑝 ∑

𝑖∈Hom𝑘 (𝑙,𝐿)

𝑖
∗
(𝑥).

Steinberg relations in 𝐻
𝑞,𝑞
(Spec 𝑘, ℤ), and the comparison with Milnor

K-theory

We sketch the proof given in Mazza et al., 2006, 5.9 that motivic cohomology with
integral coefficients satisfies a suitable analogue of the Steinberg relations. More precisely, it
may be proved that [𝑎, 1−𝑎] is the zero element of𝐻 2,2

(Spec 𝑘, ℤ) for any 𝑎 ∈ 𝑘⧵{0, 1}.

By using coordinates 𝔸1
≅ Spec 𝑘[𝑥] and 𝔸

1
⧵ {0} ≅ Spec 𝑘[𝑦, 𝑦−1

], one defines a finite
𝑘-correspondence from 𝔸

1 to 𝔸
1
⧵ {0} as the zero set of

𝑦
3
− (𝑎

3
+ 1)𝑥𝑦

2
+ (𝑎

3
+ 1)𝑥𝑦 − 𝑎

3

in 𝔸
1
× (𝔸

1
⧵ {0}). Its images under

𝜕0, 𝜕1 ∶ Cor𝑘(𝔸1
, 𝔸

1
⧵ {0}) ⟶ Cor𝑘(Spec 𝑘,𝔸1

⧵ {0})



3.1 | MILNOR K-THEORY AS MOTIVIC COHOMOLOGY

71

correspond, by taking 𝑥 = 0 and 𝑥 = 1, respectively, to the zero sets of

𝑦
3
− 𝑎

3
,

𝑦
3
− (𝑎

3
+ 1)𝑦

2
+ (𝑎

3
+ 1)𝑦 − 𝑎

3

in 𝔸
1
⧵ {0}. These correspondences are more easily described in a field extension where

both polynomials split into linear factors. Let 𝑙 be obtained by adjoining (if necessary) a
cube root of unity 𝛼 such that {1, 𝛼, 𝛼2

} is the set of all cube roots of unity, or equivalently
such that 𝛼2

+ 𝛼 + 1 = 0. In particular 𝑙/𝑘 has degree 1 or 2. Now, the above polynomials
split in 𝑙 as

(𝑦 − 𝑎)(𝑦 − 𝛼𝑎)(𝑦 − 𝛼
2
𝑎),

(𝑦 − 𝑎
3
)(𝑦 + 𝛼)(𝑦 + 𝛼

2
),

respectively. Their associated elements in Cor𝑘(Spec 𝑙, 𝔸1
⧵ {0}) are

{𝑎} + {𝛼𝑎} + {𝛼
2
𝑎},

{𝑎
3
} + {−𝛼} + {−𝛼

2
}.

Now, let us consider the morphism

𝑠 ∶ 𝔸
1
⧵ {0, 1} ⟶ (𝔸

1
⧵ {0})

2

𝑥 ⟼ (𝑥, 1 − 𝑥).

in Sm𝑘 . Composition with 𝑠 defines a homomorphism

Cor𝑘(Spec 𝑘, 𝑠) ∶ Cor𝑘(Spec 𝑘,𝔸1
⧵ {0, 1}) ⟶ Cor𝑘(Spec 𝑘, (𝔸1

⧵ {0})
2
)

which for each 𝑎 ∈ 𝑘 ⧵ {0, 1} sends {𝑎} (the graph of the morphism Spec 𝑘 → 𝔸
1
⧵ {0, 1}

which classifies 𝑎) to {(𝑎, 1 − 𝑎)} (the graph of the composite Spec 𝑘 → 𝔸
1
⧵ {0, 1}

𝑠

→

(𝔸
1
⧵ {0})

2).

Moreover, note that we have a commutative diagram

Cor𝑘(𝔸1

𝑙
, 𝔸

1
⧵ {0, 1}) Cor𝑘(𝔸1

𝑙
, (𝔸

1
⧵ {0})

2
)

Cor𝑘(Spec 𝑙, 𝔸1
⧵ {0, 1}) Cor𝑘(Spec 𝑙, (𝔸1

⧵ {0})
2
).

𝑆◦−

𝜕0−𝜕1 𝜕0−𝜕1

𝑆◦−

Hence any element of the image of the composite

Cor𝑘(𝔸1

𝑙
, 𝔸

1
⧵ {0, 1})

𝜕0−𝜕1

⟶ Cor𝑘(Spec 𝑙, 𝔸1
⧵ {0, 1})

𝑆◦−

⟶ Cor𝑘(Spec 𝑙, (𝔸1
⧵ {0})

2
)

is sent to zero in 𝐻 2,2
(Spec 𝑙, ℤ), as it belongs to the image of

Cor𝑘(Spec 𝑙, (𝔸1
⧵ {0})

2
)

𝜕0−𝜕1

⟶ Cor𝑘(Spec 𝑙, (𝔸1
⧵ {0})

2
).
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Thus in our case it holds that

{𝑎, 1 − 𝑎} + {𝛼𝑎, 1 − 𝛼𝑎} + {𝛼
2
𝑎, 1 − 𝛼

2
𝑎},

{𝑎
3
, 1 − 𝑎

3
} + {−𝛼, 1 + 𝛼} + {−𝛼

2
, 1 + 𝛼

2
}

are elements of Cor𝑘(Spec 𝑙, (𝔸1
⧵ {0})

2
) whose images in 𝐻 2,2

(Spec 𝑙, ℤ) are equal.

We compute
[𝑎, 1 − 𝑎] + [𝛼𝑎, 1 − 𝛼𝑎] + [𝛼

2
𝑎, 1 − 𝛼

2
𝑎] =

= [𝑎, 1 − 𝑎] + ([𝛼, 1 − 𝛼𝑎] + [𝑎, 1 − 𝛼𝑎]) + ([𝛼
2
, 1 − 𝛼

2
𝑎] + [𝑎, 1 − 𝛼

2
𝑎])

= [𝑎, (1 − 𝑎)(1 − 𝛼𝑎)(1 − 𝛼
2
𝑎)] + [𝛼, 1 − 𝛼𝑎] + 2[𝛼, 1 − 𝛼

2
𝑎]

= [𝑎, 1 − 𝑎
3
] + [𝛼, (1 − 𝛼)(1 − 𝛼

2
𝑎)

2
],

so it follows that

3([𝑎, 1 − 𝑎] + [𝛼𝑎, 1 − 𝛼𝑎] + [𝛼
2
𝑎, 1 − 𝛼

2
𝑎]) = 3[𝑎, 1 − 𝑎

3
] + 3[𝛼, (1 − 𝛼)(1 − 𝛼

2
𝑎)

2
]

= [𝑎
3
, 1 − 𝑎

3
] + [𝛼

3
, (1 − 𝛼)(1 − 𝛼

2
𝑎)

2
]

= [𝑎
3
, 1 − 𝑎

3
] + [1, (1 − 𝛼)(1 − 𝛼

2
𝑎)

2
]

= [𝑎
3
, 1 − 𝑎

3
].

On the other hand, we have

3([𝑎
3
, 1 − 𝑎

3
] + [−𝛼, 1 + 𝛼] + [−𝛼

2
, 1 + 𝛼

2
]) = 3[𝑎

3
, 1 − 𝑎

3
] + [(−𝛼)

3
, 1 + 𝛼] + [(−𝛼

2
)
3
, 1 + 𝛼

2
])

= 3[𝑎
3
, 1 − 𝑎

3
] + [−1, 1 + 𝛼] + [−1, 1 + 𝛼

2
])

= 3[𝑎
3
, 1 − 𝑎

3
] + [−1, (1 + 𝛼)(1 + 𝛼

2
)]

= 3[𝑎
3
, 1 − 𝑎

3
] + [−1, 1 + (𝛼 + 𝛼

2
) + 𝛼

3
]

= 3[𝑎
3
, 1 − 𝑎

3
] + [−1, 1 − 1 + 1]

= 3[𝑎
3
, 1 − 𝑎

3
] + [−1, 1]

= 3[𝑎
3
, 1 − 𝑎

3
].

Comparing the above results yields

2[𝑎
3
, 1 − 𝑎

3
] = 0 ∈ 𝐻

2,2
(Spec 𝑙, ℤ).

We would like to describe [𝑎, 1 − 𝑎] ∈ 𝐻
2,2
(Spec 𝑘, ℤ). For that purpose, first we apply the

norm map 𝑁𝑙/𝑘 and obtain

0 = 𝑁𝑙/𝑘(2[𝑎
3
, 1 − 𝑎

3
]) = 2 deg(𝑙/𝑘)[𝑎

3
, 1 − 𝑎

3
],

which is either 2[𝑎
3
, 1 − 𝑎

3
] or 4[𝑎

3
, 1 − 𝑎

3
]. In either case we have 4[𝑎

3
, 1 − 𝑎

3
] = 0 in

𝐻
2,2
(Spec 𝑘, ℤ). This proves that 4[𝑏, 1 − 𝑏] = 0 whenever 𝑏 = 𝑎

3 for some 𝑎 ∈ 𝑘 ⧵ {0, 1}.
For the general case, we may work in a field extension where 𝑏 ∈ 𝑘 ⧵ {0, 1} is a third power.
For example, let 𝐿 be a field extension of 𝑘 obtained by adjoining an element 𝑎 such that
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𝑎
3
= 𝑏. Then we have 4[𝑏, 1 − 𝑏] = 0 in 𝐻 2,2

(Spec 𝐿, ℤ) by the above argument, and

0 = 𝑁𝐿/𝑘(4[𝑏, 1 − 𝑏]) = 4 deg(𝐿/𝑘)([𝑏, 1 − 𝑏]).

As deg(𝐿/𝑘) is either 1, 2, or 3, we have1

24[𝑏, 1 − 𝑏] = 0 ∈ 𝐻
2,2
(Spec 𝑘, ℤ).

We now use an inductive argument (Mazza et al., 2006, 5.8) to show that if some 𝑛 ≥ 1

has the property, say 𝑃(𝑛), that 𝑛[𝑎, 1 − 𝑎] = 0 in 𝐻
2,2
(Spec 𝑙, ℤ) for all finite extensions

𝑙/𝑘 and all 𝑎 ∈ 𝑙 ⧵ {0, 1}, then [𝑎, 1 − 𝑎] = 0 in 𝐻 2,2
(Spec 𝑙, ℤ) for all such 𝑙 and 𝑎. By taking

𝑛 = 24 it will follow that

[𝑎, 1 − 𝑎] = 0 ∈ 𝐻
2,2
(Spec 𝑘, ℤ)

for all 𝑎 ∈ 𝑘 ⧵ {0, 1}.

If suffices to show that whenever 𝑃(𝑛) holds and 𝑝 is a prime number dividing 𝑛, 𝑃(𝑛/𝑝)
holds. Suppose given a finite extension 𝑙/𝑘 and 𝑎 ∈ 𝑙 ⧵ {0, 1}. Let 𝐿 be obtained by adjoining
to 𝑙 an element 𝑏 such that 𝑏𝑝 = 𝑎. Then

(𝑛/𝑝)[𝑎, 1 − 𝑎] = (𝑛/𝑝)[𝑏
𝑝
, 𝑁𝐿/𝑙(1 − 𝑏)]

= 𝑁𝐿/𝑙((𝑛/𝑝)[𝑏
𝑝
, 1 − 𝑏])

= 𝑁𝐿/𝑙((𝑛/𝑝)𝑝[𝑏, 1 − 𝑏])

= 𝑁𝐿/𝑙(𝑛[𝑏, 1 − 𝑏])

= 𝑁𝐿/𝑙(0)

= 0,

as desired.

As 𝜏 ′
∗
∶ 𝑇 (𝑘

×
) → ⨁

𝑞≥0
𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) sends 𝑎 ⊗ (1 − 𝑎) to [𝑎, 1 − 𝑎] = 0 for all

𝑎 ∈ 𝑘 ⧵ {0, 1}, it defines a graded homomorphism (with notation similar to that in Mazza
et al., 2006)

𝜆∗ ∶ 𝐾
∗

𝑀
(𝑘) ⟶ ⨁

𝑞≥0

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ).

We already know 𝜆∗ is an isomorphism in degrees 0 and 1. Let us verify that this is also
the case for 𝑞 ≥ 2.

This may be done as follows: consider for a given 𝑞 ≤ 1 the commutative diagram

(𝑘
×
)
𝑞 Cor𝑘(Spec 𝑘, 𝑆𝑞)

𝐾
𝑞

𝑀
(𝑘) 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ),

𝜋
′

𝜔

𝜋

𝜆𝑞

1 As in Mazza et al., 2006, one may choose 𝐿 in such a way that deg(𝐿/𝑘) is either 1 or 3, as if the minimal
polynomial of 𝑎 over 𝑘 has degree 2, then 𝑘 already contains a cube root of 𝑏.
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where 𝜋 and 𝜋 ′ are the canonical projections, and 𝜔 is the composite

(𝑘
×
)
𝑞
≅ Sm𝑘(Spec 𝑘, 𝑆𝑞) → Cor𝑘(Spec 𝑘, 𝑆𝑞).

Then one may construct a homomorphism ℎ ∶ Cor𝑘(Spec 𝑘, 𝑆𝑞) → 𝐾
𝑞

𝑀
(𝑘) such that:

(1) 𝜆𝑞 ◦ ℎ = 𝜋 . This proves that 𝜆𝑞 is surjective by providing for each element of
𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) one preimage under 𝜆𝑞 for each of its preimages under 𝜋 .

(2) ℎ factors through 𝜋 . This provides a unique map 𝜂 ∶ 𝐻 𝑞,𝑞
(Spec 𝑘, ℤ) → 𝐾

𝑞

𝑀
(𝑘) such

that ℎ = 𝜂 ◦ 𝜋 . Then it follows from (1) that 𝜆𝑞 ◦ 𝜂 ◦ 𝜋 = 𝜋 , hence 𝜆𝑞 ◦ 𝜂 = 𝑖𝑑𝐻 𝑞,𝑞
(Spec 𝑘,ℤ).

(3) For any 𝑎1, ..., 𝑎𝑞 ∈ 𝑘×, it holds that ℎ(𝜔(𝑎1, ..., 𝑎𝑞)) equals the Milnor K-theory symbol
{𝑎1, ..., 𝑎𝑞}. By using 𝜂 as in (2), this is equivalent to 𝜂([𝑎1, ..., 𝑎𝑞]) = {𝑎1, ..., 𝑎𝑞}. As
𝐾
𝑞

𝑀
(𝑘) is generated by symbols of the form {𝑎1, ..., 𝑎𝑞} and 𝜆𝑞 is given by {𝑎1, ..., 𝑎𝑞} ↦

[𝑎1, ..., 𝑎𝑞], it follows that 𝜂 ◦ 𝜆𝑞 = 𝑖𝑑𝐾𝑞

𝑀
(𝑘)

.

Thus it would follow from (2) and (3) that 𝜆𝑞 is an isomorphism with inverse 𝜂.

We begin by noting that Cor𝑘(Spec 𝑘, 𝑆𝑞) is freely generated by the finite correspon-
dences from Spec 𝑘 to (𝔸

1
⧵ {0})

𝑞 associated to closed points 𝑥 of (𝔸1
⧵ {0})

𝑞 (by Zariski’s
lemma, the residue field of any closed point is a finite extension of 𝑘, so it determines a
finite correspondence). Note that denoting by 𝑙 the residue field of 𝑥 , we may express 𝑥 as
the image of a morphism Spec 𝑙 → Spec 𝑘 ×𝑘 (𝔸1

⧵ {0})
𝑞
≅ (𝔸

1
⧵ {0})

𝑞 given in coordinates
by (𝑎1, ..., 𝑎𝑞) ∈ (𝑙

×
)
𝑞.

Thus it suffices to define a function from the set of closed points of (𝔸1
⧵{0})

𝑞 (which we
identify with a subset of Cor𝑘(Spec 𝑘, 𝑆𝑞)) to 𝐾 𝑞

𝑀
(𝑘) such that the induced homomorphism

ℎ satisfies (1)-(3) above.

One may proceed by using the above description of closed points of (𝔸1
⧵ {0})

𝑞 and
Mazza et al., 2006, 5.11, which states for any finite extension 𝑙/𝑘 the diagram

𝐾
𝑞

𝑀
(𝑙) 𝐻

𝑞,𝑞
(Spec 𝑙, ℤ)

𝐾
𝑞

𝑀
(𝑘) 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ)

𝑁𝑙/𝑘

𝜆
𝑙

𝑞

𝑁𝑙/𝑘

𝜆
𝑘

𝑞

commutes. Hence if we consider the finite correspondence {𝑥} from Spec 𝑘 to (𝔸
1
⧵ {0})

𝑞

associated to a closed point 𝑥 ∈ (𝔸
1
⧵ {0})

𝑞 given in coordinates by (𝑎1, ..., 𝑎𝑞) ∈ (𝑙
×
)
𝑞 , where

𝑙 ∶= 𝜅(𝑥), then {𝑥} is the image under the pushforward map

Cor𝑘(Spec 𝑙, (𝔸1
⧵ {0})

𝑞
) ⟶ Cor𝑘(Spec 𝑘, (𝔸1

⧵ {0})
𝑞
)

of the finite correspondence {𝑦} from Spec 𝑙 to (𝔸
1
⧵ {0})

𝑞 associated to 𝑦 = (𝑎1, ..., 𝑎𝑞) ∈

Spec 𝑙 ×𝑘 (𝔸1
⧵ {0})

𝑞. But then 𝜋(𝑦) ∈ 𝐻
𝑞,𝑞
(Spec 𝑙, ℤ) is the image of {𝑎1, ..., 𝑎𝑞} ∈ 𝐾

𝑞

𝑀
(𝑙)

under 𝜆𝑙
𝑞
, so commutativity of the above diagram implies that

𝜋({𝑥}) = 𝜆
𝑘

𝑞
(𝑁𝑙/𝑘({𝑎1, ..., 𝑎𝑞})).
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Let us then define
ℎ ∶ Cor𝑘(Spec 𝑘, 𝑆𝑞) → 𝐾

𝑞

𝑀
(𝑘)

in terms of generators, using the above notation, by

{𝑥} ⟼ 𝑁𝑙/𝑘({𝑎1, ..., 𝑎𝑞}).

Then (1) holds by construction, and (3) holds since 𝑁𝑘/𝑘 = 𝑖𝑑𝐾
𝑞

𝑀
(𝑘)

.

It remains to prove (2). By the description of 𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) as a quotient of

Cor𝑘(Spec 𝑘, 𝑆𝑞), we have that ℎ factors through 𝜋 ∶ Cor𝑘(Spec 𝑘, 𝑆𝑞) → 𝐻
𝑞,𝑞
(Spec 𝑘, ℤ)

if and only if the following two conditions, which from the relations that generate the
kernel of 𝜋 , are satisfied:

(i) The composite

Cor𝑘(𝔸1
, 𝑆

𝑞
)

𝜕0−𝜕1

⟶ Cor𝑘(Spec 𝑘, 𝑆𝑞)
ℎ

⟶ 𝐾
𝑞

𝑀
(𝑘)

is the zero map.

(ii) Suppose given an arbitrary generating finite correspondence from Spec 𝑘 to (𝔸
1
⧵

{0})
𝑞 , i.e. one associated to a closed point 𝑥 of (𝔸1

⧵ {0})
𝑞 . Denoting by 𝑙 the residue

field of 𝑥 , let us express 𝑥 in coordinates by (𝑎1, ..., 𝑎𝑞) ∈ (𝑙
×
)
𝑞.

If there exists 𝑖 ∈ {1, ..., 𝑞} such that 𝑎𝑖 = 1, then ℎ({𝑥}) = 0.

Item (ii) follows from the fact that if 𝑎𝑖 = 1 for some 𝑖, then {𝑎1, ..., 𝑎𝑞} = 0 ∈ 𝐾
𝑞

𝑀
(𝑙), so

ℎ({𝑥}) = 𝑁𝑙/𝑘({𝑎1, ..., 𝑎𝑞}) = 𝑁𝑙/𝑘(0) = 0.

For item (i), we refer to Mazza et al., 2006, where this is proved as a corollary of a
theorem due to Suslin (see A. A. Suslin, 1982, 4.4) which establishes a reciprocity law for
Milnor K-theory.

Then one obtains the following result:

Theorem 3.1.6. Given a field 𝑘 and 𝑞 ≥ 0, the map

𝜆𝑞 ∶ 𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) ≅ 𝐾 𝑞

𝑀
(𝑘)

is an isomorphism of abelian groups. Moreover, the induced map

𝜆∗ ∶ 𝐾
∗

𝑀
(𝑘) ⟶ ⨁

𝑞≥0

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ).

is a ring isomorphism between the Milnor K-theory ring of 𝑘 and the subring generated
by homogeneous elements of bidegree (𝑞, 𝑞) of the motivic cohomology ring of 𝑘 with
ℤ-coefficients.

3.1.2 General coefficients
The characterization of motivic cohomology groups 𝐻 𝑞,𝑞

(Spec 𝑘, ℤ) as in 3.1.2, which
uses the fact that the Zariski site of Spec 𝑘 is trivial, extends to a description of the motivic
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cohomology groups 𝐻 𝑞,𝑞
(Spec 𝑘, 𝐴) for an arbitrary abelian group 𝐴.

Indeed, we compute

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ℤ 𝐴 ≅ 𝐻

0
(𝐶∗ℤ

𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)) ⊗ℤ 𝐴

≅ Coker
(

ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(𝔸

1

𝑘
)

𝜕0−𝜕1

⟶ ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)

)

⊗ℤ 𝐴

≅ Coker
(

(ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(𝔸

1

𝑘
)) ⊗ℤ 𝐴

(𝜕0−𝜕1)⊗ℤ𝐴

⟶ (ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)) ⊗ℤ 𝐴

)

≅ Coker
(

(ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
) ⊗ℤ 𝐴)(𝔸

1

𝑘
)

(𝜕0⊗ℤ𝐴)−(𝜕1⊗ℤ𝐴)

⟶ (ℤ
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
) ⊗ℤ 𝐴)(Spec 𝑘)

)

≅ Coker
(

𝐴
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(𝔸

1

𝑘
)

(𝜕0⊗ℤ𝐴)−(𝜕1⊗ℤ𝐴)

⟶ 𝐴
𝑡𝑟

𝑘
(𝔾

∧𝑞

𝑚
)(Spec 𝑘)

)

≅ 𝐻
𝑞,𝑞
(Spec 𝑘, ℤ).

Since these isomorphisms are natural in 𝐴 ∈ Ab, we obtain for each 𝑞 ≤ 0 an isomorphism
of functors

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ − ≅ 𝐻

𝑞,𝑞
(Spec 𝑘, −)

from Ab to Ab.

In particular, suppose given a prime number 𝑙 different from the characteristic of 𝑘.
Then we may describe the Milnor K-theory groups of 𝑘 modulo 𝑙, 𝐾 𝑞

𝑀
(𝑘)/𝑙, in terms of

motivic cohomology: we have

𝐾
𝑞

𝑀
(𝑘)/𝑙 ≅ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ ℤ/𝑙 ≅ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ/𝑙).

In fact, this isomorphism is compatible with the projection ℤ → ℤ/𝑙 in the sense that by

applying the above isomorphism of functors to ℤ

𝑙

→ ℤ

𝜋

→ ℤ/𝑙, we obtain a commutative
diagram

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ/𝑙)

𝐻
𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ℤ ℤ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ℤ ℤ 𝐻

𝑞,𝑞
(Spec 𝑘, ℤ) ⊗ℤ ℤ/𝑙

𝐾
𝑞

𝑀
(𝑘) ⊗ℤ ℤ 𝐾

𝑞

𝑀
(𝑘) ⊗ℤ ℤ 𝐾

𝑞

𝑀
(𝑘) ⊗ℤ ℤ/𝑙

𝐾
𝑞

𝑀
(𝑘) 𝐾

𝑞

𝑀
(𝑘) 𝐾

𝑞

𝑀
(𝑘)/𝑙.

𝑙

≅

𝜋

≅ ≅

𝑙

≅

𝜋

≅ ≅

𝑙

≅

𝜋

≅ ≅

𝑙 𝜋
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3.2 Voevodsky’s mixed motives

Throughout this section, we let 𝑘 denote a field; the affine line 𝔸
1

𝑘
= Spec 𝑘[𝑥] will be

denoted by 𝔸
1, with 𝑘 implicit, and whenever 𝑋 , 𝑌 are finite type 𝑘-schemes, 𝑋 × 𝑌 will

denote the cartesian product of 𝑋 and 𝑌 in Sch𝑘 (rather than in the category of schemes).
Moreover, we refer to (pre)sheaves with transfers with respect to 𝑘 simply as (pre)sheaves
with transfers.

Recall that PST(𝑘, 𝐴) denotes the corresponding category of Mod𝐴-valued presheaves
with transfers, and if 𝐽 is a Grothendieck topology on Sm𝑘 , one denotes by ST𝐽 (𝑘, 𝐴) the
category of Mod𝐴-valued 𝐽 -sheaves with transfers (see Definition 2.1.11). Given a scheme
𝑋 ∈ Sm𝑘 , we have a presheaf with transfers

𝐴
𝑡𝑟

𝑘
(𝑋 ) = Cor𝑘(−, 𝑋 ) ⊗ℤ 𝐴

which is also a 𝐽 -sheaf with transfers (see Proposition 2.1.13).

D−ST𝐽 (𝑘, 𝐴) denotes the derived category of bounded above complexes of sheaves
with transfers, i.e. the category obtained by localizing Ch−

(ST𝐽 (𝑘, 𝐴)) of bounded above
complexes of 𝐽 -sheaves with transfers at the (large) set of quasi-isomorphisms.

Convention 3.2.1. Unless otherwise stated, throughout this section 𝐽 will denote either the
Nisnevich or the étale topology on Sm𝑘 .

Definition 3.2.2. Morphisms of (pre)sheaves with transfers of the form 𝐴
𝑡𝑟

𝑘
(𝑋 × 𝔸

1
)

𝐴
𝑡𝑟
(𝜋)

→

𝐴
𝑡𝑟
(𝑋 ), induced by the canonical projection 𝑋 ×𝔸

1
𝜋

→ 𝑋 for some 𝑋 ∈ Sm𝑘 , will be called
basic 𝔸1-weak equivalences of presheaves with transfers.

A basic 𝔸1-weak equivalence of 𝐽 -sheaves with transfers is defined to be a basic 𝔸
1-

weak equivalence of presheaves with transfers regarded as a morphism of ST𝐽 (𝑘, 𝐴) (where
we use the fact that presheaves with transfers of the form 𝐴

𝑡𝑟

𝑘
(𝑋 ) are 𝐽 -sheaves with

transfers).

Now, let us denote by E𝐽 the smallest localizing thick subcategory of D−ST𝐽 (𝑘, 𝐴)

containing a (hence every) cone of

𝐴
𝑡𝑟

𝑘
(𝑋 × 𝔸

1
)

𝐴
𝑡𝑟

𝑘
(𝜋)

→ 𝐴
𝑡𝑟

𝑘
(𝑋 )

for each 𝑋 ∈ Sm𝑘 . The triangulated category of (Voevodsky) effective 𝐽 -motives (over 𝑘,
with coefficients in 𝐴-modules), denoted by DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴), is defined as the Verdier quotient

D−ST𝐽 (𝑘, 𝐴)/E𝐽 − as an abstract category, it is a localization of D−ST𝐽 (𝑘, 𝐴) at the set, which
we denote by 𝑊𝐽 , of all morphisms such that one (hence any) of its cones belongs to E𝐽 .

Elements of 𝑊𝐽 will be called 𝔸
1-weak equivalences of complexes of 𝐽 -sheaves with

transfers. Note that by construction, every basic 𝔸1-weak equivalence in the above sense
belongs to 𝑊𝐽 .

Next we note that any finite type 𝑘-scheme gives rise to an object of DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴).

Firstly, we have a functor Sch𝑘 → PST(𝑘, 𝐴) given on objects by sending each 𝑋 to the
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composite

Cor𝑜𝑝
𝑘

𝐶𝑘 (−,𝑋 )

⟶ Ab
−⊗𝐴

⟶ Mod𝐴,

and on arrows by sending each 𝑓 ∶ 𝑋 → 𝑋
′ to the natural transformation whose 𝑌 -

component for 𝑌 ∈ Cor𝑘 is 𝐴 ⊗ 𝐶𝑘(𝑌 , 𝑓 ), where 𝐶𝑘(𝑌 , 𝑓 ) is given by composition with the
graph of 𝑓 .

We also have the sheafification functor PST(𝑘, 𝐴) → ST𝐽 (𝑘, 𝐴), and the localization
functors ST𝐽 (𝑘, 𝐴) → D−ST𝐽 (𝑘, 𝐴) and D−ST𝐽 (𝑘, 𝐴) → DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴). The composite

Sch𝑘 ⟶ PST(𝑘, 𝐴) ⟶ ST𝐽 (𝑘, 𝐴) ⟶ D−ST𝐽 (𝑘, 𝐴) ⟶ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴)

will be called the motive functor (corresponding to 𝑘, 𝐽 , 𝐴) and it will be denoted by M𝐽 (−, 𝐴)

(with 𝑘 implicit), or simply as M(−) when this causes no ambiguity. For each finite type
𝑘-scheme 𝑋 , M𝐽 (𝑋 , 𝐴) will be called the 𝐽 -motive of 𝑋 (over 𝑘, with coefficients in 𝐴-
modules).

An alternative description of effective motives

Whenever a functor 𝐿 ∶ C → D has a fully faithful right adjoint 𝑅 ∶ D → C, then 𝑅

factors through the full subcategory of C, say C′, consisting of those objects 𝑐 with the
property that for any morphism 𝑓 in C such that 𝐿(𝑓 ) is an isomorphism − let us denote
by 𝑊 the set of such arrows −, HomC(𝑓 , 𝑐) is bijective. The restricted functors D → C′

and C′
→ D then define an adjoint equivalence between D and C′. Moreover, 𝐿 (hence

also the composite C
𝐿

→ D
≃

→ C′) sends arrows in 𝑊 to isomorphisms and is actually a
localization of C at 𝑊 .

For any given category C endowed with a localization 𝐹 ∶ C → C[𝑊 −1
] at some set of

morphisms𝑊 , it is a natural question whether it arises from a setting as above, i.e. whether
𝐹 has a fully faithful right adjoint, say 𝑅. When this is the case, one is able to identify
morphisms between two objects of C[𝑊 −1

] with morphisms between their respective
images under 𝑅 ∶ C[𝑊 −1

] → C, and the functor C[𝑊 −1
] → 𝑅(C[𝑊 −1

]) obtained by
restricting the codomain of 𝑅 is an equivalence of categories.

In our context, one may consider the localization functor

𝐿 ∶ D−ST𝐽 (𝑘, 𝐴) ⟶ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴)

and investigate whether it has a fully faithful right adjoint 𝑅 ∶ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴) →

D−ST𝐽 (𝑘, 𝐴).

Definition 3.2.3. A complex F ∈ D−ST𝐽 (𝑘, 𝐴) is said to be 𝔸
1-local (with respect to 𝐽 ) if

the image of any 𝔸
1-weak equivalence of complexes of 𝐽 -sheaves with transfers under

HomD−ST𝐽 (𝑘,𝐴)(−,F ) is an isomorphism of abelian groups.

The full subcategory of D−ST𝐽 (𝑘, 𝐴) whose objects are the 𝔸
1-local complexes will be

denoted by 𝔸
1-Loc𝐽 .

Suppose given complexes F , G ∈ D−ST𝐽 (𝑘, 𝐴) such that G is 𝔸1-local. By Mazza et al.,
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2006, 9.19, the map

HomD−ST𝐽 (𝑘,𝐴)(F ,G ) ⟶ HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝐿(F ), 𝐿(G )) = HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(F ,G )

given by the localization functor D−ST𝐽 (𝑘, 𝐴)

𝐿

→ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴) is bijective. Thus the com-

posite

𝔸
1-Loc𝐽

𝑖

⟶ D−ST𝐽 (𝑘, 𝐴)

𝐿

⟶ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴)

is fully faithful. ByMazza et al., 2006, 14.4, for any complex F ∈ D−ST𝐽 (𝑘, 𝐴), the morphism
F → Tot(𝐶∗(F )) is an 𝔸

1-weak equivalence, hence an isomorphism in DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴). As

Tot(𝐶∗(F )) is 𝔸1-local for any such F , it follows that 𝐿 ◦ 𝑖 is essentially surjective, hence
an equivalence of categories.

We now describe an object of DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴) which will be needed later.

Definition 3.2.4. The motive ℤ(1)[2] ∈ DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴) is denoted by 𝕃 and is called the

Lefschetz motive (with respect to 𝑘, 𝐴, 𝐽 ). As a complex of Nisnevich sheaves with transfers,
ℤ(1)[2] = 𝐶∗𝐴

𝑡𝑟

𝑘
(𝔾𝑚)[1] is isomorphic to the cokernel of

(𝐶∗𝐴
𝑡𝑟

𝑘
(Spec 𝑘))[1]

𝐶∗𝐴
𝑡𝑟

𝑘
(𝑠1))[1]

⟶ (𝐶∗𝐴
𝑡𝑟

𝑘
(𝔸

1
⧵ {0}))[1].

Then we have a distinguished triangle

(𝐶∗𝐴
𝑡𝑟

𝑘
(Spec 𝑘))[1]

𝐶∗𝐴
𝑡𝑟

𝑘
(𝑠1))[1]

⟶ (𝐶∗𝐴
𝑡𝑟

𝑘
(𝔸

1
⧵ {0}))[1]

𝑣

⟶ 𝕃

𝑤

⟶ (𝐶∗𝐴
𝑡𝑟

𝑘
(Spec 𝑘))[2]

in DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴). Since 𝐶∗𝐴

𝑡𝑟

𝑘
(Spec 𝑘) ≅ 𝐴𝑡𝑟

𝑘
(Spec 𝑘) and 𝐶∗𝐴

𝑡𝑟

𝑘
(𝔸

1
⧵ {0}) ≅ 𝐴

𝑡𝑟

𝑘
(𝔸

1
⧵ {0}) in

DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴), there is a distinguished triangle

𝑀(Spec 𝑘)[1]
𝑀(𝑠1)

⟶ 𝑀(𝔸
1
⧵ {0})[1] ⟶ 𝕃 ⟶ 𝑀(Spec 𝑘)[2].

For any object 𝐷 of DM𝑒𝑓 𝑓 ,−

𝐽
(𝑘, 𝐴), the cohomological functor HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(−, 𝐷) deter-
mines the following long exact sequence of abelian groups:

⋯

𝑣
∗

⟶HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝑀(𝔸
1
⧵ {0}), 𝐷[−2])

𝑀(𝑠1)
∗

⟶ HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝑀(Spec 𝑘), 𝐷[−2])
𝑤

∗

⟶

𝑤
∗

⟶HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝕃, 𝐷)

𝑣
∗

⟶ HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝑀(𝔸
1
⧵ {0}), 𝐷[−1])

𝑀(𝑠1)
∗

⟶

𝑀(𝑠1)
∗

⟶HomDM𝑒𝑓 𝑓 ,−

𝐽
(𝑘,𝐴)

(𝑀(Spec 𝑘), 𝐷[−1])
𝑤

∗

⟶ ⋯.

Representability of motivic cohomology

Ordinary motivic cohomology groups with 𝐴-coefficients are representable in the
categories D−

(ShNis(Sm𝑘 , 𝐴)), D−
(STNis(𝑘, 𝐴)), and DM𝑒𝑓 𝑓 ,−

Nis (𝑘, 𝐴). More precisely, there exist
isomorphisms

𝐻
𝑝
(𝑋 , 𝐴(𝑞)) ≅ HomD−

(ShNis(Sm𝑘 ,𝐴))
(𝐴

𝑡𝑟

𝑘
(𝑋 )|Sm𝑘

, 𝐴(𝑞)|Sm𝑘
[𝑝]),
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𝐻
𝑝
(𝑋 , 𝐴(𝑞)) ≅ HomD−

(STNis(𝑘,𝐴))(𝐴
𝑡𝑟

𝑘
(𝑋 ), 𝐴(𝑞)[𝑝]),

𝐻
𝑝
(𝑋 , 𝐴(𝑞)) ≅ HomDM𝑒𝑓 𝑓 ,−

Nis (𝑘,𝐴)
(𝑀(𝑋), 𝐴(𝑞)[𝑝])

natural in 𝑋 ∈ Sm𝑘 .

These are proved in Mazza et al., 2006, 13.11 and 14.16.

3.3 Motivic characterizations of the Bloch-Kato
conjecture

Let us briefly recall the construction, given in Chapter 1, of the norm residue ho-
momorphism. We use the fact that the tensor algebra 𝑇 (𝑘

×
), whose underlying addi-

tive group is ℤ ⊕ 𝑘
×
⊕ 𝑘

×⊗2
⊕ 𝑘

×⊗3
⊕ ⋯ and whose multiplication is characterized by

(𝑎1 ⊗ ⋯ ⊗ 𝑎𝑚, 𝑏1 ⊗ ⋯ ⊗ 𝑏𝑛) ↦ 𝑎1 ⊗ ⋯ ⊗ 𝑎𝑚 ⊗ 𝑏1 ⊗ ⋯ ⊗ 𝑏𝑛, is the free ring generated by
the abelian group 𝑘×. Thus the homomorphism 𝜕 ∶ 𝑘

×
→ 𝐻

1

ét(Spec 𝑘, 𝜇𝑙) defines a graded
ring homomorphism

𝜕∗ ∶ 𝑇 (𝑘
×
) ⟶ ⨁

𝑛≥0

𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
)

to the étale cohomology ring of Spec 𝑘 with coefficients in 𝜇𝑙 .

By Proposition 1.2.5, each tensor of the form 𝑎 ⊗ 𝑏 for 𝑎, 𝑏 ∈ 𝑘
× satisfying 𝑎 + 𝑏 = 1

is sent under 𝜕2 to 0 ∈ 𝐻
2

ét(Spec 𝑘, 𝜇⊗2
𝑙
). By passing to the quotient, we obtain a map from

Milnor K-theory to étale cohomology:

𝐾
∗

𝑀
(𝑘) = 𝑇 (𝑘

×
)/(𝑎 × 𝑏| 𝑎, 𝑏 ∈ 𝑘

×, 𝑎 + 𝑏 = 1) ⟶ 𝐻
∗

ét(Spec 𝑘, 𝜇⊗∗
𝑙
).

Furthermore, each 𝑎 ∈ 𝑘
×
≅ 𝑇

1
(𝑘

×
) satisfies 𝜕(𝑎𝑙) = 𝑙 ⋅ 𝜔(𝑎) = 0, so passing once again to

the quotient yields a homomorphism − the norm residue homomorphism −

𝜈∗ ∶ 𝐾
∗

𝑀
(𝑘)/𝑙 ⟶ 𝐻

∗

ét(Spec 𝑘, 𝜇⊗∗
𝑙
).

For a field 𝑘 and an integer 𝑛 ≥ 0, the Bloch-Kato condition 𝐵𝐾(𝑘, 𝑛) is defined to hold if
and only if for every prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), the map 𝜈𝑛 ∶ 𝐾 𝑛

𝑀
(𝑘)/𝑙 → 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
)

is an isomorphism. The condition 𝐵𝐾(𝑛) is defined to hold if and only if 𝐵𝐾(𝑘, 𝑛) holds for
every field 𝑘. The Bloch-Kato conjecture states that 𝐵𝐾(𝑛) holds for every 𝑛 ≥ 0.

In this section, we discuss some constructions which allow one to study the norm
residue homomorphism from the point of motivic cohomology. In particular, for each
𝑛 ≥ 0 it is possible to characterize the map 𝜈𝑛 ∶ 𝐾 𝑛

𝑀
(𝑘)/𝑙 → 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) as a change of

topology map from Zariski to étale motivic cohomology; see Corollary 3.3.7.

3.3.1 The Beilinson-Lichtenbaum condition
The following general construction will be needed in what follows: given an abelian

category A, a complex (𝐶, 𝑑) ∈ Ch(A), and an integer 𝑛, the truncated complex 𝜏≤𝑛𝐶 is
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defined as

(𝜏
≤𝑛
𝐶)

𝑖
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝐶
𝑖
, 𝑖 < 𝑛,

Ker(𝑑𝑛 ∶ 𝐶𝑛
→ 𝐶

𝑛+1
) 𝑖 = 𝑛,

0, 𝑖 > 𝑛,

with differentials given by 𝑑 𝑖 in degrees 𝑖 < 𝑛−1, codomain restriction of 𝑑𝑛−1 ∶ 𝐶𝑛−1
→ 𝐶

𝑛

in degree 𝑛 −1, and 0 in degrees 𝑖 > 𝑛 −1. In particular, 𝜏≤𝑛𝐶 is acyclic in degrees 𝑖 > 𝑛, and
𝜏
≤𝑛
𝐶 ↪ 𝐶 induces isomorphisms between cohomology objects in degrees 𝑖 ≤ 𝑛.

Definition 3.3.1. (We follow Haesemeyer and C. Weibel, 2019 up to notation.) As above,
we let 𝑘 denote a fixed field. Suppose given a commutative ring with unit 𝐴. Then for each
integer 𝑛 ≥ 0 we define the Lichtenbaum motivic complex 𝐴(𝑛)𝐿𝑖𝑐ℎ to be the complex

𝐴(𝑛)𝐿𝑖𝑐ℎ ∶= 𝜏
≤𝑛R𝜋∗(𝐴(𝑛)|Sm𝑘

)

in𝐷(ShZar(Sm𝑘 ,Ab)), where𝐴(𝑛)|Sm𝑘
is the (restriction to Sm𝑘 of the) usual motivic complex

as an object of 𝐷(Shét(Sm𝑘 ,Ab)). Let us assume R𝜋∗(𝐴(𝑛)) to be computed in terms of the
resolution of 𝐴(𝑛)|Sm𝑘

in Ch(Shét(Sm𝑘 ,Ab)) defined in Mazza et al., 2006, 6.20, say 𝐺. By
construction, each entry of 𝐺 is endowed with the structure of an étale sheaf with transfers.
Hence by applying 𝜋 𝑡𝑟

∗
∶ Ch(STét(𝑘)) ⟶ Ch(STZar(𝑘)) to 𝐺 and then truncating 𝜋 𝑡𝑟

∗
𝐺 via

𝜏
≤𝑛 we obtain a complex whose restriction to Ch(ShZar(Sm𝑘 ,Ab)) is equal to 𝐴(𝑛). Hence

we also denote by 𝐴(𝑛), by abuse of notation, the complex of étale sheaves with transfers
𝜏
≤𝑛
𝜋
𝑡𝑟

∗
𝐺.

Construction 3.3.2. If 𝐶 is a complex in Ch(ShZar(Sm𝑘 ,Ab)) such that 𝜋 ∗
𝐶 has an injective

resolution, then we may compose the adjunction unit component 𝐶 → 𝜋∗𝜋
∗
𝐶 with

𝜋∗𝜋
∗
𝐶 → R𝜋∗𝜋 ∗

𝐶 (obtained by applying 𝜋∗ to an injective resolution of 𝜋 ∗
𝐶) to obtain a

chain map 𝐶 → R𝜋∗𝜋 ∗
𝐶 .

In case 𝐶 is moreover a complex of étale sheaves on Sm𝑘 which is truncated in degree
𝑛 (i.e. 𝜏≤𝑛𝐶 ≅ 𝐶), we have the following morphism in Ch(ShZar(Sm𝑘 ,Ab)):

𝐶 ≅ 𝜏
≤𝑛
𝐶 → 𝜏

≤𝑛R𝜋∗𝜋 ∗
𝐶 ≅ 𝜏

≤𝑛R𝜋∗𝐶.

It will be denoted, with 𝑘 implicit, by 𝛼𝐶
𝑛

.

Now, for any scheme 𝑋 ∈ Sm𝑘 and any integer 𝑝 we obtain a homomorphism

𝐻
𝑝

Zar(𝑋 , 𝛼
𝐶

𝑛
) ∶ 𝐻

𝑝

Zar(𝑋 , 𝐶) ⟶ 𝐻
𝑝

Zar(𝑋 , 𝜏
≤𝑛R𝜋∗𝐶). (3.3.1)

Note that in the particular case 𝑋 = Spec 𝑘, triviality of its small Zariski site (so Zariski
cohomology is given by usual cohomology of complexes) implies that

𝐻
𝑝

Zar(Spec 𝑘, 𝜏≤𝑛R𝜋∗𝐶) ≅

{

𝐻
𝑝

ét(Spec 𝑘, 𝐶), 𝑝 ≤ 𝑛,

0, 𝑝 > 𝑛,
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and 3.3.1 becomes isomorphic to
{

The change of topology map 𝐻 𝑝

Zar(Spec 𝑘, 𝐶) → 𝐻
𝑝

ét(Spec 𝑘, 𝐶), 𝑝 ≤ 𝑛,

The trivial map 0 → 0, 𝑝 > 𝑛.

The Beilinson-Lichtenbaum condition

We now specialize the above construction to the case where 𝐶 ∈ Ch(ShZar(Sm𝑘 ,Ab)) is
the motivic complex𝐴(𝑛) (restricted to Sm𝑘 , following Convention 2.4.4) for a commutative
ring with unit 𝐴 and an integer 𝑛 ≥ 0. Recall that 𝐴(𝑛) is an étale sheaf on Sm𝑘 (Proposition
2.1.13) and is truncated in degree 𝑛 by construction. So we have a morphism

𝛼
𝐴(𝑛)

𝑛
∶ 𝐴(𝑛) ⟶ 𝜏

≤𝑛R𝜋∗𝐴(𝑛) = 𝐴(𝑛)𝐿𝑖𝑐ℎ (3.3.2)

in Ch(ShZar(Sm𝑘 ,Ab)). Whenever it is clear that 𝐴 denotes a ring, we denote 𝛼𝐴(𝑛)
𝑛

by 𝛼𝐴
𝑛

.
Chain maps of this form will be called Beilinson-Lichtenbaum morphisms.

We shall be concerned with a few choices of 𝐴 whose corresponding Beilinson-
Lichtenbaum morphisms may be related to each other and to the norm residue homomor-
phism 𝜈𝑛 ∶ 𝐾

𝑛

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
). As a motivating step, note that

𝛼
ℤ/𝑙

𝑛
∶ ℤ/𝑙(𝑛) → ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ

induces, by applying 𝐻 𝑝

Zar(Spec 𝑘, −) to it for a varying integer 𝑝 as in the previous section,
arrows isomorphic to:

{

The change of topology map 𝐻 𝑝

Zar(Spec 𝑘, ℤ/𝑙(𝑛)) → 𝐻
𝑝

ét(Spec 𝑘, ℤ/𝑙(𝑛)), 𝑝 ≤ 𝑛,

The trivial map 0 → 0, 𝑝 > 𝑛.

By taking 𝑝 = 𝑛, the quasi-isomorphism ℤ/𝑙(𝑛)ét ≃ 𝜇
⊗𝑛

𝑙
of complexes of étale sheaves shows,

by naturality of change of topology maps, that the arrow 𝐻
𝑛

Zar(Spec 𝑘, 𝛼ℤ/𝑙

𝑛
) is canonically

isomorphic to𝐻 𝑝

Zar(Spec 𝑘, ℤ/𝑙(𝑛)) → 𝐻
𝑝

ét(Spec 𝑘, ℤ/𝑙(𝑛)). By Remark 3.3.5 and Proposition
3.3.6, it is then also canonically isomorphic to the norm residue 𝜈𝑛.

Definition 3.3.3. Given a field 𝑘 and an integer 𝑛 ≥ 0, we say the Beilinson-Lichtenbaum
condition 𝐵𝐿(𝑘, 𝑛) holds if and only if for every prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), the
Beilinson-Lichtenbaum morphism 𝛼

ℤ/𝑙

𝑛
∶ ℤ/𝑙(𝑛) → ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ is a quasi-isomorphism

in Ch(ShZar(Sm𝑘 ,Ab)).

Given 𝑛 ≥ 0, we say 𝐵𝐿(𝑛) holds if and only if for every field 𝑘, 𝐵𝐿(𝑘, 𝑛) holds.

Lemma 3.3.4 (Haesemeyer and C. Weibel, 2019, 1.29). Suppose given a field 𝑘 and an
integer 𝑛 ≥ 0. If 𝐵𝐿(𝑘, 𝑛) holds, then the Beilinson-Lichtenbaum morphism 𝛼

𝐴

𝑛
∶ 𝐴(𝑛) →

𝐴(𝑛)𝐿𝑖𝑐ℎ is also a quasi-isomorphism in Ch−

(ShZar(Sm𝑘 ,Ab)) for the following rings 𝐴:

(i) ℤ/𝑙
𝑖 for any integer 𝑖 ≥ 1.

(ii) ℚ/ℤ(𝑙).

(iii) ℤ(𝑙).
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3.3.2 The norm residue homomorphism in terms of motivic
cohomology

Stated in terms of Galois cohomology, Hilbert’s classical ‘theorem 90’ (see theorems
1.2.4, 1.2.3) asserts that given a field 𝑘 endowed with a separable closure 𝑘𝑠𝑒𝑝 , denoting by
𝐺 = Gal(𝑘𝑠𝑒𝑝/𝑘) the corresponding absolute Galois group, the discrete 𝐺-module 𝑘×

𝑠𝑒𝑝
has

trivial (continuous) group cohomology in degree 1:

𝐻
1
(𝑘, 𝑘

×

𝑠𝑒𝑝
) ≅ lim

−−→
𝐾∈FinGal𝐻

𝑛
(Gal(𝐾/𝑘), 𝐾 ×

𝑠𝑒𝑝
) ≅ 0. (3.3.3)

It may then be equivalently stated as the vanishing of the degree 1 étale cohomology
of the sheaf O× of global units on (the small étale site of) Spec 𝑘:

𝐻
1

ét(Spec 𝑘,O×
) ≅ 0. (3.3.4)

The quasi-isomorphism of presheaves with transfers ℤ(1) ≃ O×
[−1] (see 2.3.5) allows

us to further restate 3.3.4 in terms of étale motivic cohomology as

𝐻
2

ét(Spec 𝑘, ℤ(1)) ≅ 𝐻 2

ét(Spec 𝑘,O×
[−1]) ≅ 𝐻

1

ét(Spec 𝑘,O×
) ≅ 0. (3.3.5)

On the other hand, we have

𝐻
1

ét(Spec 𝑘, ℤ(0)) ≅ 𝐻 1

ét(Spec 𝑘, ℤ) ≅ 0. (3.3.6)

More generally, the discussion below, following Haesemeyer and C. Weibel, 2019,
suggests the existence of a pattern relating, for a given field 𝑘, the Bloch-Kato condition
𝐵𝐾(𝑛, 𝑙) for any integer 𝑛 ≤ 0 and any prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘) to a condition on the
étale motivic cohomology of Spec 𝑘 which would extend the above vanishing results to
higher degrees and weights.

We start by discussing an alternative description of the norm residue homomorphism.
Let us fix a field 𝑘 and a prime 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘). Denote by

𝐹 = ⨁

𝑛≥0

𝐹𝑛 ∶ 𝐾
∗

𝑀
(𝑘) ⟶ ⨁

𝑛≥0

𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛))

the composite of the ring isomorphism 𝜆∗ ∶ 𝐾
∗

𝑀
(𝑘)

≅

→ ⨁
𝑛≥0

𝐻
𝑛
(Spec 𝑘, ℤ(𝑛)) (see

3.1.6) with the change of topology ring homomorphism ⨁
𝑛≥0

𝐻
𝑛
(Spec 𝑘, ℤ(𝑛)) →

⨁
𝑛≥0

𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)).

Recall from Subsection 3.1.2 that for each 𝑛 ≥ 0 there exists a commutative dia-
gram

𝐾
𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘)/𝑙

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ) 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ) 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ/𝑙).

𝑙

≅ ≅ ≅

𝑙
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Moreover, naturality of change of topology maps yields a commutative diagram

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ) 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ) 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ/𝑙)

𝐻
𝑛,𝑛
(Spec 𝑘, ℤ)ét 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ)ét 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ/𝑙)ét.

𝑙

𝑙

Then we obtain for each 𝑛 ≥ 0 a commutative diagram

𝐾
𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘)/𝑙

𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
),

𝑙

𝐹𝑛 𝐹𝑛
𝜑𝑛

𝑙

(3.3.7)

where in the bottom right entry we have used the isomorphism 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) ≅

𝐻
𝑛

ét(Spec 𝑘, ℤ/𝑙(𝑞)𝑛) provided by the quasi-isomorphism 𝜇
⊗𝑞

𝑙
≃ ℤ/𝑙(𝑞)

𝑛 (see Remark 2.3.6)
of complexes of étale sheaves with transfers.

Remark 3.3.5. Note that 𝐻 𝑛+1
(Spec 𝑘, ℤ(𝑛)) ≅ 0, since the small Zariski site of Spec 𝑘 is

trivial and ℤ(𝑛) is truncated in degree 𝑛 by construction. Hence the exact sequence

𝐻
𝑛
(Spec 𝑘, ℤ(𝑛))

𝑙

⟶ 𝐻
𝑛
(Spec 𝑘, ℤ(𝑛)) ⟶ 𝐻

𝑛
(Spec 𝑘, 𝜇⊗𝑛

𝑙
) ⟶ 0

combined with the isomorphism 𝐾
𝑛

𝑀
(𝑘) ≅ 𝐻

𝑛
(Spec 𝑘, ℤ(𝑛)) yields a canonical isomorphism

𝐾
𝑛

𝑀
(𝑘)/𝑙 ≅ 𝐻

𝑛
(Spec 𝑘, 𝜇⊗𝑛

𝑙
).

Now, uniqueness of 𝜑𝑛 as a filler in 3.3.9 and naturality of the change of topology maps
𝐻

𝑛
(Spec 𝑘, −) → 𝐻

𝑛

ét(Spec 𝑘, −) show that 𝜑𝑛 equals the composite

𝐾
𝑛

𝑀
(𝑘)/𝑙

≅

⟶ 𝐻
𝑛
(Spec 𝑘, ℤ/𝑙⊗𝑛) ⟶ 𝐻

𝑛

ét(Spec 𝑘, ℤ/𝑙⊗𝑛) ≅ 𝐻 𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
).

Proposition 3.3.6. In the above notation, 𝜑𝑛 equals the norm residue homomorphism
𝜈𝑛 ∶ 𝐾

𝑛

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
).

Proof. The fact that 𝐹 = ⨁
𝑛≥0

𝐹𝑛 is a ring homomorphism yields a commutative diagram

𝐾
1

𝑀
(𝑘)

⊗𝑛
𝐾
𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘)/𝑙

𝐻
1

ét(Spec 𝑘, ℤ(1))⊗𝑛 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
).

∨

𝐹
⊗𝑛

1
𝐹𝑛

𝜑𝑛

∨

By construction, the ring 𝐾
∗

𝑀
is generated by degree 1 elements, i.e. for each 𝑛 the

multiplication map ∨ ∶ 𝐾
1

𝑀
(𝑘)

⊗𝑛
→ 𝐾

𝑛

𝑀
(𝑘) is surjective. Hence so is the composite
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𝜋 ∶ 𝐾
1

𝑀
(𝑘)

⊗𝑛
⟶ 𝐾

𝑛

𝑀
(𝑘)/𝑙 of the upper row. It follows that if we denote by 𝜋 ′ the composite

𝐾
1

𝑀
(𝑘)

⊗𝑛
𝐹
⊗𝑛

1

⟶ 𝐻
1

ét(Spec 𝑘, ℤ(1))⊗𝑛
∨

⟶ 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) ⟶ 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
),

then 𝜑𝑛 is uniquely determined by the condition 𝜑𝑛 ◦ 𝜋 = 𝜋
′. On the other hand, the norm

residue 𝜈𝑛 ∶ 𝐾 𝑛

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) is uniquely characterized by the commutativity

of
𝐾

1

𝑀
(𝑘)

⊗𝑛
𝐾
𝑛

𝑀
(𝑘)/𝑙

𝐻
1

ét(Spec 𝑘, 𝜇𝑙)⊗𝑛 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
),

𝜋

𝜈𝑛

∨

so it suffices to show that 𝜋 ′ equals the composite 𝐾
1

𝑀
(𝑘)

⊗𝑛
→ 𝐻

1

ét(Spec 𝑘, 𝜇𝑙)⊗𝑛
∨

→

𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
). This in turn may be done by proving commutativity of

𝐻
1

ét(Spec 𝑘, ℤ(1))⊗𝑛 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛))

𝐾
1

𝑀
(𝑘)

⊗𝑛

𝐻
1

ét(Spec 𝑘, 𝜇𝑙)⊗𝑛 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
),

∨

𝜓
⊗𝑛

1
𝜓𝑛

≅

∨

where the vertical arrows are induced from morphisms in the derived category of étale
sheaves ℤ(𝑞)ét → ℤ/𝑙(𝑞)ét ≅ 𝜇

⊗𝑞

𝑙
, 𝑞 = 1, 𝑛. These give rise to a ring homomorphism

𝐻
∗

ét(Spec 𝑘, ℤ(∗)) ⟶ 𝐻
∗

ét(Spec 𝑘, 𝜇∗
𝑙
), so the right-hand square commutes. Now, note that

commutativity of the left-hand triangle is equivalent, by definition of the maps involved
(which rely on the isomorphism 𝐾

1

𝑀
(𝑘) ≅ 𝐻

0

ét(Spec 𝑘,O×
)), to commutativity of

𝐻
1

ét(Spec 𝑘, ℤ(1))

𝐻
0

ét(Spec 𝑘,O×
) 𝐻

1

ét(Spec 𝑘, 𝜇𝑙),

𝜓1

≅

𝛿

(3.3.8)

where 𝐻
0

ét(Spec 𝑘,O×
) ≅ 𝐻

1

ét(Spec 𝑘, ℤ(1)) arises from the given quasi-isomorphism
ℤ(1)ét ≃ O×

[−1] of complexes of étale sheaves, and 𝛿 is the connecting homomorphism

arising from the Kummer exact sequence of étale sheaves 0 → 𝜇𝑙 → O×
𝑙

→ O×
→ 0. Also

note that we have distinguished triangles

ℤ(1)ét
−𝑙

⟶ ℤ(1)ét ⟶ ℤ/𝑙(1)ét ⟶ ℤ(1)ét[1],

O×
𝑙

⟶ O×
⟶ 𝜇𝑙[1] ⟶ O×

[1]

in the derived category of étale sheaves on Spec 𝑘, as well as an isomorphism of distin-
guished triangles (with vertical arrows induced by the quasi-isomorphisms previously
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described)

ℤ(1)ét[1] ℤ(1)ét[1] ℤ/𝑙(1)ét[1] ℤ(1)ét[2]

O× O×
𝜇𝑙[1] O×

[1].

𝑙

𝑙

We conclude by applying 𝐻 0

ét(Spec 𝑘, −) to the middle square and comparing it with 3.3.8.

Expanding the definition of 𝜑𝑛 yields:

Corollary 3.3.7. The diagram

𝐾
𝑛

𝑀
(𝑘)/𝑙 𝐻

𝑛,𝑛
(Spec 𝑘, ℤ/𝑙)

𝐻
𝑛
(Spec 𝑘, 𝜇⊗𝑛

𝑙
) 𝐻

𝑛,𝑛

ét (Spec 𝑘, ℤ/𝑙)

≅

𝜈𝑛

≅

commutes, where: 𝜈𝑛 is the norm residue homomorphism; the right arrow is the change
of topology map; the top arrow is the isomorphism described in Subsection 3.1.2; and
the bottom arrow is the isomorphism provided by the quasi-isomorphism 𝜇

⊗𝑛

𝑙
≃ ℤ/𝑙(𝑛) of

complexes of étale sheaves with transfers.

3.3.3 The generalized ’Hilbert 90’ condition
The short exact sequence

0 ⟶ ℤ(𝑛)

𝑙

⟶ ℤ(𝑛) ⟶ ℤ/𝑙(𝑛) ⟶ 0

of complexes of étale sheaves with transfers defines a distinguished triangle

ℤ(𝑛)

𝑙

⟶ ℤ(𝑛) ⟶ ℤ/𝑙(𝑛) ⟶ ℤ(𝑛)[1]

in the derived category. So by using the quasi-isomorphism 𝜇
⊗𝑛

𝑙
≃ ℤ/𝑙 one obtains a

distinguished triangle

ℤ(𝑛)

𝑙

⟶ ℤ(𝑛) ⟶ 𝜇
⊗𝑛

𝑙
⟶ ℤ(𝑛)[1].

Then let us consider the commutative diagram

𝐾
𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘) 𝐾

𝑛

𝑀
(𝑘)/𝑙 0

𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) 𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) 𝐻

𝑛+1

ét (Spec 𝑘, ℤ(𝑛)),

𝑙

𝐹𝑛 𝐹𝑛
𝜈𝑛

𝑙

(3.3.9)
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where both rows are exact. If 𝜈𝑛 is an isomorphism, then 𝐻
𝑛

ét(Spec 𝑘, ℤ(𝑛)) →

𝐻
𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) is surjective, so by continuing the lower row’s long exact sequence,

it follows that the map 𝐻
𝑛+1

ét (Spec 𝑘, ℤ(𝑛))
𝑙

→ 𝐻
𝑛+1

ét (Spec 𝑘, ℤ(𝑛)) is injective. This
proves:

Lemma 3.3.8. Suppose given a field 𝑘, an integer 𝑛 ≥ 0, and a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘).
If the norm residue 𝜈𝑛 ∶ 𝐾 𝑛

𝑀
(𝑘)/𝑙 ⟶ 𝐻

𝑛

ét(Spec 𝑘, 𝜇⊗𝑛
𝑙
) is an isomorphism, then the 𝑙-torsion

subgroup of 𝐻 𝑛+1

ét (Spec 𝑘, ℤ(𝑛)) is trivial.

On the other hand, it may be proved (see Haesemeyer and C. Weibel, 2019, 1.6) that
𝐻

𝑛+1

ét (Spec 𝑘, ℤ(𝑛)) is a torsion group whose 𝑙-primary subgroup is 𝐻 𝑛+1

ét (Spec 𝑘, ℤ(𝑙)(𝑛)).
Hence if 𝜈𝑛 is an isomorphism, then 𝐻 𝑛+1

ét (Spec 𝑘, ℤ(𝑙)(𝑛)) ≅ 0.

Definition 3.3.9. Given a field 𝑘 and an integer 𝑛 ≥ 0, we say the (generalized ‘Hilbert
90’) condition 𝐻90(𝑘, 𝑛) holds if and only if for every prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘),
𝐻

𝑛+1

ét (Spec 𝑘, ℤ(𝑙)(𝑛)) ≅ 0.

Given 𝑛 ≥ 0, we say 𝐻90(𝑛) holds if and only if for every field 𝑘, 𝐻90(𝑘, 𝑛) holds.

Proposition 3.3.10 (Haesemeyer and C. Weibel, 2019, 2.10). Suppose 𝑈 is a nonempty
open subscheme of 𝔸1

𝑘
⧵ {0}. Let us consider the following distinguished triangle in DM(𝑘):

⨁

𝑥∈𝔸
1

𝑘
⧵𝑈

𝑀(𝑥)(1)[1] ⟶ 𝑀(𝑈 ) ⟶ 𝑀(Spec 𝑘) ⟶ ⨁

𝑥∈(𝔸
1

𝑘
⧵{0})⧵𝑈

𝑀(𝑥)(1)[2].

Suppose F is a complex of Zariski sheaves with transfers whose underlying complex of
presheaves with transfers is homotopy invariant (as in Definition 2.5.1). Then for each
integer 𝑛 ≥ 1 there exists a split exact sequence

0 ⟶ 𝐻
𝑛
(𝑘,F ) ⟶ 𝐻

𝑛
(𝑘(𝑡),F )

𝜕

⟶ ⨁

𝑥∈𝔸
1

𝑘

𝐻
𝑛−1

({𝑥},F (−1)) ⟶ 0.

Proof. Suppose 𝑈 is a dense open subset of 𝔸1

𝑘
⧵ {0}. Since 𝑈 is dense in 𝔸

1

𝑘
, it contains a

zero-cycle of degree 1, yielding a map 𝑝 ∶ Spec 𝑘 ⟶ 𝑈 of degree 1 in Cor𝑘 . Now, let us
consider the sequence

Spec 𝑘
𝑝

⟶ 𝑈 ↪ 𝔸
1

𝑘
.

By applying the motive functor 𝑀 ∶ Cor𝑘 → DM(𝑘), we obtain a sequence

𝑀(Spec 𝑘)
𝑀(𝑝)

⟶ 𝑀(𝑈) ⟶ 𝑀(𝔸
1

𝑘
)

whose composite is an isomorphism inverse to the morphism of motives induced by the
terminal map 𝔸

1

𝑘
→ Spec 𝑘. By the splitting lemma, the short exact sequence

0 ⟶ 𝐻
𝑛
(Spec 𝑘,F ) ⟶ 𝐻

𝑛
(𝑈 ,F ) ⟶ ⨁

𝑥∈𝔸
1

𝑘
⧵𝑈

𝐻
𝑛−1

({𝑥},F (−1)) ⟶ 0

splits.
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Corollary 3.3.11. Adequately choosing F and 𝑛 ≥ 1 in Proposition 3.3.10 yields the
following split short exact sequences, where 𝑙 denotes a prime number different from
𝑐ℎ𝑎𝑟(𝑘):

(i) For F = ℤ(𝑛),

0 ⟶ 𝐾
𝑀

𝑛
(𝑘) ⟶ 𝐾

𝑀

𝑛
(𝑘(𝑡))

𝜕

⟶ ⨁

𝑥∈𝔸
1

𝑘

𝐾
𝑀

𝑛−1
(𝑘(𝑥)) ⟶ 0.

(ii) For F = ℤ(𝑙)(𝑛),

0 ⟶ 𝐻
𝑛

Zar(𝑘, ℤ(𝑙)(𝑛)) ⟶ 𝐻
𝑛

Zar(𝑘(𝑡), ℤ(𝑙)(𝑛))

𝜕

⟶ ⨁

𝑥∈𝔸
1

𝑘

𝐻
𝑛−1

Zar (𝑘(𝑥), ℤ(𝑙)(𝑛 − 1)) ⟶ 0.

(iii) For F = 𝑅𝜋∗𝜇
⊗𝑛

𝑙
,

0 ⟶ 𝐻
𝑛

ét(𝑘, 𝜇
⊗𝑛

𝑙
) ⟶ 𝐻

𝑛

ét(𝑘(𝑡), 𝜇
⊗𝑛

𝑙
)

𝜕

⟶ ⨁

𝑥∈𝔸
1

𝑘

𝐻
𝑛−1

ét (𝑘(𝑥), 𝜇
⊗𝑛−1

𝑙
) ⟶ 0.

(iv) For F = 𝑅𝜋∗ℤ(𝑛)ét,

0 ⟶ 𝐻
𝑛+1

ét (𝑘, ℤ(𝑛)) ⟶ 𝐻
𝑛+1

ét (𝑘(𝑡), ℤ(𝑛))

𝜕

⟶ ⨁

𝑥∈𝔸
1

𝑘

𝐻
𝑛

ét(𝑘(𝑥), ℤ(𝑛 − 1)) ⟶ 0.

Corollary 3.3.12. The following hold:

(i) Suppose given a field 𝑘, an integer 𝑛 ≥ 1, and a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘). If
𝐻

𝑛+1

ét (𝑘(𝑡), ℤ(𝑙)(𝑛)) ≅ 0, then 𝐻 𝑛

ét(𝑘, ℤ(𝑙)(𝑛 − 1)) ≅ 0.

By varying 𝑙 among all primes different from 𝑐ℎ𝑎𝑟(𝑘) = 𝑐ℎ𝑎𝑟(𝑘(𝑡)), it follows that
𝐻90(𝑘(𝑡), 𝑛 + 1) implies 𝐻90(𝑘, 𝑛). By also varying 𝑘, it follows that for every 𝑛 ≥ 1,
if 𝐻90(𝑛 + 1) holds, then 𝐻90(𝑛) holds.

(ii) Suppose given a field 𝑘, an integer 𝑛 ≥ 1, and a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘). If
𝐻

𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)) → 𝐻
𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ) ≅ 𝐻
𝑛

ét(𝑘(𝑡), ℤ/𝑙(𝑛)) is an isomorphism, then
so is 𝐻 𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)) → 𝐻
𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)𝐿𝑖𝑐ℎ) ≅ 𝐻
𝑛−1

ét (𝑘, ℤ/𝑙(𝑛 − 1)).

By varying 𝑙 among all primes different from 𝑐ℎ𝑎𝑟(𝑘) = 𝑐ℎ𝑎𝑟(𝑘(𝑡)), we have that
𝐵𝐾(𝑘(𝑡), 𝑛 + 1) implies 𝐵𝐾(𝑘, 𝑛). And by varying 𝑘, it follows that for every 𝑛 ≥ 1, if
𝐵𝐾(𝑛 + 1) holds, then 𝐵𝐾(𝑛) holds.

(iii) Suppose given a field 𝑘, an integer 𝑛 ≥ 1, and a prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘). If
𝐻

𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)) → 𝐻
𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ) ≅ 𝐻
𝑛

ét(𝑘(𝑡), ℤ/𝑙(𝑛)) is surjective, then so is
𝐻

𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)) → 𝐻
𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)𝐿𝑖𝑐ℎ) ≅ 𝐻
𝑛−1

ét (𝑘, ℤ/𝑙(𝑛 − 1)).

Proof.
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(i) Note that 𝐻 𝑛

ét(𝑘, ℤ(𝑙)(𝑛 − 1)) ≅ 𝐻
𝑛

ét(𝑘(0), ℤ(𝑙)(𝑛 − 1)) (where 0 denotes the origin in
𝔸

1

𝑘
) is a direct summand of ⨁

𝑥∈𝔸
1

𝑘

𝐻
𝑛

ét(𝑘(𝑥), ℤ(𝑙)(𝑛 − 1)), which is in turn a direct
summand of 𝐻 𝑛+1

ét (𝑘(𝑡), ℤ(𝑙)(𝑛)).

(ii) Let us consider the canonical morphism ℤ/𝑙(𝑛) → 𝑅𝜋∗ℤ/𝑙(𝑛)ét of Zariski sheaves
on Sm𝑘 . Naturality of the split exact sequence from Proposition 3.3.10 yields the
left-hand square in the following commutative diagram where all horizontal arrows
are split surjections:

𝐻
𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)) ⨁
𝑥∈𝔸

1

𝑘

𝐻
𝑛−1

Zar (𝑘(𝑥), ℤ/𝑙(𝑛 − 1)) 𝐻
𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1))

𝐻
𝑛

ét(𝑘(𝑡), ℤ/𝑙(𝑛)) ⨁
𝑥∈𝔸

1

𝑘

𝐻
𝑛−1

ét (𝑘(𝑥), ℤ/𝑙(𝑛 − 1)) 𝐻
𝑛−1

ét (𝑘, ℤ/𝑙(𝑛 − 1)).

𝜕

𝜕

Since the splitting is natural, if 𝐻 𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)) → 𝐻
𝑛

ét(𝑘(𝑡), ℤ/𝑙(𝑛)) is an isomor-
phism, then so is 𝐻 𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)) → 𝐻
𝑛−1

ét (𝑘, ℤ/𝑙(𝑛 − 1)).

(iii) The same diagram as in the proof of (ii) shows that if 𝐻 𝑛

Zar(𝑘(𝑡), ℤ/𝑙(𝑛)) →

𝐻
𝑛

ét(𝑘(𝑡), ℤ/𝑙(𝑛)) is onto, then so is 𝐻 𝑛−1

Zar (𝑘, ℤ/𝑙(𝑛 − 1)) → 𝐻
𝑛−1

ét (𝑘, ℤ/𝑙(𝑛 − 1)).

3.3.4 Consequences of the existence of the contraction
functor

Following Definition 3.2.3, the full subcategory of D−STNis(𝑘, ℤ) consisting of 𝔸1-
local complexes will be denoted by 𝔸

1-LocNis(𝑘, ℤ). As stated in the previous section,
the composite of the inclusion functor 𝑖 ∶ 𝔸

1-LocNis(𝑘, ℤ) ↪ D−STNis(𝑘, ℤ) with the
localization 𝐿 ∶ D−STNis(𝑘, ℤ) ⟶ DM𝑒𝑓 𝑓 ,−

Nis (𝑘, ℤ) defines an equivalence of categories from
𝔸

1-LocNis(𝑘, ℤ) to the category of Voevodsky (Nisnevich) motives over 𝑘 with integral
coefficients. The following discussion uses the existence of a tensor triangulated structure
⊗ on 𝔸

1-LocNis(𝑘, ℤ) and a corresponding internal hom functor RHom, as in Mazza et al.,
2006, 14.11.

Definition 3.3.13. Let 𝐹 be a homotopy invariant presheaf with transfers. Note that for
any 𝑋 ∈ Cor𝑘 the projection 𝑋 × (𝔸

1
⧵ {0})

𝜋

→ 𝑋 has a section 𝑋

𝜄1

→ 𝑋 × (𝔸
1
⧵ {0}), and

that both 𝜋 and 𝜄1 are natural in 𝑋 . Hence we have maps 𝐹 (𝑋 )
𝐹 (𝜋)

→ 𝐹(𝑋 × (𝔸
1
⧵ {0})) with

retractions 𝐹 (𝑋 × (𝔸
1
⧵ {0}))

𝐹 (𝜄1)

→ 𝐹(𝑋), both natural in 𝑋 ∈ Cor𝑘 .

Thus we obtain a split monomorphism 𝐹 → 𝐹(− × (𝔸
1
⧵ {0})) which, denoting its

cokernel by 𝐺, fits into a split exact sequence

0 ⟶ 𝐹 ⟶ 𝐹(− × (𝔸
1
⧵ {0})) ⟶ 𝐺 ⟶ 0.

The splitting lemma yields an isomorphism

𝐹 (− × (𝔸
1
⧵ {0}))

≅

⟶ 𝐹 ⊕ 𝐺.
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In this setting, 𝐺 will be denoted by 𝐹−1 and called the contraction of 𝐹 . As (co)kernels
of presheaves with transfers are computed objectwise, we have isomorphisms 𝐹−1(𝑋 ) ≅
𝐹(𝑋 × (𝔸

1
⧵ {0}))/𝐹 (𝑋 ) natural in 𝑋 ∈ Cor𝑘 .

One recursively defines 𝐹−(𝑛+1) = (𝐹−𝑛)−1 for 𝑛 ≥ 1.

In what follows, we will denote by Σ the shift endofunctor F ↦ F [1] on
𝔸

1-LocNis(𝑘, ℤ), and Σ
−1 denotes its inverse F ↦ F [−1].

Recall from Definition 3.2.4 that the Lefschetz motive 𝕃 is defined as the complex
ℤ(1)[2] ∈ D−STNis(𝑘).

The following proposition consists in a summary of properties of a particular construc-
tion on 𝔸

1-LocNis(𝑘, ℤ) ≃ D−STNis(𝑘, ℤ) which is intended to extend the above definition of
contractions of sheaves to more general complexes. Such properties allow one to compare
motivic cohomology groups of a given 𝑋 ∈ Sm𝑘 in different degrees. Explicitly, one consid-
ers the derived hom functor RHom ∶ 𝔸

1-LocNis(𝑘, ℤ)×𝔸
1-LocNis(𝑘, ℤ) ⟶ 𝔸

1-LocNis(𝑘, ℤ)

and the Lefschetz motive 𝕃 (see Definition 3.2.4) and defines the endofunctor

Cont ∶= RHom(𝕃, −)[1]

on 𝔸
1-LocNis(𝑘, ℤ). It is denoted in Haesemeyer and C. Weibel, 2019 also by F ↦

F−1.

The properties below also concern a natural transformation 𝛿 ∶ Σ
−1
⟹ Cont(−⊗ℤ(1))

which is essentially given by the unit natural transformation 𝜂 corresponding to the
adjunction − ⊗ 𝕃 ⊣ RHom(𝕃, −) between endofunctors on 𝔸

1-LocNis(𝑘, ℤ). Namely, by
horizontally composing 𝜂 ∶ 1𝔸1-LocNis(𝑘,ℤ) ⇒ RHom(𝕃, − ⊗ 𝕃) with the identity natural
transformation 1Σ−1 one obtains a natural transformation

Σ
−1
⟹ RHom(𝕃, − ⊗ 𝕃)[−1].

Then one defines 𝛿 by vertically composing it with the natural isomorphisms

RHom(𝕃, −⊗𝕃)[−1] ≅ RHom(𝕃, −⊗ℤ(1)[2])[−1] ≅ RHom(𝕃, −⊗ℤ(1))[1] = Cont(−⊗ℤ(1)).

Proposition 3.3.14. Cont ∶ 𝔸
1-LocNis(𝑘, ℤ) ⟶ 𝔸

1-LocNis(𝑘, ℤ) and 𝛿 ∶ Σ
−1

⟹

Cont(− ⊗ ℤ(1)) have the following properties:

(i) Cont is compatible with cohomology in the sense that for each 𝑝 ∈ ℤ there exist iso-
morphisms Cont(𝐻 𝑝

(−,F )) ≅ 𝐻
𝑝
(−,Cont(F )) in 𝔸

1-LocNis(𝑘, ℤ) which are natural
in F ∈ 𝔸

1-LocNis(𝑘, ℤ).

(ii) Cont is compatible with truncation in the sense that for each 𝑛 ∈ ℤ there exist
isomorphisms Cont(𝜏≤𝑛(F )) ≅ 𝜏

≤𝑛
(Cont(F )) in 𝔸

1-LocNis(𝑘, ℤ) which are natural
in F ∈ 𝔸

1-LocNis(𝑘, ℤ).

(iii) Given 𝑞 ≥ 0 and 𝑙 a prime number different from 𝑐ℎ𝑎𝑟(𝑘), the components of 𝛿 asso-
ciated with each of the motivic complexes ℤ/𝑙(𝑞) and R𝜋∗(ℤ/𝑙(𝑞)) are isomorphisms.

Suppose given 𝑞 ≥ 0 and 𝑙 a prime number different from 𝑐ℎ𝑎𝑟(𝑘). Then item (iii) of
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Proposition 3.3.14 yields isomorphisms

𝛿ℤ/𝑙(𝑞) ∶ ℤ/𝑙(𝑞)[−1] ⟶ Cont(ℤ/𝑙(𝑞) ⊗ ℤ(1)) ≅ Cont(ℤ/𝑙(𝑞 + 1)),

𝛿ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ
∶ ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ[−1] ⟶ Cont(ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ ⊗ ℤ(1)) ≅ Cont(ℤ/𝑙(𝑞 + 1)𝐿𝑖𝑐ℎ)

in 𝔸
1-LocNis(𝑘, ℤ). Then by naturality we have the following commutative square in

𝔸
1-LocNis(𝑘, ℤ) associated to 𝛼ℤ/𝑙

𝑞
∶ ℤ/𝑙(𝑞) ⟶ ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ:

ℤ/𝑙(𝑞)[−1] Cont(ℤ/𝑙(𝑞 + 1))

ℤ/𝑙(𝑞)[−1] Cont(ℤ/𝑙(𝑞 + 1)𝐿𝑖𝑐ℎ).

≅

𝛼
ℤ/𝑙

𝑞
[−1] 𝛼

ℤ/𝑙

𝑞+1
=Cont(𝛼ℤ/𝑙

𝑞
⊗ℤ(1))

≅

As a consequence, if 𝛼ℤ/𝑙

𝑞+1
is an isomorphism, then 𝛼

ℤ/𝑙

𝑞
[−1], hence 𝛼ℤ/𝑙

𝑞
, is an isomor-

phism. Thus if 𝐵𝐾(𝑘, 𝑞 + 1) holds, then 𝐵𝐿(𝑘, 𝑞) holds. This is Theorem 2.9 in Mazza et al.,
2006.

3.3.5 Some comparison results
Definition 3.3.15. Let 𝑋 be any finite type 𝑘-scheme. We define the presheaf of abelian
groups ℤ𝑆𝑐ℎ

(𝑋 ) ∶ Sch𝑜𝑝
𝑘
→ Ab as the composite of the presheaf HomSch𝑘 (−, 𝑋 ) ∶ Sch𝑜𝑝

𝑘
→

Set with the free abelian group functor ℤ[−] ∶ Set → Ab. Explicitly, we have

ℤ
𝑆𝑐ℎ

(𝑋 ) ∶ Sch𝑜𝑝
𝑘
⟶ Ab

𝑌 ⟼ ℤ[HomSch𝑘 (𝑌 , 𝑋 )]

(𝑓 ∶ 𝑌
′
→ 𝑌) ⟼ (

𝑚

∑

𝑖=1

𝑛𝑖𝑔𝑖 ⟼

𝑚

∑

𝑖=1

𝑛𝑖(𝑔𝑖 ◦ 𝑓 )).

We will denote by:

(i) ℤ
𝑆𝑚
(𝑋 ) ∶ Sm𝑜𝑝

𝑘
→ Ab the restriction of ℤ𝑆𝑐ℎ

(𝑋 ) along Sm𝑜𝑝

𝑘
↪ Sch𝑜𝑝

𝑘
.2

(ii) ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) ∶ Sm𝑜𝑝

𝑘
→ Ab the Nisnevich sheafification of ℤ𝑆𝑚

(𝑋 ).

(iii) ℤ
𝑆𝑚

𝑒𝑡
(𝑋 ) ∶ Sm𝑜𝑝

𝑘
→ Ab the étale sheafification of ℤ𝑆𝑚

(𝑋 ).

For any complex F of Nisnevich (resp. étale) sheaves on Sm𝑘 , we define the smooth-type
Nisnevich (resp. étale) complex of 𝑋 with coefficients in F as

RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ),F ),

RHom𝐷(Shét(Sm𝑘 ,Ab))(ℤ
𝑆𝑚

𝑒𝑡
(𝑋 ),F ).

The smooth-type Nisnevich (resp. étale) cohomology groups of 𝑋 with coefficients in F are

2 Note that since Sm𝑘 is a full subcategory of Sch𝑘 , if 𝑋 ∈ Sm𝑘 , then ℤ
𝑆𝑚
(𝑋 ) is equal to the composite of the

presheaf on Sm𝑘 represented by 𝑋 with the free abelian group functor.



92

3 | MILNOR K-THEORY VIA MOTIVIC COHOMOLOGY; VARIANTS OF THE BLOCH-KATO CONJECTURE

defined as

𝐻
𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 ,F ) ∶= 𝐻

𝑛
(RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ),F )),

𝐻
𝑛

𝑆𝑚,𝑒𝑡
(𝑋 ,F ) ∶= 𝐻

𝑛
(RHom𝐷(Shét(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑒𝑡
(𝑋 ),F )).

We then have

𝐻
𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 ,F ) ≅ Hom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ),F [𝑛]),

𝐻
𝑛

𝑆𝑚,𝑒𝑡
(𝑋 ,F ) ≅ Hom𝐷(Shét(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑒𝑡
(𝑋 ),F [𝑛]).

Definition 3.3.16. Suppose given a finite type 𝑘-scheme 𝑋 endowed with a presentation
as a finite union of closed subsets, say 𝑋 = ⋃

𝑖∈𝐼
𝑋𝑖 , where 𝐼 = {1, ..., 𝑁 } for some 𝑛 ≥ 1. We

denote these data by (𝑋 , {𝑋𝑖}𝑖∈𝐼 ). In what follows, we assume each intersection ⋂
𝑖∈𝐽
𝑋𝑖 for

nonempty 𝐽 ⊂ 𝐼 to be endowed with its reduced structure as a closed subscheme of 𝑋 .

We define the Čech complex of presheaves of (𝑋 , {𝑋𝑖}𝑖∈𝐼 ), denoted by ℤ̌
𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ),
as the following complex of presheaves of abelian groups on Sch𝑘 :

−𝑁

0 → ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐼

𝑋𝑖) → ⋯ → ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚+1

ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐽

𝑋𝑖) → ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚

ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐽

𝑋𝑖) → ⋯ →

0

⨁

𝑖∈𝐼

ℤ
𝑆𝑐ℎ

(𝑋𝑖) →

1

0,

where for each 𝑚 the differential ⨁
𝐽 ⊂𝐼

|𝐽 |=𝑚+1

ℤ
𝑆𝑐ℎ

(⋂
𝑖∈𝐽
𝑋𝑖) → ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚

ℤ
𝑆𝑐ℎ

(⋂
𝑖∈𝐽
𝑋𝑖) is defined as

having components
ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐽

𝑋𝑖) ⟶ ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐾

𝑋𝑖)

for each 𝐽 , 𝐾 ⊂ 𝐼 with |𝐽 | = 𝑚 + 1, |𝐾 | = 𝑚 given by
{

(−1)
𝑚+𝑗

ℤ
𝑆𝑐ℎ

(⋂
𝑖∈𝐽
𝑋𝑖 ↪ ⋂

𝑖∈𝐾
𝑋𝑖), if 𝐾 ⊂ 𝐽 and 𝐽 ⧵ 𝐾 = {𝑗},

0, if 𝐾 ⊄ 𝐽 .

This allows us to define several related complexes of (pre)sheaves which will be useful
in what follows:

1. ℤ̌
𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) will denote the complex of presheaves of abelian groups on Sm𝑘

obtained by restriction of ℤ̌𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) along Sm𝑜𝑝

𝑘
↪ Sch𝑜𝑝

𝑘
.

2. ℤ̌
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) will denote the Nisnevich sheafification of ℤ̌𝑆𝑚

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ).

3. ℤ̌
𝑆𝑚

𝑒𝑡
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) will denote the étale sheafification of ℤ̌𝑆𝑚

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ).

Note that by (either left or right) exactness of sheafification functors, entries of ℤ̌𝑆𝑚

𝑁 𝑖𝑠

(resp. ℤ̌𝑆𝑚

𝑒𝑡
) are of the form ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚

ℤ
𝑆𝑚

𝑁 𝑖𝑠
(⋂

𝑖∈𝐽
𝑋𝑖) (resp. ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚

ℤ
𝑆𝑚

𝑒𝑡
(⋂

𝑖∈𝐽
𝑋𝑖)), with differentials

computed as in ℤ̌
𝑆𝑚

𝑁 𝑖𝑠
with ℤ

𝑆𝑚

𝑁 𝑖𝑠
(resp. ℤ𝑆𝑚

𝑒𝑡
) applied to inclusions ⋂

𝑖∈𝐽
𝑋𝑖 ↪ ⋂

𝑖∈𝐾
𝑋𝑖 (where

𝐾 ⊂ 𝐽 ⊂ {1, ..., 𝑁 } and 𝐽 ⧵ 𝐾 is a singleton) instead of ℤ𝑆𝑐ℎ.

For each 𝑖 ∈ 𝐼 , the closed immersion 𝑋𝑖 ↪ 𝑋 induces a morphism of sheaves
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ℤ
𝑆𝑐ℎ

(𝑋𝑖) → ℤ
𝑆𝑐ℎ

(𝑋 ). Passing to the coproduct, we obtain a morphism ⨁
𝑖∈𝐼

ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋𝑖) →

ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) which, if placed in degree 0, defines a chain map

ℤ̌
𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) → ℤ
𝑆𝑐ℎ

(𝑋 )

with the zero map placed in each nonzero degree.

By restricting to Sm𝑜𝑝

𝑘
and applying the Nisnevich and étale sheafification functors, we

obtain chain maps

ℤ̌
𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) → ℤ

𝑆𝑚
(𝑋 ),

ℤ̌
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ),

ℤ̌
𝑆𝑚

𝑒𝑡
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) → ℤ

𝑆𝑚

𝑒𝑡
(𝑋 ).

If 𝐹 is a presheaf of abelian groups on Sch𝑘 , we will denote by [ℤ̌
𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ] the
complex of abelian groups given by [ℤ̌𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ]
𝑚
= HomPSh(Sch𝑘 ,Ab)(ℤ̌

𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 )

−𝑚
, 𝐹 )

for each integer 𝑚, and whose 𝑚-th differential is given by precomposition with the
(−𝑚 − 1)-th differential in ℤ̌

𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ):

HomPSh(Sch𝑘 ,Ab)(ℤ̌
𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 )
−𝑚
, 𝐹 ) → HomPSh(Sch𝑘 ,Ab)(ℤ̌

𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 )

−𝑚−1
, 𝐹 )

𝜑 ↦ 𝜑 ◦ 𝑑
−𝑚−1

.

Note that since ℤ̌𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ) is concentrated in nonpositive degrees, [ℤ̌𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ]

is concentrated in nonnegative degrees; and for each 𝑚 ≥ 0, the Yoneda lemma defines an
isomorphism

[ℤ̌
𝑆𝑐ℎ

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ]
𝑚
= HomPSh(Sch𝑘 ,Ab)(ℤ̌

𝑆𝑐ℎ
(𝑋 , {𝑋𝑖}𝑖∈𝐼 )

−𝑚
, 𝐹 )

= HomPSh(Sch𝑘 ,Ab)( ⨁

𝐽 ⊂𝐼

|𝐽 |=𝑚+1

ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐽

𝑋𝑖), 𝐹 )

≅ ∏

𝐽 ⊂𝐼

|𝐽 |=𝑚+1

HomPSh(Sch𝑘 ,Ab)(ℤ
𝑆𝑐ℎ

(⋂

𝑖∈𝐽

𝑋𝑖), 𝐹 )

≅ ∏

𝐽 ⊂𝐼

|𝐽 |=𝑚+1

𝐹 (⋂

𝑖∈𝐽

𝑋𝑖).

The following variant of this construction will also be useful: suppose 𝑋 and {𝑋𝑖}𝑖∈𝐼 as
above are such that 𝑋 ∈ Sm𝑘 and for each nonempty 𝐽 ⊂ 𝐼 , ⋂

𝑖∈𝐽
𝑋𝑖 ∈ Sm𝑘 . Then if 𝐹 is a

presheaf of abelian groups on Sm𝑘 , we similarly define [ℤ̌𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ] as the complex

of abelian groups given by [ℤ̌
𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ]

𝑚
= HomPSh(Sm𝑘 ,Ab)(ℤ̌

𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 )

−𝑚
, 𝐹 )

for each integer 𝑚, and whose 𝑚-th differential is given by precomposition with the
−𝑚 − 1-th differential in ℤ̌

𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ). Analogously, [ℤ̌𝑆𝑚

(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ] is concentrated
in nonnegative degrees, and for each 𝑚 ≥ 0 the Yoneda lemma (for presheaves on Sm𝑘
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instead of Sch𝑘) yields

[ℤ̌
𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ]

𝑚
≅ ∏

𝐽 ⊂𝐼

|𝐽 |=𝑚+1

𝐹 (⋂

𝑖∈𝐽

𝑋𝑖).

Recall that if F is a Nisnevich sheaf of abelian groups on Sm𝑘 , the 𝑛-th smooth-type
Nisnevich cohomology group of 𝑋 , denoted by 𝐻

𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 ,F ), was defined as the 𝑛-th

cohomology group of the derived hom complex

RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ),F )).

Since RHom𝐷(ShNis(Sm𝑘 ,Ab)) preserves quasi-isomorphisms, this complex is quasi-isomorphic
to

RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ̌
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ),F )),

so it suffices to compute cohomology groups of the latter complex.

Let us denote by Δ
𝑛 the standard algebraic 𝑛-simplex over 𝑘, i.e. Δ𝑛

𝑘
= Δ

𝑛

𝑎𝑙𝑔
× Spec 𝑘 ≅

Spec 𝑘[𝑡0,...,𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖−1)

. The boundary of Δ𝑛 is defined as the closed sub-𝑘-scheme obtained by
imposing the vanishing of some coordinate among 𝑡0, ..., 𝑡𝑛, namely,

𝜕Δ
𝑛
∶= Spec

𝑘[𝑡0, ..., 𝑡𝑛]

(∑
𝑛

𝑖=0
𝑡𝑖 − 1,∏

𝑛

𝑖=0
𝑡𝑖)

.

Proposition 3.3.17 (Haesemeyer and C. Weibel, 2019, 2.15). Suppose given 𝑛 ≥ 0, 𝑞 ≥ 0,
and a homotopy invariant complex F of Nisnevich sheaves of abelian groups on Sm𝑘 ,
there exists an isomorphism

𝐻
𝑞

𝑆𝑚,𝑁 𝑖𝑠
(𝜕Δ

𝑛
,F ) ≅ 𝐻

𝑞

𝑆𝑚,𝑁 𝑖𝑠
(Spec 𝑘,F ) ⊕ 𝐻

𝑞+1−𝑚

𝑆𝑚,𝑁 𝑖𝑠
(Spec 𝑘,F ).

Proposition 3.3.18 (Haesemeyer and C.Weibel, 2019, 2.19). Let𝑋 ∈ Sm𝑘 be semilocal and
presented as a finite union 𝑋 = ⋃

𝑁

𝑖=1
𝑋𝑖 of closed subsets such that for each nonempty 𝐽 ⊂

{1, ..., 𝑁 }, ⋂
𝑖∈𝐽
𝑋𝑖 is smooth. Suppose F is a complex of Nisnevich sheaves with transfers

whose cohomology sheaves are homotopy invariant. Then there is an isomorphism

𝐻
𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 ,F )

≅

⟶ 𝐻
𝑛
([ℤ̌

𝑆𝑚
(𝑋 , {𝑋𝑖}𝑖∈𝐼 ), 𝐹 ])

Recall from Definition 3.3.15 the functorial construction of the presheaf ℤ𝑆𝑚
(𝑋 ) ∶

Sm𝑜𝑝

𝑘
→ Ab associated to a finite type 𝑘-scheme 𝑋 , and its Nisnevich sheafification

ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) ∶ Sm𝑜𝑝

𝑘
→ Ab.

In what follows, we refer to a pair (𝑋 , 𝑍) consisting of a finite type 𝑘-scheme 𝑋 and a
closed subset 𝑍 ⊂ 𝑋 as a closed pair over 𝑘.

Definition 3.3.19. Suppose (𝑋 , 𝑍) is a closed pair over 𝑘. We denote by ℤ
𝑆𝑚
(𝑋 , 𝑍) the

cokernel of ℤ𝑆𝑚
(𝑋 ⧵ 𝑍) → ℤ

𝑆𝑚
(𝑋 ) in the category of presheaves of abelian groups on Sm𝑘 ,

where 𝑋 ⧵ 𝑍 ⊂ 𝑋 is endowed with the open subscheme structure.
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We denote by ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍) the Nisnevich sheafification of ℤ𝑆𝑚

(𝑋 , 𝑍), which by (right) ex-
actness of the sheafification functor is isomorphic to the cokernel of ℤ𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ⧵𝑍) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 )

in ShNis(Sm𝑘 ,Ab) via the canonical map Coker(ℤ𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ⧵ 𝑍) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 )) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍).

Remark 3.3.20.

(i) Note that this extends the construction of ℤ𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) for a finite type 𝑘-scheme 𝑋

given in Definition 3.3.15 in the following sense: by taking 𝑍 ⊂ 𝑋 to be 𝑋 itself,
we have 𝑋 ⧵ 𝑍 = ∅ as a finite type 𝑘-scheme. Now, ℤ𝑆𝑚

(∅) is not isomorphic to
the zero presheaf 0 ∶ Sm𝑜𝑝

𝑘
→ Ab, since although ℤ[HomSch𝑘 (𝑌 , ∅)] = ℤ[∅] ≅ 0

(where ∅ in ℤ[∅] denotes just the empty set) whenever 𝑌 is nonempty, we still have
ℤ[HomSch𝑘 (∅, ∅)] ≅ ℤ[{∗}] ≅ ℤ. However, the Nisnevich sheafification of ℤ𝑆𝑚

(∅)

is isomorphic to 0, since (i) 0 is a Nisnevich sheaf, and (ii) any Nisnevich sheaf
F ∶ Sm𝑜𝑝

𝑘
→ Ab satisfies F (∅) (by applying the sheaf condition to the Nisnevich

covering {∅ → ∅}), so the only morphism of abelian presheaves ℤ𝑆𝑚
(∅) → F is

the zero morphism, which then factors uniquely through ℤ
𝑆𝑚
(∅) → 0.

We conclude that the cokernel map ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) → Coker(ℤ𝑆𝑚

𝑁 𝑖𝑠
(∅) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 )) ≅

ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑋 ) is an isomorphism.

(ii) If 𝑈 → 𝑋 is any open immersion (or indeed any monomorphism) of finite type
𝑘-schemes, then HomSch𝑘 (𝑌 , 𝑈 ) → HomSch𝑘 (𝑌 , 𝑋 ) is injective for any 𝑌 ∈ Sm𝑘 (or
indeed any 𝑌 ∈ Sch𝑘), so by taking free abelian groups it follows that ℤ𝑆𝑚

(𝑈 ) →

ℤ
𝑆𝑚
(𝑋 ) is a monomorphism in PSh(Sm𝑘 ,Ab). By applying sheafification, which is

(left) exact, to the exact sequence 0 → ℤ
𝑆𝑚
(𝑈 ) → ℤ

𝑆𝑚
(𝑋 ), we obtain an exact

sequence 0 → ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑈 ) → ℤ

𝑆𝑚
(𝑋 ) in ShNis(Sm𝑘 ,Ab), so ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑈 ) → ℤ

𝑆𝑚
(𝑋 ) is a

monomorphism in the latter category.

In our context, given 𝑋 and 𝑍 as in Definition 3.3.19, we have that ℤ𝑆𝑚
(𝑋 ⧵ 𝑍) →

ℤ
𝑆𝑚
(𝑋 ) and ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ⧵ 𝑍) → ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ) are monomorphisms in PSh(Sm𝑘 ,Ab) and

ShNis(Sm𝑘 ,Ab), resp. Hence we shall also use the quotient notationℤ
𝑆𝑚
(𝑋 )/ℤ

𝑆𝑚
(𝑋 ⧵𝑍)

and ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 )/ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ⧵ 𝑍) for ℤ𝑆𝑚

(𝑋 , 𝑍) and ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍), resp.

(iii) Suppose given a finite type 𝑘-scheme 𝑋 and two inclusions of closed subsets 𝑊 ⊂

𝑍 ⊂ 𝑋 . Then since (𝑋 ⧵𝑊 ) ⧵ (𝑍 ⧵𝑊 ) = 𝑋 ⧵𝑍 and (co)kernels of abelian presheaves are
computed objectwise, we have the following short exact sequence in PSh(Sm𝑘 ,Ab):

0 ⟶

ℤ
𝑆𝑚
(𝑋 ⧵ 𝑊 )

ℤ
𝑆𝑚
((𝑋 ⧵ 𝑊 ) ⧵ (𝑍 ⧵ 𝑊 ))

⟶

ℤ
𝑆𝑚
(𝑋 )

ℤ
𝑆𝑚
(𝑋 ⧵ 𝑍)

⟶

ℤ
𝑆𝑚
(𝑋 )

ℤ
𝑆𝑚
(𝑋 ⧵ 𝑊 )

⟶ 0,

which is

0 ⟶ ℤ
𝑆𝑚
(𝑋 ⧵ 𝑊 , 𝑍 ⧵ 𝑊 ) ⟶ ℤ

𝑆𝑚
(𝑋 , 𝑍) ⟶ ℤ

𝑆𝑚
(𝑋 ,𝑊 ) ⟶ 0.

By exactness of the sheafification functor, we obtain a short exact sequence

0 ⟶ ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ⧵ 𝑊 , 𝑍 ⧵ 𝑊 ) ⟶ ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍) ⟶ ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 ,𝑊 ) ⟶ 0

in ShNis(Sm𝑘 ,Ab).

By using this construction, cohomology of 𝑘-schemes in the sense of Definition 3.3.15
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may be extended to a relative setting. If F is a complex of Nisnevich (resp. étale) sheaves
on Sm𝑘 and (𝑋 , 𝑍) is a closed pair over 𝑘, we define the smooth-type Nisnevich complex of
(𝑋 , 𝑍) with coefficients in F as

RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ
𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍),F ).

The corresponding cohomology groups will be denoted by

𝐻
𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 , 𝑍 ,F ) ∶= 𝐻

𝑛
(RHom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍),F )).

Then it holds that

𝐻
𝑛

𝑆𝑚,𝑁 𝑖𝑠
(𝑋 , 𝑍 ,F ) ≅ Hom𝐷(ShNis(Sm𝑘 ,Ab))(ℤ

𝑆𝑚

𝑁 𝑖𝑠
(𝑋 , 𝑍),F [𝑛]).

Proposition 3.3.21 (Haesemeyer and C. Weibel, 2019, 2.27). Suppose given 𝑞 ≥ 0 and
a closed pair over 𝑘 of the form (𝜕Δ

𝑛
, 𝑍 ) such that 𝑍 does not contain any vertex of 𝜕Δ𝑛.

Then 𝐵𝐿(𝑞 − 1) implies that the map between cohomology groups

𝐻
𝑞

𝑆𝑚,𝑁 𝑖𝑠
(𝜕Δ

𝑛
, 𝑍 , ℤ/𝑙(𝑞)) ⟶ 𝐻

𝑞

𝑆𝑚,𝑁 𝑖𝑠
(𝜕Δ

𝑛
, 𝑍 , ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ)

associated to the morphism 𝛼
ℤ/𝑙

𝑞
∶ ℤ/𝑙(𝑞) → ℤ/𝑙(𝑞)𝐿𝑖𝑐ℎ is an isomorphism.

In what follows, we consider the semilocalization of 𝜕Δ𝑛 at its set of vertices {𝑣0, ..., 𝑣𝑛},
where 𝑣𝑖 is the closed point corresponding to the maximal ideal

(𝑡0, ..., 𝑡𝑖−1, 𝑡𝑖 − 1, 𝑡𝑖+1, ..., 𝑡𝑛) ⊃ (

𝑛

∑

𝑖=0

𝑡𝑖 − 1,

𝑛

∏

𝑖=0

𝑡𝑖)

in 𝑘[𝑡0, ..., 𝑡𝑛]. Let us denote it by 𝜕𝑙𝑜𝑐Δ𝑛.

Proposition 3.3.22 (Haesemeyer and C. Weibel, 2019, 2.35). Suppose given 𝑛 ≥ 0. Then
for each 𝑞 ≤ 0 and 𝑝 > 𝑞, the 𝑘-scheme 𝜕𝑙𝑜𝑐Δ𝑛 satisfies

𝐻
𝑝

𝑆𝑚,𝑁 𝑖𝑠
(𝜕𝑙𝑜𝑐Δ

𝑛
, ℤ(𝑞)) ≅ 0,

𝐻
𝑝

𝑆𝑚,𝑁 𝑖𝑠
(𝜕𝑙𝑜𝑐Δ

𝑛
, ℤ(𝑞)/𝑙) ≅ 0.

Lemma 3.3.23 (Haesemeyer and C. Weibel, 2019, 2.36). Suppose that the following
condition holds: for every field 𝑘 and every prime number 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘), the comparison
homomorphism

𝐻
𝑛

Zar(Spec 𝑘, 𝛼ℤ/𝑙

𝑛
) ∶ 𝐻

𝑛

Zar(Spec 𝑘, ℤ/𝑙(𝑛)) ⟶ 𝐻
𝑛

Zar(Spec 𝑘, ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ)

is surjective. Suppose given a scheme 𝑋 ∈ Sch𝑘 with the following properties:

(i) 𝑋 is semilocal.

(ii) 𝑋 is a finite union of smooth semilocal closed subschemes, say 𝑋 = ⋃
𝑁

𝑖=1
𝑋𝑖 , such

that for every nonempty 𝐼 ⊂ {1, ..., 𝑁 }, ⋂
𝑖∈𝐼
𝑋𝑖 is smooth.
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Then
𝐻

𝑛

Zar(𝑋 , 𝛼
ℤ/𝑙

𝑛
) ∶ 𝐻

𝑛

Zar(𝑋 , ℤ/𝑙(𝑛)) ⟶ 𝐻
𝑛

Zar(𝑋 , ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ)

is surjective.

Theorem 3.3.24. Let 𝑙 be a prime number and 𝑛 a non-negative integer. Suppose the
comparison homomorphism

𝐻
𝑛

Zar(Spec 𝑘, 𝛼ℤ/𝑙

𝑛
) ∶ 𝐻

𝑛

Zar(Spec 𝑘, ℤ/𝑙(𝑛)) ⟶ 𝐻
𝑛

Zar(Spec 𝑘, ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ)

is surjective for every field 𝑘 such that 𝑐ℎ𝑎𝑟(𝑘) ≠ 𝑙. Then for every field 𝑘,

𝛼
ℤ/𝑙

𝑛
∶ ℤ/𝑙(𝑛) ⟶ ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ

is a quasi-isomorphism of complexes of Zariski sheaves on Sm𝑘 .

Proof. For fixed 𝑙 , we proceed by induction on 𝑛. The case 𝑛 = 0 follows from the fact that
the Bloch-Kato conjecture holds in dimension 0.

Suppose that the result is known for 0, ..., 𝑛 − 1, and that the statement’s assumption
holds for 𝑛. This assumption implies in particular that for any field 𝑘, the homomor-
phism 𝐻

𝑛

Zar(Spec 𝑘(𝑡), 𝛼ℤ/𝑙

𝑛
) ∶ 𝐻

𝑛

Zar(Spec 𝑘(𝑡), ℤ/𝑙(𝑛)) → 𝐻
𝑛

Zar(Spec 𝑘(𝑡), ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ) asso-
ciated to its function field is surjective. Then by Corollary 3.3.12, 𝐻 𝑛−1

Zar (Spec 𝑘, 𝛼ℤ/𝑙

𝑛
) ∶

𝐻
𝑛−1

Zar (Spec 𝑘, ℤ/𝑙(𝑛)) → 𝐻
𝑛−1

Zar (Spec 𝑘, ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ) is surjective. Since this holds for every
field 𝑘, it follows from the induction hypothesis that for every field 𝑘,

𝛼
ℤ/𝑙

𝑛−1
∶ ℤ/𝑙(𝑛 − 1) ⟶ ℤ/𝑙(𝑛 − 1)𝐿𝑖𝑐ℎ

is a quasi-isomorphism of complexes of Zariski sheaves on Sm𝑘 .

Theorem 3.3.25 (Haesemeyer and C. Weibel, 2019, 2.38). For each integer 𝑛 ≥ 0, if
𝐻90(𝑛) holds, then 𝐵𝐿(𝑛) holds.

Proof. ℤ/𝑙(𝑛) andℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ are homotopy invariant complexes of presheaves with transfers.
Hence by Lemma 2.5.3, it suffices to prove that for every prime number 𝑙 , any field 𝑘 such
that 𝑐ℎ𝑎𝑟(𝑘) ≠ 𝑙, and any 𝑝 ≤ 𝑛, the comparison homomorphism

𝐻
𝑝

Zar(Spec 𝑘, ℤ/𝑙(𝑛))
𝐻
𝑝

Zar(Spec 𝑘,𝛼ℤ/𝑙
𝑛

)

⟶ 𝐻
𝑝

Zar(Spec 𝑘, ℤ/𝑙(𝑛)𝐿𝑖𝑐ℎ) ≅ 𝐻
𝑝

ét(Spec 𝑘, ℤ/𝑙(𝑛))

is an isomorphism.

Now, let 𝑘 be a fixed field and 𝑙 a prime different from 𝑐ℎ𝑎𝑟(𝑘). By 3.3.23, if 𝑋 is a finite
disjoint union of semilocal schemes in Sm𝑘 , then

𝐻
𝑛

Zar(𝑋 , 𝛼
ℚ/ℤ

(𝑙)

𝑛 ) ∶ 𝐻
𝑛

Zar(𝑋 , ℚ/ℤ(𝑙)(𝑛)) ⟶ 𝐻
𝑛

Zar(𝑋 , ℚ/ℤ(𝑙)(𝑛)𝐿𝑖𝑐ℎ)
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is surjective for every 𝑛 ≥ 0. By 3.3.24,

𝐻
𝑝

Zar(Spec 𝑘, 𝛼ℚ/ℤ
(𝑙)

𝑛 ) ∶ 𝐻
𝑝

Zar(Spec 𝑘, ℚ/ℤ(𝑙)(𝑛)) ⟶ 𝐻
𝑝

Zar(Spec 𝑘, ℚ/ℤ(𝑙)(𝑛)𝐿𝑖𝑐ℎ)

is an isomorphism for every 𝑝 ≤ 𝑛. By considering long exact sequences associated to the

short exact sequence of coefficient complexes 0 → ℤ/𝑙(𝑛) → ℚ/ℤ(𝑙)(𝑛)

𝑙

→ ℚ/ℤ(𝑙)(𝑛), we
obtain for each 𝑝 ≤ 𝑛 a commutative diagram (where we write 𝑘 for Spec 𝑘):

𝐻
𝑝−1

Zar (𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝−1

Zar (𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝

Zar(𝑘, ℤ/𝑙(𝑛)) 𝐻
𝑝

Zar(𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝

Zar(𝑘, ℚ/ℤ(𝑙)(𝑛))

𝐻
𝑝−1

ét (𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝−1

ét (𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝

ét(𝑘, ℤ/𝑙(𝑛)) 𝐻
𝑝

ét(𝑘, ℚ/ℤ(𝑙)(𝑛)) 𝐻
𝑝

ét(𝑘, ℚ/ℤ(𝑙)(𝑛)).

By the five lemma, the middle vertical arrow is an isomorphism, as desired.
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