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Resumo

Samuel Amador dos Santos Quirino. Uma abordagem funtorial para as constru-
ções da aljava de Gabriel. Tese (Doutorado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2023.

O objetivo deste trabalho é o de estabelecer as construções da aljava de Gabriel de modo funtorial.

Por construções da aljava de Gabriel queremos nos referir ao Teorema de Gabriel que estabelece que toda

álgebra pontuada de dimensão finita é a álgebra quociente de uma álgebra de caminhos da sua aljava de

Gabriel por um ideal admissível. A fim de obtermos tal resultado, consideramos a categoria de coálgebras

pontuadas e a categoria de k-aljavas, construímos funtores covariantes entre ambas categorias, que traduzem

a coálgebra de caminhos de uma aljava e o quiver de Gabriel de uma coálgebra pontuada, e mostramos

que esses funtores induzem um par adjunto quando consideramos a categoria quociente da categoria de

coálgebras pontuadas por uma relação de equivalência nos homomorfismos de coálgebras. A unidade da

adjunção revela que toda coálgebra pontuada é uma subcoálgebra admissível da coálgebra de caminhos

da sua aljava de Gabriel. Por dualidade, obtemos um par de funtores contravariantes entre a categoria de

k-aljavas e a categoria quociente da categoria de álgebras pseudocompactas pontuadas por uma relação

de equivalência nos homomorfismos de álgebras contínuos, que são adjuntos à esquerda, e concluímos

que toda álgebra pseudocompacta pontuada é a álgebra quociente da álgebra de caminhos completa de

sua aljava de Gabriel por um ideal admissível. Generalizamos esses resultados para coálgebras básicas com

corradical separável e um conceito de k-espécies para coálgebras. Em paralelo, provamos que a álgebra de

invariantes de uma álgebra de caminhos completa sob a ação de um grupo homogêneo de automorfismos de

álgebras contínuos é uma álgebra de caminhos completa e preserva o tipo de representação finito ou manso

da aljava.

Palavras-chave: funtores adjuntos. coálgebras de caminhos. álgebra de caminhos completa. aljava de

Gabriel.





Abstract

Samuel Amador dos Santos Quirino. A functorial approach to Gabriel quiver con-
structions. Thesis (Doctorate). Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2023.

The aim of this work is to establish the Gabriel quiver constructions via functors. By Gabriel quiver

constructions we mean the Gabriel’s theorem which states that every pointed finite dimensional algebra

is a quotient of the path algebra of its Gabriel quiver by an admissible ideal. In order to accomplish this,

we consider the category of pointed coalgebras and the category of k-quivers, than we construct a pair of

covariant functors between both categories, which translates the path coalgebra of a quiver and the Gabriel

quiver of a pointed coalgebra, and show that these functors induce an adjoint pair when considering the

quotient category of pointed coalgebras by an equivalence relation on coalgebra homomorphisms. The unit

of the adjunction shows that every pointed coalgebra is an admissible subcoalgebra of the path coalgebra of

its Gabriel quiver. By duality, we obtain a pair of contravariant functors from the category o k-quivers and

the quotient category of pointed pseudocompact algebras by an equivalence relation on continuous algebra

homomorphisms, which are adjoint on the left, and conclude that every pointed pseudocompact algebra is

the quotient of the complete path algebra of its Gabriel quiver by an admissible ideal. We generalize these

results for basic coalgebras with separable coradical and the concept of k-species for coalgebras. In parallel,

we prove that the algebra of invariants of a complete path algebra under the action of a homogeneous group

of continuous algebra automorphisms is a complete path algebra and preserves finite or tame representation

type of the quiver.

Keywords: adjoint functors. path coalgebra. complete path algebra. Gabriel quiver.
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List of symbols

𝑘 A fixed field

N Non-negative integers

R Real numbers

C Complex numbers

id Identity morphism, wherever it makes sense

− ⊗ − Tensor product over 𝑘
− □𝐶 − Cotensor product over the coalgebra 𝐶
− ⊗̂𝐴 − Complete tensor product over the pseudocompact algebra 𝐴

Cot𝐶(𝑀) Cotensor coalgebra of 𝐶 and the 𝐶-bicomodule 𝑀
T[[𝐴, 𝑈 ]] Complete tensor algebra of 𝐴 and the psc. 𝐴-bimodule 𝑈

Cog Category of coalgebras and coalgebra homomorphisms

Cogfilt Cat. of cog. with separable coradical and filtered cog. hom.

BCog Category of basic cog. with separable coradical and cog. hom.

PCog Category of pointed coalgebras and coalgebra homomorphisms

cog Category of finite dimensional coalgebras and coalgebra hom.

ALG Category of algebras and algebra homomorphisms

Alg Category of pseudocompact algebras and continuous alg. hom.

PAlg Category of pointed pseudocompact algebras and cont. alg. hom.

alg Category of finite dimensional algebras and algebra hom.

𝐶 Category of left 𝐶-comodules and comodule homomorphisms

𝐶 Category of right 𝐶-comodules and comodule homomorphisms

𝐶 𝐷 Category of 𝐶-𝐷-bicomodules and bicomodule homomorphisms

𝐴 Category of left psc. 𝐴-modules and cont. module hom.

𝐴 Category of right psc. 𝐴-modules and cont. module hom.

𝐴 𝐵 Category of psc. 𝐴-𝐵-bimodules and cont. bimodule hom.
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Introduction

Any finite dimensional algebra over an algebraically closed field is Morita equivalent
to a quotient of a path algebra by an admissible ideal. Thus, path algebras became a
fundamental tool in the study of representation theory of associative algebras.

Every basic algebra over an algebraically closed field is pointed. Furthermore, finite
dimensional pointed algebras are isomorphic to a quotient of a path algebra by an admissi-
ble ideal and the class of finite dimensional path algebras is precisely the hereditary finite
dimensional pointed algebras.

Besides the simplicity for constructing examples (and counter-examples) of path al-
gebras, the finite and tame representation types of finite dimensional path algebras have
been classified in a combinatorial way in terms of the underlying graph of its quiver,
being the former in correspondence to the simply laced Dynkin diagrams and the latter in
correspondence to the Euclidean diagrams.

Moreover, Drozd [Dro80] proved that every finite dimensional algebra over an al-
gebraically closed field that has infinite representation type is either of tame or wild
representation type, being the classification of the latter equivalent to classify the repre-
sentations of any other algebra.

The limiting factor of working with finite dimensional algebras can be surpassed via
two dual ways: coalgebras and pseudocompact algebras.

Pseudocompact algebras are topological algebras constructed as the inverse limit of
finite dimensional algebras. In this way, they appear naturally as the completed group
algebra of profinite algebras, having applications on Galois theory, finite group theory and
algebraic geometry.

Coalgebras are defined in the monoidal category of vector spaces by axioms dual to
the associative algebra with unit. They compose part of the structure of Hopf algebras,
having many applications to group theory and physics. Additionally, the strong finiteness
properties of coalgebras make them excellent subjects to generalize the theory from finite
dimensional algebras.

The results about finite dimensional algebras mentioned here were dualized for coalge-
bras. Any coalgebra over an algebraically closed field is Morita-Takeuchi equivalent to
a basic coalgebra, which is an admissible pointed subcoalgebra of a path coalgebra. The
class of path coalgebras are precisely the hereditary pointed coalgebras.

Basic coalgebras over an algebraically closed field are either of finite, tame, or wild
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representation type. Path coalgebras of finite representation type are the ones whose
underlying graph is a simply laced Dynkin diagram, while the tame ones have either
infinite locally Dynkin quivers or its underlying graph is an Euclidean diagram.

In the last decades, the development of category theory allowed the expansion of
concepts and results in mathematics and favored the communication between many
different areas. With this in mind, one of our objectives was to describe the constructions
of path algebra and Gabriel quiver in a functorial way.

When considering finite dimensional pointed algebras as quotient of path algebras,
two issues immediately emerge. First, infinite dimensional path algebras appears in the
equation as many finite dimensional algebras are quotient of those. Second, the choices
involved in the Gabriel quiver of a finite dimensional pointed algebra make the construction
impossible to be functorial. In order to solve this, we work with the category of pointed
coalgebras and the category of 𝑘-quivers, the latter being similar to the category of quivers
with the difference that to any two vertices corresponds a vector space instead of a set of
arrows.

In Chapter 1, we establish the notations which will be used throughout this text
and present general results about category theory, coalgebras and pseudocompact alge-
bras.

We adopt an unusual presentation of the auxiliary results, which are either necessary for
other results or important for a better comprehension of the text, writing as “propositions”
all the results for which proofs can be found on cited references and writing as “lemmas”
the ones we provide a proof because we could not find then on the literature, being either
known or unknown. Theorems and corollaries follows as usual, presenting complete proofs
for those which we believe no one has done yet.

In Chapter 2 we construct the path coalgebra and the Gabriel quiver as covariant
functors between the category of pointed coalgebras and the category of 𝑘-quivers. Under
an equivalence relation on coalgebra homomorphisms, we obtain the main result of this
thesis: the induced path coalgebra functor is a right adjoint for the induced Gabriel 𝑘-quiver
functor.

Furthermore, we dualize the above result to get a pair of contravariant functors adjoint
on the right between the category of 𝑘-quivers and a quotient category of pointed pseu-
docompact algebras. We also show two other covariant functors which form an adjoint
pair between the quotient category of pointed pseudocompact algebras and a category of
pairs of topologically semisimple pointed pseudocompact algebras and pseudocompact
bimodules.

The core content of this chapter is on [IMQ21], which also has an extra section about
uniqueness of presentations for (co)algebras in terms of path (co)algebras.

In Chapter 3 we investigate other generalizations of path algebras. First, we take a look
into 𝑘-species.

In analogy to the relationship of a finite dimensional basic algebra over an algebraically
closed field and the path algebra of a quiver (or, equivalently, the tensor algebra of a
𝑘-quiver), finite dimensional basic algebras over a perfect field are isomorphic to a quotient
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of the tensor algebra of a 𝑘-species by an admissible ideal. 𝑘-species can be thought of as
a generalization of 𝑘-quivers, having finite dimensional division algebras in place of the
vertices and bimodules between two “vertices”.

We generalize the adjunction for pointed coalgebras and 𝑘-quivers to an adjunction
between a quotient category of coalgebras with separable coradical and filtered coalgebra
homomorphisms and a category of pairs consisting of separable coalgebras and bico-
modules. Furthermore, this result restricts to an adjunction between the corresponding
categories of basic coalgebras, in which case the category of pairs is isomorphic to the cat-
egory of separable 𝑘-cospecies, the analog of 𝑘-species in perspective of coalgebras.

In the last section of this chapter we analyze a family of functors which converges to
what is known as Peirce decomposition. Making use of the strategy adopted by Radford
[Rad82], we consider a category of pairs given by coalgebras with separable coradical
and coalgebra projections which are splittings of the canonical inclusion of the coradi-
cal into the corresponding coalgebra. Morphisms in this category are filtered coalgebra
homomorphisms which are compatible with the chosen projections.

We prove that, under certain equivalence relations on morphisms, the functor 𝐹𝑛(𝐶, 𝑠) =

(𝐶0,
𝐶𝑛
𝐶0)

is a left adjoint for the functor 𝐺𝑛(Σ, 𝑉 ) = (CotΣ(𝑉 ), 𝜋0). The limit functor

𝐹∞(𝐶, 𝑠) = (𝐶0,
𝐶
𝐶0)

is what we call Peirce decomposition, which corresponds for pseu-

docompact algebras to (−)∗𝐹∞(−)∗(𝐴) = (
𝐴

𝐽 (𝐴)
, 𝐽 (𝐴)). As a consequence, this result

generalize the adjunction of Radford [Rad82].

In the last chapter we put aside adjunctions and work with the algebra of invariants of
a complete path algebra by the action of a homogeneous finite group of continuous algebra
automorphisms, T[[Σ, 𝑉 ]]𝐺. First we show that the algebra of invariants of a power series
ring, T[[𝑘, 𝑉 ]]𝐺, is again a power series ring. Then, applying the techniques developed by
Cibils and Marcos [CM16], we obtain that T[[Σ, 𝑉 ]]𝐺 is a complete path algebra and conclude
that, in this case, the algebra of invariants preserves the finite and tame representation
types.
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Chapter 1

Preliminaries

The main objective of this chapter is to establish definitions and notations that will be
used throughout the text. We also recall results (providing a proof for those not readily
found on the literature), which will be summoned when necessary.

In the first section we describe categories, morphisms, functors, natural transforma-
tions and adjoint functors. In the second section we introduce coalgebras, comodules,
homomorphisms, filtrations and cotensor coalgebras. In the third section we explore the
structure of pointed coalgebras. In the forth and last section of this chapter we work with
pseudocompact algebras and pseudocompact modules, which are the objects of categories
dual to those of coalgebras and comodules, respectively.

1.1 Some category theory

We begin by defining categories, types of morphisms and the structures shared by
abelian categories, then we move on to functors and natural transformations, ending the
section with two equivalent statements of an adjunction between categories. This section
is mainly based on [Mac98] and the appendix of [ASS06].

1.1.1 Categories
Definition 1.1.1. A category C consists of a class of objects and for each pair of objects
𝐴, 𝐵 ∈ C a set of morphisms from 𝐴 to 𝐵, denoted by HomC(𝐴, 𝐵), satisfying the following:

1. for each object 𝐴 ∈ C there exists a morphism id𝐴 ∈ HomC(𝐴, 𝐴) called the identity
morphism on 𝐴;

2. for each triple of objects𝐴, 𝐵, 𝐶 ∈ C, and each pair of morphisms 𝑓 ∈ HomC(𝐴, 𝐵) and
𝑔 ∈ HomC(𝐵, 𝐶), there exists a morphism 𝑔𝑓 ∈ HomC(𝐴, 𝐶) called the composition
of 𝑓 and 𝑔 ;

3. for every object 𝐴, 𝐵, 𝐶, 𝐷 ∈ C, and every morphism 𝑓 ∈ HomC(𝐴, 𝐵), 𝑔 ∈
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HomC(𝐵, 𝐶) and ℎ ∈ HomC(𝐶, 𝐷), the diagrams:

𝐴 𝐷

𝐵 𝐶

𝑔𝑓𝑓

ℎ(𝑔𝑓 ) = (ℎ𝑔)𝑓

ℎ𝑔

𝑔

ℎ

𝐴 𝐵

𝐵 𝐶

𝑓

𝑓
id𝐵

𝑔

𝑔

commute.

A subcategory D of C is a category consisting of a subclass of objects of C and, for
each pair of objects 𝐴, 𝐵 ∈ D, a subset HomD(𝐴, 𝐵) ⊆ HomC(𝐴, 𝐵). The subcategory D is
full if HomD(𝐴, 𝐵) = HomC(𝐴, 𝐵), for every pair of objects 𝐴, 𝐵 ∈ D.

The opposite category C𝑜𝑝 of C is a category with objects the same as C and for each
𝐴, 𝐵 ∈ C, HomC𝑜𝑝(𝐴, 𝐵) = HomC(𝐵, 𝐴). Then, if 𝑓 ∈ HomC𝑜𝑝(𝐴, 𝐵) and 𝑔 ∈ HomC𝑜𝑝(𝐵, 𝐶),
the composition is given by 𝑔 ⋅ 𝑓 = 𝑓 𝑔 , where 𝑓 𝑔 is the composition in C.

Definition 1.1.2. Let C be a category and consider 𝑔 ∈ HomC(𝐵, 𝐶). Then, the morphism
𝑔 is

1. a monomorphism if 𝑔𝑓 = 𝑔𝑓 ′ ⇒ 𝑓 = 𝑓 ′, for each𝐴 ∈ C and each 𝑓 , 𝑓 ′ ∈ HomC(𝐴, 𝐵);

2. an epimorphism if ℎ𝑔 = ℎ′𝑔 ⇒ ℎ = ℎ′, for each 𝐷 ∈ C and each ℎ, ℎ′ ∈ HomC(𝐶, 𝐷);

3. a split monomorphism if there exists a ℎ ∈ HomC(𝐶, 𝐵) such that ℎ𝑔 = id𝐵. In this
case, ℎ is a left inverse for 𝑔 ;

4. a split epimorphism if there exists a 𝑓 ∈ HomC(𝐶, 𝐵) such that 𝑔𝑓 = id𝐶 . In this case,
𝑓 is a right inverse for 𝑔 ;

5. an isomorphism if there exists a 𝑔 ′ ∈ HomC(𝐶, 𝐵) which is a left and right inverse
for 𝑔 , i.e. 𝑔 ′𝑔 = id𝐵, and 𝑔𝑔 ′ = id𝐶 . In this case, we write 𝑔−1 ∶= 𝑔 ′ the inverse of 𝑔 .

If there exists an isomorphism 𝑔 ∈ HomC(𝐵, 𝐶), we say that the objects 𝐵 and 𝐶 are
isomorphic and write 𝐵 ≅ 𝐶.

Denote by EndC(𝐴) ∶= HomC(𝐴, 𝐴) the set of all endomorphisms of 𝐴 in C, and by
AutC(𝐴) the subset of EndC(𝐴) consisting of all isomorphisms, i.e. the automorphisms of
𝐴 in C.

Observe that if the morphism 𝑔 has a left inverse, then 𝑔 is a monomorphism, and if 𝑔
has a right inverse, then it is an epimorphism.

Sometimes it is convenient to work with the following equivalences:

Lemma 1.1.3. Let C be a category, 𝑔 ∈ HomC(𝐵, 𝐶), and consider the functions

𝑔∗ ∶ HomC(𝐴, 𝐵) HomC(𝐴, 𝐶),
𝑓 𝑔𝑓

𝑔∗ ∶ HomC(𝐶, 𝐷) HomC(𝐵, 𝐷).
ℎ ℎ𝑔

Then, the morphism 𝑔 is

1. a monomorphism if and only if the induced function 𝑔∗ is an injection for every 𝐴 ∈ C;
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2. an epimorphism if and only if the induced function 𝑔∗ is an injection for every 𝐷 ∈ C;

3. a split monomorphism if and only if the induced function 𝑔∗ is a surjection for every
𝐷 ∈ C;

4. a split epimorphism if and only if the induced function 𝑔∗ is a surjection for every
𝐴 ∈ C.

Proof. This result is well known and its proof is straightforward (simple checks).

1.1.2 Abelian categories
Definition 1.1.4. A direct sum of the objects 𝐴1, … , 𝐴𝑛 ∈ C is an object ⨁𝑛

𝑖=1 𝐴𝑖 together
with morphisms 𝑢𝑗 ∶ 𝐴𝑗 → ⨁𝑛

𝑖=1 𝐴𝑖, for 𝑗 = 1, … , 𝑛 such that for each object 𝐵 ∈ C and
morphisms 𝑓1 ∶ 𝐴1 → 𝐵,… , 𝑓𝑛 ∶ 𝐴𝑛 → 𝐵, the following diagram commutes:

⨁𝑛
𝑖=1 𝐴𝑖 𝐵

𝐴𝑗

𝑓

𝑢𝑗 𝑓𝑗

Definition 1.1.5. A zero object 0 ∈ C is such that |HomC(𝐴, 0)| = |HomC(0, 𝐵)| = 1, for
every 𝐴, 𝐵 ∈ C, where |−| denotes the cardinality of a given set. Thus, for any pair 𝐴, 𝐵 ∈ C,
the composition of the unique morphisms 𝐴 → 0 and 0 → 𝐵 establishes the zero morphism
0 = 0𝐴𝐵 ∶ 𝐴 → 𝐵, which is unique up to isomorphism.

Definition 1.1.6. A category C is an additive category if it has zero object, any finite set
of objects in C admits a direct sum in C and each set HomC(𝐴, 𝐵) has an abelian group
structure such that the composition mappings

HomC(𝐴, 𝐵) × HomC(𝐵, 𝐶) HomC(𝐴, 𝐶)
(𝑓 , 𝑔) 𝑔𝑓

are group homomorphism in each variable.

Definition 1.1.7. Let C be an additive category and 𝑓 ∈ HomC(𝐴, 𝐵). A kernel of 𝑓 is a
morphism k ∶ ker 𝑓 → 𝐴 such that 𝑓 k = 0, and every morphism 𝑔 ∶ 𝐶 → 𝐴 with 𝑓 𝑔 = 0
factors uniquely through k as in the following commutative diagram:

ker 𝑓

𝐴 𝐵

𝐶

0
k

𝑓𝑔̄

𝑔
0
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Definition 1.1.8. The dual notion is a cokernel of 𝑓 , i.e. a morphism c ∶ 𝐵 → coker 𝑓 such
that c𝑓 = 0, and every morphism ℎ ∶ 𝐵 → 𝐷 with ℎ𝑓 = 0 factors uniquely through c as in
the following commutative diagram:

coker 𝑓

𝐴 𝐵

𝐷

ℎ̄
𝑓

0

0

c

ℎ

Suppose every morphism in the additive category C admits a kernel and a cokernel.
Then, there exists a unique morphism 𝑓 making the following diagram

ker 𝑓 𝐴 𝐵 coker 𝑓

coker k ker c

k 𝑓

c′
𝑓 ′

c

𝑓

k′ (1.1.9)

commutative, where c′ is a cokernel of k, k′ is a kernel of c, 𝑓 ′ is the unique morphism such
that 𝑓 = k′𝑓 ′ as c𝑓 = 0, and 𝑓 is the unique morphism such that 𝑓 ′ = 𝑓 c′ as k′𝑓 ′k = 𝑓 k = 0.
Moreover, if k′ is a monomorphism then 𝑓 ′k = 0. The object ker c is called the image of 𝑓
and is denoted by Im 𝑓 .

Definition 1.1.10. An additive category C is an abelian category if for each morphism
𝑓 ∈ HomC(𝐴, 𝐵) it admits a kernel of 𝑓 , k ∶ ker 𝑓 → 𝐴, a cokernel of 𝑓 , c ∶ 𝐵 → coker 𝑓 ,
and the induced morphism 𝑓 ∶ coker k → Im 𝑓 is an isomorphism.

1.1.3 Functors
Definition 1.1.11. A covariant functor 𝐹 ∶ C → D from a category C to a category D
is an assignment such that each object 𝐴 ∈ C corresponds to an object 𝐹(𝐴) ∈ D and
each morphism 𝑓 ∈ HomC(𝐴, 𝐵) corresponds to a morphism 𝐹(𝑓 ) ∈ HomD(𝐹(𝐴), 𝐹(𝐵))
satisfying the equalities

𝐹(𝑔𝑓 ) = 𝐹(𝑔)𝐹(𝑓 ), 𝐹(id𝐴) = id𝐹(𝐴),

for any 𝑔 ∈ HomC(𝐵, 𝐶).

Definition 1.1.12. A contravariant functor 𝐺 ∶ C → D from a category C to a category
D is an assignment such that each object 𝐴 ∈ C corresponds to an object 𝐺(𝐴) ∈ D and
each morphism 𝑓 ∈ HomC(𝐴, 𝐵) corresponds to a morphism 𝐺(𝑓 ) ∈ HomD(𝐺(𝐵), 𝐺(𝐴))
satisfying the equalities

𝐺(𝑔𝑓 ) = 𝐺(𝑓 )𝐺(𝑔), 𝐺(id𝐴) = id𝐺(𝐴),

for any 𝑔 ∈ HomC(𝐵, 𝐶). Thus, 𝐺 induces a covariant functor 𝐺′ ∶ C𝑜𝑝 → D.
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Clearly, composition of functors is again a functor.

Definition 1.1.13. A covariant functor 𝐹 ∶ C → D is an isomorphism if there exists a
covariant functor 𝐺 ∶ D → C for which both composites 𝐺𝐹 and 𝐹𝐺 are identity functors.
In this case, we write 𝐺 = 𝐹−1 and C ≅ D.

Definition 1.1.14. Let 𝐹 , 𝐺 ∶ C ⇒ D be two covariant functors. A natural transfor-
mation 𝜏 ∶ 𝐹 → 𝐺 is a function which assigns to each object 𝐴 ∈ C a morphism
𝜏𝐴 ∈ HomD(𝐹(𝐴), 𝐺(𝐴)) satisfying the following commutative diagram:

𝐹(𝐴) 𝐺(𝐴)

𝐹(𝐵) 𝐺(𝐵)

𝜏𝐴

𝐹(𝑓 ) 𝐺(𝑓 )

𝜏𝐵

(1.1.15)

for every 𝑓 ∈ HomC(𝐴, 𝐵). In this case, we say that 𝜏𝐴 is natural in 𝐴. The natural
transformation 𝜏 is a natural isomorphism if 𝜏𝐴 is an isomorphism for each 𝐴 ∈ C.

Definition 1.1.16. A covariant functor 𝐹 ∶ C → D is an equivalence of categories if there
exist a functor 𝐺 ∶ D → C and natural isomorphisms 𝜏 ∶ 𝐺𝐹 → idC and 𝜐 ∶ 𝐹𝐺 → idD,
where idC and idD are the identity functors on C and D, respectively.

Definition 1.1.17. A contravariant functor 𝐺 ∶ C → D is a duality of categories if the
induced covariant functor 𝐺′ ∶ C𝑜𝑝 → D is an equivalence of categories, where C𝑜𝑝 is the
opposite category of 𝐶.

Remark 1.1.18. While an equivalence of categories sends monomorphisms onto monomor-
phisms and epimorphisms onto epimorphisms, a duality of categories sends monomor-
phisms onto epimorphisms and epimorphisms onto monomorphisms.

Definition 1.1.19. Let 𝐹 ∶ C → D be a covariant functor and for each pair 𝐴, 𝐵 ∈ C
consider the function

𝐹𝐴,𝐵 ∶ HomC(𝐴, 𝐵) HomD(𝐹(𝐴), 𝐹(𝐵))
𝑓 𝐹(𝑓 )

The functor 𝐹 is full if 𝐹𝐴,𝐵 is a surjection for all 𝐴, 𝐵 ∈ C, and 𝐹 is faithful if 𝐹𝐴,𝐵 is an
injection for all 𝐴, 𝐵 ∈ C. If 𝐹 is both full and faithful, we say that 𝐹 is fully faithful.

A functor 𝐹 ∶ C → D is dense if for any 𝐵 ∈ D there exists 𝐴 ∈ C such that 𝐹(𝐴) ≅ 𝐵.
A fully faithfull dense functor is an equivalence of categories, see [Mac98, Theorem 4.4.1].

1.1.4 Adjoint functors
Definition 1.1.20. Let C and D be categories. An adjunction from C to D is a triple
⟨𝐹 , 𝐺, Ψ⟩ ∶ C → D, where 𝐹 and 𝐺 are covariant functors

C D,
𝐹

𝐺
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while Ψ is a function which assigns to each pair of objects 𝐴 ∈ C, 𝐵 ∈ D a bijection of sets

Ψ = Ψ𝐴,𝐵 ∶ HomC(𝐴, 𝐺(𝐵)) → HomD(𝐹(𝐴), 𝐵)

which is natural in 𝐴 and 𝐵. In this case, 𝐹 is a left adjoint for 𝐺 and 𝐺 is a right adjoint for
𝐹 .

The natural transformation  ∶ idC → 𝐺𝐹 given by

 = 𝐴 = Ψ−1
𝐴,𝐹(𝐴)(id𝐹(𝐴)) ∶ 𝐴 → 𝐺𝐹(𝐴) (1.1.21)

is the unit of the adjunction.

The natural transformation  ∶ 𝐹𝐺 → idD given by

 = 𝐵 = Ψ𝐺(𝐵),𝐵(id𝐺(𝐵)) ∶ 𝐹𝐺(𝐵) → 𝐵 (1.1.22)

is the counit of the adjunction.

Two contravariant functors 𝐹 ∶ C → D and 𝐺 ∶ D → C are adjoint on the right when
there exists a bijection HomC(𝐶, 𝐺(𝐷)) ≅ HomD(𝐷, 𝐹(𝐶)), natural in 𝐶 and 𝐷.

Similarly, two contravariant functors 𝐹 ∶ C → D and 𝐺 ∶ D → C are adjoint on the
left when there exists a bijection HomC(𝐹(𝐶), 𝐷) ≅ HomD(𝐺(𝐷), 𝐶), natural in 𝐶 and 𝐷.

An adjoint equivalence of categories is an adjunction ⟨𝐹 , 𝐺, Ψ⟩ ∶ C → D such that 𝐹 is
a left and right adjoint for 𝐺.

Proposition 1.1.23. An adjunction ⟨𝐹 , 𝐺, Ψ⟩ ∶ C → D is completely determined by two
covariant functors 𝐹 ∶ C → D and 𝐺 ∶ D → C and natural transformations  ∶ idC → 𝐺𝐹
and  ∶ 𝐹𝐺 → idD satisfying the triangular identities:

𝐹(−) 𝐹(−)

𝐹𝐺𝐹(−)

id𝐹(−)

𝐹(−) 𝐹(−)
,

𝐺(−) 𝐺(−)

𝐺𝐹𝐺(−)

id𝐺(−)

𝐺(−) 𝐺(−)
(1.1.24)

In this case, for any morphism 𝑓 ∶ 𝐴 → 𝐺(𝐵) and any morphism 𝑓 ′ ∶ 𝐹(𝐴) → 𝐵, the
function Ψ is defined by:

Ψ𝐴,𝐵(𝑓 ) = 𝐵𝐹(𝑓 ) ∶ 𝐹(𝐴) → 𝐵; Ψ−1
𝐴,𝐵(𝑓

′) = 𝐺(𝑓 ′)𝐴 ∶ 𝐴 → 𝐺(𝐵) (1.1.25)

Proof. See [Mac98, Theorem 4.1.2(v)].

Proposition 1.1.26. Consider an adjunction ⟨𝐹 , 𝐺, Ψ⟩ ∶ C → D, with unit  ∶ idC → 𝐺𝐹
and counit  ∶ 𝐹𝐺 → idD. Then

1. the functor 𝐺 is faithful if and only if every component 𝐵 of the counit is an epimor-
phism;

2. the functor 𝐺 is full if and only if every 𝐵 is a split monomorphism.
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Hence 𝐺 is fully faithful if and only if each 𝐵 is an isomorphism 𝐹𝐺(𝐵) ≅ 𝐵.

Proof. See [Mac98, Theorem 4.3.1].

Corollary 1.1.27. Similarly we have:

1. the functor 𝐹 is faithful if and only if every component 𝐴 of the unit is a monomor-
phism;

2. the functor 𝐹 is full if and only if every 𝐴 is a split epimorphism.

Hence 𝐹 is fully faithful if and only if each 𝐴 is an isomorphism 𝐴 ≅ 𝐺𝐹(𝐴). Therefore, 𝐹
and 𝐺 are equivalences if and only if they are fully faithful.

Proof. The covariant functor 𝐹 is faithful if and only if the composition function

HomC(𝐴, 𝐵) HomD(𝐹(𝐴), 𝐹(𝐵)) HomD(𝐴, 𝐺𝐹(𝐵))
𝑓 𝐹(𝑓 ) Ψ−1

𝐴,𝐹(𝐵)𝐹(𝑓 )

𝐹 Ψ−1
𝐴,𝐹(𝐵)

is an injection for every 𝐴, 𝐵 ∈ C (see Definition 1.1.19), where the right hand side is a
bijection (see Definition 1.1.20). Since

Ψ−1
𝐴,𝐹(𝐵)𝐹(𝑓 ) = 𝐺𝐹(𝑓 )𝐴 = 𝐵𝑓

by naturality of  (see 1.1.25 and 1.1.15), it follows that HomC(𝐴, 𝐵) → HomD(𝐴, 𝐺𝐹(𝐵))
is an injection if and only if 𝐵 is a monomorphism for every 𝐵 ∈ C (see Lemma 1.1.3).

If we part from the other way round, the proof follows the same idea, but with inter-
esting and slight different computations, as we show in the sequence:

Each component 𝐵 of the unit is a monomorphism if and only if the composition
function

HomC(𝐴, 𝐵) HomD(𝐴, 𝐺𝐹(𝐵)) HomD(𝐹(𝐴), 𝐹(𝐵))
𝑓 𝐵𝑓 Ψ𝐴,𝐹(𝐵)(𝐵𝑓 )

𝐵∗ Ψ𝐴,𝐹(𝐵)

is an injection for every 𝐴, 𝐵 ∈ C (see Lemma 1.1.3), where the right hand side is a bijection
(see Definition 1.1.20). Since

Ψ𝐴,𝐹(𝐵)(𝐵𝑓 ) = 𝐹(𝐵)𝐹(𝐵)𝐹(𝑓 ) = 𝐹(𝑓 )

by the triangular identities (see 1.1.25 and 1.1.24), it follows that

HomC(𝐴, 𝐵) → HomD(𝐹(𝐴), 𝐹(𝐵))

is an injection if and only if 𝐹 is faithful (see Definition 1.1.19).

The proof of part 2 follows in the same way, swapping “injection” for “surjection”.
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1.2 Coalgebras and comodules
Fix once and for all a field 𝑘. Algebras, coalgebras, vector spaces, linear maps and

tensor products are over 𝑘 unless specified otherwise. All (co)algebras treated in this text
are (co)associative with (co)unit. The symbol N denotes the set of non-negative integers
(including zero).

Given a vector space 𝑉 , we denote by 𝑉 ∗ = Hom𝑘(𝑉 , 𝑘) the space of all linear maps
from 𝑉 to 𝑘, namely the dual space of 𝑉 . In the case that 𝑉 is a topological space, 𝑘 is treated
as a discrete topological ring and Hom𝑘(𝑉 , 𝑘) is the space of all continuous functionals
from 𝑉 to 𝑘. Given a map 𝑓 ∶ 𝑉 → 𝑈 , the morphism 𝑓 ∗ ∶ 𝑈 ∗ → 𝑉 ∗ is defined by
𝑓 ∗(𝑔)(𝑣) = 𝑔(𝑓 (𝑣)), for any 𝑔 ∈ 𝑈 ∗ and 𝑣 ∈ 𝑉 .

In Section 1.4, we show that the contravariant functor (−)∗ ∶ Cog → Alg is a duality
of categories between the category of coalgebras (and coalgebra homomorphisms) and the
category of pseudocompact algebras (and continuous algebra homomorphisms).

In this section we study coalgebras and comodules, and present important related
results as the Dual Wedderburn-Malcev Theorem, the Fundamental Theorem of Coalge-
bras and Comodules and the Universal Property of Cotensor Coalgebras. For a general
introduction to coalgebras and comodules, see, for instance, [Abe80; DNR01; FM20; Mon93;
Rad11; Swe69].

1.2.1 Coalgebras
A coalgebra is defined in the monoidal category of vector spaces by axioms dual to

those of an algebra, i.e.

Definition 1.2.1. A coalgebra 𝐶 = (𝐶, 𝛥𝐶 , 𝜀𝐶) is a vector space 𝐶 together with two linear
maps 𝛥𝐶 ∶ 𝐶 → 𝐶⊗𝐶, the comultiplication of 𝐶, and 𝜀𝐶 ∶ 𝐶 → 𝑘, the counit of 𝐶, satisfying
the following commutative diagrams:

𝐶 𝐶 ⊗ 𝐶

𝐶 ⊗ 𝐶 𝐶 ⊗ 𝐶 ⊗ 𝐶

𝛥𝐶

𝛥𝐶

id𝐶⊗𝛥𝐶

𝛥𝐶⊗id𝐶

𝐶

𝑘 ⊗ 𝐶 𝐶 ⊗ 𝑘

𝐶 ⊗ 𝐶

𝛥𝐶

≅ ≅

𝜀𝐶⊗id𝐶 id𝐶⊗𝜀𝐶

(1.2.2)

where id𝐶 ∶ 𝐶 → 𝐶 is the identity map of 𝐶, and the maps

𝐶 𝑘 ⊗ 𝐶,
𝑐 1 ⊗ 𝑐

≅ 𝐶 𝐶 ⊗ 𝑘,
𝑐 𝑐 ⊗ 1

≅

are the canonical isomorphisms. The first diagram in (1.2.2) is the coassociativity of the
comultiplication and the second is the counit property of 𝐶.

A subspace 𝑆 ⊆ 𝐶 is a subcoalgebra of 𝐶 if 𝛥𝐶(𝑆) ⊆ 𝑆 ⊗ 𝑆. In this case, (𝑆, 𝛥𝐶 |𝑆 , 𝜀𝐶 |𝑆) is
a coalgebra.

A coalgebra 𝐶 is:
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1. simple if there is no non-zero proper subcoalgebra of 𝐶;

2. cosemisimple if it is the sum of its simple subcoalgebras;

3. pointed if all simple subcoalgebra of 𝐶 has dimension 1 (as vector space).

Consider a coalgebra 𝐶 and denote by 𝐶𝑐𝑜𝑝 = (𝐶, 𝛥𝑐𝑜𝑝
𝐶 , 𝜀𝐶) the co-opposite coalgebra of

𝐶 with comultiplication 𝛥𝑐𝑜𝑝
𝐶 = 𝑇𝛥𝐶 , where 𝑇 ∶ 𝐶 ⊗ 𝐶 → 𝐶 ⊗ 𝐶 is the twist map given by

𝑇 (𝑎 ⊗ 𝑏) = 𝑏 ⊗ 𝑎.

A coalgebra is cocomutative if 𝐶 = 𝐶𝑐𝑜𝑝.

In particular, if 𝑘 is an algebraically closed field, then every cocommutative 𝑘-coalgebra
is pointed, see [Abe80, Theorem 2.3.3].

When it is clear which coalgebra we are referring to, we may drop the subscripts for
the comultiplication and counit. The example below give us a family of simple coalgebras,
which will be proved simple later on, see Remark 1.4.18, since we need more tools for
that:

Example 1.2.3. The matrix coalgebra 𝑀𝐶(𝑛, 𝑘) is the vector space with basis {𝑒𝑖,𝑗 | 1 ⩽
𝑖, 𝑗 ⩽ 𝑛} given by

𝑒𝑖,𝑗 =
⎡
⎢
⎢
⎣

𝛿1,𝑖𝛿1,𝑗 … 𝛿1,𝑖𝛿𝑛,𝑗
⋮ ⋱ ⋮

𝛿𝑛,𝑖𝛿1,𝑗 … 𝛿𝑛,𝑖𝛿𝑛,𝑗

⎤
⎥
⎥
⎦

(1.2.4)

(thus is the 𝑛 × 𝑛 matrix), with comultiplication and counit maps given by

𝛥(𝑒𝑖,𝑗) =
𝑛

∑
𝑙=1

𝑒𝑖,𝑙 ⊗ 𝑒𝑙,𝑗 , 𝜀(𝑒𝑖,𝑗) = 𝛿𝑖,𝑗 . (1.2.5)

The next example is another important family of coalgebras, which are subspaces of
the square matrices but not subcoalgebras of 𝑀𝐶(𝑛, 𝑘) (which we knew already since the
latter is simple).

Example 1.2.6. The upper triangular matrix coalgebra 𝑈 𝐶(𝑛, 𝑘) is the vector space with
basis {𝑒𝑖,𝑗 | 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛, 𝑖 ⩾ 𝑗} given by

𝑒𝑖,𝑗 =
⎡
⎢
⎢
⎣

𝛿1,𝑖𝛿1,𝑗 … 𝛿1,𝑖𝛿𝑛,𝑗
⋱ ⋮0 𝛿𝑛,𝑖𝛿𝑛,𝑗

⎤
⎥
⎥
⎦

(1.2.7)

with comultiplication and counit maps given by

𝛥(𝑒𝑖,𝑗) = ∑
𝑖⩽𝑙⩽𝑗

𝑒𝑖,𝑙 ⊗ 𝑒𝑙,𝑗 , 𝜀(𝑒𝑖,𝑗) = 𝛿𝑖,𝑗 . (1.2.8)

Note that the vector space generated by 𝑒𝑖,𝑖 is a subcoalgebra of 𝑈 𝐶(𝑛, 𝑘).

Example 1.2.9. If 𝐶 and 𝐷 are coalgebras, then the tensor product of coalgebras 𝐶 ⊗ 𝐷 is
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a coalgebra with comultiplication and counit given by:

𝛥𝐶⊗𝐷 = (id𝐶 ⊗ 𝑇 ⊗ id𝐷)(𝛥𝐶 ⊗ 𝛥𝐷), 𝜀𝐶⊗𝐷 = 𝜀𝐶 ⊗ 𝜀𝐷 (1.2.10)

Example 1.2.11. The trigonometric coalgebra 𝐶 is a two dimensional coalgebra with basis
{𝑎, 𝑏} and comultiplication and counit given by:

𝛥(𝑎) = 𝑎 ⊗ 𝑎 − 𝑏 ⊗ 𝑏, 𝜀(𝑎) = 1;
𝛥(𝑏) = 𝑏 ⊗ 𝑎 + 𝑎 ⊗ 𝑏, 𝜀(𝑏) = 0.

(1.2.12)

If there is no root of 𝜆2+1 in 𝑘 (for instance, if 𝑘 = R), then 𝐶 is simple and cocommutative,
but not pointed. Otherwise (for instance, if 𝑘 = C), let 𝑖 =

√
−1, then

𝛥(𝑎 + 𝑖𝑏) = 𝑎 ⊗ 𝑎 − 𝑏 ⊗ 𝑏 + 𝑖𝑏 ⊗ 𝑎 + 𝑖𝑎 ⊗ 𝑏 = (𝑎 + 𝑖𝑏) ⊗ (𝑎 + 𝑖𝑏)

shows that the vector space generated by (𝑎 + 𝑖𝑏) is a one dimensional subcoalgebra, thus
𝐶 is cocomutative, pointed and not simple.

The structure of a coalgebra allow us to obtain an algebra from it, called dual alge-
bra.

Definition 1.2.13. The dual algebra of a coalgebra 𝐶 is the dual vector space 𝐶∗ =
Hom𝑘(𝐶, 𝑘) endowed with the multiplication (m(𝑓 ⊗ 𝑔))(𝑐) = (𝑓 ⊗ 𝑔)𝛥(𝑐), using the
canonical isomorphism 𝑘 ⊗ 𝑘 ≅ 𝑘, and the unit 𝜂(1)(𝑐) = 𝜀(𝑐), see [Swe69, Proposition
1.1.1].

Example 1.2.14. Consider the matrix coalgebra 𝑀𝐶(𝑛, 𝑘) (see Example 1.2.3). Its dual
algebra is the matrix algebra 𝑀𝐶(𝑛, 𝑘)∗ ≅ 𝑀(𝑛, 𝑘).

Example 1.2.15. Let 𝑘 = R and consider the trigonometric coalgebra (see Example 1.2.11).
Its dual algebra is the algebra of complex numbers.

Definition 1.2.16. The coradical of a coalgebra 𝐶, denoted by 𝐶0, is the sum of all simple
subcoalgebras of 𝐶.

The coradical filtration of a coalgebra 𝐶 is the family {𝐶𝑛}𝑛∈N, where 𝐶0 is the coradical
of 𝐶, and 𝐶𝑛 is defined inductively by

𝐶𝑛 ∶= 𝛥−1(𝐶 ⊗ 𝐶𝑛−1 + 𝐶0 ⊗ 𝐶) (1.2.17)

In this case, each 𝐶𝑛 is a subcoalgebra of 𝐶, 𝐶𝑛 ⊆ 𝐶𝑛+1 as subcoalgebras, 𝐶 =
∞

⋃
𝑛=0

𝐶𝑛, and

𝛥(𝐶𝑛) ⊆
𝑛

∑
𝑖=0

𝐶𝑛−𝑖 ⊗ 𝐶𝑖, see [Swe69, §9.1]. See also [Abe80, §2.4.1] and [Mon93, Theorem

5.2.2]. Throughout this text, any numbered subscript on a coalgebra refers to its coradical
filtration. We occasionally use the helpful convention 𝐶−1 ∶= {0}.

Thus a coalgebra 𝐶 is cosemisimple if and only if 𝐶 = 𝐶0.

Definition 1.2.18. A coalgebra is basic if the dual algebra of each simple subcoalgebra is
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a division algebra.

A coalgebra 𝐶 is separable if for every extension field 𝐿 of 𝑘, 𝐶 ⊗ 𝐿 is a cosemisimple
coalgebra over 𝐿. Equivalently, a coalgebra is separable if, and only if, the dual algebra of
each simple subcoalgebra is separable.

Observe that every separable coalgebra is cosemisimple. In particular, every pointed
coalgebra is basic and has separable coradical.

Proposition 1.2.19. Let 𝐶 be a coalgebra and 𝐷 ⊆ 𝐶 be a subcoalgebra. Then, 𝐷𝑛 = 𝐶𝑛 ∩ 𝐷
for all 𝑛 ∈ N.

Proof. See [HR74, Corollary 2.3.7].

1.2.2 Coalgebra homomorphisms
Definition 1.2.20. Consider two coalgebras 𝐶 and 𝐷. A linear map 𝜌 ∶ 𝐶 → 𝐷 is a
coalgebra homomorphism if it satisfies the commutative diagrams:

𝐶 𝐷

𝐶 ⊗ 𝐶 𝐷 ⊗ 𝐷

𝜌

𝛥𝐶 𝛥𝐷

𝜌⊗𝜌

𝐶 𝐷

𝑘

𝜌

𝜀𝐶 𝜀𝐷
(1.2.21)

A coalgebra homomorphism 𝜌 ∶ 𝐶 → 𝐷 is filtered if 𝜌(𝐶𝑛) ⊆ 𝐷𝑛, see [Swe69, p. 229] or
[Abe80, p. 92].

Remark 1.2.22. A simple induction on the (coradical) filtration shows that, if 𝜌 ∶ 𝐶 → 𝐷 is
a coalgebra homomorphism such that 𝜌(𝐶0) ⊆ 𝐷0, then 𝜌 is filtered. This happens because
𝜌(𝐶𝑖) ⊆ 𝐷𝑖, for 0 ⩽ 𝑖 ⩽ 𝑛 − 1, implies

𝛥𝐷𝜌(𝐶𝑛) ⊆ (𝜌 ⊗ 𝜌)(𝐶 ⊗ 𝐶𝑛−1 + 𝐶0 ⊗ 𝐶) ⊆ 𝐷 ⊗ 𝐷𝑛−1 + 𝐷0 ⊗ 𝐷,

hence 𝜌(𝐶𝑛) ⊆ 𝐷𝑛.

It is straightforward to check that the image of a coalgebra homomorphism is a subcoal-
gebra and the composition of coalgebra homomorphisms are coalgebra homomorphisms.
Thus, coalgebras and coalgebra homomorphisms form a category denoted by Cog.

Denote by cog the full subcategory of all finite dimensional coalgebras.

Proposition 1.2.23. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be a surjection coalgebra
homomorphism, then 𝐷0 ⊆ 𝜌(𝐶0). In the case that 𝐶 is pointed, 𝜌(𝐶0) = 𝐷0 and 𝐷 is pointed.

Proof. See [Mon93, Corollary 5.3.5].

In particular, if 𝜌 ∶ 𝐶 → 𝐷 is an injection we have the following:

Lemma 1.2.24. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be an injection coalgebra
homomorphism, then 𝜌 is filtered. Moreover, if 𝜌 is an isomorphism, then 𝜌(𝐶𝑛) = 𝐷𝑛.
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Proof. Let 𝜌 ∶ 𝐶 → 𝐷 be a coalgebra isomorphism and 𝜌−1 ∶ 𝐷 → 𝐶 its inverse. Then,
𝐷0 ⊆ 𝜌(𝐶0) and 𝐶0 ⊆ 𝜌−1(𝐷0) by Proposition 1.2.23. Applying 𝜌 to the last expression gives
𝜌(𝐶0) ⊆ 𝐷0, which implies 𝐷0 = 𝜌(𝐶0). Now, we prove the affirmative by induction on the
filtration. Suppose that 𝜌(𝐶𝑖) = 𝐷𝑖 for 𝑖 ⩽ 𝑛 − 1. Then

𝛥𝐷𝜌(𝐶𝑛) ⊆ (𝜌 ⊗ 𝜌)(𝐶 ⊗ 𝐶𝑛−1 + 𝐶0 ⊗ 𝐶) = 𝐷 ⊗ 𝐷𝑛−1 + 𝐷0 ⊗ 𝐷,

shows 𝜌(𝐶𝑛) ⊆ 𝐷𝑛. Similarly, 𝜌−1(𝐷𝑛) ⊆ 𝐶𝑛 and, using the same argument as before,
𝜌(𝐶𝑛) = 𝐷𝑛.

If 𝜌 ∶ 𝐶 → 𝐷 is an injection, then the corestriction to its image is an isomorphism.
Then, by what we just proved and Proposition 1.2.19,

𝜌(𝐶𝑛) = 𝜌(𝐶)𝑛 = 𝜌(𝐶) ∩ 𝐷𝑛 ⊆ 𝐷𝑛.

Definition 1.2.25. Consider a coalgebra 𝐶. A subspace 𝐼 ⊆ 𝐶 is a coideal of 𝐶 if it satisfies:

𝛥(𝐼) ⊆ 𝐶 ⊗ 𝐼 + 𝐼 ⊗ 𝐶, 𝜀(𝐼 ) = 0 (1.2.26)

Next, we present two fundamental theorems for coalgebras which sustain the important
role played by coideals for coalgebras. The theorem below is known as the Isomorphism
Theorem for Coalgebras.

Theorem 1.2.27. Let 𝐶 and 𝐷 be coalgebras, 𝐼 a coideal of 𝐶, 𝑞 ∶ 𝐶 →
𝐶
𝐼

be the canonical
linear projection, and 𝜌 ∶ 𝐶 → 𝐷 a coalgebra homomorphism. Then:

1. the quotient space 𝐶
𝐼 has a unique coalgebra structure making 𝑞 into a coalgebra

homomorphism;

2. the ker 𝜌 is a coideal of 𝐶, and;

3. if 𝐼 ⊆ ker 𝜌, then there exists a unique coalgebra homomorphism 𝜌 ∶
𝐶
𝐼
→ 𝐷 satisfying

the commutative diagram:
𝐶 𝐷

𝐶
𝐼

𝜌

𝑞 𝜌 (1.2.28)

Proof. See [Swe69, Theorem 1.4.7]. See also [DNR01, Proposition 1.4.9 and Theorem 1.4.10].

The next theorem is the Dual Wedderburn-Malcev Theorem.

Theorem 1.2.29. Let 𝐶 be a coalgebra with separable coradical. Then, there exists a coideal
𝐼 such that 𝐶 = 𝐶0 ⊕ 𝐼 .
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Proof. See [Abe80, Theorem 2.3.11].

In other words, this theorem says that for any coalgebra 𝐶 with separable coradical,
there exists a coalgebra projection (not necessarily unique) 𝜋0 ∶ 𝐶 → 𝐶0, such that
𝜋0𝜄0 = id𝐶0 , where 𝜄0 ∶ 𝐶0 → 𝐶 is the canonical inclusion. The projection 𝜋0 can be
constructed as the composition of the canonical projection (given a coideal 𝐼 ⊆ 𝐶, such

that 𝐶 = 𝐶0 ⊕ 𝐼 ) 𝑞𝐼 ∶ 𝐶 →
𝐶
𝐼

and the canonical isomorphism
𝐶0 ⊕ 𝐼
𝐼

≅ 𝐶0.

Theorem 1.2.30. Let 𝐶 and 𝐷 be coalgebras, and 𝜌 ∶ 𝐶 → 𝐷 a coalgebra homomorphism.
If 𝐶0 is cocommutative, then 𝜌 is filtered.

Proof. See [Swe69, Theorem 9.1.4].

In particular, if 𝐶 is pointed every coalgebra homomorphism 𝜌 ∶ 𝐶 → 𝐷 is filtered. The
same is true for basic coalgebras, which we will prove next. First we need a well-known
result about division algebras, cf. [Pie82, Exercises 2, p. 74], and we will leave a proof
because we couldn’t find one.

Lemma 1.2.31. Let 𝐴 be a division algebra and 𝐵 ⊆ 𝐴 be a finite dimensional subalgebra,
then 𝐵 is a division algebra.

Proof. Let 𝑏 ∈ 𝐵 and consider the map𝑚𝑏 ∶ 𝐵 → 𝐵 given by 𝑥 ↦ 𝑏𝑥 . Since 𝐵 is a subalgebra
of a division algebra, it has no nontrivial zero divisor and, because it is finite dimensional,
the map 𝑚𝑏 is a bijection. Thus 𝑏 has a right inverse. Similar argument shows that 𝑏 has
also a left inverse (which must be equal the right inverse by associativity) and, since 𝑏 was
arbitrary, 𝐵 is a division algebra.

Lemma 1.2.32. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be a coalgebra homomorphism.
If 𝐶 is basic, then 𝜌 is filtered.

Proof. Let 𝑆 ⊆ 𝐶 be a simple subcoalgebra of 𝐶 and consider the dual algebra homomor-
phism of the restriction 𝜌 ∶ 𝑆 → 𝜌(𝑆), 𝜌∗ ∶ (𝜌(𝑆))

∗
→ 𝑆∗. Since 𝜌 is a surjection onto its

image, (𝜌(𝑆))
∗

can be seen as a subalgebra of the finite dimensional division algebra 𝑆∗ via
the injection 𝜌∗. By Lemma 1.2.31, (𝜌(𝑆))

∗
is a division algebra and, consequently, 𝜌(𝑆) is

a simple subcoalgebra. The result now follows from Remark 1.2.22.

Proposition 1.2.33. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 a coalgebra homomorphism.
Then 𝜌 is injective if and only if 𝜌|𝐶1 ∶ 𝐶1 → 𝐷 is injective.

Proof. See [HR74, Proposition 2.4.2]. See also [Mon93, Theorem 5.3.1].

1.2.3 Comodules
Definition 1.2.34. Let 𝐶 be a coalgebra. A left 𝐶-comodule 𝑀 = (𝑀, 𝜇𝑀) is a vector space
𝑀 together with a linear map 𝜇𝑀 ∶ 𝑀 → 𝐶 ⊗ 𝑀 , the structure map of 𝑀 , satisfying the
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following commutative diagrams:

𝑀 𝐶 ⊗𝑀

𝐶 ⊗𝑀 𝐶 ⊗ 𝐶 ⊗𝑀

𝜇𝑀

𝜇𝑀 𝛥𝐶⊗id𝐶

id𝐶⊗𝜇𝑀

𝑀

𝑘 ⊗𝑀

𝐶 ⊗𝑀

≅

𝜇

𝜀⊗id

(1.2.35)

A right 𝐶-comodule 𝑁 = (𝑁 , 𝜈𝑁 ) is defined in a similar fashion, with the structure map
of 𝑁 , 𝜈𝑁 ∶ 𝑁 → 𝑁 ⊗ 𝐶, satisfying the following commutative diagrams:

𝑁 𝑁 ⊗ 𝐶

𝑁 ⊗ 𝐶 𝑁 ⊗ 𝐶 ⊗ 𝐶

𝜈𝑁

𝜈𝑁 id𝐶⊗𝛥𝐶

𝜈𝑁⊗id𝐶

𝑁

𝑁 ⊗ 𝑘

𝑁 ⊗ 𝐶

𝜈𝑁

≅

id𝑁⊗𝜀𝐶

(1.2.36)

A subspace 𝐿 ⊆ 𝑀 is a subcomodule of the left 𝐶-comodule 𝑀 if 𝜇𝑀(𝐿) ⊆ 𝐶 ⊗ 𝐿. In
this case 𝐿 = (𝐿, 𝜇𝑀 |𝐿) is a left 𝐶-comodule. A subspace 𝑅 ⊆ 𝑁 is a subcomodule of right
𝐶-comodule 𝑁 if 𝜈𝑁 (𝑅) ⊆ 𝑅 ⊗ 𝐶. In this case 𝑅 = (𝑅, 𝜈𝑁 |𝑅) is a right 𝐶-comodule.

A left (or right) 𝐶-comodule 𝑀 is simple if there is no non-zero proper subcomodule of
𝑀 .

Now we give some examples of comodules which are obtained from other given
structures.

Example 1.2.37. 1. Let 𝐶 be a coalgebra and 𝑀 be a left 𝐶-comodule. Then 𝑀 is a
right 𝐶𝑐𝑜𝑝-comodule with structure map 𝜇 = 𝑇𝜇𝑀 , where 𝑇 is the twist map (see the
co-oposite coalgebra at 1.2.1);

2. Every coalgebra 𝐶 is a left and right 𝐶-comodule with structure map 𝜇 = 𝜈 = 𝛥𝐶 ;

3. Any subcoalgebra 𝑆 ⊆ 𝐶 of the coalgebra 𝐶 is a subcomodule of the left (and right)
𝐶-comodule 𝐶;

4. If 𝜌 ∶ 𝐶 → 𝐷 is a coalgebra homomorphism and 𝑀 is a left (right) 𝐶-comodule,
then 𝑀 is a left (resp. right) 𝐷-comodule with structure map 𝜇 = (𝜌 ⊗ id𝑀)𝜇𝑀 (resp.
𝜈 = (id𝑀 ⊗ 𝜌)𝜈𝑀). In particular, 𝐶 is a left (and right) 𝐷-comodule;

5. Consider a coalgebra 𝐶 and left (right) 𝐶-comodules 𝑀 and 𝑁 . Then 𝑀 ⊕ 𝑁 is a left
(resp. right) 𝐶-comodule with structure map 𝜇 = 𝜇𝑀 + 𝜇𝑁 (resp. 𝜈 = 𝜈𝑀 + 𝜈𝑁 );

6. Let 𝐶 be a coalgebra, 𝐿 a left (right) 𝐶-comodule and 𝑀 and 𝑁 subcomodules of 𝐿.
Then 𝑀 + 𝑁 = {𝑚 + 𝑛 |𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 } and 𝑀 ∩ 𝑁 are subcomodules.

Remark 1.2.38. In order to simplify computations, we make use of the sigma notation, see
[Swe69, §1.2 and §2.0], i.e. if 𝐶 is a coalgebra, 𝑀 is a right 𝐶-comodule, and 𝑁 is a left
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𝐶-comodule, we write

𝛥𝐶(𝑐) =
𝑟1
∑
𝑖=1

𝑐1𝑖 ⊗ 𝑐2𝑖 ∶= ∑
(𝑐)

𝑐(1) ⊗ 𝑐(2);

𝜈𝑀(𝑚) =
𝑟2
∑
𝑗=1

𝑚1𝑗 ⊗ 𝑚2𝑗 ∶= ∑
(𝑚)

𝑚(0) ⊗ 𝑚(1);

𝜇𝑁 (𝑛) =
𝑟3
∑
𝑙=1

𝑛1𝑙 ⊗ 𝑛2𝑙 ∶= ∑
(𝑛)

𝑛(−1) ⊗ 𝑛(0);

with 𝑐, 𝑐1𝑖, 𝑐2𝑖, 𝑚2𝑗 , 𝑛1𝑙 ∈ 𝐶, 𝑚,𝑚1𝑗 ∈ 𝑀 , and 𝑛, 𝑛2𝑙 ∈ 𝑁 , for 𝑖 = 1, … , 𝑟1, 𝑗 = 1, … , 𝑟2, and
𝑙 = 1, … , 𝑟3.

1.2.4 Comodule homomorphisms
Definition 1.2.39. Let 𝐶 be a coalgebra, 𝐿 and 𝑀 be left 𝐶-comodules, and 𝑅 and 𝑁
be right 𝐶-comodules. A linear map 𝜎 ∶ 𝐿 → 𝑀 is a comodule homomorphism of left
𝐶-comodules if satisfies the following commutative diagram:

𝐿 𝑀

𝐶 ⊗ 𝐿 𝐶 ⊗ 𝑀

𝜎

𝜇𝐿 𝜇𝑀

id𝐶⊗𝜎

(1.2.40)

A linear map 𝜎′ ∶ 𝑅 → 𝑁 is a comodule homomorphism of right 𝐶-comodules if satisfies
the following commutative diagram:

𝑅 𝑁

𝑅 ⊗ 𝐶 𝑁 ⊗ 𝐶

𝜎′

𝜈𝑅 𝜈𝑁

𝜎′⊗id𝐶

(1.2.41)

It is straightforward to check that composition of comodule homomorphisms are
comodule homomorphisms. Thus left 𝐶-comodules and comodule homomorphisms form
a category denoted by 𝐶 . Similarly 𝐶 denotes the category of right 𝐶-comodules and
comodule homomorphisms. Denote by 𝐶 f and by 𝐶

f the full subcategories of finite
dimensional comodules.

Moreover, the categories 𝐶 and 𝐶𝑐𝑜𝑝 are isomorphic, see [DNR01, Proposition
2.1.10]. Hence, any result about left comodules can be translated as a result about right
comodules over the cooposite coalgebra, and vice versa.

In order to simplify notation, we write Hom𝐶−(𝑀, 𝑁 ) ∶= Hom 𝐶 (𝑀, 𝑁 ) if 𝑀 and
𝑁 are left 𝐶-comodules and Hom−𝐶(𝑀, 𝑁 ) ∶= Hom𝐶 (𝑀, 𝑁 ) if 𝑀 and 𝑁 are right 𝐶-
comodules.

Similar to the Fundamental Isomorphism Theorem for Coalgebras 1.2.27, we have the
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Fundamental Isomorphism Theorem for Comodules:

Theorem 1.2.42. Let𝐶 be a coalgebra,𝑀,𝑁 be (right)𝐶-comodules, 𝐿 ⊆ 𝑀 be a subcomodule
and 𝜎 ∶ 𝑀 → 𝑁 be a comodule homomorphism. Then:

1. Im𝜎 and ker 𝜎 are subcomodules;

2. there exists a unique structure map of 𝑀
𝐿 making the canonical projection 𝑞 ∶ 𝑀 →

𝑀
𝐿

a comodule homomorphism;

3. if 𝐿 ⊆ ker 𝜎, then there exists a unique comodule homomorphism 𝜎 ∶
𝑀
𝐿

→ 𝑁
satisfying the following commutative diagram:

𝑀 𝑁

𝑀
𝐿

𝜎

𝑞 𝜎 (1.2.43)

Proof. See [Swe69, Theorem 2.0.1].

In particular, the canonical projection 𝑞′ ∶ 𝑁 →
𝑁

Im𝜎
is a cokernel of 𝜎, which leads

to the unique isomorphism
𝑀

ker 𝜎
≅ Im𝜎 as in the commutative diagram (1.1.9), see also

[DNR01, Theorem 2.1.17]. With some other checks, we get the following:

Proposition 1.2.44. Let 𝐶 be a coalgebra. The category of (right) 𝐶-comodules 𝐶 is
abelian.

Proof. See [DNR01, Corollary 2.1.19].

Since 𝐶 is abelian, the second isomorphism theorem applies to comodules, i.e.

Lemma 1.2.45. Let 𝐶 be a coalgebra, 𝐿 be a (right) 𝐶-comodule and 𝑀 and 𝑁 be subcomod-

ules. Then
𝑁

𝑀 ∩ 𝑁
≅
𝑀 + 𝑁
𝑀

.

Proof. First observe that 𝑀 + 𝑁 and 𝑀 ∩ 𝑁 are subcomodules of 𝐿 (see Example 1.2.37).
Moreover, the canonical inclusion 𝜄 ∶ 𝑁 → 𝑀 +𝑁 composed with the canonical projection

𝑞 ∶ 𝑀 +𝑁 →
𝑀 + 𝑁
𝑀

is a surjection coalgebra homomorphism. Hence, taking 𝑓 = 𝑞𝜄 gives:

ker 𝑓 = 𝑀 ∩ 𝑁 , coker 𝑓 = 0, coker c =
𝑁

𝑀 ∩ 𝑁
and ker k =

𝑀 + 𝑁
𝑀

, so the isomorphism

follows from 𝐶 being abelian (see 1.1.9 and Definition 1.1.10).

If 𝐶 and 𝐷 are coalgebras and 𝜌 ∶ 𝐶 → 𝐷 is a colalgebra homomorphism, then not
only 𝐶 and 𝐷 are (right) 𝐷-comodules (see 1.2.37), but also 𝜌 ∶ 𝐶 → 𝐷 is a comodule ho-
momorphism. Applying the Fundamental Isomorphism Theorem for Comodules, Theorem
1.2.42, we have the following:
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Lemma 1.2.46. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be a coalgebra homomorphism.
If 𝜌 is filtered, then, for each 𝑛 ∈ N, there exists a unique comodule homomorphism such that
the following diagram

𝐶 𝐷

𝐶
𝐶𝑛

𝐷
𝐷𝑛

𝜌

𝑞 𝑞′

𝜌

(1.2.47)

commute, where 𝑞 and 𝑞′ are the canonical projections.

Proof. If 𝜌 is filtered, then

𝜌(𝐶𝑛) ⊆ 𝐷𝑛 = ker 𝑞′ ⟹ 𝐶𝑛 ⊆ ker(𝑞′𝜌).

The result follows by the Fundamental Isomorphism Theorem for Comodules, Theorem
1.2.42.

The next example shows that not every coalgebra homomorphism is a comodule
homomorphism.

Example 1.2.48. Consider the matrix coalgebra 𝑀𝐶(𝑛, 𝑘), with basis {𝑒𝑖,𝑗 | 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛} as
in Example 1.2.3, and the upper triangular matrix coalgebra 𝑈 𝐶(𝑛, 𝑘), with basis {𝑓𝑖,𝑗 | 1 ⩽
𝑖, 𝑗 ⩽ 𝑛, 𝑖 ⩽ 𝑗} as in Example 1.2.6.

The map 𝜌 ∶ 𝑀𝐶(𝑛, 𝑘) → 𝑈 𝐶(𝑛, 𝑘) given by

𝜌(𝑒𝑖,𝑗) =

{
𝑓𝑖,𝑗 if 𝑖 ⩽ 𝑗
0 otherwise

is a coalgebra homomorphism, which is a surjection. In particular, the upper triangular
matrix coalgebra 𝑈 𝐶(𝑛, 𝑘) is isomorphic to a quotient of the triangular matrix coalgebra
𝑀𝐶(𝑛, 𝑘).

We have 𝑀𝐶(𝑛, 𝑘)0 = 𝑀𝐶(𝑛, 𝑘), but 𝑈 𝐶(𝑛, 𝑘)0 is generated by the elements of the main
diagonal. Hence, the only possible map from 𝑀𝐶(𝑛,𝑘)

𝑀𝐶(𝑛,𝑘)0
= 0 to 𝑈𝐶(𝑛,𝑘)

𝑈𝐶(𝑛,𝑘)0
would be the zero map,

while 𝑞′𝜌(𝑒1,2) = [𝑓1,2] ≠ 0.

With some restriction on the coalgebra, the comodules have even more structure.

Theorem 1.2.49. Let 𝐶 be a cosemisimple coalgebra and 𝑀 a right (left) 𝐶-comodule. Then,
𝑀 is injective and projective in the category 𝐶 (resp. 𝐶 ).

Proof. See [DNR01, Theorem 3.1.5].

For instance, if𝑁 ⊆ 𝑀 is a subcomodule of𝑀 and 𝜄 ∶ 𝑁 → 𝑀 is the canonical inclusion,
then, injectivity of 𝑁 implies that there exists a comodule projection 𝜋 ∶ 𝑀 → 𝑁 such
that 𝜋𝜄 = id𝑁 . Moreover, any subcomodule of 𝑀 has a comodule complement in 𝑀 .
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Next, we state the Fundamental Theorem of Coalgebras and Comodules, which motivates
the study of dualized theorems for finite dimensional algebras in a more general settings
for coalgebras.

Theorem 1.2.50. Let 𝐶 be a coalgebra and 𝑀 a (left) 𝐶-comodule. Let 𝑋 ⊆ 𝐶 and 𝑌 ⊆ 𝑀 be
finite subsets. Then, there exists a finite dimensional subcoalgebra 𝐷 ⊆ 𝐶 containing 𝑋 and
there exists a finite dimensional subcomodule 𝑁 ⊆ 𝑀 containing 𝑌 .

Proof. The book [Swe69, Theorem 2.2.1] deals with the case for coalgebras. For a complete
proof of this theorem, see for instance [DNR01, Theorem 1.4.7 and Theorem 2.1.7], [Mon93,
Theorem 5.1.1.2] or [Rad11, Theorem 2.2.3 and Theorem 3.2.8].

Corollary 1.2.51. Any simple coalgebra and any simple comodule are finite dimensional.

Hence, every basic coalgebra (see Definition 1.2.18) over an algebraically closed field is
pointed, since its simple subcoalgebras are finite dimensional by the corollary, and the
only finite dimensional division algebras over an algebraically closed field 𝑘 is 𝑘 itself, e.g.
[Coh03, Proposition 5.4.5].

1.2.5 Bicomodules
Definition 1.2.52. Let 𝐶 and 𝐷 be coalgebras. A 𝐶-𝐷-bicomodule 𝑀 = (𝑀, 𝜇𝑀 , 𝜈𝑀) is a left
𝐶-comodule with structure map 𝜇𝑀 ∶ 𝑀 → 𝐶 ⊗𝑀 and a right 𝐷-comodule with structure
map 𝜈𝑀 ∶ 𝑀 → 𝑀 ⊗ 𝐷 satisfying the following commutative diagram.

𝑀 𝑀 ⊗ 𝐷

𝐶 ⊗𝑀 𝐶 ⊗𝑀 ⊗ 𝐷

𝜈𝑀

𝜇𝑀 𝜇𝑀⊗id𝐷

id𝐶⊗𝜈𝑀

(1.2.53)

If 𝑀 is a 𝐶-𝐶-bicomodule, we say that 𝑀 is a 𝐶-bicomodule.

A subspace 𝑁 ⊆ 𝑀 is a subbicomodule of 𝑀 if 𝑁 is a subcomodule of (𝑀, 𝜇𝑀) and a
subcomodule of (𝑀, 𝜈𝑀).

Remark 1.2.54. Every coalgebra is a bicomodule over itself via comultiplication, and if
𝜌 ∶ 𝐶 → 𝐷 is a coalgebra homomorphism, then 𝐶 is a 𝐷-bicomodule with structure maps
𝜇 = (𝜌 ⊗ id𝐶)𝛥𝐶 and 𝜈 = (id𝐶 ⊗ 𝜌)𝛥𝐶 (see Examples 1.2.37). In this case we say that 𝐶 is a
𝐷-bicomodule via 𝜌.

Definition 1.2.55. Let 𝑀 and 𝑁 be 𝐶-𝐷-bicomodules. A bicomodule homomorphism
from 𝑀 to 𝑁 is a linear map 𝜎 ∶ 𝑀 → 𝑁 which is a comodule homomorphism of left
𝐶-comodules and a comodule homomorphism of right 𝐷-comodules.

Denote by 𝐶 𝐷 the category of all 𝐶-𝐷-bicomodules and bicomodule homomorphism.
We write Hom𝐶-𝐷(𝑀, 𝑁 ) ∶= Hom 𝐶 𝐷(𝑀, 𝑁 ) if 𝑀 and 𝑁 are 𝐶-𝐷-bicomodules.

In analogy with [Rot09, Corollary 2.61], we have the following:
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Lemma 1.2.56. Let 𝐶 and 𝐷 be coalgebras. The category 𝐶 𝐷 is isomorphic to the category
𝐶𝑐𝑜𝑝⊗𝐷.

Proof. Suppose 𝑀 is a 𝐶-𝐷-bicomodule with structure maps 𝜇 and 𝜈. We prove that 𝑀 is a
right 𝐶𝑐𝑜𝑝 ⊗ 𝐷-comodule with structure map 𝜈′ = (𝑇𝜇 ⊗ id𝐷)𝜈, where 𝑇 ∶ 𝐶 → 𝐶 is the
twist map, see Definition 1.2.1, and the comultiplication and counit of 𝐶𝑐𝑜𝑝 ⊗ 𝐷 are given
by:

𝛥′ = (id𝐶 ⊗ 𝑇 ⊗ id𝐷)(𝑇𝛥𝐶 ⊗ 𝛥𝐷), 𝜀′ = 𝜀𝐶 ⊗ 𝜀𝐷, (1.2.57)

see (1.2.10). Observe that:

(id⊗ 𝑇 )(𝑇 ⊗ id)(𝑎 ⊗ 𝑏 ⊗ 𝑐) = (𝑏 ⊗ 𝑐 ⊗ 𝑎) ⟹ (id⊗ 𝑇 )(𝑇 ⊗ id)(id⊗ 𝜈) = (𝜈 ⊗ id)𝑇 (1.2.58)

Thus

(id ⊗ 𝛥′)𝜈′ = (id ⊗ (id𝐶 ⊗ 𝑇 ⊗ id𝐷)(𝑇𝛥𝐶 ⊗ 𝛥𝐷))(𝑇 𝜇 ⊗ id𝐷)𝜈

=(id ⊗ (id𝐶 ⊗ 𝑇 ⊗ id𝐷))((id ⊗ 𝑇𝛥𝐶)𝑇 𝜇 ⊗ id𝐷 ⊗ id𝐷)(id ⊗ 𝛥𝐷)𝜈 (1.2.59)

=(id ⊗ (id𝐶 ⊗ 𝑇 ⊗ id𝐷))((𝑇 𝜇 ⊗ id𝐶)𝑇 𝜇 ⊗ id𝐷 ⊗ id𝐷)(𝜈 ⊗ id𝐷)𝜈 (1.2.60)

=((𝑇𝜇 ⊗ id𝐷) ⊗ id𝐶 ⊗ id𝐷)((id ⊗ 𝑇 )(𝑇 ⊗ id𝐷) ⊗ id𝐷)((𝜇 ⊗ id𝐷)𝜈 ⊗ id𝐷)𝜈
(1.2.61)

=((𝑇𝜇 ⊗ id𝐷) ⊗ id𝐶 ⊗ id𝐷)((id ⊗ 𝑇 )(𝑇 ⊗ id𝐷) ⊗ id𝐷)((id𝐶 ⊗ 𝜈)𝜇 ⊗ id𝐷)𝜈
(1.2.62)

=((𝑇𝜇 ⊗ id𝐷)𝜈 ⊗ id𝐶 ⊗ id𝐷)(𝑇 𝜇 ⊗ id𝐷)𝜈 (1.2.63)

=(𝜈′ ⊗ id𝐶 ⊗ id𝐷)𝜈′ = (𝜈′ ⊗ id′)𝜈′,

where (1.2.59) and (1.2.61) are simple rearrangements (using associativity), (1.2.60) is
the structure of right comodules (see (1.2.36). See also Example 1.2.37 for the right 𝐶𝑐𝑜𝑝-
comodule structure map), (1.2.62) is the structure of bicomodules (see (1.2.53)), and (1.2.63)
follows from (1.2.58). Moreover,

(id ⊗ 𝜀′)𝜈′ = (id ⊗ 𝜀𝐶 ⊗ 𝜀𝐷)(𝑇 𝜇 ⊗ id𝐷)𝜈 = ((id ⊗ 𝜀𝐶)𝑇 𝜇 ⊗ 𝜀𝐷)𝜈 ≅ (id ⊗ 𝜀𝐷)𝜈 ≅ id.

Hence 𝑀 is a right 𝐶𝑐𝑜𝑝 ⊗ 𝐷-comodule. If 𝜎 ∶ 𝑀 → 𝑁 is any bicomodule homomorphism,
then:

(𝜎 ⊗ id′)𝜈′𝑀 = (𝜎 ⊗ id𝐶 ⊗ id𝐷)(𝑇 𝜇𝑀 ⊗ id𝐷)𝜈𝑀
= ((𝜎 ⊗ id𝐶)𝑇 𝜇𝑀 ⊗ id𝐷)𝜈𝑀
= (𝑇𝜇𝑁𝜎 ⊗ id𝐷)𝜈𝑀
= (𝑇𝜇𝑁 ⊗ id𝐷)𝜈𝑁𝜎 = 𝜈′𝑁𝜎,

shows that 𝜎 is a comodule homomorphism of right 𝐶𝑐𝑜𝑝 ⊗ 𝐷-comodules.

Combining the above Lemma and Proposition 1.2.44, we have

Corollary 1.2.64. Let 𝐶 and 𝐷 be coalgebras. The category of 𝐶-𝐷-bicomodules 𝐶 𝐷 is
abelian.
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1.2.6 Cotensor coalgebra
Definition 1.2.65. Let 𝐶 be a coalgebra, 𝑀 be a right 𝐶-comodule and 𝑁 be a left 𝐶-
comodule. The cotensor product of 𝑀 and 𝑁 over 𝐶 is given by:

𝑀 □𝐶 𝑁 ∶= ker(𝜈𝑀 ⊗ id𝐶 − id𝐶 ⊗ 𝜇𝑁 ∶ 𝑀 ⊗ 𝑁 → 𝑀 ⊗ 𝐶 ⊗ 𝑁). (1.2.66)

In the case 𝐶 = 𝑘, □𝑘 = ⊗.

Definition 1.2.67. Let 𝐶 be a coalgebra and {𝐶(𝑖)}𝑖∈N be a family of vector subspaces of 𝐶
such that:

𝐶 = ⨁
𝑖∈N

𝐶(𝑖), 𝜀𝐶(𝐶(𝑛)) = 0 for 𝑛 ≠ 0, 𝛥𝐶(𝐶(𝑛)) ⊆
𝑛

∑
𝑖=0

𝐶(𝑖) ⊗ 𝐶(𝑛−𝑖). (1.2.68)

Then, 𝐶 is a graded coalgebra.

Example 1.2.69. The divided power coalgebra 𝑋 is the vector space with basis {𝑥𝑛 | 𝑛 ∈ N}
and comultiplication and counit given by:

𝛥(𝑥𝑛) =
𝑛

∑
𝑖=0

𝑥 𝑖 ⊗ 𝑥𝑛−𝑖, 𝜀(𝑥𝑛) = 𝛿0,𝑛. (1.2.70)

𝑋 is a graded coalgebra.

Remark 1.2.71. The above definition is a special case of group-graded coalgebras, see [NT93].

Definition 1.2.72. Let 𝐶 be a coalgebra and 𝑀 be a 𝐶-bicomodule. The cotensor coalgebra
of 𝐶 and 𝑀 is the graded coalgebra:

Cot𝐶(𝑀) ∶= ⨁
𝑖∈N

𝑀 □𝑖 , (1.2.73)

defined inductively by 𝑀 □0 ∶= 𝐶 and 𝑀 □𝑖 ∶= 𝑀 □𝑖−1 □𝐶𝑀 , endowed with comultiplication
and counit as follows: 𝛥|𝐶 = 𝛥𝐶 , 𝜀|𝐶 = 𝜀𝐶 and for any element 𝑚𝑛 ⊗⋯ ⊗ 𝑚1 ∈ 𝑀 □𝑛 , with
𝑛 ⩾ 1,

𝛥(𝑚𝑛 ⊗⋯ ⊗ 𝑚1) = 𝜇𝑀(𝑚𝑛) ⊗ (𝑚𝑛−1 ⊗⋯ ⊗ 𝑚1) + (𝑚𝑛 ⊗⋯ ⊗ 𝑚2) ⊗ 𝜈𝑀(𝑚1)

+
𝑛−1

∑
𝑖=1

(𝑚𝑛 ⊗⋯ ⊗ 𝑚𝑖+1) ⊗ (𝑚𝑖 ⊗⋯ ⊗ 𝑚1),

and 𝜀(𝑚𝑛 ⊗⋯ ⊗ 𝑚1) = 0.

Observe that 𝐼 = ⨁𝑖⩾1𝑀 □𝑖 is a coideal of Cot𝐶(𝑀) such that the quotient coalgebra
Cot𝐶(𝑀)

𝐼
≅ 𝐶. Hence, the canonical projection 𝜋0 ∶ Cot𝐶(𝑀) → 𝐶 is a coalgebra homo-

morphism and, consequently, Cot𝐶(𝑀) is a 𝐶-bicomodule. One can readily check that the
canonical projection 𝜋1 ∶ Cot𝐶(𝑀) → 𝑀 is a 𝐶-bicomodule homomorphism. The next
theorem is the Universal Property of Cotensor Coalgebras:

Theorem 1.2.74. Let 𝐶 and 𝐷 be coalgebras, and 𝑀 be a 𝐶-bicomodule. Given a coalgebra



1.3 | POINTED COALGEBRAS

25

homomorphism 𝜌0 ∶ 𝐷 → 𝐶, and a homomorphism of 𝐶-bicomodules 𝜌1 ∶ 𝐷 → 𝑀 such
that 𝜌1(𝐷0) = 0, then there exists a unique coalgebra homomorphism 𝜌 ∶ 𝐷 → Cot𝐶(𝑀)
satisfying the following commutative diagrams:

Cot𝐶(𝑀)

𝐷 𝐶

𝜋0
𝜌

𝜌0

Cot𝐶(𝑀)

𝐷 𝑀

𝜋1
𝜌

𝜌1

(1.2.75)

where 𝜋0 and 𝜋1 are the canonical projections of Cot𝐶(𝑀).

Proof. See [Nic78, Proposition 1.4.2].

Remark 1.2.76. For any coalgebra homomorphism 𝜌 ∶ 𝐷 → Cot𝐶(𝑀), the universal
property of cotensor coalgebras gives 𝜌 = 𝜋0𝜌 +∑

𝑖⩾1
(𝜋1𝜌)⊗𝑖𝛥𝑖−1.

Definition 1.2.77. A graded coalgebra 𝐶 = ⨁
𝑖∈N

𝐶(𝑖) is coradically graded if 𝐶𝑛 = ⨁
𝑖⩽𝑛

𝐶(𝑖),

see [Abe80, §2.4.1] and [CM96, Lemma 2.2].

Proposition 1.2.78. Let 𝐶 be a cosemisimple coalgebra and 𝑀 be a 𝐶-bicomodule, then
Cot𝐶(𝑀) = ⨁∞

𝑖=0𝑀 □𝑖 is coradically graded.

Proof. See [Woo97, Lemma 4.4].

The divided power coalgebra 𝑋 (see Example 1.2.69) is the cotensor coalgebra of
𝐶 = ⟨𝑥0⟩𝑘 and 𝑀 = ⟨𝑥1⟩𝑘, which is coradically graded.

1.3 Pointed coalgebras
The importance of studying finite dimensional basic algebras is due to the Morita

Theory, which concludes that for any finite dimensional algebra 𝐴, there exists a unique,
up to isomorphism, finite dimensional basic algebra 𝐵 such that 𝐴 ≡ 𝐵 , see e.g. [Ben91,
§2.2].

Definition 1.3.1. Let 𝐴 and 𝐵 be algebras. We say that 𝐴 is Morita equivalent to 𝐵 if their
categories of modules are equivalent.

Takeuchi has dualized these results for coalgebras and Chin and Montgomery proved
that, for any coalgebra 𝐶, there exists a basic coalgebra 𝐷 associated to 𝐶 such that
𝐶 ≡ 𝐷 , see [CM97, §1 and §2].

Definition 1.3.2. Let 𝐶 and 𝐷 be coalgebras. We say that 𝐶 is Morita-Takeuchi equivalent
to 𝐷 in case that their categories of comodules are equivalent.

Since every pointed coalgebra is basic and every basic coalgebra over an algebraically
closed field is pointed, pointed coalgebras form an important class of coalgebras and it is
the subject of this section.
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Recall that a coalgebra is pointed if every simple subcoalgebra is one dimensional (see
Definition 1.2.1). Denote by PCog the full subcategory of Cog consisting of all pointed
coalgebras. It is important to note that any coalgebra 𝐶 ∈ PCog has separable coradical
(cf. Definition 1.2.18) and any coalgebra homomorphism 𝜌 ∈ HomPCog(𝐶, 𝐷) is filtered (cf.
Theorem 1.2.30).

1.3.1 Group-like elements
Definition 1.3.3. Let 𝐶 be a coalgebra. An element 𝑔 ∈ 𝐶 is a group-like element if satisfies:

𝛥𝐶(𝑔) = 𝑔 ⊗ 𝑔, 𝜀𝐶(𝑔) = 1. (1.3.4)

Denote by G(𝐶) ∶= {𝑔 ∈ 𝐶 | 𝛥(𝑔) = 𝑔 ⊗ 𝑔, 𝜀(𝑔) = 1} the set of all group-like elements
of 𝐶.

For any set 𝑆, the group-like coalgebra on 𝑆, denoted by 𝑘𝑆, is the vector space with
basis 𝑆 and maps given by:

𝛥(𝑠) = 𝑠 ⊗ 𝑠, 𝜀(𝑠) = 1,

extended linearly for all 𝑠 ∈ 𝑆. The coalgebra 𝑘G(𝐶) is the group-like subcoalgebra on 𝐶.

The condition 𝜀(𝑔) = 1 for a group-like element is equivalent to 𝑔 ≠ 0, by the counit
property (see 1.2.2). The group-like elements play an important role for pointed coalgebras
as we will see in the sequence.

Proposition 1.3.5. Let 𝐶 be a coalgebra. The elements of G(𝐶) are linearly independent in
𝐶.

Proof. See [Swe69, Proposition 3.2.1].

Proposition 1.3.6. Let 𝐶 be a coalgebra and 𝐷 ⊆ 𝐶 be a subcoalgebra. If dim𝐷 = 1, then
𝐷 = 𝑘{𝑔} for some 𝑔 ∈ G(𝐶).

Proof. See [Swe69, Lemma 8.0.1].

Consequently,

Remark 1.3.7. A coalgebra 𝐶 is pointed if and only if 𝐶0 = 𝑘𝐺(𝐶).

Lemma 1.3.8. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be a coalgebra homomorphism.
Then 𝜌(G(𝐶)) ⊆ G(𝐷).

Proof. Consider 𝑔 ∈ G(𝐶). Then,

𝛥𝐷(𝜌(𝑔)) = (𝜌 ⊗ 𝜌)𝛥𝐶(𝑔) = 𝜌(𝑔) ⊗ 𝜌(𝑔), 𝜀𝐷(𝜌(𝑔)) = 𝜀𝐶(𝑔) = 1 (1.3.9)

(see 1.2.21). Thus 𝜌(𝑔) ∈ G(𝐷).
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1.3.2 Primitive elements
Definition 1.3.10. Let 𝐶 be a coalgebra and 𝑔, ℎ ∈ G(𝐶) be group-like elements. An
element 𝑝 ∈ 𝐶 is a 𝑔, ℎ-primitive element if satisfies

𝛥𝐶(𝑝) = 𝑝 ⊗ 𝑔 + ℎ ⊗ 𝑝

Denote by P𝑔,ℎ(𝐶) ∶= {𝑝 ∈ 𝐶 | 𝛥(𝑝) = 𝑝 ⊗ 𝑔 + ℎ ⊗ 𝑝} the set of all 𝑔, ℎ-primitive
elements.

A 𝑔, ℎ-primitive element that does not belong to the group-like subcoalgebra 𝑘G(𝐶)
on 𝐶 is called skew primitive.

Note that if 𝑝 is a 𝑔, ℎ-primitive element of 𝐶, then 𝜀𝐶(𝑝) = 0, by the counit property
(see 1.2.2).

Observe that if 𝑔 and ℎ are group-like elements, then (ℎ − 𝑔) is a 𝑔, ℎ-primitive ele-
ment.

Lemma 1.3.11. Let 𝐶 be a coalgebra and 𝑔, ℎ, 𝑔 ′, ℎ′ ∈ G(𝐶) be group-like elements. Then,

𝑘G(𝐶) ∩ P𝑔,ℎ(𝐶) = 𝑘{ℎ − 𝑔} (1.3.12)

and

P𝑔,ℎ(𝐶) ∩ P𝑔′,ℎ′(𝐶) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

P𝑔,ℎ(𝐶) if 𝑔 ′ = 𝑔, ℎ′ = ℎ
𝑘{ℎ − 𝑔} if 𝑔 ′ = ℎ, ℎ′ = 𝑔
{0} otherwise

(1.3.13)

Proof. Consider 𝑝 ∈ 𝑘G(𝐶) ∩ P𝑔,ℎ(𝐶) and write 𝑝 = ∑𝑒∈G(𝐶) 𝜆𝑒𝑒, for some 𝜆𝑒 ∈ 𝑘. Then

( ∑
𝑒∈G(𝐶)

𝜆𝑒𝑒) ⊗ 𝑔 + ℎ ⊗ ( ∑
𝑒∈G(𝐶)

𝜆𝑒𝑒) = 𝛥( ∑
𝑒∈G(𝐶)

𝜆𝑒𝑒) = ∑
𝑒∈G(𝐶)

𝜆𝑒𝑒 ⊗ 𝑒,

implies
∑

𝑒∈G(𝐶)⧵{𝑔,ℎ}

𝜆𝑒(𝑒 ⊗ 𝑔 + ℎ ⊗ 𝑒 − 𝑒 ⊗ 𝑒) + (𝜆ℎ + 𝜆𝑔)ℎ ⊗ 𝑔 = 0.

Since {𝑒 ⊗ 𝑓 }𝑒,𝑓 ∈G(𝐶) is a linearly independent set in 𝐶 ⊗ 𝐶 (see Proposition 1.3.5), we
must have 𝜆𝑒 = 0 for 𝑒 ∈ G(𝐶) ⧵ {𝑔, ℎ}, and 𝜆ℎ = −𝜆𝑔 . This proves (1.3.12).

Consequently,

P𝑔,ℎ(𝐶) ∩ Pℎ,𝑔(𝐶) ∩ 𝑘G(𝐶) = 𝑘{ℎ − 𝑔}, P𝑔,ℎ(𝐶) ∩ P𝑔′,ℎ′(𝐶) ∩ 𝑘G(𝐶) = 0,

for any (𝑔 ′, ℎ′) ∉ {(𝑔, ℎ), (ℎ, 𝑔)}. We claim that if 𝑝 ∈ P𝑔,ℎ(𝐶) is a skew primitive, then
𝑝 ∉ P𝑔′,ℎ′ for any 𝑔 ′, ℎ′ ∈ G(𝐶) with 𝑔 ′ ≠ 𝑔 or ℎ′ ≠ ℎ.

Suppose not, i.e. let 𝑝 ∈ P𝑔,ℎ(𝐶) be a skew primitive and suppose that 𝑝 ∈ P𝑔′,ℎ′ for
some 𝑔 ≠ 𝑔 ′ ∈ G(𝐶) (the case ℎ′ ≠ ℎ is analogous). Then

0 = 𝛥(𝑝 − 𝑝) = 𝑝 ⊗ 𝑔 + ℎ ⊗ 𝑝 − 𝑝 ⊗ 𝑔 ′ − ℎ′ ⊗ 𝑝 = 𝑝 ⊗ (𝑔 − 𝑔 ′) + (ℎ − ℎ′) ⊗ 𝑝
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is a contradiction, since the set {(𝑔 − 𝑔 ′), 𝑝} is linearly independent in 𝐶. This completes
the proof.

Remark 1.3.14. Note that the linear maps

𝜇 ∶ P𝑔,ℎ(𝐶) G(𝐶) ⊗ P𝑔,ℎ(𝐶)
𝑝 ℎ ⊗ 𝑝

𝜈 ∶ P𝑔,ℎ(𝐶) P𝑔,ℎ(𝐶) ⊗ G(𝐶)
𝑝 𝑝 ⊗ 𝑔

(1.3.15)

make P𝑔,ℎ(𝐶) into a 𝑘G(𝐶)-bicomodule and 𝑘(ℎ − 𝑔) is a subbicomodule. Since 𝑘G(𝐶) is
a cosemisimple coalgebra, there exists a comodule complement for 𝑘{ℎ − 𝑔} in P𝑔,ℎ(𝐶),
i.e. P𝑔,ℎ(𝐶) = 𝑘{ℎ − 𝑔} ⊕ P′

𝑔,ℎ(𝐶) for some subbicomodule P′
𝑔,ℎ(𝐶) (see Theorem 1.2.49 and

comment thereafter). Furthermore, the structure maps of P𝑔,ℎ(𝐶) are compatible with the
structure maps of 𝑘G(𝐶) (which are given by comultiplication) when restricted to 𝑘{ℎ − 𝑔}.

Denote by:

P𝑔,ℎ(𝐶) ∶=
P𝑔,ℎ(𝐶)
𝑘{ℎ − 𝑔}

(1.3.16)

the unique 𝑘G(𝐶)-bicomodule such that the canonical projection 𝑞 ∶ P𝑔,ℎ(𝐶) →
P𝑔,ℎ(𝐶)
𝑘(ℎ − 𝑔)

is

a bicomodule homomorphism (see the Fundamental Isomorphism Theorem for Comodules,
Theorem 1.2.42), and write its elements as 𝑝 = 𝑝 + 𝑘(ℎ − 𝑔). It is immediately that
P𝑔,ℎ(𝐶) ≅ P′

𝑔,ℎ(𝐶), for any such complement.

Lemma 1.3.17. Let 𝐶 and 𝐷 be coalgebras and 𝜌 ∶ 𝐶 → 𝐷 be a coalgebra homomorphism.
Then 𝜌|P𝑔,ℎ(𝐶) ∶ P𝑔,ℎ(𝐶) → P𝜌(𝑔),𝜌(ℎ)(𝐷) is a homomorphism of 𝑘G(𝐷)-bicomodules for all
𝑔, ℎ ∈ G(𝐶). Moreover, if 𝜌 is an injection and 𝑝 is a skew primitive, then 𝜌(𝑝) is a skew
primitive.

Proof. Consider 𝑔, ℎ ∈ G(𝐶) and 𝑝 ∈ P𝑔,ℎ(𝐶). Then,

𝛥𝐷(𝜌(𝑝)) = (𝜌 ⊗ 𝜌)𝛥𝐶(𝑝) = 𝜌(𝑝) ⊗ 𝜌(𝑔) + 𝜌(ℎ) ⊗ 𝜌(𝑝) (1.3.18)

implies 𝜌(𝑝) ∈ P𝜌(𝑔),𝜌(ℎ)(𝐷), since 𝜌(𝑔), 𝜌(ℎ) ∈ G(𝐷) by Lemma 1.3.8. Hence, the map
𝜌|P𝑔,ℎ(𝐶) is well defined. Observe that P𝑔,ℎ(𝐶) is a 𝑘G(𝐷)-bicomodule via 𝜌 (see Example
1.2.37). Thus

(id𝐷 ⊗ 𝜌)𝜇(𝑝) = (id𝐷 ⊗ 𝜌)(𝜌 ⊗ idP𝑔,ℎ(𝐶))𝜇P𝑔,ℎ(𝐶)(𝑝) = 𝜌(ℎ) ⊗ 𝜌(𝑝) = 𝜇P𝜌(𝑔),𝜌(ℎ)(𝐷)𝜌(𝑝) (1.3.19)

(and the analogous equation for the right 𝐷-comodules) show that 𝜌|P𝑔,ℎ(𝐶) is a bicomodule
homomorphism.

Now, consider 𝜌 an injection and 𝑝 a skew primitive. If 𝜌(𝑝) ∈ 𝑘(𝜌(ℎ) − 𝜌(𝑔)), then
𝜌(𝑝) = 𝜆(𝜌(ℎ) − 𝜌(𝑔)) for some 𝜆 ∈ 𝑘, and

𝜌(𝜆(ℎ − 𝑔)) = 𝜆(𝜌(ℎ) − 𝜌(𝑔)) = 𝜌(𝑝),

which contradicts the injectivity of 𝜌. Therefore, the image of skew primitive elements by
injective coalgebra homomorphisms are skew primitive.
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1.3.3 The structure of pointed coalgebras
The next results describe some structure of pointed coalgebras based on their coradical

filtration. The description of 𝐶1 is known as Taft-Wilson Theorem.

Proposition 1.3.20. Let 𝐶 be a pointed coalgebra. Then

1.
𝐶1 = 𝐶0 ⊕ ( ⨁

𝑔,ℎ∈G(𝐶)

P′
𝑔,ℎ(𝐶)), (1.3.21)

where P′
𝑔,ℎ(𝐶) is any comodule complement of 𝑘{ℎ − 𝑔} in P𝑔,ℎ(𝐶);

2. for any 𝑛 ⩾ 1 and 𝑐 ∈ 𝐶𝑛,

𝑐 = ∑
𝑔,ℎ∈G(𝐶)

𝑐𝑔,ℎ, where 𝛥(𝑐𝑔,ℎ) = 𝑐𝑔,ℎ ⊗ 𝑔 + ℎ ⊗ 𝑐𝑔,ℎ + 𝜔𝑔,ℎ (1.3.22)

for some 𝜔𝑔,ℎ ∈ 𝐶𝑛−1 ⊗ 𝐶𝑛−1.

Proof. See [TW74, Proposition 1 and Proposition 2]. See also [Mon93, Theorem 5.4.1].

Note that any coalgebra 𝐶 with separable coradical is a 𝐶0-bicomodule with structure
maps given via a coalgebra projection 𝜋0 ∶ 𝐶 → 𝐶0 (see Theorem 1.2.29 and Remark 1.2.54)
and, consequently, the subcoalgebra 𝐶1 is a subbicomodule. In the case that 𝐶 is pointed,
the subcoalgebra 𝐶1, in view of Proposition 1.3.20, has the structure maps given by:

𝜇 = 𝛥𝐶0 + ∑
𝑔,ℎ∈G(𝐶)

𝜇P𝑔,ℎ(𝐶), 𝜈 = 𝛥𝐶0 + ∑
𝑔,ℎ∈G(𝐶)

𝜈P𝑔,ℎ(𝐶) (1.3.23)

where 𝜇P𝑔,ℎ(𝐶) and 𝜈P𝑔,ℎ(𝐶) are the structure maps of the complements P′
𝑔,ℎ(𝐶) (see Remark

1.3.14 and also Example 1.2.37 for the direct sum of (bi)comodules). Moreover,

𝐶1

𝐶0
= ∑

𝑔,ℎ∈G(𝐶)

P𝑔,ℎ(𝐶) + 𝐶0

𝐶0
≅ ∑

𝑔,ℎ∈G(𝐶)

P𝑔,ℎ(𝐶)
𝐶0 ∩ P𝑔,ℎ(𝐶)

= ⨁
𝑔,ℎ∈G(𝐶)

P𝑔,ℎ(𝐶).

(see Lemma 1.2.45 for the “second isomorphism theorem” and Lemma 1.3.11 for the last term

being a direct sum). Thus, the quotient
𝐶1

𝐶0
has canonical structure maps of 𝐶0-bicomodules

given by the quotient sets of primitive elements P𝑔,ℎ.

1.4 Pseudocompact algebras and modules
In Section 1.2.1, we have seen that each coalgebra 𝐶 corresponds to an algebra, the dual

algebra 𝐶∗ of 𝐶. In this section we present the category of pseudocompact algebras and
show that the dual algebra of a coalgebra is always a pseudocompact algebra. Moreover,
each pseudocompact algebra corresponds to a coalgebra and the functor (−)∗ ∶ Cog → Alg
is a duality of categories, where Alg is the category of all pseudocompact algebras and
continuous algebra homomorphisms.
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Remark 1.4.1. Denote by ALG the category of all algebras and algebra homomorphisms.
Given any algebra 𝐴 ∈ ALG, the finite dual coalgebra of 𝐴 has the vector space:

𝐴◦ = {𝑓 ∈ 𝐴∗ | ker 𝑓 contains a cofinite ideal of 𝐴}, (1.4.2)

see [Swe69, Proposition 6.0.2]. Furthermore, the functors (−)◦ ∶ ALG → Cog and
(−)∗ ∶ Cog → ALG are adjoint on the right, i.e. HomALG(𝐴, 𝐶∗) ≅ HomCog(𝐶, 𝐴◦) (see
Definition 1.1.20), see [Swe69, Theorem 6.0.5]. Although this level of generality is very
interesting and has many applications, we will rather use the duality between coalgebras
and pseudocompact algebras in order to avoid some problems with this adjunction as, for
instance, the finite dual coalgebra of any infinite dimensional simple algebra is zero, see
[DNR01, Remark 1.5.7] or the Remark right after [Swe69, Proposition 6.0.2].

When dealing with pseudocompact algebras, we treat the field 𝑘 as a discrete topological
ring. For a general introduction to topological rings, topological vector spaces, topological
algebras and topological modules, see Appendix A.

1.4.1 Basic definitions
Definition 1.4.3. A pseudocompact algebra 𝐴 is the inverse limit of finite dimensional
algebras {𝐴𝑖}𝑖∈𝐼 , treated as discrete topological algebras, 𝐴 = lim←−− 𝑖∈𝐼𝐴𝑖.

Denote by Alg the category of all pseudocompact algebras and continuous algebra
homomorphisms.

For more information about inverse (and direct) limits see, for instance, [RZ10,
§1].

The inverse limit inherits a topology, which is complete (like any inverse limit of topo-
logical sets) and Hausdorff (since it is the inverse limit of discrete topological sets).

Remark 1.4.4. More often, a pseudocompact algebra is presented by the equivalent defi-
nition of a complete Hausdorff topological algebra possessing a fundamental system of
neighborhoods of 0 consisting of (two sided) ideals with finite codimension that intersect
in 0, see, for instance, [Bru66].

In particular, every finite dimensional algebra is a pseudocompact algebra and the
category of all finite dimensional algebras and algebra homomorphisms, alg, is a full
subcategory of Alg.

Definition 1.4.5. Let 𝐴 be a pseudocompact algebra. A (left) pseudocompact 𝐴-module is
the inverse limit of discrete finite dimensional (left) 𝐴-modules {𝑈𝑖}𝑖∈𝐼 , 𝑈 = lim←−− 𝑖∈𝐼𝑈𝑖.

Let 𝐴 and 𝐵 be pseudocompact algebras. A pseudocompact 𝐴-𝐵-bimodule is an 𝐴-𝐵-
bimodule which is a left pseudocompact 𝐴-module and a right pseudocompact 𝐵-module.

Denote by 𝐴 the category of all left pseudocompact 𝐴-modules and continuous
module homomorphisms, by 𝐵 the category of all right pseudocompact 𝐵-modules
and continuous module homomorphisms and by 𝐴 𝐵 the category of all pseudocompact
𝐴-𝐵-bimodules and continuous bimodule homomorphisms. Denote by f

𝐴 and by f
𝐵

the full subcategories of finite dimensional modules.
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Definition 1.4.6. A (left) pseudocompact 𝐴-module is simple if there is no nonzero proper
closed submodule. A pseudocompact algebra 𝐴 is simple if it is simple as a pseudocompact
𝐴-bimodule, or, equivalently, it has no nonzero proper (two sided) closed ideal.

It follows that every simple pseudocompact 𝐴-module (and simple pseucompact alge-
bra) is finite dimensional.

1.4.2 Duality theorems

Since every finitely generated coalgebra is finite dimensional by the Fundamental
Theorem of Coalgebras, Theorem 1.2.50, any coalgebra can be realized as the direct limit
of its finite dimensional subcoalgebras, as follows: let 𝐶 be a coalgebra and consider the
family {𝐶(𝑖)}𝑖∈𝑃 of all finite dimensional subcoalgebras of 𝐶 indexed by the directed poset
𝑃 with partial order given by 𝑖 ⩽ 𝑗 whenever 𝐶(𝑖) ⊆ 𝐶(𝑗) (𝑃 is indeed directed since, for
any 𝑖, 𝑗 ∈ 𝑃 , we take 𝑙 ∈ 𝑃 such that 𝐶(𝑙) = 𝐶(𝑖) + 𝐶(𝑗)), which, together with the canonical
inclusions 𝜄𝑖,𝑗 ∶ 𝐶(𝑖) → 𝐶(𝑗) for 𝑖, 𝑗 ∈ 𝑃 with 𝑖 ⩽ 𝑗 , form a direct system.

𝐶(𝑙)

𝐶(𝑖) 𝐶(𝑗)𝜄𝑖,𝑗

𝜄𝑖,𝑙 𝜄𝑗 ,𝑙 (1.4.7)

Then, it admits a direct limit, i.e. a coalgebra lim−−→𝐶(𝑖) and coalgebra maps 𝜄𝑖 ∶ 𝐶(𝑖) →
lim−−→𝐶(𝑖) such that 𝜄𝑖 = 𝜄𝑗 𝜄𝑖,𝑗 for 𝑖 ⩽ 𝑗 and, whenever 𝐷 is another coalgebra with coalgebra
homomorphisms 𝜌𝑖 ∶ 𝐶(𝑖) → 𝐷 satisfying 𝜌𝑖 = 𝜌𝑗 𝜄𝑖,𝑗 then there exist a unique coalgebra
homomorphism 𝜌 ∶ lim−−→𝐶(𝑖) → 𝐷 satisfying the commutative diagram:

𝐷

lim−−→𝐶(𝑖)

𝐶(𝑗) 𝐶(𝑙)

𝜌

𝜄𝑗 ,𝑙

𝜄𝑗

𝜌𝑗

𝜄𝑙

𝜌𝑙
(1.4.8)

Observe that the coalgebra 𝐶 satisfies the universal property above, since we can define
𝜌 ∶ 𝐶 → 𝐷 as 𝜌(𝑐) = 𝜌𝑖(𝑐) whenever 𝑐 ∈ 𝐶(𝑖) (such 𝐶(𝑖) always exists since the subcoalgebra
generated by 𝑐 is finite dimensional), and the direct system (1.4.7) guarantees that it is well
defined. Thus 𝐶 ≅ lim−−→𝐶(𝑖).

The dual algebra of a finite dimensional coalgebra is finite dimensional and the map
𝜄∗𝑖,𝑗 ∶ 𝐶∗

(𝑗) → 𝐶∗
(𝑖), given by 𝜄∗𝑖,𝑗(𝑓 )(𝑐) = 𝑓 (𝜄𝑖,𝑗(𝑐)) = 𝑓 |𝐶(𝑖) is the canonical projection. Hence,
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applying (−)∗ to the direct limit (1.4.8) we obtain an inverse limit

𝐷∗

lim←−−𝐶
∗
(𝑖)

𝐶∗
(𝑗) 𝐶∗

(𝑙)

𝜌∗

𝜌∗𝑗 𝜌∗𝑙

𝜄∗𝑗 𝜄∗𝑙

𝜄∗𝑗,𝑙

(1.4.9)

Thus
𝐶∗ ≅ (lim−−→𝐶(𝑖))

∗
≅ lim←−−𝐶

∗
(𝑖)

is a pseudocompact algebra with an open base of neighborhoods of zero given by the
kernels of 𝜄∗𝑖 , which are ideals with finite codimension.

Example 1.4.10. Let 𝑋 be the divided power coalgebra, see Example 1.2.69. It is clear
that each term 𝑋𝑖 of the coradical filtration of 𝑋 is a finite dimensional subcoalgebra and

𝑋 = lim−−→𝑋𝑖. The dual algebra of 𝑋𝑖, 𝑋 ∗
𝑖 , is isomorphic to the quotient algebra

𝑘[𝑥]
⟨𝑥 𝑖+1⟩

of the

polynomial algebra 𝑘[𝑥] over the ideal generated by 𝑥 𝑖+1. Hence, the dual algebra 𝑋 ∗ is

the inverse limit lim←−−
𝑘[𝑥]
⟨𝑥 𝑖+1⟩

, which is precisely the power series algebra 𝑘[[𝑥]].

On the other hand, if we start with a pseudocompact algebra and apply (−)∗, we obtain
a coalgebra. We must first define the dual coalgebra of a finite dimensional algebra.

For any finite dimensional vector space 𝑉 , the linear injection

𝜃 ∶ 𝑉 ∗ ⊗ 𝑉 ∗ → (𝑉 ⊗ 𝑉 )∗, (1.4.11)

given by 𝜃(𝑓 × 𝑔)(𝑢 × 𝑣) = 𝑓 (𝑢)𝑔(𝑣) is actually an isomorphism.

Hence, given any finite dimensional algebra 𝐴, its dual space 𝐴∗ = Hom𝑘(𝐴, 𝑘) inherits
a coalgebra structure with comultiplication 𝛥 = 𝜃−1m∗ ∶ 𝐴∗ → 𝐴∗ ⊗ 𝐴∗ and counit
𝜀 = 𝜂∗ ∶ 𝐴∗ → 𝑘, where m ∶ 𝐴 ⊗ 𝐴 → 𝐴 and 𝜂 ∶ 𝑘 → 𝐴 is the multiplication and unit of
𝐴, respectively.

Explicitly, for any 𝑓 ∈ 𝐴∗ and 𝑎, 𝑏 ∈ 𝐴,

𝜃𝛥(𝑓 )(𝑎 ⊗ 𝑏) = 𝑓 (m(𝑎 ⊗ 𝑏)), 𝜀(𝑓 ) = 𝑓 (𝜂(1)), (1.4.12)

i.e. writing 𝛥(𝑓 ) = ∑
(𝑓 )

𝑓1 ⊗ 𝑓2 means that 𝑓 (𝑎𝑏) = ∑
(𝑓 )

𝑓1(𝑎)𝑓2(𝑏).

It remains to check that applying (−)∗ to an inverse limit of finite dimensional algebras,
we obtain a direct limit of finite dimensional coalgebras and we are done. Moreover,

Theorem 1.4.13. The contravariant functor (−)∗ ∶ Cog → Alg is a duality of categories.

Proof. See [Sim01, Theorem 3.6].
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The inverse of the duality (−)∗ ∶ Cog → Alg is the contravariant functor (−)∗ ∶
Alg → Cog considering 𝐴∗ = Hom𝑘(𝐴, 𝑘) the set of all continuous functionals from 𝐴 to
𝑘 (it is fundamental that we consider only the continuous functionals, otherwise 𝐴∗ might
not be a coalgebra).

Corollary 1.4.14. The duality (−)∗ ∶ Cog → Alg restricts to a duality (−)∗ ∶ cog → alg.

Proof. See [DNR01, Proposition 1.3.14].

For any subspace 𝑆 ⊆ 𝑉 of 𝑉 , denote by 𝑆⟂ = {𝑓 ∈ 𝑉 ∗ | 𝑓 (𝑥) = 0, ∀𝑥 ∈ 𝑆}. Theorem
1.4.13 and Remark 1.1.18 imply the following correspondence:

Corollary 1.4.15. Consider a coalgebra 𝐶. Then:

𝐷 ⊆ 𝐶 is a subcoalgebra of 𝐶 ⟺ 𝐷⟂ is a closed ideal of 𝐶∗; (1.4.16)
𝐼 ⊆ 𝐶 is a coideal of 𝐶 ⟺ 𝐼⟂ is a subalgebra of 𝐶∗. (1.4.17)

Remark 1.4.18. Thus, 𝐶 is a simple coalgebra if, and only if, 𝐶∗ is a simple pseudocompact
algebra. In particular, the matrix coalgebra 𝑀𝐶(𝑛, 𝑘) is simple (see Example 1.2.3 and
Example 1.2.14).

The categories of comodules and pseudocompact modules are also dual.

Theorem 1.4.19. The contravariant functor (−)∗ ∶ 𝐶 → 𝐶∗ is a duality of categories.

Proof. See [Sim01, Theorem 4.3].

Corollary 1.4.20. The contravariant functor (−)∗ ∶ 𝐶 𝐷 → 𝐶∗ 𝐷∗ is a duality of cate-
gories.

1.4.3 Jacobson radical
From [Bru66, §1, p. 444]:

Definition 1.4.21. The Jacobson radical 𝐽 (𝐴) of a pseudocompact algebra 𝐴 is the in-
tersection of all maximal closed ideals of 𝐴, see [IM22, Proposition 3.2] for alternative
characterizations of 𝐽 (𝐴).

The radical of a pseudocompact 𝐴-module 𝑀 , denoted by Rad(𝑀), is the intersection
of the maximal closed 𝐴-submodules of 𝑀 . For 𝑛 ⩾ 1, define 𝐽 𝑛+1(𝐴) = Rad(𝐽 𝑛(𝐴)).

The Jacobson radical and the coradical are connected as follows:

Proposition 1.4.22. Let 𝐶 be a coalgebra. Then:

𝐶𝑛 = (𝐽 𝑛+1(𝐶∗))
⟂
; (1.4.23)

𝐶⟂
𝑛 = 𝐽 𝑛+1(𝐶∗). (1.4.24)
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Proof. The equation (1.4.23) is proved on [Abe80, Corollary 2.3.10] and the equation (1.4.24)
follows by applying the first equation and observing that 𝑉 ⟂⟂ = 𝑉 , see [Swe69, Appendix
I A1], and 𝑉 ∗⟂⟂ = 𝑉 ∗, see [Abe80, Theorem 2.2.3], for any vector space 𝑉 .

Remark 1.4.25. The above Proposition implies that 𝐶∗
𝑛 ≅

𝐶∗

𝐽 𝑛+1(𝐶∗)
.

Definition 1.4.26. A pseudocompact algebra 𝐴 is:

1. topologically semisimple if 𝐽 (𝐴) = 0, or, equivalently, 𝐴 is the product of square
matrix algebras over finite dimensional division algebras, see [IM22, Proposition
3.7] for more characterizations;

2. basic if
𝐴

𝐽 (𝐴)
is isomorphic to a product of division algebras;

3. pointed if
𝐴

𝐽 (𝐴)
is isomorphic to a product of copies of 𝑘.

Hence, we have the following correspondence:

Lemma 1.4.27. Let 𝐶 be a coalgebra. Then:

𝐶 is cosemisimple ⟺ 𝐶∗ is topologically semisimple; (1.4.28)
𝐶 is basic ⟺ 𝐶∗ is basic; (1.4.29)

𝐶 is pointed ⟺ 𝐶∗ is pointed. (1.4.30)

Proof. Follows from Remark 1.4.25.

Denote by PAlg the full subcategory of Alg consisting of all pointed pseudocompact
algebras. Thus, Theorem 1.4.13 restricts to a duality (−)∗ ∶ PCog → PAlg.

Lemma 1.4.31. Let 𝐴 and 𝐵 be pseudocompact algebras and 𝛼 ∶ 𝐴 → 𝐵 be a continuous
algebra homomorphism. If 𝐵 is basic, then 𝛼(𝐽 𝑛+1(𝐴)) ⊆ 𝐽 𝑛+1(𝐵), for 𝑛 ∈ N.

Proof. Lemma 1.4.27 implies that 𝐵∗ is a basic coalgebra. Lemma 1.2.31 implies that the
coalgebra homomorphism 𝛼∗ ∶ 𝐵∗ → 𝐴∗ is filtered, i.e. 𝛼∗(𝐵∗

𝑛) ⊆ 𝐴∗
𝑛. By Proposition 1.4.22,

𝐵∗
𝑛 = (𝐽 𝑛+1(𝐵))

⟂
and 𝐴∗

𝑛 = (𝐽 𝑛+1(𝐴))
⟂
. Thus, for any 𝑓 ∈ (𝐽 𝑛+1(𝐵))

⟂
, 𝛼∗𝑓 ∈ (𝐽 𝑛+1(𝐴))

⟂
.

Hence, 𝛼∗𝑓 (𝑎) = 𝑓 (𝛼(𝑎)) = 0, for every 𝑎 ∈ 𝐽 𝑛+1(𝐴), which implies 𝛼(𝑎) ∈ 𝐽 𝑛+1(𝐵).

Definition 1.4.32. A pseudocompact algebra 𝐴 is a separable algebra if 𝐴 is an inverse
limit of separable finite dimensional algebras, see [IM22, Theorem 4.3] for other character-
izations.

Thus, a coalgebra 𝐶 has separable coradical if, and only if,
𝐶∗

𝐽 (𝐶∗)
is a separable alge-

bra.

Now, we can state the Wedderburn-Malcev Theorem for pseudocompact algebras.
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Theorem 1.4.33. Let 𝐴 be a pseudocompact algebra such that
𝐴

𝐽 (𝐴)
is a separable algebra.

There exists a semisimple subalgebra 𝑆 ⊆ 𝐴 such that 𝐴 = 𝑆 ⊕ 𝐽 (𝐴). Moreover, if 𝑆′ ⊆ 𝐴
is another semisimple subalgebra of 𝐴 with 𝐴 = 𝑆′ ⊕ 𝐽 (𝐴), then there exists an element
𝜔 ∈ 𝐽 (𝐴) which satisfies:

𝑆 = (1 − 𝜔)𝑆′(1 − 𝜔)−1. (1.4.34)

Proof. See [IM20, Proposition 2.8]. See also [IM22, Theorem 4.6 and Theorem 4.7].

1.4.4 Complete tensor algebra
From [Bru66, §2]:

Definition 1.4.35. Let 𝐴 be a pseudocompact algebra, 𝑈 be a right pseudocompact 𝐴-
module and 𝑉 be a left pseudocompact 𝐴-module. The complete tensor product of 𝑈 and
𝑉 is a pseudocompact 𝑘-module 𝑈 ⊗̂𝐴 𝑉 and a 𝐴-bihomomorphism 𝛼 ∶ 𝑈 × 𝑉 → 𝑈 ⊗̂𝐴 𝑉
such that any 𝐴-bihomomorphism 𝑓 ∶ 𝑈 × 𝑉 → 𝑊 , for some pseudocompact 𝑘-module 𝑊 ,
factors uniquely by 𝛼 as in the following commutative diagram:

𝑈 × 𝑉 𝑈 ⊗̂𝐴 𝑉

𝑊

𝛼

𝑓
𝑓 (1.4.36)

Remark 1.4.37. The complete tensor product is constructed as:

𝑈 ⊗̂𝐴 𝑉 = lim←−−
𝑈
𝑋
⊗𝐴

𝑉
𝑌
, (1.4.38)

where 𝑋 and 𝑌 runs through the open submodules of 𝑈 and 𝑉 , respectively. In this way,
𝑈 ⊗̂𝐴𝑉 is the completion of 𝑈 ⊗𝐴𝑉 in the topology induced by taking lim←−− (𝑈 ⊗𝐴 𝑌 +𝑋 ⊗𝐴𝑉 )
as a fundamental system of neighborhoods of 0, see [Bru66, §2].

Example 1.4.39. Consider the power series algebras 𝐴 = 𝑘[[𝑥]] and 𝐵 = 𝑘[[𝑦]]. Then, the
complete tensor product 𝐴 ⊗̂𝑘 𝐵 is the power series algebra in two indeterminates 𝑘[[𝑥, 𝑦]].

Lemma 1.4.40. Let 𝐶 be a coalgebra, 𝑀 be a right 𝐶-comodule and 𝑁 be a left 𝐶-comodule.
Then

𝑀 □𝐶 𝑁 ≅ (𝑀∗ ⊗̂𝐶∗ 𝑁 ∗)∗ (1.4.41)

Proof. The required isomorphism is given by

𝑥 ⊗ 𝑦 ↦ (𝑓 ⊗ 𝑔 ↦ 𝑓 (𝑥)𝑔(𝑦)) (1.4.42)

For more details, see Appendix B.
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Definition 1.4.43. Let 𝐴 be a pseudocompact algebra and 𝑈 be a pseudocompact 𝐴-
bimodule. The complete tensor algebra T[[𝐴, 𝑈 ]] is defined to be

T[[𝐴, 𝑈 ]] =
∞

∏
𝑛=0

𝑈 ⊗̂𝑛 , (1.4.44)

where 𝑈 ⊗̂0 = 𝐴, 𝑈 ⊗̂1 = 𝑈 and 𝑈 ⊗̂𝑛 = 𝑈 ⊗̂𝐴 𝑈 ⊗̂𝐴 … ⊗̂𝐴 𝑈⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−times

for 𝑛 > 1, see [Gab73, §7.5] for

details.

Multiplication is given in the obvious way: the product of the pure tensors
𝑢1 ⊗̂𝐴 … ⊗̂𝐴 𝑢𝑚 ∈ 𝑈 ⊗̂𝑚 and 𝑣1 ⊗̂𝐴 … ⊗̂𝐴 𝑣𝑛 ∈ 𝑈 ⊗̂𝑛 is

𝑢1 ⊗̂𝐴 … ⊗̂𝐴 𝑢𝑚 ⊗̂𝐴 𝑣1 ⊗̂𝐴 … ⊗̂𝐴 𝑣𝑛 ∈ 𝑈 ⊗̂𝑚+𝑛 .

Which has the following universal property:

Proposition 1.4.45. Let 𝐴 and Σ be pseudocompact algebras and 𝑈 be a pseudocompact
Σ-bimodule. Given a continuous algebra homomorphism 𝛼0 ∶ Σ → 𝐴 and a continuous
Σ-bimodule homomorphism 𝛼1 ∶ 𝑈 → 𝐴, with 𝐴 treated as a Σ-bimodule via 𝛼0, then there
exists a unique algebra homomorphism 𝛼 ∶ T[[𝐴, 𝑈 ]] → 𝐴 such that 𝛼|Σ = 𝛼0 and 𝛼|𝑈 = 𝛼1.

Proof. See [IM20, Lemma 2.11].

Remark 1.4.46. Let 𝐴 and 𝐵 be pseudocompact algebras and 𝛼 ∶ 𝐴 → 𝐵 be a continuous
algebra homomorphism. Then:

1. 𝐴 is a 𝐴-bimodule with structure maps given by multiplication, i.e. 𝑎′ ⋅ 𝑎 ⋅ 𝑎′′ = 𝑎′𝑎𝑎′′,
for every 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴;

2. 𝐵 is a 𝐴-bimodule via the algebra homomorphism 𝛼, i.e. 𝑎 ⋅ 𝑏 ⋅ 𝑎′ = 𝛼(𝑎)𝑏𝛼(𝑎′), for
every 𝑎, 𝑎′ ∈ 𝐴 and every 𝑏 ∈ 𝐵.

Lemma 1.4.47. Let 𝐶 be a coalgebra, 𝑀 be a 𝐶-bicomodule and consider the cotensor
coalgebra Cot𝐶(𝑀). Then Cot𝐶(𝑀) ≅ T[[𝐶∗, 𝑀∗]]∗.

Proof. The poof consists of using the universal properties of the cotensor coalgebra and
the complete tensor algebra and applying the duality functors between coalgebras and
pseudocompact algebras to construct the desired coalgebra homomorphisms and using
these tools again to prove the isomorphism.

Consider 𝜋0 ∶ Cot𝐶(𝑀) → 𝐶 and 𝜋1 ∶ Cot𝐶(𝑀) → 𝑀 the canonical projections and
𝜄0 ∶ 𝐶∗ → T[[𝐶∗, 𝑀∗]] and 𝜄1 ∶ 𝑀∗ → T[[𝐶∗, 𝑀∗]] the canonical inclusions. Simple checks
show that 𝜋0 is a coalgebra homomorphism, 𝜋1 is a 𝐶-bicomodule homomorphism (for
Cot𝐶(𝑀) treated as a 𝐶-bicomodule via 𝜋0), which kills Cot𝐶(𝑀)0 = 𝐶0, 𝜄0 is a continuous
algebra homomorphism and 𝜄1 is a continuous𝐶∗-bimodule homomorphism (for T[[𝐶∗, 𝑀∗]]
treated as a pseudocompact 𝐶∗-bimodule via 𝜄0).



1.4 | PSEUDOCOMPACT ALGEBRAS AND MODULES

37

Applying (−)∗ from Theorem 1.4.13 and Theorem 1.4.19, we obtain a coalgebra homo-
morphism 𝜄∗0 ∶ T[[𝐶∗, 𝑀∗]]∗ → 𝐶 and a 𝐶-bicomodule homomorphism 𝜄∗1 ∶ T[[𝐶∗, 𝑀∗]]∗ →
𝑀 (observe that, by Proposition 1.4.22, T[[𝐶∗, 𝑀∗]]∗0 = 𝐽 (T[[𝐶∗, 𝑀∗]])⟂ ⊆ 𝐶∗, implies
𝜄∗1(T[[𝐶∗, 𝑀∗]]∗0) = 0), a continuous algebra homomorphism 𝜋∗

0 ∶ 𝐶∗ → Cot𝐶(𝑀)∗ and
a continuous 𝐶∗-bimodule homomorphism 𝜋∗

1 ∶ 𝑀∗ → Cot𝐶(𝑀)∗.

The universal properties of cotensor coalgebra and complete tensor algebra, Theorem
1.2.74 and Proposition 1.4.45, respectively, give us the unique coalgebra homomorphism
𝛽 ∶ T[[𝐶∗, 𝑀∗]]∗ → Cot𝐶(𝑀) satisfying 𝜋0𝛽 = 𝜄∗0 and 𝜋1𝛽 = 𝜄∗1, and the unique continuous
algebra homomorphism 𝛼 ∶ Cot𝐶(𝑀)∗ → T[[𝐶∗, 𝑀∗]] satisfying 𝛼𝜄0 = 𝜋∗

0 and 𝛼𝜄1 = 𝜋∗
1 .

Duality then give us the equalities 𝛽∗𝜋∗
0 = 𝜄0, 𝛽∗𝜋∗

1 = 𝜄∗1, 𝜄∗0𝛼∗ = 𝜋0 and 𝜄∗1𝛼∗ = 𝜋∗
1 . Thus,

we have the following commutative diagrams:

T[[𝐶∗, 𝑀∗]]∗ Cot𝐶(𝑀)

Cot𝐶(𝑀) 𝐶

𝛽

𝜄∗0 𝜋0𝛼∗

𝜋0

T[[𝐶∗, 𝑀∗]]∗ Cot𝐶(𝑀)

Cot𝐶(𝑀) 𝑀

𝛽

𝜄∗1 𝜋1𝛼∗

𝜋1

(1.4.48)

which implies that 𝛽𝛼∗ = idCot𝐶(𝑀), by the universal property of the cotensor coalgebra,
and

T[[𝐶∗, 𝑀∗]] Cot𝐶(𝑀)∗

𝐶∗ T[[𝐶∗, 𝑀∗]]

𝛼

𝛽∗𝜄0 𝜋∗
0

𝜄0

T[[𝐶∗, 𝑀∗]] Cot𝐶(𝑀)∗

𝑀∗ T[[𝐶∗, 𝑀∗]]

𝛼

𝛽∗𝜄1
𝜋∗
1

𝜄1

(1.4.49)

which implies that 𝛽∗𝛼 = idT[[𝐶∗,𝑀∗]], by the universal property of the complete tensor
algebra. Therefore, by duality, we have 𝛼∗𝛽 = idT[[𝐶∗,𝑀∗]]∗ .

1.4.5 Dual correspondences
We finish this chapter with a table which collects the correspondences between coal-

gebra and pseudocompact algebra structures.
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Description Symbol Symbol Description

coalgebra 𝐶 𝐶∗ pseudocompact
algebra

simple
coalgebra 𝑆 𝑆∗ simple

psc. algebra
cosemisimple

coalgebra 𝐶0 𝐶∗
0

topologically
semisimple psc. alg.

basic
coalgebra 𝐵 𝐵∗ basic

psc. algebra
pointed

coalgebra 𝐶 𝐶∗ pointed
psc. algebra

is a separable
coalgebra 𝐶0

𝐶∗

𝐽 (𝐶∗)
is a separable
psc. algebra

subcoalgebra
of 𝐶 𝐷 𝐷⟂ ideal of 𝐶∗

coideal of 𝐶 𝐼 𝐼⟂ subalgebra
of 𝐶∗

coradical of 𝐶 𝐶0 = 𝐽 (𝐶∗)⟂ 𝐶⟂
0 = 𝐽 (𝐶∗) Jacobson radical

of 𝐶∗

𝑛-th term of the
coradical of 𝐶 𝐶𝑛 = 𝐽 𝑛+1(𝐶∗)⟂ 𝐶⟂

𝑛 = 𝐽 𝑛+1(𝐶∗) (𝑛 + 1)-th
radical of 𝐶∗

coalgebra
homomorphism 𝜌 ∶ 𝐶 → 𝐷 𝜌∗ ∶ 𝐷∗ → 𝐶∗ continuous

algebra hom.

(left) 𝐶-comodule 𝑀 𝑀∗ (left) psc.
𝐶∗-module

comodule
homomorphism 𝜎 ∶ 𝑀 → 𝑁 𝜎∗ ∶ 𝑁 ∗ → 𝑀∗ continuous

module hom.

𝐶-𝐷-bicomodule 𝑀 𝑀∗ pseudocompact
𝐶∗-𝐷∗-bimodule

cotensor product 𝑀 □𝐶 𝑁 𝑀∗ ⊗̂𝐶∗ 𝑁 ∗ complete
tensor product

cotensor
coalgebra Cot𝐶(𝑀) T[[𝐶∗, 𝑀∗]] complete

tensor algebra
category of
coalgebras Cog Alg category of

psc. algebras
cat. of finite

dim. coalgebras cog alg cat. of finite
dim. algebras

cat. of pointed
coalgebras PCog PAlg cat. of pointed

psc. algebras
category of

left 𝐶-comodules 𝐶 𝐶∗
category of left
psc. 𝐶∗-modules

category of
𝐶-𝐷-bicomodules 𝐶 𝐷 𝐶∗ 𝐷∗

category of psc.
𝐶∗-𝐷∗-bimodules

Table 1.1: Dual correspondences between coalgebras and pseudocompact algebras structures.
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Chapter 2

A functorial approach to the path
coalgebra and Gabriel quiver
constructions

Quivers play an important role on the representation theory of associative algebras
since every finite dimensional hereditary algebra over an algebraically closed field is
Morita equivalent to a path algebra. Moreover, the category of (left) modules over a path
algebra is isomorphic to the category of (left) representations of its quiver, which are easier
to work with and it is classified for finite and tame representation types.

Furthermore, examples of path algebras are very simple to construct and every finite
dimensional basic algebra over an algebraically closed field is a quotient of some path
algebra over an admissible ideal. Thus, path algebras are very useful for constructing
(counter)examples for what would be general results for such algebras.

This theory has been developed over the years, diversifying what corresponds to
finite dimensional algebras and also generalizing the quivers. One way it was done is
that every pointed coalgebra (the counterpart of finite dimensional basic algebras over an
algebraically closed field) is an admissible subcoalgebra of a path coalgebra.

In this chapter we make this construction in a functorial way, proving that the functor
which corresponds to the path coalgebra is right adjoint to the functor corresponding
to the Gabriel 𝑘-quiver (here we consider 𝑘-quivers instead of quivers in order to make
it functorial and we consider a quotient by a “good” equivalence relation on coalgebra
homomorphisms so that we obtain an adjunction). The unit of the adjunction is the
desired inclusion of a pointed coalgebra into the path coalgebra of its Gabriel quiver as an
admissible subcoalgebra.

The above is Section 2.3. In Section 2.1 we present the basics of the theory and in Section
2.2 we briefly explain the main result of the article which was our starting point.

We finish this chapter with a parallel for pseudocompact algebras. Applying the duality
(−)∗ between coalgebras and pseudocompact algebras to the adjunction obtained in Section
2.3 gives us an adjunction on the right between the category of 𝑘-quivers and a quotient
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category of (the category of) pointed pseudocompact algebras by an equivalence relation on
continuous algebra homomorphisms. This shows that the relation between pseudocompact
algebras and 𝑘-quivers are better understood via contravariant functors. Then, we show an
adjunction for covariant functors between the quotient category of pointed pseudocompact
algebras and a category of pairs, which is related to the category of 𝑘-quivers, but loses
combinatorial properties. This generalize the main result of Section 2.2.

While working with this thesis, the core content of this chapter was published on
[IMQ21].

2.1 Quivers and path (co)algebras
In this section we present the basics of quivers, path algebras and path coalgebras.

Whenever 𝑘 is required to be algebraically closed, we write 𝑘 = 𝑘.

2.1.1 Quivers
Definition 2.1.1. A quiver 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡) is a directed graph, i.e. a set of vertices 𝑄0,
a set of arrows 𝑄1, and two functions 𝑠, 𝑡 ∶ 𝑄1 ⇒ 𝑄0, where, for any arrow 𝑎 ∈ 𝑄1, 𝑠(𝑎)
represents its source and 𝑡(𝑎) represents its target, see [ARS95, §3.1].

A map of quivers 𝜙 ∶ 𝑄 → 𝑅 consist of a map 𝜙0 ∶ 𝑄0 → 𝑅0 together with a map
𝜙1 ∶ 𝑄1 → 𝑅1 such that 𝜙(𝑠(𝑎)) = 𝑠(𝜙(𝑎)) and 𝜙(𝑡(𝑎)) = 𝑡(𝜙(𝑎)) for every 𝑎 ∈ 𝑄1.

A subquiver 𝑅 = (𝑅0, 𝑅1, 𝑠, 𝑡) of 𝑄 is such that 𝑅0 ⊆ 𝑄0, 𝑅1 ⊆ 𝑄1, and for any arrow
𝑎 ∈ 𝑅1 we have 𝑠(𝑎), 𝑡(𝑎) ∈ 𝑅0.

A quiver is finite if both sets 𝑄0 and 𝑄1 are finite.

A quiver is connected if it is not the disjoint union of two non-empty subquivers.

The underlying graph of a quiver 𝑄, denoted by 𝑄, is the graph obtained from 𝑄 by
ignoring its orientation.

Denote by Quiv the category of quivers and maps of quivers.

Definition 2.1.2. Let 𝑄 be a quiver. A representation of 𝑄 is a collection 𝑋 =
((𝑋𝑖)𝑖∈𝑄0 , (𝑋𝑎)𝑎∈𝑄1) consisting of a vector space 𝑋𝑖 for each vertex 𝑖 and a linear map
𝑋𝑎 ∶ 𝑋𝑠(𝑎) → 𝑋𝑡(𝑎) for each arrow 𝑎.

A morphism of representations 𝜃 ∶ 𝑋 → 𝑌 is a collection 𝜃 = (𝜃𝑖)𝑖∈𝑄0 for each vertex 𝑖
satisfying the following commutative diagram

𝑋𝑠(𝑎) 𝑋𝑡(𝑎)

𝑌𝑠(𝑎) 𝑌𝑡(𝑎)

𝑋𝑎

𝜃𝑠(𝑎) 𝜃𝑡(𝑎)

𝑌𝑎

(2.1.3)

If 𝑋 and 𝑌 are two representations of 𝑄, the direct sum 𝑍 = 𝑋 ⊕ 𝑌 is a representation
with 𝑍𝑖 = 𝑋𝑖 ⊕ 𝑌𝑖, for every 𝑖 ∈ 𝑄0, and 𝑍𝑎 = (𝑋𝑎, 𝑌𝑎) ∶ 𝑍𝑠(𝑎) → 𝑍𝑡(𝑎), for every 𝑎 ∈ 𝑄1.
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A representation is indecomposable if it is not isomorphic to the direct sum of two
nonzero representations.

Denote by Rep𝑘𝑄 such category and by rep𝑘𝑄 the full subcategory of all finite dimen-
sional representations.

Definition 2.1.4. A path in𝑄 of length 𝑙 ⩾ 1 is the formal composition of arrows 𝑎𝑙𝑎𝑙−1 ⋯𝑎1
with 𝑠(𝑎𝑗) = 𝑡(𝑎𝑗−1) and for each vertex 𝑖 ∈ 𝑄0 we associate the stationary path 𝑒𝑖 of length
|𝑒𝑖| = 0 with 𝑠(𝑒𝑖) = 𝑡(𝑒𝑖) = 𝑖.

An oriented cycle in a quiver 𝑄 is a path 𝑎𝑙𝑎𝑙−1 ⋯𝑎1 such that 𝑠(𝑎1) = 𝑡(𝑎𝑙). In case 𝑙 = 1
we say that the oriented cycle 𝑎1 is a loop. A quiver is acyclic if it contains no oriented
cycle.

The path algebra 𝑘(𝑄) of the quiver 𝑄 is the vector space with basis all finite paths in
𝑄, and multiplication given by concatenation of the paths. If 𝑄0 is finite, then 𝑘(𝑄) has unit
∑𝑒∈𝑄0

𝑒. The path algebra 𝑘(𝑄) is finite dimensional if, and only if, 𝑄 is finite and acyclic.

Definition 2.1.5. Let 𝑄 be a quiver and 𝑋 be a representation of 𝑄. The support 𝑄𝑋 of 𝑋 is
the subquiver of 𝑄 with vertices 𝑄𝑋

0 = {𝑖 ∈ 𝑄0 | 𝑋𝑖 ≠ 0} and arrows 𝑄𝑋
1 = {𝑎 ∈ 𝑄1 | 𝑋𝑎 ≠ 0}.

The representation 𝑋 is of finite length if 𝑄𝑋 is finite and 𝑋𝑖 is finite dimensional for
every 𝑖 ∈ 𝑄𝑋

0 .

The representation 𝑋 is nilpotent if there exists an integer 𝑚 ⩾ 2 such that the
composition 𝑋𝑎𝑚𝑋𝑎𝑚−1 ⋯𝑋𝑎1 = 0 for any path 𝑎𝑚𝑎𝑚−1 ⋯𝑎1 in 𝑄 of length 𝑚.

Denote by nilrepfl
𝑘𝑄 the full subcategory of rep𝑘𝑄 whose objects are nilpotent rep-

resentations of finite length. Denote by Replnfl
𝑘 𝑄 the full subcategory of Rep𝑘𝑄 whose

objects are locally nilpotent representations, i.e. direct unions of nilpotent representations
of finite length.

The importance of the path algebra construction is due to the following fact.

Proposition 2.1.6. Let 𝑄 be a finite, connected and acyclic quiver. The category Rep𝑘𝑄
is equivalent to the category 𝑘(𝑄) . The result holds for the full subcategories rep𝑘𝑄 and

f
𝑘(𝑄) .

Proof. See [ASS06, Corollary 3.1.7].

Definition 2.1.7. Let 𝑘(𝑄) be a path algebra and consider the ideal, 𝑅𝑛𝑄 = ⟨𝜔 ∈ 𝑄 | |𝜔| ⩾ 𝑛⟩𝑘,
generated by the paths of length at least 𝑛. An admissible ideal of 𝑘(𝑄) is an ideal 𝐼 such
that 𝑅𝑚𝑄 ⊆ 𝐼 ⊆ 𝑅2

𝑄 , for some 𝑚 ∈ N.

Definition 2.1.8. Let 𝐴 be a finite dimensional basic algebra and 𝑘 = 𝑘. Denote by 𝑄𝐴 the
quiver given as follows:

• The set (𝑄𝐴)0 of vertices is in bijective correspondence with a complete set of
primitive orthogonal idempotents of 𝐴, {𝑒𝑖}𝑖∈𝐼 , which is in bijection with the unique
complete set of primitive orthogonal idempotents of 𝐴

𝐽 (𝐴) ;

• The number of arrows from 𝑒𝑖 to 𝑒𝑗 is the dimension of 𝑒𝑗 𝐽 (𝐴)𝐽 2(𝐴)𝑒𝑖.
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𝑄𝐴 is the Gabriel quiver of the finite dimensional algebra 𝐴, e.g. [Ben91, Definition 4.1.6] or
[ASS06, Definition 3.1].

Proposition 2.1.9. Let 𝐴 be a finite dimensional basic algebra and 𝑘 = 𝑘. There exists a
surjective algebra homomorphism 𝛼 ∶ 𝑘(𝑄𝐴) → 𝐴 such that the ker 𝛼 is an admissible ideal.

Proof. See [Ben91, Proposition 4.1.7].

Definition 2.1.10. An algebra 𝐴 is a hereditary algebra if every submodule of a projective
𝐴-module is projective, e.g. [Ben91, Definition 4.1.2].

Proposition 2.1.11. Let 𝐴 be a finite dimensional basic hereditary algebra and 𝑘 = 𝑘. Then
𝐴 ≅ 𝑘(𝑄𝐴).

Proof. See [Ben91, Proposition 4.2.4].

2.1.2 Path coalgebras
In this section, we study the path coalgebra of a quiver.

Definition 2.1.12. The path coalgebra 𝑘𝑄 of the quiver 𝑄 is the vector space with basis
all finite paths in 𝑄, and comultiplication and counit maps given by

𝛥(𝑤) = ∑
𝑤=𝑤2𝑤1

𝑤2 ⊗ 𝑤1, 𝜀(𝑤) = 𝛿|𝑤|,0,

where the pairs 𝑤1, 𝑤2 are all paths in 𝑄 whose composition gives the path 𝑤.

In this way

Proposition 2.1.13. Let 𝑄 be a quiver. Then 𝑘𝑄 ≅ Cot𝑘𝑄0(span{𝑄1}).

Proof. See [Woo97, §4].

Hence, 𝑘𝑄 is pointed, G(𝑘𝑄) consists of stationary paths, (𝑘𝑄)0 = 𝑘𝑄0 is the group-like
coalgebra on 𝑄0 (see Definition 1.3.3), and 𝑘𝑄 is coradically graded with coradical filtration
{(𝑘𝑄)𝑚}𝑚∈N, in which (𝑘𝑄)𝑚 is generated by all paths of 𝑄 of length strictly less than 𝑚+ 1,
see e.g. [Sim11, Proposition 7.7].

The above construction defines a covariant functor

𝑘− ∶ Quiv → PCog

which acts on morphisms as 𝑘𝜙(𝑤) = 𝜙1(𝑎𝑙)𝜙1(𝑎𝑙−1) …𝜙1(𝑎1) for any path 𝑤 = 𝑎𝑙𝑎𝑙−1…𝑎1
of length 𝑙 ⩾ 1 and as 𝑘𝜙(𝑒𝑖) = 𝑒𝜙0(𝑖) for any stationary path 𝑒𝑖.

Proposition 2.1.14. Let 𝑄 be a quiver. The category Replnfl
𝑘 𝑄 is equivalent to the category

𝑘𝑄 . The result holds for the full subcategories nilrepfl
𝑘𝑄 and 𝑘𝑄

f.

Proof. See [Sim11, Proposition 7.18].
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Definition 2.1.15. Let 𝑘𝑄 be a path coalgebra and 𝐶 ⊆ 𝑘𝑄 be a subcoalgebra. 𝐶 is an
admissible subcoalgebra if (𝑘𝑄)1 ⊆ 𝐶.

On the other hand,

Definition 2.1.16. Let 𝐶 be a pointed coalgebra. Denote by 𝑄𝐶 the quiver given as follows:

• the set of vertices 𝑄𝐶 0 is identified with the set G(𝐶);

• given two vertices 𝑔, ℎ ∈ G(𝐶), the arrows from 𝑔 to ℎ is a basis of the quotient space
P𝑔,ℎ(𝐶).

𝑄𝐶 is the Gabriel quiver of the coalgebra 𝐶, see e.g. [Mon95, Remark 1.2] or [Sim11, De-
scription 4.12].

Remark 2.1.17. The choice of basis makes it impossible to define a functor from the category
of pointed coalgebras to the category of quivers which assigns the Gabriel quiver of a
coalgebra on objects. In Section 2.3.1 we present a simple solution to bypass this problem.

Proposition 2.1.18. Let 𝐶 be a pointed coalgebra. There exists an injective coalgebra homo-
morphism 𝜌 ∶ 𝐶 → 𝑘 𝑄𝐶 such that 𝜌(𝐶) is an admissible subcoalgebra.

Proof. See [CM97, Theorem 4.3].

Definition 2.1.19. A coalgebra 𝐶 is a hereditary coalgebra if homomorphic images of
injective 𝐶-comodules are injective, see [Chi02].

Proposition 2.1.20. Let 𝐶 be a pointed hereditary coalgebra. Then 𝐶 ≅ 𝑘 𝑄𝐶 .

Proof. See [Chi02, Theorem 1].

The dual notion of the path coalgebra is the following

Definition 2.1.21. The complete path algebra 𝑘((𝑄)) of the quiver 𝑄 is the set of sequences
in 𝑘, (𝜆𝑤)𝑤, indexed by (oriented) paths in 𝑄, with multiplication defined by:

(𝜆𝑤)𝑤 ∗ (𝜅𝑣)𝑣 = (∑
𝑢=𝑤𝑣

𝜆𝑤𝜅𝑣)𝑢
, (2.1.22)

see [Iov13, §1].

It follows that 𝑘((𝑄)) is a pseudocompact algebra and:

Proposition 2.1.23. Let 𝑄 be a quiver. Then (𝑘𝑄)∗ ≅ 𝑘((𝑄)) ≅ T[[𝑘((𝑄0)), 𝑘((𝑄1))]], where

• 𝑘((𝑄0)) = ∏𝑖∈𝑄0
𝑘𝑒𝑖 is a topologically semisimple pseudocompact algebra;

• 𝑘𝑄𝑖,𝑗 = ⟨𝜔 ∈ 𝑄1 | 𝑠(𝜔) = 𝑖, 𝑡(𝜔) = 𝑗⟩𝑘;

• 𝑘((𝑄1)) = ∏𝑖,𝑗∈𝑄0
𝑘𝑄𝑖,𝑗 is a pseudocompact 𝑘((𝑄0))-bimodule.

Proof. See [Sim01, Proposition 8.1]. See also [Sim11, Proposition 7.12].
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2.2 The path algebra as a left adjoint functor
Initially, our aim in this research was to develop for coalgebras a closely related theory

of the adjunction obtained by [IM20, Theorem 5.2]. What we got was that the constructions
flows even smoother for coalgebras, giving us an insight for how to work with the dual side,
which allowed us to generalize the previous results for pseudocompact algebras.

In this section, we present the main results of [IM20], stressing its limitations which
we deal with in Section 2.4 using the adjunction obtained in Section 2.3.

First, there is no need for asking the fixed field 𝑘 (treated in this entire section as a
discrete topological ring) to be perfect, since it had only two purposes: for any pseudocom-
pact algebra 𝐴, the quotient 𝐴

𝐽 (𝐴) is a separable algebra, which is always the case when 𝐴 is
pointed, so that the conditions for the Wedderburn-Malcev Theorem for pseudocompact
algebras, Theorem 1.4.33, are satisfied; and, considering 𝐴 = Σ ⊕ 𝐽 (𝐴), for Σ ≅ 𝐴

𝐽 (𝐴) , the
projection of Σ-bimodules 𝐽 (𝐴) → 𝐽 (𝐴)

𝐽 2(𝐴) splits, see [IM20, Lemma 2.9], and it does happens
because Σ is topologically semisimple and, by [IM22, Proposition 3.7], 𝐽 (𝐴) is a projective
Σ-bimodule.

Definition 2.2.1. A (pointed) finite Vquiver 𝐹𝑉𝑄 = (𝑉𝑄∗, 𝑉𝑄𝑒,𝑓 ) consists of a a finite set
of vertices 𝑉𝑄∗ = {∗} ∪ 𝑉𝑄0 and, for each pair 𝑒, 𝑓 ∈ 𝑉𝑄∗ a finite dimensional vector space
𝑉𝑄𝑒,𝑓 such that 𝑉𝑄∗,𝑒 = 𝑉𝑄𝑒,∗ = 0 for all 𝑒 ∈ 𝑉𝑄∗.

A map of Vquivers 𝜙 ∶ (𝑉𝑅∗, 𝑉 𝑅𝑒,𝑓 ) → (𝑉𝑄∗, 𝑉𝑄𝑒′,𝑓 ′) consists of:

• a surjective map 𝜙0 ∶ 𝑉𝑅∗ → 𝑉𝑄∗ such that 𝜙0(∗) =∗, i.e. 𝜙0 is a pointed map, and it
is injective when restricted to 𝑉𝑅∗ ⧵ 𝜙−10 ({∗});

• and a linear map 𝜙𝑒,𝑓 ∶ 𝑉𝑅𝑒,𝑓 → 𝑉𝑄𝜙0(𝑒),𝜙0(𝑓 ) for each pair of vertices 𝑒, 𝑓 ∈ 𝑉𝑅∗.

Denote by VQuiv the category whose objects are (pointed) finite Vquivers and mor-
phisms maps of Vquivers.

Definition 2.2.2. Denote by A the subcategory of pointed pseudocompact algebras PAlg
whose objects are (pointed) pseudocompact algebras 𝐴 such that 𝐴

𝐽 2(𝐴) is finite dimensional
and morphisms are continuous algebra homomorphisms 𝛼 ∶ 𝐴 → 𝐵 such that the induced
map 𝛼′ ∶ 𝐴

𝐽 (𝐴) →
𝐵

𝐽 (𝐵) is a surjection.

For 𝛼, 𝛽 ∈ HomA(𝐴, 𝐵), define the congruence relation 𝛼 ∼ 𝛽 if

(𝛼 − 𝛽)(𝐴) ⊆ 𝐽 (𝐵), (𝛼 − 𝛽)(𝐽 (𝐴)) ⊆ 𝐽 2(𝐵), (2.2.3)

see [IM20, Definition 3.11]. Denote by  the quotient category A⧸∼.

Definition 2.2.4. Given a (pointed) finite Vquiver 𝐹𝑉𝑄 = (𝑉𝑄∗, 𝑉𝑄𝑒,𝑓 ), denote by:

Σ𝑉𝑄 = ∏
𝑒∈𝑉𝑄0

𝑘, 𝑉𝑄1 = ⨁
𝑒,𝑓 ∈𝑉𝑄0

𝑉𝑄𝑒,𝑓 ,

where Σ𝑉𝑄 is a semisimple pointed algebra and 𝑉𝑄1 is a Σ𝑉𝑄-bimodule.

Given a map of Vquivers 𝜙 ∶ 𝐹𝑉𝑅 → 𝐹𝑉𝑄, denote by 𝛼′
0 ∶ Σ𝑉𝑅 → Σ𝑉𝑄 the linear
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extension of 𝜙0 such that 𝛼′
0(𝑒) = 0 whenever 𝜙(𝑒) =∗, and denote by 𝛼′

1 = ∑𝜙𝑒,𝑓 ∶
⨁𝑉𝑅𝑒,𝑓 → ⨁𝑉𝑄𝜙0(𝑒),𝜙0(𝑓 ) the homomorphism of Σ𝑉𝑅-bimodules. Composing with the
corresponding inclusions to T[[Σ𝑉𝑄 , 𝑉𝑄1]] the universal property of the complete tensor
algebra gives a continuous algebra homomorphism 𝛼 ∶ T[[Σ𝑉𝑅, 𝑉 𝑅1]] → T[[Σ𝑉𝑄 , 𝑉𝑄1]].

Denote by  ∶ VQuiv →  the covariant functor given by  (𝐹𝑉𝑄) = T[[Σ𝑉𝑄 , 𝑉𝑄1]]
and  (𝜙) = [𝛼], where [𝛼] denotes the congruence class of the continuous algebra homo-
morphism 𝛼, defined above, under the relation ∼.

Definition 2.2.5. Let 𝐴 ∈ , 𝑃 be the complete set of primitive orthogonal idempotents

of 𝐴
𝐽 (𝐴) and 𝑠 ∶

𝐴
𝐽 (𝐴)

→ 𝐴 be any splitting of the canonical projection 𝐴 ↠
𝐴

𝐽 (𝐴)
. Let

(𝐴) = {(1+𝜔)(−)(1+𝜔)−1 | 𝜔 ∈ 𝐽 (𝐴)} be a subgroup of Aut(𝐴) given by conjugation and,
for any 𝑎 ∈ 𝐴, denote by 𝑎(𝐴) the orbit of 𝑎 under (𝐴).

Denote by  ∶  → VQuiv the functor given by (𝐴) = ((𝐴)∗,(𝐴) 𝑒(𝐴) , 𝑓(𝐴) ), where

(𝐴)∗ = {∗} ∪ { 𝑒(𝐴) | 𝑒 ∈ 𝑠(𝑃)}, (𝐴) 𝑒(𝐴) , 𝑓(𝐴) = 𝑓
𝐽 (𝐴)
𝐽 2(𝐴)

𝑒,

and, for any continuous algebra homomorphism 𝛼 ∈ Hom(𝐴, 𝐵), the map of Vquivers
(𝛼) = 𝜃 ∶ ((𝐴)∗,(𝐴) 𝑒(𝐴) , 𝑓(𝐴) ) → ((𝐵)∗,(𝐵) 𝑒(𝐵) , 𝑓(𝐵) ) is given by:

𝜃0( 𝑒(𝐴) ) =

{
𝛼(𝑒)(𝐵) if 𝛼(𝑒) ≠ 0

∗ if 𝛼(𝑒) = 0
,

𝜃 𝑒(𝐴) , 𝑓(𝐴) (𝑓 (𝑗 + 𝐽 2(𝐴))𝑒) = 𝛼(𝑓 )(𝛼(𝑗) + 𝐽 2(𝐵))𝛼(𝑒).

Theorem 2.2.6. The covariant functor  ∶ VQuiv →  is left adjoint to the covariant
functor  ∶  → VQuiv.

Proof. See [IM20, Theorem 5.2].

Remark 2.2.7. The categories treated here are essentially finite: 𝐴
𝐽 2(𝐴) is finite dimensional

and the continuous algebra homomorphism are subjected to the condition 𝛼′ ∶ 𝐴
𝐽 (𝐴) →

𝐵
𝐽 (𝐵)

is a surjection; Vquivers are finite and their maps have also some restrictions. In Section
2.4, we deal with an adjunction that generalizes the above theorem: any pseudocompact
algebra and continuous algebra homomorphism are considered, though the combinatorics
of the Vquiver structure is lost.

2.3 The path coalgebra as a right adjoint functor

In this section, we present the main Theorem of this thesis, namely: the path coalgebra
as a right adjoint functor. We start by presenting the fundamental blocks of these con-
structions: the category of 𝑘-quivers and a quotient category of the (category of) pointed
coalgebras. Then we define the functors between these categories, which corresponds to
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the classical constructions for the path coalgebra and the Gabriel quiver of coalgebras.
Finally, we prove the main theorem.

2.3.1 Category of k-quivers
As briefly discussed on Remark 2.1.17, the category o quivers is not suited for working

functorially with the Gabriel quiver for coalgebras because it depends on a choice of basis,
which is not canonical. However, there is a simple solution for this problem: the category
of 𝑘-quivers, see [Gab73, §7.1]. A 𝑘-quiver is basically a quiver such that the arrows are a
vector space, as we define below.

Definition 2.3.1. A 𝑘-quiver 𝑉𝑄 = (𝑉𝑄0, 𝑉𝑄𝑖,𝑗) consists of a set of vertices 𝑉𝑄0 together
with a vector space 𝑉𝑄𝑖,𝑗 for each (ordered) pair 𝑖, 𝑗 ∈ 𝑉𝑄0, which we call arrow space.

A 𝑘-subquiver 𝑉𝑅 of 𝑉𝑄 is a 𝑘-quiver such that 𝑉𝑅0 ⊆ 𝑉𝑄0 is a subset and, for each
𝑖, 𝑗 ∈ 𝑉𝑅0, the arrow space 𝑉𝑅𝑖,𝑗 ⊆ 𝑉𝑄𝑖,𝑗 is a subspace.

Let 𝑉𝑄 and 𝑉𝑅 be 𝑘-quivers. A map of 𝑘-quivers 𝜑 = (𝜑0, 𝜑𝑖,𝑗) ∶ (𝑉𝑄0, 𝑉𝑄𝑖,𝑗) →
(𝑉𝑅0, 𝑉 𝑅𝑖′,𝑗 ′) consists of

• a function 𝜑0 ∶ 𝑉𝑄0 → 𝑉𝑅0.

• a linear map 𝜑𝑖,𝑗 ∶ 𝑉𝑄𝑖,𝑗 → 𝑉𝑅𝜑0(𝑖),𝜑0(𝑗) for each pair of vertices 𝑖, 𝑗 ∈ 𝑉𝑄0.

The category 𝑘-Quiv has objects 𝑘-quivers and morphisms maps of 𝑘-quivers.

There exists a correspondence between quivers and 𝑘-quivers: given a quiver 𝑄 =
(𝑄0, 𝑄1), for each pair of vertices 𝑖, 𝑗 ∈ 𝑄0, the vector spaces 𝑄𝑖,𝑗 with basis {𝑎 ∈ 𝑄1 | 𝑠(𝑎) =
𝑖, 𝑡(𝑎) = 𝑗} define a 𝑘-quiver 𝑉𝑄 = (𝑄0, 𝑄𝑖,𝑗); on the other hand, if we start with a 𝑘-quiver
𝑉𝑄 = (𝑉𝑄0, 𝑉𝑄𝑖,𝑗), we obtain a quiver by taking as arrows from 𝑖 to 𝑗 a basis of 𝑉𝑄𝑖,𝑗 . The
first correspondence (with the natural assignment for morphisms) defines a functor, which
we denote by

𝑉 (−) ∶ Quiv → 𝑘-Quiv (2.3.2)

The second correspondence does not. We observe in passing that the functor 𝑉 (−) of course
does possess a forgetful right adjoint, but we make no use of this functor here.

Example 2.3.3. Let 𝑅 be a quiver and 𝑄 a subquiver as depicted below

𝑄 ∶ 1 2𝛼

𝛾

𝑅 ∶ 1 2
𝛼

𝛽

𝛾

(2.3.4)

Consider the canonical inclusion 𝜄 ∶ 𝑄 → 𝑅. Then, the functor 𝑉 (−) gives the correspond-
ing 𝑘-quivers

𝑉 (𝑄) ∶ 1 2⟨𝛼⟩

⟨𝛾⟩

𝑉 (𝑅) ∶ 1 2
⟨𝛼,𝛽⟩

⟨𝛾⟩

(2.3.5)

where 𝑉 (𝑅) has vertices 𝑉 (𝑅)0 = {1, 2} and arrow spaces given by
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𝑉 (𝑅)𝑖,𝑗 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

⟨𝛼, 𝛽⟩ ≅ 𝑘2 if 𝑖 = 2, 𝑗 = 1
⟨𝛾⟩ ≅ 𝑘 if 𝑖 = 𝑗 = 2
{0} otherwise

The 𝑘-subquiver 𝑉 (𝑄) has the same set of vertices and arrow spaces of 𝑉 (𝑅) except for
𝑉 (𝑄)2,1, which is ⟨𝛼⟩. Thus 𝑉 (𝜄) ∶ 𝑉 (𝑄) → 𝑉 (𝑅) is the canonical inclusion map of 𝑘-quivers.

One of the main advantages of the relationship between quivers and coalgebras is that
one obtains a combinatorial description of the comodules for a given coalgebra in terms
of representations of quivers — this approach is utilized in the articles [CZ07; CKQ02;
Chi10; NS02; KS05; Sim08], among others. We mention that working with 𝑘-quivers we
maintain this advantage, see Apendix C for more on 𝑘-quiver representations of a coalgebra.
Representations of 𝑘-quivers are defined and their relation to (co)modules discussed, for
instance, in [Gab73, §7] and [Sim07, §5].

2.3.2 “Close” coalgebra homomorphisms
Definition 2.3.6. A relation ∼ on a set 𝑋 is a congruence relation if, for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 ,
it satisfies:

1. reflexivity, i.e. 𝑥 ∼ 𝑥;

2. symmetry, i.e. 𝑥 ∼ 𝑦 ⟹ 𝑦 ∼ 𝑥;

3. transitivity, i.e. 𝑥 ∼ 𝑦, 𝑦 ∼ 𝑧 ⟹ 𝑥 ∼ 𝑧.

In case 𝑋 has an operation, say ∗, then a congruence relation on 𝑋 must be compatible
with the operation, i.e. 𝑥 ∼ 𝑦, 𝑥′ ∼ 𝑦′ ⟹ 𝑥 ∗ 𝑥′ ∼ 𝑦 ∗ 𝑦′.

Given two coalgebra homomorphisms 𝜌, 𝛾 ∶ 𝐶 → 𝐷, write 𝜌 ∼ 𝛾 if

(𝜌 − 𝛾)(𝐶0) = 0, (𝜌 − 𝛾)(𝐶1) ⊆ 𝐷0. (2.3.7)

Lemma 2.3.8. The relation ∼ defines a congruence relation on PCog.

Proof. That 𝜌 ∼ 𝜌 and 𝜌 ∼ 𝛾 ⟹ 𝛾 ∼ 𝜌 are obvious. Suppose 𝜌 ∼ 𝛾 and 𝛾 ∼ 𝜎. Then
(𝜌 − 𝜎) = (𝜌 − 𝛾) + (𝛾 − 𝜎) and the result follows since compatibility with composition is
again elementary.

By PCog∼ we denote the corresponding quotient category.

Lemma 2.3.9. Let 𝜌, 𝛾 ∶ 𝐶 → 𝐷 be two homomorphisms in PCog such that 𝜌 ∼ 𝛾 . Then
(𝜌 − 𝛾)(𝐶𝑖) ⊆ 𝐷𝑖−1, for each 𝑖 ⩾ 0.

Proof. This proof follows a similar philosophy of [TW74, Proposition 4].

We proceed by induction on 𝑖. Suppose that (𝜌 − 𝛾)(𝐶𝑖) ⊆ 𝐷𝑖−1 for every 𝑖 ⩽ 𝑛 − 1.
Observe that

𝛥𝐷(𝜌 − 𝛾) = (𝜌 ⊗ 𝜌 − 𝛾 ⊗ 𝛾)𝛥𝐶 = (𝜌 ⊗ (𝜌 − 𝛾) + (𝜌 − 𝛾) ⊗ 𝛾)𝛥𝐶 (2.3.10)
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since 𝜌 and 𝛾 are coalgebra homomorphisms (see Definition 1.2.20). Thus, applying Theo-
rem 1.2.30 to (2.3.10), and provided that 𝛥𝐶(𝐶𝑛) ⊆ ∑𝑛

𝑖=0 𝐶𝑖 ⊗ 𝐶𝑛−𝑖 (see Definition 1.2.16), we
get

𝛥𝐷(𝜌 − 𝛾)(𝐶𝑛) = (𝜌 ⊗ (𝜌 − 𝛾) + (𝜌 − 𝛾) ⊗ 𝛾)𝛥𝐶(𝐶𝑛)

⊆ (𝜌 ⊗ (𝜌 − 𝛾) + (𝜌 − 𝛾) ⊗ 𝛾)(
𝑛

∑
𝑖=0

𝐶𝑖 ⊗ 𝐶𝑛−𝑖)

⊆
𝑛

∑
𝑖=0

𝐷𝑖 ⊗ 𝐷𝑛−1−𝑖 +
𝑛

∑
𝑖=0

𝐷𝑖−1 ⊗ 𝐷𝑛−𝑖

=
𝑛−1

∑
𝑖=0

𝐷𝑖 ⊗ 𝐷𝑛−1−𝑖 ⊆ 𝐷 ⊗ 𝐷𝑛−2 + 𝐷0 ⊗ 𝐷.

Hence (𝜌 − 𝛾)(𝐶𝑛) ⊆ 𝐷𝑛−1.

Working with the quotient category PCog∼ ∶= PCog⧸∼, much of the important
information from PCog is preserved. For instance:

Lemma 2.3.11. The projection functor Π ∶ PCog → PCog∼ reflects isomorphisms. That
is, if 𝜌 ∶ 𝐶 → 𝐷 is a coalgebra homomorphism such that Π(𝜌) ∶ 𝐶 → 𝐷 is an isomorphism,
then 𝜌 is an isomorphism.

Proof. Note that if [𝜌] is an isomorphism, then there exists a coalgebra homomorphism
𝛾 ∶ 𝐷 → 𝐶 such that [𝛾][𝜌] = [𝛾𝜌] = [id𝐶] and [𝜌][𝛾] = [𝜌𝛾] = [id𝐷]. Thus, it is sufficient
to show that for any coalgebra endomorphism 𝜌 ∶ 𝐶 → 𝐶, 𝜌 ∼ id𝐶 implies that 𝜌 is an
isomorphism.

Since 𝐶 = ⋃𝑛⩾0 𝐶𝑛, any element 𝑐 ∈ 𝐶 belongs to 𝐶𝑛 for some 𝑛 ∈ N. In particular, if
𝑐 ≠ 0, then there exists a 𝑛 such that 𝑐 ∈ 𝐶𝑛, but 𝑐 ∉ 𝐶𝑛−1.

Let 𝜌 ∶ 𝐶 → 𝐶 be a coalgebra homomorphism such that 𝜌 ∼ id, and consider 𝑐 ≠ 0 as
above.

If 𝑐 ∈ ker(𝜌), then, by Lemma 2.3.9,

(id − 𝜌)(𝑐) = 𝑐 − 𝜌(𝑐) = 𝑐 ∈ 𝐶𝑛−1, (2.3.12)

gives a contradiction. Hence ker 𝜌 = {0} and, consequently, 𝜌 is an injection.

Let 𝑐0 = 𝑐 and, using Lemma 2.3.9 again, define recursively 𝑐𝑖 = −𝑐𝑖−1+𝜌(𝑐𝑖−1) ∈ 𝐶𝑛−𝑖, for
𝑖 = 1, … , 𝑛. This sequence stops at 𝑐𝑛+1 = −𝑐𝑛 + 𝜌(𝑐𝑛) = 0 (it could happens that 𝜌(𝑐𝑖) = 𝑐𝑖
for 0 ⩽ 𝑖 < 𝑛, which makes no difference). Writing 𝑐′ = ∑𝑛

𝑖=0(−1)𝑖𝑐𝑖 we get:

𝜌(𝑐′) = 𝑐0 −𝑐0 + 𝜌(𝑐0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑐1

−𝜌(𝑐1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−𝑐2

+𝜌(𝑐2) − ⋯ + (−1)𝑛𝜌(𝑐𝑛) = 𝑐0 + (−1)𝑛𝑐𝑛+1 = 𝑐

Thus 𝜌 is a surjection and this completes the proof.
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Lemma 2.3.13. If 𝜌 ∈ HomPCog(𝐶, 𝐷) is an injection, then its image Π(𝜌) ∈ HomPCog∼(𝐶, 𝐷)
is a monomorphism.

Proof. Suppose 𝛾, 𝜎 ∶ 𝐵 → 𝐶 are two coalgebra homomorphisms such that 𝜌𝛾 ∼ 𝜌𝜎. For
any 𝑏 ∈ 𝐵0 we have

(𝜌𝛾 − 𝜌𝜎)(𝑏) = 𝜌(𝛾(𝑏) − 𝜎(𝑏)) = 0 ⟺ 𝛾(𝑏) − 𝜎(𝑏) = 0, (2.3.14)

since 𝜌 is an injection. For 𝑏′ ∈ 𝐵1, we have

(𝜌𝛾 − 𝜌𝜎)(𝑏′) = 𝜌(𝛾(𝑏′) − 𝜎(𝑏′)) ∈ 𝐷0 ⟺ 𝛾(𝑏′) − 𝜎(𝑏′) ∈ 𝐶0. (2.3.15)

since the image of skew-primitives by injections are skew-primitives (see Lemma 1.2.46. See
also Proposition 1.3.20). Thus 𝛾 ∼ 𝜎 and, therefore, 𝜌 is a monomorphism in PCog∼.

2.3.3 Path coalgebra and Gabriel k-quiver functors
We define functors between the categories introduced above.

Definition 2.3.16. Given a 𝑘-quiver 𝑉𝑄 = (𝑉𝑄0, 𝑉𝑄𝑔,ℎ), denote by Σ𝑄 = (𝑘𝑉𝑄0, 𝛥0, 𝜀0)
the group-like coalgebra of 𝑉𝑄0, and by 𝑉𝑄 = (𝑉𝑄1, 𝜇, 𝜈) the Σ𝑄-bicomodule 𝑉𝑄1 =
⨁𝑔,ℎ∈𝑉𝑄0

𝑉𝑄𝑔,ℎ with structure maps:

𝜇(𝑚𝑔,ℎ) = ℎ ⊗ 𝑚𝑔,ℎ, 𝜈(𝑚𝑔,ℎ) = 𝑚𝑔,ℎ ⊗ 𝑔, (2.3.17)

for each 𝑚𝑔,ℎ ∈ 𝑉𝑄𝑔,ℎ.

Definition 2.3.18. Define the path coalgebra of the 𝑘-quiver 𝑉𝑄, 𝑘[𝑉𝑄], as the cotensor
coalgebra CotΣ𝑄(𝑉𝑄).

For any 𝜑 = (𝜑0, 𝜑𝑔,ℎ) in Hom𝑘-Quiv(𝑉𝑄, 𝑉𝑅), the universal property of the coten-
sor coalgebra, Theorem 1.2.74, ensures the existence of a unique homomorphism 𝜌 ∈
HomPCog(𝑘[𝑉𝑄], 𝑘[𝑉𝑅]) making the following diagrams commutative:

CotΣ𝑄(𝑉𝑄) CotΣ𝑅(𝑉𝑅)

Σ𝑄 Σ𝑅

𝜋′
0

𝜌

𝜌0 𝜋0

𝜑0

CotΣ𝑄(𝑉𝑄) CotΣ𝑅(𝑉𝑅)

𝑉𝑄 𝑉𝑅

𝜋′
1

𝜌

𝜌1 𝜋1

𝜑1

(2.3.19)

where 𝜋′
𝑖 , 𝜋𝑖 are the canonical projections, 𝜑𝑖 are linear extensions of the maps defined by

𝜑, and 𝜌𝑖 ∶= 𝜑𝑖𝜋′
𝑖 , for 𝑖 = 0, 1. Set 𝑘[𝜑] ∶= 𝜌.

These constructions yield a covariant functor 𝑘[−] ∶ 𝑘-Quiv → PCog.

Denote by
𝑘̃[−] ∶ 𝑘-Quiv → PCog∼ (2.3.20)

the covariant functor Π𝑘[−], where Π ∶ PCog → PCog∼ is the projection functor.

Example 2.3.21. If 𝜄 ∶ 𝑉𝑄 ↪ 𝑉𝑅 is an inclusion of 𝑘-quivers, then 𝑘[𝜄] ∶ 𝑘[𝑉𝑄] → 𝑘[𝑉𝑅]
is the corresponding inclusion of coalgebras.
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Definition 2.3.22. Let 𝐶 be a pointed coalgebra. Define the Gabriel 𝑘-quiver of 𝐶,
GQ(𝐶) ∶= (GQ(𝐶)0,GQ(𝐶)𝑔,ℎ), by

GQ(𝐶)0 ∶= G(𝐶), GQ(𝐶)𝑔,ℎ ∶= P𝑔,ℎ(𝐶), (2.3.23)

see (1.3.16).

Let 𝜌 ∈ HomPCog(𝐶, 𝐷). By Lemma 1.2.46 (and in view that every coalgebra homomor-
phism with pointed domain is filtered, see Theorem 1.2.30), there exists a unique coalgebra
homomorphism 𝜌̄ ∶ 𝐶

𝐶0
→ 𝐷

𝐷0
such that the following diagram is commutative:

𝐶 𝐷

𝐶
𝐶0

𝐷
𝐷0

𝜌

𝑞 𝑞′

𝜌̄

(2.3.24)

where 𝑞 and 𝑞′ are the canonical quotient maps. The maps

𝜑0 ∶= 𝜌|G(𝐶) ∶ G(𝐶) → G(𝐷), 𝜑𝑔,ℎ ∶= 𝜌̄|P𝑔,ℎ(𝐶) ∶ P𝑔,ℎ(𝐶) → P𝜑0(𝑔),𝜑0(ℎ)(𝐷), (2.3.25)

define a map of 𝑘-quivers 𝜑 = (𝜑0, 𝜑𝑔,ℎ) ∶ GQ(𝐶) → GQ(𝐷).

This construction yields a covariant functor GQ(−) ∶ PCog → 𝑘-Quiv.

Furthermore,

Lemma 2.3.26. There is a unique covariant functor

G̃Q(−) ∶ PCog∼ → 𝑘-Quiv (2.3.27)

such that GQ(−) = G̃Q(−)Π, where Π ∶ PCog → PCog∼ is the projection functor.

Proof. Using Remark 1.3.7 and Proposition 1.3.20, one checks that defining G̃Q(𝐶) to be
GQ(𝐶) and G̃Q([𝜌]) to be GQ(𝜌) (for any representative of [𝜌]), we obtain a covariant
functor satisfying the claim. It is clearly unique.

Example 2.3.28. A simple example of a path coalgebra is given by the 𝑘-quiver

𝑉𝑄 =
∙1 ∙3

∙2

⟨𝑎⟩

⟨𝑏⟩ ⟨𝑐⟩
(2.3.29)

The coalgebra 𝑘[𝑉𝑄] is a 7 dimensional vector space with basis {𝑒1, 𝑒2, 𝑒3, 𝑎, 𝑏, 𝑐, 𝑐𝑏},
where 𝑒𝑖 are group-like elements. The comultiplication of 𝑐𝑏, for example, is given by

𝛥(𝑐𝑏) = 𝑒3 ⊗ 𝑐𝑏 + 𝑐 ⊗ 𝑏 + 𝑐𝑏 ⊗ 𝑒1.

Let 𝜌 ∶ 𝑘[𝑉𝑄] → 𝑘[𝑉𝑄] be the linear map that sends 𝑎 to 𝑎 + (𝑒3 − 𝑒1) and fixes all other
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elements of the given basis. Then 𝜌 is a coalgebra automorphism and GQ(𝜌) = id𝑉𝑄 . Thus
GQ(−) is not faithful.

2.3.4 Adjunction between pointed coalgebras and k-quivers

We prove that the functor 𝑘̃[−] is right adjoint to G̃Q(−) by presenting a counit
𝜀 ∶ G̃Q(𝑘̃[−]) → id𝑘-Quiv and a unit 𝜂 ∶ idPCog∼ → 𝑘̃[G̃Q(−)] of the adjuntion.

First, observe that for any 𝑘-quiver 𝑉𝑄, we have the vertex set

GQ(𝑘[𝑉𝑄])0 = G(𝑘[𝑉𝑄]) = G(Cot𝑘𝑉𝑄0( ⨁
𝑔,ℎ∈𝑉𝑄0

𝑉𝑄𝑔,ℎ)) = 𝑉𝑄0 (2.3.30)

and, for each 𝑔, ℎ ∈ 𝑉𝑄0, the arrow space

GQ(𝑘[𝑉𝑄])𝑔,ℎ = P𝑔,ℎ(Cot𝑘𝑉𝑄0( ⨁
𝑔,ℎ∈𝑉𝑄0

𝑉𝑄𝑔,ℎ)) =
𝑘{ℎ − 𝑔} ⊕ 𝑉𝑄𝑔,ℎ

𝑘{ℎ − 𝑔}
≅ 𝑉𝑄𝑔,ℎ (2.3.31)

(see Definition 1.2.72 for the structure of the cotensor coalgebra, and (2.3.17 for the structure
maps of the 𝑘𝑉𝑄0-bicomodule 𝑉𝑄𝑔,ℎ). Thus

Definition 2.3.32. Given 𝑉𝑄 ∈ 𝑘-Quiv, define the map of 𝑘-quivers

𝜀𝑉𝑄 ∶ G̃Q(𝑘̃[𝑉𝑄]) → 𝑉𝑄 (2.3.33)

by (𝜀𝑉𝑄)0 = id𝑉𝑄0 and (𝜀𝑉𝑄)𝑔,ℎ ∶ GQ(𝑘[𝑉𝑄])𝑔,ℎ ≅ 𝑉𝑄𝑔,ℎ is the natural isomorphism, see
(2.3.31).

Therefore, the maps 𝜀𝑉𝑄 are isomorphisms and are easily checked to be the components
of a natural transformation

𝜀 ∶ G̃Q(𝑘̃[−]) → id𝑘-Quiv. (2.3.34)

Given 𝐶 ∈ PCog, choose a coalgebra splitting 𝑠 ∶ 𝐶 → 𝐶0 of the canonical inclusion
𝑖0 ∶ 𝐶0 → 𝐶 (which exists by Theorem 1.2.29, because every pointed coalgebra has
separable coradical). We treat 𝐶 as a 𝐶0-bicomodule via 𝑠 (see Remark 1.2.54) and choose
a splitting 𝑡 ∶ 𝐶 → 𝐶1 of the canonical inclusion of 𝐶0-bicomodules 𝑖1 ∶ 𝐶1 → 𝐶 (which
exists because 𝐶1 is an injective comodule by Theorem 1.2.49). Combining the splitting 𝑡
with the canonical projection 𝑞 ∶ 𝐶1 → 𝐶1

𝐶0
we get a homomorphism of 𝐶0-bicomodules

𝑞𝑡 ∶ 𝐶 → 𝐶1
𝐶0

. Since 𝐶1
𝐶0

≅ ⨁𝑔,ℎ∈G(𝐶) P𝑔,ℎ(𝐶) as 𝐶0-bicomodules (see right after Proposition
1.3.20), say 𝜃, the composition 𝑡 = 𝜃𝑞𝑡 ∶ 𝐶 → ⨁𝑔,ℎ∈G(𝐶) P𝑔,ℎ(𝐶) is a homomorphism of
𝐶0-bicomodules which kills 𝐶0 (𝑞 guarantee this).

Definition 2.3.35. The maps 𝑠, 𝑡 define, by the universal property of the cotensor coalgebra,
Theorem 1.2.74, the coalgebra homomorphism

𝜂𝑠,𝑡𝐶 ∶ 𝐶 → Cot𝐶0( ⨁
𝑔,ℎ∈G(𝐶)

P𝑔,ℎ(𝐶)) = 𝑘̃[G̃Q(𝐶)]. (2.3.36)
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Lemma 2.3.37. The congruence class of 𝜂𝑠,𝑡𝐶 in PCog∼ does not depend on the choice of
splittings 𝑠, 𝑡.

Proof. Indeed suppose that 𝑠, 𝑡 and 𝑠′, 𝑡′ are two different choices, and 𝜂𝑠,𝑡𝐶 , 𝜂𝑠
′,𝑡′
𝐶 are the

corresponding maps. We must confirm that 𝜂𝑠,𝑡𝐶 ∼ 𝜂𝑠
′,𝑡′
𝐶 . One has

(𝜂𝑠,𝑡𝐶 − 𝜂𝑠
′,𝑡′
𝐶 )|||𝐶0

= 𝜋0(𝜂𝑠,𝑡𝐶 − 𝜂𝑠
′,𝑡′
𝐶 )𝜄0 = 𝑠𝜄0 − 𝑠′𝜄0 = 0

and

(𝜂𝑠,𝑡𝐶 − 𝜂𝑠
′,𝑡′
𝐶 )|||𝐶1

= (𝜋0 + 𝜋1)(𝜂𝑠,𝑡𝐶 − 𝜂𝑠
′,𝑡′
𝐶 )𝜄1 = (𝑠 − 𝑠′⏟⏞⏞⏞⏟⏞⏞⏞⏟

⊆𝐶0

)𝜄1 + 𝜃𝑞(𝑡𝜄1 − 𝑡′𝜄1⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=0

) ⊆ 𝐶0 = 𝑘[GQ(𝐶)]0.

So we may denote 𝜂𝑠,𝑡𝐶 simply by 𝜂𝐶 .

Remark 2.3.38. The map 𝜂𝐶 is the image in PCog∼ of the coalgebra embedding considered
in [Rad82, Corollary 1] and [Woo97, (4.8)], see also [CM97, Theorem 4.3] and [CHZ06,
Theorem 3.1]).

Lemma 2.3.39. The map 𝜂𝐶 ∶ 𝐶 → 𝑘̃[G̃Q(𝐶)] is the component at 𝐶 of a natural transfor-
mation

𝜂 ∶ idPCog∼ → 𝑘̃[G̃Q(−)]. (2.3.40)

Proof. Let 𝜌 ∶ 𝐶 → 𝐷 be a morphism in PCog. We must check that the following square
commutes in PCog∼ (see Definition 1.1.14):

𝐶 𝐷

𝑘̃[G̃Q(𝐶)] 𝑘̃[G̃Q(𝐷)]

𝜌

𝜂𝐶 𝜂𝐷

𝑘̃[G̃Q(𝜌)]

(2.3.41)

Let 𝑠, 𝑠′, 𝑡 and 𝑡′ be splittings of the canonical inclusions 𝜄0 ∶ 𝐶0 → 𝐶, 𝜄′0 ∶ 𝐷0 → 𝐷,
𝜄1 ∶ 𝐶1 → 𝐶 and 𝜄′1 ∶ 𝐷1 → 𝐷 respectively. Denote by 𝜌̃ the map 𝑘̃[G̃Q(𝜌)]. We have that

(𝜂𝑠
′,𝑡′
𝐷 𝜌 − 𝜌̃𝜂𝑠,𝑡𝐶 )

|||𝐶0
= 𝜋′

0(𝜂
𝑠′,𝑡′
𝐷 𝜌− 𝜌̃𝜂𝑠,𝑡𝐶 )𝜄0 = (𝑠′𝜌− 𝜌|𝐶0 𝜋0𝜂

𝑠,𝑡
𝐶 )𝜄0 = 𝑠′𝜌𝜄0

⏟⏞⏞⏟⏞⏞⏟
=𝜌|𝐶0

− 𝜌|𝐶0 𝑠𝜄0⏟⏟⏟
=id𝐶0

= 0. (2.3.42)

and

𝜋′
1(𝜂

𝑠′,𝑡′
𝐷 𝜌 − 𝜌̃𝜂𝑠,𝑡𝐶 )𝜄1 = (𝜃′𝑞′𝑡′𝜌 − 𝜃′ 𝜌̄| 𝐶1

𝐶0
𝜃−1𝜋1𝜂𝑠,𝑡𝐶 )𝜄1 = 𝜃′𝑞′𝑡′𝜌𝜄1 − 𝜃′ 𝜌̄| 𝐶1

𝐶0
𝜃−1𝜃𝑞𝑡𝜄1

= 𝜃′𝑞′𝑡′𝜄′1 𝜌|𝐶1 − 𝜃′ 𝜌̄| 𝐶1
𝐶0
𝑞 = 𝜃𝑞′(𝜌|𝐶1 − 𝜌|𝐶1) = 0.

(2.3.43)
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Hence the classes of 𝜂𝑠
′,𝑡′
𝐷 𝜌 and 𝜌̃𝜂𝑠,𝑡𝐶 are equal in PCog∼ and 𝜂 is a natural transformation.

Theorem 2.3.44. The functor 𝑘̃[−] ∶ 𝑘-Quiv → PCog∼ is right adjoint to the functor
G̃Q(−) ∶ PCog∼ → 𝑘-Quiv.

Proof. We check that the counit-unit equations hold, see Proposition 1.1.23, i.e. for any
𝐶 ∈ PCog∼, and for any 𝑉𝑄 ∈ 𝑘-Quiv, we have the equalities:

idG̃Q(𝐶) = 𝜀G̃Q(𝐶)G̃Q(𝜂𝑐), id𝑘̃[𝑉𝑄] = 𝑘̃[𝜀𝑉𝑄]𝜂𝑘̃[𝑉𝑄]. (2.3.45)

Observe that

(𝜀G̃Q(𝐶)G̃Q(𝜂𝐶))0 = (𝜀G̃Q(𝐶))0 𝜂𝐶 |G(𝐶) = idG(𝐶) = (idG̃Q(𝐶))0,

since 𝜂𝐶 |𝐶0 = id𝐶0 (cf. equation 2.3.42). Moreover, the restriction 𝜂𝐶 |𝐶1 = 𝑠|𝐶1 + 𝜃 𝑞|𝐶1 , where
𝑠 ∶ 𝐶 → 𝐶0 is a splitting of the canonical inclusion 𝜄0 ∶ 𝐶0 → 𝐶, 𝑞 ∶ 𝐶 → 𝐶

𝐶0
is the canonical

projection and 𝜃 ∶ 𝐶1
𝐶0

→ ⨁𝑔,ℎ∈G(𝐶) P𝑔,ℎ(𝐶) is the natural isomorphism (cf. equation 2.3.43.
See also Remark 1.2.76) shows that

𝜂𝐶 |𝐶1 ∶ 𝐶0 ⊕ ( ⨁
𝑔,ℎ∈G(𝐶)

P′
𝑔,ℎ(𝐶)) → 𝐶0 ⊕ ( ⨁

𝑔,ℎ∈G(𝐶)

P𝑔,ℎ(𝐶))

is an isomorphism, with P′
𝑔,ℎ(𝐶) = ker(𝑠|𝐶1) ∩ P𝑔,ℎ(𝐶). Thus, for each 𝑔, ℎ ∈ G(𝐶), the

commutative diagram

P𝑔,ℎ(𝐶) 𝑘⟨ℎ − 𝑔⟩ ⊕ P𝑔,ℎ(𝐶)

P𝑔,ℎ(𝐶)
𝑘⟨ℎ−𝑔⟩⊕P𝑔,ℎ(𝐶)

𝑘⟨ℎ−𝑔⟩

𝜂𝐶

𝑞 𝑞′

𝜂̄𝐶

reveals that 𝜂̄𝐶 |P𝑔,ℎ(𝐶) is the natural isomorphism (𝜀G̃Q(𝐶))
−1
𝑔,ℎ. Hence,

(𝜀G̃Q(𝐶)G̃Q(𝜂𝐶))𝑔,ℎ = (𝜀G̃Q(𝐶))𝑔,ℎ 𝜂̄𝐶 |P𝑔,ℎ(𝐶) = idP𝑔,ℎ(𝐶) = (idG̃Q(𝐶))𝑔,ℎ.

The second equality of (2.3.45) translates as 𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] ∼ id𝑘[𝑉𝑄], where 𝑠, 𝑡 are

two splittings constructed as in paragraph just before Definition 2.3.35 and 𝜂𝑠,𝑡𝑘[𝑉𝑄] is the
corresponding morphism.

We have the following:

(𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] − id𝑘[𝑉𝑄])
|||Σ𝑄

= 𝜋0(𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] − id𝑘[𝑉𝑄])𝜄0 = ((𝜀𝑉𝑄)0𝜋′
0𝜂

𝑠,𝑡
𝑘[𝑉𝑄] − 𝜋0)𝜄0

= idΣ𝑄 𝑠𝜄0 − 𝜋0𝜄0 = idΣ𝑄 − idΣ𝑄 = 0
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as shown on the commutative diagram

𝑘[𝑉𝑄] 𝑘[GQ(𝑘[𝑉𝑄])] 𝑘[𝑉𝑄]

Σ𝑄 Σ𝑄 Σ𝑄

𝜂𝑠,𝑡𝑘[𝑉𝑄]

𝑠

𝑘[𝜀𝑉𝑄]

𝜋′
0 𝜋0𝜄0

idΣ𝑄 (𝜀𝑉𝑄)0=idΣ𝑄

and

𝜋1(𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] − id𝑘[𝑉𝑄])𝜄1 = ((𝜀𝑉𝑄)1𝜋′
1𝜂

𝑠,𝑡
𝑘[𝑉𝑄] − 𝜋1)𝜄1 = (𝜀𝑉𝑄)1𝜃𝑞𝑡𝜄1 − 𝜋1𝜄1

= ((𝜀𝑉𝑄)1𝜃𝑞)
|||𝑘[𝑉𝑄]1

− 𝜋1|𝑘[𝑉𝑄]1 = 0

since the projection

Σ𝑄 ⊕ 𝑉𝑄
Σ𝑄⊕𝑉𝑄
Σ𝑄

⨁
𝑔,ℎ∈𝑉𝑄0

P𝑔,ℎ(𝑘[𝑉𝑄]) ⨁
𝑔,ℎ∈𝑉𝑄0

𝑉𝑄𝑔,ℎ = 𝑉𝑄
𝑞 𝜃 (𝜀𝑉𝑄)1

is exactly 𝜋1|𝑘[𝑉𝑄]1 . Hence,

(𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] − id𝑘[𝑉𝑄])
|||𝑘[𝑉𝑄]1

= (𝜋0 + 𝜋1)(𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] − id𝑘[𝑉𝑄])𝜄1 ⊆ 𝑘[𝑉𝑄]0

implies 𝑘[𝜀𝑉𝑄]𝜂𝑠,𝑡𝑘[𝑉𝑄] ∼ id𝑘[𝑉𝑄], and the theorem is proved.

2.3.5 Consequences and examples
Remark 2.3.46. Based on Definition 2.1.15, we call a subcoalgebra 𝐻 of a path coalgebra
𝑘[𝑉𝑄] admissible if 𝐻 contains 𝑘[𝑉𝑄]1. If 𝐶 is a pointed coalgebra, any representative in
PCog of the unit map 𝜂𝐶 ∶ 𝐶 → 𝑘̃[G̃Q(𝐶)] of Theorem 2.3.44 realizes 𝐶 as an admissible
subcoalgebra of its path coalgebra.

Remark 2.3.47. Using Proposition 1.2.33 and Lemma 1.2.46, one shows that the adjunction
of Theorem 2.3.44 restricts to an adjunction between the wide subcategories of 𝑘-Quiv
and PCog∼ with morphisms the monomorphisms, cf. [Qui17].

Remark 2.3.48. If 𝐶 is pointed, then it is hereditary if, and only if, 𝐶 is isomorphic to
𝑘̃[G̃Q(𝐶)], cf. Proposition 2.1.20. Therefore, if we restrict PCog∼ to the full subcategory
of hereditary pointed coalgebras, the adjunction of Theorem 2.3.44 yields an adjoint
equivalence of categories.

Remark 2.3.49. Each component of the unit is a monomorphism and each component of
the counit is an isomorphism. It follows from Corollary 1.1.27 that the functor G̃Q(−) is
faithful and that 𝑘̃[−] is fully faithful.

Remark 2.3.50. The unit and counit of the adjunction from Theorem 2.3.44 define bijections

Ψ = Ψ𝐶,𝑉𝑄 ∶ HomPCog∼(𝐶, 𝑘̃[𝑉𝑄]) → Hom𝑘-Quiv(G̃Q(𝐶), 𝑉𝑄), (2.3.51)
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with Ψ([𝜌]) = 𝜀𝑉𝑄G̃Q([𝜌]) and Ψ−1(𝜑) = 𝑘̃[𝜑]𝜂𝐶 , see Proposition 1.1.23.

Remark 2.3.52. The adjunction of Theorem 2.3.44 may be compared with a similar, but
different adjunction due to [Rad82]. On the “combinatorial side”, Radford’s category
(S V )𝑘 is equivalent to 𝑘-Quiv, but the “algebraic” categories (C𝑝E )𝑘 and PCog∼ are
non-equivalent. While the left adjoint functor G̃Q(−) above corresponds to the Gabriel
𝑘-quiver construction, the left adjoint functor in [Rad82] is better thought of as giving
a Peirce decomposition of a coalgebra, cf. [HGK10, §2.1] for Peirce decompositions of
algebras or [CG02] for a related approach to coalgebras using idempotents. In order to see
that the functors are fundamentally different, one may observe that the image of the unit
map of Radford’s adjunction applied to the coalgebra 𝑘[𝑉𝑄] of Example 2.3.28 does not
yield an admissible subcoalgebra.

Example 2.3.53. The adjunction of Theorem 2.3.44 allows us to describe the automor-
phisms of the path coalgebra 𝑘̃[𝑉𝑄] in terms of automorphisms of the corresponding
𝑘-quiver 𝑉𝑄. In the following examples we suppress notation: an arrow that should be
labelled with a vector space of dimension 1 will be left unlabelled.

1. Consider two 𝑘-quivers with underlying graphs:

𝑉𝑄 = 𝔸∞ ∶ ∙ ∙ ∙ ∙ ⋯

𝑉𝑅 = 𝔸∞ ∞ ∶ ⋯ ∙ ∙ ∙ ⋯

An automorphism of 𝑘̃[𝑉𝑄] must fix the vertices. Hence,

AutPCog∼(𝑘̃[𝑉𝑄]) ≅ ∏
𝑛∈N

𝑘×,

where 𝑘× is the group of units of 𝑘 and the product is indexed by the arrow spaces.

An automorphism of 𝑘̃[𝑉𝑅] can shift the vertices. Hence,

AutPCog∼(𝑘̃[𝑉𝑅]) ≅ (
∏
𝑛∈Z

𝑘×
)

⋊ Z.

Note that the automorphism groups of both these coalgebras in PCog are quite a bit
larger, because for example in PCog∼ we don’t distinguish between the identity and
the automorphism that sends a element 𝑥 of the arrow space 𝑉𝑄𝑒,𝑓 to 𝑥 + (𝑓 − 𝑒).

2. If 𝑉𝑄 is the 𝑘-quiver with one vertex and a loop indexed by the vector space 𝑉 , then
we have AutPCog∼(𝑘̃[𝑉𝑄]) ≅ GL(𝑉 ) = Aut𝑘(𝑉 ). The 𝑘-quivers of this form are the
only connected 𝑘-quivers for which the corresponding automorphism groups in
PCog and in PCog∼ are equal.

3. For the Kronecker 𝑘-quiver

𝐾𝑉 ∶ ∙ ∙𝑉



56

2 | A FUNCTORIAL APPROACH TO THE PATH COALGEBRA AND GABRIEL QUIVER CONSTRUCTIONS

with 𝑉 a vector space, we have

AutPCog∼(𝑘̃[𝐾𝑉 ]) ≅ GL(𝑉 ).

2.4 Parallel for pseudocompact algebras

In this section we present two adjunctions for pseudocompact algebras as consequence
of the adjunction of Theorem 2.3.44. More precisely, the duality between the category of
pseudocompact algebras and coalgebras provide, together with Theorem 2.3.44, a pair of
contravariant functors between the quotient category of pointed pseudocompact algebras
PAlg∼ and the category of 𝑘-quivers 𝑘-Quiv, which are adjoint on the left. Furthermore,
the category 𝑘-Quiv is equivalent to the category ParPCog, consisting of pairs of pointed
cosemisimple coalgebras and bicomodules; the dual category ParPAlg is well defined
and consists of topologically semisimple pseudocompact algebras and pseudocompact
bimodules; we obtain an adjunction between the categories PAlg and ParPAlg, which
extends Theorem 2.2.6.

2.4.1 Preliminaries and categories
Recall from Section 1.4 that PAlg denotes the category of pointed pseudocompact

algebras and continuous algebra homomorphisms.

Let 𝛼, 𝛽 ∶ 𝐴 → 𝐵 be two homomorphisms in PAlg. We write 𝛼 ∼ 𝛽 if

(𝛼 − 𝛽)(𝐴) ⊆ 𝐽 (𝐵), (𝛼 − 𝛽)(𝐽 (𝐴)) ⊆ 𝐽 2(𝐵), (2.4.1)

see (2.2.3). As with coalgebras, one easily checks that ∼ defines a congruence relation on
PAlg. We denote by PAlg∼ the corresponding quotient category. The relation ∼ for pseu-
docompact algebras is dual to the relation ∼ for coalgebras in the following sense:

Proposition 2.4.2. Let 𝜌, 𝛾 ∶ 𝐶 → 𝐷 be two homomorphisms in PCog. Then 𝜌 ∼ 𝛾 if, and
only if, 𝜌∗ ∼ 𝛾∗ in PAlg.

Proof. If 𝜌′, 𝛾 ′ ∶ 𝐴 → 𝐵 are homomorphisms of pseudocompact algebras, the condition
𝜌′ ∼ 𝛾 ′ can be interpreted as saying that the compositions

𝐴
𝜌′−𝛾′
−−−−→ 𝐵 →

𝐵
𝐽 (𝐵)

, 𝐽 (𝐴)
𝜌′−𝛾′
−−−−→ 𝐽(𝐵) →

𝐽 (𝐵)
𝐽 2(𝐵)

(2.4.3)

are the zero map, while if 𝜌, 𝛾 ∶ 𝐶 → 𝐷 are homomorphisms of coalgebras, the condition
𝜌 ∼ 𝛾 can be interpreted as saying that the compositions

𝐶0 → 𝐶
𝜌−𝛾
−−−→ 𝐷,

𝐶1

𝐶0
→

𝐶
𝐶0

𝜌−𝛾
−−−→

𝐷
𝐷0

(2.4.4)

are the zero map. The proposition is thus a formal consequence of duality.
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Proposition 2.4.5. The duality functors (−)∗ between PCog and PAlg induce a duality
between the categories PCog∼ and PAlg∼.

Proof. Immediate from Proposition 2.4.2.

One proves as in [IM20, Lemma 3.8] (or by dualizing Lemma 2.3.9) that given 𝛼, 𝛽 ∶
𝐴 → 𝐵 in PAlg, if 𝛼 ∼ 𝛽 then (𝛼 − 𝛽)(𝐽 𝑛(𝐴)) ⊆ 𝐽 𝑛+1(𝐵) for every 𝑛 ⩾ 0.

2.4.2 Contravariant adjoint functors
We obtain a new, contravariant adjunction immediately from the adjunction of Theorem

2.3.44 and the duality of categories of Proposition 2.4.5:

Define the contravariant functors

𝑘̃[[−]] ∶ 𝑘-Quiv PAlg∼,

𝑉𝑄 𝑘̃[𝑉𝑄]∗
G̃Q((−)) ∶ PAlg∼ 𝑘-Quiv,

𝐴 G̃Q(𝐴∗)
(2.4.6)

with the obvious definition for morphisms. We have

Theorem 2.4.7. The functors G̃Q((−)) and 𝑘̃[[−]] are adjoint on the left.

Proof. This is completely formal. Given 𝐴 ∈ PAlg and 𝑉𝑄 ∈ 𝑘-Quiv we have

Hom𝑘-Quiv(G̃Q((𝐴)), 𝑉𝑄) =Hom𝑘-Quiv(G̃Q(𝐴∗), 𝑉𝑄)

≅HomPCog∼(𝐴
∗, 𝑘̃[𝑉𝑄]) (2.4.8)

≅HomPAlg∼(𝑘̃[𝑉𝑄]
∗, 𝐴∗∗) (2.4.9)

≅HomPAlg∼(𝑘̃[[𝑉𝑄]], 𝐴), (2.4.10)

where (2.4.8) is due to Theorem 2.3.44 and (2.4.9) (and (2.4.10)) is due to the duality of
Proposition 2.4.5, as required (see Definition 1.1.20).

2.4.3 Covariant adjoint functors
As briefly explained in Section 2.2, Iusenko and MacQuarrie [IM20] define a pair of

covariant adjoint functors between a certain category of finite 𝑘-quivers and a category
whose objects are pseudocompact pointed algebras 𝐴 such that 𝐴

𝐽 2(𝐴) is finite dimensional
and whose morphisms are (congruence classes of) those algebra homomorphisms 𝛼 ∶ 𝐴 →
𝐵 such that the induced map 𝐴

𝐽 (𝐴) →
𝐵

𝐽 (𝐵) is an surjection. The adjunctions from Theorem
2.3.44 and Theorem 2.4.7 are far more general, because there are no finiteness assumptions
and there are no conditions on the algebra homomorphisms. We show in this section that
if one is willing to leave behind the notion of quiver, one can in fact extend the adjunction
of Theorem 2.2.6 to this same level of generality.

The category 𝑘-Quiv defined in Section 2.3.1 is isomorphic to the “category of pairs”,
which we define below:
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Definition 2.4.11. Denote by ParPCog the category whose objects are pairs (Σ, 𝑉 ),
where Σ is a pointed cosemisimple coalgebra and 𝑉 is a Σ-bicomodule. A morphism in
HomParPCog((Σ, 𝑉 ), (Σ′, 𝑉 ′)) is a pair (𝜑0, 𝜑1) consisting of a coalgebra homomorphism
𝜑0 ∶ Σ → Σ′ and a Σ′-bicomodule homomorphism 𝜑1 ∶ 𝑉 → 𝑉 ′, with 𝑉 treated as a
Σ′-bicomodule via 𝜑0 (see Remark 1.2.54).

Lemma 2.4.12. The categories 𝑘-Quiv and ParPCog are isomorphic.

Proof. For 𝑘-quivers 𝑉𝑄, 𝑉𝑅 and any map of 𝑘-quivers 𝜑 ∶ 𝑉𝑄 → 𝑉𝑅, define

𝑃(𝑉𝑄) = (Σ𝑄 , 𝑉𝑄), 𝑃(𝜑) = (𝜑0, 𝜑1) ∶ (Σ𝑄 , 𝑉𝑄) → (Σ𝑅, 𝑉𝑅), (2.4.13)

where Σ𝑄 is the group-like coalgebra of 𝑉𝑄0 and 𝑉𝑄 is the Σ𝑄-bicomodule ⨁𝑔,ℎ∈𝑉𝑄0
𝑉𝑄𝑔,ℎ, as

in Definition 2.3.16, and 𝜑0, 𝜑1 = ∑𝑔,ℎ∈𝑉𝑄0
𝜑𝑔,ℎ are the respective linear extensions. Hence,

𝑃 ∶ 𝑘-Quiv → ParPCog is a covariant functor.

In the other direction, we define the covariant functor 𝑄 ∶ ParPCog → 𝑘-Quiv
by sending (Σ, 𝑉 ) to the 𝑘-quiver 𝑉𝑄 having vertices 𝑉𝑄0 = G(Σ), the set of group-like
elements of Σ, and, for each pair 𝑔, ℎ ∈ G(Σ),

𝑉𝑄𝑔,ℎ = {𝑣 ∈ 𝑉 | 𝜇(𝑣) = ℎ ⊗ 𝑣 and 𝜈(𝑣) = 𝑣 ⊗ 𝑔}. (2.4.14)

In order to see that the arrow space 𝑉𝑄𝑔,ℎ is well defined, observe that G(Σ) is a vector
space basis for Σ (see Proposition 1.3.5 and Remark 1.3.7) and, using the structure of
(bi)comodule of 𝑉 (see equations 1.2.35 and 1.2.36), any element 𝑣 ∈ 𝑉 can be uniquely
written as 𝑣 = ∑𝑔,ℎ∈G(Σ) 𝑣𝑔,ℎ, for only finitely many 𝑣𝑔,ℎ ≠ 0 and such that 𝜇(𝑣𝑔,ℎ) = ℎ ⊗ 𝑣𝑔,ℎ
and 𝜈(𝑣𝑔,ℎ) = 𝑣𝑔,ℎ ⊗ 𝑔 . The action on morphisms is simply the restrictions 𝜑0 = 𝜑0|𝑉𝑄0

and
𝜑𝑔,ℎ = 𝜑1|𝑉𝑄𝑔,ℎ . Since 𝑉 = ⨁𝑉𝑄𝑔,ℎ, it is readily seen that the composites 𝑄𝑃 and 𝑃𝑄 are
identity functors and, therefore, 𝑄 = 𝑃−1 and 𝑃 is an isomorphism.

Definition 2.4.15. Dually, define the category ParPAlg to be the category whose objects
are pairs (𝐴, 𝑈 ) with 𝐴 a pointed topologically semisimple pseudocompact algebra and 𝑈
a pseudocompact 𝐴-bimodule. A morphism (𝐴, 𝑈 ) → (𝐴′, 𝑈 ′) is a pair (𝜙0, 𝜙1) consisting
of a continuous algebra homomorphism 𝜙0 ∶ 𝐴 → 𝐴′ and a continuous 𝐴-bimodule
homomorphism 𝜙1 ∶ 𝑈 → 𝑈 ′, with 𝑈 ′ treated as an 𝐴-bimodule via 𝜙0.

Lemma 2.4.16. The categories ParPCog and ParPAlg are dual.

Proof. The assignment (Σ, 𝑉 ) ↦ (Σ∗, 𝑉 ∗) clearly defines a duality.

By composing,

Corollary 2.4.17. The category 𝑘-Quiv is dual to the category ParPAlg.

Remark 2.4.18. One could alternatively dualize the category of 𝑘-quivers directly, but this
is awkward and one loses combinatorial intuition anyway, because the dual of a map of
(normal) 𝑘-quivers that is not injective on vertices will not be a map of directed graphs
between the dual quivers (vertices do not go to vertices).
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Consider the covariant functor

𝑇 [[−]] ∶ ParPAlg → PAlg∼ (2.4.19)

given on objects by 𝑇 [[(𝐴, 𝑈 )]] ∶= T[[𝐴, 𝑈 ]] and on morphisms via the universal prop-
erty of the complete tensor algebra, Proposition 1.4.45, i.e. given 𝜙 ∶ (𝐴, 𝑈 ) → (𝐴′, 𝑈 ′),
𝑇 [[𝜙]] ∶ T[[𝐴, 𝑈 ]] → T[[𝐴′, 𝑈 ′]] is the unique continuous algebra homomorphism such
that 𝑇 [[𝜙]]|𝐴 = 𝜙0 and 𝑇 [[𝜙]]|𝑈 = 𝜙1.

Consider the covariant functor

𝐺[[−]] ∶ PAlg∼ → ParPAlg (2.4.20)

given on objects by 𝐺[[𝐴]] ∶= (
𝐴

𝐽 (𝐴) ,
𝐽 (𝐴)
𝐽 2(𝐴)). Let 𝛼 ∈ HomPAlg(𝐴, 𝐵). Since 𝐵 is a pointed,

therefore basic, Lemma 1.4.31 implies that 𝛼(𝐽 (𝐴)) ⊆ 𝐽 (𝐵) and 𝛼(𝐽 2(𝐴)) ⊆ 𝐽 2(𝐵). Hence,
the induced map 𝛼0 ∶ 𝐴

𝐽 (𝐴) → 𝐵
𝐽 (𝐵) , given by 𝛼0(𝑎 + 𝐽 (𝐴)) = 𝛼(𝑎)𝐽 (𝐵) is a continuous

algebra homomorphism, and 𝛼1 ∶ 𝐽 (𝐴)
𝐽 2(𝐴) →

𝐽 (𝐵)
𝐽 2(𝐵) , given by 𝛼1(𝑎′ + 𝐽 2(𝐴)) = 𝛼(𝑎′)𝐽 2(𝐵), is a

continuous homomorphism of 𝐴
𝐽 (𝐴)-bimodules. Define 𝐺[[𝛼]] = ([𝛼0], [𝛼1]).

We have the following diagram of categories and functors, wherein arrows marked 𝐸
are equivalences and arrows marked 𝐷 are dualities:

ParPCog 𝑘-Quiv PCog∼

ParPAlg PAlg∼

𝐸

𝐷

𝑘̃[−]

G̃Q(−)
𝐷

𝑇 [[−]]

𝐺[[−]]

(2.4.21)

Lemma 2.4.22. In the above diagram (2.4.21), the composition

ParPAlg → ParPCog → 𝑘-Quiv → PCog∼ → PAlg∼ (2.4.23)

is naturally isomorphic to 𝑇 [[−]], and the composition

PAlg∼ → PCog∼ → 𝑘-Quiv → ParPCog → ParPAlg (2.4.24)

is naturally isomorphic to 𝐺[[−]].

Proof. Simple checks, where (2.4.23) follows from Lemma 1.4.47 and (2.4.24) follows from
Proposition 1.4.22 (see also Remark 1.4.25).

Theorem 2.4.25. The functor 𝑇 [[−]] is left adjoint to the functor 𝐺[[−]].

Proof. Immediate from Lemma 2.4.22 and Theorem 2.3.44.

Theorem 2.2.6 can be interpreted as a special case of Theorem 2.4.25: The subcategory
 of ParPAlg whose objects are those pairs (𝐴, 𝑈 ) with both 𝐴, 𝑈 finite dimensional and
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whose morphisms are those (𝜑0, 𝜑1) with 𝜑0 surjective, is equivalent to the category of
finite pointed quivers, see Definition 2.2.1. On the algebra side we restrict PAlg∼ to the
category  whose objects are those algebras 𝐴 in PAlg∼ with 𝐴

𝐽 2(𝐴) finite dimensional, and
whose morphisms are (congruence classes of) those algebra homomorphisms 𝐴 → 𝐵 such
that the induced map 𝐴

𝐽 (𝐴) →
𝐵

𝐽 (𝐵) is surjective. Then, Theorem 2.4.25 restrict to adjoint
functors

 
𝑇 [[−]]

𝐺[[−]]
(2.4.26)

and this adjunction is Theorem 2.2.6.
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Chapter 3

Related adjunctions

As discussed in the previous chapter, representations of finite dimensional algebras
over an algebraically closed field are related to representations of quivers. Moreover,
the finite dimensional restriction on the algebras could be surpassed through (pointed)
coalgebras (or pseudocompact algebras). Gabriel defined and worked with the concept of
𝑘-species, which generalized 𝑘-quivers. This field was further developed, mainly by Dlab
and Ringel, characterizing the finite and tame representation types of a tensor algebra of
a finite 𝑘-species in terms of its underlying diagram. Moreover, any finite dimensional
basic algebra over a perfect field is a quotient of a tensor algebra of some 𝑘-species by an
admissible ideal.

In this Chapter we make a brief introduction to 𝑘-species and then, with similar
constructions from the previous chapter, generalize Theorem 2.3.44, constructing an ad-
junction between the category of coalgebras with separable coradical and filtered coalgebra
homomorphisms and the category of pairs of cosemisimple coalgebras with separable
coradical and bicomodules. Moreover, when restricted to basic coalgebras, the category of
pairs is isomorphic to an analogous category of 𝑘-species for coalgebras.

3.1 k-species
In this section we present the basics of 𝑘-species.

Definition 3.1.1. A 𝑘-species 𝑆 = (𝐾𝑖, 𝐸𝑖,𝑗)𝑖,𝑗∈𝐼 consists of a family of finite dimensional
division algebras, {𝐾𝑖}𝑖∈𝐼 , together with 𝐾𝑗-𝐾𝑖-bimodules, 𝐸𝑖,𝑗 , for each 𝑖, 𝑗 ∈ 𝐼 , cf. [Gab73,
§7.1].

A morphism of 𝑘-species, 𝑓 ∶ (𝐾𝑖, 𝐸𝑖,𝑗)𝑖,𝑗∈𝐼 → (𝐾 ′
𝑖′ , 𝐸′

𝑖′,𝑗 ′)𝑖′,𝑗 ′∈𝐼 ′ , consists of an index func-
tion ̂𝑓 ∶ 𝐼 → 𝐼 ′, a family of algebra homomorphisms 𝑓𝑖 ∶ 𝐾𝑖 → 𝐾 ′

̂𝑓 (𝑖)
together with

homomorphisms of 𝐾𝑗-𝐾𝑖-bimodules 𝑓𝑖,𝑗 ∶ 𝐸𝑖,𝑗 → 𝐸′
̂𝑓 (𝑖), ̂𝑓 (𝑗)

, where 𝐸′
̂𝑓 (𝑖), ̂𝑓 (𝑗)

is treated as a
𝐾𝑗-𝐾𝑖-bimodule via 𝑓𝑖 and 𝑓𝑗 , i.e. the structure of 𝐸′

̂𝑓 (𝑖), ̂𝑓 (𝑗)
is given by 𝑏𝑒′𝑎 = 𝑓𝑗(𝑏)𝑒′𝑓𝑖(𝑎) for

any 𝑎 ∈ 𝐾𝑖, 𝑏 ∈ 𝐾𝑗 and 𝑒′ ∈ 𝐸′
̂𝑓 (𝑖), ̂𝑓 (𝑗)

, cf. [Lem12, Definition 3.3].

A 𝑘-species is finite if 𝐼 is a finite set and dim𝑘 𝐸𝑖,𝑗 < ∞, for every 𝑖, 𝑗 ∈ 𝐼 .
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The valued quiver of a finite 𝑘-species 𝑆 is a quiver 𝑄𝑆 consisting of a set of vertices
𝐼 , for each 𝑖, 𝑗 ∈ 𝐼 there is an arrow from 𝑖 to 𝑗 whenever 𝐸𝑖,𝑗 ≠ 0, and positive integers
𝑑𝑖 = dim𝑘 𝐾𝑖 and 𝑑𝑖,𝑗 = dim𝑘 𝐸𝑖,𝑗 , whenever 𝐸𝑖,𝑗 ≠ 0. A finite 𝑘-species is connected if its
valued quiver is connected and acyclic if its valued quiver has no oriented cycles.

Denote by 𝑘-Species the category of 𝑘-species and morphisms of 𝑘-species.

Definition 3.1.2. Let 𝑆 be a (connected finite) 𝑘-species. A representation of 𝑆 is a collection
𝑋 = (𝑋𝑖, 𝑋𝑖,𝑗)𝑖,𝑗∈𝐼 consisting of a 𝐾𝑖-vector space 𝑋𝑖 for each 𝑖 ∈ 𝐼 and a 𝐾𝑗-linear map
𝑋𝑖,𝑗 ∶ 𝐸𝑖,𝑗 ⊗𝐾𝑖 𝑋𝑖 → 𝑋𝑗 for each 𝑖, 𝑗 ∈ 𝐼 .

A morphism of 𝑆 representations 𝜃 ∶ 𝑋 → 𝑌 is a collection 𝜃 = (𝜃𝑖)𝑖∈𝐼 of 𝐾𝑖-linear maps
𝜃𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 satisfying the following commutative diagram

𝐸𝑖,𝑗 ⊗𝐾𝑖 𝑋𝑖 𝑋𝑗

𝐸𝑖,𝑗 ⊗𝐾𝑖 𝑌𝑖 𝑌𝑗

𝑋𝑖,𝑗

id𝐸𝑖,𝑗⊗𝜃𝑖 𝜃𝑗

𝑌𝑖,𝑗

(3.1.3)

A representation 𝑋 of a 𝑘-species 𝑆 is finite dimensional if 𝑋𝑖 is finite dimensional over
𝐾𝑖 for every 𝑖 ∈ 𝐼 .

Denote by rep𝑘𝑆 the category of all finite dimensional representations of the connected
finite 𝑘-species 𝑆.

Let 𝑆 be a connected finite 𝑘-species. Denote by 𝐴 = ∏𝑖∈𝐼 𝐾𝑖 and 𝑈 = ⨁𝑖,𝑗∈𝐼 𝐸𝑖,𝑗 . Then
𝑈 is naturally a 𝐴-bimodule. Define

T(𝑆) = T[𝐴, 𝑈 ] (3.1.4)

the tensor algebra of 𝑆, i.e. T[𝐴, 𝑈 ] = ⨁∞
𝑛=0 𝑈⊗𝑛 , where 𝑈⊗0 = 𝐴 and 𝑈⊗𝑛 = 𝑈⊗𝑛−1⊗𝐴𝑈 .

Let T[𝐴, 𝑈 ] be a tensor algebra. An ideal 𝐼 ⊆ T[𝐴, 𝑈 ] is called admissible if ⨁∞
𝑛=𝑚 𝑈⊗𝑛 ⊆

𝐼 ⊆ ⨁∞
𝑛=2 𝑈⊗𝑛 , for some positive integer 𝑚.

Let 𝐴 be a basic finite dimensional algebra. Consider
𝐴

𝐽 (𝐴)
= ∏

𝑖∈𝐼
𝐾𝑖 the product of

extension fields 𝐾𝑖 of 𝑘 and
𝐽 (𝐴)
𝐽 2(𝐴)

= ⨁
𝑖,𝑗∈𝐼

𝑈𝑖,𝑗 be the decomposition with 𝐾𝑗-𝐾𝑖-bimodules

𝑈𝑖,𝑗 . The 𝑘-species of 𝐴 is given by 𝑆𝐴 = (𝐾𝑖, 𝑈𝑖,𝑗)𝑖,𝑗∈𝐼 .

Proposition 3.1.5. Let 𝐴 be a finite dimensional algebra over a perfect field 𝑘.

1. If 𝐴 is basic, then 𝐴 ≅
T(𝑆𝐴)
𝐼

for some admissible ideal 𝐼 of T(𝑆);

2. If 𝐴 is basic and hereditary, then 𝐴 ≅ T(𝑆𝐴).

Proof. See [Lem12, Theorem 4.6].
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Proposition 3.1.6. Let 𝑆 be a connected finite 𝑘-species. Then rep𝑘𝑆 is isomorphic to the
category of (left) modules of T(𝑆).

Proof. See [DR75, Proposition 10.1]. See also [Lem12, Proposition 7.3].

3.2 An adjunction for larger categories

Denote by Cogfilt the category whose objects are coalgebras with separable coradical
and morphisms are filtered coalgebra homomorphisms. Denote by ParCog the category
of pairs (Σ, 𝑉 ), where Σ is a separable coalgebra and 𝑉 is a Σ-bicomodule. Given two
objects (Σ, 𝑉 ) and (Σ′, 𝑉 ′), a morphism 𝜑 ∶ (Σ, 𝑉 ) → (Σ′, 𝑉 ′) is a pair (𝜑0, 𝜑1), such
that 𝜑0 ∶ Σ → Σ′ is a coalgebra homomorphism and 𝜑1 ∶ 𝑉 → 𝑉 ′ is a Σ′-bicomodule
homomorphism regarding 𝑉 as a Σ′-bicomodule with structure maps 𝜇 = (𝜑0 ⊗ id)𝜇𝑉 and
𝜈 = (id ⊗ 𝜑0)𝜈𝑉 .

In this section, we define a pair of functors Cogfilt ParCog
𝐹

𝐺
and show that,

under a congruence relation on coalgebra homomorphisms, they form an adjoint pair.

3.2.1 Functors between coalgebras and pairs with separable
coradical

Let 𝐶 ∈ Cogfilt. Since 𝐶 has separable coradical, we can apply Theorem 1.2.29 and
obtain a projection 𝑠 ∶ 𝐶 → 𝐶0, which is a coalgebra homomorphism such that 𝑠𝜄0 = id𝐶0 ,
for the canonical inclusion 𝜄0 ∶ 𝐶0 → 𝐶. Hence, 𝐶 can be treated as a 𝐶0-bicomodule with
structure maps 𝜇𝑠 = (𝑠 ⊗ id)𝛥 and 𝜈𝑠 = (id ⊗ 𝑠)𝛥. Furthermore, there exists a unique
structure of 𝐶0-bicomodule on 𝐶

𝐶0
induced by 𝐶, 𝜇𝑠, that makes the canonical projection

𝑞 ∶ 𝐶 →
𝐶
𝐶0

into a 𝐶0-bicomodule homomorphism, i.e.:

𝐶
𝐶
𝐶0

𝐶0 ⊗ 𝐶 𝐶0 ⊗
𝐶
𝐶0

(𝑠⊗id)𝛥

𝑞

𝜇𝑠

id⊗𝑞

commutes (see Theorem 1.2.42).

Let 𝐶 and 𝐷 be objects of Cogfilt and 𝜌 ∶ 𝐶 → 𝐷 be a filtered coalgebra homomorphism.
Then 𝐶 is a 𝐷0-bicomodule with structure maps 𝜇𝜌,𝑠 = (𝜌𝑠 ⊗ id)𝛥 and 𝜈𝜌,𝑠 = (id ⊗ 𝜌𝑠)𝛥.
𝐷 is also a 𝐷0-bicomodule via a projection of coalgebras 𝑠′ ∶ 𝐷 → 𝐷0, see Remark 1.2.54.
It is not true, in general, that 𝜌 ∶ 𝐶 → 𝐷 is a 𝐷0-bicomodule homomorphism, for this
requires the equality 𝜌𝑠 = 𝑠′𝜌. However, the induced map 𝜌1 ∶ 𝐶1

𝐶0
→ 𝐷1

𝐷0
is a 𝐷0-bicomodule

homomorphism, as we define and prove in the next Lemma:
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Lemma 3.2.1. Let 𝐶 and 𝐷 be coalgebras with separable coradical and 𝜌 ∶ 𝐶 → 𝐷 be a
filtered coalgebra homomorphism. Let 𝑠 ∶ 𝐶 → 𝐶0 and 𝑠′ ∶ 𝐷 → 𝐷0 be coalgebra projections
which are splittings of the canonical inclusions 𝜄0 ∶ 𝐶0 → 𝐶 and 𝜄′0 ∶ 𝐷0 → 𝐷, respectively.

Let 𝑞 ∶ 𝐶 →
𝐶
𝐶0

and 𝑞′ ∶ 𝐷 →
𝐷
𝐷0

be the canonical projections. Consider 𝐶 and 𝐷 as

𝐷0-bicomodules via 𝜌𝑠 and 𝑠′, respectively. Then, the induced map 𝜌1 = 𝜌| 𝐶1
𝐶0
∶ 𝐶1

𝐶0
→ 𝐷1

𝐷0
is a

𝐷0-bicomodule homomorphism.

Proof. Observe that

𝐶1
𝛥−→ 𝐶1 ⊗ 𝐶0 + 𝐶0 ⊗ 𝐶1

𝑠⊗𝑞
−−→ 𝐶0 ⊗

𝐶1

𝐶0

shows that the induced left 𝐶0-comodule structure on 𝐶1
𝐶0

does not depend on the choice of
the projection 𝑠, since 𝑞 kills the left hand side of the sum and 𝑠 acts as the identity on 𝐶0.
The same happens for the induced right 𝐶0-comodule structure on 𝐶1

𝐶0
and the induced left

and right 𝐷0-comodule structures on 𝐶1
𝐶0

and 𝐷1
𝐷0

. Now, observe the diagram:

𝐶1

𝐶0

𝐷1

𝐷0

𝐷0 ⊗
𝐶1

𝐶0
𝐷0 ⊗

𝐷1

𝐷0

𝜇𝜌𝑠

𝜌

𝜇𝑠′

id⊗𝜌

(3.2.2)

For any 𝑐 ∈ 𝐶1, the equations (using the sigma notation, see Remark 1.2.38)

(id𝐷0 ⊗ 𝜌1)𝜇𝜌𝑠𝑞(𝑐) = (𝜌𝑠 ⊗ 𝜌𝑞)𝛥𝐶(𝑐) = ∑
(𝑐)

𝜌(𝑐(1)) ⊗ 𝜌𝑞(𝑐(2)) = ∑
(𝑐)

𝜌(𝑐(1)) ⊗ 𝑞′𝜌(𝑐(2)),

𝜇𝑠′𝜌1𝑞(𝑐) = 𝜇𝑠′𝑞
′𝜌(𝑐) = (𝑠′ ⊗ 𝑞′)𝛥𝐷(𝜌(𝑐)) = (𝑠′𝜌 ⊗ 𝑞′𝜌)𝛥𝐶(𝑐) = ∑

(𝑐)

𝑠′𝜌(𝑐(1)) ⊗ 𝑞′𝜌(𝑐(2)),

show that the diagram (3.2.2) commutes, since 𝑞 is an epimorphism, 𝜌 is filtered and
𝑠′|𝐷0

= id𝐷0 . Therefore, 𝜌| 𝐶1
𝐶0

∶ 𝐶1
𝐶0

→ 𝐷1
𝐷0

is a comodule homomorphism for the left 𝐷0-
comodules. Analogous argument works for the right comodule structures.

Example 3.2.3. Consider the path coalgebra of the quiver:

𝑄 ∶ ∙3 ∙2 ∙1
𝑏 𝑎 (3.2.4)

and the coalgebra homomorphisms 𝑠, 𝑠′ ∶ 𝑘𝑄 → 𝑘𝑄0 defined on the canonical basis
{𝑒1, 𝑒2, 𝑒3, 𝑎, 𝑏, 𝑏𝑎} by:

𝑠(𝑥) =

{
𝑒𝑖 if 𝑥 = 𝑒𝑖, for 𝑖 = 1, 2 or 3
0 if 𝑥 = 𝑎, 𝑏 or 𝑏𝑎

; 𝑠′(𝑥) =

{
𝑠(𝑥) if 𝑥 ≠ 𝑏
𝑒3 − 𝑒2 if 𝑥 = 𝑏

. (3.2.5)

Denote by 𝑘𝑄𝑠 the 𝑘𝑄0-bicomodule via 𝑠 and by 𝑘𝑄𝑠′ the 𝑘𝑄0-bicomodule via 𝑠′. Then, the
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induced map id𝑘𝑄 ∶ 𝑘𝑄𝑠
𝑘𝑄0

→ 𝑘𝑄𝑠′
𝑘𝑄0

is not a bicomodule homomorphism, since

(𝜇𝑠′ id − (id ⊗ id)𝜇id𝑠)(𝑏𝑎) = (𝑒3 − 𝑒2) ⊗ 𝑎 ≠ 0

Definition 3.2.6. For each 𝐶 ∈ Cogfilt and 𝜌 ∈ HomCogfilt(𝐶, 𝐷), define

1. 𝐹(𝐶) = (𝐶0,
𝐶1

𝐶0)
;

2. 𝐹(𝜌) = (𝜌0, 𝜌1), where 𝜌0 = 𝜌|𝐶0 ∶ 𝐶0 → 𝐷0 and 𝜌1 = 𝜌| 𝐶1
𝐶0
∶
𝐶1

𝐶0
→

𝐷1

𝐷0
is the unique

𝐷0-bicomodule homomorphism making the diagram

𝐶1 𝐷1

𝐶1

𝐶0

𝐷1

𝐷0

𝑞

𝜌

𝑞′

𝜌

(3.2.7)

commute.

Definition 3.2.8. For each (Σ, 𝑉 ) ∈ ParCog and 𝜑 ∈ HomParCog((Σ, 𝑉 ), (Σ′, 𝑉 ′)), define:

1. 𝐺(Σ, 𝑉 ) = CotΣ(𝑉 );

2. 𝐺(𝜑) ∶ CotΣ(𝑉 ) → CotΣ′(𝑉 ′), given by the universal property of the cotensor
coalgebra (see Theorem 1.2.74):

CotΣ(𝑉 ) CotΣ′(𝑉 ′)

Σ Σ′

𝜋0

𝐺(𝜑)

𝜋′
0

𝜑0

CotΣ(𝑉 ) CotΣ′(𝑉 ′)

𝑉 𝑉 ′

𝜋1

𝐺(𝜑)

𝜋′
1

𝜑1

(3.2.9)

It is clear that 𝐺(𝜑) is filtered (see Remark 1.2.22).

Lemma 3.2.10. The assignments above define covariant functors 𝐹 ∶ Cogfilt → ParCog
and 𝐺 ∶ ParCog → Cogfilt.

Proof. Simple checks.

Now, we define a relation on coalgebra homomorphisms which generalizes the relation
defined in Subsection 2.3.2.

Definition 3.2.11. Let 𝜌, 𝛾 ∈ HomCogfilt(𝐶, 𝐷) and 𝑛 ∈ N∪{∞}. Write 𝐶∞ ∶= 𝐶 and consider
𝜌 ∼𝑛 𝛾 if

(𝜌 − 𝛾)(𝐶0) = 0, (𝜌 − 𝛾)(𝐶𝑛) ⊆ 𝐷0. (3.2.12)

Many of the results for ∼ can be easily extended to ∼𝑛, since the relation ∼𝑛 implies
∼𝑚 for 𝑚 ⩽ 𝑛.
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Lemma 3.2.13. The relation ∼𝑛 is a congruence relation;

Proof. Follows exactly as in Lemma 2.3.8

Lemma 3.2.14. Let 𝜌, 𝛾 ∶ 𝐶 → 𝐷 be filtered coalgebra homomorphisms such that 𝜌 ∼𝑛 𝛾 .
Then (𝜌 − 𝛾)(𝐶𝑖) ⊆ 𝐷𝑖−𝑛, for each 𝑖 ⩾ 𝑛.

Proof. Follows by making small changes to proof of Lemma 2.3.9

Lemma 3.2.15. The projection functor Π𝑛 ∶ Cogfilt → Cogfilt
⧸∼𝑛 reflects isomorphisms.

That is, if 𝜌 ∶ 𝐶 → 𝐷 is a filtered coalgebra homomorphism such that Π𝑛(𝜌) ∶ 𝐶 → 𝐷 is an
isomorphism, then 𝜌 is an isomorphism.

Proof. Since our coalgebra homomorphisms are filtered and ∼𝑛 implies ∼1, this follows as
in the proof of Lemma 2.3.11.

Denote by Algfilt the category of pseudocompact algebras dual to Cogfilt, i.e. a pseu-
docompact algebra 𝐴 belongs to Algfilt if, and only if, 𝐴

𝐽 (𝐴) is separable, and continuous
algebra homomorphisms 𝛼 ∈ HomAlgfilt(𝐴, 𝐵) satisfies 𝛼(𝐽 (𝐴)) ⊆ 𝐽 (𝐵).

Definition 3.2.16. Let 𝛼, 𝛽 ∈ HomAlgfilt(𝐴, 𝐵) and 𝑛 ∈ N ∪ {∞}. Write 𝐽∞(𝐴) ∶= {0} and
consider 𝛼 ∼𝑛 𝛽 if

(𝛼 − 𝛽)(𝐴) ⊆ 𝐽 (𝐴), (𝛼 − 𝛽)(𝐽 (𝐴)) ⊆ 𝐽 𝑛(𝐴). (3.2.17)

Following Proposition 2.4.2, the relations ∼𝑛 for coalgebra homomorphisms and con-
tinuous algebra homomorphisms are dual, for the corresponding categories.

Proposition 3.2.18. Let 𝜌, 𝛾 ∶ 𝐶 → 𝐷 be two homomorphisms in Cogfilt. Then 𝜌 ∼𝑛 𝛾 if,
and only if, 𝜌∗ ∼𝑛 𝛾∗ in Algfilt.

Proof. Follows exactly as in Proposition 2.4.2.

Denote by Cogfilt
𝑛 ∶= Cogfilt

⧸∼𝑛 and by Algfilt
𝑛 ∶= Algfilt

⧸∼𝑛.

Proposition 3.2.19. If 𝛼 ∈ HomAlgfilt(𝐴, 𝐵) is a surjection, then its image Π(𝜌) ∈
HomAlgfilt

𝑛
(𝐴, 𝐵) is an epimorphism.

Proof. Follows from [IM20, Lemma 3.11] and observing that 𝛼(𝐽 (𝐴)) = 𝐽 (𝐵), see [IM22,
Corollary 3.4].

Hence, Lemma 2.3.13 follows for this more general context.

Lemma 3.2.20. The congruence relation ∼1 induces functors 𝐺 = Π1𝐺 ∶ ParCog → Cogfilt
1

and 𝐹 ∶ Cogfilt
1 → ParCog, such that 𝐹Π1 = 𝐹 .
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Proof. The functor 𝐹 is defined by 𝐹(𝐶) = 𝐹(𝐶) and 𝐹([𝜌]) = 𝐹(𝜌) for any representative
𝜌 of the class [𝜌]. Thus, we must show that 𝐹 is well defined (and unique, which is by
construction), that is, if 𝜌′ ∶ 𝐶 → 𝐷 is such that 𝜌 ∼1 𝜌′, then 𝐹(𝜌′) = 𝐹(𝜌). But this is
obvious, since

(𝜌 − 𝜌′)(𝐶0) = 0 ⟺ 𝜌|𝐶0 = 𝜌′||𝐶0
and

(𝜌 − 𝜌′)(𝐶1) ⊆ 𝐷0 ⟺ 𝑞′ (𝜌 − 𝜌′)||𝐶1 = 0 ⟺ 𝜌 𝑞|𝐶1 = 𝑞′ 𝜌|𝐶1 = 𝑞′ 𝜌′||𝐶1 = 𝜌′ 𝑞|𝐶1 ,

which implies 𝜌| 𝐶1
𝐶0
= 𝜌′|| 𝐶1𝐶0

since 𝑞|𝐶1 ∶ 𝐶1 →
𝐶1

𝐶0
is an epimorphism.

3.2.2 The above functors form an adjunction

We prove that the covariant functors 𝐹 and 𝐺 form an adjunction. The proof con-
sists of presenting a unit and counit of the adjunction, showing that they are natural
transformations and satisfy the triangular equalities (see Proposition 1.1.23).

First observe that if 𝑓 , 𝑓 ′ ∶ 𝐶 → Cot𝐷(𝑀) are filtered coalgebra homomorphisms, then
Remark 1.2.76 implies:

𝑓 ∼𝑛 𝑓 ′ ⟺ 𝜋0 𝑓 |𝐶0 = 𝜋0 𝑓 ′||𝐶0 and 𝜋1 𝑓 |𝐶𝑛 = 𝜋1 𝑓 ′||𝐶𝑛 . (3.2.21)

Moreover, since any 𝐶0-comodule is injective by Theorem 1.2.49, and 𝐶1 is a 𝐶0-
subbicomodule of 𝐶, there exists a splitting 𝑡 ∶ 𝐶 → 𝐶1 of the canonical inclusion
𝜄1 ∶ 𝐶1 → 𝐶, i.e. 𝑡 is a 𝐶0-bicomodule homomorphism such that 𝑡𝜄1 = id𝐶1 .

Let us define the unit map.

Definition 3.2.22. For each 𝐶 ∈ Cogfilt, define 𝑠,𝑡
𝐶 ∶ 𝐶 → Cot𝐶0(

𝐶1
𝐶0 ) by the universal

property of the cotensor coalgebra (see Theorem 1.2.74):

Cot𝐶0(
𝐶1
𝐶0 )

𝐶 𝐶0

𝜋0
𝑠,𝑡
𝐶

𝑠

Cot𝐶0(
𝐶1
𝐶0 )

𝐶
𝐶1

𝐶0

𝜋1𝑠,𝑡
𝐶

𝑞𝑡

(3.2.23)

where 𝑠 ∶ 𝐶 → 𝐶0 is a coalgebra projection, 𝑡 ∶ 𝐶 → 𝐶1 is a splitting, 𝑞 ∶ 𝐶1 →
𝐶1

𝐶0
is the

canonical projection, and 𝜋0 and 𝜋1 are the canonical projections of graded coalgebras.

The unit map is independent of the choice of projection and splitting.

Lemma 3.2.24. If 𝑠 ∶ 𝐶 → 𝐶0 is any other projection and 𝑡 ∶ 𝐶 → 𝐶1 any other splitting,
then 𝑠,𝑡

𝐶 ∼1 𝑠,𝑡
𝐶 .

Proof. This follows immediately from (3.2.21), since any projection 𝑠 ∶ 𝐶 → 𝐶0 restricted
to 𝐶0 is the identity id𝐶0 and any splitting 𝑡 ∶ 𝐶 → 𝐶1 restricted to 𝐶1 is the identity
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id𝐶1 .

Lemma 3.2.25. The unit  ∶ idCogfilt
1
→ 𝐺𝐹 map is a natural transformation.

Proof. We must show that for any [𝜌] ∈ HomCogfilt
1
(𝐶, 𝐷), the diagram

𝐶 Cot𝐶0(
𝐶1
𝐶0 )

𝐷 Cot𝐷0(
𝐷1
𝐷0 )

[𝜌]

𝐶

𝐺𝐹([𝜌])

𝐷

commutes (see Definition 1.1.14).

It is sufficient to show that for any 𝜌 ∈ HomCogfilt(𝐶, 𝐷) the following equation holds:

𝜋′
𝑖 (𝐺𝐹(𝜌)𝐶)

|||𝐶𝑖
= 𝜋′

𝑖 (𝐷𝜌)||𝐶𝑖 ,

for 𝑖 = 0, 1 (see (3.2.21)). Note that composing 𝜋′
𝑖 with𝐺(−) gives the commutative diagrams

in (3.2.9), and composing 𝜋𝑖 with  gives the commutative diagrams in (3.2.23), and also
that 𝐹(𝜌)0 = 𝜌|𝐶0 and 𝐹(𝜌)1 = 𝜌| 𝐶1

𝐶0
. Thus, we can combine these relations in the following

commutative diagrams:

𝐶

Cot𝐶0(
𝐶1
𝐶0 ) Cot𝐷0(

𝐷1
𝐷0 )

𝐶0 𝐷0

𝐶

𝑠
𝐺𝐹(𝜌)

𝜋0 𝜋′
0

𝜌

,

𝐶 𝐷

Cot𝐷0(
𝐷1
𝐷0 )

𝐷0

𝜌

𝐷

𝑠′

𝜋′
0

,

which gives the equality

𝜋′
0 (𝐺𝐹(𝜌)𝐶)

|||𝐶0
= 𝜌𝜋0𝐶 |𝐶0 = 𝜌 𝑠|𝐶0 = 𝑠′𝜌||𝐶0 = 𝜋′

0 (𝐷𝜌)|𝐶0

and

𝐶

Cot𝐶0(
𝐶1
𝐶0 ) Cot𝐷0(

𝐷1
𝐷0 )

𝐶1
𝐶0

𝐷1
𝐷0

𝐶

𝑞𝑡
𝐺𝐹(𝜌)

𝜋1 𝜋′
1

𝜌

,

𝐶 𝐷

Cot𝐷0(
𝐷1
𝐷0 )

𝐷1
𝐷0

𝜌

𝐷

𝑞′𝑡′

𝜋′
1

,
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which gives the equality

𝜋′
1 (𝐺𝐹(𝜌)𝐶)

|||𝐶1
= (𝜌𝜋1𝐶)

|||𝐶1
= 𝜌𝑞𝑡|𝐶1 = 𝑞′𝑡′𝜌||𝐶1 = 𝜋′

1 (𝐷𝜌)|𝐶1 ,

because 𝑡|𝐶1 = id𝐶1 and 𝑡′|𝐷1
= id𝐷1 (and 𝜌 is filtered). Thus 𝐺𝐹(𝜌)𝐶 ∼1 𝐷𝜌, and the

result follows.

Definition 3.2.26. For each (Σ, 𝑉 ) ∈ ParCog, define the morphism

(Σ,𝑉 ) ∶ (Σ,
CotΣ(𝑉 )1

Σ ) → (Σ, 𝑉 )

by (Σ,𝑉 )0 = idΣ ∶ Σ → Σ and (Σ,𝑉 )1 ∶
CotΣ(𝑉 )1

Σ
=

Σ ⊕ 𝑉
Σ

≅−→ 𝑉 to be the unique
isomorphism such that the following diagram commutes (see Lemma 1.2.45):

CotΣ(𝑉 )1

CotΣ(𝑉 )1
Σ

𝑉

𝑞 𝜋1

(Σ,𝑉 )1

(3.2.27)

where 𝑞 ∶ CotΣ(𝑉 )1 →
CotΣ(𝑉 )1

Σ
is the canonical projection.

Observe that 𝑡 = 𝜋0 + 𝜋1 ∶ CotΣ(𝑉 ) → CotΣ(𝑉 )1 = Σ ⊕ 𝑉 is a natural splitting for the
Σ-bicomodule CotΣ(𝑉 ).

Lemma 3.2.28. The counit  ∶ 𝐹𝐺 → idParCog map is a natural transformation.

Proof. We must show that for any 𝜑 ∈ HomParCog((Σ, 𝑉 ), (Σ′, 𝑉 ′)), the diagram

(Σ,
CotΣ(𝑉 )1

Σ ) (Σ, 𝑉 )

(Σ
′,

CotΣ′(𝑉 ′)1
Σ′ ) (Σ′, 𝑉 ′)

𝐹𝐺(𝜑)

(Σ,𝑉 )

𝜑

(Σ′,𝑉 ′)

,

commutes (see Definition 1.1.14).

Observe that
𝐹(𝐺(𝜑))0 = 𝐺(𝜑)|Σ = 𝜋′

0𝐺(𝜑)𝜄0 = 𝜑0𝜋0𝜄0 = 𝜑0
and (Σ,𝑉 )0 = idΣ. Hence

𝜑0(Σ,𝑉 )0 = 𝜑0idΣ = idΣ′𝜑0 = (Σ′,𝑉 ′)0𝐹(𝐺(𝜑))0.
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Moreover,

(Σ′,𝑉 ′)𝐹(𝐺(𝜑))1𝑞 = (Σ′,𝑉 ′)𝐺(𝜑)𝑞 = (Σ′,𝑉 ′)𝑞′𝐺(𝜑) = 𝜋′
1𝐺(𝜑) = 𝜑1𝜋1 = 𝜑1(Σ,𝑉 )1𝑞

as depicted in the following commutative diagrams:

CotΣ(𝑉 )1

CotΣ(𝑉 )1
Σ

𝑉 𝑉 ′

𝑞

𝜋1

(Σ,𝑉 )1

𝜑1

,

CotΣ(𝑉 )1 CotΣ′(𝑉 ′)1

CotΣ(𝑉 )1
Σ

CotΣ′(𝑉 ′)1
Σ′

𝑉 𝑉 ′

𝑞

𝐺(𝜑)

𝜋1

𝑞′

𝜋′
1

𝐺(𝜑)

(Σ′,𝑉 ′)1

𝜑1

.

Since 𝑞 is an epimorphism, it follows that 𝜑(Σ,𝑉 ) = (Σ′,𝑉 ′)𝐹(𝐺(𝜑)), and the result follows.

Lemma 3.2.29. The triangular equalities:

(𝐶0,
𝐶1

𝐶0) (𝐶0,
𝐶1

𝐶0)

(𝐶0,
Cot𝐶0(

𝐶1
𝐶0 )1

𝐶0 )

id𝐹(𝐶)

𝐹(𝐶) 𝐹(𝐶)
,

CotΣ(𝑉 ) CotΣ(𝑉 )

CotΣ(CotΣ(𝑉 )1
Σ )

id𝐺(Σ,𝑉 )

𝐺(Σ,𝑉 ) 𝐺((Σ,𝑉 ))
,

(3.2.30)
are satisfied.

Proof. Observe that
𝐹(𝐶)0𝐹(𝐶)0 = id𝐶0 𝐶 |𝐶0 = id𝐶0

and

𝐹(𝐶)1𝐹(𝐶)1 𝑞|𝐶1 = 𝐹(𝐶)1𝐶 𝑞|𝐶1 = 𝐹(𝐶)1𝑞′ 𝐶 |𝐶1 = 𝜋′
1 𝐶 |𝐶1 = 𝑞𝑡|𝐶1 = 𝑞|𝐶1

as depicted in the following commutative diagrams:

𝐶 Cot𝐶0(
𝐶1
𝐶0 )

𝐶0 𝐶0 𝐶0

𝐶

𝑠 𝜋0𝜄0
id𝐶0

𝐶
id𝐶0

,

𝐶1 Cot𝐶0(
𝐶1
𝐶0 )1

𝐶1

𝐶0

Cot𝐶0(
𝐶1
𝐶0 )1

𝐶0

𝐶1

𝐶0

𝐶

𝑞

𝑞

𝑞′

𝜋1

𝐶 
(𝐶0,

𝐶1
𝐶0

)1

.

Since 𝑞 is an epimorphism, it follows that 𝐹(𝐶)𝐹𝐶 = id(𝐶0,
𝐶1
𝐶0

).
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For the second case, note that:

𝜋0 (𝐺(Σ,𝑉 )𝐺(Σ,𝑉 ))||Σ = ((Σ,𝑉 )0𝜋
′
0𝐺(Σ,𝑉 ))||Σ = ((Σ,𝑉 )0𝑠)||Σ = idΣ = 𝜋0|Σ

and

𝜋1 (𝐺(Σ,𝑉 )𝐺(Σ,𝑉 ))||CotΣ(𝑉 )1
= ((Σ,𝑉 )1𝜋

′
1𝐺(Σ,𝑉 ))||CotΣ(𝑉 )1

= ((Σ,𝑉 )1𝑞𝑡)||CotΣ(𝑉 )1
= 𝜋1|CotΣ(𝑉 )1

as depicted on the following commutative diagrams:

CotΣ(𝑉 ) CotΣ(CotΣ(𝑉 )1
Σ ) CotΣ(𝑉 )

Σ Σ

𝐺(Σ,𝑉 )

𝑠

𝐺(Σ,𝑉 )

𝜋′
0

𝜋0

idΣ

,

CotΣ(𝑉 ) CotΣ(CotΣ(𝑉 )1
Σ ) CotΣ(𝑉 )

CotΣ(𝑉 )1
Σ

𝑉

𝐺(Σ,𝑉 )

𝑞𝑡

𝜋1

𝐺(Σ,𝑉 )

𝜋′
1 𝜋1

(Σ,𝑉 )1

.

It follows that 𝐺(Σ,𝑉 )𝐺(Σ,𝑉 ) ∼1 idCotΣ(𝑉 ) (see (3.2.21)).

Therefore, the triangular equalities are satisfied.

This proves the following Theorem.

Theorem 3.2.31. The functor 𝐹 ∶ Cogfilt
1 → ParCog is left adjoint to the functor 𝐺 ∶

ParCog → Cogfilt
1 .

Proof. Follows from all previous results of this subsection.

Corollary 3.2.32. The unit of adjunction ⟨𝐹 , 𝐺,, ⟩, 𝐶 ∶ 𝐶 → Cot𝐶0(
𝐶1
𝐶0 ), is an injection

of coalgebras.

Proof. Note that 𝐶 |𝐶1 ∶ 𝐶1 → Cot𝐶0(
𝐶1
𝐶0 )1 is an isomorphism. Now the result follows from

Proposition 1.2.33.

The above corollary is [Woo97, Proposition 4.6]. See also [CHZ06, Theorem 3.1].

A subcoalgebra 𝐷 of a cotensor coalgebra CotΣ(𝑉 ) is said to be admissible if 𝐷1 ⊆
CotΣ(𝑉 )1. Hence, every coalgebra with separable coradical is isomorphic to an admissible
subcoalgebra of its cotensor coalgebra.
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3.2.3 Basic coalgebras and k-species

Let BCog denote the full subcategory of Cog𝑓 𝑖𝑙𝑡 which consists of basic coalgebras
with separable coradical (and coalgebra homomorphisms) and let ParBCog denote the
full subcategory of ParCog which consists of pairs of separable basic coalgebras and
bicomodules. Then, Theorem 3.2.31 restricts to the adjunction:

Corollary 3.2.33. The functor 𝐹 ∶ BCog1 → ParBCog is left adjoint to the functor
𝐺 ∶ ParBCog → BCog1.

We define next a category which resembles the category of 𝑘-species described in
Section 3.1.

Definition 3.2.34. Denote by 𝑘-CS the category of separable 𝑘-cospecies, whose objects
are pairs (𝑆𝑖, 𝑀𝑖,𝑗)𝑖,𝑗∈𝐼 , such that:

1. 𝐼 is an index set;

2. {𝑆𝑖}𝑖∈𝐼 is a family of simple separable basic (finite dimensional) coalgebras;

3. {𝑀𝑖,𝑗 }𝑖,𝑗∈𝐼 is a family of 𝑆𝑗-𝑆𝑖-bicomodules.

A map of 𝑘-cospecies 𝜓 ∶ (𝑆𝑖, 𝑀𝑖,𝑗)𝑖,𝑗∈𝐼 → (𝑆′𝑖′ , 𝑀 ′
𝑖′,𝑗 ′)𝑖′,𝑗 ′∈𝐼 ′ consists of:

1. an index function 𝜓̂ ∶ 𝐼 → 𝐼 ′;

2. a family of coalgebra homomorphisms 𝜓𝑖 ∶ 𝑆𝑖 → 𝑆′
𝜓̂(𝑖)

;

3. a family of bicomodule homomorphisms 𝜓𝑖,𝑗 ∶ 𝑀𝑖,𝑗 → 𝑀 ′
𝜓̂(𝑖),𝜓̂(𝑗)

, where the 𝑆𝑗-
𝑆𝑖-bicomodule 𝑀𝑖,𝑗 = (𝑀𝑖,𝑗 , 𝜇𝑖,𝑗 , 𝜈𝑖,𝑗) is treated as a 𝑆′

𝜓̂(𝑗)
-𝑆′

𝜓̂(𝑖)
-bicomodule 𝑀𝑖,𝑗 =

(𝑀𝑖,𝑗 , (𝜓𝑗 ⊗ id)𝜇𝑖,𝑗 , (id ⊗ 𝜓𝑖)𝜈𝑖,𝑗).

In this section we show that the category ParBCog is equivalent to 𝑘-CS.

Clearly, 𝑆 ∶= ⨁𝑖∈𝐼 𝑆𝑖 is a separable basic coalgebra and 𝑀 ∶= ⨁𝑖,𝑗∈𝐼 𝑀𝑖,𝑗 is a 𝑆-
bicomodule. Hence, the assignments:

𝑃((𝑆𝑖, 𝑀𝑖,𝑗)𝑖,𝑗∈𝐼) = (⨁
𝑖∈𝐼

𝑆𝑖,⨁
𝑖,𝑗∈𝐼

𝑀𝑖,𝑗), 𝑃(𝜓) = (∑
𝑖∈𝐼

𝜓𝑖,∑
𝑖,𝑗∈𝐼

𝜓𝑖,𝑗)

define a covariant functor 𝑃 ∶ 𝑘-CS → ParBCog.

Now, let Σ = ⨁𝑖∈𝐼 Σ𝑖 be a separable basic coalgebra, where Σ𝑖 ⊆ Σ are simple subcoal-
gebras of Σ, and let 𝑉 be a Σ-bicomodule (i.e. (Σ, 𝑉 ) ∈ ParBCog). Consider {𝑠𝑖,𝑗 }𝑗∈𝐼𝑖 a basis
of Σ𝑖, for each 𝑖 ∈ 𝐼 . Then, we can describe the structures of comultiplication and left
Σ-comodule as follows:

• for each 𝑠𝑖,𝑗 ∈ Σ𝑖
𝛥(𝑠𝑖,𝑗) = ∑

𝑙∈𝐼𝑖

𝑠𝑖,𝑙 ⊗ 𝑐𝑖,𝑗 ,𝑙,

for only finitely many nonzero 𝑐𝑖,𝑗 ,𝑙 ∈ Σ𝑖;
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• given a 𝑣 ∈ 𝑉
𝜇(𝑣) = ∑

𝑖∈𝐼

∑
𝑗∈𝐼𝑖

𝑠𝑖,𝑗 ⊗ 𝑣𝑖,𝑗 ,

for only finitely many nonzero 𝑣𝑖,𝑗 ∈ 𝑉 .

Thus, the structure of left comodule, see (1.2.35), give us:

(id ⊗ 𝜇)𝜇(𝑣) =∑
𝑖∈𝐼

∑
𝑗∈𝐼𝑖

𝑠𝑖,𝑗 ⊗ 𝜇(𝑣𝑖,𝑗) = ∑
𝑖∈𝐼

∑
𝑗∈𝐼𝑖

∑
𝑙∈𝐼𝑖

𝑠𝑖,𝑙 ⊗ 𝑐𝑖,𝑗 ,𝑙 ⊗ 𝑣𝑖,𝑗 = (𝛥 ⊗ id)𝜇(𝑣), (3.2.35)

𝑣 =∑
𝑖∈𝐼

∑
𝑗∈𝐼𝑖

𝜀(𝑠𝑖,𝑗)𝑣𝑖,𝑗 , (3.2.36)

where (3.2.35) shows that 𝜇(𝑣𝑖,𝑗) = ∑𝑙∈𝐼𝑖 𝑐𝑖,𝑙,𝑗 ⊗ 𝑣𝑖,𝑙 ⊆ 𝑆𝑖 ⊗ 𝑉 . Hence, the subcomodule
generated by the 𝑣𝑖,𝑗 ’s (for each fixed 𝑖 ∈ 𝐼 ), ⟨𝑣𝑖,𝑗 | 𝑗 ∈ 𝐼𝑖⟩, is a left 𝑆𝑖-comodule. Moreover,
(3.2.36) shows that 𝑣 ∈ ⨁𝑖∈𝐼 ⟨𝑣𝑖,𝑗 | 𝑗 ∈ 𝐼𝑖⟩.

Since 𝑣 ∈ 𝑉 was taken arbitrary, we have 𝑉 = ⨁𝑖∈𝐼 𝑉𝑖,− as a left Σ-comodule, where, for
each 𝑖 ∈ 𝐼 , 𝑉𝑖,− is a left 𝑆𝑖-comodule. Because similar argument works for right comodules,
we have 𝑉 = ⨁𝑖,𝑗∈𝐼 𝑉𝑖,𝑗 , where 𝑉𝑖,𝑗 = 𝑉𝑖,− ∩ 𝑉−,𝑗 is a 𝑆𝑖-𝑆𝑗-bicomodule.

Let 𝜑 ∈ HomParBCog((Σ, 𝑉 ), (Σ′, 𝑉 ′)), with Σ = ⨁𝑖∈𝐼 𝑆𝑖 and Σ′ = ⨁𝑖′∈𝐼 ′ 𝑆′𝑖′ . Since the
simple sucoalgebra 𝑆𝑖 is basic, the image 𝜑0(𝑆𝑖) is a simple subcoalgebra of Σ′ (see in the
proof of Lemma 1.2.32). Thus, the coalgebra homomorphism 𝜑0 ∶ Σ → Σ′ defines a unique
index function 𝑄̂(𝜑) ∶ 𝐼 → 𝐼 ′ such that 𝜑0(𝑆𝑖) = 𝑆′𝑄̂(𝜑)(𝑖). The assignments:

𝑄((Σ, 𝑉 )) = (𝑆𝑖, 𝑉𝑖,𝑗)𝑖,𝑗∈𝐼 ,

and,
𝑄(𝜑)𝑖 = 𝜑0|𝑆𝑖 ∶ 𝑆𝑖 → 𝑆′𝑄̂(𝜑)(𝑖), 𝑄(𝜑)𝑖,𝑗 = 𝜑1|𝑉𝑖,𝑗 ∶ 𝑉𝑖,𝑗 → 𝑉 ′

𝑄̂(𝜑)(𝑖),𝑄̂(𝜑)(𝑗)

define a covariant functor 𝑄 ∶ ParBCog → 𝑘-CS. The above constructions wield:

Theorem 3.2.37. The categories ParBCog and 𝑘-CS are isomorphic.

In view of Corollary 3.2.33, we have:

Corollary 3.2.38. The composition of functors 𝑄𝐹 ∶ BCog1 → 𝑘-CS is left adjoint to the
composition of functors 𝐺𝑃 ∶ 𝑘-CS → BCog1.

Corollary 3.2.39. Let 𝐶 be a basic coalgebra with separable coradical. Then, 𝐶 is isomorphic
to an admissible subcoalgebra of the cotensor coalgebra of the separable 𝑘-cospecies 𝑄𝐹(𝐶).

3.2.4 The dual case
As in Section 2.4, from Theorem 3.2.31 we obtain two adjunctions for the category

Algfilt.

Corollary 3.2.40. The functors 𝐹(−)∗ ∶ Algfilt
1 → ParCog and (−)∗𝐺 ∶ ParCog → Algfilt

1
are adjoint on the left.

Proof. Follows exactly as in Theorem 2.4.7.
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Denote by BAlg the full subcategory of Algfilt which consists of basic pseudocompact al-
gebras. Combining the above Corollary with Corollary 3.2.38, we get the adjunction:

Corollary 3.2.41. The contravariant functors 𝑄𝐹(−)∗ ∶ BAlg1 → 𝑘-CS and (−)∗𝐺𝑃 ∶
𝑘-CS → BAlg1 are adjoint on the left.

Corollary 3.2.42. Let 𝐴 be a pseudocompact algebra such that 𝐴
𝐽 (𝐴) is separable. Then,

∗
𝐴∗ ∶ T[[ 𝐴

𝐽 (𝐴) ,
𝐽 (𝐴)
𝐽 2(𝐴)]] → 𝐴 is a continuous algebra homomorphism which is a surjection and

satisfies ker∗
𝐴∗ ⊆ 𝐽 2(T[[ 𝐴

𝐽 (𝐴) ,
𝐽 (𝐴)
𝐽 2(𝐴)]]).

Corollary 3.2.43. Let 𝐴 be a basic pseudocompact algebra such that 𝐴
𝐽 (𝐴) is separable. Then,

𝐴 is isomorphic to a quotient of the complete tensor algebra (−)∗𝐺𝑄𝐹(𝐴∗).

Let ParAlg denote the category of pairs, as in Definition 2.4.15, with objects separable
pseudocompact algebras and pseudocompact bimodules.

Define the covariant functors:

• 𝑇 ∶ ParAlg → Algfilt
1 , with 𝑇 ((𝐴, 𝑈 )) = T[[𝐴, 𝑈 ]];

• 𝑆 ∶ Algfilt
1 → ParAlg, with 𝑆(𝐴) = (

𝐴
𝐽 (𝐴) ,

𝐽 (𝐴)
𝐽 2(𝐴)).

On morphisms, these functors are defined as 𝑇 [[−]] of equation 2.4.19 for 𝑇 , and 𝐺[[−]] of
equation 2.4.20 for 𝑆.

Corollary 3.2.44. The functor 𝑇 is left adjoint to the functor 𝑆.

Proof. Follows as in Theorem 2.4.25.

3.3 Peirce decomposition and Radford adjunction
One could ask if it is possible to redefine the functor 𝐹 by a variant functor 𝐹𝑛 ∶

Cogfilt → ParCog which assigns for a coalgebra 𝐶 with separable coradical the pair

𝐹𝑛(𝐶) = (𝐶0,
𝐶𝑛
𝐶0)

. However, as seen in Example 3.2.3, the structure of 𝐶0-bicomodule of 𝐶𝑛
𝐶0

depend on the choice of projection 𝑠 ∶ 𝐶 → 𝐶0, and the induced map 𝜌| 𝐶𝑛
𝐶0
∶ 𝐶𝑛

𝐶0
→ 𝐷𝑛

𝐷0
is not

a 𝐷0-bicomodule homomorphism for the filtered coalgebra homomorphism 𝜌 ∶ 𝐶 → 𝐷, in
general.

In some cases, given a coalgebra projection 𝑠 ∶ 𝐶 → 𝐶0, which is a splitting of the
canonical inclusion 𝜄0 ∶ 𝐶0 → 𝐶, and a coalgebra homomorphism 𝜌 ∶ 𝐶 → 𝐷, one
can choose a coalgebra projection 𝑠′ ∶ 𝐷 → 𝐷0, which is a splitting of the canonical
inclusion 𝜄′0 ∶ 𝐷0 → 𝐷 such that the induced map 𝜌| 𝐶

𝐶0
∶ 𝐶

𝐶0
→ 𝐷

𝐷0
is a homomorphism of

𝐷0-bicomodules.

Naves [Nav22], in his thesis, proved the following:

Proposition 3.3.1. Let 𝐴 be a basic pseudocompact algebra over an algebraically closed field
𝑘 such that dim𝑘

𝐴
𝐽 2(𝐴) < ∞ and 𝐵 be a basic finite dimensional algebra. Consider a continuous
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algebra homomorphism 𝛼 ∶ 𝐴 → 𝐵 and a splitting 𝑠𝐴 ∶
𝐴

𝐽 (𝐴)
→ 𝐴 of the canonical projection

𝜋𝐴 ∶ 𝐴 →
𝐴

𝐽 (𝐴)
. Then, there exists a splitting 𝑠𝐵 ∶

𝐵
𝐽 (𝐵)

→ 𝐵 of the canonical projection

𝜋𝐵 ∶ 𝐵 →
𝐵

𝐽 (𝐵)
satisfying the commutative diagram:

𝐴 𝐵

𝐴
𝐽 (𝐴)

𝐵
𝐽 (𝐵)

𝛼

𝛼

𝑠𝐴 𝑠𝐵 (3.3.2)

Moreover, if 𝛼 is a surjection, then such 𝑠𝐵 is unique.

Proof. See [Nav22, Theorem 3.2.4 and Corollary 3.2.7].

He also showed that the other way round is not always possible, i.e. given a splitting

𝑠𝐵 ∶
𝐵

𝐽 (𝐵)
→ 𝐵, there is no splitting 𝑠𝐴 ∶

𝐴
𝐽 (𝐴)

→ 𝐴 such that the diagram (3.3.2) commutes,

see [Nav22, Remark 3.2.5].

Translating these results to our case, we have the following:

Corollary 3.3.3. Let 𝐶 be a pointed finite dimensional coalgebra and 𝐷 a pointed coalgebra
such that 𝐷1 is finite dimensional. Consider 𝜌 ∶ 𝐶 → 𝐷 a coalgebra homomorphism and
𝑠′ ∶ 𝐷 → 𝐷0 a splitting of the canonical inclusion 𝜄′ ∶ 𝐷0 → 𝐷. Then, there exists a splitting
𝑠 ∶ 𝐶 → 𝐶0 of the canonical inclusion 𝜄 ∶ 𝐶0 → 𝐶 such that the induced map 𝜌| 𝐶

𝐶0
∶ 𝐶

𝐶0
→ 𝐷

𝐷0

is a homomorphism of 𝐷0-bicomodules.

Unfortunately, this is very restrictive and not good enough to apply for our intent.

Radford [Rad82] considered a category  whose objects are pointed coalgebras 𝐶
together with a coalgebra projection 𝑠 ∶ 𝐶 → 𝐶0 (or equivalently a coideal 𝐼 such that
𝐶 = 𝐶0⊕ 𝐼 ) and a morphism 𝜌 ∶ (𝐶, 𝑠) → (𝐷, 𝑠′) is a coalgebra homomorphism 𝜌 ∶ 𝐶 → 𝐷
such that 𝜌𝑠 = 𝑠′𝜌 (or equivalently 𝜌(𝐼 ) ⊆ 𝐼 ′, for 𝐼 ′ = ker 𝑠′). He proved that the covariant
functor 𝐹 ′ ∶  → 𝑘-Quiv, given by 𝐹(𝐶, 𝐼 ) = (G(𝐶), 𝐼 ) and 𝐹(𝜌) = (𝜌|G(𝐶) , 𝜌|𝐼 ), where
G(𝐶) is the set of group-like elements of 𝐶 (see Definition 1.3.3), is left adjoint to the
covariant functor 𝐺′ ∶ 𝑘-Quiv → , given by 𝐺′(𝑉𝑄) = (CotΣ𝑄(𝑉𝑄),⨁𝑛⩾1 𝑉

□𝑛
𝑄 ) (where Σ𝑄

and 𝑉𝑄 are as in Definition 2.3.16) and on morphism is given by the universal property of
the cotensor coalgebra.

Remark 3.3.4. Observe that for 𝜌, 𝛾 ∈ Hom(𝐶, 𝐷) such that

(𝜌 − 𝛾)(𝐶0) = 0, (𝜌 − 𝛾)(𝐶) ⊆ 𝐷0,

then 𝜌 = 𝛾 , since

(𝜌 − 𝛾)(𝐶) = (𝜌 − 𝛾)(𝐶0) + (𝜌 − 𝛾)(𝐼 ) ⊆ 𝐼 ′ ∩ 𝐷0 = {0}.
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Thus, for coalgebra homomorphisms 𝜌, 𝛾 in , we have 𝜌 = 𝛾 ⟺ 𝜌 ∼∞ 𝛾 (see Definition
3.2.11).

In this section, following Radford’s idea of defining a category with a lot more objects
and fewer morphisms (between two objects), we show that the functor 𝐹𝑛 can be defined for
the right categories and induce an adjunction, which generalize the adjuntion of Radford
[Rad82].

Consider the category Cs whose objects are pairs (𝐶, 𝑠), where 𝐶 is a coalgebra with
separable coradical and 𝑠 ∶ 𝐶 → 𝐶0 is a splitting of the canonical inclusion 𝜄0 ∶ 𝐶0 → 𝐶.
A morphism 𝜌 ∶ (𝐶, 𝑠) → (𝐷, 𝑠′) is a filtered coalgebra homomorphisms 𝜌 ∶ 𝐶 → 𝐷
such that 𝜌𝑠 = 𝑠′𝜌. Denote by Cs𝑛 the quotient category given by the projection functor
Π𝑛 ∶ Cs → Cs⧸∼𝑛, see Definition 3.2.11. By Remark 3.3.4, Cs∞ = Cs. Moreover,  is the
full subcategory of Cs restricted to pointed coalgebras.

Define the covariant functor 𝐹𝑛 ∶ Cs → ParCog given by 𝐹𝑛((𝐶, 𝑠)) = (𝐶0,
𝐶𝑛
𝐶0)

,

where 𝐶𝑛
𝐶0

is a 𝐶0-bicomodule with induced structure via 𝑠, and 𝐹𝑛(𝜌) = (𝜌|𝐶0 , 𝜌| 𝐶𝑛𝐶0 ).

Define the covariant functor 𝐺𝑛 ∶ ParCog → Cs given by 𝐺−((Σ, 𝑉 )) = (CotΣ(𝑉 ), 𝜋0),
where 𝜋0 ∶ CotΣ(𝑉 ) → Σ is the canonical projection of graded algebras, and 𝐺(𝜑) ∶
CotΣ(𝑉 ) → CotΣ′(𝑉 ′) is given by the universal property as in (3.2.9), which is compatible
with the projections by construction.

The projection functor Π𝑛 induces covariant functors 𝐹𝑛 ∶ Cs𝑛 → ParCog, such that
𝐹𝑛 = 𝐹𝑛Π𝑛, and 𝐺𝑛 = Π𝑛𝐺− ∶ ParCog → Cs𝑛 (c.f. Lemma 3.2.20).

These lead us to the following:

Theorem 3.3.5. The covariant functor 𝐹𝑛 ∶ Cs𝑛 → ParCog is left adjoint to the covariant
functor 𝐺𝑛 ∶ ParCog → Cs𝑛.

The proof follows pretty much the same as in Subsection 3.2.2 replacing the level
one of the coradical filtration for level 𝑛, with other small changes which we describe
below.

Definition 3.3.6. For each (𝐶, 𝑠) ∈ Cs, define 𝑠,𝑡
𝐶 ∶ (𝐶, 𝑠) → (Cot𝐶0(

𝐶𝑛
𝐶0 ), 𝜋0) by the

universal property of the cotensor coalgebra (see Theorem 1.2.74):

Cot𝐶0(
𝐶𝑛
𝐶0 )

𝐶 𝐶0

𝜋0
𝑠,𝑡
𝐶

𝑠

Cot𝐶0(
𝐶𝑛
𝐶0 )

𝐶
𝐶𝑛
𝐶0

𝜋1𝑠,𝑡
𝐶

𝑞𝑡

(3.3.7)

where 𝑡 ∶ 𝐶 → 𝐶𝑛 is a splitting of the canonical inclusion of 𝐶0-bicomodules 𝜄𝑛 ∶ 𝐶𝑛 → 𝐶,

𝑞 ∶ 𝐶𝑛 →
𝐶𝑛
𝐶0

is the canonical projection, and 𝜋0 and 𝜋1 are the canonical projections of

graded coalgebras.

Lemma 3.3.8. If 𝑡 ∶ 𝐶 → 𝐶𝑛 any other splitting, then 𝑠,𝑡
𝐶 ∼𝑛 𝑠,𝑡

𝐶 .
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Proof. Follows immediately from (3.2.21) since any splitting 𝑡 ∶ 𝐶 → 𝐶𝑛 restricted to 𝐶𝑛 is
the identity map.

Lemma 3.3.9. The unit  ∶ idCs𝑛 → 𝐺𝑛𝐹𝑛 map is a natural transformation.

Proof. We must show that for any [𝜌] ∈ HomCs𝑛((𝐶, 𝑠)(𝐷, 𝑠′)), the diagram

(𝐶, 𝑠) (Cot𝐶0(
𝐶𝑛
𝐶0 ), 𝜋0)

(𝐷, 𝑠′) (Cot𝐷0(
𝐷𝑛
𝐷0 ), 𝜋

′
0)

[𝜌]

𝑠
𝐶

𝐺𝑛𝐹𝑛([𝜌])

𝑠′
𝐷

commutes (see Definition 1.1.14).

It is sufficient to show that for any 𝜌 ∈ HomCs((𝐶, 𝑠)(𝐷, 𝑠′)) the following equations
hold:

𝜋′
0(𝐺−(𝐹𝑛(𝜌))𝑠

𝐶)
|||𝐶0

= 𝜋′
0(𝑠′

𝐷𝜌)
|||𝐶0
, 𝜋′

1(𝐺−(𝐹𝑛(𝜌))𝑠
𝐶)
|||𝐶𝑛

= 𝜋′
1(𝑠′

𝐷𝜌)
|||𝐶𝑛

(see (3.2.21)). Note that

𝜋′
0𝐺−(𝜑) = 𝜑0𝜋0, 𝜋0𝑠

𝐶 = 𝑠, 𝐹𝑛(𝜌)0 = 𝜌|𝐶0 ,
𝜋′
1𝐺−(𝜑) = 𝜑1𝜋1, 𝜋1𝑠

𝐶 = 𝑞𝑡, 𝐹𝑛(𝜌)1 = 𝜌| 𝐶𝑛
𝐶0
.

Thus, we can combine these relations in the following commutative diagrams:

𝐶

Cot𝐶0(
𝐶𝑛
𝐶0 ) Cot𝐷0(

𝐷𝑛
𝐷0 )

𝐶0 𝐷0

𝑠
𝐶

𝑠
𝐺−(𝐹𝑛(𝜌))

𝜋0 𝜋′
0

𝜌

,

𝐶 𝐷

Cot𝐷0(
𝐷𝑛
𝐷0 )

𝐷0

𝜌

𝑠′
𝐷

𝑠′

𝜋′
0

,

which gives the equality

𝜋′
0 (𝐺−(𝐹𝑛(𝜌))𝑠

𝐶)
|||𝐶0

= 𝐹𝑛(𝜌)0𝜋0𝑠
𝐶
||𝐶0 = 𝜌|𝐶0 𝑠|𝐶0 = 𝑠′𝜌||𝐶0 = 𝜋′

0 (𝑠′
𝐷𝜌)

|||𝐶0
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and

𝐶

Cot𝐶0(
𝐶𝑛
𝐶0 ) Cot𝐷0(

𝐷𝑛
𝐷0 )

𝐶𝑛
𝐶0

𝐷𝑛

𝐷0

𝑠
𝐶

𝑞𝑡
𝐺−(𝐹𝑛(𝜌))

𝜋1 𝜋′
1

𝜌

,

𝐶 𝐷

Cot𝐷0(
𝐷𝑛
𝐷0 )

𝐷𝑛

𝐷0

𝜌

𝑠′
𝐷

𝑞′𝑡′

𝜋′
1

,

which gives the equality

𝜋′
1 (𝐺−(𝐹𝑛(𝜌))𝑠

𝐶)
|||𝐶𝑛

= (𝐹𝑛(𝜌)1𝜋1𝑠
𝐶)
|||𝐶𝑛

= 𝜌𝑞𝑡|𝐶𝑛 = 𝑞′𝑡′𝜌||𝐶𝑛 = 𝜋′
1 (𝑠′

𝐷𝜌)
|||𝐶𝑛
,

because 𝑡|𝐶𝑛 = id𝐶𝑛 and 𝑡′|𝐷𝑛 = id𝐷𝑛 (and 𝜌 is filtered). Thus 𝐺−(𝐹𝑛(𝜌))𝑠
𝐶 ∼𝑛 𝑠′

𝐷𝜌, and the
result follows.

Definition 3.3.10. For each (Σ, 𝑉 ) ∈ ParCog, define:

• (Σ,𝑉 )0 = idΣ ∶ Σ → Σ;

• (Σ,𝑉 )1 ∶
CotΣ(𝑉 )𝑛

Σ
=

Σ ⊕ (⨁𝑛
𝑖=1 𝑉 □𝑖)
Σ

≅
𝑛

⨁
𝑖=1

𝑉 □𝑖 ↠ 𝑉 , is the unique comodule

projection such that the following diagram commutes (see (1.1.9)):

CotΣ(𝑉 )𝑛

CotΣ(𝑉 )𝑛
Σ

𝑉

𝑞 𝜋1

(Σ,𝑉 )1

(3.3.11)

where 𝑞 ∶ CotΣ(𝑉 )𝑛 →
CotΣ(𝑉 )𝑛

Σ
is the canonical projection.

Hence (Σ,𝑉 ) = ((Σ,𝑉 )0 , (Σ,𝑉 )1) ∶ (Σ,
CotΣ(𝑉 )𝑛

Σ ) → (Σ, 𝑉 ) is a morphism of pairs.

Lemma 3.3.12. The counit  ∶ 𝐹𝑛𝐺𝑛 → idParCog map is a natural transformation.

Proof. We must show that for any 𝜑 ∈ HomParCog((Σ, 𝑉 ), (Σ′, 𝑉 ′)), the diagram

(Σ,
CotΣ(𝑉 )𝑛

Σ ) (Σ, 𝑉 )

(Σ
′,

CotΣ′(𝑉 ′)𝑛
Σ′ ) (Σ′, 𝑉 ′)

𝐹𝑛𝐺𝑛(𝜑)

(Σ,𝑉 )

𝜑

(Σ′,𝑉 ′)

,
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commutes (see Definition 1.1.14).

Observe that

𝐹𝑛(𝐺−(𝜑))0 = 𝐺−(𝜑)|Σ = 𝜋′
0𝐺−(𝜑)𝜄0 = 𝜑0𝜋0𝜄0 = 𝜑0

and (Σ,𝑉 )0 = idΣ. Hence

𝜑0(Σ,𝑉 )0 = 𝜑0idΣ = idΣ′𝜑0 = (Σ′,𝑉 ′)0𝐹𝑛(𝐺−(𝜑))0.

Moreover,

(Σ′,𝑉 ′)𝐹𝑛(𝐺−(𝜑))1𝑞 = (Σ′,𝑉 ′)𝐺−(𝜑)𝑞 = (Σ′,𝑉 ′)𝑞′𝐺−(𝜑) = 𝜋′
1𝐺−(𝜑) = 𝜑1𝜋1 = 𝜑1(Σ,𝑉 )1𝑞

as depicted in the following commutative diagrams:

CotΣ(𝑉 )𝑛

CotΣ(𝑉 )𝑛
Σ

𝑉 𝑉 ′

𝑞

𝜋1

(Σ,𝑉 )1

𝜑1

,

CotΣ(𝑉 )𝑛 CotΣ′(𝑉 ′)𝑛

CotΣ(𝑉 )𝑛
Σ

CotΣ′(𝑉 ′)𝑛
Σ′

𝑉 𝑉 ′

𝑞

𝐺−(𝜑)

𝜋1

𝑞′

𝜋′
1

𝐺−(𝜑)

(Σ′,𝑉 ′)1

𝜑1

.

Since 𝑞 is an epimorphism, it follows that 𝜑(Σ,𝑉 ) = (Σ′,𝑉 ′)𝐹𝑛(𝐺−(𝜑)), and the result follows.

Lemma 3.3.13. The triangular equalities:

(𝐶0,
𝐶𝑛
𝐶0) (𝐶0,

𝐶𝑛
𝐶0)

(𝐶0,
Cot𝐶0(

𝐶𝑛
𝐶0 )𝑛

𝐶0 )

id𝐹𝑛(𝐶)

𝐹𝑛(𝑠
𝐶) 𝐹𝑛(𝐶)

,

CotΣ(𝑉 ) CotΣ(𝑉 )

CotΣ(CotΣ(𝑉 )𝑛
Σ )

id𝐺𝑛(Σ,𝑉 )

𝜋0
𝐺𝑛(Σ,𝑉 )

𝐺𝑛((Σ,𝑉 ))
,

(3.3.14)
are satisfied.

Proof. Observe that
𝐹𝑛(𝐶)0𝐹𝑛(𝑠

𝐶)0 = id𝐶0 𝑠
𝐶
||𝐶0 = id𝐶0

and

𝐹𝑛(𝐶)1𝐹𝑛(𝑠
𝐶)1 𝑞|𝐶𝑛 = 𝐹𝑛(𝐶)1𝑠

𝐶 𝑞|𝐶𝑛 = 𝑛𝐹(𝐶)1𝑞
′ 𝑠

𝐶
||𝐶𝑛 = 𝜋′

1 𝑠
𝐶
||𝐶𝑛 = 𝑞𝑡|𝐶𝑛 = 𝑞|𝐶𝑛



80

3 | RELATED ADJUNCTIONS

as depicted in the following commutative diagrams:

𝐶 Cot𝐶0(
𝐶𝑛
𝐶0 )

𝐶0 𝐶0 𝐶0

𝑠
𝐶

𝑠 𝜋0𝜄0
id𝐶0

𝑠
𝐶

id𝐶0

,

𝐶𝑛 Cot𝐶0(
𝐶𝑛
𝐶0 )𝑛

𝐶𝑛
𝐶0

Cot𝐶0(
𝐶𝑛
𝐶0 )𝑛

𝐶0

𝐶𝑛
𝐶0

𝑠
𝐶

𝑞

𝑞

𝑞′

𝜋1

𝑠
𝐶


(𝐶0,

𝐶𝑛
𝐶0

)1

.

Since 𝑞 is an epimorphism, it follows that 𝐹𝑛(𝐶) 𝐹𝑛(𝑠
𝐶) = id(𝐶0, 𝐶𝑛𝐶0 )

.

For the second case, note that:

𝜋0 (𝐺−((Σ,𝑉 ))𝜋0
𝐺−(Σ,𝑉 ))

|||Σ = ((Σ,𝑉 )0𝜋
′
0

𝜋0
𝐺−(Σ,𝑉 ))

|||Σ = (idΣ𝜋0)
|||Σ = 𝜋0|Σ

and

𝜋1 (𝐺−((Σ,𝑉 ))𝜋0
𝐺−(Σ,𝑉 ))

|||CotΣ(𝑉 )𝑛
= ((Σ,𝑉 )1𝜋

′
1

𝜋0
𝐺−(Σ,𝑉 ))

|||CotΣ(𝑉 )𝑛
= ((Σ,𝑉 )1𝑞𝑡)

|||CotΣ(𝑉 )𝑛
= 𝜋1|CotΣ(𝑉 )𝑛 ,

as depicted on the following commutative diagrams:

CotΣ(𝑉 ) CotΣ(CotΣ(𝑉 )𝑛
Σ ) CotΣ(𝑉 )

Σ Σ

𝜋0
𝐺−(Σ,𝑉 )

𝜋0

𝐺−((Σ,𝑉 ))

𝜋′
0

𝜋0

idΣ

,

CotΣ(𝑉 ) CotΣ(CotΣ(𝑉 )𝑛
Σ ) CotΣ(𝑉 )

CotΣ(𝑉 )𝑛
Σ

𝑉

𝜋0
𝐺−(Σ,𝑉 )

𝑞𝑡

𝜋1

𝐺−((Σ,𝑉 ))

𝜋′
1 𝜋1

(Σ,𝑉 )1

.

It follows that 𝐺−((Σ,𝑉 ))𝜋0
𝐺−(Σ,𝑉 ) ∼𝑛 idCotΣ(𝑉 ) (see (3.2.21)).

Therefore, the triangular equalities are satisfied.

This proves Theorem 3.3.5.

Corollary 3.3.15. When restricted to pointed coalgebras, we have 𝑄𝐹∞ ≅ 𝐹 ′ and 𝐺∞𝑃 ≅ 𝐺′.
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Chapter 4

Algebra of invariants

In Section 2.3.5 we describe some group of automorphisms of path coalgebras, but the
interest in such objects does not stop there.

In the late 70’s, Kharchenko [Kha78] and, independently, Lane [Lan78] proved that the
algebra of invariants of a free algebra by the action of a homogeneous group of algebra
automorphisms is a free algebra. Few years back, Cibils and Marcos [CM16] proved that
the same behavior is true for free linear 𝑘-categories, i.e. the category of invariants of a
free linear 𝑘-category by the action of a finite homogeneous group of automorphisms is
again a free linear 𝑘-category. Moreover, Cibils and Marcos proved that the category of
invariants of a free linear category of finite or tame representation type has finite or tame
representation type, respectively, but the category of invariants of a free linear category
of wild representation type is not necessarily of wild representation type.

In this chapter we show that the algebra of invariants of a complete path algebra by
the action of a homogeneous group of continuous algebra automorphisms is a complete
path algebra. In order to do this, in Section 4.2 we prove the the result for power series
rings. This extends the Theorem of Kharchenko–Lane (see [Kha78, Proposition 1] and
[Lan78, Lemma 1.8]). In Section 4.3, using the techniques developed by Cibils and Marcos
(see [CM16, Theorem 3.9]), we prove the main theorem of this chapter.

In the first section we introduce the finite and tame representations of a complete path
algebra and prove in the end of this chapter that the algebra of invariants of a complete
path algebra by the action of a homogeneous group of continuous algebra automorphisms
inherits the representation type of the latter in case it is of finite or tame representation
type. We finish this thesis with open questions related to this chapter.

4.1 Representation types
In this section we describe the finite and tame representation types of a path coalgebra.

First we present Dynkin diagrams, which are precisely the underlying graphs of finite
quivers of finite representation type. Then we present the Euclidian diagrams, which are
precisely the underlying graphs of finite quivers of tame representation type. Finally, we
describe the finite and tame representation types of path coalgebras.
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4.1.1 Dynkin diagrams
Definition 4.1.1. A quiver is said to be of finite representation type if it has only finitely
many non-isomorphic indecomposable finite dimensional representations. Otherwise it is
of infinite representation type.

Definition 4.1.2. A simply laced Dynkin diagram is one of the following graphs:

𝔸𝑛 ∶ ∙ ∙ ⋯ ∙ ∙ 𝑛 ⩾ 1

∙

𝔻𝑛 ∶ ∙ ∙ ⋯ ∙ ∙ 𝑛 ⩾ 4

∙

𝔼6 ∶ ∙ ∙ ∙ ∙ ∙

∙

𝔼7 ∶ ∙ ∙ ∙ ∙ ∙ ∙

∙

𝔼8 ∶ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(4.1.3)

where the numbered subindex indicate the number of vertices.

Definition 4.1.4. A Dynkin quiver is a finite quiver whose underlying graph is one of the
simply laced Dynkin diagrams.

A quiver is locally finite if there exists only finitely many paths between any pair of
vertices.

A quiver is a locally Dynkin quiver if it is locally finite and any finite subquiver is a
Dynkin quiver.

An infinite quiver that is a locally Dynkin quiver has one of the following underlying
graphs:

𝔸∞ ∶ ∙ ∙ ∙ ∙ ⋯

𝔸∞ ∞ ∶ ⋯ ∙ ∙ ∙ ⋯

∙

𝔻∞ ∶ ∙ ∙ ∙ ∙ ⋯

(4.1.5)

The next result is known as Gabriel’s Theorem.

Theorem 4.1.6. A connected finite quiver is of finite representation type if and only if it is a
Dynkin quiver.
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Proof. See [Gab73, §4] and [BGP73].

4.1.2 Euclidian diagrams
Nazarova [Naz73], Donovan and Freislich (see for instance [Dok+13]) extended the

classification of quivers by means of tame representations type.

Definition 4.1.7. A quiver is said to be of tame representation type if it has infinitely many
non-isomorphic indecomposable representations such that, for each integer 𝑑 ⩾ 1, all but
finitely many non-isomorphic indecomposable representations of dimension 𝑑 occurs in a
finite number of one-parameter families.

Definition 4.1.8. An Euclidian diagram, or extended Dynkin diagram, is one of the follow-
ing graphs:

∙

𝔸̃𝑛 ∶ ∙ ∙ ⋯ ∙ ∙ 𝑛 ⩾ 1

∙ ∙

𝔻̃𝑛 ∶ ∙ ∙ ⋯ ∙ ∙ 𝑛 ⩾ 4

∙

∙

𝔼̃6 ∶ ∙ ∙ ∙ ∙ ∙

∙

𝔼̃7 ∶ ∙ ∙ ∙ ∙ ∙ ∙ ∙

∙

𝔼̃8 ∶ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(4.1.9)

where the numbered subindex indicate the number of vertices minus one.

Theorem 4.1.10. A connected finite quiver is of tame representation type if and only if its
underlying graph is one of the Euclidean diagrams.

4.1.3 Representations of path coalgebras
A comodule is indecomposable if it is not the direct sum of two non-zero subcomod-

ules. One can define finite and tame representation types for coalgebras in the same
sense as done for quivers in the previous subsections, regarding left comodules as its
representations.

In view of Proposition 2.1.14, we have:
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Proposition 4.1.11. Let 𝑄 be a connected quiver and consider the path coalgebra 𝑘𝑄. Then:

1. 𝑘𝑄 is of finite representation type if, and only if 𝑄 is a Dynkin quiver;

2. 𝑘𝑄 is of tame representation type if, and only if, 𝑄 is an infinite locally Dynkin quiver
or its underlying graph, 𝑄, is an Euclidian diagram, including the quiver with one
vertex and one loop 𝔸̃0.

Proof. See [Sim11, Theorem 7.22].

Remark 4.1.12. Since the dual algebra of a path coalgebra is isomorphic to a complete tensor
algebra (see Lemma 1.4.47 and propositions 2.1.13 and 2.1.23), and the category of (left)
𝐶-comodules is dual to the category of (left) pseudocompact 𝐶∗-modules (see Theorem
1.4.19), we conclude that a complete path algebra is of finite or tame representation type if
its dual coalgebra is of finite or tame representation type, respectively.

Path coalgebras of finite and tame representations types are the ones which, hopefully,
one can completely classify all finite dimensional representations (comodules), up to
isomorphism. All other path coalgebras are known as of wild representation type. Initially,
Simson defined coalgebras of wild representation type in terms of an embedding of a
category of (left) modules into a category of (right) comodules. In order to restrict the
definition for comodules, we need the next result about comodules over finite dimensional
coalgebras.

Consider a coalgebra 𝐶 and a left 𝐶-comodule (𝑀, 𝜇). Let 𝜑 ∶ 𝑀 ⊗ 𝑘 → 𝑀 be the
canonical isomorphism 𝜑(𝑚⊗𝜆) = 𝜆𝑚, 𝛾 ∶ 𝐶 ⊗𝐶∗ → 𝑘 be the evaluation of the functional
𝛾(𝑐 ⊗ 𝑓 ) = 𝑓 (𝑐), and 𝑇 ∶ 𝑀 ⊗ 𝐶 → 𝐶 ⊗ 𝑀 be the twist map 𝑇 (𝑚 ⊗ 𝑐) = 𝑐 ⊗ 𝑚. Define
the map 𝜓𝜇 ∶ 𝑀 ⊗ 𝐶∗ → 𝑀 by 𝜓𝜇 = 𝜑(id𝑀 ⊗ 𝛾)(𝑇 ⊗ id𝐶∗)(𝜇 ⊗ id𝐶∗), i.e. given 𝑚 ∈ 𝑀 and
𝜇(𝑚) = ∑(𝑚)𝑚(−1) ⊗ 𝑚(0), then 𝜓𝜇(𝑚 ⊗ 𝑓 ) = ∑(𝑚) 𝑓 (𝑚−1)𝑚(0).

With the above notation, (𝑀, 𝜓𝜇) is a right 𝐶∗-module. Moreover,

Proposition 4.1.13. If 𝐶 is a finite dimensional coalgebra, then the categories 𝐶 and 𝐶∗

are isomorphic.

Proof. See [DNR01, Theorem 2.2.5] and [FM20, Remark 3.3.10].

Now consider the quiver:
𝑄3 ∶ ∙ ∙ (4.1.14)

Definition 4.1.15. A path coalgebra 𝑘𝑄 is of wild representation type if there exists a
faithful covariant functor 𝐹 ∶ 𝑘𝑄3 → 𝑘𝑄 , which preserves indecomposables and short
exact sequences and reflects isomorphisms.

Proposition 4.1.16. Let 𝐶 be a basic coalgebra and 𝑘 = 𝑘. Then, 𝐶 is either of finite
representation type, or of tame representation type or of wild representation type.

Proof. See [Sim11, Corollary 6.8].
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For the purpose of this chapter, we distinguish tame and finite representations type.
Many authors treat finite representation type as a special case of tame representation type.
The above result is know as the tame-wild dychotomy for coalgebras.

4.2 Invariants of a power series ring
Definition 4.2.1. Let 𝐴 be an algebra and 𝐺 be a group of algebra automorphisms of 𝐴.
An element 𝑥 ∈ 𝐴 is an invariant of 𝐺 if 𝑔(𝑥) = 𝑥 for all 𝑔 ∈ 𝐺. The set of all invariants of
𝐺 is a subalgebra of 𝐴, denoted by 𝐴𝐺, called the algebra of invariants of 𝐺.

Definition 4.2.2. Let 𝐴 = ⨁𝑖∈N 𝐴𝑖 be a graded algebra and consider 𝐺 a group of algebra
automorphisms of 𝐴. An automorphism 𝑔 ∈ 𝐺 is homogeneous if 𝑔(𝐴𝑖) = 𝐴𝑖 for every
𝑖 ∈ N. We say that 𝐺 is homogeneous if its elements are homogeneous.

The Theorem of Kharchenko–Lane states the following:

Theorem 4.2.3. Let 𝑅 = 𝑘⟨𝑋⟩ be a free algebra and 𝐺 a group of automorphisms of 𝑅. If 𝐺
is homogeneous with respect to the grading on 𝑅 induced by some function 𝑑 ∶ 𝑋 → N>0,
then the algebra of invariants of 𝐺 is free, on a set that is homogeneous with respect to 𝑑.

Proof. See [Coh85, Theorem 6.10.3].

The above theorem can be reformulated as: if 𝐺 is a group of homogeneous automor-
phisms of the tensor algebra T[𝑘,𝑀], then T[𝑘,𝑀]𝐺 = T[𝑘, 𝑈 ], where 𝑈 ⊆ T[𝑘,𝑀] is a
subspace generated by homogeneous elements (in T[𝑘,𝑀]). The main tool used to prove
this theorem is the fact that an algebra 𝐴 with a filtration so that 𝐴0 = 𝑘 is a free algebra if,
and only if, 𝐴 satisfies the weak algorithm (see for instance [Kha78, Proposition 1], [Lan78,
Lemma 1.8] or [Coh85, Proposition 2.4.2]).

Using the inverse weak algorithm, we prove at the end of this section that the above
theorem can be extended to power series rings.

First, we recall the definitions of the weak algorithm and the inverse weak algorithm,
along with associated results. We mainly follow [Coh85, §2.2 and §2.9].

4.2.1 Weak algorithm
Definition 4.2.4. Let 𝑅 be a ring. A function 𝜇 ∶ 𝑅 → N ∪ {−∞} is a filtration on 𝑅 if
satisfies:

1. 𝜇(𝑥) ⩾ 0 for 𝑥 ≠ 0 and 𝜇(0) = −∞;

2. 𝜇(𝑥 − 𝑦) ⩽ max{𝜇(𝑥), 𝜇(𝑦)};

3. 𝜇(𝑥𝑦) ⩽ 𝜇(𝑥) + 𝜇(𝑦).

4. 𝜇(1) = 0.

In the case (3) is an equality, 𝜇 is a degree function. In general, we say that 𝜇(𝑥) is the degree
of 𝑥 .
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Definition 4.2.5. Let 𝑅 be a ring. We say that 𝑅 is graded if it can be expressed as the
direct sum of abelian groups 𝑅 = ⨁𝑖∈N 𝑅𝑖 such that 𝑅𝑖𝑅𝑗 ⊆ 𝑅𝑖+𝑗 . In this case, 𝑅0 is a subring
and each 𝑅𝑖 is a 𝑅0-bimodule.

A graded ring 𝑅 = ⨁𝑖∈N 𝑅𝑖 has a natural degree function 𝜇 ∶ 𝑅 → N ∪ {−∞} given
by:

𝜇(𝑥) =

{
min{𝑛 ∶ 𝑥 ∈ ⋃𝑛

𝑖=0 𝑅𝑖}, if 𝑥 ≠ 0;
−∞, if 𝑥 = 0.

(4.2.6)

In case 𝑥 ∈ 𝑅𝑛, we say that 𝑥 is a homogeneous element of degree 𝑛.

Definition 4.2.7. Let 𝑅 be a ring with filtration 𝜇. For each 𝑛 ∈ N ∪ {−∞}, denote by
𝑅(𝑛) = {𝑥 ∈ 𝑅 | 𝜇(𝑥) ⩽ 𝑛} the set of elements of degree at most 𝑛. Then the 𝑅(𝑛) are subgroups
of the additive group 𝑅 satisfying:

1. {0} = 𝑅(−∞) ⊆ 𝑅(0) ⊆ 𝑅(1) ⊆ ⋯;

2. ⋃𝑅(𝑛) = 𝑅;

3. 𝑅(𝑖)𝑅(𝑗) ⊆ 𝑅(𝑖+𝑗);

4. 1 ∈ 𝑅(0).

We can form the associated graded ring gr(𝑅) =
∞

⨁
𝑛=0

𝑅(𝑖)

𝑅(𝑖−1)
, where

𝑅(0)

𝑅(−1)
=

𝑅(0)

𝑅(−∞)
= 𝑅(0).

Definition 4.2.8. Let 𝑅 be a ring with filtration 𝜇. A family {𝑎𝑖}𝑖∈𝐼 of elements of 𝑅 is right
𝜇-dependent if some 𝑎𝑖 = 0 or there exist 𝑏𝑖 ∈ 𝑅, almost all 0, such that

𝜇(∑𝑎𝑖𝑏𝑖)< max{𝜇(𝑎𝑖) + 𝜇(𝑏𝑖)}.

An element 𝑎 ∈ 𝑅 is right 𝜇-dependent on {𝑎𝑖}𝑖∈𝐼 if 𝑎 = 0 or there exist 𝑏𝑖 ∈ 𝑅, almost all 0,
such that

𝜇(𝑎 −∑𝑎𝑖𝑏𝑖) < 𝜇(𝑎) and 𝜇(𝑎𝑖) + 𝜇(𝑏𝑖) ⩽ 𝜇(𝑎), ∀𝑖 ∈ 𝐼 .

The ring 𝑅 satisfies the 𝑛-term weak algorithm (with respect to 𝜇) if for any (right) 𝜇-
dependent family with at most 𝑛 members, say 𝑎1, … , 𝑎𝑚 (𝑚 ⩽ 𝑛), with 𝜇(𝑎1) ⩽ ⋯ ⩽ 𝜇(𝑎𝑚),
some 𝑎𝑖 is 𝜇-dependent on 𝑎1, … , 𝑎𝑖−1. The ring 𝑅 satisfies the weak algorithm if it satisfies
the 𝑛-term weak algorithm for all 𝑛 ∈ N.

4.2.2 Inverse weak algorithm
Definition 4.2.9. Let 𝑅 be a ring. A function 𝜈 ∶ 𝑅 → N ∪ {∞} is an inverse filtration on 𝑅
if satisfies:

1. 𝜈(𝑥) ∈ N for 𝑥 ≠ 0 and 𝜈(0) = ∞;

2. 𝜈(𝑥 − 𝑦) ⩾ min{𝜈(𝑥), 𝜈(𝑦)};

3. 𝜈(𝑥𝑦) ⩾ 𝜈(𝑥) + 𝜈(𝑦).

In the case (3) is an equality, 𝜈 is an order function.
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Definition 4.2.10. Let 𝑅 be a ring with inverse filtration 𝜈. Denote by 𝑅[𝑛] = {𝑥 ∈ 𝑅 | 𝜈(𝑥) ⩾
𝑛}, which satisfies:

1. 𝑅 = 𝑅[0] ⊇ 𝑅[1] ⊇ ⋯;

2. 𝑅[𝑖]𝑅[𝑗] ⊆ 𝑅[𝑖+𝑗];

3. ⋂𝑅[𝑛] = 0.

The associated graded ring is gr[𝑅] =
∞

⨁
𝑛=0

𝑅[𝑛]

𝑅[𝑛+1]
. If 𝑥 ∈ 𝑅, 𝑥 ≠ 0, and 𝜈(𝑥) = 𝑛, denote by

𝑥 = 𝑥 + 𝑅[𝑛+1] ∈
𝑅[𝑛]

𝑅[𝑛+1]
.

Definition 4.2.11. Let 𝑅 be a ring with inverse filtration 𝜈. 𝑅 satisfies the (𝑛-term) inverse
weak algorithm if the associated graded ring gr[𝑅] satisfies the (𝑛-term) weak algorithm
(with respect to its natural degree function).

Definition 4.2.12. Let 𝑅 be an inversely filtered ring. Then, 𝑅 is a topological ring with
𝑅 = 𝑅[0] ⊇ 𝑅[1] ⊇ ⋯ being its neighborhood base at 0. Denote by 𝑅̂ its completion. There
exists a natural embedding 𝑅 → 𝑅̂, which respects the (inverse) filtration. If this embedding
is an isomorphism, we say that 𝑅 is complete.

Proposition 4.2.13. Let 𝐴 be a complete inversely filtered algebra such that
𝐴
𝐴[1]

= 𝑘. The

algebra 𝐴 is a power series ring if, and only if, 𝐴 satisfies the inverse weak algorithm.

Proof. See [Coh85, Proposition 2.9.8].

Corollary 4.2.14. Let 𝐵 ⊆ 𝐴 be a closed subalgebra of the power series ring 𝐴. If 𝐵 satisfies
the inverse weak algorithm, then 𝐵 is a power series ring.

Proof. See [Coh85, Corollary 2.9.9].

4.2.3 Power series ring
Let 𝐴 be an algebra with inverse filtration 𝜈 and consider an algebra automorphism 𝑔 .

We say that 𝑔 preserves the (inverse) filtration of 𝐴 if 𝑔(𝐴[𝑛]) = 𝐴[𝑛] for every 𝑛 ∈ N, where
𝐴[𝑛] = {𝑎 ∈ 𝐴 | 𝜈(𝑎) ⩾ 𝑛}. In this case, 𝑔 induce an algebra automorphism in the associated
graded algebra gr[𝐴] given by 𝑔(𝑎 + 𝐴[𝑛+1]) ∶= 𝑔(𝑎) + 𝐴[𝑛+1] for any representative 𝑎 of

𝑎 ∈
𝐴[𝑛]

𝐴[𝑛+1]
.

Let 𝑘 be a (discrete) field, 𝐴 be a pseudocompact 𝑘-algebra, 𝑀 be a pseudocompact

𝐴-bimodule, and T[[𝐴,𝑀]] =
∞

∏
𝑖=0

𝑀 ⊗̂𝑖 be the complete tensor algebra of 𝐴 and 𝑀 (see

Definition 1.4.43). The complete tensor algebra T[[𝐴,𝑀]] has a natural order function
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𝜈 ∶ T[[𝐴,𝑀]] → N ∪ {∞} given by:

𝜈(𝑥) =

{
max{𝑛 ∶ 𝑥 ∈ ∏∞

𝑖=𝑛𝑀 ⊗̂𝑖 }, if 𝑥 ≠ 0;
∞, if 𝑥 = 0.

When 𝐴 is a finite dimensional algebra and 𝑀 is a finite dimensional 𝐴-bimodule, it
turns out that gr[T[[𝐴,𝑀]]] ≅ T[𝐴,𝑀], considering the above inverse filtration.

An element 𝑥 ∈ T[[𝐴,𝑀]] is called homogeneous if 𝑥 ∈ 𝑀 ⊗̂𝑛 for some 𝑛 ∈ N. We say
that a algebra automorphisms 𝑔 of T[[𝐴,𝑀]] is homogeneous if 𝑔(𝑀 ⊗̂𝑛 ) = 𝑀 ⊗̂𝑛 for every
𝑛 ∈ N. A group of continuous algebra automorphism 𝐺 of a complete tensor algebra is
homogeneous if its elements are homogeneous.

Let 𝐺 be a homogeneous group of continuous algebra automorphisms of T[[𝐴,𝑀]]. If
𝐺 is invariant on 𝐴, then the pseudocompact 𝐴-bimodules 𝑀 ⊗̂𝑛 are left 𝑘𝐺-modules for
all 𝑛 ∈ N, where 𝑘𝐺 denotes the group algebra of 𝐺.

Now, we can prove the main theorem of this subsection.

Theorem 4.2.15. Let T[[𝐴,𝑀]] be a complete tensor algebra and 𝐺 be a group of continuous
algebra automorphisms of T[[𝐴,𝑀]]. If 𝐴 = 𝑘, i.e. T[[𝑘,𝑀]] is a power series ring, and 𝐺
is homogeneous with respect to the natural order function of T[[𝑘,𝑀]], then the algebra of
invariants of 𝐺, T[[𝑘,𝑀]]𝐺, is a power series ring.

Proof. In view of Corollary 4.2.14 and Proposition 4.2.13, it is sufficient to show that
T[[𝑘,𝑀]]𝐺 is closed and gr[T[[𝑘,𝑀]]𝐺] satisfies the weak algorithm.

It is closed because T[[𝑘,𝑀]]𝐺 = ⋂𝑔∈𝐺 ker(𝑔 − id).

Since gr[T[[𝑘,𝑀]]] satisfies the weak algorithm, gr[T[[𝑘,𝑀]]]𝐺 also satisfies the weak
algorithm by Theorem 4.2.3. It is clear that gr[T[[𝑘,𝑀]]𝐺] ⊆ gr[T[[𝑘,𝑀]]]𝐺. The other way
around follows by choosing homogeneous elements.

4.3 Invariants of a complete path algebra

With Theorem 4.2.15, we can apply the results of Cibils and Marcos [CM16] to complete
path algebras. We adapt the language to the terms developed in this thesis and present
full proofs of the results, though they follow exactly or with small changes to those in the
article.

We prove that the algebra of invariants of a homogeneous group of continuous algebra
automorphisms of a complete path algebra is a complete path algebra. Moreover, if the
complete path algebra is of finite or tame representation type, then the algebra of invariants
is of finite or tame representation type, respectively.
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4.3.1 Composite and irreducible invariants
Let 𝑉𝑄 = (𝑉𝑄0, 𝑉𝑄𝑒,𝑓 ) be a 𝑘-quiver. Consider the complete tensor algebra T[[Σ, 𝑉 ]] of

the topologically semisimple pseudocompact algebra Σ = ∏
𝑒∈𝑉𝑄0

𝑘 and the pseudocompact

Σ-bimodule 𝑉 = ∏
𝑒,𝑓 ∈𝑄0

𝑉𝑄𝑒,𝑓 .

In order to simplify the notation, we shall say that any nonzero vector space 𝑉𝑄𝑒,𝑓 is
an arrow space 𝑉𝑎 = 𝑉𝑄𝑒,𝑓 from 𝑒 to 𝑓 . For any sequence of arrow spaces 𝑉𝑎1 , 𝑉𝑎2 , … , 𝑉𝑎𝑛 ,
with 𝑉𝑎𝑖 = 𝑉𝑄𝑒𝑖−1,𝑒𝑖 , the vector space 𝑉𝜔 = 𝑉𝑎𝑛 ⊗̂Σ ⋯ ⊗̂Σ 𝑉𝑎2 ⊗̂Σ 𝑉𝑎1 ∈ T[[Σ, 𝑉 ]] is the space of
path 𝜔 from 𝑒0 to 𝑒𝑛 of length 𝑛 (in particular, any arrow space is a space of path of length
1). Any subspace of 𝑉𝜔 which is a space of path is called subpath.

Let 𝐺 be a group such that {𝑉𝑄𝑒,𝑓 }𝑒,𝑓 ∈𝑉𝑄0 is a family of left 𝑘𝐺-modules.

A 2-partition of a space of path 𝜔 in 𝑉𝑄 is any two subpaths 𝜔1 and 𝜔2 such that
𝑉𝜔 = 𝑉𝜔2 ⊗̂Σ 𝑉𝜔1 . Write 𝜔 = 𝜔2𝜔1 for short. Define 𝜑𝜔1,𝜔2 ∶ 𝑉 𝐺

𝜔2
⊗̂Σ 𝑉 𝐺

𝜔1
→ 𝑉 𝐺

𝜔 to be the
canonical map. Denote by

𝜑𝜔 ∶= ∑
𝜔2𝜔1=𝜔

𝜑𝜔1,𝜔2 (4.3.1)

The image of 𝜑𝜔 is called space of composite invariants. Any complement of Im 𝜑𝜔 in the
space of invariants is called a space of irreducible invariants.

Let us fix a complement and identify it by 𝑉 𝐺
𝜔,irr. If 𝜔 has length 𝑛 and 𝑝 = (𝑛𝑙, … , 𝑛1) is

any ordered 𝑙-partition of 𝑛, denote by

𝑉 𝐺
𝜔,𝑝,irr ∶= 𝑉 𝐺

𝜔𝑛𝑙 ,irr
⊗̂Σ ⋯ ⊗̂Σ 𝑉 𝐺

𝜔𝑛1 ,irr
,

where 𝜔𝑛𝑖 are the unique subpath of 𝜔 of length 𝑛𝑖 such that 𝜔 = 𝜔𝑛𝑙 ⋯𝜔𝑛1 . Consider the
canonical map

𝜓𝜔 ∶ ⨁
𝑝
𝑉 𝐺
𝜔,𝑝,irr → 𝑉 𝐺

𝜔 , (4.3.2)

where the direct sum runs through all ordered partitions of length 𝑛 (the length of 𝜔).

Remark 4.3.3. In [CM16, p. 3124], such partitions are referred to as "non-ordered", but the
most commonly used term we know is "ordered" partition.

4.3.2 Irreducible invariants decomposition
The next results follows, with small changes, by [CM16, Lemma 3.7, Proposition 3.8,

Theorem 3.9].

Lemma 4.3.4. 𝜓𝜔 is surjective.

Proof. Follows exactly as [CM16, Lemma 3.7].

It is defined a natural filtration on the invariants and the proof follows by induction.
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For each ordered partition 𝑝 = (𝑛𝑙, … , 𝑛1) of 𝑛 (the length of 𝜔) consider the map:

𝜑𝜔,𝑝 ∶ 𝑉 𝐺
𝜔𝑛𝑙
⊗̂Σ ⋯ ⊗̂Σ 𝑉 𝐺

𝜔𝑛1
→ 𝑉 𝐺

𝜔 .

Denote the image of the sum of the maps 𝜑𝜔,𝑝 along all the 𝑙-partitions of 𝑛 by [𝑈𝐺
𝜔 ]𝑙,

called the space of 𝑙-composite invariants. Thus the 2-composite invariants are the space of
composite invariants. The following filtration holds:

0 ⊆ [𝑉 𝐺
𝜔 ]

𝑛 ⊆ ⋯ ⊆ [𝑉 𝐺
𝜔 ]

1 = 𝑉 𝐺
𝜔 .

Observe that
[𝑉 𝐺

𝜔 ]
𝑛 = 𝑉 𝐺

𝑎𝑛 ⊗̂Σ ⋯ ⊗̂Σ 𝑉 𝐺
𝑎1 ,

which is in the image of 𝜓𝜔. Assume that [𝑉 𝐺
𝜔 ]𝑙 ⊆ Im (𝜓𝜔). Let 𝑣 ∈ [𝑉 𝐺

𝜔 ]𝑙−1 and suppose that
𝑣 is obtained from a fixed 𝑙 − 1 partition. Since 𝑣 ∈ 𝑉 𝐺

𝜔 , 𝑣 can be decomposed as a sum of
two terms:

1. tensors of irreducible invariants, which belong by definition to Im (𝜓𝜔);

2. (𝑙 − 1)-tensors which contain at least one composite invariant, so belonging to [𝑉 𝐺
𝜔 ]𝑙

which is contained in Im (𝜓𝜔) by hypothesis.

The general term is simply a sum of such terms, completing the proof.

Proposition 4.3.5. Consider 𝑉𝑎𝑖 = 𝑉 for all 𝑖 ∈ {1, … , 𝑛}, i.e. 𝑉𝜔 = 𝑉 ⊗̂𝑛 . Then 𝜓𝜔 is bijective.

Proof. Follows as [CM16, Proposition 3.8] after changing the Theorem 4.2.3 for Theorem
4.2.15.

Let T[[𝑘, 𝑉 ]]𝐺 = 𝑘×𝑉 𝐺×(𝑉 ⊗̂Σ𝑉 )𝐺×⋯ be the algebra of invariants of𝐺. By Theorem 4.2.15,
there exists a homogeneous 𝑘-subbimodule 𝑈 ⊆ T[[𝑘, 𝑉 ]]𝐺 such that T[[𝑘, 𝑈 ]] = T[[𝑘, 𝑉 ]]𝐺.

Write 𝑈𝑛 = 𝑈 ∩ (𝑉 ⊗̂𝑛 )𝐺, for each 𝑛 ⩾ 1. Claim: 𝑈𝑛 is a vector space of irreducible
invariants for every 𝑛. For 𝑛 = 1 it is clear since 𝑉 𝐺 is irreducible. Assume that 𝑈𝑖 is a
space of irreducible invariants of degree 𝑖, for every 𝑖 < 𝑛. Because the composites (in
degree 𝑛) are sums of (complete tensor) products of irreducible of lower degree, they must
be obtained from tensors of the 𝑈𝑖’s, for 𝑖 < 𝑛. Moreover, since T[[𝑘, 𝑈 ]] is a power series
ring, the intersection of the composites with 𝑈𝑛 is zero. Hence 𝑈𝑛 is a space of irreducible
invariants.

Therefore, the isomorphisms 𝑈𝑖 ≅ (𝑉 ⊗̂𝑖 )𝐺irr and ⨁𝑝(𝑈𝑛𝑙 ⊗̂Σ ⋯ ⊗̂Σ 𝑈𝑛1) ≅ (𝑉 ⊗̂𝑛 )𝐺, where
𝑝 = (𝑛𝑙, … , 𝑛1) runs through all partitions of 𝑛, gives the desired bijection.

Theorem 4.3.6. 𝜓𝜔 is bijective for any path 𝜔.

Proof. Follows exactly as [CM16, Theorem 3.9].

Let 𝑉 = 𝑉𝑎1 ×⋯×𝑉𝑎𝑛 and 𝑉𝛾 = 𝑉 ⊗̂𝑛 . Then, 𝜓𝛾 is the direct sum of the maps 𝜓𝑎𝑖𝑛…𝑎𝑖1 along
all the sequences (𝑖𝑛, … , 𝑖1) of integers belonging to {1, … , 𝑛}, which is bijective. Hence,
all those maps are invertible, in particular the one corresponding to the path 𝜔 (i.e. the
sequence (𝑛, … , 1)).
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4.3.3 Complete path algebra
Theorem 4.3.7. Let 𝑉𝑄 be a 𝑘-quiver and 𝐺 be a finite homogeneous group of continuous
algebra automorphism of the complete tensor algebra T[[Σ, 𝑉 ]]. Then the algebra of invariants
T[[Σ, 𝑉 ]]𝐺 is isomorphic to a complete tensor algebra.

Proof. Compare with [CM16, Theorem 4.1].

We construct a family of subbimodules of T[[Σ, 𝑉 ]]𝐺 and show that the complete tensor
algebra of the product of such family gives the desired isomorphism.

For each pair of vertices 𝑒, 𝑓 ∈ 𝑉𝑄0, denote by Ω𝑒,𝑓 the set of all paths from 𝑒 to 𝑓 . For
each 𝜔 ∈ Ω𝑒,𝑓 fix a space of irreducible invariants 𝑉 𝐺

𝜔,irr, that is

𝑉 𝐺
𝜔 = 𝑉 𝐺

𝜔,irr ⊕ Im (𝜑𝜔).

Let 𝑈𝑒,𝑓 = ∏
𝜔∈Ω𝑒,𝑓

𝑉 𝐺
𝜔,irr and 𝑈 = ∏

𝑒,𝑓 ∈𝑉𝑄0

𝑈𝑒,𝑓 .

The canonical inclusions 𝜄Σ ∶ Σ → T[[Σ, 𝑉 ]]𝐺 and 𝜄𝑈 ∶ 𝑈 → T[[Σ, 𝑉 ]]𝐺, and the universal
property of the complete tensor algebra, Proposition 1.4.45, gives a continuous algebra
homomorphism 𝛼 ∶ T[[Σ, 𝑈 ]] → T[[Σ, 𝑉 ]]𝐺.

By Theorem 4.3.6, for any path 𝜔 in 𝑉𝑄, 𝑉 𝐺
𝜔 is either a space of irreducible invariants

or is isomorphic to a direct sum of tensor products of spaces of irreducible invariants (for
any fixed choice of such complements).

By continuity of the elements of 𝐺, any invariant limit element of a convergent series of
elements in T[[Σ, 𝑉 ]] must be the limit of a subseries of invariant elements. Thus, continuity
of 𝛼 implies that such element is the image of a limit element in T[[Σ, 𝑈 ]]. Therefore, 𝛼 is
an isomorphism.

4.3.4 Invariants and representation types
In view of Remark 4.1.12 and Proposition 4.1.11, a complete path algebra of a connected

quiver is of finite representation type if, and only if, its quiver is Dynkin and it is of
tame representation type if, and only if, its quiver is infinite locally Dynkin or is the
underlying graph of an Euclidean graph. Hence, a complete path algebra of finite or
tame representation type is not a finite dimensional path algebra only if it is of tame
representation type and its quiver is an infinite locally Dynkin or is a cycle.

Theorem 4.3.8. Let 𝑉𝑄 be a 𝑘-quiver and 𝐺 be a homogeneous finite group of continu-
ous automorphism of the complete path algebra T[[Σ, 𝑉 ]]. If T[[Σ, 𝑉 ]] is of finite or tame
representation type, then T[[Σ, 𝑉 ]]𝐺 is of finite or tame representation type, respectively.

Proof. Without loss of generality, we may consider 𝑉𝑄 connected.

In the case T[[Σ, 𝑉 ]] is finite dimensional, this follows from [CM16, Theorem 5.16]. In
general, the proof of [CM16] also follows since the algebra of invariants of a complete
path algebra is a complete path algebra, by Theorem 4.3.7. We make it explicit here.



92

4 | ALGEBRA OF INVARIANTS

We have two cases:

1. 𝑉𝑄 comes from a infinite locally Dynkin quiver;

2. 𝑉𝑄 comes from an oriented cycle.

In the first case, any finite subquiver of 𝑉𝑄, say 𝑉𝑄f, is Dynkin and the corresponding
tensor algebra T[[Σf, 𝑉 f]] is a finite dimensional path algebra of finite representation type.
Since T[[Σ, 𝑉 ]] is the inverse limit of T[[Σf, 𝑉 f]], running through all finite subquivers of
𝑉𝑄, it follows that T[[Σ, 𝑉 ]]𝐺 is the inverse limit of T[[Σf, 𝑉 f]]𝐺, which associated quiver is
Dynkin, and, therefore, its associated quiver is locally Dynkin.

If 𝑉𝑄 is a cycle, we analyze the corresponding quiver of T[[Σ, 𝑉 ]]𝐺. Given a vertex
𝑒 ∈ 𝑉𝑄0 and paths 𝜔1 and 𝜔2 in 𝑉𝑄 starting at 𝑒, then there exists a path 𝜔′ such that
𝜔1 = 𝜔′𝜔2 or 𝜔2 = 𝜔′𝜔1. Thus, for each vertex 𝑒 ∈ 𝑉𝑄0 there is at most one irreducible
invariant vector space starting at 𝑒, which corresponds to an arrow space of T[[Σ, 𝑉 ]]𝐺.
Analogous argument shows that there is at most one irreducible invariant vector space
ending at 𝑓 , for each vertex 𝑓 ∈ 𝑉𝑄0. Thus, the corresponding quiver of T[[Σ, 𝑉 ]]𝐺 is one
or the union of quivers which are a vertex, one directional finite line or a cycle. Therefore,
T[[Σ, 𝑉 ]]𝐺 is tame.

4.4 Further research

We finish this thesis with suggestions for further research and open questions.

In this chapter, we dedicated ourselves in the algebra of invariants of a complete path
algebra under the action of a homogeneous group of continuous automorphisms, which
extends [Kha78, Proposition 1]. In this same article of Kharchenko [Kha78], the main
theorem states that there exists a one-to-one correspondence between the subgroups of a
finite group 𝐺 of homogeneous automorphisms of a free algebra 𝐴 and the free subalgebras
containing 𝐴𝐺. Hence, one could ask if similar correspondence exists for our case, i.e. the
subgroups of a homogeneous group of continuous automorphisms 𝐺 corresponds to the
subalgebras of a complete path algebra 𝐴, which are complete path algebras and contains
𝐴𝐺?

Ferreira, Murakami, and Paques [FMP04] showed that the above scenario is a special
case when 𝐺 is a group. They proved that the algebra of invariants of a free algebra 𝐴
under the action of a homogeneous Hopf algebra 𝐻 is free, [FMP04, Corollary 3.2], and
when 𝐻 is finite dimensional and pointed there exists a correspondence between the right
coideal subalgebras of 𝐻 and the free subalgebras of 𝐴 containing 𝐴𝐻 , [FMP04, Theorem
1.2]. This should work for complete path algebras.

Another question is if it is possible to consider path coalgebras instead and ask what
would be a coalgebra of invariants under the action of a (homogeneous) group (or Hopf
algebra) of coalgebra automorphisms.

What about the complete tensor product of 𝑘-species (or the cotensor product of
𝑘-cospecies)?
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Dlab and Ringel proved that a connected acyclic finite 𝑘-species 𝑆 is of finite repre-
sentation type if, and only if, its underlying valued quiver is a Dynkin diagram and 𝑆 is
of tame representation type if, and only if, its underlying valued quiver is an Euclidean
diagram, cf. [Lem12, Theorem 7.17]. What happens in the general case, when considering
any 𝑘-species (or 𝑘-cospecies)?

In the opposite direction of the algebra of invariants, Green [Gre83] established a
relation between Galois coverings of a finite quiver and finitely generated group-graded
algebras, which was generalized to 𝑘-categories by Cibils and Marcos [CM06] and dualized
to pointed coalgebras by Chin [Chi10]. There should be a correspondence to pointed
pseudocompact algebras.





95

Appendix A

Topological algebras

We define topological algebras. For a general introduction to topological rings, topo-
logical vector spaces, topological algebras and topological modules, see [War89].

From [Mun75, §12, p. 76]:

Definition A.1. A topological space 𝑋 = (𝑋, 𝜏) is a set 𝑋 together with a topology 𝜏, which
consists of a collection of subsets of 𝑋 satisfying:

1. The sets ∅, 𝑋 ∈ 𝜏;

2. The union of any subcollection of 𝜏 belongs to 𝜏;

3. The intersection of the elements of any finite subcollection of 𝜏 is in 𝜏.

The elements of 𝜏 are called open sets of 𝑋 .

Example A.2. For any set 𝑋 , the collection of all subsets of 𝑋 is a topology on 𝑋 called
the discrete topology, while the collection of only 𝑋 and ∅ is a topology called the trivial
topology.

Definition A.3. Let 𝑋 be a set. A basis for a topology on 𝑋 is a collection  of subsets of
𝑋 , called basis elements, satisfying:

1. For any 𝑥 ∈ 𝑋 , there exists a 𝐵 ∈  such that 𝑥 ∈ 𝐵;

2. For any two basis elements 𝐵1, 𝐵2, there exists a basis element 𝐵3 such that 𝐵3 ⊆
𝐵1 ∩ 𝐵2.

The topology 𝜏 generated by  is the collection of all unions of basis elements [Mun75,
Lemma 13.1].

From [Mun75, §13, p. 82]:

Definition A.4. A subbasis  for a topology on 𝑋 is a collection of subsets of 𝑋 whose
union is 𝑋 . The topology generated by the subbasis  is the collection 𝜏 of all unions of
finite intersections of elements of  .
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Definition A.5. Let 𝑋 and 𝑌 be topological spaces. The product topology on the cartesian
product 𝑋 × 𝑌 is generated by all basis elements 𝑈 × 𝑉 , where 𝑈 is a basis element of 𝑋
and 𝑉 is a basis element of 𝑌 [Mun75, Theorem 15.1].

Consider 𝜋1 ∶ 𝑋 ×𝑌 → 𝑋 and 𝜋2 ∶ 𝑋 ×𝑌 → 𝑌 the canonical projections. The collection
 = {𝜋−1

1 (𝑈 ) | 𝑈 open in 𝑋} ∪ {𝜋−1
2 (𝑉 ) | 𝑉 open in 𝑌 } is a subbasis for the product topology

on 𝑋 × 𝑌 [Mun75, Theorem 15.2]. In general, if {𝑋𝑖} is a family of topological spaces and
∏𝑋𝑖 is the cartesian product of all 𝑋𝑖’s, then the product topology on ∏𝑋𝑖 has subbasis
 = ⋃≧, where ≧ = {𝜋−1

𝑖 (𝑈𝑖) | 𝑈𝑖 open in 𝑋𝑖}.

From [Mun75, §16, p. 88]:

Definition A.6. Let 𝑋 be a topological space with topology 𝜏 and 𝑌 ⊆ 𝑋 . Then 𝜏𝑌 =
{𝑈 ∩ 𝑌 | 𝑈 ∈ 𝜏} is a topology on 𝑌 , called subspace topology.

From [Mun75, §17, p. 98]:

Definition A.7. A topological space 𝑋 is a Hausdorff space if for any two elements
𝑥, 𝑦 ∈ 𝑋 , with 𝑥 ≠ 𝑦, there exist open sets 𝑈 and 𝑉 containing 𝑥 and 𝑦, respectively, such
that 𝑈 ∩ 𝑉 = ∅.

Definition A.8. Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 a subset of 𝑋 . A neighborhood 𝑉
of 𝐴 is any open set of 𝑋 that contains 𝐴. In case 𝐴 = {𝑥} is a singleton, we simply say that
𝑉 is a neighborhood of 𝑥 . A fundamental system of neighborhoods  of a 𝐴 is a collection
of neighborhoods of 𝐴 such that for any neighborhood 𝑈 of 𝐴 there is a 𝑉 ∈  such that
𝑉 ⊆ 𝑈 .

From [War89, p. 2]:

Definition A.9. Let 𝐺 be a group. A topology 𝜏 on 𝐺 is a group topology if the operation
of the group is continuous from 𝐺 × 𝐺, furnished with the cartesian product topology
defined by 𝜏, to 𝐺 and if the inverse map 𝑔 ↦ 𝑔−1 is continuous from 𝐺 to 𝐺. In this case
we say that 𝐺 = (𝐺, 𝜏) is a topological group.

A set 𝐹 of subsets of 𝐸 is a filter on 𝐸 if 𝐸 ∈ 𝐹 , ∅ ∉ 𝐹 and 𝐴 ∩ 𝐵 ∈ 𝐹 for any 𝐴, 𝐵 ∈ 𝐹 . If
𝐸 is a topological space, a neighborhood of a point 𝑥 ∈ 𝐸 is any subset of 𝐸 containing an
open set 𝑈 such that 𝑥 ∈ 𝑈 (in particular, every open set is a neighborhood of some point).
The set of all neighborhoods of 𝑥 is a filter on 𝐸.

A set 𝐵 of subsets of 𝐸 is a filter base on 𝐸 if the set of all subsets 𝐹 of 𝐸 for which there
exists 𝑏 ∈ 𝐵 such that 𝑏 ⊆ 𝐹 is a filter, called the filter generated by 𝐵. Thus 𝐵 is a filter base
if and only if 𝐵 ≠ ∅, ∅ ∉ 𝐵 and the intersection of two members of 𝐵 contains a member
of 𝐵. In a topological space 𝐸, a fundamental system of neighborhoods of 𝑥 ∈ 𝐸 is a filter
base generating the filter of neighborhoods of 𝑥 .

Proposition A.10. Let 𝐺 be a group. If 𝐵 is a fundamental system of neighborhoods of 0 for
a group topology on 𝐺, then the following conditions hold:

1. For each 𝑉 ∈ 𝐵 there exists 𝑈 ∈ 𝐵 such that 𝑈𝑈 ⊆ 𝑉 , where 𝑈𝑈 = {𝑥, 𝑦 ∈ 𝐺 | 𝑥 ∈
𝑈 , 𝑦 ∈ 𝑈 };

2. if 𝑉 ∈ 𝐵, then there exists 𝑈 ∈ 𝐵 such that 𝑈 ⊆ 𝑉 −1, where 𝑉 −1 = {𝑥−1 ∈ 𝐺 | 𝑥 ∈ 𝑉 };
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3. if 𝑉 ∈ 𝐵, then for each 𝑎 ∈ 𝐺 there exists 𝑈 ∈ 𝐵 such that 𝑈 ⊆ 𝑎𝑉 𝑎−1.

Conversely, if 𝐵 is a filter base on 𝐺 satisfying the previous conditions, then there is a unique
group topology on 𝐺 for which 𝐵 is a fundamental system of neighborhoods of 0.

Proof. See [War89, Corollary 1.5].

If 𝑋 is a commutative group (denoted additively), then a filter base 𝐵 on 𝑋 is a funda-
mental system of neighborhoods of zero for a group topology on 𝑋 if and only if for each
𝑉 ∈ 𝐵 there exist 𝑈 ∈ 𝑋 such that 𝑈 + 𝑈 ⊆ 𝑉 and 𝑈 ⊆ −𝑉 .

Proposition A.11. Let 𝐺 be a topological group, let 𝐵 be a fundamental system of neighbor-
hoods of 0, and let 𝐴 ⊆ 𝐺. If 𝑂 is an open subset of 𝐺, then:

1. 𝐴𝑂 and 𝑂𝐴 are open;

2. hence for any neighborhood 𝑉 of 0, 𝐴𝑉 and 𝑉𝐴 are neighborhoods of 𝐴;

3. the symmetric open neighborhoods of 0 form a fundamental system of neighborhoods
of 0;

4. 𝐴 = ∩{𝐴𝑉 | 𝑉 ∈ 𝐵} = ∩{𝑉𝐴 | 𝑉 ∈ 𝐵};

5. in particular, {0} = ∩{𝑉 | 𝑉 ∈ 𝐵};

6. the closed symmetric neighborhoods of 0 form a fundamental system of neighborhoods
of 0.

Proof. See [War89, Theorem 1.6].

Proposition A.12. Let 𝐺 be a topological group. The following statements are equivalent:

1. {0} is closed;

2. {0} is the intersection of all neighborhoods of 0;

3. 𝐺 is Hausdorff;

4. 𝐺 is Hausdorff and for each 𝑏 ∈ 𝐺 the closed neighborhoods of 𝑏 form a fundamental
system of neighborhoods of 𝑏.

Proof. See [War89, Theorem 1.7].

From [War89, p. 24]:

Let 𝑋 be a topological space and 𝐵 be a filter base on 𝑋 . The filter base 𝐵 converges to
𝑥 ∈ 𝑋 if every neighborhood of 𝑥 contains a member of 𝐵. In the case 𝑋 is Hausdorff, 𝐵
converges to at most one point of 𝑋 .

If 𝑓 ∶ 𝑋 → 𝑌 is a continuous function and 𝐵 is a filter base on 𝑋 that converges to
𝑥 ∈ 𝑋 , then 𝑓 (𝐵) is a filter base on 𝑌 that converges to 𝑓 (𝑥) ∈ 𝑌 .
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Definition A.13. Let 𝐺 be a topological group and 𝑒 ∈ 𝐺 its identity element. A filter
base 𝐵 on 𝐺 is Cauchy if every neighborhood 𝑉 of 𝑒 contains an element 𝑈 ∈ 𝐵 such that
𝑈−1𝑈 ⊆ 𝑉 .

Definition A.14. A topological group 𝐺 is complete if every Cauchy filter base on 𝐺
converges to a point on 𝐺.

Definition A.15. Let𝐺 be a Hausdorff group. A complete Hausdorff group 𝐺̂ is a completion
of 𝐺 if 𝐺 is a dense topological subgroup of 𝐺̂.

From [War89, p. 85]:

Definition A.16. Let 𝑋 be a vector space. A topology 𝜏 on 𝑋 is a vector topology if 𝜏 is
an additive group topology on 𝑋 such that the mapping (𝜆, 𝑥) ↦ 𝜆𝑥 is continuous from
𝑘 × 𝑋 to 𝑋 where 𝑘 × 𝑋 is furnished with the cartesian product topology. In this case we
say that 𝑋 = (𝑋, 𝜏) is a topological vector space.

From [War89, p. 77]:

Definition A.17. Let 𝑅 be a ring. A topology 𝜏 on 𝑅 is a ring topology if 𝜏 is an additive
group topology on 𝑅 such that the multiplication of 𝑅 is continuous where 𝑅×𝑅 is furnished
with the cartesian product topology. In this case we say that 𝑅 = (𝑅, 𝜏) is a topological ring.

From [War89, p. 85]:

Definition A.18. Let 𝑅 be a topological ring and 𝑀 be a (left) 𝑅-module. A topology
𝜏 on 𝑀 is a module topology if 𝜏 is an additive group topology on 𝑀 and the mapping
(𝑟, 𝑚) ↦ 𝑟𝑚 is continuous from 𝑅 × 𝑀 to 𝑀 where 𝑅 × 𝑀 is furnished with the cartesian
product topology. In this case we say that 𝑀 = (𝑀, 𝜏) is a topological (left) 𝑅-module.

From [War89, p. 90]:

Definition A.19. Let 𝑅 be a commutative topological ring and 𝐴 be an 𝑅-algebra. A
topology 𝜏 on 𝐴 is an algebra topology if 𝜏 is both a ring topology and a 𝑅-module topology
on 𝐴. In this case we say that 𝐴 = (𝐴, 𝜏) is a topological algebra.

Definition A.20. A topological algebra 𝐴 is complete if the underlying topological additive
group is complete.
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Cotensor product and complete
tensor product are dual

We present the details of the proof of Lemma 1.4.40.

Proof of Lemma 1.4.40. By the Fundamental Theorem of Comodules, Theorem 1.2.50,
𝑁 = lim−−→ 𝑖∈𝐼𝑁𝑖 with 𝑁𝑖 finite dimensional left 𝐶-comodules. Then

(𝑀 □𝐶 𝑁)∗ = Hom𝑘(𝑀 □𝐶 𝑁 , 𝑘) = Hom𝑘(𝑀 □𝐶 lim−−→ 𝑖∈𝐼𝑁𝑖, 𝑘)

≅ Hom𝑘(lim−−→ 𝑖∈𝐼 (𝑀 □𝐶 𝑁𝑖), 𝑘)

≅ lim←−− 𝑖∈𝐼Hom𝑘(𝑀 □𝐶 𝑁𝑖, 𝑘) (B.1)

≅ lim←−− 𝑖∈𝐼Hom𝑘(Hom−𝐶(𝑁 ∗
𝑖 , 𝑀), 𝑘) (B.2)

≅ lim←−− 𝑖∈𝐼Hom𝑘(Hom−𝐶∗(𝑀∗, 𝑁 ∗∗
𝑖 ), 𝑘) (B.3)

= lim←−− 𝑖∈𝐼Hom𝑘(Hom−𝐶∗(𝑀∗,Hom𝑘(𝑁 ∗
𝑖 , 𝑘)), 𝑘)

≅ lim←−− 𝑖∈𝐼Hom𝑘(Hom𝑘(𝑀∗ ⊗̂𝐶∗ 𝑁 ∗
𝑖 , 𝑘), 𝑘) (B.4)

= lim←−− 𝑖∈𝐼 (𝑀∗ ⊗̂𝐶∗ 𝑁 ∗
𝑖 )

∗∗ ≅ lim←−− 𝑖∈𝐼 (𝑀∗ ⊗̂𝐶∗ 𝑁 ∗
𝑖 )

≅ 𝑀∗ ⊗̂𝐶∗ lim←−− 𝑖∈𝐼𝑁 ∗
𝑖 = 𝑀∗ ⊗̂𝐶∗ 𝑁 ∗,

where (B.1) follows from an analogous proof of [Rot09, Theorem 2.31], (B.2) is due to
[DNR01, Proposition 2.3.7], (B.3) is due to Theorem 1.4.19, and (B.4) follows from [CE99,
Proposition 5.2’], see [Bru66, Lemma 2.4].
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Equivalence of k-quiver
representations and comodules

We define a 𝑘-quiver representation which is equivalent to comodules of the corre-
sponding path coalgebra. For convenience we define 𝑘-quiver representations on the right
and make the computations for right comodules. Similar calculations applies for the left
side.

Definition C.1. Let 𝑉𝑄 be a 𝑘-quiver. A local representation of 𝑉𝑄, 𝑋 = (𝑋𝑔 , 𝑋𝑔,ℎ)𝑔,ℎ∈𝑉𝑄0 ,
is a family of 𝑘-vector spaces 𝑋𝑔 and linear transformations 𝑋𝑔,ℎ ∶ 𝑋𝑔 → 𝑋ℎ ⊗𝑘 𝑉𝑄𝑔,ℎ
satisfying, for each 𝑔 ∈ 𝑉𝑄0 and each 𝜄 ∶ 𝑘 → 𝑋𝑔 ,

1. there exists an integer 𝑚 > 0 such that 𝑋𝑔,𝑔1,…,𝑔𝑚 𝜄 ≡ 0, where 𝑋𝑔,𝑔1,…,𝑔𝑚 is the compo-
sition

(𝑋𝑔𝑚−1,𝑔𝑚 ⊗ id ⊗⋯ ⊗ id) … (𝑋𝑔1,𝑔2 ⊗ id)𝑋𝑔,𝑔1 ∶ 𝑋𝑔 → 𝑋𝑔𝑚 ⊗ 𝑉𝑄𝑔𝑚−1,𝑔𝑚 ⊗⋯ ⊗ 𝑉𝑄𝑔,𝑔1 ;

2. and ∑
ℎ∈𝑉𝑄0

dim𝑘(Im (𝑋𝑔,ℎ 𝜄)) < ∞.

A morphism of local representations of 𝑉𝑄, 𝑓 ∶ 𝑋 → 𝑌 , is a family (𝑓𝑔)𝑔∈𝑉𝑄0 of linear
maps 𝑓𝑔 ∶ 𝑋𝑔 → 𝑌𝑔 satisfying the commutative diagram:

𝑋𝑔 𝑋ℎ ⊗ 𝑉𝑄𝑔,ℎ

𝑌𝑔 𝑌ℎ ⊗ 𝑉𝑄𝑔,ℎ

𝑋𝑔,ℎ

𝑓𝑔 𝑓ℎ⊗id

𝑌𝑔,ℎ

Denote by Rep𝑙
𝑘(𝑉𝑄) the category of all local representations of 𝑉𝑄.

Given a right 𝑘[𝑉𝑄]-comodule𝑀 , we obtain a local representation of 𝑉𝑄 in the following
way:
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• Write the counity of 𝑘𝑉𝑄0 as 𝜀0 = ∑
𝑔∈𝑉𝑄0

𝜀𝑔 , where 𝜀𝑔(ℎ) = 𝛿𝑔,ℎ for any ℎ ∈ 𝑉𝑄0. The

comodule structure, (id⊗ 𝜀)𝜈(𝑚) ≅ 𝑚, together with the construction of the counity
of the path coalgebra 𝑘[𝑉𝑄] give us 𝑀 =⨁

𝑔∈𝑉𝑄0

𝑀𝑔 , for 𝑀𝑔 ∶= (id ⊗ 𝜀𝑔)𝜈(𝑀);

• Define the linear map 𝑋𝑔,ℎ ∶ 𝑀𝑔 → 𝑀ℎ ⊗ 𝑉𝑄𝑔,ℎ by 𝑋𝑔,ℎ = (id ⊗ 𝜀ℎ ⊗ id)(𝜈 ⊗
id)(id ⊗ 𝜋1) 𝜈|𝑀𝑔

, where 𝜋1 ∶ 𝑘[𝑉𝑄] → 𝑉𝑄1 is the canonical projection. Observe that
(𝜈 ⊗ id)𝜈 = (id ⊗ 𝛥)𝜈 implies

((id ⊗ 𝜀ℎ)𝜈 ⊗ 𝜋1) 𝜈|𝑀𝑔
=(id ⊗ 𝜀ℎ ⊗ id)(𝜈 ⊗ id)(id ⊗ 𝜋1) 𝜈|𝑀𝑔

=((id ⊗ 𝜀ℎ ⊗ 𝜋1)(id ⊗ 𝛥)𝜈 ⊗ id)(id ⊗ 𝜀𝑔)𝜈
=(id ⊗ (𝜀ℎ ⊗ 𝜋1)𝛥 ⊗ 𝜀𝑔)(𝜈 ⊗ id)𝜈
=(id ⊗ ((𝜀ℎ ⊗ 𝜋1)𝛥 ⊗ 𝜀𝑔)𝛥)𝜈
=(id ⊗ (𝜀ℎ ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2)𝜈.

Thus 𝑋𝑔,ℎ(𝑀𝑔) ⊂ 𝑀ℎ ⊗ 𝑉𝑄1 ∩ 𝑀 ⊗ 𝑉𝑄𝑔,ℎ = 𝑀ℎ ⊗ 𝑉𝑄𝑔,ℎ.

For any 𝑔 ∈ 𝑉𝑄0 and any 𝑥 ∈ 𝑀𝑔 , the subcomodule generated by 𝑥 , ⟨𝑥⟩ ⊂ ⨁
𝑔∈𝑉𝑄0

𝑀𝑔 , is

finite dimensional by the Fundamental Theorem for Comodules, Theorem 1.2.50. Hence
∑
ℎ∈𝑉𝑄0

dim𝑘(𝑋𝑔,ℎ(𝑘{𝑥})) < ∞.

The composition 𝑋𝑔,𝑔1,𝑔2 is given by

(𝑋𝑔1,𝑔2 ⊗ id)𝑋𝑔,𝑔1 =((id ⊗ 𝜀𝑔2 ⊗ 𝜋1)(id ⊗ 𝛥)𝜈 ⊗ id)(id ⊗ (𝜀𝑔1 ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2)𝜈
=((id ⊗ 𝜀𝑔2 ⊗ 𝜋1)(id ⊗ 𝛥) ⊗ id)(id ⊗ id ⊗ (𝜀𝑔1 ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2)(𝜈 ⊗ id)𝜈
=(id ⊗ 𝜀𝑔2 ⊗ 𝜋1 ⊗ 𝜀𝑔1 ⊗ 𝜋1 ⊗ 𝜀𝑔)(id ⊗ (𝛥 ⊗ id ⊗ id ⊗ id)(id ⊗ 𝛥2))(id ⊗ 𝛥)𝜈
=(id ⊗ (𝜀𝑔2 ⊗ 𝜋1 ⊗ 𝜀𝑔1 ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥4)𝜈.

And in general,

𝑋𝑔,𝑔1,…,𝑔𝑚 = (id ⊗ (𝜀𝑔𝑚 ⊗ 𝜋1 ⊗⋯ ⊗ 𝜀𝑔2 ⊗ 𝜋1 ⊗ 𝜀𝑔1 ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2𝑚)𝜈.

Since
𝛥2𝑚𝐶𝑛 ⊂ ∑

𝑖1+𝑖2+⋯+𝑖2𝑚⩽𝑛
𝐶𝑛−𝑖1−𝑖2−⋯−𝑖2𝑚 ⊗ 𝐶𝑖1 ⊗ 𝐶𝑖2 ⊗⋯ ⊗ 𝐶𝑖2𝑚 ,

we get 𝑋𝑔,𝑔1,…,𝑔𝑚(𝑐) = 0 for any 𝑐 ∈ 𝐶𝑛 and 𝑚 > 𝑛.

Therefore, 𝑋 = (𝑀𝑔 , 𝑋𝑔,ℎ)𝑔,ℎ∈𝑉𝑄0 is a local representation.

We show the other direction. Given a local representation 𝑋 = (𝑋𝑔 , 𝑋𝑔,ℎ)𝑔,ℎ∈𝑉𝑄0 , we
obtain a right 𝑘[𝑉𝑄]-comodule 𝑀 =⨁

𝑔∈𝑉𝑄0

𝑋𝑔 with comodule structure given as follows: for

any 𝑥 ∈ 𝑋𝑔 , with 𝑋𝑔,…,𝑔𝑚+1(𝑥) = 0,

𝜈(𝑥) = 𝑥 ⊗ 𝑔 +∑
𝑔1∈𝑉𝑄0

𝑋𝑔,𝑔1(𝑥) + ∑
𝑔1,𝑔2∈𝑉𝑄0

𝑋𝑔,𝑔1,𝑔2(𝑥) + ⋯ + ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋𝑔,𝑔1,…,𝑔𝑚(𝑥),
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where 𝑋𝑔,𝑔1,𝑔2,…,𝑔𝑚(𝑥) ∈ 𝑀 ⊗ 𝑉𝑄𝑔𝑚−1,𝑔𝑚 ⊗ ⋯ ⊗ 𝑉𝑄𝑔,𝑔1 ⊂ 𝑀 ⊗ 𝑉𝑄 □𝑚 , since for any 𝑢 ⊗ 𝑣 ∈
𝑉𝑄𝑔1,𝑔2 ⊗ 𝑉𝑄𝑔,𝑔1 ,

(𝜈 ⊗ id)(𝑢 ⊗ 𝑣) = 𝑢 ⊗ 𝑔1 ⊗ 𝑣 = (id ⊗ 𝜇)(𝑢 ⊗ 𝑣),

implies 𝑉𝑄𝑔1,𝑔2 ⊗𝑉𝑄𝑔,𝑔1 = 𝑉𝑄𝑔1,𝑔2 □𝑘𝑉𝑄0 𝑉𝑄𝑔,𝑔1 . Note that (id⊗ 𝜀)𝜈 = id. For any 𝑥 ∈ 𝑋𝑔 , write
𝑋𝑔,𝑔1(𝑥) = 𝑋 0

𝑔,𝑔1(𝑥) ⊗ 𝑋 1
𝑔,𝑔1(𝑥) and 𝑋𝑔,𝑔1,…𝑔𝑚(𝑥) = 𝑋 0

𝑔,𝑔1,…𝑔𝑚(𝑥) ⊗ 𝑋𝑚
𝑔,𝑔1,…𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 1

𝑔,𝑔1(𝑥).
Thus,

(𝜈 ⊗ id)𝜈(𝑥) =𝑥 ⊗ 𝑔 ⊗ 𝑔 +∑
𝑔1∈𝑉𝑄0

𝑋 0
𝑔,𝑔1(𝑥) ⊗ 𝑔1 ⊗ 𝑋 1

𝑔,𝑔1(𝑥)

+ ∑
𝑔1,𝑔2∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑔2 ⊗ (𝑋 2

𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 1
𝑔,𝑔1(𝑥)) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ 𝑔𝑚 ⊗ (𝑋𝑚

𝑔,𝑔1,…𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 1
𝑔,𝑔1(𝑥))

+∑
𝑔1∈𝑉𝑄0

𝑋 0
𝑔,𝑔1(𝑥) ⊗ 𝑋 1

𝑔,𝑔1(𝑥) ⊗ 𝑔 + ∑
𝑔1,𝑔2∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 2

𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 1
𝑔,𝑔1(𝑥) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ 𝑋𝑚

𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ (𝑋𝑚−1
𝑔,𝑔1,…,𝑔𝑚−1(𝑥) ⊗ ⋯ ⊗ 𝑋 1

𝑔,𝑔1(𝑥)) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ (𝑋𝑚

𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 1
𝑔,𝑔1(𝑥)) ⊗ 𝑔

=𝑥 ⊗ 𝑔 ⊗ 𝑔

+∑
𝑔1∈𝑉𝑄0

𝑋 0
𝑔,𝑔1(𝑥) ⊗ (𝑔1 ⊗ 𝑋 1

𝑔,𝑔1(𝑥) + 𝑋 1
𝑔,𝑔1(𝑥) ⊗ 𝑔)

+ ∑
𝑔1,𝑔2∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,𝑔2(𝑥) ⊗ (𝑔2 ⊗ (𝑋 2

𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 1
𝑔,𝑔1(𝑥)) + 𝑋 2

𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 1
𝑔,𝑔1(𝑥)+

(𝑋 2
𝑔,𝑔1,𝑔2(𝑥) ⊗ 𝑋 1

𝑔,𝑔1(𝑥)) ⊗ 𝑔) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋 0
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ (𝑔𝑚 ⊗ (𝑋𝑚

𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 1
𝑔,𝑔1(𝑥))+

𝑚−1

∑
𝑖=1

(𝑋𝑚
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 𝑖+1

𝑔,𝑔1,…,𝑔𝑖+1(𝑥)) ⊗ (𝑋 𝑖
𝑔,𝑔1,…,𝑔𝑖(𝑥) ⊗ ⋯ ⊗ 𝑋 1

𝑔,𝑔1(𝑥))+

(𝑋𝑚
𝑔,𝑔1,…,𝑔𝑚(𝑥) ⊗ ⋯ ⊗ 𝑋 1

𝑔,𝑔1(𝑥)) ⊗ 𝑔)
=(id ⊗ 𝛥)𝜈(𝑥),

shows that 𝜈 is indeed a (right) comodule structure for 𝑀 .

Let 𝜎 ∶ 𝑀 → 𝑁 be a comodule homomorphism. The equality 𝜈𝑁𝜎 = (𝜎 ⊗ id)𝜈𝑀 ,
implies 𝜎(𝑀𝑔) ⊂ 𝑁𝑔 , since

𝜎(id ⊗ 𝜀𝑔)𝜈𝑀 = (id ⊗ 𝜀𝑔)(𝜎 ⊗ id)𝜈𝑀 = (id ⊗ 𝜀𝑔)𝜈𝑁𝜎.

Set 𝜎𝑔 = 𝜎|𝑀𝑔
∶ 𝑀𝑔 → 𝑁𝑔 , for each 𝑔 ∈ 𝑉𝑄0. Then
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𝑌𝑔,ℎ𝜎𝑔 =((id ⊗ 𝜀ℎ)𝜈𝑁 ⊗ 𝜋1) 𝜈𝑁 |𝑁𝑔 𝜎|𝑀𝑔
= ((id ⊗ 𝜀ℎ)𝜈𝑁 ⊗ 𝜋1)(𝜎 ⊗ id) 𝜈𝑀 |𝑀𝑔

=((id ⊗ 𝜀ℎ)𝜈𝑁𝜎 ⊗ 𝜋1) 𝜈𝑀 |𝑀𝑔
= ((id ⊗ 𝜀ℎ)(𝜎 ⊗ id)𝜈𝑀 ⊗ 𝜋1) 𝜈𝑀 |𝑀𝑔

=(𝜎|𝑀ℎ
(id ⊗ 𝜀ℎ)𝜈𝑀 ⊗ 𝜋1) 𝜈𝑀 |𝑀𝑔

= (𝜎|𝑀ℎ
⊗ id)((id ⊗ 𝜀ℎ)𝜈𝑀 ⊗ 𝜋1) 𝜈𝑀 |𝑀𝑔

=(𝜎ℎ ⊗ id)𝑋𝑔,ℎ

shows that (𝜎𝑔)𝑔∈𝑉𝑄0 is a morphism of local representations.

Extending the commutative diagram for the morphism 𝑓 ∶ 𝑋 → 𝑌 of local representa-
tions

𝑋𝑔 𝑋𝑔1 ⊗ 𝑉𝑄𝑔,𝑔1 𝑋𝑔2 ⊗ 𝑉𝑄𝑔1,𝑔2 ⊗ 𝑉𝑄𝑔,𝑔1 … 𝑋𝑔𝑚 ⊗ 𝑉𝑄𝑔𝑚−1,𝑔𝑚 ⊗⋯ ⊗ 𝑉𝑄𝑔,𝑔1

𝑌𝑔 𝑌𝑔1 ⊗ 𝑉𝑄𝑔,𝑔1 𝑌𝑔2 ⊗ 𝑉𝑄𝑔1,𝑔2 ⊗ 𝑉𝑄𝑔,𝑔1 … 𝑌𝑔𝑚 ⊗ 𝑉𝑄𝑔𝑚−1,𝑔𝑚 ⊗⋯ ⊗ 𝑉𝑄𝑔,𝑔1

𝑋𝑔,𝑔1

𝑓𝑔 𝑓𝑔1⊗id

𝑋𝑔1,𝑔2⊗id

𝑓𝑔2⊗id2

𝑋𝑔𝑚−1,𝑔𝑚⊗id𝑚−1

𝑓𝑔𝑚⊗id𝑚

𝑌𝑔,𝑔1 𝑌𝑔1,𝑔2⊗id 𝑌𝑔𝑚−1,𝑔𝑚⊗id𝑚−1

is easy to see that, for any 𝑥 ∈ 𝑋𝑔 ,

(𝑓 ⊗ id)𝜈𝑋 (𝑥) =𝑓𝑔(𝑥) ⊗ 𝑔 +∑
𝑔1∈𝑉𝑄0

(𝑓𝑔1 ⊗ id)𝑋𝑔,𝑔1(𝑥) + ∑
𝑔1,𝑔2∈𝑉𝑄0

(𝑓𝑔2 ⊗ id2)𝑋𝑔,𝑔1,𝑔2(𝑥) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

(𝑓𝑔𝑚 ⊗ id𝑚)𝑋𝑔,𝑔1,…,𝑔𝑚(𝑥)

=𝑓𝑔(𝑥) ⊗ 𝑔 +∑
𝑔1∈𝑉𝑄0

𝑌𝑔,𝑔1(𝑓𝑔(𝑥)) + ∑
𝑔1,𝑔2∈𝑉𝑄0

𝑌𝑔,𝑔1,𝑔2(𝑓𝑔(𝑥)) + …

+ ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑌𝑔,𝑔1,…,𝑔𝑚(𝑓𝑔(𝑥)) = 𝜈𝑌 𝑓 (𝑥),

showing that 𝑓 ∶⨁
𝑔∈𝑉𝑄0

𝑋𝑔 →⨁
𝑔∈𝑉𝑄0

𝑌𝑔 is a comodule homomorphism.

Therefore, the correspondence between comodules and local representations is func-
torial. Moreover, if 𝑀 is a (right) (𝑘[𝑉𝑄]-)comodule and 𝑋 is the local representation
obtained from 𝑀 , then,

𝜈𝑋 =
𝑚

∑
𝑖=0 (

∑
𝑔0,…𝑔𝑖∈𝑉𝑄0

(id ⊗ (𝜀𝑔𝑖 ⊗ 𝜋1 ⊗⋯ ⊗ 𝜋1 ⊗ 𝜀𝑔0)𝛥
2𝑖)𝜈𝑀)

= 𝜈𝑀 .

If 𝑋 is a local representation and 𝑀 its associated comodule, then

𝑀𝑔,ℎ(𝑥) =(id ⊗ (𝜀ℎ ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2)𝜈𝑋 (𝑥)

=(id ⊗ (𝜀ℎ ⊗ 𝜋1 ⊗ 𝜀𝑔)𝛥2)(
𝑥 ⊗ 𝑔 +∑

𝑔1∈𝑉𝑄0

𝑋𝑔,𝑔1(𝑥) + ⋯ + ∑
𝑔1,…,𝑔𝑚∈𝑉𝑄0

𝑋𝑔,𝑔1,…,𝑔𝑚(𝑥))

=𝑋𝑔,ℎ(𝑥).
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Hence the categories 𝑘[𝑉𝑄] and Rep𝑙
𝑘(𝑉𝑄) are isomorphic.
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