• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2020.tde-07012021-210350
Document
Author
Full name
Marcelo Kodi Inagaki
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2020
Supervisor
Committee
Silva, Marcos Martins Alexandrino da (President)
Caramello Junior, Francisco Carlos
Melo, Mateus Moreira de
Sperança, Llohann Dallagnol
Toben, Dirk
Title in Portuguese
Um modelo semi-local para folheações Riemannianas singulares
Keywords in Portuguese
Folheação Riemanniana singular
Grupóide
Modelo semi-local
Abstract in Portuguese
O presente trabalho apresenta um modelo semi-local para folheações Riemannianas singulares. Mais precisamente, dada uma folheação Riemanniana singular em uma variedade Riemanniana, prova-se que em uma vizinhança tubular saturada em torno de uma subvariedade fechada, saturada e contida em um estrato, a aproximação de primeira ordem (linearização) desta folheação, que descreve parcialmente a sua dinâmica, é dada pelas órbitas de um grupóide de Lie.
Title in English
A semi-local model for singular Riemannian foliations
Keywords in English
Groupoid
Semi-local model
Singular Riemanninan foliation
Abstract in English
This work presents a semi-local model for a singular Riemannian foliation. More precisely, given a singular Riemannian foliation in a Riemannian manifold, it is proved that in a saturated tubular neighbourhood around a closed saturated subamnifold in a stratum, the first order approximation (linearization) of this foliation, which partially describes its dynamics, is given by the orbits of a Lie groupoid.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tese.pdf (1,017.69 Kbytes)
Publishing Date
2021-01-20
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.