Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2019.tde-10062019-105529
Document
Author
Full name
Thiago Grando
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Lourenco, Mary Lilian (President)
Ascui, Jorge Tulio Mujica
Hallack, André Arbex
Rodrigues, Leonardo Pellegrini
Tocha, Neusa Nogas
Title in Portuguese
A propriedade de Bishop-Phelps-Bollobás
Keywords in Portuguese
Conjuntos compactos
Espaços de função módulo
Operadores que atingem a norma
Propriedade AHSP
Propriedade de Bishop-Phelps-Bollobás para operadores
Abstract in Portuguese
Estudamos a propriedade de Bishop-Phelps-Bollobás para operadores, (BP BP ), defi- nidos entre espaços de Banach. Nosso objetivo foi o de procurar pares de espaços de Ba- nach que possuem a BP BP . Assim, provamos que, se o par de espaços de Banach reais L i (c 0 ( i=1 ` 2 ) , Y ) satisfaz a BP BP , onde Y é um espaço de Banach estritamente convexo, então Y é uniformemente convexo. No estudo da BP BP aparecem diversas outras propri- edades, dentre elas destacamos a Approximate hyperplane series property (AHSP ). Nesta direção, considerando (K, (X t ) tK , Z) um espaço de função módulo, provamos que Z satisfaz a AHSP desde que X t satisfaça a AHSP para todo t K. Além disso, sob determinadas condições provamos a recíproca desse resultado. Como consequência, provamos que um es- paço de Banach X tem a AHSP se, e somente se, C 0 (L, X) tem a AHSP , para todo espaço localmente compacto Hausdorff L não-vazio. Concomitantemente ao estudo da BP BP , estudamos técnicas de caracterização dos con- juntos compactos de c 0 . Com essas técnicas, caracterizamos os conjuntos compactos de L i c 0 i=1 ` p , 1 p e do prédual do espaço de Lorentz, d (w, 1).
Title in English
Bishop-Phelps-Bollobás property
Keywords in English
Bishop-Phelps-Bollobás
Compact subsets
Norm-attaining operators
Abstract in English
We study the Bishop-Phelps-Bollobás property for operators, (BP BP ), defined between Banach spaces. Our goal was to look for pairs of Banach spaces satisfying the BP BP . We L i prove that if the pair of real Banach spaces (c 0 ( i=1 ` 2 ) , Y ) satisfy BP BP , where Y is a strictly convex Banach space, then Y is an uniformly convex space. In the study of BP BP , it appears other properties, such the Approximate hyperplane series property for Banach spaces. In this sense, we proved that if (K, (X t ) tK , Z) is function module space, then Z satisfies AHSP if X t has the AHSP for all t K. Moreover, under certain conditions we proved the reciprocal of this result. As a consequence, a Banach space X has the AHSP if, and only if, C 0 (L, X) has the AHSP , for every non-empty locally compact Hausdorff space L. Concomitantly to the study of BP BP , we study techniques of characterization of com- pact sets of c 0 . With these techniques, we characterize the compact sets of the spaces L i c 0 i=1 ` p , 1 p and the predual of Lorentz sequence space d (w, 1).
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-06-10