• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2021.tde-08042021-155027
Document
Auteur
Nom complet
Eduardo Rosinato Longa
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2021
Directeur
Jury
Piccione, Paolo (Président)
Ambrozio, Lucas Coelho
Figueiredo Junior, Ruy Tojeiro de
Ripoll, Jaime Bruck
Silva, Marcos Martins Alexandrino da
Titre en anglais
Systoles and minimal surfaces in 3-manifolds with boundary
Mots-clés en anglais
Minimal surfaces
Riemannian geometry
Rigidity
Scalar curvature
Systole
Resumé en anglais
The aim if this work is twofold. Firstly, we prove the existence of a local foliation around compact infinitesimally rigid capillary surfaces. We then use this fact to show a rigidity result for infinitesimally rigid capillary surfaces in some Riemannian 3-manifolds with mean convex boundary. We also derive bounds on the genus, number of boundary components and area of any compact two-sided capillary minimal surface with low index under certain assumptions on the curvature of the ambient manifold and of its boundary. Secondly, we prove some sharp systolic inequalities for compact 3-manifolds with boundary. They relate the (relative) homological systoles of the manifold to its scalar curvature and mean curvature of the boundary. In the equality case, the universal cover of the manifold is isometric to a cylinder over a disc of nonnegative constant curvature.
Titre en portugais
Sístoles e superfícies mínimas em 3-variedades com bordo
Mots-clés en portugais
Curvatura escalar
Geometria Riemanniana
Rigidez
Sístole
Superfícies mínimas
Resumé en portugais
Este trabalho tem dois objetivos. Primeiramente, provamos a existência de uma folheação local em torno de superfícies capilares infinitesimalmente rígidas. Usamos então este fato para mostrar um resultado de rigidez para superfícies capilares infinitesimalmente rígidas em algumas variedades Riemannianas de dimensão 3 com bordo convexo em média. Também derivamos cotas para o gênero, número de componentes do bordo e área de qualquer superfície capilar mínima compacta com dois lados e índice baixo sob certas suposições na curvatura do ambiente e na de seu bordo. Em segundo lugar, provamos algumas desigualdades sistólicas ótimas para variedades compactas de dimensão 3 com bordo. Elas relacionam as sístoles homológicas (relativas) da variedade com sua curvatura escalar e curvatura média do bordo. No caso de igualdade, o recobrimento universal da variedade é isométrico a um cilindro sobre um disco de curvatura constante e não negativa.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
main.pdf (1.09 Mbytes)
Date de Publication
2021-07-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.