• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2020.tde-07012021-210350
Documento
Autor
Nombre completo
Marcelo Kodi Inagaki
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2020
Director
Tribunal
Silva, Marcos Martins Alexandrino da (Presidente)
Caramello Junior, Francisco Carlos
Melo, Mateus Moreira de
Sperança, Llohann Dallagnol
Toben, Dirk
Título en portugués
Um modelo semi-local para folheações Riemannianas singulares
Palabras clave en portugués
Folheação Riemanniana singular
Grupóide
Modelo semi-local
Resumen en portugués
O presente trabalho apresenta um modelo semi-local para folheações Riemannianas singulares. Mais precisamente, dada uma folheação Riemanniana singular em uma variedade Riemanniana, prova-se que em uma vizinhança tubular saturada em torno de uma subvariedade fechada, saturada e contida em um estrato, a aproximação de primeira ordem (linearização) desta folheação, que descreve parcialmente a sua dinâmica, é dada pelas órbitas de um grupóide de Lie.
Título en inglés
A semi-local model for singular Riemannian foliations
Palabras clave en inglés
Groupoid
Semi-local model
Singular Riemanninan foliation
Resumen en inglés
This work presents a semi-local model for a singular Riemannian foliation. More precisely, given a singular Riemannian foliation in a Riemannian manifold, it is proved that in a saturated tubular neighbourhood around a closed saturated subamnifold in a stratum, the first order approximation (linearization) of this foliation, which partially describes its dynamics, is given by the orbits of a Lie groupoid.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Tese.pdf (1,017.69 Kbytes)
Fecha de Publicación
2021-01-20
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.