Group cohomology based on partial representations

Emmanuel Jerez Usuga

Dissertação apresentada
AO Instituto de Matemática e Estatística
DA
Universidade de São Paulo
PARA
obtenção do título
DE
Mestre em Matemática

Área de Concentração: Matemática
Orientador: Prof. Dr. Mikhailo Dokuchaev

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro do CNPq

À minha avó Azucena,
e às minhas tias Adriana e Gladys.

Este trabalho é um estudo completo dos artigos [2] e [5]. Consideraremos a cohomologia parcial $H_{\text {par }}^{n}(G, M)$ de um grupo G com valores num $K_{p a r}(G)$-módulo M, introduzida em [2], que é definida como o functor derivado à direita do functor de invariantes parciais. Mostrando que o functor de invariantes parciais é representável, poderemos relacionar a cohomologia parcial de grupo com o espaço de derivações parciais e o ideal de aumento parcial; depois, construiremos uma resolução projetiva da álgebra B como $K_{p a r}(G)$-modulo, onde B é una subálgebra de $K_{p a r}(G)$. Isto permitirá dar uma outra caracterização da cohomologia parcial de grupo em termos de classes de funções que satisfazem uma certa identidade de n-cociclos. Mostramos a existência de uma sequência espectral de Grothendieck que relaciona a cohomologia do produto smash parcial com a cohomologia parcial do grupo e a cohomologia da álgebra. Dada uma ação parcial unital α de G em uma álgebra \mathcal{A}, consideramos a estrutura de $K_{\text {par }}(G)$-módulo de \mathcal{A} induzida pela ação α e estudamos o problema de globalização para a cohomologia parcial em \mathcal{A}. O problema é reduzido a uma propriedade de extensibilidade de cociclos. Além disso, se \mathcal{A} é um produto de blocos, mostramos que qualquer cociclo é globalizável e que as globalizações de cociclos cohomólogos também são cohomólogas, de onde temos que $H_{p a r}^{n}(G, M)$ é isomórfico ao grupo de cohomologia usual $H^{n}(G, \mathcal{M}(\mathcal{B}))$, onde \mathcal{B} é a álgebra sob a ação envolvente de α e $\mathcal{M}(\mathcal{B})$ é a álgebra de multiplicadores de \mathcal{B}.

Abstract

This work is a full study of the papers [2] and [5]. We consider the partial group cohomology $H_{p a r}^{n}(G, M)$ of a group G with values in $K_{\text {par }}(G)$-module M, introduced in [2, which is defined as the right derived functor of the functor of partial invariants. Showing that the functor of partial invariants is representable, we relate the partial group cohomology with the space of partial derivations and the partial augmentation ideal; next, we construct a projective resolution of the algebra B as a $K_{p a r}(G)$-module, where B is a commutative subalgebra of $K_{p a r}(G)$. This allows us to give another characterization of the partial group cohomology in terms of classes of functions that satisfy a certain identity of n-cocycles. We show the existence of a Grothendieck spectral sequence that relates the cohomology of the partial smash product with the partial group cohomology and the algebra cohomology. Given a unital partial action α of G on a algebra \mathcal{A} we consider the $K_{\text {par }}(G)$-module structure of \mathcal{A} induced by α and study the globalization problem for the partial cohomology with values in \mathcal{A}. The problem is reduced to an extendibility property of cocycles. Moreover, if \mathcal{A} is a product of indecomposable blocks, we show that any cocycle is globalizable, and globalizations of cohomologous cocycles are also cohomologous, whence we have that $H_{\text {par }}^{n}(G, M)$ is isomorphic to the usual cohomology group $H^{n}(G, \mathcal{M}(\mathcal{B}))$, where \mathcal{B} is the algebra under the enveloping action of α and $\mathcal{M}(\mathcal{B})$ is the multiplier algebra of \mathcal{B}.

Index 1
1 Introduction 3
2 Preliminaries 6
2.1 Partial representations, inverse semigroups and partial actions 6
2.2 Partial smash product 19
2.3 Spectral sequences 30
3 Partial group cohomology 58
3.1 Partial group cohomology 58
3.2 The 1-st cohomology group 67
3.3 A projective resolution of B 70
4 Grothendieck spectral sequence 81
5 Globalization 94
5.1 From globalization to an extendibility property 94
5.2 The construction of w^{\prime} 105
5.3 Existence and uniqueness of a globalization 126
Bibliography 139

CHAPTER 1

Introduction

Partial actions, partial representations, the corresponding crossed product and the interaction between them were introduced by R. Exel in [17, 18, 19] as methods of study C^{*}-algebras. Those works started the development of the theory of partial projective group representations in [10, 11, 12, 13], and the study of group cohomology based on partial actions in [2], [5] and [14]. For an overview of publications on partial actions, related concepts and more details see [16] and [9]. Spectral sequences were invented by J. Leray and R. C. Lyndon in 1940s. In homological algebra and algebraic topology, spectral sequence is a tool that allows us to compute homology groups using approximations of it. In an informal way we can think of a spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ as a book with infinite pages, where the next page is the homology of the previous page, and as we go through the pages we get closer to the homology that we want to compute.

We begin recalling preliminaries in Chapter 2. We give the definition of a partial group representation and an inverse semigroup, next we show some properties of the semigroup $\mathcal{S}(G)$ introduced by R. Exel in [17], with that we define the algebra $K_{\text {par }}(G)$ as the K-algebra with base $\mathcal{S}(G)$, and show that the category of partial representations of G and the category of representations of $K_{p a r}(G)$ are isomorphic. We also recall the definition of a partial action of G on an algebra A, and show that a unital partial action of G on A induces a structure of $K_{p a r}(G)$-module to A. In Section 2.2 we recall the construction of the partial smash product (also called partial skew
group ring) $A \rtimes_{\alpha} G$, and some kind of universal property for the partial smash product. We also give the definition of a covariant pair, which is a pair in $\operatorname{Rep} A \times \operatorname{ParRep} G$ with certain compatibility property. Then we show that the category of the partial smash representations and the category of covariant pairs are equivalent. Later we show, as is proved in [6], that the partial group algebra $K_{\text {par }}(G)$ is isomorphic to a partial smash algebra $B \rtimes_{\beta} G$, where the algebra B is the commutative algebra generated by the idempotents of $\mathcal{S}(G)$. As a last result of this section we show that the algebra B has a structure of $K_{p a r}(G)$-module given by conjugation. Finally, in Section 2.3 we recall some definitions and fundamental known results regarding spectral sequences with the final objective of proving Theorem 2.106, which is used to obtain the main result of the Chapter 4.

In Section 3.1 we work with some results obtained in [2]. We define the partial group cohomology $H_{p a r}^{n}(G, M)$ of a group G with values in a $K_{p a r}(G)$-module M as the right derived functor of the functor of partial invariants $(-)^{G_{\text {par }}}$, which we prove to be equivalent to functor $\operatorname{Hom}_{K_{p a r}(G)}(B,-)$, that is, $(-)^{G_{p a r}}$ is representable. Later we define partial derivations as K-linear maps $\delta: K_{p a r}(G) \rightarrow M$ which satisfy a certain Leibniz rule, and the partial augmentation ideal defined as the kernel of the map $K_{\text {par }}(G) \rightarrow B$ such that $\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right] \mapsto e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)}$. After that we relate the partial group cohomology with the vector space of partial derivations $\operatorname{Der}_{p a r}(G, M)$ and the partial augmentation ideal. In Sections 3.2 and 3.3 we study a part of the theory developed in [5]. Using the results obtained in the previous section to give another characterization of the 1-st cohomology group $H_{p a r}^{1}(G, M)$ in term of classes of maps $d: G \rightarrow M$ of maps that satisfy certain conditions, which form a vector space denoted $D(G, M)$, showing an isomorphism between the vector space of partial derivations $\operatorname{Der}_{p a r}(G, M)$ and $D(G, M)$. Later we define the projective modules P_{n} as the direct sum of some submodules of $K_{p a r}(G)$, with the modules P_{n} we construct a projective resolution of $K_{\text {par }}(G)$-module of B in order to obtain another characterization of $H_{p a r}^{n}(G, M)$. After that we define the groups $C_{p a r}^{n}(G, M)$ in an analogous way to the groups $C^{n}(G, M)$ used in the construction of the classical cohomology group $H^{n}(G, M)$. Then we show that $\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right) \cong C_{p a r}^{n}(G, M)$ and that $H_{p a r}^{n}(G, M)$ is related to some functions of $C_{p a r}^{n}(G, M)$.

Chapter 4 corresponds to the final section of [2]. We relate the cohomology of partial smash products with the partial group cohomology and algebra cohomology, showing with Theorem 2.106 that there exists a Grothendieck spectral sequence that relates those cohomologies.

In Section 5.1 we study the final section of [5. We work with an algebra \mathcal{A} over a commutative ring K and a unital partial action α of G on \mathcal{A}. We can define a $K_{p a r}(G)$ module structure on \mathcal{A} and study the globalization problem for the cohomology with
values in this module. We fix an enveloping action (\mathcal{B}, β) of α, and since the algebra \mathcal{B} is not necessary unital we work more generally with the multiplier algebra $\mathcal{M}(\mathcal{B})$ of \mathcal{B}. First we prove that a cocycle $w \in Z_{p a r}^{n}(G, \mathcal{A})$ is globalizable if, and only if, there exists a certain extension $\widetilde{w}: G^{n} \rightarrow \mathcal{A}$ which satisfies some n-cocycle equality. In Section 5.2 we take an arbitrary cocycle $w \in Z_{p a r}^{n}(G, \mathcal{A})$ and construct a more manageable n-cocycle $w^{\prime} \in Z_{\text {par }}^{n}(G, \mathcal{A})$ cohomologus to w. In Section 5.3 using the results obtained in the two previous sections we show that if \mathcal{A} is product of blocks then any cocycle from $Z_{p a r}^{n}(G, \mathcal{A})$ is globalizable (Theorem 5.36). We prove Theorem 5.40 which says that globalizations of cohomologous cocycles are also cohomologous. Using Theorems 5.36 and 5.40 we prove that $H_{p a r}^{n}(G, M)$ is isomorphic to the usual cohomology group $H^{n}(G, \overline{\mathcal{M}}(\mathcal{B}))$.

CHAPTER 2

Preliminaries

In this chapter we recall all the necessary definitions and results that will be used through this work. Let G be a group and K be any field. We denote by 1_{G} the identity of G.

2.1 Partial representations, inverse semigroups and partial actions

First we will show the definitions and some known results about partial representations, inverse semigroups and partial actions. Most of the results in this part are taken from [16].

Definition 2.1. A partial representation of G on the K-vector space V is a map $\pi: G \rightarrow \operatorname{End}_{K}(V)$ such that, for any $s, t \in G$, we have:
(a) $\pi(s) \pi(t) \pi\left(t^{-1}\right)=\pi(s t) \pi\left(t^{-1}\right)$,
(b) $\pi\left(s^{-1}\right) \pi(s) \pi(t)=\pi\left(s^{-1}\right) \pi(s t)$,
(c) $\pi\left(1_{G}\right)=1$,
where $1=i d_{V}$. More generally, we recall that a map $\pi: G \rightarrow S$ is a partial representation, where S is an unital algebra or just a monoid, if it satisfies items (a), (b) and (c).

In other words, π is a partial representation of G if the equality $\pi(s) \pi(t)=\pi(s t)$ holds when the two sides are multiplied either by $\pi\left(s^{-1}\right)$ on the left or by $\pi\left(t^{-1}\right)$ on the right.

Example 2.2. Any representation of G is a partial representation; moreover, if H is any subgroup of G and $\pi: H \rightarrow \operatorname{End}_{K}(V)$ is a partial representation of H, then the map $\tilde{\pi}: H \rightarrow \operatorname{End}_{K}(V)$ given by

$$
\tilde{\pi}(g)=\left\{\begin{array}{cl}
\pi(g) & \text { if } g \in H \\
0 & \text { otherwise }
\end{array}\right.
$$

defines a partial representation of G.
Definition 2.3. Let $\pi: G \rightarrow \operatorname{End}_{K}(V)$ and $\pi^{\prime}: G \rightarrow \operatorname{End}_{K}(W)$ be two partial representations of G. A morphism of partial representations is a morphism of vector spaces $f: V \rightarrow W$, such that the next diagram commutes:

that is $f \circ \pi(g)=\pi^{\prime}(g) \circ f \forall g \in G$.
The category of partial representations of G, denoted ParRep G is the category whose objects are pairs (V, π), where V is a K-vector space and $\pi: G \rightarrow \operatorname{End}_{K}(V)$ is a partial representation of G on V, and whose morphisms are morphisms of partial representations.

Definition 2.4. A set S together with a binary operation - is called a semigroup if satisfies the associative property, i.e. for all $a, b, c \in S$, the equation $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ holds.

Definition 2.5. Given two semigroups S and T, a map $f: S \rightarrow T$ is an homomorphism between semigroups if satisfies that $f(a b)=f(a) f(b)$ for all $a, b \in S$.

Definition 2.6. A semigroup S is said to be regular, if for each x in S there exists an element x^{*} in S such that
i) $x x^{*} x=x$,
ii) $x^{*} x x^{*}=x^{*}$.

The element x^{*} is called an inverse of x. If moreover the idempotent elements of S commute then S is said to be an inverse semigroup.

Remark 2.7. If S is an inverse semigroup, then for each $x \in S$ the element $x x^{*}$ is idempotent, since $\left(x x^{*}\right)\left(x x^{*}\right)=x\left(x^{*} x x^{*}\right)=x x^{*}$.

The next proposition gives us a definition equivalent to Definition 2.6, showing that the uniqueness of the inverse elements is a necessary and sufficient condition for a regular semigroup to be an inverse semigroup.

Proposition 2.8. Let S be a regular semigroup. Then any x in S has an unique inverse if, and only if, the idempotents of S commute.

Proof. Let S be a regular semigroup in which the idempotents of S commute and let u and v be inverses of x. Then

$$
u=u x u=u(x v x) u=(u x)(v x) u,
$$

where both $u x$ and $v x$ are idempotents. Thus, since idempotents commute, we have

$$
u=(u x)(v x) u=(v x)(u x) u=v x u=(v x v) x u=v(x v)(x u),
$$

then

$$
u=v(x v)(x u)=v(x u)(x v)=v(x u x) v=v x v=v .
$$

Hence $u=v$.
To prove the converse, let S be a regular semigroup such that each element has a unique inverse. Let e and f arbitrary idempotents in S and let x be the inverse of $e f$. The element $f x e$ is an idempotent. Indeed,

$$
(f x e)^{2}=f(x e f x) e=f x e .
$$

Moreover $f x e$ is the inverse of $e f$, since

$$
(f x e) e f(f x e)=\left(f x e^{2}\right)\left(f^{2} x e\right)=f x e
$$

and

$$
(e f)(f x e)(e f)=\left(e f^{2}\right) x\left(e^{2} f\right)=(e f) x(e f)=e f
$$

Any idempotent is self-inverse, and by the uniqueness of the inverse we have that $e f=f x e$, so $e f$ is idempotent and it is self-inverse. Notice that we have proved that the product of idempotents is an idempotent, in particular, so is $f e$. Now observe that

$$
e f(f e)(e f)=(e f)(e f)=e f \text { and } f e(e f) f e=f e,
$$

that is, $f e$ is the inverse of $e f$, but since $e f$ is self-inverse then $f e=e f$.

Corollary 2.9. If S is an inverse semigroup, then $\left(x^{*}\right)^{*}=x$ for any $x \in S$.
Remark 2.10. Given s and t in an inverse semigroup S, we have that $(s t)^{*}=t^{*} s^{*}$. Indeed, since $x x^{*}$ is idempotent for any x in S, then

$$
s t\left(t^{*} s^{*}\right) s t=s\left(t t^{*}\right)\left(s^{*} s\right) t=s\left(s^{*} s\right)\left(t t^{*}\right) t=s t,
$$

and

$$
\left(t^{*} s^{*}\right) s t\left(t^{*} s^{*}\right)=t^{*}\left(s^{*} s\right)\left(t t^{*}\right) s^{*}=t^{*}\left(t t^{*}\right)\left(s^{*} s\right) s^{*}=t^{*} s^{*} .
$$

Proposition 2.11. Let S be an inverse semigroup. Then the relation given by

$$
s \leq t \Leftrightarrow s=t e, \text { for some idempotent } e,
$$

is a partial order.
Proof.

- Reflexive: For $s \in S$, we have $s \leq s$ since $s=s s^{-1} s$ and $s^{-1} s$ is idempotent.
- Antisymmetric: Given $a, b \in S$, if $a \leq b$ and $b \leq a$, then $a=b e$ and $b=a i$ where e and i are idempotents, as $e i=i e$ we have:

$$
a=b e=a i e=a i e i=b e i=a i=b .
$$

- Transitive: Let a, b and c be in S such that $a \leq b$ and $b \leq c$. Hence $a=b e_{1}$ y $b=c e_{2}$, Therefore $a=c\left(e_{2} e_{1}\right)$ since $e_{2} e_{1}$ is idempotent, thus $a \leq c$.

The partial order obtained in Proposition 2.11 is called the natural partial order on the inverse semigroup.

The next lemma gives equivalent definitions of the natural partial order.
Lemma 2.12. For an inverse semigroup S the next conditions are equivalent:

1. $s \leq t$,
2. $s=f t$ for some idempotent f,
3. $s^{-1} \leq t^{-1}$,
4. $s=s s^{-1} t$,
5. $s=t s^{-1} s$.

Proof.

- $(1) \Rightarrow(2)$. If $s \leq t$ then $s=t e$ for some idempotent e. Taking $f=$ tet $^{-1}, f$ is idempotent since

$$
f^{2}=\left(t e t^{-1}\right)\left(t e t^{-1}\right)=t t^{-1} t e t^{-1}=t e t^{-1}=f
$$

and $f t=\left(t e t^{-1}\right) t=t t^{-1} t e=t e=s$.

- $(2) \Rightarrow(3)$. Since $s=f t$ then $s^{-1}=t^{-1} f$, hence $s^{-1} \leq t^{-1}$.
- (3) \Rightarrow (4). If $s^{-1} \leq t^{-1}$ then $s^{-1}=t^{-1} e$ for some idempotent e, hence $s=e t$. Thus $s s^{-1}=e t t^{-1} e=e t t^{-1}$, Therefore $s=e t=\left(e t t^{-1}\right) t=s s^{-1} t$.
- (4) \Rightarrow (5). As $s=s s^{-1} t$ then $s^{-1}=t^{-1} s s^{-1}$ and $s^{-1} s=t^{-1} s s^{-1} t$, hence $s=s s^{-1}\left(t t^{-1} t\right)=t\left(t^{-1} s s^{-1} t\right)=t s^{-1} s$.
- $(5) \Rightarrow(1)$. It is clear by the definition of the natural partial order of an inverse semigroup.

Definition 2.13. A partial function $f: X \rightarrow Y$, is a function $f: X^{\prime} \rightarrow Y^{\prime}$ where $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$. Given two partial functions $f: X \rightarrow Y$ and $g: Y \rightarrow W$ the composition $g \circ f: X \rightarrow W$ is the partial function with domain $f^{-1}(\operatorname{dom} g \cap \operatorname{im} f)$, such that $g \circ f(x)=g(f(x))$ for any $x \in f^{-1}(\operatorname{dom} g \cap \operatorname{im} f)$.

Definition 2.14. Let X be a set. Then

$$
I(X):=\{f: A \rightarrow B \mid A \subseteq X, B \subseteq X \text { and } f \text { is a bijection }\}
$$

with the composition of partial functions is an inverse monoid, called the symmetric inverse semigroup over X.

The Wagner-Preston representation Theorem says that any inverse semigroup can be embedded in a symmetric inverse semigroup. Then for s in an inverse semigroup S we can understand the elements $s s^{*}$ as the identity map on the image of s and $s^{*} s$ as the identity map on the domain of s. Thus we can understand the natural partial order as follows: $s \leq t$ if, and only if, s is a restriction of t.

Definition 2.15. Let \sim be an equivalence relation of a semigroup S. We say that \sim is a congruence if it is compatible with the semigroup operation, that is, $\sim \subseteq S \times S$ is an equivalence relation and for $x, y, a, b \in S$, if $x \sim y$ and $a \sim b$ then $a b \sim b y$.

It is easy to see that if we have a congruence \sim of a semigroup S, then the set of the equivalence classes S / \sim is a semigroup with the operation induced by S. Moreover, the natural projection $\pi: S \rightarrow S / \sim$ is a surjective homomorphism.

Definition 2.16. Let S be a semigroup, if $R \subseteq S \times S$ we define the congruence generated by R as the intersection of all the congruences that contains R.

Remark 2.17. The congruence generated by $R \subseteq S \times S$ exists since the arbitrary intersection of congruences is a congruence and the fact that $\sim=S \times S$ is trivially a semigroup congruence of S.

One of the most important inverse monoids in this work is $\mathcal{S}(G)$, defined by R . Exel in [17], which plays an important role in the construction of the partial group algebra $K_{\text {par }}(G)$.

Definition 2.18. Let G be a group. Denote by $\mathcal{S}(G)$ the monoid defined by the generators $[t], t \in G$, and relations:
(1) $\left[1_{G}\right]=1$;
(2) $\left[s^{-1}\right][s][t]=\left[s^{-1}\right][s t]$;
(3) $[s][t]\left[t^{-1}\right]=[s t]\left[t^{-1}\right]$;
for any $t, s \in G$. That is, define $\mathcal{S}(G)=[G] / \zeta$, where is $[G]$ the free semigroup generated by the set of symbols $\{[g] \mid g \in G\}$ and ζ is the congruence generated by the set

$$
R=\left\{\left(\left[s^{-1}\right][s][t],\left[s^{-1}\right][s t]\right),\left([s][t]\left[t^{-1}\right],[s t]\left[t^{-1}\right]\right),\left(\left[1_{G}\right], 1\right) \mid s, t \in G\right\} \subseteq[G] \times[G] .
$$

Remark 2.19. Let $\psi:[G] \rightarrow G$ be the semigroup homomorphism given by $[g] \mapsto g$, and let $\pi:[G] \rightarrow \mathcal{S}(G)$ be the natural projection. Define

$$
\Omega=\{(x, y) \in[G] \times[G] \mid \psi(x)=\psi(y)\} .
$$

Clearly Ω is an equivalence relation and it is a congruence since ψ is a homomorphism. Furthermore, notice that $R \subseteq \Omega$, therefore $\zeta \subseteq \Omega$. Thus, for any $z \in \mathcal{S}(G)$ we have that $\psi\left(\pi^{-1}(z)\right)$ is well-defined. Indeed, if $a, b \in[G]$ are such that $\pi(a)=\pi(b)$
then $(a, b) \in \zeta \subseteq \Omega$, therefore $\psi(a)=\psi(b)$. Then we can define the semigroup homomorphism

$$
\begin{aligned}
\eta: \mathcal{S}(G) & \rightarrow G \\
z & \mapsto \psi\left(\pi^{-1}(z)\right)
\end{aligned}
$$

Therefore, η is a semigroup homomorphism such that $\eta([g])=g$, for all $g \in G$.
We define for each $g \in G$ the element $e_{g}=[g]\left[g^{-1}\right] \in K_{\text {par }}(G)$. Notice that for all $g \in G$ the element e_{g} is idempotent, $e_{g} e_{g}=[g]\left[g^{-1}\right][g]\left[g^{-1}\right]=[g]\left[g^{-1}\right]=e_{g}$. Also these elements satisfy the following relation:

$$
[g] e_{h}=e_{g h}[g] .
$$

Indeed,

$$
\begin{aligned}
{[g] e_{h} } & =[g][h]\left[h^{-1}\right]=[g h]\left[h^{-1}\right]=[g h]\left[h^{-1} g^{-1} g\right] \\
& =[g h]\left[(g h)^{-1} g\right]=[g h]\left[(g h)^{-1}\right][g] \\
& =e_{g h}[g] .
\end{aligned}
$$

Then we have that the elements e_{g} commute among themselves,

$$
\begin{aligned}
e_{g} e_{h} & =[g]\left[g^{-1}\right] e_{h}=[g] e_{g^{-1} h}\left[g^{-1}\right] \\
& =e_{g g^{-1} h}[g]\left[g^{-1}\right]=e_{h} e_{g} .
\end{aligned}
$$

The next useful results were proved first in [17].
Proposition 2.20. Any element ω in $\mathcal{S}(G)$ admits a decomposition

$$
\omega=e_{g_{1}} e_{g_{2}} \ldots e_{g_{n}}[s],
$$

where $n \geq 0$ and $g_{1}, g_{2}, \ldots, g_{n}, s$ are elements of G. In addition, one can assume that
i) $g_{i} \neq g_{j}$ for $i \neq j$,
ii) $g_{i} \neq s$ for any i.

Proof. Let S be the subset of $\mathcal{S}(G)$ consisting of those ω that do admit a decomposition as above. Since $n=0$ is allowed, we see that each $[s]$ belongs to S. To prove the statement we only have to verify that S is a subsemigroup of $\mathcal{S}(G)$, in view of the fact that the set $\{[s] \in \mathcal{S}(G)\}$ generates $\mathcal{S}(G)$.

Let $\omega=e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[s]$. It suffices to demonstrate that $\omega[t]$ belongs to S, since this will prove S to be a right ideal and hence a subsemigroup. Now, note that

$$
[s][t]=[s]\left[s^{-1}\right][s][t]=[s]\left[s^{-1}\right][s t]=e_{s}[s t] .
$$

So

$$
\omega[t]=e_{r_{1}} \ldots e_{r_{n}}[s][t]=e_{r_{1}} \ldots e_{r_{n}} e_{s}[s][t]=e_{r_{1}} \ldots e_{r_{n}} e_{s}[s t] .
$$

If $s \neq r_{i}$ for any $i \in\{1,2, \ldots, n\}$ then $e_{r_{1}} \ldots e_{r_{n}} e_{s}[s t] \in S$, on the other hand if $s=r_{i}$ for some $i \in\{1,2, \ldots, n\}$ we have $e_{r_{1}} \ldots e_{r_{n}} e_{s}[s t]=e_{r_{1}} \ldots e_{r_{n}}[s t] \in S$ since the elements e_{g} are central idempotents.

Remark 2.21. Let $\eta: \mathcal{S}(G) \rightarrow G$ be the homomorphism of semigroups defined above. It is clear that $\eta\left(e_{g}\right)=1_{G}$ for any $g \in G$. Now let ω be in $\mathcal{S}(G)$, and assume that we have two decomposition $e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[s]$ and $e_{h_{1}} e_{h_{2}} \ldots e_{h_{m}}[t]$ of ω. Then

$$
s=\eta\left(e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[s]\right)=\eta\left(e_{h_{1}} e_{h_{2}} \ldots e_{h_{m}}[t]\right)=t
$$

Now let e be an idempotent element in $\mathcal{S}(G)$, then by Proposition 2.20 there exists a decomposition $e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g]$ of e. Since e is idempotent then

$$
e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g] e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g]=e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g],
$$

thus

$$
g=\eta\left(e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g]\right)=\eta\left(e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g] e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}[g]\right)=g^{2} .
$$

Since G is a group, it follows that $g=1_{G}$. Therefore $e=e_{r_{1}} e_{r_{2}} \ldots e_{r_{n}}$, that means that the set $\left\{e_{g} \mid g \in G\right\}$ generates all the idempotents of $\mathcal{S}(G)$.

Finally, if e and f are idempotents in $\mathcal{S}(G)$ we have that $e[s]=f[t]$ if, and only if, $s=t$ and $e e_{s}=f e_{s}$. Indeed, by the first part we have $s=t$, then $e[s]=f[s]$ therefore $e e_{s}=e[s]\left[s^{-1}\right]=f[s]\left[s^{-1}\right]=f e_{s}$.
Remark 2.22. In fact any $\alpha \in \mathcal{S}(G)$ admits a unique standard decomposition

$$
\alpha=\varepsilon_{r_{1}} \ldots \varepsilon_{r_{n}}[s]
$$

up to the order of the ε_{r} 's. For more details see [17.
Proposition 2.23. $\mathcal{S}(G)$ is an inverse semigroup.
Proof. First observe that by definition of $\mathcal{S}(G)$ for any $g \in G$ we have that $\left[g^{-1}\right]$ is an inverse of $[g]$, moreover given $t \in G$ we have that $\left[t^{-1}\right]\left[g^{-1}\right]$ is an inverse of $[g][t]$. Indeed,

$$
[g][t]\left[t^{-1}\right]\left[g^{-1}\right][g][t]=[g]\left[g^{-1}\right][g][t]\left[t^{-1}\right][t]=[g][t],
$$

and

$$
\left[t^{-1}\right]\left[g^{-1}\right][g][t]\left[t^{-1}\right]\left[g^{-1}\right]=\left[t^{-1}\right][t]\left[t^{-1}\right]\left[g^{-1}\right][g]\left[g^{-1}\right]=\left[t^{-1}\right]\left[g^{-1}\right] .
$$

Thus by induction we prove that for $g_{1}, g_{2}, \ldots, g_{n} \in G$ we have $\left[g_{n}^{-1}\right]\left[g_{n-1}^{-1}\right] \ldots\left[g_{1}^{-1}\right]$ is an inverse of $\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]$. Finally by Remark 2.21 idempotents are generated by the set $\left\{e_{g} \mid g \in G\right\}$, and we have that $e_{g} e_{h}=e_{h} e_{g}$ for any $g, h \in G$.

Let us denote by s^{-1} the inverse of s in $\mathcal{S}(G)$.
Lemma 2.24. Let η be the morphism defined in Remark 2.21. Then for each $s \in$ $\mathcal{S}(G)$ we have $s=s s^{-1}[\eta(s)]$.

Proof. Let s be in $\mathcal{S}(G)$, then by Proposition 2.20 and Remark 2.21 we have $s=$ $e[\eta(s)]$ for some idempotent $e \in E(\mathcal{S}(G))$. Then
$s s^{-1}[\eta(s)]=s(e[\eta(s)])^{-1}[\eta(s)]=s\left[\eta(s)^{-1}\right] e[\eta(s)]=s\left(\left[\eta(s)^{-1}\right] e\right)(e[\eta(s)])=s s^{-1} s=s$.

Definition 2.25. Given a group G and a field K, the partial group algebra $\boldsymbol{K}_{\text {par }}(\boldsymbol{G})$ is the semigroup algebra of $\mathcal{S}(G)$ over K, i.e. the algebra with K-basis $\mathcal{S}(G)$.
$K_{p a r}(G)$ has the following universal property.
Proposition 2.26. The map

$$
\psi: g \in G \mapsto[g] \in K_{p a r}(G)
$$

is a partial representation, which we will call the universal partial representation of G. In addition, for any partial representation π of G in a unital K-algebra B there exists a unique algebra homomorphism

$$
\phi: K_{p a r}(G) \rightarrow B,
$$

such that $\pi(g)=\phi([g])$, for any $g \in G$.
Proof. It is clear that by Definition 2.25, ψ is a partial representation.
In order to prove the universal property of $K_{\text {par }}(G)$, we define F as the free K algebra generated by set of symbols $\{[g] \mid g \in G\}$, and I the ideal of F generated by the set

$$
\left\{\left[s^{-1}\right][s][t]-\left[s^{-1}\right][s t],[s][t]\left[t^{-1}\right]-[s t]\left[t^{-1}\right] \mid s, t \in G\right\} \subseteq F .
$$

Notice that $\overline{[g]} \in F / I \mapsto[g] \in K_{p a r}(G)$ is an algebra isomorphism. Indeed, by the universal property of free algebras there exists an unique algebra morphism f : $F \rightarrow K_{p a r}(G)$ such that $f([g])=[g]$. Observe that $\operatorname{ker} f=I$, therefore the map $F / I \rightarrow K_{\text {par }}(G)$ induced by f is an algebra isomorphism.

By the universal property of free algebras there exists an unique algebra morphism $\phi^{\prime}: F \rightarrow B$ such that $\pi(g)=\phi^{\prime}([g])$. Notice that $I \subseteq \operatorname{ker}\left(\phi^{\prime}\right)$, since

$$
\phi^{\prime}\left(\left[s^{-1}\right][s][t]-\left[s^{-1}\right][s t]\right)=\pi\left(s^{-1} s t-s^{-1}(s t)\right)=0 .
$$

Then there exist an unique morphism $\bar{\phi}: F / I \rightarrow B$ such that $\bar{\phi}([g])=\pi(g)$. Finally, as $K_{p a r}(G) \cong F / I$, there exist an unique morphism $\phi: K_{p a r}(G) \rightarrow B$ such that $\pi(g)=\phi([g])$.

Theorem 2.27. The categories $\operatorname{ParRep} G$ and $\operatorname{Rep} K_{\text {par }}(G)$ are isomorphic.
Proof. Let V be a K-vector space and let $\pi_{V}: G \rightarrow \operatorname{End}_{K}(V)$ be a partial representation of G in V. Then by Proposition 2.26 there is an unique representation $\phi_{V}: K_{p a r}(G) \rightarrow \operatorname{End}_{K}(V)$ such that $\phi_{V}([g])=\pi_{V}(g)$. Now given two partial representations $\pi_{V}: G \rightarrow \operatorname{End}_{K}(V)$ and $\pi_{W}: G \rightarrow \operatorname{End}_{K}(W)$ of G and a morphism of partial representations $f: V \rightarrow W$. Thus from $f \circ \pi_{V}(g)=\pi_{W}(g) \circ f$ we have that $f \circ \phi_{V}([g])=\phi_{W}([g]) \circ f$. Therefore f defines a morphism of representation. Conversely, if $\phi_{V}: K_{p a r}(G) \rightarrow \operatorname{End}_{K}(V)$ is a representation, then $\pi_{V}(g)=\phi_{V}([g])$ gives a partial representation of G in V.

Another important concept in this work is the notion of a partial action.
Definition 2.28. Let G be a group and A an algebra. A partial action α of G on A is given by a collection $\left\{D_{g}\right\}_{g \in G}$ of ideals of A and a collection $\left\{\alpha_{g}: D_{g^{-1}} \rightarrow D_{g}\right\}_{g \in G}$ of algebra isomorphisms, satisfying the following conditions:
(1) $D_{e}=A$ and $\alpha_{e}=i d_{A}$,
(2) $\alpha_{h}\left(D_{h^{-1}} \cap D_{(g h)^{-1}}\right)=D_{h} \cap D_{g^{-1}}$,
(3) if $x \in D_{h^{-1}} \cap D_{(g h)^{-1}}$ then $\alpha_{g} \alpha_{h}(x)=\alpha_{g h}(x)$.

Remark 2.29.

1. We can see in [16] that the conditions (2) and (3) can be replaced by the condition:

- $\alpha_{g} \circ \alpha_{h} \subseteq \alpha_{g h}$ for any g and h in G (where if f and f^{\prime} are maps then $f \subseteq f^{\prime}$ means that f is a restriction of f^{\prime}),

Moreover, condition (2) can be replaced by the "weaker" assumption:

- $D_{h} \cap D_{g^{-1}} \subseteq \theta_{h}\left(D_{(g h)^{-1}}\right)$.

2. Notice that given a partial action θ of G on A we have that θ_{g} and θ_{h} are partial functions, for any $g, h \in G$, therefore $\theta_{g} \circ \theta_{h}$ means the composition of partial function. Thus the domain of $\theta_{g} \circ \theta_{h}$ is the set

$$
\left\{x \in D_{h^{-1}}: \theta_{h}(x) \in D_{g^{-1}}\right\}=\theta_{h}^{-1}\left(D_{g^{-1}}\right)=\theta_{h}^{-1}\left(D_{h} \cap D_{g^{-1}}\right) .
$$

Example 2.30. An action of G on an algebra A is clearly a partial action, defining $D_{g}=A$ for any $g \in G$ and α_{g} the map $a \in A \mapsto g(a) \in A$. Moreover, any unital ideal of A carries a partial action: if B is such an ideal, with unit 1_{B}, then a partial G action β on B is obtained by defining $D_{g}=B \cap g(B)$ and β_{g} to be the restriction of α_{g} to the ideal $D_{g^{-1}}$. Note that each ideal D_{g} of B is also unital, with unit $u_{g}=1_{B} g\left(1_{B}\right)$. We can see this example more details in [16, p.15].

Definition 2.31. Let $\left(A,\left\{D_{g}\right\}_{g \in G},\left\{\alpha_{g}\right\}_{g \in G}\right)$ and $\left(B,\left\{E_{g}\right\}_{g \in G},\left\{\beta_{g}\right\}_{g \in G}\right)$ be partial actions. A morphism of partial actions

$$
\varphi:\left(A,\left\{D_{g}\right\}_{g \in G},\left\{\theta_{g}\right\}_{g \in G}\right) \rightarrow\left(B,\left\{E_{g}\right\}_{g \in G},\left\{\beta_{g}\right\}_{g \in G}\right)
$$

is an algebra morphism $\varphi: A \rightarrow B$ such that $\varphi\left(D_{g}\right) \subset E_{g}$ and

commutes for each $g \in G$. That is $\varphi\left(\alpha_{g}(x)\right)=\beta_{g}(\varphi(x))$ for any $g \in G$ and $x \in D_{g^{-1}}$.
Definition 2.32. A partial action α is called unital if each D_{g} is a unital algebra, that is $D_{g}=u_{g} A$ where u_{g} is a central idempotent in A.

The next fact is very well known and allows us to relate the concepts of partial action and partial representation. Moreover we can also relate the concept of $K_{p a r}(G)$ module.

Lemma 2.33. Let (A, α) be an unital partial action of a group G on an algebra A. Then the map

$$
\begin{aligned}
\pi^{\alpha}: G & \rightarrow \operatorname{End}_{K}(A) \\
g & \mapsto \pi_{g}^{\alpha}
\end{aligned}
$$

where $\pi_{g}^{\alpha}(a)=\alpha_{g}\left(1_{g^{-1}} a\right)$ is a partial representation of G.
Proof. We have $\pi_{1_{G}}^{\alpha}(a)=\alpha_{1_{G}}(a)=a$ thus $\pi_{1_{G}}^{\alpha}=i d_{A}$. Now observe that

$$
\begin{aligned}
\pi_{g^{-1}}^{\alpha} \pi_{g}^{\alpha} \pi_{h}^{\alpha}(a) & =\alpha_{g^{-1}}\left(1_{g} \alpha_{g}\left(1_{g^{-1}} \alpha_{h}\left(1_{h^{-1}} a\right)\right)\right) \\
& =\alpha_{g^{-1}} \alpha_{g} \alpha_{h}\left(1_{h^{-1}} 1_{h^{-1} g^{-1}} a\right) \\
& =\alpha_{g^{-1}} \alpha_{g h}\left(1_{h^{-1}} 1_{(g h)^{-1} a} a\right) \\
& =\alpha_{g^{-1}}\left(1_{g} 1_{g h} \alpha_{g h}\left(1_{(g h)^{-1}} a\right)\right) \\
& =\alpha_{g^{-1}}\left(1_{g} \alpha_{g h}\left(1_{(g h)^{-1}} a\right)\right)=\pi_{g^{-1}}^{\alpha} \pi_{g h}^{\alpha}(a)
\end{aligned}
$$

Finally the last condition of Definition 2.1 is proved in an analogous way.

Remark 2.34. By Lemma 2.33 and Theorem 2.27we have that if (A, α) is an unital partial action of a group G on an algebra A, then A has a structure of $K_{\text {par }}(G)$-module given by α.

Lemma 2.35. If $\pi_{M}: G \rightarrow \operatorname{End}_{K}(M)$ and $\pi_{N}: G \rightarrow \operatorname{End}_{K}(N)$ are partial representation, then $\theta: G \rightarrow \operatorname{End}_{K}\left(\operatorname{Hom}_{K}(M, N)\right)$, given by $\theta(g)(f)=\pi_{N}(g) \circ f \circ \pi_{M}\left(g^{-1}\right)$, is a partial representation.

Proof. It is clear that $\theta\left(1_{G}\right)=i d_{H_{H_{K}(M, N)}}$. Now observe that

$$
\begin{aligned}
\theta\left(s^{-1}\right) \theta(s) \theta(t)(f) & =\pi_{N}\left(s^{-1}\right) \pi_{N}(s) \pi_{N}(t) \circ f \circ \pi_{M}\left(t^{-1}\right) \pi_{M}\left(s^{-1}\right) \pi_{M}(s) \\
& =\pi_{N}\left(s^{-1}\right) \pi_{N}(s t) \circ f \circ \pi_{M}\left(t^{-1} s^{-1}\right) \pi_{M}(s) \\
& =\theta\left(s^{-1}\right) \theta(s t)(f)
\end{aligned}
$$

and

$$
\begin{aligned}
\theta(s) \theta(t) \theta\left(t^{-1}\right)(f) & =\pi_{N}(s) \pi_{N}(t) \pi_{N}\left(t^{-1}\right) \circ f \circ \pi_{M}(t) \pi_{M}\left(t^{-1}\right) \pi_{M}\left(s^{-1}\right) \\
& =\pi_{N}(s t) \pi_{N}\left(t^{-1}\right) \circ f \circ \pi_{M}(t) \pi_{M}\left(s^{-1} t^{-1}\right) \\
& =\theta(s t) \theta\left(t^{-1}\right)(f) .
\end{aligned}
$$

Lemma 2.36. Let A be a unital algebra. If $\pi: G \rightarrow A$ is a partial representation, then $\theta: G \rightarrow A^{o p}$, given by $\theta(g)=\pi\left(g^{-1}\right)$ is a partial representation.

Proof. First notice that $\theta\left(1_{G}\right)=\pi\left(1_{G}\right)=1_{A}$. Furthermore, for any $s, t \in G$ we have that

$$
\theta\left(s^{-1}\right) \theta(s) \theta(t)=\pi\left(t^{-1}\right) \pi\left(s^{-1}\right) \pi(s)=\pi\left(t^{-1} s^{-1}\right) \pi(s)=\theta\left(s^{-1}\right) \theta(s t)
$$

and

$$
\theta(s) \theta(t) \theta\left(t^{-1}\right)=\pi(t) \pi\left(t^{-1}\right) \pi\left(s^{-1}\right)=\pi(t) \pi\left(s^{-1} t^{-1}\right)=\theta(s t) \theta\left(t^{-1}\right) .
$$

Lemma 2.37. if $\pi: G \rightarrow A, \theta: G \rightarrow B$ are partial representation of G on the unital algebras A and B, then $\Psi: G \rightarrow A \otimes_{K} B$, given by $\Psi(g)=\pi(g) \otimes \theta(g)$, is a partial representation on the algebra $A \otimes_{K} B$.

Proof. For any $s, t \in G$, we have that

$$
\begin{aligned}
\Psi\left(s^{-1}\right) \Psi(s) \Psi(t) & =\left(\pi\left(s^{-1}\right) \otimes \theta\left(s^{-1}\right)\right)(\pi(s) \otimes \theta(s))(\pi(t) \otimes \theta(t)) \\
& =\pi\left(s^{-1}\right) \pi(s) \pi(t) \otimes \theta\left(s^{-1}\right) \theta(s) \theta(t) \\
& =\pi\left(s^{-1}\right) \pi(s t) \otimes \theta\left(s^{-1}\right) \theta(s t) \\
& =\Psi\left(s^{-1}\right) \Psi(s t) .
\end{aligned}
$$

In an analogous way we have that $\Psi(s) \Psi(t) \Psi\left(t^{-1}\right)=\Psi(s t) \Psi\left(t^{-1}\right)$. Finally, since $1_{A \otimes_{K} B}=1_{A} \otimes 1_{B}$ we have that $\Psi\left(1_{G}\right)=1_{A \otimes_{K} B}$.

2.2 Partial smash product

Now we are able to construct a new algebra called partial smash product (also referred to as the "partial skew group ring" or "partial cross product") denoted by $A \rtimes_{\alpha} G$, where α is a partial action of a group G on an algebra A.

Definition 2.38. Given a partial action α of G on A, we define the partial smash product $A \rtimes_{\alpha} G$ to consist of all linear combinations

$$
\sum_{g \in G} a_{g} \# g,
$$

where $a_{g} \in D_{g}$ and $a_{g}=0$ except for finitely many g 's, and the $\# g$ are used as place markers. Therefore

$$
A \rtimes_{\alpha} G=\sum_{g \in G} D_{g} \# g
$$

is a K-module with the product defined as

$$
\left(a_{g} \# g\right)\left(b_{h} \# h\right)=\alpha_{g}\left(\alpha_{g^{-1}}\left(a_{g}\right) b_{h}\right) \# g h .
$$

Note that $\alpha_{g^{-1}}\left(a_{g}\right) \in D_{g^{-1}}, b_{h} \in D_{h}$ and therefore

$$
\alpha_{g}\left(\alpha_{g^{-1}}\left(a_{g}\right) b_{h}\right) \in \alpha_{g}\left(D_{g^{-1}} D_{h}\right) \subset \alpha_{g}\left(D_{g^{-1}} \cap D_{h}\right) \subset D_{g} \cap D_{g h} \subset D_{g h} .
$$

Thus the product in Definition 2.38 is well-defined.
Remark 2.39. Notice that $1_{A} \# 1_{G}$ is the unit element of $A \rtimes_{\alpha} G$. Indeed,

$$
\begin{gathered}
\left(1_{A} \# 1_{G}\right)\left(b_{h} \# h\right)=\alpha_{1_{G}}\left(\alpha_{1_{G}^{-1}}\left(1_{A}\right) b_{h}\right) \# 1_{G} h=b_{h} \# h \\
\left(a_{g} \# g\right)\left(1_{A} \# 1_{G}\right)=\alpha_{g}\left(\alpha_{g^{-1}}\left(a_{g}\right) 1_{A}\right) \# g 1_{G}=a_{g} \# g
\end{gathered}
$$

Example 2.40. Let A be the commutative algebra $A=k[x, y] /\left\langle x^{2}, y^{2}\right\rangle, G=\left\langle g: g^{2}=1\right\rangle$ the cyclic group of order 2 and $I=A y$ the ideal generated by y (generated by y and $x y$ as vector space). Consider the partial action α of G on A given by $D_{g}=I$, $\alpha_{g}(y)=x y, \alpha_{g}(x y)=y$. Then the partial smash product $A \rtimes_{\alpha} G$ is not associative. In particular for $u=x \# 1+x y \# g$ we have that: $u \cdot u=y \# g$ then $(u \cdot u) \cdot u=0$ and $u \cdot(u \cdot u)=x y \# g$.

In what follows we assume that each partial action is unital. In this case the partial smash product is automatically associative and the formula of the product in $A \rtimes_{\alpha} G$ is simplified as we will see in the next lemma.

Lemma 2.41. Let $\left(A,\left\{D_{g}\right\}_{g \in G},\left\{\alpha_{g}\right\}_{g \in G}\right)$ be a unital partial action, i.e. each domain D_{g} is an ideal of the form $A u_{g}$, where u_{g} is a central idempotent of A for each $g \in G$. Then, for $g, h \in G$,
(I) If $A u_{g}=A e_{g}$ where e_{g} is a central idempotent, then $u_{g}=e_{g}$ and we have that $\alpha_{g}\left(u_{g^{-1}}\right)=u_{g}, \forall g \in G$.
(II) $\left(a u_{g} \# g\right)\left(b u_{h} \# h\right)=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h} \# g h$, for any $a, b \in A$. In particular if $a=b=1_{A}$ then $\left(u_{g} \# g\right)\left(u_{h} \# h\right)=u_{g} u_{g h} \# g h$.
(III) The map $\pi_{0}: G \rightarrow A \rtimes_{\alpha} G$ such that $\pi_{0}(g)=u_{g} \# g \forall g \in G$ is a partial representation of G in $A \rtimes_{\alpha} G$.
(IV) $\alpha_{g}\left(u_{g^{-1}} u_{h}\right)=u_{g} u_{g h}$ and the map $\left.\alpha_{g}\right|_{D_{g^{-1}} \cap D_{h}}: D_{g^{-1}} \cap D_{h} \rightarrow D_{g} \cap D_{g h}$ is an isomorphism.
(V) The smash product $A \rtimes_{\alpha} G$ is associative.

Proof.
(I) If $A u_{g}=A e_{g}$ we have that $u_{g}=a e_{g}$ and $e_{g}=b u_{g}$, thus

$$
u_{g}=a e_{g}=a e_{g} e_{g}=u_{g} e_{g}=e_{g} u_{g}=b u_{g} u_{g}=b u_{g}=e_{g} .
$$

(II) Note that by (2) of Definition 2.28 we have $\alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \in D_{g} \cap D_{g h}$, thus:

$$
\begin{aligned}
\left(a u_{g} \# g\right)\left(b u_{h} \# h\right) & =\alpha_{g}\left(\alpha_{g^{-1}}\left(a u_{g}\right) b u_{h}\right) \# g h \\
& =\alpha_{g}\left(\alpha_{g^{-1}}\left(a u_{g}\right) b u_{h} u_{g^{-1}}\right) \# g h \\
& =a u_{g} \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \# g h \\
& =a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h} \# g h .
\end{aligned}
$$

(III) As $u_{1_{G}} \# 1_{G}$ is the unit element of $A \rtimes_{\alpha} G$ then π_{0} satisfies (c) of Definition 2.1. Now notice that

$$
\begin{aligned}
\pi_{0}\left(s^{-1}\right) \pi_{0}(s) \pi_{0}(t) & =\left(u_{s^{-1}} \# s^{-1}\right)\left(u_{s} \# s\right)\left(u_{t} \# t\right) \\
& =\left(u_{s^{-1}} \# 1_{G}\right)\left(u_{t} \# t\right) \\
& =u_{s^{-1}} u_{t} \# t \\
& =\left(u_{s^{-1}} \# s^{-1}\right)\left(u_{s t} \# s t\right) \\
& =\pi_{0}\left(s^{-1}\right) \pi_{0}(s t),
\end{aligned}
$$

which proves part (b) of Definition 2.1, and the item (a) can be proved in an analogous way.
(IV) As the domains D_{g} are unital ideals for each $g \in G$ then

$$
D_{g^{-1}} \cap D_{h}=A u_{g^{-1}} u_{h} \text { and } D_{g} \cap D_{g h}=A u_{g} u_{g h} .
$$

It is clear that $\alpha_{g}\left(D_{g^{-1}} \cap D_{h}\right) \subseteq A \alpha_{g}\left(u_{g^{-1}} u_{h}\right)$, moreover given $a \in A$ we have

$$
\alpha_{g}\left(\alpha_{g^{-1}}\left(a u_{g}\right) u_{g^{-1}} u_{h}\right)=\alpha_{g}\left(\alpha_{g^{-1}}\left(a u_{g}\right)\right) \alpha_{g}\left(u_{g^{-1}} u_{h}\right)=a \alpha_{g}\left(u_{g^{-1}} u_{h}\right),
$$

hence $A \alpha_{g}\left(u_{g^{-1}} u_{h}\right)=\alpha_{g}\left(D_{g^{-1}} \cap D_{h}\right)$. Now by (2) of Definition 2.28

$$
\alpha_{g}\left(D_{g^{-1}} \cap D_{h}\right)=D_{g} \cap D_{g h},
$$

thus

$$
D_{g} \cap D_{g h}=A \alpha_{g}\left(u_{g^{-1}} u_{h}\right) .
$$

Then by $(I) \alpha_{g}\left(u_{g^{-1}} u_{h}\right)=u_{g} u_{g h}$.
(V) Using (II) we have that

$$
\begin{aligned}
&\left(a u_{g} \# g\right)\left(\left(b u_{h} \# h\right)\left(c u_{w} \# w\right)\right) \\
& \quad=\left(a u_{g} \# g\right)\left(b \alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{h w} \# h w\right) \\
& \quad=a \alpha_{g}\left(b \alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{h w} u_{g^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} \alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{h w} u_{g^{-1}} u_{g^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g}\left(\alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{h w} u_{g^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g}\left(\alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{g^{-1}}\right) \alpha_{g}\left(u_{h w} u_{g^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g}\left(\alpha_{h}\left(c u_{w} u_{h^{-1}}\right) u_{h} u_{g^{-1}}\right) u_{g h w} u_{g} u_{g h w} \# g h w \text { by (IV) } \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g}\left(\alpha_{h}\left(c u_{w} u_{h^{-1}}\right) \alpha_{h}\left(u_{h^{-1} g^{-1}} u_{h^{-1}}\right)\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g} \alpha_{h}\left(c u_{w} u_{h^{-1} g^{-1}} u_{h^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g h}\left(c u_{w} u_{h^{-1} g^{-1}} u_{h^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g h}\left(c u_{w} u_{h^{-1} g^{-1}}\right) \alpha_{g h}\left(u_{h^{-1} g^{-1}} u_{h^{-1}}\right) u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g h}\left(c u_{w} u_{h^{-1} g^{-1}}\right) u_{g} u_{g h} u_{g h w} \# g h w \\
& \quad=a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h} \alpha_{g h}\left(c u_{w} u_{h^{-1} g^{-1}}\right) u_{g h w} \# g h w \\
& \quad=\left(a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h} \# g h\right)\left(c u_{w} \# w\right) \\
& \quad=\left(\left(a u_{g} \# g\right)\left(b u_{h} \# h\right)\right)\left(c u_{w} \# w\right) .
\end{aligned}
$$

Remark 2.42. The universal property of $K_{\text {par }}(G)$ and the map π_{0} given in (III) of Lemma 2.41 endow $A \rtimes_{\alpha} G$ with a structure of a $K_{p a r}(G)$-bimodule such that

$$
[g] \cdot a u_{h} \# h=\left(u_{g} \# g\right)\left(a u_{h} \# h\right)=\alpha_{g}\left(a u_{h} u_{g^{-1}}\right) u_{g h} \# g h,
$$

and

$$
a u_{h} \# h \cdot[g]=\left(a u_{h} \# h\right)\left(u_{g} \# g\right)=a \alpha_{h}\left(u_{g} u_{h^{-1}}\right) u_{h g} \# h g=a u_{h} u_{h g} \# h g .
$$

Since $A \rtimes_{\alpha} G$ is associative we have that $\left([g] \cdot a u_{h} \# h\right) \cdot[s]=[g] \cdot\left(a u_{h} \# h \cdot[s]\right)$.
Definition 2.43. Let A be an algebra on which the group G acts partially. Define the canonical inclusion $\phi_{0}: A \rightarrow A \rtimes_{\alpha} G$ by $\phi_{0}(a)=a u_{1_{G}} \# 1_{G}=a \# 1_{G}$.
Remark 2.44. Notice that $A=A u_{1_{G}}$, then $u_{1_{G}}=1_{A}$ the unity of A. It is easy to see that ϕ_{0} is a monomorphism of algebras. Indeed,

$$
\phi_{0}(a) \phi_{0}(b)=\left(a \# 1_{G}\right)\left(b \# 1_{G}\right)=a b \# 1_{G}=\phi_{0}(a b),
$$

and $\phi_{0}(a)=a u_{1_{G}} \# 1_{G}=0 \# 1_{G}$ if, and only if, $a u_{1_{G}}=0$ but $u_{1_{G}}=1_{A}$ then $a=0$.
Definition 2.45. Given a K-vector space V and a partial action α of a group G on an algebra A, a pair of maps $\left(\phi_{V}, \pi_{V}\right)$ is said to be a covariant pair if $\phi_{V}: A \rightarrow$ $\operatorname{End}_{K}(V)$ is a representation and $\pi_{V}: G \rightarrow E n d_{K}(V)$ is a partial representation such that:

$$
\phi_{V}\left(\alpha_{g}\left(a u_{g^{-1}}\right)\right)=\pi_{V}(g) \phi_{V}(a) \pi_{V}\left(g^{-1}\right) .
$$

Definition 2.46. Given two covariant pairs $\left(\phi_{V}, \pi_{V}\right)$ and $\left(\phi_{W}, \pi_{W}\right)$, a morphism between covariant pairs $f:\left(\phi_{V}, \pi_{V}\right) \rightarrow\left(\phi_{W}, \pi_{W}\right)$ is a linear map $f: V \rightarrow W$ such that $f \circ \pi_{V}(g)=\pi_{W}(g) \circ f$ and $f \circ \phi_{V}(a)=\phi_{W}(a) \circ f \forall g \in G$ and $\forall a \in A$.

We denote by $\operatorname{CovPair}(A, G)$ the category of covariant pairs $\left(\phi_{V}, \pi_{V}\right)$.
Remark 2.47. Observe that if $\left(\phi_{V}, \pi_{V}\right)$ a covariant pair then

$$
\phi_{V}\left(u_{g}\right)=\phi_{V}\left(\alpha_{g}\left(1_{A} u_{g^{-1}}\right)\right)=\pi_{V}(g) \phi_{V}\left(1_{A}\right) \pi_{V}\left(g^{-1}\right)=\pi_{V}(g) \pi_{V}\left(g^{-1}\right) .
$$

The partial smash product universal property is given by the following result.

Theorem 2.48. Let α be an unital partial action of a group G on an algebra A, V a K-vector space and $\left(\phi_{V}, \pi_{V}\right)$ a covariant pair related to these data. Then there exists a unique algebra morphism $\phi: A \rtimes_{\alpha} G \rightarrow \operatorname{End}_{K}(V)$ such that the diagram:

is commutative.
Proof. Define $\phi: A \rtimes_{\alpha} G \rightarrow \operatorname{End}_{K}(V)$ by $\phi\left(a u_{g} \# g\right)=\phi_{V}(a) \pi_{V}(g)$. Notice that ϕ is well-defined. Indeed, for $a, b \in A$ and $g \in G$ such that $a u_{g}=b u_{g}$, by Remark 2.47 we have that

$$
\begin{aligned}
\phi\left(a u_{g} \# g\right) & =\phi_{V}(a) \pi_{V}(g) \\
& =\phi_{V}(a) \pi_{V}(g) \pi_{V}\left(g^{-1}\right) \pi_{V}(g) \\
& =\phi_{V}(a) \phi_{V}\left(u_{g}\right) \pi_{V}(g) \\
& =\phi_{V}\left(a u_{g}\right) \pi_{V}(g) \\
& =\phi_{V}\left(b u_{g}\right) \pi_{V}(g) \\
& =\phi_{V}(b) \phi_{V}\left(u_{g}\right) \pi_{V}(g) \\
& =\phi_{V}(b) \pi_{V}(g) \pi_{V}\left(g^{-1}\right) \pi_{V}(g) \\
& =\phi_{V}(b) \pi_{V}(g) \\
& =\phi\left(b u_{g} \# g\right) .
\end{aligned}
$$

Now we will prove that ϕ is an algebra morphism. Let $a, b \in A$ and $g, h \in G$, then by Remark 2.47

$$
\begin{aligned}
\phi\left(\left(a u_{g} \# g\right)\left(b u_{h} \# h\right)\right) & =\phi\left(a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h} \# g h\right) \\
& =\phi_{V}\left(a \alpha_{g}\left(b u_{h} u_{g^{-1}}\right) u_{g h}\right) \pi_{V}(g h) \\
& =\phi_{V}(a) \phi_{V}\left(\alpha_{g}\left(b u_{h} u_{g^{-1}}\right) \alpha_{g}\left(u_{h} u_{g^{-1}}\right)\right) \pi_{V}(g h) \\
& =\phi_{V}(a) \phi_{V}\left(\alpha_{g}\left(b u_{h} u_{g^{-1}}\right)\right) \pi_{V}(g h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(b u_{h}\right) \pi_{V}\left(g^{-1}\right) \pi_{V}(g h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(b u_{h}\right) \pi_{V}\left(g^{-1}\right) \pi_{V}(g) \pi_{V}(h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(b u_{h}\right) \phi_{V}\left(u_{g^{-1}}\right) \pi_{V}(h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(b u_{h} u_{g^{-1}}\right) \pi_{V}(h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(u_{g^{-1}} b u_{h}\right) \pi_{V}(h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi_{V}\left(u_{g^{-1}}\right) \phi_{V}\left(b u_{h}\right) \pi_{V}(h) \\
& =\phi_{V}(a) \pi_{V}(g) \phi\left(b u_{h} \# h\right) \\
& =\phi\left(a u_{g} \# g\right) \phi\left(b u_{h} \# h\right) .
\end{aligned}
$$

It only remains to show that the above diagram commutes. For each $g \in G$ we have

$$
\begin{aligned}
\phi \pi_{0}(g) & =\phi\left(u_{g} \# g\right) \\
& =\phi_{V}\left(u_{g}\right) \pi_{V}(g) \\
& =\pi_{V}(g) \pi_{V}\left(g^{-1}\right) \pi_{V}(g) \\
& =\pi_{V}(g),
\end{aligned}
$$

and for $a \in A$,

$$
\begin{aligned}
\phi \phi_{0}(a) & =\phi\left(a u_{1_{G}} \# 1_{G}\right) \\
& =\phi_{V}(a) \pi_{V}\left(1_{G}\right) \\
& =\phi_{V}(a) .
\end{aligned}
$$

Then the diagram commutes. Finally to prove that ϕ is unique, notice that if there exists another ϕ^{\prime} with the same proprieties, we have that for any $g \in G$ and $a \in A$,

$$
\begin{aligned}
& \phi\left(u_{g} \# g\right)=\phi \pi_{0}(g)=\phi^{\prime} \pi_{0}(g)=\phi^{\prime}\left(u_{g} \# g\right) \\
& \phi\left(a \# 1_{G}\right)=\phi \phi_{0}(a)=\phi^{\prime} \phi_{0}(a)=\phi^{\prime}\left(a \# 1_{G}\right)
\end{aligned}
$$

thus $\phi\left(a \# 1_{G}\right) \phi\left(u_{g} \# g\right)=\phi^{\prime}\left(a \# 1_{G}\right) \phi^{\prime}\left(u_{g} \# g\right)$, and then $\phi\left(a u_{g} \# g\right)=\phi^{\prime}\left(a u_{g} \# g\right)$.

We can generalize the last theorem. Let A be and algebra on which the group G acts partially and S be a monoid, if we have $\phi_{S}: A \rightarrow S$ a representation and $\pi_{S}: G \rightarrow S$ a partial representation such that $\phi_{S}\left(\alpha_{g}\left(a u_{g^{-1}}\right)\right)=\pi_{S}(g) \phi_{S}(a) \pi_{V}\left(g^{-1}\right)$. Then there exist a unique algebra morphism $\phi: A \rtimes_{\alpha} G \rightarrow S$ such that the diagram:

is commutative. The proof is analogous to that of the previous theorem.
Proposition 2.49. Let A be an algebra on which the group G acts partially. Then $\operatorname{Rep} A \rtimes_{\alpha} G$ is isomorphic to $\operatorname{CovPair}(A, G)$, the category of covariant pairs.

Proof. Define the functor $F: \operatorname{CovPair}(A, G) \rightarrow \operatorname{Rep} A \rtimes_{\alpha} G$ as follows: for a covariant pair $\left(\phi_{V}, \pi_{V}\right), F\left(\phi_{V}, \pi_{V}\right)=\Phi^{V}$ where Φ^{V} is the representation obtained using Theorem 2.48. If we have a morphism between covariant pairs $f:\left(\phi_{V}, \pi_{V}\right) \rightarrow\left(\phi_{W}, \pi_{W}\right)$, where V and W are K-vector spaces, then f defines a morphism between the representations Φ^{V} and Φ^{W} obtained using Theorem 2.48 for (ϕ_{V}, π_{V}) and (ϕ_{W}, π_{W})
respectively. Indeed, as f is a morphism between covariant pairs we have that, for any $g \in G$ and $a \in A$:

$$
f \circ \pi_{V}(g)=\pi_{W}(g) \circ f \text { and } f \circ \phi_{V}(a)=\phi_{W}(a) \circ f,
$$

then by Theorem 2.48

$$
f \circ \Phi^{V}\left(\pi_{0}(g)\right)=\Phi^{W}\left(\pi_{0}(g)\right) \circ f \text { and } f \circ \Phi^{V}\left(\phi_{0}(a)\right)=\Phi^{W}\left(\phi_{0}(a)\right) \circ f,
$$

thus evaluating $\pi_{0}(g)=u_{g} \# g$ and $\phi_{0}(a)=a u_{1_{G}} \# 1_{G}$

$$
f \circ \Phi^{V}\left(u_{g} \# g\right)=\Phi^{W}\left(u_{g} \# g\right) \circ f
$$

and

$$
f \circ \Phi^{V}\left(a u_{1_{G}} \# 1_{G}\right)=\Phi^{W}\left(a u_{1_{G}} \# 1_{G}\right) \circ f
$$

then we have that:

$$
\begin{aligned}
f \circ \Phi^{V}\left(a u_{g} \# g\right) & =f \circ \Phi^{V}\left(\left(u_{g} \# g\right)\left(a u_{1_{G}} \# 1_{G}\right)\right) \\
& =f \circ \Phi^{V}\left(u_{g} \# g\right) \circ \Phi^{V}\left(a u_{1_{G}} \# 1_{G}\right) \\
& =\Phi^{W}\left(u_{g} \# g\right) \circ f \circ \Phi^{V}\left(a u_{1_{G}} \# 1_{G}\right) \\
& =\Phi^{W}\left(u_{g} \# g\right) \circ \Phi^{W}\left(a u_{1_{G}} \# 1_{G}\right) \circ f \\
& =\Phi^{W}\left(a u_{g} \# g\right) \circ f .
\end{aligned}
$$

Thus f is a morphism between the representations Φ^{V} and Φ^{W}, then set $F(f)=f$.
Now define the functor $G: \operatorname{Rep} A \rtimes_{\alpha} G \rightarrow \operatorname{CovPair}(A, G)$ as follows: for a representation $\Phi: \operatorname{Rep} A \rtimes_{\alpha} G \rightarrow \operatorname{End}_{K}(V)$ in $\operatorname{Rep} A \rtimes_{\alpha} G$, define $\phi_{V_{\Phi}}=\Phi \circ \phi_{0}$ and $\pi_{V_{\Phi}}=\Phi \circ \pi_{0}, \phi_{V_{\Phi}}, \pi_{V_{\Phi}}$ is a covariant pair, then make $F(\Phi)=\left(\phi_{V_{\Phi}}, \pi_{V_{\Phi}}\right)$. Indeed,

$$
\begin{aligned}
\phi_{V_{\Phi}}\left(\alpha_{g}\left(a u_{g}^{-1}\right)\right) & =\Phi \circ \phi_{0}\left(\alpha_{g}\left(a u_{g}^{-1}\right)\right) \\
& =\Phi\left(\alpha_{g}\left(a u_{g}^{-1}\right) u_{1_{G}} \# 1_{G}\right) \\
& =\Phi\left(\left(u_{g} \# g\right)\left(a u_{1_{G}} u_{g^{-1}} \# g^{-1}\right)\right) \\
& =\Phi\left(u_{g} \# g\right) \Phi\left(\left(a u_{1_{G}} \# 1_{G}\right)\left(u_{g^{-1}} \# g^{-1}\right)\right) \\
& =\Phi\left(u_{g} \# g\right) \Phi\left(a u_{1_{G}} \# 1_{G}\right) \Phi\left(u_{g^{-1}} \# g^{-1}\right) \\
& =\left(\Phi \circ \pi_{0}(g)\right)\left(\Phi \circ \phi_{0}(a)\right)\left(\Phi \circ \pi_{0}\left(g^{-1}\right)\right) \\
& =\pi_{V_{\Phi}}(g) \phi_{V_{\Phi}}(a) \pi_{V_{\Phi}}\left(g^{-1}\right) .
\end{aligned}
$$

Let $\Phi: A \rtimes_{\alpha} G \rightarrow V$ and $\Phi^{\prime}: A \rtimes_{\alpha} G \rightarrow W$ be representations of $A \rtimes_{\alpha} G$, and a morphism between Φ and Φ^{\prime} defined by $f: V \rightarrow W$. Notice that f defines a
morphism of covariant pairs between $\left(\Phi \circ \phi_{0}, \Phi \circ \pi_{0}\right)$ and ($\Phi^{\prime} \circ \phi_{0}, \Phi^{\prime} \circ \pi_{0}$). Indeed, as f defines a morphism between Φ and Φ^{\prime}, we have that $f \circ \Phi\left(a u_{g} \# g\right)=\Phi^{\prime}\left(a u_{g} \# g\right) \circ f$ for all $a \in A$ and $g \in G$. Then in particular we have

$$
f \circ \Phi\left(u_{g} \# g\right)=\Phi^{\prime}\left(u_{g} \# g\right) \circ f \Rightarrow f \circ\left(\Phi \circ \pi_{0}(g)\right)=\left(\Phi^{\prime} \circ \pi_{0}(g)\right) \circ f
$$

and

$$
f \circ \Phi\left(a u_{1_{G}} \# 1_{G}\right)=\Phi^{\prime}\left(a u_{1_{G}} \# 1_{G}\right) \circ f \Rightarrow f \circ\left(\Phi \circ \phi_{0}(a)\right)=\left(\Phi^{\prime} \circ \phi_{0}(a)\right) \circ f .
$$

Then f defines a morphism between covariant pairs, thus define $G(f)=f$. Now it is easy to see that $F G=I_{\operatorname{Rep} A \rtimes_{\alpha} G}$ and $G F=I_{\operatorname{CovPar}(A, G)}$, where $I_{\operatorname{Rep} A \rtimes_{\alpha} G}$ is the identity functor of $\operatorname{Rep} A \rtimes_{\alpha} G$ and $I_{\operatorname{CovPar}(A, G)}$ is the identity functor of $\operatorname{CovPar}(A, G)$.

Notice that the algebra $K_{\text {par }}(G)$ has a natural G-grading (see Remark 2.51). This will lead us to show that for any group G the partial group algebra $K_{p a r}(G)$ is isomorphic to a partial smash product, a fact established in [6, Theorem 6.9]. First let us recall what is a G-graded algebra.

Definition 2.50. A G-graded algebra is an algebra with a decomposition

$$
A=\bigoplus_{g \in G} A_{g}
$$

where each A_{g} is a subspace of A such that $A_{h} A_{g} \subseteq A_{h g}$, for all $g, h \in G$.
Remark 2.51. $K_{\text {par }}(G)$ has a natural G-grading:

$$
K_{p a r}(G)=\bigoplus_{g \in G} B_{g},
$$

where each subspace B_{g} is generated by elements of the form $\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{n}\right]$ such that $g=h_{1} h_{2} \ldots h_{n}$, that is:

$$
B_{g}:=\left\langle\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{n}\right] \mid g=h_{1} h_{2} \ldots h_{n}\right\rangle .
$$

Then for all $x \in B_{g}$ and $y \in B_{h}, x y \in B_{g h}$, and thus $B_{g} B_{h} \subseteq B_{g h}$.
In order to prove that the partial group algebra $K_{\text {par }}(G)$ is isomorphic to a partial smash product for any group G we are going to recall that for each $g \in G$ we denote $e_{g}=[g]\left[g^{-1}\right] \in K_{\text {par }}(G)$. Now define the subalgebra

$$
B:=\left\langle e_{g} \mid g \in G\right\rangle \subseteq K_{\operatorname{par}}(G) .
$$

Remark 2.52.

- B corresponds to the uniform subalgebra $B_{1_{G}}$ coming from the natural grading of $K_{p a r}(G)$. Indeed, if $s=\left[h_{1}\right] \ldots\left[h_{n}\right] \in \mathcal{S}(G)$ is such that $h_{1}, \ldots, h_{n}=1_{G}$, then by Proposition $2.20 s=e_{r_{1}} \ldots e_{r_{m}}[t]$, thus using the map η defined in Remark 2.21 we have $\eta(s)=t=1_{G}$. Therefore $s=e_{r_{1}} \ldots e_{r_{m}}$.
- B is a commutative algebra generated by idempotents.

Theorem 2.53. Given a group G, there is a partial action β of G on the above defined commutative algebra B, such that $K_{p a r}(G) \cong B \rtimes_{\beta} G$.

Proof. We have to define a partial action β of G on B. So define the domains $D_{g}=e_{g} B$ and the morphism $\beta_{g}: D_{g^{-1}} \rightarrow D_{g}$ by:

$$
\begin{aligned}
\beta_{g}\left(e_{g^{-1}} e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}}\right) & =[g] e_{g^{-1}} e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}}\left[g^{-1}\right] \\
& =1 e_{g h_{1}} e_{g h_{2}} \ldots e_{g h_{n}}[g]\left[g^{-1}\right] \\
& =e_{g} e_{g h_{1}} e_{g h_{2}} \ldots e_{g h_{n}} .
\end{aligned}
$$

Then β is a partial action. Indeed, it is clear that $D_{1_{G}}=B$ and $\beta_{1_{G}}=i d_{B}$, thus β satisfies the condition (I) of Definition 2.28. Recall that since β_{g} and β_{h} are partial functions the domain of $\beta_{g} \beta_{h}$ is the set $\beta_{h^{-1}}\left(D_{g^{-1}} \cap D_{h}\right)$. Notice that for any $g \in G$, the ideal $D_{g}=e_{g} B$ is unital with unit e_{g}, so:

$$
\begin{aligned}
\beta_{h^{-1}}\left(D_{g^{-1}} \cap D_{h}\right) & =\beta_{h^{-1}}\left(e_{g^{-1}} e_{h} B\right) \\
& =\beta_{h^{-1}}\left(e_{g^{-1}} e_{h}\right) \beta_{h^{-1}}\left(e_{h} B\right) \\
& =e_{(g h)^{-1}} \beta_{h^{-1}}\left(e_{h} B\right)=e_{(g h)^{-1}} \beta_{h^{-1}}\left(D_{h}\right) \\
& =e_{(g h)^{-1}} D_{h^{-1}}=D_{(g h)^{-1}} \cap D_{h^{-1}} \subseteq D_{(g h)^{-1}}=\operatorname{dom}\left(\beta_{g h}\right) .
\end{aligned}
$$

Then $\operatorname{dom}\left(\beta_{g} \beta_{h}\right) \subseteq \operatorname{dom}\left(\beta_{g h}\right)$, thus:

$$
\begin{aligned}
\beta_{g} \beta_{h}\left(e_{(g h)^{-1}} e_{h^{-1}} e_{w_{1}} e_{w_{2}} \ldots e_{w_{n}}\right) & =\beta_{g}\left(e_{h} e_{g^{-1}} e_{h w_{1}} e_{h w_{2}} \ldots e_{h w_{n}}\right) \\
& =e_{g} e_{g h} e_{g h w_{1}} e_{g h w_{2}} \ldots e_{g h w_{n}} \\
& =e_{g h} e_{(g h) h^{-1}} e_{g h w_{1}} e_{g h w_{2}} \ldots e_{g h w_{n}} \\
& =\beta_{g h}\left(e_{(g h)^{-1}} e_{h^{-1}} e_{w_{1}} e_{w_{2}} \ldots e_{w_{n}}\right) .
\end{aligned}
$$

Then $\beta_{g} \beta_{h} \subseteq \beta_{g h}$, and by Remark 2.29β is a partial action of G on B.
Notice that the map $\pi_{0}: G \rightarrow B \rtimes_{\beta} G$ given by $\pi_{0}(g)=e_{g} \# g$ is a partial representation of G in $B \rtimes_{\beta} G$. Indeed, $\pi_{0}(e)=\left[1_{G}\right] \# 1_{G}$, now observe that for all
$g, h \in G:$

$$
\begin{aligned}
\pi_{0}\left(g^{-1}\right) \pi_{0}(g) \pi_{0}(h) & =\left(e_{g^{-1}} \# g^{-1}\right)\left(e_{g} \# g\right)\left(e_{h} \# h\right) \\
& =\left(\beta_{g^{-1}}\left(e_{g}\right) \# 1_{G}\right)\left(e_{h} \# h\right)=\left(e_{g}^{-1} \# 1_{G}\right)\left(e_{h} \# h\right) \\
& =e_{g^{-1}} e_{h} \# h \\
& \left.\left.=\beta_{g^{-1}}\left(e_{g}\right) e_{g h}\right) e_{h} \# h\right) \\
& =\left(e_{g^{-1}} \# g^{-1}\right)\left(e_{g h} \# g h\right) \\
& =\pi_{0}\left(g^{-1}\right) \pi_{0}(g h) .
\end{aligned}
$$

Thus by the universal property of $K_{p a r}(G)$ there exists an unique algebra morphism

$$
\hat{\pi}: K_{p a r}(G) \rightarrow B \rtimes_{\beta} G,
$$

such that $\hat{\pi}([g])=\pi_{0}(g)=e_{g} \# g$.
Observe that $\left(e_{g} \# g\right)\left(e_{h} \# h\right)=\beta_{g}\left(e_{g^{-1}} e_{h}\right) \# g h=e_{g} e_{g h} \# g h$. Then

$$
\hat{\pi}\left(\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]\right)=e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{n}} \# g_{1} g_{2} \ldots g_{n} .
$$

The canonical inclusion of B into $K_{\text {par }}(G), \phi_{B}(a)=a\left[1_{G}\right]$, and the canonical partial representation $\pi_{B}(g)=[g]$ form a covariant pair relative to the algebra $K_{p a r}(G)$. Indeed,

$$
\begin{aligned}
\phi_{B}\left(\beta_{g}\left(a e_{g^{-1}}\right)\right) & =\phi_{B}\left(a_{g} e_{g}\right)=a_{g} e_{g}\left[1_{G}\right] \\
& =a_{g}[g]\left[g^{-1}\right]\left[1_{G}\right]=[g] a\left[1_{G}\right]\left[g^{-1}\right] \\
& =\pi_{B}(g) \phi(a) \pi_{B}\left(g^{-1}\right),
\end{aligned}
$$

where $a=e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}}$ and $a_{g}=e_{g h_{1}} e_{g h_{2}} \ldots e_{g h_{n}}$.
By Theorem 2.48 there is an unique algebra morphism $\varphi: B \rtimes_{\beta} G \rightarrow K_{p a r}(G)$ such that $\pi_{B}=\varphi \circ \pi_{0}$ and $\phi_{B}=\varphi \circ \phi_{0}$. Then for $g \in G$ and $a \in B, \pi_{B}(g)=\varphi \circ \pi_{0}(g)$ and $\phi_{B}(a)=\varphi \circ \phi_{0}(a)$, that means $[g]=\varphi\left(e_{g} \# g\right)$ and $a\left[1_{G}\right]=\varphi\left(a\left[1_{G}\right] \# 1_{G}\right)$, thus $\varphi\left(a e_{g} \# g\right)=a[g]$.

Finally observe that $\hat{\pi}$ and φ are mutually inverse. Indeed,

$$
\begin{aligned}
\varphi \circ \hat{\pi}\left(\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]\right) & =\varphi\left(\left(e_{g_{1}} \# g_{1}\right)\left(e_{g_{2}} \# g_{2}\right) \ldots\left(e_{g_{n}} \# g_{n}\right)\right) \\
& =\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right],
\end{aligned}
$$

and for $a=e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}} \in B$

$$
\begin{aligned}
\hat{\pi} \circ \varphi\left(a e_{g} \# g\right) & =\hat{\pi}\left([g]\left[g^{-1}\right]\left[h_{1}\right]\left[h_{1}^{-1}\right]\left[h_{2}\right]\left[h_{2}^{-1}\right] \ldots\left[h_{n}\right]\left[h_{n}^{-1}\right][g]\right) \\
& =\left(e_{g} \# g\right)\left(e_{g^{-1}} \# g^{-1}\right)\left(e_{h_{1}} \# h_{1}\right)\left(e_{h_{1}^{-1}} \# h_{1}^{-1}\right) \ldots\left(e_{h_{n}} \# h_{n}\right)\left(e_{h_{n}^{-1}} \# h_{n}^{-1}\right)\left(e_{g} \# g\right) \\
& =\left(e_{g} \# 1_{G}\right)\left(e_{h_{1}} \# 1_{G}\right) \ldots\left(e_{h_{n}} \# 1_{G}\right)\left(e_{g} \# g\right)=\left(e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}} \# 1_{G}\right)\left(e_{g} \# g\right) \\
& =\left(e_{h_{1}} e_{h_{2}} \ldots e_{h_{n}} e_{g} \# g\right) \\
& =a e_{g} \# g .
\end{aligned}
$$

Then $\hat{\pi}$ and φ are inverse to each other, thus $K_{p a r}(G) \cong B \rtimes_{\beta} G$.
Theorem 2.54. Let B be the K-algebra defined above. Then there is a partial representation $\pi: G \rightarrow \operatorname{End}_{K}(B)$ defined by $\pi(g)(b)=[g] b\left[g^{-1}\right]$ for any $g \in G$ and $b \in B$.

Proof. First observe that $\pi\left(1_{G}\right)(b)=\left[1_{G}\right] b\left[1_{G}\right]=x$ for all $b \in B$, then $\pi(e)=i d_{B}$, thus π satisfies the first condition of Definition 2.1, for the other two conditions notice that for all $s, t \in G$:

$$
\begin{aligned}
\pi(s) \pi(t) \pi\left(t^{-1}\right)(b) & =[s][t]\left[t^{-1}\right] b[t]\left[t^{-1}\right]\left[s^{-1}\right] \\
& =[s t]\left[t^{-1}\right] b[t]\left[(s t)^{-1}\right] \\
& =\pi(s t)\left(\left[t^{-1}\right] b[t]\right) \\
& =\pi(s t) \pi\left(t^{-1}\right)(b),
\end{aligned}
$$

and analogously $\pi\left(s^{-1}\right) \pi(s) \pi(t)=\pi\left(s^{-1}\right) \pi(s t)$.
Corollary 2.55. B has a structure of a left $K_{p a r}(G)$-module induced by

$$
\phi_{B}: K_{p a r}(G) \rightarrow \operatorname{End}_{K}(B),
$$

such that $\phi_{B}([g])(x)=[g] x\left[g^{-1}\right]$.
Proof. Observe that ϕ_{B} is the algebra morphism obtained from applying the universal property of $K_{\text {par }}(G)$ (Proposition 2.48) to the partial representation $\pi: G \rightarrow$ $\operatorname{End}_{K}(B)$ defined in Theorem 2.54.

2.3 Spectral sequences

In this section we will introduce some definitions and results from spectral sequence theory. The final objective of this sections is to prove Theorem 2.106, which will be used to obtain Theorem 4.4, which shows that there exists a Grothendieck spectral sequence relating cohomology of partial smash products with partial group cohomology and algebra cohomology. The theory in this section is taken from [3], some of the proofs have been given differently.

Definition 2.56. Let R be any ring. A complex (\mathbf{C}, d) for R is an indexed family $\mathbf{C}=\left\{C_{i}\right\}_{i \in \mathbb{Z}}$ of R-modules together with an indexed family of module morphisms $d=\left\{d_{i}: C_{i} \rightarrow C_{i-1}\right\}_{i \in \mathbb{Z}}$ such that $d_{i-1} d_{i}=0$.

$$
\cdots \longrightarrow C_{p+2} \xrightarrow{d_{p+2}} C_{p+1} \xrightarrow{d_{p+1}} C_{p} \xrightarrow{d_{p}} C_{p-1} \xrightarrow{d_{p-1}} C_{p-2} \longrightarrow \cdots .
$$

Given two complexes (\mathbf{C}, d) and $\left(\mathbf{C}^{\prime}, d^{\prime}\right)$ a (chain) homomorphism of \mathbf{C} into \mathbf{C}^{\prime} is an indexed family of module morphisms $\alpha=\left\{\alpha_{i}: C_{i} \rightarrow C_{i}^{\prime}\right\}_{i \in \mathbb{Z}}$ such that the next diagram commutes

for any $i \in \mathbb{Z}$.
Definition 2.57. A complex (\mathbf{K}, l) is a subcomplex of a complex (\mathbf{C}, d) if for all $n \in \mathbb{Z}$ we have that:
(i) $K_{n} \subseteq C_{n}$;
(ii) The map l_{n} is the restriction of d_{n} to K_{n}, i.e. $l_{n}=\left.d_{n}\right|_{K_{n}}$.

Definition 2.58. Given a subcomplex (\mathbf{K}, l) of a complex (\mathbf{C}, d), the factor complex \mathbf{C} / \mathbf{K} is the family of factor modules $\left\{C_{i} / K_{i}\right\}_{i \in \mathbb{Z}}$ with the family of boundary maps $\left\{\bar{d}_{i}: C_{i} / K_{i} \rightarrow C_{i-1} / K_{i-1}\right\}$ induced by d.
Definition 2.59. A graded module is an indexed family

$$
M=\left(M_{p \in \mathbb{Z}}\right)
$$

of R-modules. Graded modules M are often denoted by M_{\bullet}.

Definition 2.60. A bigraded module is a doubly indexed family

$$
M=\left(M_{(p, q) \in \mathbb{Z} \times \mathbb{Z}}\right)
$$

of R-modules. Bigraded modules M are often denoted by $M .$. .
Definition 2.61. Let M and N be bigraded modules, and let $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. A bigraded map of bidegree (a, b), denoted by $f: M \rightarrow N$, is a family of module homomorphisms

$$
f=\left(f_{p, q}: M_{p, q} \rightarrow N_{p+a, q+b}\right)_{(p, q) \in \mathbb{Z} \times \mathbb{Z}} .
$$

The bidegree of f is (a, b), and we denote it by $\operatorname{deg}(f)=(a, b)$.

Given bigraded modules A, B, C and two bigraded maps $f: A \rightarrow B$ and $g: B \rightarrow$ C, the exactness of $A \xrightarrow{f} B \xrightarrow{g} C$ means that $\operatorname{im} f=\operatorname{ker} g$; i.e. if $\operatorname{deg}(f)=(a, b)$ then $\operatorname{im} f_{p-a, q-b}=\operatorname{ker} g_{p, q}$ for all $p, q \in \mathbb{Z}$.

Definition 2.62. A bicomplex is an ordered triple (M, d^{\prime}, $d^{\prime \prime}$), where $M=\left(M_{p, q}\right)$ is a bigraded module, $d^{\prime}, d^{\prime \prime}: M \rightarrow M$ are differentials of bidegree $(-1,0)$ and $(0,-1)$, respectively (so that d^{\prime}, $d^{\prime \prime}$ are morphisms of bigraded modules such that $d^{\prime} d^{\prime}=0$ and $d^{\prime \prime} d^{\prime \prime}=0$), and

$$
d_{p, q-1}^{\prime} d_{p, q}^{\prime \prime}+d_{p-1, q}^{\prime \prime} d_{p, q}^{\prime}=0 .
$$

Definition 2.63. If M is a bicomplex, then its total complex , denoted by $\operatorname{Tot}(M)$, is the complex with nth term:

$$
\operatorname{Tot}(M)_{n}=\bigoplus_{p+q=n} M_{p, q},
$$

and with differentials $D_{n}: \operatorname{Tot}(M)_{n} \rightarrow \operatorname{Tot}(M)_{n-1}$ given by

$$
D_{n}=\sum_{p+q=n}\left(d_{p, q}^{\prime}+d_{p, q}^{\prime \prime}\right) .
$$

We can see a bigraded module $M_{\bullet \bullet}$ as the integer pairs in the Cartesian plane where each module $M_{(p, q)} \in M_{\bullet \bullet}$ is represented by the point (p, q), in that sense $\operatorname{Tot}(M)_{n}$ is the set of the integer pairs in the line defined by $y=-x+n$.

Lemma 2.64. If M is a bicomplex, then $(\operatorname{Tot}(M), D)$ is a complex.
Proof. Observe that each direct summand of $\operatorname{Tot}(M)_{n}$ is a module $M_{p, q}$ such that $p+q=n$, and note that $\operatorname{im} d_{p, q}^{\prime} \subseteq M_{p-1, q}$ and $\operatorname{im} d_{p, q}^{\prime \prime} \subseteq M_{p, q-1}$. In both cases $M_{p-1, q}$

Figure 2.1: Bicomplex

Figure 2.2: Total complex
and $M_{p, q-1}$ are summands of $\operatorname{Tot}(M)_{n-1}$ and therefore im $D_{n} \subseteq \operatorname{Tot}(M)_{n-1}$. We show that D is a differential.

$$
\begin{aligned}
D D & =\sum\left(d^{\prime}+d^{\prime \prime}\right)\left(d^{\prime}+d^{\prime \prime}\right) \\
& =\sum d^{\prime} d^{\prime}+\sum\left(d^{\prime} d^{\prime \prime}+d^{\prime \prime} d^{\prime}\right)+\sum d^{\prime \prime} d^{\prime \prime}=0 .
\end{aligned}
$$

Definition 2.65. A filtration of a module M is a family $\left(M_{p}\right)_{p \in \mathbb{Z}}$ of submodules of M such that

$$
\cdots \subseteq M_{p-1} \subseteq M_{p} \subseteq M_{p+1} \subseteq \cdots .
$$

The factor modules of this filtration are the modules M_{p} / M_{p-1} with $p \in \mathbb{Z}$.
A filtration of a graded module M_{\bullet} is a family $\left(F^{p} M_{\bullet}\right)_{p \in \mathbb{Z}}$ of graded modules such that

$$
\cdots \subseteq F^{p-1} M_{n} \subseteq F^{p} M_{n} \subseteq F^{p+1} M_{n} \subseteq \cdots,
$$

for all $n \in \mathbb{Z}$.
Definition 2.66. A filtration of a complex \mathbf{C} is a family of subcomplexes $\left(F^{p} \mathbf{C}\right)_{p \in \mathbb{Z}}$ of \mathbf{C} such that

$$
\cdots \subseteq F^{p-1} \mathbf{C} \subseteq F^{p} \mathbf{C} \subseteq F^{p+1} \mathbf{C} \subseteq \cdots,
$$

where $F^{p} \mathbf{C} \subseteq F^{p+1} \mathbf{C}$ means that $F^{p} \mathbf{C}$ is a subcomplex of $F^{p+1} \mathbf{C}$.
Limiting the first or the second index of the direct summands of $\operatorname{Tot}(M)$ we obtain the following filtrations.

Definition 2.67. The first filtration of $\operatorname{Tot}(M)$ is given by

$$
\begin{aligned}
\left({ }^{\mathrm{I}} F^{p} \operatorname{Tot}(M)\right)_{n} & =\bigoplus_{i \leq p} M_{i, n-i} \\
& =\cdots \oplus M_{p-2, q+2} \oplus M_{p-1, q+1} \oplus M_{p, q}, \text { where } q=n-p .
\end{aligned}
$$

Clearly, varying p for each fixed n, we have a filtration of $\operatorname{Tot}(M)_{n}$. We denote $\left({ }^{\mathrm{I}} F^{p} \operatorname{Tot}(M)\right)$ by ${ }^{\mathrm{I}} F^{p}$. Let us check that $\left({ }^{\mathrm{I}} F^{p}\right)_{n \geq 0}$ is a subcomplex of $\operatorname{Tot}(M)$ for each fixed $p \in \mathbb{Z}$:

$$
\begin{aligned}
D_{i, n-i} M_{i, n-i}=\left(d_{i, n-i}^{\prime}+d_{i, n-i}^{\prime \prime}\right) M_{i, n-i} & \subseteq d^{\prime} M_{i, n-i}+d^{\prime \prime} M_{i, n-i} \\
& \subseteq M_{i-1, n-i} \oplus M_{i, n-i-1} \\
& \subseteq\left({ }^{\mathrm{I}} F^{p} \operatorname{Tot}(M)\right)_{n-1} .
\end{aligned}
$$

Definition 2.68. The second filtration of $\operatorname{Tot}(M)$ is given by

$$
\begin{aligned}
\left({ }^{\mathrm{II}} F^{p} \operatorname{Tot}(M)\right)_{n} & =\bigoplus_{j \leq p} M_{n-j, j} \\
& =\cdots \oplus M_{q-1, p-2} \oplus M_{q+1, p-1} \oplus M_{q, p}, \text { where } q=n-p .
\end{aligned}
$$

Figure 2.3: First filtration

Figure 2.4: Second filtration

We denote $\left({ }^{\text {II }} F^{p} \operatorname{Tot}(M)\right)$ by ${ }^{\text {II }} F^{p}$. Analogously to $\left({ }^{\mathrm{I}} F^{p}\right)_{n \geq 0}$ we have that $\left({ }^{\text {II }} F^{p}\right)_{n \geq 0}$ is a subcomplex of $\operatorname{Tot}(M)$.

Definition 2.69. An exact couple is a 5-tuple ($D, E, \alpha, \beta, \gamma$), where D and E are bigraded modules, $\alpha: D \rightarrow D, \beta: D \rightarrow E$ and $\gamma: E \rightarrow D$ are bigraded maps, and there is exactness at each vertex: $\operatorname{ker} \alpha=\operatorname{im} \gamma, \operatorname{ker} \beta=\operatorname{im} \alpha$, and $\operatorname{ker} \gamma=\operatorname{im} \beta$.

Proposition 2.70. Each filtration $\left(F^{p} \mathbf{C}\right)_{p \in \mathbb{Z}}$ of a complex \mathbf{C} determines an exact couple

whose bigraded maps have the displayed bidegrees.
Proof. We write for simplicity $F^{p} \mathbf{C}$ as F^{p}. For each fixed p, there is a short exact sequence of complexes,

$$
0 \longrightarrow F^{p-1} \xrightarrow{j^{p-1}} F^{p} \xrightarrow{v^{p}} F^{p} / F^{p-1} \longrightarrow 0
$$

(where j^{p-1} is the inclusion and v^{p} is the natural map) that gives rise to the long exact sequence of homology

$$
\begin{aligned}
\cdots \rightarrow H_{n}\left(F^{p-1}\right) & \xrightarrow{\alpha} H_{n}\left(F^{p}\right) \xrightarrow{\beta} H_{n}\left(F^{p} / F^{p-1}\right) \xrightarrow{\gamma} \\
& H_{n-1}\left(F^{p-1}\right) \xrightarrow{\alpha} H_{n-1}\left(F^{p}\right) \xrightarrow{\beta} H_{n-1}\left(F^{p} / F^{p-1}\right) \rightarrow \cdots,
\end{aligned}
$$

where $\alpha=j_{*}^{p-1}, \beta=v_{*}^{p}$, and $\gamma=\partial$ the connecting homomorphism (for more details see [3, p. 333]). We write $q=n-p$, then we have

$$
\begin{aligned}
\cdots \rightarrow H_{p+q}\left(F^{p-1}\right) & \xrightarrow{\alpha} H_{p+q}\left(F^{p}\right) \xrightarrow{\beta} H_{p+q}\left(F^{p} / F^{p-1}\right) \xrightarrow{\gamma} \\
& H_{p+q-1}\left(F^{p-1}\right) \xrightarrow{\alpha} H_{p+q-1}\left(F^{p}\right) \xrightarrow{\beta} H_{p+q-1}\left(F^{p} / F^{p-1}\right) \rightarrow \cdots .
\end{aligned}
$$

There are two types of homology groups: homology of a subcomplex F^{p} or F^{p-1} and homology of a quotient complex F^{p} / F^{p-1}. Define

$$
D=\left(D_{p, q}\right), \text { where } D_{p, q}=H_{p+q}\left(F^{p}\right), E=\left(E_{p, q}\right), \text { where } E_{p, q}=H_{p+q}\left(F^{p} / F^{p-1}\right) .
$$

With this notation, the long exact sequence is, for fixed q,

$$
\begin{aligned}
& \cdots \rightarrow D_{p-1, q+1} \stackrel{\alpha}{(1,-1)} D_{p, q} \xrightarrow{\beta} \\
& D_{p, q)} \xrightarrow{\gamma} \\
& D_{p-1, q} \xrightarrow{\alpha} D_{p, q-1} \xrightarrow{\beta} E_{p, q-1} \rightarrow \cdots .
\end{aligned}
$$

Therefore, $(D, E, \alpha, \beta, \gamma)$ is an exact couple with the displayed bidegrees.

Notation. It is a universal agreement to write $n=p+q$, and we will use this notation from now on.

Each exact couple determines another exact couple, but first we have to introduce another important notion.

Definition 2.71. A differential bigraded module is an ordered pair (M, d), where M is a bigraded module and $d: M \rightarrow M$ is a bigraded map with $d d=0$. If (M, d) is a differential bigraded module, where d has bidegree (a, b), then its homology $H(M, d)$ is the bigraded module whose (p, q) term is

$$
H(M, d)_{p, q}=\frac{\operatorname{ker} d_{p, q}}{\operatorname{im} d_{p-a, q-b}} .
$$

A bicomplex $\left(M, d^{\prime}, d^{\prime \prime}\right)$ gives rise to two differential bigraded modules, namely, $\left(M, d^{\prime}\right)$ and $\left(M, d^{\prime \prime}\right)$. However, $\left(M, d^{\prime}+d^{\prime \prime}\right)$ is not a differential bigraded module because $d^{\prime}+d^{\prime \prime}: M \rightarrow M$ is not a bigraded map.
Remark 2.72. Let (M, d) be a differential bigraded module. Then for any $(p, q) \in \mathbb{Z} \times \mathbb{Z}$ and $z \in \operatorname{ker} d_{p, q}$ we set cls z as the respective homology class of z.

Proposition 2.73. If $(D, E, \alpha, \beta, \gamma)$ is an exact couple, then $d^{1}=\beta \gamma$ is a differential $d^{1}: E \rightarrow E$, and there is an exact couple $\left(D^{2}, E^{2}, \alpha^{2}, \beta^{2}, \gamma^{2}\right)$, called the derived couple, with $D^{2}=\operatorname{im} \alpha$ and $E^{2}=H\left(E, d^{1}\right)$.

Proof. Let α, β, γ have respective bidegrees $\left(a_{\alpha}, b_{\alpha}\right),\left(a_{\beta}, b_{\beta}\right),\left(a_{\gamma}, b_{\gamma}\right)$. The bigraded $\operatorname{map} d^{1}: E \rightarrow E$, where $d^{1}=\beta \gamma$, makes sense since $\beta: D \rightarrow E$ and $\gamma: E \rightarrow D$. Note that $\gamma \beta=0$, because the original couple is exact, and so d^{1} is a differential: $d^{1} d^{1}=$ $\beta(\gamma \beta) \gamma=0$. Since bidegrees add, the bidegree of d^{1} is $\left(a_{d^{1}}, b_{d^{1}}\right)=\left(a_{\beta}+a_{\gamma}, b_{\beta}+b_{\gamma}\right)$. Define $E^{2}=H\left(E, d^{1}\right)$. Thus $E_{p, q}^{2}=\operatorname{ker} d_{p, q}^{1} / \operatorname{im} d_{p-a_{d^{1}}, q-b_{d^{1}}}^{1}$. Define $D^{2}=\operatorname{im} \alpha \subseteq D$. Thus, $D_{p, q}^{2}=\operatorname{im} \alpha_{p-a_{\alpha}, q-b_{\alpha}} \subseteq D_{p, q}$. We now define the bigraded maps. Define α^{2} : $D^{2} \rightarrow D^{2}$ to be the restriction $\left.\alpha\right|_{D^{2}}$; that is, $\alpha^{2}=\alpha i$, where $i: D^{2} \rightarrow D$ is the inclusion. Since inclusions have bidegree (0,0), α^{2} has bidegree (a_{α}, b_{α}), the same bidegree as that of α. If $x \in D_{p, q}^{2}$, then $x=\alpha u$ (for $u \in D_{p-a_{\alpha}, q-b_{\alpha}}$), and

$$
\alpha_{p, q}^{2}: x=\alpha u \mapsto \alpha x=\alpha \alpha u .
$$

Define $\beta^{2}: D^{2} \rightarrow E^{2}$ as follows. If $y \in D_{p, q}^{2}$, then $y=\alpha v$ (for $v \in D_{p-a_{\alpha}, q-b_{\alpha}}$), and $d^{1} \beta v=\beta(\gamma \beta) v=0$ whence we have that βv is a cycle. Since $v=\alpha^{-1} y$, we set

$$
\beta^{2}(y)=\operatorname{cls}\left(\beta \alpha^{-1} y\right)
$$

We have to prove that β^{2} does not depend on the choice v of the preimage $\alpha^{-1} y$, so we must show that if $y=\alpha v^{\prime}$, then $\operatorname{cls}\left(\beta v^{\prime}\right)=\operatorname{cls}(\beta v)$. Now $v^{\prime}-v \in \operatorname{ker} \alpha=\operatorname{im} \gamma$, so that $v^{\prime}-v=\gamma w$ for some $w \in E$, and hence $\operatorname{cls}\left(\beta\left(v^{\prime}-v\right)\right)=\operatorname{cls}(\beta \gamma w)=\operatorname{cls}\left(d^{1} w\right)=\operatorname{cls}(0)$, then $\beta\left(v^{\prime}-v\right)$ is a boundary. Note that β^{2} has bidegree $\left(a_{\beta}-a_{\alpha}, b_{\beta}-b_{\alpha}\right)$. We now define $\gamma^{2}: E^{2} \rightarrow D^{2}$. Let $\operatorname{cls}(z) \in E_{p, q}^{2}$, so that $z \in E_{p, q}$ and $d^{1} z=\beta \gamma z=0$. Hence, $\gamma z \in \operatorname{ker} \beta=\operatorname{im} \alpha$, thus $\gamma z \in \operatorname{im} \alpha=D^{2}$; displaying subscripts, $\gamma_{p, q} z \in D_{p+a_{\gamma}, q+b_{\gamma}}$. Define γ^{2} by

$$
\gamma^{2}: \operatorname{cls}(z) \mapsto \gamma z .
$$

We must to show that γ^{2} does not depend on the choice of cycle. Indeed, if $w \in$ $\operatorname{im} d_{p-a_{d^{1}}, q-b_{d 1}}^{1}$ is a boundary, then $w=d^{1} x=\beta \gamma x$, for some $x \in E_{p-a_{d^{1}}, q-b_{d^{1}}}$, and so $\gamma w=(\gamma \beta) \gamma x=0$. Observe that γ^{2} has the bidegree $\left(a_{\gamma}, b_{\gamma}\right)$, the same bidegree as that of γ. It just remains to prove exactness. Since all the maps are well-defined, there is no reason to display subscripts. First of all, adjacent composites are 0.

$$
\begin{aligned}
& \beta^{2} \alpha^{2}: x=\alpha u \mapsto \alpha \alpha u \mapsto \operatorname{cls}\left(\beta \alpha^{-1} \alpha \alpha u\right)=\operatorname{cls}(\beta \alpha u)=0 . \\
& \gamma^{2} \beta^{2}: x=\alpha u \mapsto \operatorname{cls}(\beta u) \mapsto \gamma \beta u=0 . \\
& \alpha^{2} \gamma^{2}: \operatorname{cls}(z) \mapsto \gamma z \mapsto \alpha \gamma z=0 .
\end{aligned}
$$

We have verified the inclusions of the form im \subseteq ker. Now must proof the reverse inclusions.
$\operatorname{ker} \alpha^{2} \subseteq \operatorname{im} \gamma^{2}$. If $x \in \operatorname{ker} \alpha^{2}$, then $x \in D^{2}$ and $\alpha x=0$. Hence, $x \in \operatorname{ker} \alpha=\operatorname{im} \gamma$, so that $x=\gamma y$ for some $y \in E$. Now $x \in \operatorname{im} \alpha=\operatorname{ker} \beta$, and $0=\beta x=\beta \gamma y=d^{1} y$. Thus, y is a cycle, and $x=\gamma y=\gamma^{2} \operatorname{cls}(y) \in \operatorname{im} \gamma^{2}$.
$\operatorname{ker} \beta^{2} \subseteq \operatorname{im} \alpha^{2}$. If $x \in \operatorname{ker} \beta^{2}$, then $x \in D^{2}=\operatorname{im} \alpha$ and $\beta^{2} x=0$. Thus, $x=\alpha u$ and $0=\beta^{2} x=\operatorname{cls}\left(\beta \alpha^{-1} \alpha u\right)=\operatorname{cls}(\beta u)$. Hence, $\beta u \in \operatorname{im} d^{1}$; that is, $\beta u=d^{1} w=\beta \gamma w$ for some $w \in E$. Now $u-\gamma w \in \operatorname{ker} \beta=\operatorname{im} \alpha=D^{2}$, and $\alpha^{2}(u-\gamma w)=\alpha u-\alpha \gamma w=\alpha u=x$. Therefore, $x \in \operatorname{im} \alpha^{2}$.
$\operatorname{ker} \gamma^{2} \subseteq \operatorname{im} \beta^{2}$. If $\operatorname{cls}(z) \in \operatorname{ker} \gamma^{2}$, then $\gamma^{2} \operatorname{cls}(z)=\gamma z=0$. Thus, $z \in \operatorname{ker} \gamma=\operatorname{im} \beta$, so that $z=\beta v$ for some $v \in D$. Hence, $\beta^{2}(\alpha v)=\operatorname{cls}\left(\beta \alpha^{-1} \alpha v\right)=\operatorname{cls}(\beta v)=\operatorname{cls}(z)$, and $\operatorname{cls}(z) \in \operatorname{im} \beta^{2}$.

The next lemma shows a characterization for the map d^{1} that will be necessary for some results.

Lemma 2.74. Let $\left(F^{p} \mathbf{C}\right)_{p \in \mathbb{Z}}$ be a filtration of a complex \mathbf{C}, and let the corresponding exact couple be $(D, E, \alpha, \beta, \gamma)$. Then the differential $d_{p, q}^{1}: E_{p, q} \rightarrow E_{p-1, q}$ is the connecting homomorphism

$$
H_{p+q}\left(F^{p} / F^{p-1}\right) \rightarrow H_{p+q-1}\left(F^{p-1} / F^{p-2}\right)
$$

arising from $0 \rightarrow F^{p-1} / F^{p-2} \rightarrow F^{p} / F^{p-2} \rightarrow F^{p} / F^{p-1} \rightarrow 0$.
Proof. Let $\left(\mathbf{C}, d_{n}\right)$ be a complex, then we have the next two short exact sequences:

$$
0 \longrightarrow F^{p-1} \xrightarrow{i} F^{p} \xrightarrow{\pi} F^{p} / F^{p-1} \longrightarrow 0
$$

and

$$
0 \longrightarrow F^{p-1} / F^{p-2} \xrightarrow{\hat{i}} F^{p} / F^{p-2} \xrightarrow{\hat{\pi}} F^{p} / F^{p-1} \longrightarrow 0,
$$

where i is the inclusion, π is the natural map, \hat{i} and $\widehat{\pi}$ are induced by i and π respectively. For x in F^{p}, let us denote by \bar{x} the class of x in F^{p} / F^{p-1}, write \widehat{x} for the class of x in F^{p} / F^{p-2} and we use the notation cls z to refer to the class of a cycle z in its respective homology group. Define

$$
d_{n}^{p}: F^{p} C_{n} \rightarrow F^{p} C_{n-1}
$$

as the restriction of d_{n} to F^{p}, and the maps

$$
\widehat{d_{n}^{p}}: \frac{F^{p} C_{n}}{F^{p-2} C_{n}} \rightarrow \frac{F^{p} C_{n-1}}{F^{p-2} C_{n-1}} \quad \text { and } \overline{d_{n}^{p}}: \frac{F^{p} C_{n}}{F^{p-1} C_{n}} \rightarrow \frac{F^{p} C_{n-1}}{F^{p-1} C_{n-1}}
$$

as the morphisms induced by d_{n}^{p}.
Notice that the connecting homomorphism $\gamma_{p, q}: H_{n}\left(F^{p} / F^{p-1}\right) \rightarrow H_{n-1}\left(F^{p-1}\right)$ arises from the diagram

Then for $\bar{z} \in \operatorname{ker} \overline{d_{n}^{p}}, \gamma_{p, q}$ satisfies

$$
\gamma_{p, q}(\operatorname{cls}(\bar{z}))=\operatorname{cls}\left(i^{-1} d_{n}^{p} \pi^{-1}(\bar{z})\right) .
$$

On the other hand we have the connecting homomorphism $\partial_{p, q}: H_{n}\left(F^{p} / F^{p-1}\right) \rightarrow$ $H_{n-1}\left(F^{p-1} / F^{p-2}\right)$ arises from

$$
\begin{gathered}
F^{p} C_{n} / F^{p-2} C_{n} \xrightarrow{\widehat{\pi}} F^{p} C_{n} / F^{p-1} C_{n} \\
F^{p-1} C_{n-1} / F^{p-2} C_{n-1} \xrightarrow{\hat{i}} F^{p} C_{n-1} / F^{p-2} C_{n-1} .
\end{gathered}
$$

Then for $\bar{z} \in \operatorname{ker} \overline{d_{n}^{p}}, \partial_{p, q}$ satisfies

$$
\begin{aligned}
\partial_{p, q}(\operatorname{cls}(\bar{z})) & =\operatorname{cls}\left(\hat{i}^{-1} \widehat{d_{n}^{p}} \widehat{\pi}^{-1}(\bar{z})\right) \\
& =\operatorname{cls}\left(\hat{i}^{-1} \widehat{d_{n}^{p}}\left(\widehat{\pi^{-1}(\bar{z})}\right)\right) \\
& \left.=\operatorname{cls}\left(\hat{i}^{-1} \widehat{d_{n}^{p} \pi^{-1}(\bar{z})}\right)\right) \\
& =\operatorname{cls}\left(\widehat{i^{-1} d_{n}^{p} \pi^{-1}(\bar{z})}\right) .
\end{aligned}
$$

Finally recall that $\beta_{p-1, q}$ is the map induced by the natural map $F^{p-1} \rightarrow F^{p-1} / F^{p-2}$, that is, $\beta_{p-1, q}(\operatorname{cls} w)=\operatorname{cls}(\widehat{w})$. Hence

$$
\begin{aligned}
\operatorname{cls}\left(\overline{i^{-1} d_{n}^{p} \pi^{-1}(\bar{z})}\right) & =\beta_{p-1, q}\left(\operatorname{cls}\left(i^{-1} d_{n}^{p} \pi^{-1}(\bar{z})\right)\right) \\
& =\beta_{p-1, q} \gamma_{p, q}(\bar{z}) .
\end{aligned}
$$

Thus $\partial_{p, q}=\beta_{p-1, q} \gamma_{p, q}=d_{p, q}^{1}$.
Definition 2.75. Given an exact couple ($D, E, \alpha, \beta, \gamma$), we define its rth derived couple $\left(D^{r}, E^{r}, \alpha^{r}, \beta^{r}, \gamma^{r}\right)$ recursively in the next way: the $(r+1)$ st derived couple $\left(D^{r+1}, E^{r+1}, \alpha^{r+1}, \beta^{r+1}, \gamma^{r+1}\right)$ is the derived couple of $\left(D^{r}, E^{r}, \alpha^{r}, \beta^{r}, \gamma^{r}\right)$.

We assume that ($D, E, \alpha, \beta, \gamma$) correspond to its 1st derived couple ($D^{1}, E^{1}, \alpha^{1}, \beta^{1}, \gamma^{1}$).
Corollary 2.76. Let $(D, E, \alpha, \beta, \gamma)$ be the exact couple arising from a filtration $\left(F^{p}\right)$ of a complex C and let $\left(D^{r}, E^{r}, \alpha^{r}, \beta^{r}, \gamma^{r}\right)$ be its respective rth derived couple:

where $a_{r}=1-r$ and $b_{r}=r-1$. Then ($\left.D^{r}, E^{r}, \alpha^{r}, \beta^{r}, \gamma^{r}\right)$ has the following properties:
(i) the bigraded maps $\alpha^{r}, \beta^{r}, \gamma^{r}$ have bidegrees $(1,-1),(1-r, r-1),(-1,0)$, respectively;
(ii) the differential d^{r} is induced by $\beta \alpha^{-r+1} \gamma$, and d^{r} has bidegree $(-r, r-1)$;
(iii) $E_{p, q}^{r+1}=\operatorname{ker} d_{p, q}^{r} / \operatorname{im} d_{p+r, q-r+1}^{r}$;
(iv) $D_{p, q}^{r}=\operatorname{im}\left(\alpha_{p-1, q+1}\right)\left(\alpha_{p-2, q+2}\right) \cdots\left(\alpha_{p-r+1, q+r-1}\right)$; in particular, for the exact couple in Proposition 2.70.

$$
D_{p, q}^{r}=i m\left(j^{p-1} j^{p-2} \ldots j^{p-r+1}\right)_{*}: H_{n}\left(F^{p-r+1}\right) \rightarrow H_{n}\left(F^{p}\right) .
$$

Proof.
(i) First observe that the derived couple preserve the bidegrees of α^{i} and γ^{i}, i.e. $\operatorname{deg}(\alpha)=\operatorname{deg}\left(\alpha^{i}\right)$ and $\operatorname{deg}(\gamma)=\operatorname{deg}\left(\gamma^{i}\right)$, where $i \in\{2,3, \ldots\}$. Then $\operatorname{deg}\left(\alpha^{r}\right)=$ $\operatorname{deg}(\alpha)=(1,-1)$ and $\operatorname{deg}\left(\gamma^{r}\right)=\operatorname{deg}(\gamma)=(-1,0)$.
Recall that if the maps α^{r} and β^{r} have bidegrees $\left(a_{\alpha^{r}}, b_{\alpha^{r}}\right)$ and ($a_{\beta^{r}}, b_{\beta^{r}}$), respectively, then β^{r+1} has bidegree ($a_{\beta^{r}}-a_{\alpha^{r}}, b_{\beta^{r}}-b_{\alpha^{r}}$). Hence, by induction, if

$$
\operatorname{deg}\left(\beta^{r-1}\right)=(1-(r-1),(r-1)-1),
$$

then

$$
\operatorname{deg}\left(\beta^{r}\right)=(1-(r-1)-1,(r-1)-1+1)=(1-r, r-1) .
$$

Finally to complete the induction observe that for $r=2$ the map β^{2} has bidegree $(-1,1)=(1-r, r-1)$.
(ii) As β^{r}, γ^{r} have bidegrees $(1-r, r-1),(-1,0)$ respectively and bidegrees adds, then the bidegree of $d^{r}=\beta^{r} \gamma^{r}$ is $(-r, r-1)$. Denote by $\operatorname{cls}^{2}(z)=\operatorname{cls}(\operatorname{cls}(z))$, the class of $\operatorname{cls}(z)$ in E^{3}, where z is a cycle in the complex $\left(E^{2}, d^{2}\right)$. Now we define $\operatorname{cls}^{r}(z)$ recursively by setting $\operatorname{cls}^{r}(z)=\operatorname{cls}\left(\operatorname{cls}^{r-1}(z)\right)$, the class of $\operatorname{cls}^{r-1}(z)$ in E^{r}, where $\operatorname{cls}^{r-1}(z)$ is a cycle in the complex $\left(E^{r-1}, d^{r-1}\right)$. Then using the above notation we have

$$
\begin{aligned}
d^{r}\left(\operatorname{cls}^{r-1}(z)\right) & =\beta^{r} \gamma^{r}\left(\operatorname{cls}^{r-1}(z)\right) \\
& =\beta^{r} \gamma^{r-1}\left(\operatorname{cls}^{r-2}(z)\right) \\
& =\beta^{r} \gamma(z) \\
& =\operatorname{cls}\left(\beta^{r-1} \alpha^{-1} \gamma(z)\right) \\
& =\operatorname{cls}\left(\operatorname{cls}^{r-2}\left(\beta^{r-2} \alpha^{-2} \gamma(z)\right)\right) \\
& =\operatorname{cls}^{r-1}\left(\beta \alpha^{-r+1} \gamma(z)\right) .
\end{aligned}
$$

(iii) It is clear since the bidegree of d^{r} is $(-r, r-1)$.
(iv) Observe

$$
\begin{aligned}
D_{p, q}^{r} & =\alpha_{(p-1, q+1)} D_{(p-1, q+1)}^{r-1} \\
& =\alpha_{(p-1, q+1)} \alpha_{(p-2, q+2)} D_{(p-2, q+2)}^{r-2} \\
& =\alpha_{(p-1, q+1)} \alpha_{(p-2, q+2)} \ldots \alpha_{(p-r+1, q+r-1)} D_{(p-r+1, q+r-1)} \\
& =\operatorname{im}\left(\alpha_{(p-1, q+1)} \alpha_{(p-2, q+2)} \ldots \alpha_{(p-r+1, q+r-1)}\right) .
\end{aligned}
$$

For the last statement recall that $\alpha_{p, q}=j_{*}^{p}: H_{p+q}\left(F^{p}\right) \rightarrow H_{p+q}\left(F^{p+1}\right)$ and that $j_{*}^{p-1} j_{*}^{p-2} \cdots j_{*}^{p-r+1}=\left(j^{p-1} j^{p-2} \cdots j^{p-r+1}\right)_{*}$.

Definition 2.77. A spectral sequence is a sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ of differential bigraded modules such that $E^{r+1}=H\left(E^{r}, d^{r}\right)$ for all $r \in \mathbb{Z}^{+}$.

Given a spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ and a fixed $r \in \mathbb{Z}^{+}$, we say that the terms $E_{p, q}^{r}$ form the r th page of the spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$. Thus, it is useful think a spectral sequence as a book where the r th page of the book correspond to the r th page of the spectral sequence, so we have that for each page of the book the next page is its own homology.

Theorem 2.78. Any filtration of a complex yields a spectral sequence as described Corollary 2.76.

Proof. A filtration gives an exact couple, as in Proposition 2.70, and the E^{r} terms of its derived couples define a spectral sequence.

Definition 2.79. If M is a module, then a subquotient of M is a module of the form $M^{\prime} / M^{\prime \prime}$, where $M^{\prime \prime} \subseteq M^{\prime} \subseteq M$.

If $\left\{E^{r}, d^{r}\right\}$ is a spectral sequence, then $E^{2}=H\left(E^{1}, d^{1}\right)$ is a subquotient of E^{1}. Hence, $E^{2}=Z^{2} / B^{2}=\operatorname{ker} d^{1} / \operatorname{im} d^{1}$, where

$$
B^{2} \subseteq Z^{2} \subseteq E^{1}
$$

So any submodule of E^{2} is equal to S / B^{2} for a unique submodule S of Z^{2} with $B^{2} \subseteq S$. Hence, in particular, for the relative cycles Z^{3} and boundaries B^{3} there exist unique submodules B_{*}^{3} and Z_{*}^{3} of Z^{2} such that $B^{3}=B_{*}^{3} / B^{2}$ and $Z^{3}=Z_{*}^{3} / B^{2}$. Then we can
identify Z^{3}, B^{3} with Z_{*}^{3}, B_{*}^{3} respectively. Therefore $B^{3} / B^{2} \subseteq Z^{3} / B^{2} \subseteq Z^{2} / B^{2}=E^{2}$, so that

$$
B^{2} \subseteq B^{3} \subseteq Z^{3} \subseteq Z^{2} \subseteq E^{1}
$$

More generally, for each r, there is a chain

$$
B^{2} \subseteq \cdots \subseteq B^{r} \subseteq Z^{r} \subseteq \cdots \subseteq Z^{2} \subseteq E^{1}
$$

Definition 2.80. Given a spectral sequence $\left\{E^{r}, d^{r}\right\}$ and the above identification of the submodules Z^{r} and B^{r}, define $Z^{\infty}=\bigcap_{r} Z^{r}$ and $B^{\infty}=\bigcup_{r} B^{r}$. Then $B^{\infty} \subseteq Z^{\infty}$, and the limit term of the spectral sequence is the bigraded module E^{∞} defined by

$$
E_{p, q}^{\infty}=Z_{p, q}^{\infty} / B_{p, q}^{\infty} .
$$

Lemma 2.81. Let $\left\{E^{r}, d^{r}\right\}$ be a spectral sequence. Then, for any $p, q \in \mathbb{Z}$,
(i) $E_{p, q}^{r+1}=E_{p, q}^{r}$ if and only if $Z_{p, q}^{r+1}=Z_{p, q}^{r}$ and $B_{p, q}^{r+1}=B_{p, q}^{r}$,
(ii) If $E_{p, q}^{r+1}=E_{p, q}^{r}$ for all $r \geq s$, then $E_{p, q}^{s}=E_{p, q}^{\infty}$.

Proof. Since it is clear that we are working with the p, q terms of the spectral sequence we will omit (in this proof) the subscripts.
(i) Recall that if X / Y is a subquotient of Z, then $Y \subseteq X \subseteq Z$, and so $X / Y=Z$ if and only if $Y=\{0\}$ and $X=Z$. If $Z^{r+1} / B^{r+1}=E^{r+1}=E^{r}$, then $B^{r+1}=\{0\}$ in $E^{r}=Z^{r} / B^{r}$; that is, $B^{r+1} \subseteq B^{r}$, but since $B^{r} \subseteq B^{r+1}$ we have that $B^{r+1}=B^{r}$. Hence, $E^{r+1}=Z^{r+1} / B^{r+1}=Z^{r+1} / B^{r}=E^{r}=Z^{r} / B^{r}$, so that $Z^{r+1}=Z^{r}$. The converse is obvious.
(ii) If $E^{r}=E^{r+1}$ for all $r \geq s$, then $Z^{s}=Z^{r}$ for all $r \geq s$; hence, $Z^{s}=\bigcap_{r \geq s} Z^{r}=$ Z^{∞}. Also, $B^{s}=B^{r}$ for all $r \geq s$; hence, $B^{s}=\bigcup_{r \geq s} B^{r}=B^{\infty}$. Therefore,

$$
E^{s}=Z^{s} / B^{s}=Z^{\infty} / B^{\infty}=E^{\infty} .
$$

Given a filtration $\left(F^{p}\right)$ of a complex \mathbf{C} with inclusions $i^{p}: F^{p} \rightarrow \mathbf{C}$, we have the $\operatorname{map} i_{*}^{p}: H_{\bullet}\left(F^{p}\right) \rightarrow H_{\bullet}(\mathbf{C})$ induced by i^{p}. Since $F^{p} \subseteq F^{p+1}$, we have im $i_{*}^{p} \subseteq \operatorname{im} i_{*}^{p+1}$; that is, $\left(\operatorname{im} i_{*}^{p}\right)$ is a filtration of $H_{\bullet}(\mathbf{C})$.

Definition 2.82. If $\left(F^{P} \mathbf{C}\right)$ is a filtration of a complex \mathbf{C} and $i^{p}: F^{p} \rightarrow \mathbf{C}$ are inclusions, define

$$
\Phi^{p} H_{n}(\mathbf{C})=\operatorname{im} i_{*}^{p} .
$$

We call $\left(\Phi^{p} H_{n}(\mathbf{C})\right)$ the induced filtration of $H_{n}(\mathbf{C})$.

Definition 2.83. A filtration $\left(F^{p} M\right)$ of a graded module $M=\left(M_{n}\right)$ is bounded if, for each n, there exist integers $s=s(n)$ and $t=t(n)$ such that

$$
F^{s} M_{n}=\{0\} \text { and } F^{t} M_{n}=M_{n} .
$$

Given a bounded filtration $\left\{F^{p}\right\}$ of a complex \mathbf{C}, the induced filtration on homology is also bounded, moreover it has the same bounds. Indeed, we have that if $i^{p}: F^{p} \rightarrow \mathbf{C}$ is the inclusion, then $\Phi^{p} H_{n}=\operatorname{im} i_{*}^{p}$, where $i_{*}^{p}: H_{n}\left(F^{p}\right) \rightarrow H_{n}(\mathbf{C})$. Since for each n there exist $r, s \in \mathbb{Z}$ such that $F^{s} C_{n}=0$ and $F^{t} C_{n}=C_{n}$, we have $\Phi^{s} H_{n}=\{0\}$ and $\Phi^{t} H_{n}=H_{n}$. Hence, for each $n \in \mathbb{Z}$, there is a finite chain,

$$
\{0\}=\Phi^{s} H_{n} \subseteq \Phi^{s+1} H_{n} \subseteq \cdots \subseteq \Phi^{t} H_{n}=H_{n} .
$$

Of course, it is clear that $\Phi^{i} H_{n}=\{0\}$ for all $i \leq s$, and $\Phi^{j} H_{n}=H_{n}$ for all $j \geq t$.
Definition 2.84. A spectral sequence $\left(E^{r}, d^{r}\right)_{r>1}$ converges to a graded module H_{\bullet} if there exist some bounded filtration $\left(\Phi^{p} H_{n}\right)$ of H_{\bullet}. such that

$$
E_{p, q}^{\infty} \cong \Phi^{p} H_{n} / \Phi^{p-1} H_{n}
$$

for all n and p, q with $p+q=n$. We denote the convergence by

$$
E_{p, q}^{r} \underset{p}{\Rightarrow} H_{n} .
$$

Since spectral sequences are often referred by its second page, it is common to write the convergence of a spectral sequence as

$$
E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n} .
$$

Theorem 2.85. Let $\left(F^{p} \mathbf{C}\right)_{p}$ be a bounded filtration of a complex \mathbf{C}, and let $\left(E^{r}, d^{r}\right)_{r \geq 1}$ be the spectral sequence of Theorem 2.78. Then
(i) for each p, q, we have $E_{p, q}^{\infty}=E_{p, q}^{r}$ for large r (depending on p, q),
(ii) $E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n}(\mathbf{C})$, by means of the induced filtration of $H_{n}(\mathbf{C})$.

Proof. Recall that the induced filtration $\left(\Phi^{p} H\right)$ is bounded with the same bounds $s(n)$ and $t(n)$ as $\left(F^{p} \mathbf{C}\right)$. Then
(i) If p is "large"; that is, $p>t(n)$, then $F^{p-1} C_{n}=F^{p} C_{n}$, and $F^{p} C_{n} / F^{p-1} C_{n}=$ 0 . By definition, $E_{p, q}=H_{p+q}\left(F^{p} / F^{p-1}\right)$, and so $E_{p, q}=\{0\}$. Since $E_{p, q}^{r}$ is a subquotient of $E_{p, q}$, we have $E_{p, q}^{r}=\{0\}$ for all r. Similarly, if p is "small"; that is, $p<s(n)$, then $F^{p} C_{n}=0$, and $E_{p, q}^{r}=\{0\}$ for all r. Focus on first subscripts. For any fixed $(p, q), d^{r}\left(E_{p, q}^{r}\right) \subseteq E_{p-r, \#}^{r}$. For large r, the index $p-r$ is small, and so $E_{p-r, \#}^{r}=\{0\}$. Hence, ker $d_{p, q}^{r}=E_{p, q}^{r}$. Let us compute $E_{p, q}^{r+1}=\operatorname{ker} d_{p, q}^{r} / \operatorname{imd} d_{p+r, \#}^{r}$. Now im $d_{p+r, \#}^{r}=\{0\}$, because the domain of $d_{p+r, \#}^{r}$ is $E_{p+r, \#}^{r}=\{0\}$ when r is large. Therefore, $E_{p, q}^{r+1}=\operatorname{ker} d_{p, q}^{r} /\{0\}=E_{p, q}^{r} /\{0\}=E_{p, q}^{r}$ for large r (depending on p, q). Thus, the p, q term of $E_{p, q}^{r}$ is constant for large r, which says that $E_{p, q}^{\infty}=E_{p, q}^{r}$, by Lemma 2.81 .
(ii) We continue focusing on the first index in the subscript by writing \# for every second index. Consider the exact sequence obtained from the r th derived couple:

$$
\begin{equation*}
D_{p+r-2, \#}^{r} \xrightarrow{\alpha^{r}} D_{p+r-1, \#}^{r} \xrightarrow{\beta^{r}} E_{p, q}^{r} \xrightarrow{\gamma^{r}} D_{p-1, q}^{r} . \tag{1}
\end{equation*}
$$

The indices arise from the bidegrees displayed in Corollary 2.76 (i) : α^{r} has bidegree $(1,-1), \beta^{r}$ has bidegree $(1-r, r-1)$, and γ^{r} has bidegree $(-1,0)$; as in Corollary 2.76(iv), the module

$$
D_{p, q}^{r}=\operatorname{im}\left(j^{p-1} j^{p-2} \cdots j^{p-r+1}\right)_{*}: H_{n}\left(F^{p-r+1}\right) \rightarrow H_{n}\left(F^{p}\right) .
$$

Replacing p first by $p+r-1$ and then by $p+r-2$, we have

$$
D_{p+r-1, \#}^{r}=\operatorname{im}\left(j^{p+r-2} \cdots j^{p}\right)_{*} \subseteq H_{n}\left(F^{p+r-1}\right)
$$

and

$$
D_{p+r-2, \#}^{r}=\operatorname{im}\left(j^{p+r-3} \cdots j^{p-1}\right)_{*} \subseteq H_{n}\left(F^{p+r-2}\right) .
$$

For large $r, F^{p+r-1} C_{n}=F^{t(n)} C_{n}=C_{n}$, and the composition $j^{p+r-2} \ldots j^{p}$ of inclusions applied to $F^{p} C_{n}$ is just the inclusion $i_{n}^{p}: F^{p} C_{n} \rightarrow C_{n}$. Therefore, $D_{p+r-1, \#}^{r}=\operatorname{im} i_{* n}^{p}=\Phi^{p} H_{n}$. Similarly, $D_{p+r-2, \#}^{r}=\Phi^{p-1} H_{n}$ for large r. Hence, we may rewrite the exact sequence (1) as

$$
\Phi^{p-1} H_{n}(\mathbf{C}) \xrightarrow{\alpha^{r}} \Phi^{p} H_{n}(\mathbf{C}) \rightarrow E_{p, q}^{r} \rightarrow D_{p-1, q}^{r},
$$

where the first arrow is inclusion. Indeed, recall that α^{r} is just the restriction of $\alpha=j_{*}^{p+r-2}$ to $D_{p+r-2, \#}^{r}=\Phi^{p-1} H_{n}(\mathbf{C})$ and that

$$
j_{*}^{p+r-2}: H_{n}\left(F^{p+r-2}\right) \rightarrow H_{n}\left(F^{p+r-1}\right),
$$

which for larger r is equal to the identity map

$$
j_{*}^{p+r-2}: H_{n}(\mathbf{C}) \rightarrow H_{n}(\mathbf{C}) .
$$

Finally, if r is large

$$
D_{p-1, q}^{r}=\operatorname{im}\left(\left(j^{p-2} \cdots j^{p-r}\right)_{*}: H_{n}\left(F^{p-r}\right) \rightarrow H_{n}\left(F^{p-1}\right)\right)=0,
$$

because $F^{p-r} C_{n}=0$ for larger r. Hence, we have the next exact sequence

$$
0 \rightarrow \Phi^{p-1} H_{n}(\mathbf{C}) \rightarrow \Phi^{p} H_{n}(\mathbf{C}) \rightarrow E_{p, q}^{r} \rightarrow 0,
$$

then

$$
\Phi^{p} H_{n}(\mathbf{C}) / \Phi^{p-1} H_{n}(\mathbf{C}) \cong E_{p, q}^{r}=E_{p, q}^{\infty} .
$$

Definition 2.86. Let $\left(M, d^{\prime}, d^{\prime \prime}\right)$ be a bicomplex. The transposed bicomplex ($\left.M^{t}, \delta^{\prime}, \delta^{\prime \prime}\right)$ of $\left(M, d^{\prime}, d^{\prime \prime}\right)$ is the bicomplex such that $M_{p, q}^{t}=M_{q, p}, \delta^{\prime}=d^{\prime \prime}$ and $\delta^{\prime \prime}=d^{\prime}$.

Lemma 2.87. If $\operatorname{Tot}(M)$ is the total complex of a bicomplex $\left(M, d^{\prime}, d^{\prime \prime}\right)$. Then
(i) the second filtration of $\operatorname{Tot}(M)$ is equal to the first filtration of $\operatorname{Tot}\left(M^{t}\right)$, i.e.

$$
{ }^{\mathrm{II}} F^{p} \operatorname{Tot}(M)_{n}={ }^{\mathrm{I}} F^{p} \operatorname{Tot}\left(M^{t}\right)_{n},
$$

(ii) $\operatorname{Tot}(M)=\operatorname{Tot}\left(M^{t}\right)$.

Proof. The transpose M^{t} is defined by $M_{p, q}^{t}=M_{q, p}$, thus

$$
{ }^{\mathrm{II}} F^{p} \operatorname{Tot}(M)_{n}=\bigoplus_{j \leq p} M_{n-j, j}=\bigoplus_{j \leq p} M_{j, n-j}^{t}={ }^{\mathrm{I}} F^{p} \operatorname{Tot}\left(M^{t}\right)_{n}
$$

and

$$
\operatorname{Tot}\left(M^{t}\right)_{n}=\bigoplus_{p+q=n} M_{q, p}=\bigoplus_{p+q=n} M_{p, q}=\operatorname{Tot}(M)_{n} .
$$

Definition 2.88. A first quadrant bicomplex is a bicomplex $\left(M_{p, q}\right)$ for which $M_{p, q}=\{0\}$ whenever p or q is negative.

Theorem 2.89. Let M be a first quadrant bicomplex, and let ${ }^{\mathrm{I}} E^{r}$ and ${ }^{\mathrm{II}} E^{r}$ be the spectral sequences determined by the first and second filtrations of $\operatorname{Tot}(M)$. Then
(i) The first and second filtrations are bounded, and the bounds for either filtration are $s(n)=-1$ and $t(n)=n$,
(ii) For all p, q, we have ${ }^{\mathrm{I}} E_{p, q}^{\infty}={ }^{\mathrm{I}} E_{p, q}^{r}$ and ${ }^{\mathrm{II}} E_{p, q}^{\infty}={ }^{\mathrm{II}} E_{p, q}^{r}$ for large r (depending on $p, q)$.
(iii) ${ }^{\mathrm{I}} E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n}(\operatorname{Tot}(M))$ and ${ }^{\mathrm{II}} E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n}(\operatorname{Tot}(M))$.

Proof. Part (i) is obvious. Statements (ii) and (iii) for ${ }^{\mathrm{I}} E$ follow from Theorem 2.85 . Since $\operatorname{Tot}\left(M^{t}\right)=\operatorname{Tot}(M)$, where M^{t} is the transpose, and since the second filtration of $\operatorname{Tot}(M)$ equals the first filtration of M^{t}, we have ${ }^{\text {II }} E_{p, q}^{\infty}={ }^{\text {II }} E_{p, q}^{r}$ for large r and ${ }^{\mathrm{II}} E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n}\left(\operatorname{Tot}\left(M^{t}\right)\right)=H_{n}(\operatorname{Tot}(M))$.

Let $\left(M, d^{\prime}, d^{\prime \prime}\right)$ be a bicomplex. Define $M_{p, *}$ as the p th column of M (see figure 2.1), hence $\left(M_{p, *}, d_{p, *}^{\prime \prime}\right)$ is a complex, where the map $d_{p, *}^{\prime \prime}$ is the restriction of $d^{\prime \prime}$ in $M_{p, *}$. Therefore we can define a new bigraded module $H^{\prime \prime}(M)$, whose (p, q) term is $H_{q}\left(M_{p, *}\right)$.

For each fixed q, the q th row $H^{\prime \prime}(M)_{*, q}$ of $H^{\prime \prime}(M)$

$$
\ldots, H_{q}\left(M_{p+1, *}\right), H_{q}\left(M_{p, *}\right), H_{q}\left(M_{p-1, *}\right), \ldots,
$$

can be made into a complex if we define $\overline{d^{\prime}}{ }_{p}: H_{q}\left(M_{p, *}\right) \rightarrow H_{q}\left(M_{p-1, *}\right)$ by

$$
\overline{d_{p}^{\prime}}: \operatorname{cls}(z) \mapsto \operatorname{cls}\left(d_{p, q}^{\prime} z\right),
$$

where $z \in \operatorname{ker} d_{p, q}^{\prime \prime}$. There is a new bigraded module whose (p, q) term, denoted by $H_{p}^{\prime} H_{q}^{\prime \prime}(M)$, is the p th homology of $\left(H^{\prime \prime}(M)_{*, q}, \overline{d^{\prime}}\right)$, i.e. $H_{p}^{\prime} H_{q}^{\prime \prime}(M)=H_{p}\left(H^{\prime \prime}(M)_{*, q}\right)$.

Definition 2.90. If (M, d^{\prime}, $d^{\prime \prime}$) is a bicomplex, its first iterated homology, denoted by $H^{\prime} H^{\prime \prime}(M)$, is the bigraded module whose (p, q) term is $H_{p}^{\prime} H_{q}^{\prime \prime}(M)$.

Proposition 2.91. If M is a first quadrant bicomplex, then

$$
{ }^{\mathrm{I}} E_{p, q}^{1}=H_{q}\left(M_{p, *}\right)=H^{\prime \prime}(M)_{p, q}
$$

and

$$
{ }^{\mathrm{I}} E_{p, q}^{2}=H_{p}^{\prime} H_{q}^{\prime \prime}(M) \underset{p}{\Rightarrow} H_{n}(\operatorname{Tot}(M)) .
$$

Proof. Since it is clear that we are working with ${ }^{\mathrm{I}} E_{p, q}^{r}$ let us omit the prescript I for this proof. As in Proposition 2.70 proof, $E_{p, q}=H_{n}\left(F^{p} / F^{p-1}\right)$, where

$$
\begin{aligned}
\left(F^{p}\right)_{n} & =\cdots \oplus M_{p-2, q+2} \oplus M_{p-1, q+1} \oplus M_{p, q}, \\
\left(F^{p-1}\right)_{n} & =\cdots \oplus M_{p-2, q+2} \oplus M_{p-1, q+1} .
\end{aligned}
$$

Hence, the nth term of F^{p} / F^{p-1} is $M_{p, q}$. The differential $\left(F^{p} / F^{p-1}\right)_{n} \rightarrow\left(F^{p} / F^{p-1}\right)_{n-1}$ is

$$
\bar{D}_{n}: a_{n}+\left(F^{p-1}\right)_{n} \mapsto D_{n} a_{n}+\left(F^{p-1}\right)_{n-1},
$$

where $a_{n} \in\left(F^{p}\right)_{n}$; we have just seen that we may assume $a_{n} \in M_{p, q}$. Now $D_{n} a_{n}=$ $\left(d_{p, q}^{\prime}+d_{p, q}^{\prime \prime}\right) a_{n} \in M_{p-1, q} \oplus M_{p, q-1}$. But $M_{p-1, q} \subseteq\left(F^{p-1}\right)_{n-1}$, so that $D_{n} a_{n} \equiv d_{p, q}^{\prime \prime} a_{n} \bmod$ $\left(F^{p-1}\right)_{n-1}$. Thus, only $d^{\prime \prime}$ survives in F^{p} / F^{p-1}. More precisely, since $n=p+q$
$H_{n}\left(F^{p} / F^{p-1}\right)=\frac{\operatorname{ker} \bar{D}_{n}}{\operatorname{im} \bar{D}_{n+1}}=\frac{\left(\operatorname{ker} d_{p, q}^{\prime \prime}+\left(F^{p-1}\right)_{n}\right) /\left(F^{p-1}\right)_{n}}{\left(\operatorname{im} d_{p, q+1}^{\prime \prime}+\left(F^{p-1}\right)_{n}\right) /\left(F^{p-1}\right)_{n}} \cong \frac{\operatorname{ker} d_{p, q}^{\prime \prime}}{\operatorname{im} d_{p, q+1}^{\prime \prime}}=H_{q}\left(M_{p, *}\right)$.
Therefore, ${ }^{\mathrm{I}} E_{p, q}^{1}=H_{q}\left(M_{p, *}\right)$ and the elements of ${ }^{\mathrm{I}} E_{p, q}^{1}$ have the form $\operatorname{cls}(z)$, where $z \in M_{p, q}$ and $d^{\prime \prime} z=0$. Now Lemma 2.74 identifies the map d^{1} with the connecting homomorphism arising from $0 \rightarrow F^{p-1} / F^{p-2} \rightarrow F^{p} / F^{p-2} \rightarrow F^{p} / F^{p-1} \rightarrow 0$. So it only remains to prove that $\overline{d^{\prime}}=d^{1}$. As $d^{1}: H_{p+q}\left(F^{p} / F^{p-1}\right) \rightarrow H_{p+q-1}\left(F^{p-1} / F^{p-2}\right)$ is the connecting homomorphism, it arises from the diagram

$$
\begin{gathered}
M_{p-1, q+1} \oplus M_{p, q} \xrightarrow{\phi} M_{p, q} \longrightarrow 0 \\
\downarrow_{\bar{D}}^{\longrightarrow} \\
0 \longrightarrow M_{p-1, q} \xrightarrow{i} M_{p, q-1} \oplus M_{p-1, q},
\end{gathered}
$$

where $\bar{D}:\left(a_{p-1, q+1}, a_{p, q}\right) \mapsto\left(d^{\prime \prime} a_{p, q}, d^{\prime \prime} a_{p-1, q+1}+d^{\prime} a_{p, q}\right), i$ is the natural inclusion and ϕ is the natural projection. Let $z \in M_{p, q}$ be a cycle; that is, $d_{p, q}^{\prime \prime} z=0$. Choose $\phi^{-1} z=(0, z)$, so that $\bar{D}(0, z)=\left(0, d_{p, q}^{\prime} z\right)$. Then

$$
d^{1} \operatorname{cls}(z)=\operatorname{cls}\left(i^{-1} \bar{D} \pi^{-1} z\right)=\operatorname{cls}\left(d^{\prime} z\right)=\overline{d^{\prime}} \operatorname{cls}(z)
$$

Hence,

$$
E_{p, q}^{2}=\frac{\operatorname{ker} \overline{d^{\prime}}}{\operatorname{im} \overline{d^{\prime}}{ }_{p+1, q}}=H_{p}^{\prime} H_{q}^{\prime \prime}(M)
$$

as required.

Now we can construct the analogous of $H^{\prime} H^{\prime \prime}(M)$. Let $\left(M, d^{\prime}, d^{\prime \prime}\right)$ a bicomplex, take its transpose bicomplex $\left(M^{t}, \delta^{\prime}, \delta^{\prime \prime}\right)$, where $\delta^{\prime}=d^{\prime \prime}$ and $\delta^{\prime \prime}=d^{\prime}$. Recall that for each fixed p we have that $\left(M_{p, *}^{t}, \delta_{p, *}^{\prime \prime}\right)=\left(M_{*, p}, d_{*, p}^{\prime}\right)$ is a complex, thus taking homology
of p th columns of M^{t} gives a bigraded module, denoted by $H^{\prime}(M)$, whose (p, q) term is $H_{q}\left(M_{p, *}^{t}\right)$. For each fixed q, the q th row $H^{\prime}(M)_{*, q}$ of $H^{\prime}(M)$

$$
\ldots, H_{q}\left(M_{p+1, *}^{t}\right), H_{q}\left(M_{p, *}^{t}\right), H_{q}\left(M_{p-1, *}^{t}\right), \ldots
$$

can be made into a complex if we define $\overline{\delta^{\prime}}{ }_{p}: H_{q}\left(M_{p, *}^{t}\right) \rightarrow H_{q}\left(M_{p-1, *}^{t}\right)$ by

$$
\overline{\delta^{\prime}}{ }_{p}: \operatorname{cls}(z) \mapsto \operatorname{cls}\left(\delta_{p, q}^{\prime} z\right),
$$

where $z \in \operatorname{ker} \delta_{p, q}^{\prime \prime}$. There is a new bigraded module whose (p, q) term, denoted by $H_{p}^{\prime \prime} H_{q}^{\prime}(M)$, is the p th homology of $\left(H^{\prime \prime}(M)_{*, q}, \overline{\delta^{\prime}}\right)$, i.e. $H_{p}^{\prime \prime} H_{q}^{\prime}(M)=H_{p}\left(H^{\prime}(M)_{*, q}\right)$. Notice that $H^{\prime}(M)$ is just $H^{\prime \prime}\left(M^{t}\right)$. Therefore

$$
H_{p}^{\prime \prime} H_{q}^{\prime}(M)=H_{p}\left(H^{\prime}(M)_{*, q}\right)=H_{p}\left(H^{\prime \prime}\left(M^{t}\right)_{*, q}\right)=H_{p}^{\prime} H_{q}^{\prime \prime}\left(M^{t}\right) .
$$

Definition 2.92. If $\left(M, d^{\prime}, d^{\prime \prime}\right)$ is a bicomplex, its second iterated homology is the bigraded module whose (p, q) terms is $H_{p}^{\prime \prime} H_{q}^{\prime}(M)$.
Proposition 2.93. If M is a first quadrant bicomplex, then

$$
{ }^{\mathrm{II}} E_{p, q}^{1}=H_{q}\left(M_{*, p}\right)
$$

and

$$
{ }^{\mathrm{II}} E_{p, q}^{2}=H_{p}^{\prime \prime} H_{q}^{\prime}(M) \underset{p}{\Rightarrow} H_{n}(\operatorname{Tot}(M)) .
$$

Proof. By Proposition 2.91 we have

$$
{ }^{\mathrm{I}} E_{p, q}^{1} M^{t}=H_{q}\left(M_{p, *}^{t}\right)
$$

and

$$
{ }^{\mathrm{I}} E_{p, q}^{2} M^{t}=H_{p}^{\prime} H_{q}^{\prime \prime}\left(M^{t}\right) \underset{p}{\Rightarrow} H_{n}\left(\operatorname{Tot}\left(M^{t}\right)\right),
$$

where ${ }^{\mathrm{I}} E_{p, q}^{r} M^{t}$ refers to the (p, q) term in the r-page of the spectral sequence obtained from the first filtration of $\operatorname{Tot}\left(M^{t}\right)$. By our previous discussion we have that $H^{\prime} H^{\prime \prime}\left(M^{t}\right)=H^{\prime \prime} H^{\prime}(M)$, we also know that $H_{q}\left(M_{p, *}^{t}\right)=H_{q}\left(M_{*, p}\right)$ and by Lemma 2.87 the second filtration of $\operatorname{Tot}(M)$ is the first filtration of $\operatorname{Tot}\left(M^{t}\right)$ and $\operatorname{Tot}(M)=\operatorname{Tot}\left(M^{t}\right)$. Hence,

$$
{ }^{\mathrm{II}} E_{p, q}^{1}={ }^{\mathrm{I}} E_{p, q}^{1} M^{t}=H_{q}\left(M_{p, *}^{t}\right)=H_{q}\left(M_{*, p}\right)
$$

and

$$
{ }^{\mathrm{II}} E_{p, q}^{2}={ }^{\mathrm{I}} E_{p, q}^{2} M^{t}=H_{p}^{\prime} H_{q}^{\prime \prime}\left(M^{t}\right)=H_{p}^{\prime \prime} H_{q}^{\prime}(M) \underset{p}{\Rightarrow} H_{n}\left(\operatorname{Tot}\left(M^{t}\right)\right)=H_{n}(\operatorname{Tot}(M)),
$$

as required.

Definition 2.94. A spectral sequence (E^{r}, d^{r}) collapses on the p-axis if $E_{p, q}^{2}=\{0\}$ for all $q \neq 0$; a spectral sequence $\left(E^{r}, d^{r}\right)$ collapses on the q-axis if $E_{p, q}^{2}=\{0\}$ for all $p \neq 0$.

Proposition 2.95. Let M be a first quadrant bicomplex and let $\left(E^{r}, d^{r}\right)$ be the spectral sequence induced by the first or the second filtration of $\operatorname{Tot}(M)$.
(i) If $\left(E^{r}, d^{r}\right)$ collapses on either axis, then $E_{p, q}^{\infty}=E_{p, q}^{2}$ for all p, q.
(ii) If $\left(E^{r}, d^{r}\right)$ collapses on the p-axis, then $H_{n}(\operatorname{Tot}(M)) \cong E_{n, 0}^{2}$; if $\left(E^{r}, d^{r}\right)$ collapses on the q-axis, then $H_{n}(\operatorname{Tot}(M)) \cong E_{0, n}^{2}$.

Proof. For the item (i) assume that $\left(E^{r}, d^{r}\right)$ collapses on the p-axis and choose $r \geq 2$. First of all, $E_{p, q}^{r}=\{0\}$ for all $r \geq 2$ and $q \neq 0$, because $E_{p, q}^{r}$ is a subquotient of $E_{p, q}^{2}=\{0\}$. Now $E_{p, 0}^{r+1}=\operatorname{ker} d_{p, 0}^{r} / \operatorname{im} d_{p+r,-r+1}^{r}$. Now $d_{p, 0}^{r}=0$, because its target is $E_{p-r, r-1}^{r}$ which is off the p-axis (see figure 2.5), hence is $\{0\}$; thus, $\operatorname{ker} d_{p, 0}^{r}=E_{p, 0}^{r}$. Also, $d_{p+r,-r+1}^{r}=0$, because its domain is off the axis, and so $\operatorname{im~}_{p+r,-r+1}^{r}=\{0\}$. Therefore, $E_{p, 0}^{r+1}=E_{p, 0}^{r} /\{0\}=E_{p, 0}^{r}$ and Lemma 2.81 gives $E^{\infty}=E^{2}$. The proof for the case where $\left(E^{r}, d^{r}\right)$ collapses on the q-axis is analogous.

For the item (ii), observe that since M is a first quadrant bicomplex, by Theorem 2.89 we have that the induced filtration on $H_{n}=H_{n}(\operatorname{Tot}(M))$ is

$$
\{0\}=\Phi^{-1} H_{n} \subseteq \Phi^{0} H_{n} \subseteq \cdots \subseteq \Phi^{n-1} H_{n} \subseteq \Phi^{n} H_{n}=H_{n}
$$

If the spectral sequence collapses on the p-axis, then $\{0\}=E_{p, q}^{2}$ for all $p \leq n-1$, because $1 \leq q$. By part (i) we have $E_{p, q}^{\infty}=E_{p, q}^{2}$. Now by Theorem 2.85 and since the spectral sequence collapses on the p-axis we have that $\{0\}=E_{p, q}^{\infty}=\Phi^{p} H_{n} / \Phi^{p-1} H_{n}$ for all $p \leq n-1$. Hence, $\{0\}=\Phi^{-1} H_{n}=\Phi^{0} H_{n}=\cdots=\Phi^{n-1} H_{n}$ and $H_{n}=$ $\Phi^{n} H_{n} / \Phi^{n-1} H_{n} \cong E_{n, 0}^{2}$. A similar argument can be given when the spectral sequence collapses on the q-axis.

Definition 2.96. A third quadrant bicomplex (or cohomology bicomplex) is a bicomplex $\left(M_{p, q}\right)$ for which $M_{p, q}=\{0\}$ whenever p or q is positive.

As it is common, for third quadrant bicomplexes we change the signs of p, q, and n, and we switch its positions.

$$
M^{p, q}=M_{-p,-q} .
$$

Figure 2.5: Differentials with bidegree ($-r, r-1$).
Consider the first filtration of $\operatorname{Tot}(M)$ when M is a third quadrant bicomplex.

$$
\begin{aligned}
\left({ }^{\mathrm{I}} F^{-p}\right)_{-n} & =\bigoplus_{i \leq-p} M_{i,-n-i} \\
& =M_{-n, 0} \oplus \cdots \oplus M_{-p,-n+p}
\end{aligned}
$$

and

$$
\begin{aligned}
\left({ }^{\mathrm{I}} F^{-p+1}\right)_{-n} & =\bigoplus_{i \leq-p+1} M_{i,-n-i} \\
& =M_{-n, 0} \oplus \cdots \oplus M_{-p,-n+p} \oplus M_{-p+1,-n+p-1} .
\end{aligned}
$$

Thus,

$$
\{0\}=F^{-n-1} \subseteq F^{-n} \subseteq F^{-n+1} \subseteq \cdots \subseteq F^{0}=\operatorname{Tot}(M)
$$

If we lower indices and change their sign, we have

$$
\{0\}=F_{n+1} \subseteq F_{n} \subseteq F_{n-1} \subseteq \cdots \subseteq F_{0}=\operatorname{Tot}(M),
$$

that is, the filtration so labeled is a decreasing filtration. Similarly, lowered indices on the second filtration give another decreasing filtration of $\operatorname{Tot}(M)$. Now think in the induced filtration $\left(\Phi^{p} H_{n}\right)$ of $H_{n}(\operatorname{Tot}(M))$, if we define $\Psi_{p} H^{n}=\Phi^{-p} H_{-n}$ we obtain an induced filtration $\left(\Psi_{p} H^{n}\right)$ of $\operatorname{Tot}(M)$ where M is a third quadrant bicomplex.

$$
\{0\}=\Psi_{n+1} H^{n} \subseteq \Psi_{n} H^{n} \subseteq \cdots \subseteq \Psi_{1} H^{n} \subseteq \Psi_{0} H^{n}=H^{n} .
$$

A third quadrant spectral sequence will be denoted by $\left(E_{r}, d_{r}\right)$, and in an analogous way to cohomology we will denote each element of the spectral sequence as $E_{r}^{p, q}$. Moreover, we write $H_{-n}(\operatorname{Tot}(M))=H^{n}(\operatorname{Tot}(M))$, call it the nth cohomology module and, for $1 \leq r \leq \infty$,

$$
d_{-p,-q}^{r}=d_{r}^{p, q}, \quad{ }^{\mathrm{I}} E_{-p,-q}^{r}={ }^{\mathrm{I}} E_{r}^{p, q}, \text { and }{ }^{\mathrm{II}} E_{-p,-q}^{r}={ }^{\mathrm{II}} E_{r}^{p, q} .
$$

We also have a version of Theorem 2.89 for third quadrant bicomplex.
Theorem 2.97. Let M be a third quadrant bicomplex, and let ${ }^{\mathrm{I}} E_{r}$ and ${ }^{\mathrm{II}} E_{r}$ be the spectral sequences determined by the first and second filtrations of $\operatorname{Tot}(M)$. Then
(i) The first and second filtrations are bounded.
(ii) For all p, q, we have ${ }^{\mathrm{I}} E_{\infty}^{p, q}={ }^{\mathrm{I}} E_{r}^{p, q}$ and ${ }^{\mathrm{II}} E_{\infty}^{p, q}={ }^{\mathrm{II}} E_{r}^{p, q}$ for large r (depending on $p, q)$.
(iii) ${ }^{\mathrm{I}} E_{2}^{p, q} \underset{p}{\Rightarrow} H^{n}(\operatorname{Tot}(M))$ and ${ }^{\mathrm{II}} E_{2}^{p, q} \underset{p}{\Rightarrow} H^{n}(\operatorname{Tot}(M))$.

Proof. The bounds are $s(n)=n+1$ and $t(n)=0$, and so statements (ii) and (iii) for ${ }^{\mathrm{I}} E$ follow from Theorem 2.85. Since $\operatorname{Tot}\left(M^{t}\right)=\operatorname{Tot}(M)$, where M^{t} is the transpose, and since the second filtration of $\operatorname{Tot}(M)$ equals the first filtration of M^{t}, we have ${ }^{\mathrm{II}} E_{p, q}^{\infty}={ }^{\mathrm{II}} E_{p, q}^{r}$ for large r and ${ }^{\text {II }} E_{p, q}^{2} \underset{p}{\Rightarrow} H_{n}\left(\operatorname{Tot}\left(M^{t}\right)\right)=H_{n}(\operatorname{Tot}(M))$.

Proposition 2.98. Let M be a third quadrant bicomplex and let $\left(E_{r}, d_{r}\right)$ be the spectral sequence induced by the first or the second filtration of $\operatorname{Tot}(M)$.
(i) If $\left(E_{r}, d_{r}\right)$ collapses on either axis, then $E_{\infty}^{p, q}=E_{2}^{p, q}$ for all p, q.
(ii) If $\left(E_{r}, d_{r}\right)$ collapses on the p-axis, then $H^{n}(\operatorname{Tot}(M)) \cong E_{2}^{n, 0}$; if $\left(E_{r}, d_{r}\right)$ collapses on the q-axis, then $H^{n}(\operatorname{Tot}(M)) \cong E_{2}^{0, n}$.

Proof. For part (i), assume that $\left(E_{r}, d_{r}\right)$ collapses on the p-axis, and choose $r \geq 2$. First of all, $E_{r}^{p, q}=\{0\}$ for all $r \geq 2$ and $q \neq 0$, because $E_{r}^{p, q}$ is a subquotient of $E_{2}^{p, q}=\{0\}$. Now $E_{r+1}^{p, 0}=\operatorname{ker} d_{r}^{p, 0} / \operatorname{im} d_{r}^{p+r,-r+1}$. Now $d_{r}^{p, 0}=0$, because its target is off the axis, hence is $\{0\}$; thus, $\operatorname{ker} d_{r}^{p, 0}=E_{r}^{p, 0}$. Also, $d_{r}^{p+r,-r+1}=\{0\}$, because its domain is off the axis, and so im $d_{r}^{p+r,-r+1}=\{0\}$. Therefore, $E_{r+1}^{p, 0}=E_{r}^{p, 0} /\{0\}=E_{r}^{p, 0}$ and Lemma 2.81 gives $E_{\infty}=E_{2}$. If $\left(E_{r}, d_{r}\right)$ collapses on the q-axis the proof is analogous.

For part (ii), we have that the induced filtration on $H^{n}=H^{n}(\operatorname{Tot}(M))$ is

$$
\{0\}=\Psi_{n+1} H^{n} \subseteq \Psi_{n} H^{n} \subseteq \cdots \subseteq \Psi_{1} H^{n} \subseteq \Psi_{0} H^{n}=H^{n} .
$$

Suppose the spectral sequence collapses on the p-axis; if $p<n$, then $0<q$. Therefore, $\Psi_{p} H^{n} / \Psi_{p+1} H^{n}=E_{\infty}^{p, q}=E_{2}^{p, q}=\{0\}$ because $E_{2}^{p, q}$ is off the p-axis for all $p<n$. Hence, $\Psi_{n} H^{n}=\Psi_{n-1} H^{n}=\cdots=\Psi_{1} H^{n}=\Psi_{0} H^{n}=H^{n}$ and $H^{n}=\Psi_{n} H^{n} /\{0\}=$ $\Psi_{n} H^{n} / \Psi_{n+1} H^{n} \cong E_{2}^{n, 0}$. A similar argument can be given when the spectral sequence collapses on the q-axis.

Remark 2.99. All concepts defined in this section for the category of modules can be extended to any abelian category thanks to the Full Imbedding Theorem [20].

Definition 2.100. Let \mathbf{C} be in $\operatorname{Ob}(\operatorname{Comp}(\mathcal{A}))$, where \mathcal{A} is an abelian category and $\operatorname{Comp}(\mathcal{A})$ denotes the category of the complexes in \mathcal{A}. A Cartan-Eilenberg projective resolution (or a proper projective resolution) of \mathbf{C} is an exact sequence of complexes from $\operatorname{Comp}(\mathcal{A})$,

$$
\rightarrow M_{\bullet, q} \rightarrow \cdots \rightarrow M_{\bullet, 1} \rightarrow M_{\bullet, 0} \rightarrow 0,
$$

such that the following sequences in \mathcal{A} are projective resolutions for each p :

$$
\begin{aligned}
& \text { (i) } \cdots \rightarrow M_{p, 1} \rightarrow M_{p, 0} \rightarrow C_{p} \rightarrow 0 \\
& \text { (ii) } \cdots \rightarrow Z_{p, 1} \rightarrow Z_{p, 0} \rightarrow Z_{p}(\mathbf{C}) \rightarrow 0 \\
& \text { (iii) } \cdots \rightarrow B_{p, 1} \rightarrow B_{p, 0} \rightarrow B_{p}(\mathbf{C}) \rightarrow 0 \\
& \text { (iv) } \cdots \rightarrow H_{p, 1} \rightarrow H_{p, 0} \rightarrow H_{p}(\mathbf{C}) \rightarrow 0
\end{aligned}
$$

There is a dual notion of Cartan-Eilenberg injective resolution.
Definition 2.101. Let \mathbf{C} be a complex in $\operatorname{Comp}(\mathcal{A})$, where \mathcal{A} is an abelian category. A Cartan-Eilenberg injective resolution (or a proper injective resolution) of \mathbf{C} is an exact sequence of complexes from $\operatorname{Comp}(\mathcal{A})$,

$$
0 \rightarrow M_{\bullet, 0} \rightarrow M_{\bullet,-1} \rightarrow \cdots \rightarrow M_{\bullet,-q} \rightarrow,
$$

such that the following sequences in \mathcal{A} are injective resolutions for each p :
(i) $0 \rightarrow C_{p} \rightarrow M_{p, 0} \rightarrow M_{p,-1} \rightarrow \cdots$;
(ii) $0 \rightarrow Z_{p}(\mathbf{C}) \rightarrow Z_{p, 0} \rightarrow Z_{p,-1} \rightarrow \cdots$;
(iii) $0 \rightarrow B_{p}(\mathbf{C}) \rightarrow B_{p, 0} \rightarrow B_{p,-1} \rightarrow \cdots$;
(iv) $0 \rightarrow H_{p}(\mathbf{C}) \rightarrow H_{p, 0} \rightarrow H_{p,-1} \rightarrow \cdots$;

A Cartan-Eilenberg projective resolution can be viewed as a large commutative diagram M in \mathcal{A}. For each p, the p th row $M_{p, \bullet}$ is a deleted projective resolution of C_{p}; for each q, the q th column $M_{\bullet, q}$ is a complex each of whose terms is projective. Also we can see Cartan-Eilenberg projective resolution as a bicomplex in the next way: given a Cartan-Eilenberg projective resolution M,

Observe that d^{\prime} and $d^{\prime \prime}$ are differentials with bidegree $(-1,0)$ and $(0,-1)$ respectively, then we can make it into a bicomplex with a sign change. Define $\Delta_{p, q}^{\prime \prime}=(-1)^{p} d_{p, q}^{\prime \prime}$. Changing sign does not affect kernels and images, and so $\Delta^{\prime \prime} \Delta^{\prime \prime}=0$. Finally,

$$
\begin{aligned}
d_{p, q-1}^{\prime} \Delta_{p, q}^{\prime \prime}+\Delta_{p-1, q}^{\prime \prime} d_{p, q}^{\prime} & =(-1)^{p} d_{p, q-1}^{\prime} d_{p, q}^{\prime \prime}+(-1)^{p-1} d_{p-1, q}^{\prime \prime} d_{p, q}^{\prime} \\
& =(-1)^{p}\left(d_{p, q-1}^{\prime} d_{p, q}^{\prime \prime}-d_{p-1, q}^{\prime \prime} d_{p, q}^{\prime}\right) \\
& =0 .
\end{aligned}
$$

Therefore, $\left(M, d^{\prime}, \Delta^{\prime \prime}\right)$ is a bicomplex. We can do the same construction in the Car-tan-Eilenberg injective resolution case.

From [1] we have the next well known result.
Proposition 2.102. (Horseshoe Lemma). Given a diagram in an abelian category \mathcal{A} with enough projectives,

where the columns are projective resolutions and the row is exact, then there exist a projective resolution of A and chain maps so that the three columns form an exact sequence of complexes.

Remark 2.103. The dual of Horseshoe Lemma in which projective resolutions are replaced by injective resolutions is also true.

Theorem 2.104. If \mathcal{A} is an abelian category with enough projectives (or injectives), then any \mathbf{C} in $\operatorname{Ob}(\operatorname{Comp}(\mathcal{A}))$ has a Cartan-Eilenberg projective (or injective) resolution.

Proof. Let $\mathbf{C}=\rightarrow C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{d_{0}} C_{-1} \rightarrow$ be a complex. For each $p \in \mathbb{Z}$, there are exact sequences

$$
0 \rightarrow B_{p} \rightarrow Z_{p} \rightarrow H_{p} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow Z_{p} \rightarrow C_{p} \rightarrow B_{p-1} \rightarrow 0 .
$$

Choose projective resolutions $B_{p, *}$ and $H_{p, *}$ of B_{p} and H_{p}, respectively; by Proposition 2.102 (Horseshoe Lemma), there is a projective resolution $Z_{p, *}$ of Z_{p} so that $0 \rightarrow B_{p, *} \rightarrow Z_{p, *} \rightarrow H_{p, *} \rightarrow 0$ is an exact sequence of complexes. Using the Horseshoe Lemma again, there is a projective resolution $M_{p, *}$ of C_{p} so that $0 \rightarrow Z_{p, *} \rightarrow$ $M_{p, *} \rightarrow B_{p-1, *} \rightarrow 0$ is an exact sequence of complexes. Then we have the next two commutative diagrams with exact columns and rows

For each p, define chain maps $d_{p, q}: M_{p, q} \rightarrow M_{p-1, q}$ as the composition

$$
d_{p, q}: M_{p, q} \rightarrow B_{p-1, q} \rightarrow Z_{p-1, q} \rightarrow M_{p-1, q} .
$$

Since the above diagrams are commutative with exact columns and rows, we have that $Z_{p, q} \cong \operatorname{ker} d_{p, q}, B_{p, q} \cong \operatorname{im} d_{p+1, q}$ and $H_{p, q} \cong Z_{p, q} / B_{p, q}$. We have a commutative two-dimensional diagram whose columns are the projective resolutions $M_{p, \bullet}$ of C_{p}.

We have constructed a Cartan-Eilenberg projective resolution.
Definition 2.105. Let \mathcal{B} be an abelian category with enough projectives (or with enough injectives), and let $F: \mathcal{B} \rightarrow \mathrm{Ab}$ be an additive functor of either variance. An object B is called right F-acyclic if $\left(R^{p} F\right) B=\{0\}$ for all $p \geq 1$. An object B is called left \boldsymbol{F}-acyclic if $\left(L_{p} F\right) B=\{0\}$ for all $p \geq 1$.

Theorem 2.106. Grothendieck third quadrant spectral sequence.
Let $\mathcal{A} \xrightarrow{G} \mathcal{B} \xrightarrow{F} \mathcal{C}$ be covariant additive functors, where \mathcal{A}, \mathcal{B} and \mathcal{C} are abelian categories with enough injectives. Assume that F is left exact and that $G E$ is right F-acyclic for any injective object E in \mathcal{A}. Then for any $A \in \operatorname{Ob}(\mathcal{A})$ there is a third quadrant spectral sequence with

$$
E_{2}^{p, q}=\left(R^{p} F\right)\left(R^{q} G\right) A \underset{p}{\Rightarrow} R^{n}(F G) A
$$

with $n=p+q$.
Proof. For an object A in \mathcal{A} choose an injective resolution $\mathbf{E}=0 \rightarrow A \rightarrow E^{0} \rightarrow E^{1} \rightarrow$, and apply G to its deletion \mathbf{E}^{A} to obtain the complex

$$
G \mathbf{E}^{A}=0 \rightarrow G E^{0} \rightarrow G E^{1} \rightarrow G E^{2} \rightarrow \cdots .
$$

By Theorem 2.104, there exist a Cartan-Eilenberg injective resolution of $G \mathbf{E}^{A}$: a third quadrant bicomplex M whose rows are complexes and whose columns are deleted injective resolutions. So the diagram of M with $G \mathbf{E}^{A}$ after raising indices is

Consider the bicomplex $F M$ and its total complex $\operatorname{Tot}(F M)$. Let us compute its first iterated homology. For fixed p, the p th column $M^{p, *}$ is a deleted injective resolution of $G E^{p}$, and so $F M^{p, *}$ is a complex

$$
0 \longrightarrow F M^{p, 0} \longrightarrow F M^{p, 1} \longrightarrow F M^{p, 2} \longrightarrow \cdots
$$

whose q th homology is $\left(R^{q} F\right)\left(G E^{p}\right)$:

$$
H^{q}\left(F M^{p, *}\right)=\left(R^{q} F\right)\left(G E^{p}\right) .
$$

Now E^{p} is injective, so that $G E^{p}$ is right F-acyclic; that is, $\left(R^{q} F\right)\left(G E^{p}\right)=\{0\}$ for all $q \geq 1$. Hence,

$$
H^{q}\left(F M^{p, *}\right)=\left\{\begin{array}{cc}
\left(R^{0} F\right)\left(G E^{p}\right) & \text { if } q=0 \\
\{0\} & \text { if } q>0 .
\end{array}\right.
$$

But F is assumed to be left exact, so that $R^{0} F=F$. All that survives on the p-axis,

$$
0 \rightarrow F G\left(E^{0}\right) \rightarrow F G\left(E^{1}\right) \rightarrow F G\left(E^{2}\right) \rightarrow,
$$

and this is $F G$ applied to the deleted injective resolution \mathbf{E}^{A}. Hence, its p th homology is $R^{p}(F G) A$:

$$
{ }^{\mathrm{I}} E_{2}^{p, q}=\left\{\begin{array}{cc}
R^{p}(F G) A & \text { if } q=0 \\
\{0\} & \text { if } q>0 .
\end{array}\right.
$$

Thus, the first spectral sequence of $F M$ collapses on the p-axis, and we have by Proposition 2.98

$$
H^{n}(\operatorname{Tot}(F M)) \cong R^{n}(F G) A
$$

To compute the second iterated homology of $F M$ we can do it in terms of the first iterated homology of $F M^{t}$. We first transpose the indices p, q in the bicomplex $F M$, noting that

$$
H^{q}\left(F M^{*, p}\right)=\frac{\operatorname{ker} F d^{q, p}}{\operatorname{im} F d^{q-1, p}} .
$$

Apply F to the commutative diagram in which $j: B \rightarrow Z$ and $i: Z \rightarrow M$ are inclusions, and $\delta: M \rightarrow B$ is the surjection arising from d by changing its target; note that $d=i j \delta$:

We are now going to use the hypothesis that M is a Cartan-Eilenberg injective resolution. Since $Z^{q, p}$ is injective [being a term in the injective resolution of $\mathbf{Z}\left(G E^{p}\right)$], the exact sequence $0 \rightarrow Z^{p, q} \xrightarrow{i} M^{p, q} \xrightarrow{\delta} B^{q+1, p} \rightarrow 0$ splits. Therefore, the sequence remains exact after applying F, so that $F i$ is monic, ker $F \delta=\operatorname{im} F i$, and $F \delta$ is epic. Similarly, the exact sequence $0 \rightarrow B^{q, p} \xrightarrow{j} Z^{q, p} \rightarrow H^{q, p} \rightarrow 0$ splits, because $B^{q, p}$ is injective, so that it, too, remains exact after applying F. Hence, $F j$ is monic.

It is clearer to give the next argument in the category of abelian groups $\mathbf{A b}$ (this is no loss in generality, thanks to the Full Imbedding Theorem [20]). We compute ker $F d /$ im $F d$. Now $F d=F(i j \delta)$. Since both $F i$ and $F j$ are injections, the numerator

$$
\operatorname{ker} F d=\operatorname{ker} F \delta=\operatorname{im} F i=(F i)(F Z) .
$$

The denominator

$$
\operatorname{im} F d=(F d)(F M)=(F i)[(F j)(F \delta)(F M)]=(F i)[(F j)(F B)],
$$

because $F \delta: F M \rightarrow F B$ is a surjection. Now use the fact that the homomorphism $F i: F Z \rightarrow F M$ and the subgroup $(F j)(F B) \subseteq F Z$ give a surjection

$$
\frac{F Z}{(F j)(F B)} \longrightarrow \frac{(F i)(F Z)}{(F i)[(F j)(F B)]} ;
$$

moreover, this is an isomorphism because $F i$ is an injection. Therefore,

$$
\frac{\operatorname{ker} F d}{\operatorname{im} F d}=\frac{(F i)(F Z)}{(F i)[(F j)(F B)]} \cong \frac{F Z}{(F j)(F B)} .
$$

But $F Z /(F j)(F B)=$ coker $F j \cong F H$, because $0 \rightarrow F B \xrightarrow{F j} F Z \rightarrow F H \rightarrow 0$ is exact. Restoring indices, we conclude that

$$
H^{q}\left(F M^{*, p}\right)=\frac{\operatorname{ker} F d^{q, p}}{\operatorname{im} F d^{q-1, p}} \cong F H^{q, p} ;
$$

that is, F commutes with H^{q}. By hypothesis, each

$$
0 \rightarrow H^{q}\left(G \mathbf{E}^{A}\right) \rightarrow H^{q, 0} \rightarrow H^{q, 1} \rightarrow \cdots \rightarrow H^{q, p} \rightarrow
$$

is an injective resolution of $H^{q}\left(G \mathbf{E}^{A}\right)$. By definition, $H^{q}\left(G \mathbf{E}^{A}\right)=\left(R^{q} G\right) A$, so that the modules $H^{q}\left(M^{*, p}\right)$ form an injective resolution of $\left(R^{q} G\right) A$. Hence,

$$
{ }^{\text {II }} E_{2}^{p, q}=H^{p} H^{q}(F M)=H^{p}\left(F H^{q}(M)\right)=\left(R^{p} F\right)\left(R^{q} G\right) A,
$$

for F commutes with H^{q}, and so $\left(R^{p} F\right)\left(R^{q} G\right) A \Rightarrow R^{n}(F G) A$, because both spectral sequences have the same limit by Proposition 2.91 and 2.93, namely, $R^{n}(F G) A$.

CHAPTER 3

Partial group cohomology

Now we will introduce one of our main objects of study, the right derived functor of the functor of partial representations which we will call the partial group cohomology.

3.1 Partial group cohomology

The main objective in this section is to relate this cohomology with the vector space of partial derivations and the partial augmentation ideal. This section corresponds to the study of the first part of [2].

Definition 3.1. Let G be a group, V a K-vector space and

$$
\phi_{V}: K_{p a r}(G) \rightarrow \operatorname{End}_{K}(V)
$$

an object in $\operatorname{Rep} K_{p a r}(G)$. The set of \boldsymbol{G}-invariants of V is defined as:

$$
V^{G_{p a r}}:=\left\{v \in V: \phi_{V}([g])(v)=\phi_{V}\left(e_{g}\right)(v) \forall g \in G\right\} .
$$

It is easy to see that $V^{G_{p a r}}$ is a K-vector space. If $f: V \rightarrow W$ is a morphism in $\operatorname{Rep} K_{p a r}(G)$, then:

$$
\phi_{W}([g])(f(v))=f\left(\phi_{V}([g])(v)\right)=f\left(\phi_{V}\left(e_{g}\right)(v)\right)=\phi_{W}\left(e_{g}\right)(f(v)),
$$

hence f induces a linear map $f^{G_{p a r}}: V^{G_{p a r}} \rightarrow W^{G_{p a r}}$.
Remark 3.2. By Definition 3.1, $(-)^{G_{p a r}}$ is a functor from $\operatorname{Rep} K_{p a r}(G)$ to $\operatorname{Rep} K$.
Lemma 3.3. Let ϕ_{V} be an object of $\operatorname{Rep} K_{\text {par }}(G)$. If $f \in \operatorname{Hom}_{K_{p a r}(G)}(B, V)$ then f is uniquely defined by the element $f(1)$.

Proof. Recall the ϕ_{B} structure of B given by Corollary 2.55. For $e_{g_{1}} e_{g_{2}} \ldots e_{g_{m}} \in B$:

$$
\begin{aligned}
f\left(e_{g_{1}} e_{g_{2} \ldots} e_{g_{m}}\right) & =f\left(\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{m}\right] 1\left[h_{m}^{-1}\right] \ldots\left[h_{2}^{-1}\right]\left[h_{1}^{-1}\right]\right) \\
& =f\left(\phi_{B}\left(\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{m}\right]\right)(1)\right) \\
& =\phi_{V}\left(\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{m}\right]\right)(f(1)),
\end{aligned}
$$

where $h_{1}=g_{1}$ and $h_{i}=g_{i-1}^{-1} g_{i}$. Then f only depends of $f(1)$.
Proposition 3.4. (-$)^{G_{p a r}}: \operatorname{Rep} K_{p a r}(G) \rightarrow \operatorname{Rep} K$ is a left exact functor.
Proof. To see that $(-)^{G_{p a r}}$ is a left exact functor is enough to see that there exist a natural isomorphism

$$
(-)^{G_{p a r}} \cong \operatorname{Hom}_{K_{p a r}(G)}(B,-) .
$$

Define $\eta:(-)^{G_{p a r}} \rightarrow \operatorname{Hom}_{K_{\text {par }}(G)}(B,-)$ such that

$$
\eta_{V}:(V)^{G_{p a r}} \rightarrow \operatorname{Hom}_{K_{p a r}(G)}(B, V)
$$

is given by $u \mapsto f_{u}$ with $f_{u}(1)=u$. For all $u \in(V)^{G_{p a r}}$ we have that $\eta_{V}(u)$ is well-defined by Lemma 3.3. Also $f_{u+v}(1)=u+v=\left(f_{u}+f_{v}\right)(1)$, then η_{V} is a morphism of vector spaces. Moreover $f_{v}=f_{u} \Leftrightarrow f_{v}(1)=f_{u}(1) \Leftrightarrow v=u$, hence η_{V} is a monomorphism.

Let $f \in \operatorname{Hom}_{K_{p a r}(G)}(B, V)$, then we have that:

$$
\begin{aligned}
\phi_{V}([g])(f(1)) & =f\left(\phi_{B}([g])(1)\right) \\
& =f\left([g] 1\left[g^{-1}\right]\right) \\
& =f\left([g]\left[g^{-1}\right] 1[g]\left[g^{-1}\right]\right) \\
& =f\left(\phi_{B}\left([g]\left[g^{-1}\right]\right)(1)\right) \\
& =f\left(\phi_{B}\left(e_{g}\right)(1)\right)=\phi_{V}\left(e_{g}\right)(f(1)) .
\end{aligned}
$$

Hence $f(1) \in V^{G_{p a r}}$. That means that for all $f \in \operatorname{Hom}_{K_{p a r}(G)}(B, V)$ there exist $u \in$ $V^{G_{p a r}}$ such that $f_{u}=f$. Then, η_{V} is an isomorphism. So η is a natural isomorphism if the next diagram commutes for any morphism $f: V \rightarrow W$ in $\operatorname{Rep} K_{p a r}(G)$

where $\hat{f}=\operatorname{Hom}_{K_{\text {par }}(G)}(B, f)$.
Notice that it is enough to show that $\eta_{W} \circ f^{G_{p a r}}(z)(1)=\operatorname{Hom}_{K_{\text {par }}(G)}(B, f) \circ$ $\eta_{V}(z)(1)$, because the morphisms in $\operatorname{Hom}_{K_{p a r}(G)}(B, V)$ are defined only by the image of 1 . Let $z \in V$, then:

$$
\begin{aligned}
\eta_{W} \circ f^{G_{p a r}}(z)(1) & =\eta_{W}(f(z))(1) \\
& =f(z) \\
& =f\left(\eta_{V}(z)(1)\right) \\
& =\operatorname{Hom}_{K_{\operatorname{par}}(G)}(B, f)\left(\eta_{V}(z)(1)\right)
\end{aligned}
$$

This proves that the diagram commutes and hence η is a natural isomorphism.

Now we are able to define the partial cohomology groups of a group G and a $K_{\text {par }}(G)$-module M.

Definition 3.5. If G is a group and M an object in $\operatorname{Rep} K_{\text {par }}(G)$, then the partial cohomology groups of G with coefficients in M are defined as:

$$
H_{p a r}^{n}(G, M)=\operatorname{Ext}_{K_{p a r}(G)}^{n}(B, M),
$$

that is, $H_{p a r}^{n}(G, M)$ is the right derived functor of $(-)^{G_{p a r}} \cong \operatorname{Hom}_{K_{p a r}(G)}(B,-)$.
Remark 3.6. Recall that $\left.\operatorname{Ext}_{K_{p a r}(G)}^{n}(-, M)=R^{n} \operatorname{Hom}_{\{ } \operatorname{Kpar} G\right\}(-, M)$, so:

$$
\begin{aligned}
H_{p a r}^{n}(G, M) & =\operatorname{Ext}_{K_{p a r}(G)}^{n}(B, M) \\
& =R^{n} \operatorname{Hom}_{K_{p a r}(G)}(B, M)=H^{n}\left(\operatorname{Hom}_{K_{\operatorname{par}}(G)}(B, M)\right) .
\end{aligned}
$$

If (C, ϵ) is a protective resolution of B of $K_{p a r}(G)$-modules,

$$
0 \leftarrow B \stackrel{\epsilon}{\leftarrow} C_{0} \stackrel{d_{1}}{\leftarrow} C_{1} \stackrel{d_{2}}{\leftarrow} C_{2} \stackrel{d_{3}}{\leftarrow} C_{3} \stackrel{d_{4}}{\leftarrow} \cdots,
$$

then we have the cochain complex

$$
0 \rightarrow \operatorname{Hom}_{K_{p a r}(G)}(B, M) \xrightarrow{\gamma_{\epsilon}} \operatorname{Hom}_{K_{p a r}(G)}\left(C_{0}, M\right) \xrightarrow{\gamma_{d_{1}}} \cdots,
$$

where $\gamma_{\epsilon}=\operatorname{Hom}_{K_{p a r}(G)}(\epsilon, M)$ and $\gamma_{d_{i}}=\operatorname{Hom}_{K_{p a r}(G)}\left(d_{i}, M\right)$, the functor $\operatorname{Hom}_{K_{p a r}(G)}(-, M)$ applied to the morphisms ϵ and d_{i} respectively, for $i \geq 1$. Thus

$$
H_{p a r}^{n}(G, M)=\frac{\operatorname{ker} \operatorname{Hom}\left(d_{n+1}, M\right)}{\operatorname{im~Hom}\left(d_{n}, M\right)}
$$

Let ϵ be the following morphism

$$
\epsilon: K_{p a r}(G) \rightarrow B,
$$

given by $\epsilon\left(\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]\right)=\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]\left[g_{n}^{-1}\right] \ldots\left[g_{2}^{-1}\right]\left[g_{1}^{-1}\right]=e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{n}}$.
Notice that ϵ is a $K_{\text {par }}(G)$-module morphism. Indeed, for all $a \in K_{p a r}(G)$, we have that $\epsilon(a)=\phi_{B}(a)(1)$.
Remark 3.7. Observe that for all $x \in \mathcal{S}(G)$ we have that:

$$
\epsilon\left(\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right] x\right)=\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right] \epsilon(x)\left[g_{n}^{-1}\right] \ldots\left[g_{2}^{-1}\right]\left[g_{1}^{-1}\right] .
$$

Lemma 3.8. The morphism $\epsilon: K_{\text {par }}(G) \rightarrow B$ verifies the following properties.
(a) $\epsilon(x y) x=x \epsilon(y)$ for all $x, y \in \mathcal{S}(G)$;
(b) $\epsilon(x y)=\epsilon(x y) \epsilon(x)$; for all $x, y \in \mathcal{S}(G)$.

Proof. Take $x=\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r}\right]$ and $y=\left[h_{1}\right]\left[h_{2}\right] \ldots\left[h_{s}\right]$, recall that B is commutative and $[g] e_{h}=e_{g h}[g]=e_{g} e_{g h}[g]$. Then we have that:

$$
\begin{aligned}
x \epsilon(y) & =\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r}\right] e_{h_{1}} e_{h_{1} h_{2}} \ldots e_{h_{1} h_{2} \ldots h_{s}} \\
& =\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r-1}\right] e_{g_{g_{2}} h_{1}}\left[g_{r}\right] e_{h_{1} h_{2}} \ldots e_{h_{1} h_{2} \ldots h_{s}} \\
& =e_{g_{1} g_{2} \ldots g_{r} h_{1}}\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r}\right] e_{h_{1} h_{2} \ldots e_{h_{1}} \ldots \ldots h_{s}} \\
& =e_{g_{1} g_{2} \ldots g_{2}} \ldots h_{1} e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots e_{g_{1} g_{2} \ldots g_{r}} h_{1} h_{2} \ldots h_{s}}\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r}\right] \\
& =e_{g_{1} g_{2} \ldots g_{r} h_{1}} e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots h_{s}} e_{g_{1}}\left[g_{1}\right] e_{g_{2}}\left[g_{2}\right] \ldots e_{g_{r}}\left[g_{r}\right]} \\
& =e_{g_{1}} e_{g_{1} g_{2} \ldots e_{g_{1} g_{2} \ldots g_{r}} e_{g_{1} g_{2} \ldots g_{r} h_{1}} e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots} \ldots e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots h_{s}}\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{r}\right]} \\
& =\epsilon(x y) x,
\end{aligned}
$$

and

$$
\begin{aligned}
\epsilon(x y) \epsilon(x) & =e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{r}} e_{g_{1} g_{2} \ldots g_{r} h_{1}} e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2}} \ldots e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots h_{s}} e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{r}} \\
& =e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{r}} e_{g_{1} g_{2} \ldots g_{r} h_{1}} e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2}} \ldots e_{g_{1} g_{2} \ldots g_{r} h_{1} h_{2} \ldots h_{s}} \\
& =\epsilon(x y) .
\end{aligned}
$$

Definition 3.9. The set $I G=\operatorname{ker} \epsilon$ is called the partial augmentation ideal.
Remark 3.10. Since ϵ is a $K_{\text {par }}(G)$-module morphism then $I G=\operatorname{ker} \epsilon$ is a left ideal of $K_{p a r}(G)$, hence is a left $K_{p a r}(G)$-module.

Definition 3.11. Let G be a group and M a left K-module. Define the vector space of partial derivations as follows:
$\operatorname{Der}_{p a r}(G, M)=\left\{\delta \in \operatorname{Hom}_{K}\left(K_{p a r}(G), M\right): \delta(a b)=a \delta(b)+\epsilon(a b) \delta(a) \forall a, b \in \mathcal{S}(G)\right\}$.
In particular, we say that $\delta \in \operatorname{Der}_{p a r}(G, M)$ is inner if $\delta([g])=[g] m-e_{g} m$ for some $m \in M$. We denote by $\operatorname{Int}_{p a r}(G, M)$ the space of inner partial derivations.

Remark 3.12. Notice that if w is an idempotent of $\mathcal{S}(G)$ then

$$
\begin{aligned}
\delta(w) & =\delta(w w)=w \delta(w)+\epsilon(w) \delta(w) \\
& =w \delta(w)+w \delta(w) \\
& =2 w \delta(w) .
\end{aligned}
$$

Thus $\delta(w)=2 w \delta(w)=4 w \delta(w)=2 \delta(w)$, hence $\delta(w)=0$.
In order to prove some relation between the groups $H_{p a r}^{n}(G, M)$ and $\operatorname{Der}_{p a r}(G, M)$ we start with the following exact sequence in $\operatorname{Rep} K_{p a r}(G)$

$$
0 \rightarrow I G \xrightarrow{i} K_{p a r}(G) \xrightarrow{\epsilon} B \rightarrow 0 .
$$

Observe that $\epsilon(\epsilon(x))=\epsilon(x)$ for all $x \in K_{p a r}(G)$. Then $x-\epsilon(x) \in I G$ for all $x \in K_{p a r}(G)$.

Proposition 3.13. There is a natural isomorphism

$$
\operatorname{Hom}_{K_{\operatorname{par}}(G)}(I G,-) \cong \operatorname{Der}_{p a r}(G,-)
$$

Proof. Define

$$
\eta: \operatorname{Hom}_{K_{p a r}(G)}(I G,-) \rightarrow \operatorname{Der}_{p a r}(G,-),
$$

given by

$$
\begin{aligned}
\eta_{M}: \operatorname{Hom}_{K_{p a r}(G)}(I G, M) & \rightarrow \operatorname{Der}_{p a r}(G, M) \\
f & \mapsto \widehat{f}
\end{aligned}
$$

such that

$$
\begin{aligned}
\widehat{f}: K_{p a r}(G) & \rightarrow M \\
x & \mapsto f(x-\epsilon(x)) .
\end{aligned}
$$

Notice that \widehat{f} is a partial derivation. Indeed, for $x, y \in \mathcal{S}(G)$ by Lemma 3.8 we have that:

$$
\begin{aligned}
\widehat{f}(x y) & =f(x y-\epsilon(x y))=f(x y-x \epsilon(y)+\epsilon(x y) x-\epsilon(x y) \epsilon(x)) \\
& =x f(y-\epsilon(y))+\epsilon(x y) f(x-\epsilon(x)) \\
& =x \widehat{f}(y)+\epsilon(x y) \widehat{f}(x) .
\end{aligned}
$$

Then $\widehat{f} \in \operatorname{Der}_{p a r}(G, M)$.
Now we want to check that for any $\alpha: M \rightarrow M^{\prime}$ morphism of $K_{p a r}(G)$-modules we have that:

$$
\eta_{M^{\prime}} \circ \operatorname{Hom}_{K_{p a r}(G)}(I G, \alpha)=\operatorname{Der}_{p a r}(G, \alpha) \circ \eta_{M} .
$$

Let $f \in \operatorname{Hom}_{K_{p a r}(G)}(I G, M)$ then

$$
\begin{aligned}
\eta_{M^{\prime}} \circ \operatorname{Hom}_{K_{p a r}(G)}(I G, \alpha)(f) & =\eta_{M^{\prime}}(\alpha \circ f) \\
& =\widehat{\alpha \circ f}: x \in K_{p a r}(G) \mapsto \alpha f(x-\epsilon(x)) \in M^{\prime}
\end{aligned}
$$

and

$$
\operatorname{Der}_{p a r}(G, \alpha) \circ \eta_{M}(f)=\alpha \circ \widehat{f}: x \in K_{p a r}(G) \mapsto \alpha f(x-\epsilon(x)) \in M^{\prime}
$$

Then η is a natural transformation.
Finally observe that η_{M} is an isomorphism for all M. Let $f \in \operatorname{Hom}_{K_{\operatorname{par}}(G)}(I G, M)$ such that $\eta_{M}(f)=\widehat{f}=0$, thus

$$
\begin{aligned}
\widehat{f}(x)=0 \forall x \in K_{p a r}(G) & \Leftrightarrow f(x-\epsilon(x))=0 \forall x \in K_{\text {par }}(G) \\
& \Rightarrow 0=f(x-\epsilon(x))=f(x) \forall x \in I G \\
& \Rightarrow f(x)=0 \forall x \in I G \\
& \Rightarrow f=0 .
\end{aligned}
$$

Hence η_{M} is a monomorphism.
Let $\delta \in \operatorname{Der}_{p a r}(G, M)$, define

$$
\begin{aligned}
\delta^{\prime}: I G & \rightarrow M \\
x & \mapsto \delta(x) .
\end{aligned}
$$

Then $\delta^{\prime} \in \operatorname{Hom}_{K_{p a r}(G)}(I G, M)$. Indeed, let $x \in I G$ and $a \in K_{p a r}(G)$, thus:

$$
x=\sum_{j \in J} x_{j} \text { and } a=\sum_{i \in I} a_{i},
$$

where $x_{j}, a_{i} \in K_{p a r}(G)$ and recall that $I G$ is a left ideal of $K_{p a r}(G)$. Then:

$$
\begin{aligned}
\delta^{\prime}(a x) & =\sum_{i, j} \delta\left(a_{i} x_{j}\right)=\sum_{i, j} a_{i} \delta\left(x_{j}\right)+\epsilon\left(a_{i} x_{j}\right) \delta\left(a_{i}\right) \\
& =a \delta^{\prime}(x)+\sum_{i \in I} \epsilon\left(a_{i} x\right) \delta\left(a_{i}\right) \\
& =a \delta^{\prime}(x) .
\end{aligned}
$$

Hence $\delta^{\prime} \in \operatorname{Hom}_{K_{\operatorname{par}(G)}}(I G, M)$ and by Remark 3.12,

$$
\eta_{M}\left(\delta^{\prime}\right)(x)=\delta^{\prime}(x-\epsilon(x))=\delta(x-\epsilon(x))=\delta(x)-\delta(\epsilon(x))=\delta(x),
$$

for all $x \in K_{p a r}(G)$. Thus $\eta_{M}\left(\delta^{\prime}\right)=\delta$ hence $\operatorname{Hom}_{K_{p a r}(G)}(I G, M) \cong \operatorname{Der}_{p a r}(G, M)$.

Lemma 3.14. If $\delta \in \operatorname{Int}_{p a r}(G, M)$, then $\delta(x)=(x-\epsilon(x)) \cdot m$ for all $x \in K_{p a r}(G)$, for some $m \in M$.

Proof. Recall that for $g, h \in G, \delta([h][g])=[h] \delta([g])+\epsilon([h][g]) \delta([h])$. Then

$$
\begin{aligned}
\delta([h][g]) & =[h]\left([g]-e_{g}\right) \cdot m+e_{h} e_{h g}\left([h]-e_{h}\right) \cdot m \\
& =\left([h][g]-[h] e_{g}+e_{h} e_{h g}[h]-e_{h} e_{h g} e_{h}\right) \cdot m \\
& =\left([h][g]-[h] e_{g}+e_{h}[h] e_{g}-e_{h} e_{h g}\right) \cdot m \\
& =\left([h][g]-[h] e_{g}+[h] e_{g}-\epsilon([h][g])\right) \cdot m \\
& =([h][g]-\epsilon([h][g])) \cdot m .
\end{aligned}
$$

Then take $x_{n}=\left[g_{1}\right]\left[g_{2}\right] \ldots\left[g_{n}\right]$, by induction over n, if our lemma is valid for each x_{k} with $k \leq n$. Then

$$
\begin{aligned}
\delta\left(x_{n}[h]\right) & =x_{n} \delta([h])+\epsilon\left(x_{n}[h]\right) \delta\left(x_{n}\right) \\
& =x_{n}\left([h]-e_{h}\right) \cdot m+\epsilon\left(x_{n}[h]\right)\left(x_{n}-\epsilon\left(x_{n}\right)\right) \cdot m \\
& =\left(x_{n}[h]-x_{n} e_{h}+\epsilon\left(x_{n}[h]\right) x_{n}-\epsilon\left(x_{n}[h]\right) \epsilon\left(x_{n}\right)\right) \cdot m \\
& =\left(x_{n}[h]-x_{n} e_{h}+x_{n} \epsilon([h])-\epsilon\left(x_{n}[h]\right)\right) \\
& =\left(x_{n}[h]-\epsilon\left(x_{n}[h]\right)\right) \cdot m .
\end{aligned}
$$

Hence $\delta(\lambda)=(\lambda-\epsilon(\lambda) \cdot m)$ for all $\lambda \in \mathcal{S}(G)$. As $\mathcal{S}(G)$ is a basis of $K_{\text {par }}(G)$ as an algebra, then $\delta(x)=(x-\epsilon(x)) \cdot m$ for all $x \in K_{\text {par }}(G)$.

The following theorem is one of the main results of this work, it gives a characterization of partial cohomology groups via the vector space of partial invariants, the vector space of partial derivations and the partial augmentation ideal.

Theorem 3.15. Let G be a group and M an object in $\operatorname{Rep} K_{p a r}(G)$. Then

$$
\begin{aligned}
H_{p a r}^{0}(G, M) & =M^{G_{p a r}}=\operatorname{Hom}_{K_{p a r}(G)}(B, M) ; \\
H_{p a r}^{1}(G, M) & =\operatorname{Der}_{p a r}(G, M) / \operatorname{Int}_{p a r}(G, M) ; \\
H_{p a r}^{n}(G, M) & =\operatorname{Ext}_{K_{p a r}(G)}^{n-1}(I G, M), n \geq 2 .
\end{aligned}
$$

Proof. Associated to the short exact sequence

$$
0 \rightarrow I G \xrightarrow{i} K_{p a r}(G) \xrightarrow{\epsilon} B \rightarrow 0
$$

there is a long exact sequence

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{K_{p a r}(G)}(B, M) \xrightarrow{\epsilon^{*}} \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G), M\right) \xrightarrow{i^{*}} \operatorname{Hom}_{K_{p a r}(G)}(I G, M) \\
& \operatorname{Ext}_{K_{p a r}(G)}^{1}(B, M) \longrightarrow \operatorname{Ext}_{K_{p a r}(G)}^{1}\left(K_{p a r}(G), M\right) \longrightarrow \operatorname{Ext}_{K_{p a r}(G)}^{1}(I G, M) \\
& \operatorname{Ext}_{K_{p a r}(G)}^{2}(B, M) \longrightarrow \operatorname{Ext}_{K_{p a r}(G)}^{2}\left(K_{p a r}(G), M\right) \longrightarrow
\end{aligned}
$$

where $i^{*}=\operatorname{Hom}_{K_{p a r}(G)}(i, M)$ and $\epsilon^{*}=\operatorname{Hom}_{K_{p a r}(G)}(\epsilon, M)$. Then we have that:

$$
H_{p a r}^{0}(G, M)=\operatorname{Ext}_{K_{p a r}(G)}^{0}(B, M) \cong \operatorname{Hom}_{K_{p a r}(G)}(B, M) \cong M^{G_{p a r}} .
$$

Besides, since $K_{p a r}(G)$ is projective, we have that $\operatorname{Ext}_{K_{p a r}(G)}^{n}\left(K_{p a r}(G), M\right)=0$ for any $n \in \mathbb{N}$, then for $n \geq 2$ we have the next exact sequence:

$$
0 \rightarrow \operatorname{Ext}_{K_{p a r}(G)}^{n-1}(I G, M) \rightarrow \operatorname{Ext}_{K_{p a r}(G)}^{n}(B, M) \rightarrow 0
$$

Hence $H_{p a r}^{n}(G, M)=\operatorname{Ext}_{K_{\text {par }}(G)}^{n-1}(I G, M), \forall n \geq 2$.
We also have the next exact sequence:

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}_{K_{p a r}(G)}(B, M) & \xrightarrow{\epsilon^{*}} \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G), M\right) \\
& \xrightarrow{i^{*}} \operatorname{Hom}_{K_{p a r}(G)}(I G, M) \longrightarrow \operatorname{Ext}_{K_{p a r}(G)}^{1}(B, M) \rightarrow 0 .
\end{aligned}
$$

Then $H_{p a r}^{1}(G, M)=\operatorname{Ext}_{K_{p a r}(G)}^{1}(B, M) \cong \operatorname{Hom}_{K_{p a r}(G)}(I G, M) / \mathrm{im} i^{*}$. Using the isomorphism η_{M} defined in Proposition 3.13 we have that

$$
\operatorname{Hom}_{K_{p a r}(G)}(I G, M) \cong \operatorname{Der}_{p a r}(G, M)
$$

thus if we check that $\eta_{M}\left(\operatorname{im} i^{*}\right)=\operatorname{Int}_{p a r}(G, M)$ then:

$$
H_{p a r}^{1}(G, M)=\operatorname{Der}_{p a r}(G, M) / \operatorname{Int}_{p a r}(G, M)
$$

Indeed, let $f^{\prime} \in \operatorname{im} i^{*}$, then $f^{\prime}=f \circ i$ for some $f \in \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G), M\right)$, hence we have that $\eta_{M}\left(f^{\prime}\right)=\widehat{f \circ i}$. Thus for all $x \in \mathcal{S}(G)$

$$
\eta_{M}\left(f^{\prime}\right)(x)=f \circ i(x-\epsilon(x))=f(x-\epsilon(x))=(x-\epsilon(x)) f(1) .
$$

Hence $\eta_{M}\left(\operatorname{im} i^{*}\right) \subseteq \operatorname{Int}_{p a r}(G, M)$.
Finally let $\delta \in \operatorname{Int}_{p a r}(G, M)$, then by Lemma $3.14 \delta(x)=(x-\epsilon(x)) \cdot m$ for all $x \in K_{\text {par }}(G)$ and some $m \in M$, then take $f \in \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G), M\right)$ defined by $f(1)=m$. Thus

$$
\begin{aligned}
\widehat{f \circ i}(x) & =f \circ i(x-\epsilon(x))=f(x-\epsilon(x)) \\
& =(x-\epsilon(x)) \cdot m=\delta(x) .
\end{aligned}
$$

Hence $\eta_{M}(f \circ i)=\delta$, then $\eta_{M}\left(\operatorname{im} i^{*}\right)=\operatorname{Int}_{p a r}(G, M)$.

3.2 The 1-st cohomology group

In this section we are going to use Theorem 3.15 to give another characterization of the 1-st cohomology group $H_{p a r}^{1}(G, M)$ using maps $d: G \rightarrow M$ satisfying a certain property. This section correspond to the study of [5].

Recall that B is the subalgebra of $K_{p a r}(G)$ generated by the set of the idempotent elements of $\mathcal{S}(G)$ and the action of $K_{p a r}(G)$ on B is given by conjugation

$$
s \cdot e=\operatorname{ses}^{-1} .
$$

First we will show some small results in order to have the necessary tools to reach our goal.

Lemma 3.16. For arbitrary $\delta \in \operatorname{Der}_{p a r}(G, M)$ and $s \in \mathcal{S}(G)$, e an idempotent element of $\mathcal{S}(G)$ one has
(i) $\delta(e s)=e \cdot \delta(s)$,
(ii) $\delta(s e)=s e s^{-1} \cdot \delta(s)$.

Proof. By Remark 3.12 we have $\delta(e)=0$ for any idempotent $e \in \mathcal{S}(G)$, then
(i) $\delta(e s)=e \delta(s)+\epsilon(e s) \delta(e)=e \delta(s)$,
(ii) $\delta(s e)=s \delta(e)+\epsilon(s e) \delta(s)=s \epsilon(e) s^{-1} \delta(s)=s e s^{-1} \delta(s)$.

We will use the isomorphism

$$
H_{p a r}^{1}(G, M) \cong \operatorname{Der}_{p a r}(G, M) / \operatorname{Int}_{p a r}(G, M)
$$

given in Theorem 3.15 to obtain another interpretation of $H_{p a r}^{1}(G, M)$ in terms of certain maps $f: G \rightarrow M$. We introduce those maps in the following lemma.

Lemma 3.17. Let M be a $K_{p a r}(G)$-module and $d: G \rightarrow M$ a map such that for all $g, h \in G$

$$
e_{g} \cdot d(g h)=[g] \cdot d(h)+e_{g h} \cdot d(g) .
$$

Then the K-linear map $\delta: K_{p a r}(G) \rightarrow M$ defined by

$$
\delta(e[g])=e \cdot d(g),
$$

where e is an idempotent of $\mathcal{S}(G)$, is a partial derivation.

Proof. First of all, we show that δ is well-defined. Since

$$
e_{1_{G}} \cdot d\left(1_{G}\right)=\left[1_{G}\right] \cdot d\left(1_{G}\right)+e_{1_{G}} \cdot d\left(1_{G}\right),
$$

then $d\left(1_{G}\right)=0$. Hence

$$
0=e_{g} \cdot d\left(g g^{-1}\right)=[g] \cdot d\left(g^{-1}\right)+d(g)
$$

thus $d(g)=-[g] d\left(g^{-1}\right)$. Therefore

$$
d(g)=-[g] d\left(g^{-1}\right)=-[g]\left(-\left[g^{-1}\right] d(g)\right)=e_{g} d(g) .
$$

By Remark 2.21 we have that $e[g]=f[h]$ in $\mathcal{S}(G)$ if, and only if, $g=h$ and $e_{g} e=e_{g} f$, where e and f are idempotents of $\mathcal{S}(G)$. Then

$$
\delta(e[g])=e \cdot d(g)=e e_{g} \cdot d(g)=f e_{g} \cdot d(g)=f \cdot d(g)=\delta(f[g])=\delta(f[h]) .
$$

Now given two arbitrary elements $e[g]$ and $f[h]$ of $\mathcal{S}(G)$ their product is

$$
\begin{aligned}
e[g] f[h] & =e[g] e_{g^{-1}} f[h] \\
& =e[g] f\left[g^{-1}\right][g][h] \\
& =e[g] f\left[g^{-1}\right][g h] .
\end{aligned}
$$

Recall that $e[g] f\left[g^{-1}\right]$ is an idempotent, then

$$
\delta(e[g] f[h])=\delta\left(e[g] f\left[g^{-1}\right][g h]\right)=e[g] f\left[g^{-1}\right] \cdot d(g h) .
$$

On the other hand we have that

$$
\begin{aligned}
e[g] \cdot \delta(f[h])+ & \epsilon(e[g] f[h]) \cdot \delta(e[g]) \\
& =e[g] f \cdot d(h)+\epsilon(e[g] f[h]) e \cdot d(g) \\
& =e[g] f e_{g^{-1}} \cdot d(h)+e[g] f e_{h} f\left[g^{-1}\right] e \cdot d(g) \\
& =e[g] f\left[g^{-1}\right][g] \cdot d(h)+e[g] f\left[g^{-1}\right] e_{g h} \cdot d(g) \\
& =e[g] f\left[g^{-1}\right]\left([g] \cdot d(h)+e_{g h} \cdot d(g)\right) \\
& =e[g] f\left[g^{-1}\right]\left(e_{g} \cdot d(g h)\right) \\
& =e[g] f\left[g^{-1}\right] \cdot d(g h)=\delta(e[g] f[h]) .
\end{aligned}
$$

Thus δ is a partial derivation.

Definition 3.18. Let us denote by $\mathrm{D}(G, M)$ the K-vector space of maps $d: G \rightarrow M$ which satisfy

$$
e_{g} \cdot d(g h)=[g] \cdot d(h)+e_{g h} \cdot d(g) .
$$

Proposition 3.19. There is a bijective correspondence between the partial derivations of $K_{p a r}(G)$ with values in M and the elements of $\mathrm{D}(G, M)$.

Proof. Let $\delta \in \operatorname{Der}_{p a r}(G, M)$, then we have that

$$
\begin{aligned}
e_{g} \cdot \delta([g h])=\delta\left(e_{g}[g h]\right)=\delta([g][h]) & =[g] \cdot \delta([h])+\epsilon([g][h]) \cdot \delta([g]) \\
& =[g] \cdot \delta([h])+e_{g} e_{g h} \cdot \delta([g]) \\
& =[g] \cdot \delta([h])+e_{g h} \cdot \delta\left(e_{g}[g]\right) \\
& =[g] \cdot \delta([h])+e_{g h} \cdot \delta([g]) .
\end{aligned}
$$

Hence if we define $d: G \rightarrow M$ by $d(g)=\delta([g])$ then $d \in \mathrm{D}(G, M)$. Conversely, if $d \in \mathrm{D}(G, M)$, then δ given by $\delta(e[g])=e \cdot d(g)$ is in $\operatorname{Der}_{p a r}(G, M)$ by Lemma 3.17. Now observe that if $d \mapsto \delta \mapsto d^{\prime}$ then

$$
d^{\prime}(g)=\delta([g])=\delta\left(1_{\mathcal{S}(G)}[g]\right)=1_{\mathcal{S}(G)} \cdot d(g)=d(g),
$$

and if $\delta \mapsto d \mapsto \delta^{\prime}$

$$
\delta^{\prime}(e[g])=e \cdot d(g)=e \cdot \delta([g])=\delta(e[g]) .
$$

Definition 3.20. Define the set

$$
\operatorname{PD}(G, M):=\left\{d: G \rightarrow M \mid \exists m \in M \forall g \in G: d(g)=[g] \cdot m-e_{g} \cdot m\right\}
$$

Remark 3.21. Observe that $\mathrm{PD}(G, M)$ is a K-subspace of $\mathrm{D}(G, M)$. To see that it is enough to notice that given $d \in \operatorname{PD}(G, M)$ we have

$$
\begin{aligned}
{[g] \cdot d(h)+e_{g h} \cdot d(g) } & =[g] \cdot\left([h] \cdot m-e_{h} \cdot m\right)+e_{g h} \cdot\left([g] \cdot m-e_{g} \cdot m\right) \\
& =[g][h] \cdot m-[g] e_{h} \cdot m+e_{g h}[g] \cdot m-e_{g h} e_{g} \cdot m \\
& =e_{g}[g h] \cdot m-e_{g h}[g] \cdot m+e_{g h}[g] \cdot m-e_{g} e_{g h} \cdot m \\
& =e_{g} \cdot\left([g h] \cdot m-e_{g h} \cdot m\right)=e_{g} \cdot d(g h) .
\end{aligned}
$$

Then $\mathrm{PD}(G, M) \subseteq \mathrm{D}(G, M)$.
Theorem 3.22. Let M be a $K_{p a r}(G)$-module. Then $H_{p a r}^{1}(G, M)$ is isomorphic to the quotient of the additive group $\mathrm{D}(G, M)$ modulo the subgroup $\operatorname{PD}(G, M)$.

Proof. We know by Theorem 3.15 that $H_{p a r}^{1}(G, M) \cong \operatorname{Der}_{p a r}(G, M) / \operatorname{Int}_{p a r}(G, M)$ and by Proposition 3.19 we have that $\operatorname{Der}_{p a r}(G, M) \cong \mathrm{D}(G, M)$ via

$$
\varphi: \operatorname{Der}_{p a r}(G, M) \rightarrow D(G, M),
$$

given by $d(g)=\varphi(\delta)(g)=\delta([g])$.
Then is enough show that $\varphi\left(\operatorname{Int}_{p a r}(G, M)\right)=\operatorname{PD}(G, M)$. Let $\delta \in \operatorname{Int}_{p a r}(G, M)$, then $\delta([g])=[g] \cdot m-e_{g} \cdot m$ and $d=\varphi(\delta)$ satisfies $d(g)=[g] \cdot m-e_{g} \cdot m$ for all g in G, thus $\varphi(\delta) \in \operatorname{PD}(G, M)$. On the other hand, given $d \in \mathrm{PD}(G, M)$, then $d(g)=[g] \cdot m-e_{g} \cdot m$. Now define δ by $\delta(e[g])=e \cdot d(g)$, thus the map δ is in Int $_{p a r}(G, M)$ since

$$
\delta([g])=\delta\left(1_{\mathcal{S}(G)}[g]\right)=1_{\mathcal{S}(G)} \cdot d(g)=[g] \cdot m-e_{g} \cdot m .
$$

Hence

$$
\varphi(\delta)(g)=\delta([g])=\delta\left(1_{\mathcal{S}(G)}[g]\right)=1_{\mathcal{S}(G)} \cdot d(g)=d(g)
$$

Thus $\varphi(\delta)=d$. Therefore $\operatorname{PD}(G, M) \cong \operatorname{Int}_{p a r}(G, M)$ via φ.

Corollary 3.23. Let (\mathcal{A}, α) be a unital partial G-module. Consider the corresponding $K_{\text {par }}(G)$-module structure on \mathcal{A} given by Lemma 2.33. Then $H_{p a r}^{1}(G, \mathcal{A})$ is isomorphic to the quotient of the additive group of functions

$$
\left\{f: G \rightarrow \mathcal{A} \mid \forall g \in G: 1_{g} f(g h)=\alpha_{g}\left(1_{g^{-1}} f(h)\right)+1_{g h} f(g)\right\}
$$

by the subgroup

$$
\left\{f: G \rightarrow \mathcal{A} \mid \exists a \in \mathcal{A} \forall g \in G: f(g)=\alpha_{g}\left(1_{g^{-1}} a\right)-1_{g} a\right\} .
$$

3.3 A projective resolution of B

Theorem 3.15 gives us a characterization of $H_{p a r}^{n}(G, M)$ without explicitly showing an exact resolution of B. We will construct an exact resolution of B that will allow us to calculate the partial cohomology groups. As we did in Theorem 3.22 we will use the classes of certain maps $f: G \rightarrow M$ to characterize the elements of $H_{p a r}^{n}(G, M)$.

Lemma 3.24. Let R be a unital ring and $\left\{e_{i}\right\}_{i \in I} \subseteq E(R)$ a set of idempotents of R. Then the left R-module $\bigoplus_{i \in I} R e_{i}$ is projective.

Proof. Indeed, each $R e_{i}$ is a projective left R-module, since $R e_{i} \oplus R\left(1_{R}-e_{i}\right)$ is isomorphic to R, a free module of rank 1. Finally, a direct sum of projective modules is projective (see [15, Proposition 3.10]).

Notation. Denote by $e_{\left(g_{1}, \ldots, g_{n}\right)}$ the product of idempotent elements $e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{n}} \in$ $E(\mathcal{S}(G))$.

Remark 3.25. Notice that

$$
e_{\left(g_{1}, \ldots, g_{n}\right)}=e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{n}}=e_{g_{1}}\left(e_{g_{1} g_{2} \ldots e_{g_{1} g_{2} \ldots g_{n}}}\right)=e_{g_{1}} e_{\left(g_{1} g_{2}, g_{3}, \ldots, g_{n}\right)} .
$$

More generally

$$
\begin{aligned}
e_{\left(g_{1} \ldots, g_{n}\right)} & =e_{g_{1}} e_{g_{1} g_{2} \ldots} \ldots e_{g_{1} g_{2} \ldots g_{i}} e_{g_{1} g_{2} \ldots g_{i} g_{i+1} \ldots} \ldots e_{g_{1} g_{2} \ldots g_{n}} \\
& =e_{g_{1} g_{2} \ldots g_{i}}\left(e_{g_{1}} e_{g_{1} g_{2} \ldots} e_{g_{1} g_{2} \ldots g_{i} g_{i+1} \ldots e_{g_{1} g_{2} \ldots g_{n}}}\right) \\
& =e_{g_{1} g_{2} \ldots g_{i}} e_{\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right)} .
\end{aligned}
$$

Now we will define the family of projective $K_{p a r}(G)$-modules $\left\{P_{i}\right\}_{i \in \mathbb{N} \cup\{0\}}$, which are the modules that will constitute the projective resolution of B.

Definition 3.26. Define

$$
\begin{aligned}
& P_{0}=K_{p a r}(G) \\
& P_{n}=\bigoplus_{g_{1}, g_{2}, \ldots, g_{n} \in G} K_{p a r}(G) \cdot e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)}, n \in \mathbb{N} .
\end{aligned}
$$

By Lemma 3.24 each P_{n} is a projective $K_{\text {par }}(G)$-module.

Given $\omega \in P_{n}$ we have that $\omega\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is generated by the elements $s e_{\left(g_{1}, g_{2}, \ldots g_{n}\right)}$ with $s \in \mathcal{S}(G)$, with that idea in mind it would be convenient to us to have an equivalent description of the modules P_{n} such that each generator $s=s e_{\left(g_{1}, g_{2}, \ldots g_{n}\right)}$ is identified with an element $s\left(g_{1}, \ldots, g_{n}\right)$ that satisfies certain conditions.

Remark 3.27. For each $n \in \mathbb{N}$ the module P_{n} is isomorphic, as a K-vector space to the vector space over K with basis

$$
R_{n}=\left\{s\left(g_{1}, \ldots, g_{n}\right) \mid s \in \mathcal{S}(G), g_{1}, \ldots, g_{n} \in G, s^{-1} s \leq e_{\left(g_{1}, \ldots, g_{n}\right)}\right\}
$$

where

$$
s\left(g_{1}, \ldots, g_{n}\right)=t\left(h_{1}, \ldots, h_{n}\right) \Leftrightarrow\left\{\begin{aligned}
\left(g_{1}, \ldots, g_{n}\right) & =\left(h_{1}, \ldots, h_{n}\right), \\
s & =t .
\end{aligned}\right.
$$

Proof. We understand the element $s e_{\left(g_{1}, \ldots, g_{n}\right)} \in P_{n}$ such that it is specifically in the coordinate $\left(g_{1}, \ldots, g_{n}\right)$ of P_{n}. The set $\left\{s e_{\left(g_{1}, \ldots, g_{n}\right)} \mid s \in \mathcal{S}(G)\right\}$ of elements of P_{n} form a basis of the K-vector space P_{n}. Now define the map $\psi: R_{n} \rightarrow P_{n}$ given by

$$
\psi\left(s\left(g_{1}, \ldots, g_{n}\right)\right)=s e_{\left(g_{1}, \ldots, g_{n}\right)} .
$$

It is clear that ψ is an epimorphism, since for all $s \in \mathcal{S}(G)$ we have that

$$
s^{-1} s e_{\left(g_{1}, \ldots, g_{n}\right)} \leq e_{\left(g_{1}, \ldots, g_{n}\right)},
$$

thus $s e_{\left(g_{1}, \ldots, g_{n}\right)}\left(g_{1}, \ldots, g_{n}\right) \in R_{n}$, hence $\psi\left(s e_{\left(g_{1}, \ldots, g_{n}\right)}\left(g_{1}, \ldots, g_{n}\right)\right)=s e_{\left(g_{1}, \ldots, g_{n}\right)}$. Besides if $\psi\left(t\left(g_{1}, \ldots, g_{n}\right)\right)=\psi\left(s\left(g_{1}, \ldots, g_{n}\right)\right)$, then $s e_{\left(g_{1}, \ldots, g_{n}\right)}=t e_{\left(g_{1}, \ldots, g_{n}\right)}$. Therefore

$$
t\left(g_{1}, \ldots, g_{n}\right)=s\left(g_{1}, \ldots, g_{n}\right)
$$

Thus ψ is an isomorphism.
Let us identify each element $t \in K_{\text {par }}(G) \cdot e_{\left(g_{1}, \ldots, g_{n}\right)} \subseteq P_{n}$ with $t\left(g_{1}, \ldots, g_{n}\right)$. We extend the characterization of P_{n} from Remark 3.3 to $n=0$ by identifying P_{0} with the K-vector space with basis

$$
\{s() \mid s \in \mathcal{S}(G)\}
$$

Notice that for all $t \in \mathcal{S}(G)$ and $s\left(g_{1}, \ldots, g_{n}\right)$ we have

$$
t \cdot s\left(g_{1}, \ldots, g_{n}\right)=t s e_{\left(g_{1}, \ldots, g_{n}\right)}=t s\left(g_{1}, \ldots, g_{n}\right) .
$$

Now observe

$$
(t s)^{-1} t s=s^{-1} t^{-1} t s \leq s^{-1} s \leq e_{\left(g_{1}, \ldots, g_{n}\right)} .
$$

Therefore $t s e_{\left(g_{1}, \ldots, g_{n}\right)}=t s\left(g_{1}, \ldots, g_{n}\right)$ is well-defined.
In order to show that the projective modules P_{n} form a projective resolution of B we have to define the morphisms $P_{n} \rightarrow P_{n-1}$. But first we need the following definition.

Definition 3.28. Define the K-linear maps $\partial_{n}: P_{0} \rightarrow B$, and $\partial_{0}: P_{n} \rightarrow P_{n-1}$, $n \in \mathbb{N}$, as follows

$$
\begin{aligned}
\partial_{0}(s())= & s s^{-1} \\
\partial_{1}(s(g))= & s([g]()-()) \\
\partial_{n}\left(s\left(g_{1}, \ldots, g_{n}\right)\right)= & s\left(\left[g_{1}\right]\left(g_{2}, \ldots, g_{n}\right)\right. \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& \left.+(-1)^{n}\left(g_{1}, \ldots, g_{n-1}\right)\right) .
\end{aligned}
$$

Each ∂_{n} is a $K_{p a r}(G)$-module morphism. Since the $K_{p a r}(G)$-module structure on B is given by the conjugation, we have that for ∂_{0}

$$
\partial_{0}(t s())=t s(t s)^{-1}=t s s^{-1} t^{-1}=t \cdot s s^{-1}=t \cdot \partial_{0}(s()) .
$$

Now, for $n \geq 0$ observe

$$
\begin{aligned}
\partial_{n}\left(t s\left(g_{1}, \ldots, g_{n}\right)\right) & =t s\left(\left[g_{1}\right]\left(g_{2}, \ldots, g_{n}\right)+\ldots+(-1)^{n}\left(g_{1}, \ldots, g_{n-1}\right)\right) \\
& =t \cdot \partial_{n}\left(s\left(g_{1}, \ldots, g_{n}\right)\right) .
\end{aligned}
$$

Observe that if $s\left(g_{1}, \ldots, g_{n}\right) \in P_{n}$ then $s\left[g_{1}\right]\left(g_{2}, \ldots, g_{n}\right) \in P_{n-1}$. Indeed, since $s\left(g_{1}, \ldots, g_{n}\right) \in$ P_{n} we have $s^{-1} s \leq e_{\left(g_{1}, \ldots, g_{n}\right)}$, thus $s=s e_{\left(g_{1}, \ldots, g_{n}\right)}$, then

$$
\begin{aligned}
s\left[g_{1}\right] & =s e_{\left(g_{1}, \ldots, g_{n}\right)}\left[g_{1}\right] \\
& =s e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{n}}\left[g_{1}\right] \\
& =s e_{g_{1}}\left[g_{1}\right] e_{g_{2}} \ldots e_{g_{2} \ldots g_{n}} \\
& =s\left[g_{1}\right] e_{\left(g_{2}, \ldots, g_{n}\right)},
\end{aligned}
$$

thus $\left(s\left[g_{1}\right]\right)^{-1} s\left[g_{1}\right] \leq e_{\left(g_{2}, \ldots, g_{n}\right)}$ and $s\left[g_{1}\right]\left(g_{2}, \ldots, g_{n}\right) \in P_{n-1}$.
Let us denote B by P_{-1} and consider the morphism $\eta: \mathcal{S}(G) \rightarrow G$ from Remark 2.21 .

Definition 3.29. Define K-linear maps $\sigma_{n}: P_{n} \rightarrow P_{n+1}, n \in \mathbb{N} \cup\{-1,0\}$, as follows

$$
\begin{aligned}
\sigma_{-1}(e) & =e(), \\
\sigma_{0}(s()) & =s s^{-1}(\eta(s)), \\
\sigma_{n}\left(s\left(g_{1}, g_{2} \ldots, g_{n}\right)\right) & =s s^{-1}\left(\eta(s), g_{1}, g_{2}, \ldots, g_{n}\right), n \in \mathbb{N} .
\end{aligned}
$$

By Lemma 2.24 we have $s \leq[\eta(s)]$ and $s^{-1} \leq\left[\eta(s)^{-1}\right]$, then $s s^{-1} \leq e_{\eta(s)}$ for all $s \in \mathcal{S}(G)$, and if moreover $s^{-1} s \leq e_{\left(g_{1}, \ldots, g_{n}\right)}$, then

$$
\begin{aligned}
s s^{-1}=s\left(s^{-1} s\right) s^{-1} & \leq[\eta(s)] s^{-1} s\left[\eta(s)^{-1}\right] \\
& \leq[\eta(s)] e_{\left(g_{1}, \ldots, g_{n}\right)}\left[\eta(s)^{-1}\right]=e_{\left(\eta(s), g_{1}, \ldots, g_{n}\right)} .
\end{aligned}
$$

Thus $s s^{-1} \leq e_{\left(\eta(s), g_{1}, \ldots, g_{n}\right)}$ and σ_{n} is well-defined.
Lemma 3.30. We have that

$$
\begin{aligned}
\partial_{0} \circ \sigma_{-1} & =\operatorname{id}_{B}, \\
\partial_{n+1} \circ \sigma_{n}+\sigma_{n-1} \circ \partial_{n} & =\operatorname{id}_{P_{n}}, n \in \mathbb{N} \cup\{0\} .
\end{aligned}
$$

Proof. It suffices to verify on the K-basis of $P_{n}, n \in \mathbb{N} \cup\{-1,0\}$. The first case

$$
\sigma_{0} \circ \sigma_{-1}(e)=\partial_{0}(e())=e .
$$

Now for $n=0$

$$
\begin{aligned}
\left(\partial_{1} \circ \sigma_{0}+\sigma_{-1} \circ \partial_{0}\right)(s()) & =\partial_{1}\left(s s^{-1}(\eta(s))\right)+\sigma_{-1}\left(s s^{-1}\right) \\
& =s s^{-1}[\eta(s)]()-s s^{-1}()+s s^{-1}()=s() .
\end{aligned}
$$

For $n \geq 1$ observe

$$
\begin{aligned}
\left(\partial_{n+1} \circ \sigma_{n}\right)\left(s\left(g_{1}, \ldots, g_{n}\right)\right)= & \partial_{n+1}\left(s s^{-1}\left(\eta(s), g_{1}, \ldots, g_{n}\right)\right) \\
= & s s^{-1}\left([\eta(s)]\left(g_{1}, g_{2}, \ldots, g_{n}\right)-\left(\eta(s) g_{1}, \ldots, g_{n}\right)\right. \\
& +\sum_{i=1}^{n-1}(-1)^{i+1}\left(\eta(s), g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& \left.+(-1)^{n+1}\left(\eta(s), g_{1}, g_{2}, \ldots, g_{n-1}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\sigma_{n-1} \circ \partial_{n}\right)\left(s\left(g_{1}, \ldots, g_{n}\right)\right)= & \sigma_{n-1}\left(s \left(\left[g_{1}\right]\left(g_{2}, \ldots, g_{n}\right)\right.\right. \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& \left.+(-1)^{n}\left(g_{1}, \ldots, g_{n-1}\right)\right) \\
= & \left.s\left[g_{1}\right]\left(s\left[g_{1}\right]\right)^{-1}\left(\eta\left(s\left[g_{1}\right]\right), g_{2}, \ldots, g_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} s s^{-1}\left(\eta(s), g_{1}, . ., g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& +(-1)^{n} s s^{-1}\left(\eta(s), g_{1}, g_{2}, \ldots, g_{n-1}\right) .
\end{aligned}
$$

Finally, notice that $\eta\left(s\left[g_{1}\right]\right)=\eta(s) g_{1}$, and

$$
\begin{aligned}
s\left[g_{1}\right]\left(s\left[g_{1}\right]\right)^{-1}=s\left[g_{1}\right]\left(s s^{-1}[\eta(s)]\left[g_{1}\right]\right)^{-1} & =s e_{g_{1}}\left[\eta(s)^{-1}\right] s s^{-1} \\
& =s\left[\eta(s)^{-1}\right] s s^{-1} e_{\eta(s) g_{1}}=s s^{-1} e_{\eta(s) g_{1}} .
\end{aligned}
$$

Then

$$
s\left[g_{1}\right]\left(s\left[g_{1}\right]\right)^{-1}\left(\eta\left(s\left[g_{1}\right]\right), g_{2}, \ldots, g_{n}\right)=s s^{-1}\left([\eta(s)] g_{1}, g_{2}, \ldots, g_{n}\right) .
$$

Therefore

$$
\left(\partial_{n+1} \circ \sigma_{n}+\sigma_{n-1} \circ \partial_{n}\right)\left(s\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)=s\left(g_{1}, g_{2}, \ldots, g_{n}\right) .
$$

Lemma 3.31. For $n \in \mathbb{N} \cup\{0\}$ the set $\sigma_{n}\left(P_{n}\right)$ generates P_{n+1} as a $K_{p a r}(G)$-module.
Proof. Let $s\left(g_{1}, \ldots, g_{n+1}\right) \in P_{n+1}$. Since $s^{-1} s \leq e_{\left(g_{1}, g_{2}, \ldots, g_{n+1}\right)}$ we have

$$
s e_{g_{1}}=s e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)} e_{g_{1}}=s e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)}=s,
$$

consider $t=\left[\eta(s)^{-1}\right] s\left[g_{1}\right] \in \mathcal{S}(G)$, then we obtain

$$
t t^{-1}=\left[\eta(s)^{-1}\right] s e_{g_{1}} s^{-1}[\eta(s)]=\left[\eta(s)^{-1}\right] s s^{-1}[\eta(s)]=s^{-1} s
$$

Furthermore, as $s s^{-1} \leq e_{\eta(s)}$, then $s s^{-1}=e_{\eta(s)} s s^{-1}$, thus $s=e_{\eta(s)} s$. Whence

$$
\begin{aligned}
t^{-1} t=\left[g_{1}^{-1}\right] s^{-1} e_{\eta(s)} s\left[g_{1}\right] & =\left[g_{1}^{-1}\right] s^{-1} s\left[g_{1}\right] \leq\left[g^{-1}\right] e_{\left(g_{1}, \ldots, g_{n+1}\right)}\left[g_{1}\right] \\
& =e_{\left(g_{2}, \ldots, g_{n+1}\right)} e_{g_{1}^{-1}} \leq e_{\left(g_{2}, \ldots, g_{n+1}\right)} .
\end{aligned}
$$

Which means that $t\left(g_{2}, \ldots, g_{n+1}\right)$ is well-defined. Finally,

$$
\eta(t)=\eta\left(\left[\eta(s)^{-1}\right] s\left[g_{1}\right]\right)=\eta(s)^{-1} \eta(s) g_{1}=g_{1} .
$$

Therefore

$$
s \cdot \sigma_{n}\left(t\left(g_{2}, \ldots, g_{n+1}\right)\right)=s \cdot t t^{-1}\left(\eta(t), g_{2}, \ldots, g_{n+1}\right)=s s^{-1} s\left(g_{1}, \ldots, g_{n+1}\right)=s\left(g_{1}, \ldots, g_{n}\right) .
$$

Then $s\left(g_{1}, g_{2}, \ldots, g_{n+1}\right)$ is in the $K_{p a r}(G)$-module generated by $\sigma_{n}\left(P_{n}\right)$.

Proposition 3.32. The sequence

$$
\cdots \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\partial_{0}} B \rightarrow 0
$$

is a projective resolution of B.
Proof. The exactness in B is clear since ∂_{0} is an epimorphism by the first item of Lemma 3.30. By Lemma 3.24 each P_{n} is projective then we only have to prove that the sequence is exact. The inclusion $\operatorname{ker} \partial_{n} \subseteq \operatorname{im} \partial_{n+1}$, is follows from the second item of Lemma 3.30. Indeed, given $z \in \operatorname{ker} \partial_{n}$ we have

$$
z=\left(\partial_{n+1} \circ \sigma_{n}+\sigma_{n-1} \circ \partial_{n}\right)(z)=\partial_{n+1} \circ \sigma_{n}(z) .
$$

Therefore $\operatorname{ker} \partial_{n} \subseteq \operatorname{im} \partial_{n+1}$. For the converse inclusion first observe

$$
\begin{aligned}
\partial_{0} \circ \partial_{1} \circ \sigma_{0}(s()) & =\partial_{0} \circ \partial_{1}\left(s s^{-1}(\eta(s))\right) \\
& =\partial_{0}\left(s s^{-1}([\eta(s)]()-())\right) \\
& =\partial_{0}\left(s()-s s^{-1}()\right)=s s^{-1}-s s^{-1} s s^{-1}=0 .
\end{aligned}
$$

By Lemma 3.31 we have that $\sigma_{0}\left(P_{0}\right)$ generates P_{1}, then $\partial_{0} \circ \partial_{1}=0$. By Lemma 3.30 we have $\partial_{n+1} \circ \sigma_{n}=\operatorname{id}_{P_{n}}-\sigma_{n-1} \circ \partial_{n}$ and $\partial_{n} \circ \sigma_{n-1}=\operatorname{id}_{P_{n-1}}-\sigma_{n-2} \circ \partial_{n-1}$. Thus using an inductive argument, if $\partial_{n-1} \circ \partial_{n}=0$ then

$$
\begin{aligned}
\partial_{n} \circ \partial_{n+1} \circ \sigma_{n} & =\partial_{n} \circ\left(\operatorname{id}_{P_{n}}-\sigma_{n-1} \circ \partial_{n}\right) \\
& =\partial_{n}-\partial_{n} \circ \sigma_{n-1} \circ \partial_{n} \\
& =\partial_{n}-\left(\operatorname{id}_{P_{n-1}}-\sigma_{n-2} \circ \partial_{n-1}\right) \circ \partial_{n} \\
& =\partial_{n}-\partial_{n}+\sigma_{n-2} \circ \partial_{n-1} \circ \partial_{n} \\
& =0 .
\end{aligned}
$$

By Lemma $3.31 \sigma_{n}\left(P_{n}\right)$ generates P_{n+1} then $\partial_{n} \circ \partial_{n+1}=0$.
Definition 3.33. Let M be a $K_{p a r}(G)$-module. Define the following additive groups

$$
\begin{aligned}
C_{p a r}^{0}(G, M) & =M, \\
C_{p a r}^{n}(G, M) & =\left\{f: G^{n} \rightarrow M \mid f\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)} \cdot M\right\}, n \in \mathbb{N} .
\end{aligned}
$$

Lemma 3.34. Let M be a $K_{\text {par }}(G)$-module. Then

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right) \cong C_{p a r}^{n}(G, M)
$$

Proof. For $n=0$ we have that $P_{0}=K_{\text {par }}(G)$, then

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(P_{0}, M\right) \cong M=C_{p a r}^{0} .
$$

Recall that $\operatorname{Hom}\left(\bigoplus A_{i},-\right) \cong \prod \operatorname{Hom}\left(A_{i},-\right)$ (for any family of modules $\left.\left\{A_{i}\right\}\right)$. Then, for $n \in \mathbb{N}$,

$$
\begin{aligned}
\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right) & \cong \prod_{g_{1}, \ldots, g_{n} \in G} \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G) e_{\left(g_{1}, \ldots, g_{n}\right)}, M\right) \\
& \cong \prod_{g_{1}, \ldots, g_{n} \in G} e_{\left(g_{1}, \ldots, g_{n}\right)} \cdot M \\
& =C_{p a r}^{n}(G, M) .
\end{aligned}
$$

Remark 3.35. The two isomorphisms used in Lemma 3.34 are

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right) \rightarrow \prod_{g_{1}, \ldots, g_{n} \in G} \operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G) e_{\left(g_{1}, \ldots, g_{n}\right)}, M\right)
$$

given by $\varphi \mapsto \hat{\varphi}$ such that $\hat{\varphi}_{\left(g_{1}, \ldots, g_{n}\right)}\left(s e_{\left(g_{1}, \ldots, g_{n}\right)}\right)=\varphi\left(\operatorname{se}_{\left(g_{1}, \ldots, g_{n}\right)}\left(g_{1}, \ldots, g_{n}\right)\right)$. And

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G) e_{\left(g_{1}, \ldots, g_{n}\right)}, M\right) \rightarrow C_{p a r}^{n}(G, M)
$$

given by $\psi \mapsto \Phi_{\psi}$ such that $\Phi_{\psi}\left(g_{1}, \ldots, g_{n}\right)=\psi\left(e_{\left(g_{1}, \ldots, g_{n}\right)}\right)$. Then the isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right) & \longrightarrow C_{p a r}^{n}(G, M) \\
\varphi & \longmapsto f_{\varphi},
\end{aligned}
$$

is such that

$$
f_{\varphi}\left(g_{1}, \ldots, g_{n}\right)=\Phi_{\hat{\varphi}}\left(g_{1}, \ldots, g_{n}\right)=\hat{\varphi}\left(e_{\left(g_{1}, \ldots, g_{n}\right)}\right)=\varphi\left(e_{\left(g_{1}, \ldots, g_{n}\right)}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

Conversely, each $f^{\prime} \in C_{p a r}^{n}(G, M)$ corresponds to $\varphi \in \operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right)$ defined by

$$
\varphi\left(s\left(g_{1}, \ldots, g_{n}\right)\right)=s \cdot f^{\prime}\left(g_{1}, \ldots, g_{n}\right)
$$

Definition 3.36. Let M be a $K_{\text {par }}(G)$-module and $n \in \mathbb{N} \cup\{0\}$. Define the K-linear map $\delta^{n}: C_{\text {par }}^{n}(G, M) \rightarrow C_{\text {par }}^{n+1}(G, M)$ as follows:

$$
\begin{aligned}
\left(\delta^{0} m\right)(g)= & {[g] \cdot m-e_{g} \cdot m, m \in C_{p a r}^{0}(G, M) } \\
\left(\delta^{n} f\right)\left(g_{1}, \ldots, g_{n+1}\right)= & {\left[g_{1}\right] \cdot f\left(g_{2}, \ldots, g_{n+1}\right) } \\
& +\sum_{i=1}^{n}(-1)^{i} e_{g_{1} \ldots g_{i}} \cdot f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} e_{g_{1} \ldots g_{n+1}} \cdot f\left(g_{1}, \ldots, g_{n}\right), n \in \mathbb{N}, f \in C_{p a r}^{n}(G, M) .
\end{aligned}
$$

Lemma 3.37. For all $n \in \mathbb{N} \cup\{0\}$ and $f \in C_{\text {par }}^{n}(G, M)$ we have

$$
\delta^{n} f=f \circ \partial_{n+1},
$$

where f and $\delta^{n} f$ are identified with the morphisms from $\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right)$ as in Remark 3.35. In particular,

$$
C_{p a r}^{0}(G, M) \xrightarrow{\delta^{0}} C_{p a r}^{1}(G, M) \xrightarrow{\delta^{1}} \cdots
$$

is a cochain complex of abelian groups.
Proof. Remark 3.35 allows us to understand $f \in C_{p a r}^{n}(G, M)$ as a map in $\operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right)$ such that

$$
f\left(s\left(g_{1}, \ldots, g_{n}\right)\right)=s \cdot f\left(g_{1}, \ldots, g_{n}\right)
$$

and let us understand $\delta^{n} f \in \operatorname{Hom}_{K_{p a r}(G)}\left(P_{n}, M\right)$ as a map in $C_{p a r}^{n}(G, M)$ such that

$$
\delta^{n} f\left(g_{1}, \ldots, g_{n}\right)=\delta^{n} f\left(e_{\left(g_{1}, \ldots, g_{n}\right)}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

Thus it suffices to verify $\delta^{n} f=f \circ \partial_{n+1}$ on the generators

$$
\left\{e_{\left(g_{1}, \ldots, g_{n+1}\right)} \mid g_{1}, g_{2}, \ldots, g_{n+1} \in G\right\}
$$

of P_{n+1}. We first consider the case $n=0$. Let $m \in C_{p a r}^{0}(G, M)$. Then as an element of $\operatorname{Hom}_{K_{p a r}(G)}\left(K_{p a r}(G), M\right), m$ sends $s()$ to $s \cdot m$. Then

$$
\begin{aligned}
m \circ \partial_{1}\left(e_{g}(g)\right) & =m\left(e_{g}([g]()-())\right. \\
& =[g] \cdot m-e_{g} \cdot m=\left(\delta^{0} m\right)(g) \\
& =\left(\delta^{0} m\right)\left(e_{g}(g)\right) .
\end{aligned}
$$

Now let $n \in \mathbb{N}$ and f a function from $C_{p a r}^{n}(G, M)$. Thus

$$
\begin{aligned}
f \circ \partial_{n+1}\left(e_{\left(g_{1}, \ldots, g_{n+1}\right)}\left(g_{1}, \ldots, g_{n+1}\right)\right)= & e_{\left(g_{1}, \ldots, g_{n+1}\right)} \cdot\left(\left[g_{1}\right] \cdot f\left(g_{2}, \ldots, g_{n+1}\right)\right. \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& \left.+(-1)^{n+1} f\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & e_{\left(g_{1}, \ldots, g_{n+1}\right)} \cdot\left(\left[g_{1}\right] \cdot f\left(g_{2}, \ldots, g_{n+1}\right)\right. \\
& +\sum_{i=1}^{n}(-1)^{i} e_{g_{1} \ldots g_{i}} \cdot f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& \left.+(-1)^{n+1} e_{g_{1} \ldots g_{n+1}} \cdot f\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & e_{\left(g_{1}, \ldots, g_{n+1}\right)} \cdot\left(\delta^{n} f\right)\left(g_{1}, \ldots, g_{n+1}\right) \\
= & \left(\delta^{n} f\right)\left(e_{\left(g_{1}, \ldots, g_{n+1}\right)}\left(g_{1}, \ldots, g_{n+1}\right)\right)
\end{aligned}
$$

Definition 3.38. Denote $\operatorname{ker} \delta^{n}$ by $Z_{\text {par }}^{n}(G, M), n \in \mathbb{N} \cup\{0\}$, and $\operatorname{im} \delta^{n-1}$ by $B_{\text {par }}^{n}(G, M)$ $n \in \mathbb{N}$, where δ^{n} is given by Definition 3.36.

Theorem 3.39. Let G be a group and M a $K_{p a r}(G)$-module. Then $H_{p a r}^{0}(G, M) \cong$ $Z_{p a r}^{0}(G, M)$ and $H_{p a r}^{n}(G, M) \cong Z_{p a r}^{n}(G, M) / B_{p a r}^{n}(G, M)$.

Proof. This follows from Proposition 3.32, Lemma 3.34 and Lemma 3.37.

Remark 3.40. For a $K_{\text {par }}(G)$-module \mathcal{A} coming from an unital partial G-module ($\left.\mathcal{A}, \alpha\right)$ and $n \in \mathbb{N}$ we have

$$
C_{\text {par }}^{n}(G, \mathcal{A})=\left\{f: G^{n} \rightarrow \mathcal{A} \mid f\left(g_{1}, \ldots, g_{n}\right) \in 1_{\left(g_{1}, \ldots, g_{n}\right)} \mathcal{A}\right\},
$$

where

$$
1_{\left(g_{1}, \ldots, g_{n}\right)}=1_{g_{1}} 1_{g_{1} g_{2}} \ldots 1_{g_{1} \ldots g_{n}} \in \mathcal{A} .
$$

Then formulas of Definition 3.36 take the following form

$$
\begin{aligned}
\left(\delta^{0} a\right)(g)= & \alpha_{g}\left(1_{g^{-1}} a\right)-1_{g} a, a \in C_{p a r}^{0}(G, \mathcal{A})=\mathcal{A}, \\
\left(\delta^{n} f\right)\left(g_{1}, \ldots, g_{n+1}\right)= & \alpha_{g_{1}}\left(1_{g_{1}^{-1}} f\left(g_{2}, \ldots, g_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{g_{1} \ldots g_{i}} f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} 1_{g_{1} \ldots g_{n+1}} f\left(g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

$n \in \mathbb{N}, f \in C_{p a r}^{n}(G, M)$.
Example 3.41. Let G be the cyclic group $C_{2}=\left\{1, x \mid x^{2}=1\right\}$. Observe that $\mathcal{S}(G)=\left\{e,[x], e_{x}\right\}$ where $e=[1]$. Take $M=K_{\text {par }}\left(C_{2}\right)$, therefore

$$
C_{p a r}^{0}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right)=K_{p a r}\left(C_{2}\right),
$$

and, for $n \geq 1$,
$C_{\text {par }}^{n}\left(C_{2}, K_{\text {par }}\left(C_{2}\right)\right)=\left\{f:\left(C_{2}\right)^{n} \rightarrow K_{\text {par }}\left(C_{2}\right) \mid f\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)} \cdot K_{\text {par }}\left(C_{2}\right)\right\}$.
For the case $n=1$ we have

$$
C_{p a r}^{1}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right)=\left\{f: C_{2} \rightarrow K_{p a r}\left(C_{2}\right) \mid f(g) \in e_{g} \cdot K_{p a r}\left(C_{2}\right)\right\},
$$

notice that $f(1) \in e \cdot K_{\text {par }}\left(C_{2}\right)=K_{\text {par }}\left(C_{2}\right)$ and $f(x) \in e_{x} \cdot K_{\text {par }}\left(C_{2}\right) \cong K C_{2}$. Indeed, it is easy to see that $e_{x} \cdot \mathcal{S}\left(C_{2}\right)=\left\{[x], e_{x}\right\} \cong C_{2}$ and since $[x]$ generates $e_{x} \cdot K_{p a r}\left(C_{2}\right)$ as an algebra, we have that $e_{x} \cdot K_{\text {par }}\left(C_{2}\right) \cong K C_{2}$. Thus,

$$
C_{p a r}^{1}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right) \cong K_{p a r}\left(C_{2}\right) \oplus K C_{2} .
$$

Now, take any $e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)} \in \mathcal{S}\left(C_{2}\right)$, if there exist $j \in\{1, \ldots, n\}$ such that $g_{j}=x$ then $e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)}=e_{x}$. Indeed, let us take $j \in\{1, \ldots, n\}$ such that is the smallest element that satisfies $g_{j}=x$, therefore $g_{i}=1$ for all $i<j$. Thus,

$$
e_{\left(g_{1}, g_{2}, \ldots, g_{n}\right)}=e_{g_{1}} e_{g_{1} g_{2}} \ldots e_{g_{1} g_{2} \ldots g_{j}} e_{g_{1} g_{2} \ldots g_{j}} \ldots e_{g_{1} g_{2} \ldots g_{n}}=e_{x} e_{x g_{j+1}} \ldots e_{x \ldots g_{n}}=e_{x}
$$

Hence, for $f \in C_{\text {par }}^{n}\left(C_{2}, K_{\text {par }}\left(C_{2}\right)\right)$ we have that $f\left(g_{1}, \ldots, g_{n}\right) \in e \cdot K_{\text {par }}\left(C_{2}\right)=$ $K_{\text {par }}\left(C_{2}\right)$ if $g_{i}=1$ for all $i \in\{1, \ldots, n\}$ and $f\left(g_{1}, \ldots, g_{n}\right) \in e_{x} \cdot K_{p a r}\left(C_{2}\right)$ otherwise. Therefore

$$
C_{p a r}^{n}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right) \cong K_{p a r}\left(C_{2}\right) \oplus\left(K C_{2}\right)^{n-1}
$$

If we check δ^{0} in the basis $\left\{e,[x], e_{x}\right\}$ of $C_{p a r}^{0}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right)$ we have that

$$
\begin{aligned}
\delta^{0}(e) & =\left(0,[x]-e_{x}\right), \\
\delta^{0}([x]) & =\left(0, e_{x}-[x]\right), \\
\delta^{0}\left(e_{x}\right) & =\left(0,[x]-e_{x}\right),
\end{aligned}
$$

where the first coordinate correspond to $e \cdot K_{\text {par }}\left(C_{2}\right)$ and the second coordinate correspond to $e_{x} \cdot K_{p a r}\left(C_{2}\right)$. Therefore $\operatorname{ker} \delta^{0}=H_{p a r}^{0}\left(C_{2}, K_{p a r}\left(C_{2}\right)\right)$ is the vector space generated by $\left\{e+[x], e_{x}+[x]\right\}$, which is $\left(K_{\text {par }}\left(C_{2}\right)\right)^{G_{p a r}}$ as Theorem 3.15 says.

CHAPTER 4

Grothendieck spectral sequence

We will use spectral sequence theory to relate cohomology of partial smash product with partial group cohomology and algebra cohomology. In order to do that we will show that there exists a pair of functors which satisfies the conditions of Theorem 2.106, thus we will obtain a Grothendieck spectral sequence relating the desired cohomologies. This section corresponds to the study of the final part of [2].

Definition 4.1. If A is a k-algebra, where k is a commutative ring, then its enveloping algebra is

$$
A^{e}=A \otimes_{k} A^{o p}
$$

Proposition 4.2. Let R and S be k-algebras, where k is a commutative ring. Then any (R, S)-bimodule M is a left $R \otimes_{k} S^{o p}$-module, where

$$
\left(r \otimes_{k} s\right) m=r m s
$$

In particular if A is a k-algebra, then A is a A^{e}-bimodule.
Definition 4.3. (Cohomology modules of an algebra). 1 Let A be an algebra and let M be an A-bimodule (A^{e}-module), we define the nth cohomology module $H^{n}(A, M)$ of A with coefficients in M as $\operatorname{Ext}_{A^{e}}^{n}(A, M)$.

[^0]Theorem 4.4. For any $A \rtimes_{\alpha} G$-bimodule M there is a third quadrant cohomology spectral sequence starting with E_{2} and converging to $H^{\bullet}\left(A \rtimes_{\alpha} G, M\right)$:

$$
E_{2}^{p, q}=H_{p a r}^{p}\left(G, H^{q}(A, M)\right) \underset{p}{\Rightarrow} H^{p+q}\left(A \rtimes_{\alpha} G, M\right)
$$

We need some preparation in order to construct the functors that will be used in the proof of Theorem 4.4. Recall that we are working with an unital partial action $\left(A,\left\{D_{g}\right\}_{g \in G},\left\{\alpha_{g}\right\}_{g \in G}\right)$, and that we denote the unity of D_{g} by u_{g}.

Take a pair of representations

$$
\phi_{X}: K_{p a r}(G) \rightarrow \operatorname{End}_{K}(X) \in \operatorname{Ob}\left(\operatorname{Rep} K_{p a r}(G)\right)
$$

and

$$
\Phi_{M}:\left(A \rtimes_{\alpha} G\right)^{e} \rightarrow \operatorname{End}_{K}(M) \in \operatorname{Ob}\left(\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}\right)
$$

Taking $h=1$ in Remark 2.42 we obtain the homomorphism $K_{p a r}(G) \rightarrow A \rtimes_{\alpha} G$ of algebras given by $[g] \mapsto u_{g} \# g$, which induce the algebra homomorphism $B \rightarrow$ $\left(A \rtimes_{\alpha} G\right)^{e}$ defined by $e_{s} \mapsto u_{s} \# 1_{G} \otimes 1_{\left(A \rtimes_{\alpha} G\right)^{o p}}$. It follows that M is a B-module. Moreover, X is a bimodule over B, because B is a commutative subalgebra of $K_{p a r}(G)$. Thus we can consider the representation

$$
\Delta:\left(A \rtimes_{\alpha} G\right)^{e} \rightarrow \operatorname{End}_{K}\left(X \otimes_{B} M\right) \in \operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e},
$$

given by

$$
\Delta\left(a u_{g} \# g \otimes b u_{h} \# h\right)(x \otimes m)=\phi_{X}([g])(x) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) .
$$

It follows from the definition of the module structures that for $x \otimes m$ in $X \otimes_{B} M$ we have

$$
\phi_{X}\left(e_{s}\right)(x) \otimes m=x \otimes \Phi_{M}\left(u_{s} \# 1_{G} \otimes 1\right)(m) .
$$

Thus in order to verify that Δ is well defined we have to show that
$\Delta\left(a u_{g} \# g \otimes b u_{h} \# h\right)\left(\phi_{X}\left(e_{s}\right)(x) \otimes m\right)=\Delta\left(a u_{g} \# g \otimes b u_{h} \# h\right)\left(x \otimes \Phi_{M}\left(u_{s} \# 1_{G} \otimes 1\right)(m)\right)$.

Indeed,

$$
\begin{align*}
\Delta\left(a u_{g} \# g\right. & \left.\otimes b u_{h} \# h\right)\left(\phi_{X}\left(e_{s}\right)(x) \otimes m\right) \\
& =\phi_{X}([g])\left(\phi_{X}\left(e_{s}\right)(x)\right) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) \\
& =\phi_{X}\left([g] e_{s}\right)(x) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) \\
& =\phi_{X}\left(e_{g s}[g]\right)(x) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) \\
& =\phi_{X}\left(e_{g s}\right) \phi_{X}([g])(x) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) \\
& =\phi_{X}([g])(x) \otimes \Phi_{M}\left(u_{g s} \# 1_{G} \otimes 1\right) \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right)(m) \\
& =\phi_{X}([g])(x) \otimes \Phi_{M}\left(\left(u_{g s} \# 1_{G}\right)\left(a u_{g} \# g\right) \otimes b u_{h} \# h\right)(m) \tag{1}\\
& =\phi_{X}([g])(x) \otimes \Phi_{M}\left(\left(a u_{g} \# g\right)\left(u_{s} \# 1_{G}\right) \otimes b u_{h} \# h\right)(m) \tag{2}\\
& =\phi_{X}([g])(x) \otimes \Phi_{M}\left(a u_{g} \# g \otimes b u_{h} \# h\right) \Phi_{M}\left(u_{s} \# 1_{G} \otimes 1\right)(m) \\
& =\Delta\left(a u_{g} \# g \otimes b u_{h} \# h\right)\left(x \otimes \Phi_{M}\left(u_{s} \# 1_{G} \otimes 1\right)(m)\right),
\end{align*}
$$

where from (1) to (2) we use that by Lemma 2.41

$$
\begin{aligned}
\left(u_{g s} \# 1_{G}\right)\left(a u_{g} \# g\right) & =a u_{g} u_{g s} \# g \\
& =a u_{g} \alpha_{g}\left(u_{s} u_{g^{-1}}\right) \# g \\
& =\left(a u_{g} \# g\right)\left(u_{s} \# 1_{G}\right) .
\end{aligned}
$$

In particular, if we take $M=A \rtimes_{\alpha} G$ we have that $X \otimes_{B}\left(A \rtimes_{\alpha} G\right)$ is an object in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$, where

$$
\begin{equation*}
\left(a u_{g} \# g \otimes b u_{h} \# h\right) \cdot\left(x \otimes c u_{s} \# s\right)=\phi_{X}([g])(x) \otimes\left(a u_{g} \# g\right)\left(c u_{s} \# s\right)\left(b u_{h} \# h\right) . \tag{4.1}
\end{equation*}
$$

Observe that M can be viewed as an object in $\operatorname{Rep} A^{e}$, where the morphism $\phi_{M}: A^{e} \rightarrow \operatorname{End}_{K}(M)$ is the composition

$$
A^{e} \xrightarrow{\phi_{0} \otimes \phi_{0}}\left(A \rtimes_{\alpha} G\right)^{e} \xrightarrow{\Phi_{M}} \operatorname{End}_{K}(M),
$$

given by

$$
a \otimes b \mapsto a u_{1_{G}} \# 1_{G} \otimes b u_{1_{G}} \# 1_{G} \mapsto \Phi_{M}\left(a u_{1_{G}} \# 1_{G} \otimes b u_{1_{G}} \# 1_{G}\right) .
$$

Recall that by (III) of Lemma 2.41 we have that $G \rightarrow A \rtimes_{\alpha} G$ given by $g \mapsto u_{g} \# g$ is a partial representation. Furthermore, by Lemmas 2.36 and 2.37 we have that M is an object in $\operatorname{ParRep} G$ with the map $G \rightarrow \operatorname{End}_{K}(M)$ given by

$$
g \in G \mapsto\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) \in\left(A \rtimes_{\alpha} G\right)^{e} \mapsto \Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) \in \operatorname{End}_{K}(M) .
$$

Therefore, by Lemma 2.35 there exists a partial representation

$$
\mu: G \rightarrow \operatorname{End}_{K}\left(\operatorname{Hom}_{K}(A, M)\right),
$$

given by

$$
\mu(g)(f)(x)=\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right),
$$

where $f \in \operatorname{Hom}_{K}(A, M)$ and $x \in A$. Notice that μ induces a partial representation

$$
\pi: G \rightarrow \operatorname{End}_{K}\left(\operatorname{Hom}_{A^{e}}(A, M)\right),
$$

given by

$$
\pi(g)(f)(x)=\mu(g)(f)(x)=\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right),
$$

where $f \in \operatorname{Hom}_{A^{e}}(A, M)$ and $x \in A$. So we only have to verify that $\pi(g)(f) \in$ $\operatorname{Hom}_{A^{e}}(A, M)$ for all $f \in \operatorname{Hom}_{A^{e}}(A, M)$
$\pi(g)(f)(a x b)$
$=\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) f\left(\alpha_{g^{-1}}\left(u_{g} a x b\right)\right)$
$=\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) f\left(\alpha_{g^{-1}}\left(u_{g} a\right) \alpha_{g^{-1}}\left(u_{g} x\right) \alpha_{g^{-1}}\left(u_{g} b\right)\right)$
$=\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) \Phi_{M}\left(\alpha_{g^{-1}}\left(u_{g} a\right) u_{1_{G}} \# 1_{G} \otimes \alpha_{g^{-1}}\left(u_{g} b\right) u_{1_{G}} \# 1_{G}\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right)$
$=\Phi_{M}\left(\left(u_{g} \# g\right)\left(\alpha_{g^{-1}}\left(u_{g} a\right) u_{1_{G}} \# 1_{G}\right) \otimes\left(\alpha_{g^{-1}}\left(u_{g} b\right) u_{1_{G}} \# 1_{G}\right)\left(u_{g^{-1}} \# g^{-1}\right)\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right)$
$=\Phi_{M}\left(\left(a u_{1_{G}} \# 1_{G}\right)\left(u_{g} \# g\right) \otimes\left(u_{g^{-1}} \# g^{-1}\right)\left(b u_{1_{G}} \# 1_{G}\right)\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right)$
$=\Phi_{M}\left(a u_{1_{G}} \# 1_{G} \otimes b u_{1_{G}} \# 1_{G}\right) \Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) f\left(\alpha_{g^{-1}}\left(u_{g} x\right)\right)$
$=\Phi_{M}\left(a u_{1_{G}} \# 1_{G} \otimes b u_{1_{G}} \# 1_{G}\right) \pi(g)(f)(x)$.
From (3) to (4) recall that $f \in \operatorname{Hom}_{A^{e}}(A, M)$, from (5) to (6) we use that

$$
\begin{aligned}
\left(u_{g} \# g\right)\left(\alpha_{g^{-1}}\left(u_{g} a\right) u_{1_{G}} \# 1_{G}\right) & =u_{g} \alpha_{g}\left(\alpha_{g^{-1}}\left(u_{g} a\right) u_{g^{-1}}\right) u_{g} \# g \\
& =u_{g} \alpha_{g}\left(\alpha_{g^{-1}}\left(u_{g} a\right)\right) \# g \\
& =u_{g} a \# g=\left(a u_{1_{G}} \# 1_{G}\right)\left(u_{g} \# g\right)
\end{aligned}
$$

and analogously,

$$
\begin{aligned}
\left(\alpha_{g^{-1}}\left(u_{g} b\right) u_{1_{G}} \# 1_{G}\right)\left(u_{g^{-1}} \# g^{-1}\right) & =\alpha_{g^{-1}}\left(u_{g} b\right) u_{g^{-1}} \# g^{-1} \\
& =u_{g^{-1}} \alpha_{g^{-1}}\left(b u_{1_{G}} u_{g}\right) u_{g^{-1}} \# g^{-1} \\
& =\left(u_{g^{-1}} \# g^{-1}\right)\left(b u_{1_{G}} \# 1_{G}\right) .
\end{aligned}
$$

Then $\pi(g)(f) \in \operatorname{Hom}_{A^{e}}(A, M)$. Therefore $\pi \in \operatorname{RepPar} K$, and take $\tilde{\pi} \in \operatorname{Rep} K_{p a r}(G)$ such that $\pi(g)=\tilde{\pi}([g])$.

Now we consider the natural transformations

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(-, \operatorname{Hom}_{A^{e}}(A, M)\right) \xrightarrow{\Gamma} \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(-\otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right)
$$

and

$$
\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(-\otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right) \xrightarrow{\Lambda} \operatorname{Hom}_{K_{p a r}(G)}\left(-, \operatorname{Hom}_{A^{e}}(A, M)\right)
$$

defined as follows: given a $K_{\text {par }}(G)$-module X and $H \in \operatorname{Hom}_{K_{p a r}(G)}\left(X, \operatorname{Hom}_{A^{e}}(A, M)\right)$, the map $\Gamma_{X}(H)$ is defined by

$$
\Gamma_{X}(H)\left(x \otimes a u_{g} \# g\right):=\Phi_{M}\left(1 \otimes a u_{g} \# g\right) H(x)\left(1_{A}\right),
$$

and given $T \in \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(X \otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right)$, the map $\Lambda_{X}(T)$ is defined by

$$
\Lambda_{X}(T)(x)(a):=T\left(x \otimes\left(a u_{1_{G}} \# 1_{G}\right)\right) .
$$

The map $\Gamma_{X}(H)$ is well defined since

$$
\begin{aligned}
\Gamma_{X}(H)(& \left(e_{h} \cdot x \otimes a u_{g} \# g\right) \\
= & \Phi_{M}\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) H\left(e_{h} \cdot x\right)\left(1_{A}\right) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right)\left(\tilde{\pi}\left(e_{h}\right)\right) H(x)(1) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right) \pi(h) \pi\left(h^{-1}\right) H(x)(1) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) \pi\left(h^{-1}\right) H(x)\left(\alpha_{h^{-1}}\left(u_{h} 1\right)\right) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) \Phi_{M}\left(u_{h^{-1}} \# h^{-1} \otimes u_{h} \# h\right) \\
& H(x)\left(\alpha_{h}\left(u_{h^{-1}} \alpha_{h^{-1}}\left(u_{h} 1\right)\right)\right) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right) \Phi_{M}\left(\left(u_{h} \# h\right)\left(u_{h^{-1}} \# h^{-1}\right) \otimes\left(u_{h} \# h\right)\left(u_{h^{-1}} \# h^{-1}\right)\right) \\
& H(x)\left(u_{h}\right) \\
= & \Phi_{M}\left(1 \otimes a u_{g} \# g\right) \Phi_{M}\left(\left(u_{h} \# 1_{G}\right) \otimes\left(u_{h} \# 1_{G}\right)\right) H(x)\left(u_{h}\right) \\
= & \Phi_{M}\left(u_{h} \# 1_{G} \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) H(x)\left(u_{h}\right) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) \Phi_{M}\left(u_{h} \# 1_{G} \otimes u_{1_{G}} \# 1_{G}\right) H(x)\left(u_{h}\right) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) \phi_{M}\left(u_{h} \otimes u_{1_{G}}\right)\left(H(x)\left(u_{h} 1\right)\right) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) H(x)\left(u_{h}\left(u_{h} 1\right)\right) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) H(x)\left(1 u_{h}\right) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) \phi_{M}\left(u_{1_{G}} \otimes u_{h}\right) H(x)(1) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) \Phi_{M}\left(u_{1_{G}} \# 1_{G} \otimes u_{h} \# 1_{G}\right) H(x)(1) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) H(x)(1) \\
= & \Phi_{M}\left(1 \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) H(x)(1) \\
= & \Gamma_{X}(H)\left(x \otimes\left(u_{h} \# 1_{G}\right)\left(a u_{g} \# g\right)\right) \\
= & \Gamma_{X}(H)\left(x \otimes e_{h} \cdot\left(a u_{g} \# g\right)\right) .
\end{aligned}
$$

Next we show that $\Gamma_{X}(H)$ is a homomorphism of $\left(A \rtimes_{\alpha} G\right)^{e}$-modules:

$$
\begin{aligned}
& \Gamma_{X}(H)\left(\Delta\left(c u_{h} \# h \otimes d u_{s} \# s\right)\left(x \otimes a u_{g} \# g\right)\right) \\
& \stackrel{\boxed{4.1 .}}{=} \Gamma_{X}(H)\left(\phi_{X}([h])(x) \otimes\left(\left(c u_{h} \# h\right) \otimes\left(d u_{s} \# s\right)\right) \cdot\left(a u_{g} \# g\right)\right) \\
&= \Gamma_{X}(H)\left(\phi_{X}([h])(x) \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \\
&= \Phi_{M}\left(1_{A x_{\alpha} G} \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H\left(\phi_{X}([h])(x)\right)\left(1_{A}\right) \\
&= \Phi_{M}\left(1 \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \pi(h)(H(x))(1) \\
&= \Phi_{M}\left(1 \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) H(x)\left(u_{h^{-1}}\right) \\
&= \Phi_{M}\left(1 \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) \\
& \quad \cdot \phi_{M}\left(u_{1_{G}} \otimes u_{h^{-1}}\right) H(x)(1) \\
&= \Phi_{M}\left(1 \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) \\
& \quad \Phi_{M}\left(u_{1_{G}} \# 1_{G} \otimes u_{h^{-1}} \# 1_{G}\right) H(x)(1) \\
&= \Phi_{M}\left(1 \otimes\left(c u_{h} \# h\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(u_{h} \# h \otimes u_{h^{-1}} \# h^{-1}\right) H(x)(1) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(\alpha_{h^{-1}}\left(c u_{h}\right) \# 1_{G}\right)\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H(x)(1) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(\left(u_{1_{G}} \# 1_{G}\right) \otimes \alpha_{h^{-1}}\left(c u_{h}\right) \# 1_{G}\right) H(x)(1) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \phi_{M}\left(u_{1_{G}} \otimes \alpha_{h^{-1}}\left(c u_{h}\right)\right) H(x)(1) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H(x)\left(\alpha_{h^{-1}}\left(c u_{h}\right)\right) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \phi_{M}\left(\alpha_{h^{-1}}\left(c u_{h}\right) \otimes u_{1_{G}}\right) H(x)(1) \\
&= \Phi_{M}\left(u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) \Phi_{M}\left(\alpha_{h^{-1}}\left(c u_{h}\right) \# 1_{G} \otimes\left(u_{1_{G}} \# 1_{G}\right)\right) H(x)(1) \\
&= \Phi_{M}\left(\left(u_{h} \# h\right)\left(\alpha_{h^{-1}}\left(c u_{h}\right) \# 1_{G}\right) \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H(x)(1) \\
&= \Phi_{M}\left(\left(u_{h} \alpha_{h}\left(u_{h^{-1}} \alpha_{h^{-1}}\left(c u_{h}\right)\right) \# h\right) \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H(x)(1) \\
&= \Phi_{M}\left(c u_{h} \# h \otimes\left(a u_{g} \# g\right)\left(d u_{s} \# s\right)\right) H(x)(1) \\
&= \Phi_{M}\left(c u_{h} \# h \otimes d u_{s} \# s\right) \Phi_{M}\left(1 \otimes a u_{g} \# g\right) H(x)(1) \\
&= \Phi_{M}\left(c u_{h} \# h \otimes\left(d u_{s} \# s\right)\right) \Gamma_{X}(H)\left(x \otimes a u_{g} \# g\right) .
\end{aligned}
$$

On the other hand, $\Lambda_{X}(T) \in \operatorname{Hom}_{K_{p a r}(G)}\left(X, \operatorname{Hom}_{A^{e}}(A, M)\right)$ because

$$
\begin{aligned}
\Lambda_{X}(T)(x)((c \otimes d) \cdot a) & =T\left(x \otimes\left(c u_{1_{G}} \# 1_{G}\right)\left(a u_{1_{G}} \# 1_{G}\right)\left(d u_{1_{G}} \# 1_{G}\right)\right) \\
& =T\left(x \otimes\left(\left(c u_{1_{G}} \# 1_{G}\right) \otimes\left(d u_{1_{G}} \# 1_{G}\right)\right) \cdot\left(a u_{1_{G}} \# 1_{G}\right)\right) \\
& =T\left(\Delta\left(\left(c u_{1_{G}} \# 1_{G}\right) \otimes\left(d u_{1_{G}} \# 1_{G}\right)\right)\left(x \otimes\left(a u_{1_{G}} \# 1_{G}\right)\right)\right) \\
& =\Phi_{M}\left(c u_{1_{G}} \# 1_{G} \otimes d u_{1_{G}} \# 1_{G}\right) T\left(x \otimes a u_{1_{G}} \# 1_{G}\right) \\
& =\Phi_{M}\left(c u_{1_{G}} \# 1_{G} \otimes d u_{1_{G}} \# 1_{G}\right) \Lambda_{X}(T)(x)(a),
\end{aligned}
$$

which shows that $\Lambda_{X}(T)(x)$ is a homomorphism of A^{e}-modules. Furthermore, $\Lambda_{X}(T)$
is a homomorphism of $K_{\text {par }}(G)$-modules, since

$$
\begin{aligned}
\Lambda_{X}(T) & \left(\phi_{X}([g])(x)\right)(a) \\
& =T\left(\phi_{X}([g])(x) \otimes a u_{1_{G}} \# 1_{G}\right)=T\left(\phi_{X}\left(e_{g}[g]\right)(x) \otimes a u_{1_{G}} \# 1_{G}\right) \\
& =T\left(\left(\phi_{X}\left(e_{g}\right) \phi_{X}([g])\right)(x) \otimes a u_{1_{G}} \# 1_{G}\right) \\
& =T\left(\phi_{X}([g])(x) \otimes\left(u_{g} \# 1_{G}\right)\left(a u_{1_{G}} \# 1_{G}\right)\right)=T\left(\phi_{X}([g])(x) \otimes a u_{g} \# 1_{G}\right) \\
& =T\left(\phi_{X}([g])(x) \otimes\left(u_{g} \# g\right)\left(\alpha_{g^{-1}}\left(a u_{g}\right) \# 1_{G}\right)\left(u_{g^{-1}} \# g^{-1}\right)\right) \\
& \stackrel{4.1}{=} T\left(\Delta\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right)\left(x \otimes\left(\alpha_{g^{-1}}\left(a u_{g}\right) \# 1_{G}\right)\right)\right) \\
& =\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) T\left(x \otimes \alpha_{g^{-1}}\left(a u_{g}\right) \# 1_{G}\right) \\
& =\Phi_{M}\left(u_{g} \# g \otimes u_{g^{-1}} \# g^{-1}\right) \Lambda_{X}(T)(x)\left(\alpha_{g^{-1}}\left(a u_{g}\right)\right)=\pi(g) \Lambda_{X}(T)(x)(a) .
\end{aligned}
$$

Moreover, $\Lambda \circ \Gamma=i d$, since

$$
\begin{aligned}
\Lambda_{X}\left(\Gamma_{X}(H)\right)(x)(a) & =\Gamma_{X}(H)\left(x \otimes a u_{1_{G}} \# 1_{G}\right) \\
& =\Phi_{M}\left(u_{1_{G}} \# 1_{G} \otimes a u_{1_{G}} \# 1_{G}\right) H(x)(1) \\
& =\phi_{M}\left(u_{1_{G}} \otimes a u_{1_{G}}\right) H(x)(1) \\
& =H(x)(a),
\end{aligned}
$$

and $\Gamma \circ \Lambda=i d$, because

$$
\begin{aligned}
\Gamma_{X}\left(\Lambda_{X}(T)\right)\left(x \otimes a u_{g} \# g\right) & =\Phi_{M}\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \Lambda_{X}(T)(x)\left(1_{A}\right) \\
& =\Phi_{M}\left(1 \otimes a u_{g} \# g\right) T\left(x \otimes u_{1_{G}} \# 1_{G}\right)=T\left(x \otimes a u_{g} \# g\right) .
\end{aligned}
$$

Finally, observe that for any morphism $f: X \rightarrow Y$ in $\operatorname{Rep} K_{p a r}(G)$ and $H \in$ $\operatorname{Hom}_{K_{p a r}(G)}\left(Y, \operatorname{Hom}_{A^{e}}(A, M)\right)$ we have

$$
\begin{aligned}
\Gamma_{X} & \left(\operatorname{Hom}_{K_{\operatorname{par}(}(G)}\left(f, \operatorname{Hom}_{A^{e}}(A, M)\right)(H)\right)\left(x \otimes a u_{g} \# g\right) \\
& =\Gamma_{X}(H \circ f)\left(x \otimes a u_{g} \# g\right) \\
& =\Phi_{M}\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right)\left((H \circ f)(x)\left(1_{A}\right)\right) \\
& =\Gamma_{Y}(H)\left(f(x) \otimes a u_{g} \# g\right) \\
& =\Gamma_{Y}(H) \circ(f \otimes i d)\left(x \otimes a u_{g} \# g\right) \\
& =\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(f \otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right)\left(\Gamma_{Y}(H)\right)\left(x \otimes a u_{g} \# g\right) .
\end{aligned}
$$

Thus the next diagram commutes

where $f^{*}=\operatorname{Hom}_{K_{p a r}(G)}\left(f, \operatorname{Hom}_{A^{e}}(A, M)\right)$ and $f_{*}=\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(f \otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right)$.
The previous facts lead us to the following two propositions.
Proposition 4.5. The functors

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(-, \operatorname{Hom}_{A^{e}}(A, M)\right) \text { and } \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(-\otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right)
$$

are naturally isomorphic by means of Γ.
Proposition 4.6. Up to the natural isomorphism Γ, we have the commutative diagram of functors

where

$$
F_{1}(M)=\operatorname{Hom}_{A^{e}}(A, M), F_{2}(X)=\operatorname{Hom}_{K_{p a r}(G)}(B, X)
$$

and

$$
F(M)=\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(A \rtimes_{\alpha} G, M\right) .
$$

Proof. Recall that $F_{1}(M)=\operatorname{Hom}_{A^{e}}(A, M) \in \operatorname{Ob}\left(\operatorname{Rep} K_{\text {par }}(G)\right)$ due the map π defined above, and B is a $K_{p a r}(G)$-module by Corollary 2.55. Now, if we take $X=B$ and $M=A \rtimes_{\alpha} G$, the map Δ defines a $\left(A \rtimes_{\alpha} G\right)^{e}$-module structure for $B \otimes_{B}\left(A \rtimes_{\alpha} G\right)$ given by

$$
\begin{aligned}
\left(a u_{g} \# g \otimes b u_{h} \# h\right) \cdot\left(w \otimes c u_{s} \# s\right) & =[g] \cdot w \otimes\left(a u_{g} \# g \otimes b u_{h} \# h\right) \cdot\left(c u_{s} \# s\right) \\
& =[g] w\left[g^{-1}\right] \otimes\left(a u_{g} \# g\right)\left(c u_{s} \# s\right)\left(b u_{h} \# h\right) .
\end{aligned}
$$

Furthermore, observe that for any $x \in A \rtimes_{\alpha} G$ we have

$$
\begin{aligned}
\left(a u_{g} \# g \otimes b u_{h} \# h\right) \cdot\left(1_{B} \otimes x\right) & =e_{g} \otimes\left(a u_{g} \# g\right) x\left(b u_{h} \# h\right) \\
& =1_{B} \otimes\left(u_{g} \# 1_{G}\right)\left(a u_{g} \# g\right) x\left(b u_{h} \# h\right) \\
& =1_{B} \otimes\left(a u_{g} \# g\right) x\left(b u_{h} \# h\right) .
\end{aligned}
$$

Whence we get that $B \otimes_{B}\left(A \rtimes_{\alpha} G\right)$ and $A \rtimes_{\alpha} G$ are isomorphic as $\left(A \rtimes_{\alpha} G\right)^{e}$-modules, because $B \otimes_{B}\left(A \rtimes_{\alpha} G\right) \cong A \rtimes_{\alpha} G$ as abelian groups by means of the map $b \otimes x \mapsto b \cdot x$,
where $b \in B$ and $x \in A \rtimes_{\alpha} G$. Then using Proposition4.5 to the particular case $X=B$ we have for any $M \in \operatorname{Ob}\left(\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}\right)$ that

$$
\begin{aligned}
F_{2} F_{1} M & =\operatorname{Hom}_{K_{\text {par }}(G)}\left(B, \operatorname{Hom}_{A^{e}}(A, M)\right) \\
& \simeq \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(B \otimes_{B}\left(A \rtimes_{\alpha} G\right), M\right) \\
& \simeq \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(A \rtimes_{\alpha} G, M\right) .
\end{aligned}
$$

Finally, if $f: X \rightarrow Y$ is a morphism in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$ we want the next diagram to commute

where γ_{X} and γ_{Y} are the isomorphisms given by Γ_{B}, when $M=X$ and $M=Y$ respectively, i.e.

$$
\gamma_{X}(H)\left(b \otimes a u_{g} \# g\right)=\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \cdot H(b)\left(1_{A}\right)
$$

and

$$
\gamma_{Y}\left(H^{\prime}\right)\left(b \otimes a u_{g} \# g\right)=\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \cdot H^{\prime}(b)\left(1_{A}\right),
$$

for $H \in \operatorname{Hom}_{K_{p a r}(G)}\left(B, \operatorname{Hom}_{A^{e}}(A, X)\right), H^{\prime} \in \operatorname{Hom}_{K_{p a r}(G)}\left(B, \operatorname{Hom}_{A^{e}}(A, Y)\right), a \in A$ and $b \in B$. Now, observe that

$$
\left(F_{2} F_{1}(f)(H)\right)(b)(a)=f(H(b)(a))
$$

and

$$
(F(f)(W))\left(b \otimes a u_{g} \# g\right)=f\left(W\left(b \otimes a u_{g} \# g\right)\right),
$$

where $W \in \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(B \otimes_{B}\left(A \rtimes_{\alpha} G\right), X\right)$. Therefore,

$$
\begin{aligned}
\gamma_{Y}\left(F_{2} F_{1}(f) H\right)\left(b \otimes a u_{g} \# g\right) & =\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \cdot\left(F_{2} F_{1}(f) H\right)(b)\left(1_{A}\right) \\
& =\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \cdot f\left(H(b)\left(1_{A}\right)\right) \\
& =f\left(\left(1_{A \rtimes_{\alpha} G} \otimes a u_{g} \# g\right) \cdot H(b)\left(1_{A}\right)\right) \\
& =f\left(\gamma_{X}(H)\left(b \otimes a u_{g} \# g\right)\right) \\
& =F(f)\left(\gamma_{X}(H)\right)\left(b \otimes a u_{g} \# g\right) .
\end{aligned}
$$

Thus, the above diagram commutes.

Observe that if the functor F_{2} is left exact and $F_{1}(N)$ is right F_{2}-acyclic for any injective object N in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$, then by Theorem 2.106 for any object M in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$ there exists a third quadrant spectral sequence with

$$
E_{2}^{p, q}=\left(R^{p} F_{2}\right)\left(R^{q} F_{1}\right) M \underset{p}{\Rightarrow} R^{p+q}\left(F_{2} F_{1}\right) M .
$$

Now notice that

$$
\begin{aligned}
\left(R^{p} F_{2}\right)\left(R^{q} F_{1}\right) M & =\left(R^{p} F_{2}\right)\left(R^{q} \operatorname{Hom}_{A^{e}}(A, M)\right) \\
& =\left(R^{p} F_{2}\right) H^{q}(A, M) \\
& =R^{p} \operatorname{Hom}_{K_{\text {par }}(G)}\left(B, H^{q}(A, M)\right) \\
& =H_{p a r}^{p}\left(G, H^{q}(A, M)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
R^{n}\left(F_{2} F_{1}\right) M & =\left(R^{n} F\right) M \\
& =R^{n}\left(\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(A \rtimes_{\alpha} G, M\right)\right) \\
& =H^{n}\left(A \rtimes_{\alpha} G, M\right) .
\end{aligned}
$$

Thus

$$
E_{2}^{p, q}=H_{p a r}^{p}\left(G, H^{q}(A, M)\right) \underset{p}{\Rightarrow} H^{p+q}\left(A \rtimes_{\alpha} G, M\right),
$$

which proves Theorem 4.4. So it only remains to check that the functors F_{1} and F_{2} have the desired properties. But first we have to show some necessary results.

The next fact is a corollary of [4, Theorem 1].
Lemma 4.7. Let S be a finite commutative semigroup, in which all the elements are idempotents. Then $\mathbb{Z} S$ has a basis of orthogonal idempotents. Consequently the same basis works for KS.

Proof. First define the map $\zeta: S \times S \rightarrow \mathbb{Z}$ by $\zeta(a, b)=1$ if $a \leq b$ and $\zeta(a, b)=0$ otherwise. Now define for each $c \in S$ the \mathbb{Z}-linear map $\zeta_{c}: \mathbb{Z} S \rightarrow \mathbb{Z}$ given by $\zeta_{c}(a)=\zeta(c, a)$, where $a \in S$. Then for $a, b \in S$ we have that:

- if $c \leq a$ and $c \leq b$, then $c \leq a b$, whence $\zeta_{c}(a b)=1=\zeta_{c}(a) \zeta_{c}(b)$,
- if $c \not \leq a$ or $c \not \leq b$, then $c \not \leq a b$, whence $\zeta_{c}(a b)=0=\zeta_{c}(a) \zeta_{c}(b)$.

Therefore, ζ_{c} is a homomorphism of $\mathbb{Z} S$ into \mathbb{Z}. If there exists $x \in \mathbb{Z} S$ such that $\zeta_{c}(x)=0$ for all $c \in S$, then $x=\sum_{a \in S} \psi(a) a$ for some set $\{\psi(a) \in \mathbb{Z} \mid a \in S\}$, and
applying ζ_{c} we have that $0=\sum_{a \geq c} \psi(a)$ for all $c \in S$. Since S is finite it has maximal elements, thus for each maximal element m we have that $0=\sum_{a \geq m} \psi(a)=\psi(m)$. Hence, by descending induction we have that $\psi(a)=0$ for all $a \in S$, therefore $x=0$. Whence we have that if $x, y \in \mathbb{Z} S$ and $\zeta_{c}(x)=\zeta_{c}(y)$ for all $c \in S$, then $x=y$. Now define $\mu: S \times S \rightarrow \mathbb{Z}$ recursively as follows:

- $\mu(a, b)=0$ if $a \not \leq b$,
- $\mu(a, a)=1$,
- if $a<b$, suppose that $\mu(a, z)$ has been defined on the set $\{z \mid a \leq z<b\}$. Then define

$$
\mu(a, b)=-\sum_{a \leq z<b} \mu(a, z),
$$

for $a, b \in S$.
Notice that

$$
\sum_{a \leq z \leq b} \mu(a, z)=\delta_{a, b},
$$

where $\delta_{a, b}=1$ if $a=b$ and $\delta_{a, b}=0$ otherwise. For each $a \in S$ define

$$
w_{a}=\sum_{b \in S} \mu(b, a) b \in \mathbb{Z} S
$$

Observe that, since $\mu(b, a)=0$ if $b \not \leq a$ and $\zeta_{c}(a)=0$ if $c \not \leq b$, then

$$
\zeta_{c}\left(w_{a}\right)=\sum_{b \in S} \mu(b, a) \zeta_{c}(b)=\sum_{c \leq b \leq a} \mu(b, a)=\delta_{a, c} .
$$

Then for $a, c \in S$ and $x \in \mathbb{Z} S$

$$
\zeta_{c}\left(x w_{a}\right)=\zeta_{c}(x) \zeta_{c}\left(w_{a}\right)=\zeta_{c}(x) \delta_{a, c}=\zeta_{a}(x) \delta_{a, c}=\zeta_{a}(x) \zeta_{c}\left(w_{a}\right)=\zeta_{c}\left(\zeta_{a}(x) w_{a}\right) .
$$

Therefore

$$
x w_{a}=\zeta_{a}(x) w_{a}, \text { for all } a \in S \text { and } x \in \mathbb{Z} S .
$$

Hence, for any pair $a, b \in S, w_{b} w_{a}=\zeta_{a}\left(w_{b}\right) w_{a}=\delta_{a, b} w_{a}$, so that the w_{a} are pairwise orthogonal idempotents of $\mathbb{Z} S$. Finally, let $w=\sum_{a \in S} w_{a}$, observe that $\zeta_{c}(w)=1$ for all $c \in S$. Then $\zeta_{c}(b w)=\zeta_{c}(b) \zeta_{c}(w)=\zeta_{c}(b)$ for all $c \in S$ so that $b w=w$ and w is thus an identity element of $\mathbb{Z} S$. Therefore given $x \in \mathbb{Z} S$ we may write

$$
x=x e=\sum_{a \in S} x w_{a}=\sum_{a \in S} \zeta_{c}(x) w_{a} .
$$

Lemma 4.8. Let S be a commutative semigroup consisting of idempotent. Let, furthermore, K be a field and $K S$ be the semigroup algebra of S. If I is a finitely generated ideal of $K S$ then I is generated by an idempotent of $K S$.

Proof. Let I be a finitely generated ideal of $K S$ and let $r_{1}, r_{2}, \ldots, r_{m}$ be generators of I. Choose idempotents u_{1}, \ldots, u_{n} of S such that each r_{i} is a combination of these idempotents, and let T be the subsemigroup of S generated by u_{1}, \ldots, u_{n}. Then T is a finite commutative semigroup consisting only of idempotents, and by Lemma 4.7 the space $K T$ has a basis of orthogonal idempotents w_{1}, \ldots, w_{N}. Each generator r_{i} lies in $K T$ and therefore we may write $r_{i}=\sum_{j} \alpha_{i, j} w_{j}$ for $i=1, \ldots, n$ (with $\alpha_{i, j} \in K$). Whence $w_{j} r_{i}=\alpha_{i, j} w_{j}$. Moreover, the set

$$
W=\left\{w_{j} \mid \alpha_{i, j} \neq 0 \text { for some } i\right\}
$$

is contained in I. Indeed, if $w_{j} \in W$, then there exists $r_{i} \in I$ such that $\alpha_{i, j} \neq 0$, hence $w_{j}=\alpha_{i, j}^{-1} w_{j} r_{i} \in I$. On the other hand, any generator of I is a K-linear combination of these elements and therefore the ideal generated by W coincides with I. Finally we show that the ideal generated by W is generated by the element $u=\sum_{w_{j} \in W} w_{j} \in I$. First observe that u is idempotent since $w_{j} w_{i}=0$ if $i \neq j$ and

$$
u u=\sum_{w_{j}, w_{i} \in W} w_{j} w_{i}=\sum_{w_{j} \in W} w_{j} w_{j}=\sum_{w_{j} \in W} w_{j}=u .
$$

Moreover, $u w_{j}=w_{j}$ for each j. Hence, if $y \in I$ then $y=\sum_{w_{j}} b_{j} w_{j}$ with $b_{j} \in K S$, and therefore $y u=\sum_{w_{j} \in W} b_{j} w_{j} u=\sum_{w_{j} \in W} b_{j} w_{j}=y$, thus u acts as an identity for the elements of I.

Remark 4.9. Recall that if A is a R-module then A is flat if for any finitely generated ideal J of R the map

$$
J \otimes_{R} A \xrightarrow{j \otimes 1_{A}} R \otimes_{R} A
$$

is injective where $j: J \rightarrow R$ is the inclusion map.
Lemma 4.10. Any B-module X is flat.
Proof. To use Remark 4.9 we have to show that for any finitely generated left ideal I of B, the morphism $I \otimes_{B} X \rightarrow B \otimes_{B} X \cong X$ is injective. By Lemma 4.8 and the fact that $B=K S$, where S is the commutative semigroup $S=\left\{e_{g_{1}} e_{g_{2}} \ldots e_{g_{n}} \mid g_{i} \in G, n \geq 1\right\}$, we have that I is generated by an idempotent u. Now assume that $\sum_{i} y_{i} \otimes x_{i} \in I \otimes_{B} X$ is such that $\sum_{i} y_{i} \otimes x_{i}=0$ in $B \otimes_{B} X$, hence $\sum_{i} y_{i} \cdot x_{i}=0$ in X. Since $y_{i} \in I$ for each i we have $y_{i}=u y_{i}$ and therefore

$$
I \otimes_{B} X \ni \sum_{i} y_{i} \otimes_{B} x_{i}=\sum_{i} u y_{i} \otimes_{B} x_{i}=u \otimes_{B}\left(\sum_{i} y_{i} \cdot x_{i}\right)=0
$$

which proves that $I \otimes_{B} X \rightarrow B \otimes_{B} X$ is injective.
Corollary 4.11. The functor $-\otimes_{B}\left(A \rtimes_{\alpha} G\right): \operatorname{Rep} K_{\text {par }}(G) \rightarrow \operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$ is exact.

Finally we can prove the next proposition which completes the proof of Theorem 4.4

Proposition 4.12. The functor F_{2} is left exact and $F_{1}(N)$ is right F_{2}-acyclic for every injective object N in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$.

Proof. We know that the Hom functor is left exact so that $F_{2}=\operatorname{Hom}_{K_{p a r}(G)}(B,-)$ is left exact. On the other hand if N is an injective object in $\operatorname{Rep}\left(A \rtimes_{\alpha} G\right)^{e}$, then $\operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}(-, N)$ is an exact functor and Corollary 4.11 says that $-\otimes_{B}\left(A \rtimes_{\alpha} G\right)$ is an exact functor, so the isomorphism of functors

$$
\operatorname{Hom}_{K_{p a r}(G)}\left(-, \operatorname{Hom}_{A^{e}}(A, N)\right) \simeq \operatorname{Hom}_{\left(A \rtimes_{\alpha} G\right)^{e}}\left(-\otimes_{B}\left(A \rtimes_{\alpha} G\right), N\right)
$$

implies that $\operatorname{Hom}_{K_{p a r}(G)}\left(-, \operatorname{Hom}_{A^{e}}(A, N)\right)$ is exact. Hence $\operatorname{Ext}_{K_{p a r}(G)}^{n}\left(B, F_{1}(N)\right)=0$ for any $n \geq 1$ and so $F_{1}(N)$ is F_{2}-acyclic.

CHAPTER 5

Globalization

Given a unital partial action α of G on a unital algebra \mathcal{A}, we work with an enveloping action (\mathcal{B}, β) of (\mathcal{A}, α) and the multiplier algebra $\mathcal{M}(\mathcal{B})$ of \mathcal{B}. We study the globalization problem for the partial cohomology with values in \mathcal{A}. We reduce the globalization problem to an extendibility property of partial cocycles. Furthermore, we show that if \mathcal{A} is a product of blocks then any cocycle from $Z_{\text {par }}^{n}(G, \mathcal{A})$ is globalizable and that globalizations of cohomologous cocycles are also cohomologous. Finally, under the above assumption of \mathcal{A}, we prove that $H_{p a r}^{n}(G, M)$ is isomorphic to the usual cohomology group $H^{n}(G, \mathcal{M}(\mathcal{B}))$. This chapter corresponds to the study of the final part of [5].

5.1 From globalization to an extendibility property

In this section α will be a unital partial action of a group G on an algebra \mathcal{A}. First we will recall some definitions and results extracted form [6] that will be necessary for the development of this work.

Definition 5.1. An action β of a group G on an algebra \mathcal{B} is said to be an enveloping action for the partial action α of G on an algebra \mathcal{A} if there exists and algebra isomorphism φ of \mathcal{A} onto an ideal of \mathcal{B} such that for all $g \in G$ the following three properties are satisfied.
(i) $\varphi\left(\mathcal{D}_{g}\right)=\varphi(\mathcal{A}) \cap \beta_{g}(\varphi(\mathcal{A}))$;
(ii) $\varphi \circ \alpha_{g}(x)=\beta_{g} \circ \varphi(x)$ for all x in $\mathcal{D}_{g^{-1}}$;
(iii) \mathcal{B} is generated by $\bigcup_{g \in G} \beta_{g}(\varphi(\mathcal{A}))$.

From [6] we have the next theorem.
Theorem 5.2. Let \mathcal{A} be a unital algebra. Then a partial action α of a group G on \mathcal{A} admits an enveloping action β if and only if each ideal $\mathcal{D}_{g}(g \in G)$ is a unital algebra. Moreover, β, if it exists, is unique up to isomorphisms.

Definition 5.3. Let L and R be K-linear maps from \mathcal{A} to itself. We will say that the pair (L, R) is a multiplier of \mathcal{A} if, for every a and b in \mathcal{A}, one has that
(i) $L(a b)=L(a) b$,
(ii) $R(a b)=a R(b)$,
(iii) $R(a) b=a L(b)$.

Remark 5.4. We will denote $L(a)$ by $L a$ and $R(a)$ by $a R$, thus Definition 5.3 says that the pair (L, R) is a multiplier of \mathcal{A} if, for every a and b in \mathcal{A}, one has that
(i) $L(a b)=(L a) b$,
(ii) $(a b) R=a(b R)$,
(iii) $(a R) b=a(L b)$.

Moreover given another multiplier $\left(L^{\prime}, R^{\prime}\right)$ of \mathcal{A} we have that $L L^{\prime} x=L \circ L^{\prime}(x)$ and $x R R^{\prime}=R^{\prime} \circ R(x)$.

If $K=\mathcal{A}$, then every (L, R) in $E n d_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}\right) \times \operatorname{End}_{\mathcal{A}}\left({ }_{\mathcal{A}} \mathcal{A}\right)$ satisfies conditions (i) and (ii) of Definition 5.3. Then (L, R) is a multiplier if, and only if, $(a R) b=a(L b)$.

Definition 5.5. The multiplier algebra of \mathcal{A} is the $\operatorname{set} \mathcal{M}(\mathcal{A})$ consisting of all multipliers (L, R) of \mathcal{A}. Given (L, R) and $\left(L^{\prime}, R^{\prime}\right)$ in $\mathcal{M}(\mathcal{A})$, and $\lambda \in K$ we define

$$
\begin{aligned}
\lambda(L, R) & =(\lambda L, \lambda R), \\
(L, R)+\left(L^{\prime}, R^{\prime}\right) & =\left(L+L^{\prime}, R+R^{\prime}\right), \\
(L, R)\left(L^{\prime}, R^{\prime}\right) & =\left(L L^{\prime}, R R^{\prime}\right) .
\end{aligned}
$$

Notice that by Remark 2.34 the algebra \mathcal{A} has a natural structure of $K_{\mathrm{par}}(G)$ module. We also fix an enveloping action (\mathcal{B}, β) of α with an injective morphism $\varphi:(\mathcal{A}, \alpha) \rightarrow(\mathcal{B}, \beta)$. Since the algebra \mathcal{B} does not always have an identity element, and since the technique used in [5] needs to have a unital algebra we will work more generally with the multiplier algebra $\mathcal{M}(\mathcal{B})$ of \mathcal{B}. For a multiplier $\gamma=(L, R) \in \mathcal{M}(\mathcal{B})$ and $b \in \mathcal{B}$ we set $b \gamma=b R$ and $\gamma b=L b$. Thus one always has $(a \gamma) b=a(\gamma b)$ for arbitrary $a, b \in \mathcal{B}$.

The action β induces an action β^{*} of G on $\mathcal{M}(\mathcal{B})$, where $\beta_{g}^{*}(u)=\beta_{g} u \beta_{g}^{-1}$, for $u \in \mathcal{M}(\mathcal{B})$ and $g \in G$, that is, if $u=(L, R)$ then

$$
\beta_{g}^{*}(u)=\left(\beta_{g} \circ L \circ \beta_{g}^{-1}, \beta_{g} \circ R \circ \beta_{g}^{-1}\right)=\left(\beta_{g} L \beta_{g}^{-1}, \beta_{g}^{-1} R \beta_{g}\right) .
$$

Indeed, to prove that β^{*} is an action of G on $\mathcal{M}(\mathcal{B})$, observe that for $u=(L, R) \in$ $\mathcal{M}(\mathcal{B}), g \in G$ and arbitrary $a, b \in \mathcal{B}$ we have

$$
\begin{aligned}
\beta^{*}(R)(a b) & =\beta_{g} \circ R \circ \beta_{g^{-1}}(a b) \\
& =\beta_{g}\left(R\left(\beta_{g^{-1}}(a) \beta_{g^{-1}}(b)\right)\right) \\
& =\beta_{g}\left(\beta_{g^{-1}}(a) R\left(\beta_{g^{-1}}(b)\right)\right) \\
& =a\left(\beta_{g} \circ R \circ \beta_{g^{-1}}(b)\right) \\
& =a \beta^{*}(R)(b),
\end{aligned}
$$

$$
\begin{aligned}
\beta^{*}(L)(a b) & =\beta_{g} \circ L \circ \beta_{g^{-1}}(a b) \\
& =\beta_{g}\left(L\left(\beta_{g^{-1}}(a) \beta_{g^{-1}}(b)\right)\right) \\
& =\beta_{g}\left(L\left(\beta_{g^{-1}}(a)\right) \beta_{g^{-1}}(b)\right) \\
& =\left(\beta_{g} \circ L \circ \beta_{g^{-1}}(a)\right) b \\
& =\beta^{*}(L)(a) b,
\end{aligned}
$$

and

$$
\begin{aligned}
\beta^{*}(R)(a) b & =\beta_{g} R \beta_{g^{-1}}(a) b \\
& =\beta_{g}\left(R\left(\beta_{g^{-1}}(a)\right) \beta_{g^{-1}}(b)\right) \\
& =\beta_{g}\left(\beta_{g^{-1}}(a) L\left(\beta_{g^{-1}}(b)\right)\right) \\
& =a\left(\beta_{g} L \beta_{g^{-1}}(b)\right) \\
& =a \beta^{*}(L)(b) .
\end{aligned}
$$

Hence $\beta^{*}(u)$ is in $\mathcal{M}(\mathcal{A})$. Finally observe

$$
\beta_{h}^{*} \beta_{g}^{*}(u)=\beta_{h} \beta_{g} u \beta_{g^{-1}} \beta_{h^{-1}}=\beta_{h g} u \beta_{(h g)^{-1}}
$$

and

$$
\beta_{g}^{*}(u v)=\beta_{g} u v \beta_{g^{-1}}=\left(\beta_{g} u \beta_{g^{-1}}\right)\left(\beta_{g} v \beta_{g^{-1}}\right)=\beta_{g}^{*}(u) \beta_{g}^{*}(v) .
$$

Denote by $C^{n}(G, \mathcal{M}(\mathcal{B})), Z^{n}(G, \mathcal{M}(\mathcal{B})), B^{n}(G, \mathcal{M}(\mathcal{B}))$ and $H^{n}(G, \mathcal{M}(\mathcal{B}))$ the corresponding groups of n-cochains, n-cocycles, n-coboundaries and n-cohomologies of G with values in the additive group of $\mathcal{M}(\mathcal{B})$.

Definition 5.6. Given $n \in \mathbb{N}$ and $u \in C^{n}(G, \mathcal{M}(\mathcal{B}))$, define the restriction of u to \mathcal{A} to be the map $w: G^{n} \rightarrow \mathcal{A}$, such that

$$
\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)=\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)
$$

where $g_{1}, \ldots, g_{n} \in G$. If $n=0$ and $u \in C^{0}(G, \mathcal{M}(\mathcal{B}))=\mathcal{M}(\mathcal{B})$, then w is the element of \mathcal{A}, satisfying

$$
\varphi(w)=\varphi\left(1_{\mathcal{A}}\right) u
$$

Notice that we could replace

$$
\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)=\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)
$$

by

$$
\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)=u\left(g_{1}, \ldots, g_{n}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)
$$

in Definition 5.6 because both options are equivalent. Indeed, since $\varphi(\mathcal{A})$ is an ideal of \mathcal{B} and $\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)$ is a central idempotent of $\varphi(\mathcal{A})$

$$
\begin{aligned}
\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right) & =\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\right) u\left(g_{1}, \ldots, g_{n}\right) \\
& =\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)\right) \in \varphi(\mathcal{A})\right. \\
& =\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) \\
& =\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\left(u\left(g_{1}, \ldots, g_{n}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\right) \\
& =\left(u\left(g_{1}, \ldots, g_{n}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) \\
& =u\left(g_{1}, \ldots, g_{n}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) .
\end{aligned}
$$

We will write $\rho(u)=w$ when w is a restriction of u. Note that $\rho(u) \in C_{p a r}^{n}(G, \mathcal{A})$ since

$$
\begin{aligned}
\rho(u)\left(g_{1}, \ldots, g_{n}\right) & =\varphi^{-1}\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)\right)\right) \\
& =1_{\left(g_{1}, \ldots, g_{n}\right)} \varphi^{-1}\left(\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)\right) \in 1_{\left(g_{1}, \ldots, g_{n}\right)} \mathcal{A}
\end{aligned}
$$

Proposition 5.7. The restriction map $\rho: C^{n}(G, \mathcal{M}(\mathcal{B})) \rightarrow C_{\text {par }}^{n}(G, \mathcal{A})$ induces a homomorphism of the cohomology groups $H^{n}(G, \mathcal{M}(\mathcal{B})) \rightarrow H_{\text {par }}^{n}(G, \mathcal{A})$.

Proof. First observe that ρ is an homomorphism since

$$
\begin{aligned}
\varphi\left(\rho(u+v)\left(g_{1}, \ldots, g_{n}\right)\right) & =\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)(u+v)\left(g_{1}, \ldots, g_{n}\right) \\
& =\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)+\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) v\left(g_{1}, \ldots, g_{n}\right) \\
& =\varphi\left(\rho(u)\left(g_{1}, \ldots, g_{n}\right)\right)+\varphi\left(\rho(v)\left(g_{1}, \ldots, g_{n}\right)\right) .
\end{aligned}
$$

So it only remains to show that ρ commutes with the coboundary operators, that is, the next diagram commutes

Let $n=0$ and $u=(L, R) \in C^{0}(G, \mathcal{M}(\mathcal{B}))=\mathcal{M}(\mathcal{B})$. Then for all $g \in G$ by Definition 5.6 and the fact that φ is a morphism of partial actions we have

$$
\begin{aligned}
\varphi\left(\left(\delta^{0} \rho(u)\right)(g)\right) & =\varphi\left(\alpha_{g}\left(1_{g^{-1}} \rho(u)\right)-1_{g} \rho(u)\right) \\
& =\beta_{g}\left(\varphi\left(1_{g^{-1}}\right) \varphi(\rho(u))\right)-\varphi\left(1_{g}\right) \varphi(\rho(u)) \\
& =\beta_{g}\left(\varphi\left(1_{g^{-1}}\right) \varphi\left(1_{\mathcal{A}}\right) u\right)-\varphi\left(1_{g}\right) \varphi\left(1_{\mathcal{A}}\right) u \\
& =\beta_{g}\left(\varphi\left(1_{g^{-1}}\right) u\right)-\varphi\left(1_{g}\right) u \\
& =\beta_{g}\left(R\left(\varphi\left(1_{g^{-1}}\right)\right)\right)-\varphi\left(1_{g}\right) u \\
& =\beta_{g}\left(R\left(\varphi\left(\alpha_{g^{-1}}\left(1_{g}\right)\right)\right)\right)-\varphi\left(1_{g}\right) u \\
& =\beta_{g}\left(R\left(\beta_{g^{-1}}\left(\varphi\left(1_{g}\right)\right)\right)\right)-\varphi\left(1_{g}\right) u \\
& =\varphi\left(1_{g}\right)\left(\beta_{g}^{*}(u)-u\right) \\
& =\varphi\left(1_{g}\right)\left(\delta^{0} u\right)(g) \\
& =\varphi\left(\rho\left(\delta^{0} u\right)(g)\right)
\end{aligned}
$$

whence $\delta^{0} \rho(u)=\rho\left(\delta^{0} u\right)$.
Consider now $n \in \mathbb{N}$ and $u \in C^{n}(G, \mathcal{M}(\mathcal{B}))$. For arbitrary $g_{1}, \ldots, g_{n+1} \in G$, first notice that

$$
\begin{aligned}
\beta_{g_{1}} & \left(\varphi\left(1_{g_{1}^{-1}}\right) \varphi\left(1_{\left(g_{2}, \ldots, g_{n+1}\right)}\right) u\left(g_{2}, \ldots, g_{n+1}\right)\right) \\
& =\beta_{g_{1}}\left(R_{\left(g_{2}, \ldots, g_{n+1}\right)}\left(\varphi\left(1_{g_{1}^{-1}}\right) \varphi\left(1_{\left(g_{2}, \ldots, g_{n+1}\right)}\right)\right)\right) \\
& =\beta_{g_{1}}\left(R_{\left(g_{2}, \ldots, g_{n+1}\right)}\left(\beta_{g_{1}^{-1}} \varphi\left(1_{\left(g_{1}, g_{2}, \ldots, g_{n+1}\right)}\right)\right)\right) \\
& =\varphi\left(1_{\left(g_{1}, g_{2}, \ldots, g_{n+1}\right)}\right) \beta_{g_{1}}^{*}\left(u\left(g_{2}, \ldots, g_{n+1}\right)\right),
\end{aligned}
$$

where $u_{\left(g_{2}, \ldots, g_{n+1}\right)}=\left(L_{\left(g_{2}, \ldots, g_{n+1}\right)}, R_{\left(g_{2}, \ldots, g_{n+1}\right)}\right)$. Thus

$$
\begin{aligned}
\varphi\left(\left(\delta^{n} \rho(u)\right)\left(g_{1}, \ldots, g_{n+1}\right)\right)= & \varphi\left(\alpha_{g_{1}}\left(1_{g_{1}^{-1}} \rho(u)\left(g_{2}, \ldots, g_{n+1}\right)\right)\right. \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{g_{1} \ldots g_{i}} \rho(u)\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& \left.+(-1)^{n+1} 1_{g_{1} \ldots g_{n+1}} \rho(u)\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & \beta_{g_{1}}\left(\varphi\left(1_{g_{1}-1}\right) \varphi\left(\rho(u)\left(g_{2}, \ldots, g_{n+1}\right)\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(1_{g_{1} \ldots g_{i}}\right) \varphi\left(\rho(u)\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right)\right) \\
& +(-1)^{n+1} \varphi\left(1_{g_{1} \ldots g_{n+1}}\right) \varphi\left(\rho(u)\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & \beta_{g_{1}}\left(\varphi\left(1_{g_{1}-1}\right) \varphi\left(1_{\left(g_{2}, \ldots, g_{n+1}\right)}\right) u\left(g_{2}, \ldots, g_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(1_{g_{1} \ldots g_{i}}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{1} g_{1}+1, \ldots, g_{n+1}\right)}\right) \\
& \left.\times u_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} \varphi\left(1_{g_{1} \ldots g_{n+1}}\right) \varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right) \\
= & \varphi\left(1_{\left(g_{1}, \ldots, g_{n+1}\right)}\right)\left(\beta_{g_{1}}^{*}\left(u\left(g_{2}, \ldots, g_{n+1}\right)\right)\right. \\
& +\sum_{i=1}^{n}(-1)^{i} u\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& \left.+(-1)^{n+1} u\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & \varphi\left(1_{\left(g_{1}, \ldots, g_{n+1}\right)}\right)\left(\delta^{n} u\right)\left(g_{1}, \ldots, g_{n+1}\right) \\
= & \varphi\left(\rho\left(\delta^{n} u\right)\left(g_{1}, \ldots, g_{n+1}\right)\right)
\end{aligned}
$$

so that $\delta^{n} \rho(u)=\rho\left(\delta^{n} u\right)$.

Definition 5.8. Given $w \in Z_{\text {par }}^{n}(G, \mathcal{A})$, by a globalization of w we mean $u \in$ $Z^{n}(G, \mathcal{M}(\mathcal{B}))$ satisfying

$$
\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)=\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right) u\left(g_{1}, \ldots, g_{n}\right)
$$

If w admits a globalization, then we say that w is globalizable.
In the proof of Theorem 5.2 given in [6] the enveloping action (\mathcal{B}, β) for (\mathcal{A}, α) was constructed as the restriction of the global action (\mathcal{F}, β) to the subalgebra

$$
\mathcal{B}=\sum_{g \in G} \beta_{g}(\varphi(\mathcal{A})) .
$$

Here \mathcal{F} is the ring of functions $G \rightarrow \mathcal{A}$ and

$$
\left.\beta_{g}(f)\right|_{t}=f\left(g^{-1} t\right)
$$

for all $x, t \in G$, where the notation $\left.f\right|_{t}$ is used for the value $f(t)$ if $f \in \mathcal{F}$. The injective morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is then defined by the formula

$$
\left.\varphi(a)\right|_{t}=\alpha_{t^{-1}}\left(1_{t} a\right) .
$$

Notice that

$$
\begin{aligned}
\left.\varphi\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right)\right|_{t} & =\alpha_{t^{-1}}\left(1_{t} \alpha_{g}\left(1_{g^{-1}} a\right)\right) \\
& =\alpha_{t^{-1}}\left(\alpha_{g}\left(1_{g^{-1}} 1_{g^{-1} t} a\right)\right) \\
& =\alpha_{t^{-1} g}\left(1_{g^{-1}} 1_{g^{-1} t} a\right) \\
& =\left.\varphi\left(1_{g^{-1}} a\right)\right|_{g^{-1} t} \\
& =\left.\beta_{g}\left(\varphi\left(1_{g^{-1}} a\right)\right)\right|_{t},
\end{aligned}
$$

then $\varphi\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right)=\beta_{g}\left(\varphi\left(1_{g^{-1}} a\right)\right)$. Clearly, $\varphi(\mathcal{A}) \subseteq \mathcal{B}$, so φ is a morphism $(\mathcal{A}, \alpha) \rightarrow$ (\mathcal{B}, β) too. Since all enveloping actions of (\mathcal{A}, α) are isomorphic to each other by Theorem 5.2, we may assume that (\mathcal{B}, β) and φ are of this form.

Remark 5.9. Notice that if $u \in C^{n}(G, \mathcal{F})$ is such that $u\left(g_{1}, \ldots, g_{n}\right) \mathcal{B}, \mathcal{B} u\left(g_{1}, \ldots, g_{n}\right) \subseteq$ \mathcal{B} then $u\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{M}(\mathcal{B})$ in the next sense, define $R: b \in \mathcal{B} \mapsto b u\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{B}$ and $L: b \in \mathcal{B} \mapsto u\left(g_{1}, \ldots, g_{n}\right) b \in \mathcal{B}$, thus the pair (L, R) is in $\operatorname{End}\left(\mathcal{B}_{\mathcal{B}}\right) \times \operatorname{End}\left(\mathcal{B}^{\mathcal{B}}\right)$. So identify $u\left(g_{1}, \ldots, g_{n}\right)$ with (L, R), finally notice that for arbitrary $a, b \in \mathcal{B}$ we have

$$
(a R) b=\left(a u\left(g_{1}, \ldots, g_{n}\right)\right) b=a\left(u\left(g_{1}, \ldots, g_{n}\right) b\right)=a(L b) .
$$

Hence $u\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{M}(\mathcal{B})$.
Lemma 5.10. Any $w \in Z_{p a r}^{0}(G, \mathcal{A})$ is uniquely globalizable.
Proof. Define $u \in C^{0}(G, \mathcal{F})=\mathcal{F}$ to be the constant function taking the value $w \in \mathcal{A}$ at any $t \in G$. Using Remark 3.40 we have $1_{t^{-1}} w=\alpha_{t^{-1}}\left(1_{t} w\right)$ since $w \in Z_{\text {par }}^{0}(G, \mathcal{A})$, then using that $\left.\varphi(a)\right|_{t}=\alpha_{t^{-1}}\left(1_{t} a\right)$, we obtain

$$
\left.\left.\varphi\left(1_{\mathcal{A}}\right)\right|_{t} u\right|_{t}=1_{t^{-1}} w=\alpha_{t^{-1}}\left(1_{t} w\right)=\left.\varphi(w)\right|_{t},
$$

yielding Definition 5.8.

$$
\begin{aligned}
\left.\left.\beta_{g}(\varphi(a))\right|_{t} u\right|_{t} & =\left.\varphi(a)\right|_{g^{-1} t} w=\alpha_{t^{-1} g}\left(1_{g^{-1} t} a\right) w=\alpha_{t^{-1} g}\left(1_{g^{-1} t} a\right) \cdot 1_{t^{-1} g} w \\
& =\alpha_{t^{-1} g}\left(1_{g^{-1} t} a w\right)=\left.\beta_{g}(\varphi(a w))\right|_{t} .
\end{aligned}
$$

Then $\left.\left.\beta_{g}(\varphi(a))\right|_{t} u\right|_{t}=\left.\beta_{g}(\varphi(a w))\right|_{t}$, so $\beta_{g}(\varphi(\mathcal{A})) u \subseteq \beta_{g}(\varphi(\mathcal{A}))$. Hence $\mathcal{B} u \subseteq \mathcal{B}$ since $\mathcal{B}=\sum_{g \in G} \beta_{g}(\varphi(\mathcal{A}))$. In a similar way $\left.\left.u\right|_{t} \beta_{g}(\varphi(a))\right|_{t}=\left.\beta_{g}(\varphi(w a))\right|_{t}$, which implies $u \mathcal{B} \subseteq \mathcal{B}$, and thus $u \in C^{0}(G, \mathcal{M}(\mathcal{B}))$.

To prove the 0-cocycle identity $\beta_{g}^{*}(u)=u$ for u, it suffices to show that $\beta_{g}(u f)=$ $u \beta_{g}(f)$ for any $f \in \mathcal{F}$. We have that

$$
\left.\beta_{g}(u f)\right|_{t}=\left.(u f)\right|_{g^{-1} t}=\left.\left.u\right|_{g^{-1} t} f\right|_{g^{-1} t}=\left.\left.u\right|_{t} \beta_{g}(f)\right|_{t},
$$

whence $u \in Z^{0}(G, \mathcal{M}(\mathcal{B}))$. Now if u_{1} and u_{2} in $Z^{0}(G, \mathcal{M}(\mathcal{B}))$ are globalizations of w, then $\varphi\left(1_{\mathcal{A}}\right) u_{1}=\varphi\left(1_{\mathcal{A}}\right) u_{2}$, using the 0 -cocycle identity we have

$$
\begin{aligned}
\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right) u_{i}\right) & =\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right) \beta_{g} u_{i} \beta_{g^{-1}}\right) \\
& =\varphi\left(1_{\mathcal{A}}\right) \beta_{g} u_{i} \\
& =\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right)\right) u_{i},
\end{aligned}
$$

for $i=1,2$. Then $\beta_{g}(\varphi(a)) u_{1}=\beta_{g}(\varphi(a)) u_{2}$ for all $g \in G$ and all $a \in \mathcal{A}$, hence $u_{1}=u_{2}$ since $\mathcal{B}=\sum_{g \in G} \beta_{g}(\varphi(\mathcal{A}))$.
Remark 5.11. Recall that \mathcal{A} has a trivial G-module structure given by the trivial action $g \cdot x=x$, for all $g \in G$ and $x \in \mathcal{A}$.

For the case $w \in Z_{p a r}^{n}(G, \mathcal{A}), n \in N$, we will need the next lemma.
Lemma 5.12. Let $\widetilde{w} \in C^{n}(G, \mathcal{A})$. Then $u \in C^{n}(G, \mathcal{F})$, defined by

$$
\begin{aligned}
\left.u\left(g_{1}, \ldots, g_{n}\right)\right|_{t}= & (-1)^{n} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right)+\widetilde{w}\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right)
\end{aligned}
$$

is an n-cocycle with respect to the action β of G on \mathcal{F}.
Proof. Observe that

$$
\begin{equation*}
\left.u\left(g_{1}, \ldots, g_{n}\right)\right|_{t}=\widetilde{w}\left(g_{1}, \ldots, g_{n}\right)-\left(\tilde{\delta}^{n} \widetilde{w}\right)\left(t^{-1}, g_{1}, \ldots, g_{n}\right) \tag{1}
\end{equation*}
$$

where $\tilde{\delta}^{n}: C^{n}(G, \mathcal{A}) \rightarrow C^{n+1}(G, \mathcal{A})$ is the coboundary operator which corresponds to the trivial G-module, i.e.

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \widetilde{w}\right)\left(g_{1}, \ldots, g_{n+1}\right)= & \widetilde{w}\left(g_{2}, \ldots, g_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \widetilde{w}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} \widetilde{w}\left(g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

Calculating the value of $\left(\delta^{n} u\right)\left(g_{1}, \ldots, g_{n+1}\right)$ at $t \in G$, we obtain using that $\left.\beta_{g}(f)\right|_{t}=$ $f\left(g^{-1} t\right)$

$$
\begin{aligned}
\left.u\left(g_{2}, \ldots, g_{n+1}\right)\right|_{g_{1}^{-1} t} & +\left.\sum_{i=1}^{n}(-1)^{i} u\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right)\right|_{t} \\
& +\left.(-1)^{n+1} u\left(g_{1}, \ldots, g_{n}\right)\right|_{t}
\end{aligned}
$$

which in view of (1) equals

$$
\begin{aligned}
& \tilde{w}\left(g_{2}, \ldots, g_{n+1}\right)-\left(\tilde{\delta}^{n} \tilde{w}\right)\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \widetilde{w}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i+1}\left(\tilde{\delta}^{n} \tilde{w}\right)\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} \tilde{w}\left(g_{1}, \ldots, g_{n}\right)+(-1)^{n}\left(\tilde{\delta}^{n} \tilde{w}\right)\left(t^{-1}, g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

The latter is readily seen to be $\left(\tilde{\delta}^{n+1} \tilde{\delta}^{n} \tilde{w}\right)\left(t^{-1}, g_{1}, \ldots, g_{n+1}\right)=0_{\mathcal{A}}$.
The existence of a globalization of a globalization of $w \in Z_{p a r}^{n}(G, \mathcal{A})$ is equivalent to certain extendibility property.

Definition 5.13. For any $f \in C^{n}(G, \mathcal{A})$ define $\tilde{\delta}^{n}: C^{n}(G, \mathcal{A}) \rightarrow C^{n+1}(G, \mathcal{A})$ by

$$
\begin{aligned}
\left(\tilde{\delta}^{n} f\right)\left(g_{1}, \ldots, g_{n+1}\right)= & \alpha_{g_{1}}\left(1_{g_{1}^{-1}} f\left(g_{2}, \ldots, g_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{g_{1}} f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} 1_{g_{1}} f\left(g_{1}, \ldots, g_{n}\right) .
\end{aligned}
$$

Theorem 5.14. A cocycle $w \in Z_{\text {par }}^{n}(G, \mathcal{A}), n \in \mathbb{N}$, is globalizable if, and only if, there exists $\tilde{w} \in C^{n}(G, \mathcal{A})$ such that

$$
\begin{equation*}
\tilde{\delta}^{n} \tilde{w}=0 \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(g_{1}, \ldots, g_{n}\right)=1_{\left(g_{1}, \ldots, g_{n}\right)} \tilde{w}\left(g_{1}, \ldots, g_{n}\right) \tag{5.2}
\end{equation*}
$$

for all $g_{1}, \ldots, g_{n} \in G$.

Proof. If w is globalizable and $u \in Z^{n}(G, \mathcal{M}(\mathcal{B}))$ is its globalization, then we define $\tilde{w} \in C^{n}(G, \mathcal{A})$ such that

$$
\varphi\left(\tilde{w}\left(g_{1}, \ldots, g_{n}\right)\right)=\varphi\left(1_{\mathcal{A}}\right) u\left(g_{1}, \ldots, g_{n}\right)=u\left(g_{1}, \ldots, g_{n}\right) \varphi\left(1_{\mathcal{A}}\right) .
$$

Clearly, $\tilde{w}\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{A}$, since $\varphi(\mathcal{A})$ is an ideal in \mathcal{B}, and moreover (5.2) is satisfied. Note that

$$
\begin{aligned}
\left.\left(\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right)\right) \varphi\left(1_{\mathcal{A}}\right)\right)\right|_{t} & =\left.\left.\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right)\right)\right|_{t} \varphi\left(1_{\mathcal{A}}\right)\right|_{t} \\
& =\left.\varphi\left(1_{\mathcal{A}}\right)\right|_{g^{-1} t} \alpha_{t^{-1}}\left(1_{t} 1_{\mathcal{A}}\right) \\
& =\alpha_{t^{-1} g}\left(1_{g^{-1} t}\right) \alpha_{t^{-1}}\left(1_{t}\right) \\
& =1_{t^{-1} g} 1_{t^{-1}} \\
& =\alpha_{t^{-1}}\left(1_{g} 1_{t}\right) \\
& =\left.\varphi\left(1_{g}\right)\right|_{t},
\end{aligned}
$$

thus $\beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right)\right) \varphi\left(1_{\mathcal{A}}\right)=\varphi\left(1_{g}\right)$. Hence

$$
\begin{aligned}
\varphi\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right) & =\varphi\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right) \varphi\left(1_{g}\right) \\
& =\beta_{g}\left(\varphi\left(1_{g^{-1}} a\right)\right) \beta_{g}\left(\varphi\left(1_{\mathcal{A}}\right)\right) \varphi\left(1_{\mathcal{A}}\right) \\
& =\beta_{g}\left(\varphi\left(1_{g^{-1}} a\right)\right) \varphi\left(1_{\mathcal{A}}\right)
\end{aligned}
$$

then $\varphi\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right)=\beta_{g}\left(\varphi\left(1_{g^{-1}} a\right)\right) \varphi\left(1_{\mathcal{A}}\right)$. Therefore

$$
\begin{aligned}
\beta_{g_{1}}^{*}\left(u\left(g_{2}, \ldots, g_{n+1}\right)\right) \varphi\left(1_{g_{1}}\right) & =\left(\beta_{g_{1}} u\left(g_{2}, \ldots, g_{n+1}\right) \beta_{g_{1}}^{-1}\right)\left(\beta_{g_{1}}\left(\varphi\left(1_{\mathcal{A}}\right)\right) \varphi\left(1_{\mathcal{A}}\right)\right) \\
& =\left(\beta_{g_{1}}\left(u\left(g_{2}, \ldots, g_{n+1}\right) \varphi\left(1_{\mathcal{A}}\right)\right)\right) \varphi\left(1_{\mathcal{A}}\right) \\
& =\left(\beta_{g_{1}}\left[\varphi\left(\widetilde{w}\left(g_{2}, \ldots, g_{n+1}\right)\right)\right]\right) \varphi\left(1_{\mathcal{A}}\right) \\
& =\varphi\left(\alpha_{g_{1}}\left(1_{g_{1}^{-1}} \tilde{w}\left(g_{2}, \ldots, g_{n+1}\right)\right)\right) .
\end{aligned}
$$

Thus using the formula

$$
\beta_{g_{1}}^{*}\left(u\left(g_{2}, \ldots, g_{n+1}\right)\right) \varphi\left(1_{g_{1}}\right)=\varphi\left(\alpha_{g_{1}}\left(1_{g_{1}^{-1}} \tilde{w}\left(g_{2}, \ldots, g_{n+1}\right)\right)\right)
$$

we obtain (5.1) by applying both sides of the cocycle identity

$$
\begin{aligned}
\beta_{g_{1}}^{*}\left(u\left(g_{2}, \ldots, g_{n+1}\right)\right) & +\sum_{i=1}^{n}(-1)^{i} u\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} u\left(g_{1}, \ldots, g_{n}\right)=0
\end{aligned}
$$

to $\varphi\left(1_{g_{1}}\right)$.

Conversely, given $\tilde{w} \in C^{n}(G, \mathcal{A})$ satisfying (5.1) and (5.2), define $u \in C^{n}(G, \mathcal{F})$ using Lemma 5.12 by

$$
\begin{aligned}
\left.u\left(g_{1}, \ldots, g_{n}\right)\right|_{t}= & (-1)^{n} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right)+\widetilde{w}\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) .
\end{aligned}
$$

Then $u \in Z^{n}(G, \mathcal{F})$. Now using that $\left.\varphi(a)\right|_{t}=\alpha_{t^{-1}}\left(1_{t} a\right)$, (5.2) and the cocycle identity for w, we obtain

$$
\begin{aligned}
\left.\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)\right|_{t}= & \alpha_{t^{-1}}\left(1_{t} w\left(g_{1}, \ldots, g_{n}\right)\right) \\
= & 1_{t^{-1} w}\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} 1_{t^{-1} g_{1} \ldots g_{i}} w\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& +(-1)^{n} 1_{t^{-1} g_{1} \ldots g_{n}} w\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right) \\
= & 1_{t^{-1} 1} 1_{\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right)} \tilde{w}\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} 1_{t^{-1}} g_{1} \ldots g_{i} 1_{\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right)} \\
& \times \tilde{w}\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& +(-1)^{n} 1_{t^{-1} g_{1} \ldots g_{n}} 1_{\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right)} \tilde{w}\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right) \\
= & \left.1_{\left(t^{-1}, g_{1}, \ldots, g_{n}\right)} u\left(g_{1}, \ldots, g_{n}\right)\right|_{t} \\
= & \left.\left.\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)}\right)\right|_{t} u\left(g_{1}, \ldots, g_{n}\right)\right|_{t},
\end{aligned}
$$

whence

$$
\left.\varphi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)\right|_{t}=\left.\varphi\left(1_{\left(g_{1}, \ldots, g_{n}\right)} t\right)\right|_{t} u\left(g_{1}, \ldots, g_{n}\right) .
$$

We have yet to prove that $u\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{M}(\mathcal{B})$, i.e.

$$
u\left(g_{1}, \ldots, g_{n}\right) \mathcal{B}, \mathcal{B} u\left(g_{1}, \ldots, g_{n}\right) \subseteq \mathcal{B}
$$

for all g_{1}, \ldots, g_{n}. Since (5.1)

$$
\begin{aligned}
\left.1_{t-1} u\left(g_{1}, \ldots, g_{n}\right)\right|_{t}= & 1_{t^{-1}} \widetilde{w}\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} 1_{t^{-}} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& +(-1)^{n} 1_{t^{-1}} \widetilde{w}\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right) \\
= & \alpha_{t^{-1}}\left(1_{t} \tilde{w}\left(g_{1}, \ldots, g_{n}\right)\right),
\end{aligned}
$$

it follows that

$$
\left.\left.u\left(g_{1}, \ldots, g_{n}\right)\right|_{t} \varphi(a)\right|_{t}=\alpha_{t^{-1}}\left(1_{t} \widetilde{w}\left(g_{1}, \ldots, g_{n}\right)\right) \alpha_{t^{-1}}\left(1_{t} a\right)=\left.\varphi\left(\widetilde{w}\left(g_{1}, \ldots, g_{n}\right) a\right)\right|_{t},
$$

whence

$$
u\left(g_{1}, \ldots, g_{n}\right) \varphi(\mathcal{A}) \subseteq \varphi(\mathcal{A})
$$

Now u being an n-cocycle with values in (\mathcal{F}, β) satisfies

$$
\begin{aligned}
\beta_{t^{-1}}\left(u\left(g_{1}, \ldots, g_{n}\right)\right) \varphi(a)= & u\left(t^{-1} g_{1}, g_{2}, \ldots, g_{n}\right) \varphi(a) \\
& +\sum_{i=1}^{n-1}(-1)^{i} u\left(t^{-1}, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \varphi(a) \\
& +(-1)^{n} u\left(t^{-1}, g_{1}, \ldots, g_{n-1}\right) \varphi(a),
\end{aligned}
$$

where the right-hand side is an element of $\varphi(\mathcal{A})$ thanks to the previous statement. Therefore, $\beta_{t^{-1}}\left(u\left(g_{1}, \ldots, g_{n}\right)\right) \varphi(\mathcal{A}) \subseteq \varphi(\mathcal{A})$, so, applying β_{t}, we obtain

$$
u\left(g_{1}, \ldots, g_{n}\right) \beta_{t}(\varphi(\mathcal{A})) \subseteq \beta_{t}(\varphi(\mathcal{A}))
$$

Similarly, $\beta_{t}(\varphi(\mathcal{A})) u\left(g_{1}, \ldots, g_{n}\right) \subseteq \beta_{t}(\varphi(\mathcal{A}))$, proving $u\left(g_{1}, \ldots, g_{n}\right) \mathcal{B}, \mathcal{B} u\left(g_{1}, \ldots, g_{n}\right) \subseteq$ \mathcal{B} since $\mathcal{B}=\sum_{g \in G} \beta_{g}(\varphi(\mathcal{A}))$.

5.2 The construction of w^{\prime}

From now on we assume that $\mathcal{A}=\prod_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$, where each \mathcal{A}_{λ} is an indecomposable unital ring, i.e. \mathcal{A}_{λ} cannot be written as $\mathcal{A}_{\lambda} \cong \mathcal{A}_{\lambda}^{1} \times \mathcal{A}_{\lambda}^{2}$ with non-zero $\mathcal{A}_{\lambda}^{1}$ or $\mathcal{A}_{\lambda}^{2}$ ideals of \mathcal{A}_{λ}. Each \mathcal{A}_{λ} is called a block of \mathcal{A}. The main objective is to show that every $w \in Z_{\text {par }}^{n}(G, \mathcal{A})$ can be replaced by a more manageable $w^{\prime} \in Z_{\text {par }}^{n}(G, \mathcal{A})$ which will be used in the construction of \tilde{w} satisfying the conditions of Theorem 5.14. Let us identify the identity of $\mathcal{A}_{\mu}, \mu \in \Lambda$, with the primitive idempotent $1_{\mathcal{A}_{\mu}}$ of \mathcal{A} which is the function $\Lambda \rightarrow \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ whose value at μ is the identity of \mathcal{A}_{μ} and the value in $\lambda \neq \mu$ is the zero of \mathcal{A}_{λ}, then the block \mathcal{A}_{μ} is identified with the ideal generated by $1_{\mathcal{A}_{\mu}}$, and the canonical projection $\operatorname{pr}_{\lambda}: \mathcal{A} \rightarrow \mathcal{A}_{\lambda}$ with the multiplication by $1_{\mathcal{A}_{\lambda}}$ in \mathcal{A}. We write $a=\prod_{\lambda \in \Lambda_{1}} a_{\lambda}$, where $\Lambda_{1} \subseteq \Lambda$ and $a_{\lambda} \in \mathcal{A}_{\lambda}$ for all $\lambda \in \Lambda_{1}$, if

$$
\operatorname{pr}_{\lambda}(a)=\left\{\begin{array}{lc}
a_{\lambda} & \lambda \in \Lambda_{1} \\
0_{\mathcal{A}} & \text { otherwise } .
\end{array}\right.
$$

Thus, each idempotent e of \mathcal{A} is central and is of the form $\prod_{\lambda \in \Lambda_{1}} 1_{\mathcal{A}_{\lambda}}$, so that $e \mathcal{A}=\prod_{\lambda \in \Lambda_{1}} \mathcal{A}_{\lambda}$, therefore each \mathcal{D}_{g} is of the form $\prod_{\lambda \in \Lambda_{g}} \mathcal{A}_{\lambda}$, for some $\Lambda_{g} \subseteq \Lambda$. Moreover we have the next lemma

Lemma 5.15. Let $I=\prod_{\lambda \in \Lambda_{1}} \mathcal{A}_{\lambda}$ and $J=\prod_{\lambda \in \Lambda_{2}} \mathcal{A}_{\lambda}$ be unital ideals of \mathcal{A} and $\varphi: I \rightarrow J$ an isomorphism. Then there exists a bijection $\sigma: \Lambda_{1} \rightarrow \Lambda_{2}$, such that $\varphi\left(\operatorname{pr}_{\lambda}(a)\right)=\operatorname{pr}_{\sigma(\lambda)}(\varphi(a))$ for all $a \in I$ and $\lambda \in \Lambda_{1}$.

Proof. Note that $\left\{1_{\mathcal{A}_{\lambda}}\right\}_{\lambda \in \Lambda_{1}}$ and $\left\{1_{\mathcal{A}_{\lambda}}\right\}_{\lambda \in \Lambda_{2}}$ are the sets of centrally primitive idempotents of I and J, respectively. Since φ is an isomorphism,

$$
\varphi\left(1_{\mathcal{A}_{\lambda}}\right)=1_{\mathcal{A}_{\sigma(\lambda)}},
$$

for some bijection $\sigma: \Lambda_{1} \rightarrow \Lambda_{2}$. Then

$$
\varphi\left(\operatorname{pr}_{\lambda}(a)\right)=\varphi\left(1_{\mathcal{A}_{\lambda}} a\right)=1_{\mathcal{A}_{\sigma(\lambda)}} \varphi(a)=\operatorname{pr}_{\sigma(\lambda)}(\varphi(a)) .
$$

Definition 5.16. A unital partial action α of a group G on \mathcal{A} is called transitive, if for all $\lambda^{\prime}, \lambda^{\prime \prime} \in \Lambda$ there exists $x \in G$, such that $\mathcal{A}_{\lambda^{\prime}} \subseteq \mathcal{D}_{x^{-1}}$ and $\alpha_{x}\left(\mathcal{A}_{\lambda^{\prime}}\right)=\mathcal{A}_{\lambda^{\prime \prime}}$.

Assume that α is a transitive partial action. We fix $\lambda_{0} \in \Lambda$, note that for all $\lambda \in \Lambda$ there exists $x \in G$ such that $\alpha_{x}\left(\mathcal{A}_{\lambda_{0}}\right)=\mathcal{A}_{\lambda}$. Denote by H the stabilizer of the block $\mathcal{A}_{\lambda_{0}}$, i.e. the subgroup

$$
H=\left\{x \in G \mid \mathcal{A}_{\lambda_{0}} \subseteq \mathcal{D}_{x^{-1}} \text { and } \alpha_{x}\left(\mathcal{A}_{\lambda_{0}}\right)=\mathcal{A}_{\lambda_{0}}\right\}
$$

of G. Let Λ^{\prime} be a left transversal of H in G containing the identity element 1 of G, i.e. $G=\bigcup_{g \in \Lambda^{\prime}} g H$, a disjoint union. Then Λ can be identified with a subset of Λ^{\prime}, namely, λ_{0} is identified with 1 , and

$$
\mathcal{A}_{g}=\alpha_{g}\left(\mathcal{A}_{1}\right) \text { for } g \in \Lambda \subseteq \Lambda^{\prime} .
$$

Indeed, note that for all $\lambda \in \Lambda$ there exists $g \in G$ such that $\mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1}}$ and $\mathcal{A}_{\lambda}=$ $\alpha_{g}\left(\mathcal{A}_{1}\right)$, then for any $x \in H$ since $\alpha_{x}\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1}=\alpha_{x^{-1}}\left(\mathcal{A}_{1}\right), \mathcal{A}_{1} \subseteq \mathcal{D}_{x} \cap \mathcal{D}_{x^{-1}}$ and $\mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1}}$, thus $\mathcal{A}_{1} \subseteq \alpha_{x^{-1}}\left(\mathcal{D}_{x} \cap \mathcal{D}_{g^{-1}}\right)$. Hence

$$
\mathcal{A}_{\lambda}=\alpha_{g}\left(\mathcal{A}_{1}\right)=\alpha_{g}\left(\alpha_{x}\left(\mathcal{A}_{1}\right)\right)=\alpha_{g x}\left(\mathcal{A}_{1}\right)
$$

Therefore $\alpha_{w}\left(\mathcal{A}_{1}\right)=\mathcal{A}_{\lambda}$ for all w in $g H$. If $g, g^{\prime} \in G$ are such that $\alpha_{g}\left(\mathcal{A}_{1}\right)=\mathcal{A}_{\lambda}=$ $\alpha_{g^{\prime}}\left(\mathcal{A}_{1}\right)$, then $g^{-1} g^{\prime} \in H$ and $g H=g^{\prime} H$.

Given $x \in G$, denote by \bar{x} the (unique) element of Λ^{\prime}, such that $x \in \bar{x} H$. Observe that $\overline{x \bar{y}}=\overline{x y}$ for all $x, y \in G$. Indeed, note that $x y H=x \bar{y} H$, thus $\overline{x \bar{y}}, \overline{x y} \in \Lambda^{\prime}$ are such that $\overline{x \bar{y}} H=x y H=\overline{x y} H$. Hence $\overline{x \bar{y}}=\overline{x y}$.

We will use the following easy fact throughout the text.

Lemma 5.17. Given $x \in G$ and $g \in \Lambda^{\prime}$, one has
(i) $g \in \Lambda \Leftrightarrow \mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1}}$;
(ii) if $g \in \Lambda$, then $\overline{x g} \in \Lambda \Leftrightarrow \mathcal{A}_{g} \subseteq \mathcal{D}_{x^{-1}}$, and in this situation $\alpha_{x}\left(\mathcal{A}_{g}\right)=\mathcal{A}_{\overline{x g}}$.

Proof.
(i) We only need to see the " \Longleftarrow " part, so let $\mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1}}$ for some $g \in \Lambda^{\prime}$. Then $\alpha_{g}\left(\mathcal{A}_{1}\right)$ must be a block of \mathcal{A}, so it equals \mathcal{A}_{t} for some $t \in \Lambda$. Hence $\alpha_{t}\left(\mathcal{A}_{1}\right) \subseteq$ $\mathcal{D}_{g} \cap \mathcal{D}_{t}$, thus $\mathcal{A}_{1} \subseteq \alpha_{t^{-1}}\left(\mathcal{D}_{g} \cap \mathcal{D}_{t}\right)=\operatorname{dom}\left(\alpha_{g^{-1}} \circ \alpha_{t}\right)$. Then

$$
\mathcal{A}_{1}=\alpha_{g^{-1}} \circ \alpha_{t}\left(\mathcal{A}_{1}\right)=\alpha_{g^{-1} t}\left(\mathcal{A}_{1}\right) .
$$

Consequently, $g^{-1} t \in H$, and $g=t \in \Lambda$.
(ii) Let $g, \overline{x g} \in \Lambda$. Then $\mathcal{A}_{1} \subseteq \mathcal{D}_{(\overline{x g})^{-1}} \cap \mathcal{D}_{g^{-1}}$, and since $(\overline{x g})^{-1} x g \in H$, one has that $\alpha_{(\overline{x g})^{-1} x g}\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1}$, then $\alpha_{(\overline{x g})^{-1} x g}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{D}_{\overline{x g}(x g)^{-1}} \cap \mathcal{D}_{(\overline{x g})^{-1}}$. Hence $\mathcal{A}_{1} \subseteq$ $\alpha_{\overline{x g}(x g)^{-1}}\left(\mathcal{D}_{\overline{x g}(x g)^{-1}} \cap \mathcal{D}_{(\overline{x g})^{-1}}\right)$. Therefore $\alpha_{\overline{x g}} \circ \alpha_{(\overline{x g})^{-1} x g}$ is applicable to \mathcal{A}_{1} and as α is a partial action so too is $\alpha_{x g}=\alpha_{\overline{x g} \cdot(\overline{x g})^{-1} x g}$. Thus $\mathcal{A}_{1} \subseteq \mathcal{D}_{(x g)^{-1}}$ and using again that α is a partial action we see that $\mathcal{A}_{g}=\alpha_{g}\left(\mathcal{A}_{1}\right) \subseteq \alpha_{g}\left(\mathcal{D}_{(x g)^{-1}} \cap \mathcal{D}_{g^{-1}}\right)=$ $\mathcal{D}_{x^{-1}} \cap \mathcal{D}_{g}$, so that α_{x} is applicable to \mathcal{A}_{g}. Moreover, since $(\overline{x g})^{-1} x g \in H$ we have

$$
\alpha_{x}\left(\mathcal{A}_{g}\right)=\alpha_{x g}\left(\mathcal{A}_{1}\right)=\alpha_{\overline{x g}} \circ \alpha_{(\overline{x g})^{-1} x g}\left(\mathcal{A}_{1}\right)=\alpha_{\overline{x g}}\left(\mathcal{A}_{1}\right),
$$

and consequently $\alpha_{x}\left(\mathcal{A}_{g}\right)=\mathcal{A}_{\overline{x g}}$, as $\alpha_{x}\left(\mathcal{A}_{g}\right)$ must be a block.
Conversely,

$$
\begin{aligned}
& \mathcal{A}_{g} \subseteq \mathcal{D}_{x^{-1}} \Longrightarrow g \in \Lambda, \mathcal{A}_{g} \subseteq \mathcal{D}_{x^{-1}} \cap \mathcal{D}_{g}=\mathcal{D}_{x^{-1}} \mathcal{D}_{g} \Longrightarrow \\
& \mathcal{A}_{1}=\alpha_{g}^{-1}\left(\mathcal{A}_{g}\right) \subseteq \alpha_{g}^{-1}\left(\mathcal{D}_{x^{-1}} \mathcal{D}_{g}\right) \subseteq \mathcal{D}_{g^{-1} x^{-1}} \Longrightarrow \mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1} x^{-1}} \cap \mathcal{D}_{g^{-1} x^{-1} \overline{x g}} \Longrightarrow \\
& \mathcal{A}_{1}=\alpha_{(\overline{x g})^{-1} x g}\left(\mathcal{A}_{1}\right) \subseteq \alpha_{(\overline{x g})^{-1} x g}\left(\mathcal{D}_{g^{-1} x^{-1}} \cap \mathcal{D}_{g^{-1} x^{-1} \overline{x g}}\right) \subseteq \mathcal{D}_{(\overline{x g})^{-1}}
\end{aligned}
$$

which gives $\overline{x g} \in \Lambda$.

If follows that

$$
\mathcal{A}_{g} \subseteq \mathcal{D}_{x^{-1}} \Leftrightarrow \overline{x^{-1} g} \in \Lambda \Leftrightarrow \mathcal{A}_{1} \subseteq \mathcal{D}_{g^{-1} x}
$$

In particular,

$$
\mathcal{A}_{\bar{x}} \subseteq \mathcal{D}_{x}
$$

for all $x \in G$, such that $\bar{x} \in \Lambda$.

Remark 5.18. Let (\mathcal{B}, β) be a globalization of (\mathcal{A}, α), assume that $\mathcal{A} \subseteq \mathcal{B}$, and set $\mathcal{A}_{g}=\beta_{g}\left(\mathcal{A}_{1}\right)$. Then $\beta_{x}\left(\mathcal{A}_{g}\right)=\mathcal{A}_{\overline{x g}}$, for $g \in \Lambda^{\prime}$ and $x \in G$. Indeed,

$$
\mathcal{A}_{\overline{x g}}=\beta_{x g}\left(\mathcal{A}_{1}\right)=\beta_{x}\left(\mathcal{A}_{g}\right) .
$$

Definition 5.19. For $g \in \Lambda$ and $a \in \mathcal{A}$, define the homomorphism $\theta_{g}: \mathcal{A} \rightarrow \mathcal{A}_{g}$ given by

$$
\theta_{g}(a)=\alpha_{g}\left(\operatorname{pr}_{1}(a)\right)=\operatorname{pr}_{g}\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right) .
$$

Remark 5.20. Notice that $1_{g}=\prod_{h \in \Lambda_{g}} 1_{\mathcal{A}_{h}}$, for some $\Lambda_{g} \subseteq \Lambda$, then if $a=\prod_{s \in \Lambda} a_{s}$, where $a_{s} \in \mathcal{A}_{s}$. Then $1_{g} a=\prod_{h \in \Lambda_{g}} a_{h}$. Then by Lemma 5.17 we have $\alpha_{g}\left(1_{g^{-1}} a_{h}\right) \in$ $\mathcal{D}_{\overline{g h}}$. Thus

$$
\operatorname{pr}_{g}\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right)=\alpha_{g}\left(a_{1}\right)=\alpha_{g}\left(\operatorname{pr}_{1}(a)\right) .
$$

It follows that, since $\theta_{g}\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right)=\operatorname{pr}_{g}(a)$ then

$$
a=\prod_{g \in \Lambda} \theta_{g}\left(\alpha_{g}\left(1_{g^{-1}} a\right)\right) .
$$

Moreover, if $x \in G$ is such that $\mathcal{A}_{1} \subseteq \mathcal{D}_{x}$, then $\operatorname{pr}_{1}\left(1_{x} a\right)=\operatorname{pr}_{1}(a)=a_{1}$, whence $\theta_{g}(a)=\theta_{g}\left(1_{x} a\right)$. In particular, this holds if $x \in H$ and $x=g^{-1}$.

Lemma 5.21. Let $n>0$ and $w \in Z_{p a r}^{n}(G, \mathcal{A})$. Then

$$
\begin{align*}
w\left(x_{1}, \ldots, x_{n}\right)= & 1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left[w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)\right. \\
& +\sum_{k=1}^{n-1}(-1)^{k} w\left(g^{-1}, x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& \left.+(-1)^{n} w\left(g^{-1}, x_{1}, \ldots, x_{n-1}\right)\right] . \tag{5.3}
\end{align*}
$$

Proof. Using the partial n-cocycle identity we have that

$$
\begin{aligned}
\alpha_{g^{-1}}\left(1_{g} w\left(x_{1}, \ldots, x_{n}\right)\right)= & 1_{g^{-1}} w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right) \\
& +\sum_{k=1}^{n-1}(-1)^{k} 1_{g^{-1} x_{1} \ldots x_{k}} w\left(g^{-1}, x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& +(-1)^{n} 1_{g^{-1} x_{1} \ldots x_{n}} w\left(g^{-1}, x_{1}, \ldots, x_{n-1}\right),
\end{aligned}
$$

and by Remark 5.20

$$
w\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in \Lambda} \theta_{g}\left(\alpha_{g^{-1}}\left(1_{g} w\left(x_{1}, \ldots, x_{n}\right)\right)\right) .
$$

Thus

$$
\begin{aligned}
w\left(x_{1}, \ldots, x_{n}\right)= & \prod_{g \in \Lambda} \theta_{g}\left(\alpha_{g^{-1}}\left(1_{g} w\left(x_{1}, \ldots, x_{n}\right)\right)\right) \\
= & \prod_{g \in \Lambda} \theta_{g}\left[1_{g^{-1}} w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)\right. \\
& +\sum_{k=1}^{n-1}(-1)^{k} 1_{g^{-1} x_{1} \ldots x_{k}} w\left(g^{-1}, x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& \left.+(-1)^{n} 1_{g^{-1} x_{1} \ldots x_{n}} w\left(g^{-1}, x_{1}, \ldots, x_{n-1}\right)\right] \\
= & \prod_{g \in \Lambda} \theta_{g}\left[1 _ { (g ^ { - 1 } , x _ { 1 } , \ldots , x _ { n }) } \left(w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)\right.\right. \\
& +\sum_{k=1}^{n-1}(-1)^{k} w\left(g^{-1}, x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& \left.\left.+(-1)^{n} w\left(g^{-1}, x_{1}, \ldots, x_{n-1}\right)\right)\right] .
\end{aligned}
$$

It remains to observe

$$
\theta_{g}\left(1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)}\right)=\operatorname{pr}_{g}\left(\alpha_{g}\left(1_{g^{-1}} 1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)}\right)\right)=\operatorname{pr}_{g}\left(1_{g} 1_{\left(x_{1}, \ldots, x_{n}\right)}\right)=\operatorname{pr}_{g}\left(1_{\left(x_{1}, \ldots, x_{n}\right)}\right)
$$

so that

$$
\prod_{g \in \Lambda} \theta_{g}\left(1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)}\right)=\prod_{g \in \Lambda} \operatorname{pr}_{g}\left(1_{\left(x_{1}, \ldots, x_{n}\right)}\right)=1_{\left(x_{1}, \ldots, x_{n}\right)}
$$

Define the map $\eta: G \rightarrow H$ such that for $x \in G$, we have $\eta(x)=x^{-1} \bar{x} \in H$. Let $n>0$ and $g \in \Lambda^{\prime}$. Define $\eta_{n}^{g}: G^{n} \rightarrow H$ by

$$
\eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)=\eta\left(x_{n}^{-1} \overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)
$$

and $\tau_{n}^{g}: G^{n} \rightarrow H^{n}$ by

$$
\tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)=\left(\eta_{1}^{g}\left(x_{1}\right), \eta_{2}^{g}\left(x_{1}, x_{2}\right), \ldots, \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Note that

$$
\eta_{1}^{g}\left(x_{1}\right) \eta_{2}^{g}\left(x_{1}, x_{2}\right) \ldots \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)=\eta\left(x_{n}^{-1} \ldots x_{1}^{-1} g\right)=\eta_{1}^{g}\left(x_{1} \ldots x_{n}\right) .
$$

Indeed,

$$
\eta_{1}^{g}\left(x_{1}\right)=g^{-1} x_{1} \overline{x_{1}^{-1} g}
$$

and

$$
\eta_{2}^{g}\left(x_{1}, x_{2}\right)=\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2} \overline{x_{2}^{-1} x_{1}^{-1} g} .
$$

Thus

$$
\eta_{1}^{g}\left(x_{1}\right) \eta_{2}^{g}\left(x_{1}, x_{2}\right)=g^{-1} x_{1} x_{2} \overline{x_{2}^{-1} x_{1}^{-1} g}=\eta\left(x_{2}^{-1} x_{1}^{-1} g\right) .
$$

Now using an inductive argument over n we have that

$$
\left.\begin{array}{rl}
\eta_{1}^{g} & \left(x_{1}\right) \eta_{2}^{g}\left(x_{1}, x_{2}\right) \ldots \eta_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) \\
\quad=\eta\left(x_{n-1}^{-1} x_{n-2}^{-1} \ldots x_{1}^{-1} g\right) \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) \\
\quad=\left(g^{-1} x_{1} x_{2} \ldots x_{n-1}\right)\left(\overline{x_{n-1}^{-1} x_{n-2}^{-1} \ldots x_{1}^{-1} g}\right)\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\left(\overline{x_{n}^{-1} x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right) \\
\quad=g^{-1} x_{1} x_{2} \ldots x_{n-1} x_{n}\left(x_{n}^{-1} x_{n-1}^{-1} \ldots x_{1}^{-1} g\right.
\end{array}\right) .
$$

Moreover, we will define the maps $\sigma_{n, i}^{g}: G^{n} \rightarrow G^{n+1}, n>0,0 \leq i \leq n$, by

$$
\begin{aligned}
\sigma_{n, 0}^{g}\left(x_{1}, \ldots, x_{n}\right) & =\left(g^{-1}, x_{1}, \ldots, x_{n}\right) \\
\sigma_{n, i}^{g}\left(x_{1}, \ldots, x_{n}\right) & =\left(\tau_{i}^{g}\left(x_{1}, \ldots, x_{i}\right),\left(\overline{x_{i}^{-1} \ldots x_{1}^{-1} g}\right)^{-1}, x_{i+1}, \ldots, x_{n}\right), \quad 0<i<n, \\
\sigma_{n, n}^{g}\left(x_{1}, \ldots, x_{n}\right) & =\left(\tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right),\left(\overline{x_{n}^{-1} \ldots x_{1}^{-1} g}\right)^{-1}\right) .
\end{aligned}
$$

If $n=0$, then we set

$$
\sigma_{0,0}^{g}=g^{-1} \in G .
$$

Definition 5.22. Given $n>0$ and $w \in C_{\text {par }}^{n}(G, \mathcal{A})$, define $w^{\prime} \in C_{\text {par }}^{n}(G, \mathcal{A})$ and $\varepsilon \in$ $C_{\text {par }}^{n-1}(G, \mathcal{A})$ by

$$
\begin{gathered}
w^{\prime}\left(x_{1}, \ldots, x_{n}\right)=1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right), \\
\varepsilon\left(x_{1}, \ldots, x_{n-1}\right)=1_{\left(x_{1}, \ldots, x_{n-1}\right)} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{i=0}^{n-1}(-1)^{i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{n-1}\right)\right) .
\end{gathered}
$$

When $n=1$, Definition 5.22 for ε should be understood as

$$
\varepsilon=\prod_{g \in \Lambda} \theta_{g}\left(w\left(g^{-1}\right)\right) \in \mathcal{A} .
$$

Let us introduce the following notation that will be used in the results below.

$$
\begin{aligned}
\Sigma(l, m)= & \sum_{k=l, i=m}^{n-1}(-1)^{k+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& +\sum_{i=m}^{n-1}(-1)^{n+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{n-1}\right),
\end{aligned}
$$

where $1 \leq l \leq n-1$ and $0 \leq m \leq n-1(n$ is assumed to be fixed $)$.
Lemma 5.23. For all $w \in Z_{p a r}^{1}(G, \mathcal{A})$ and $x \in G$ we have:

$$
\left(\delta^{0} \varepsilon\right)(x)-\alpha_{x}\left(1_{x^{-1}} \varepsilon\right)-w(x)=1_{x} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x\right)\right) .
$$

Moreover, for $n>1, w \in Z^{n}(G, \mathcal{A})$ and $x_{1}, \ldots, x_{n} \in G$:

$$
\begin{gathered}
\left(\delta^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right)-\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right)-w\left(x_{1}, \ldots, x_{n}\right) \\
=1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) .
\end{gathered}
$$

Proof. Recall that by Remark 3.40 we have that

$$
\left(\delta^{0} a\right)(g)=\alpha_{g}\left(1_{g^{-1}} a\right)-1_{g} a,
$$

thus

$$
\left(\delta^{0} \varepsilon\right)(x)-\alpha_{x}\left(1_{x^{-1}} \varepsilon\right)-w(x)=-1_{x} \varepsilon-w(x) .
$$

By Lemma 5.21

$$
w(x)=1_{x} \prod_{g \in \Lambda} \theta_{g}\left(w\left(g^{-1} x\right)-w\left(g^{-1}\right)\right) .
$$

Whence, and using Definition of ε we have

$$
\begin{aligned}
\left(\delta^{0} \varepsilon\right)(x)-\alpha_{x}\left(1_{x^{-1}} \varepsilon\right)-w(x) & =-1_{x} \prod_{g \in \Lambda} \theta_{g}\left(w\left(g^{-1}\right)\right)-1_{x} \prod_{g \in \Lambda} \theta_{g}\left(w\left(g^{-1} x\right)-w\left(g^{-1}\right)\right) \\
& =1_{x} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x\right)\right) .
\end{aligned}
$$

Now for $n>0$, using Remark 3.40 first, Definition 5.22, and finally definition of $\Sigma(1,0)$ we have

$$
\begin{aligned}
\left(\delta^{n-1} \varepsilon\right) & \left(x_{1}, \ldots, x_{n}\right)-\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) \\
& =\sum_{k=1}^{n-1}(-1)^{k} 1_{x_{1} \ldots x_{k}} \varepsilon\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right)+(-1)^{n} 1_{x_{1} \ldots x_{n}} \varepsilon\left(x_{1}, \ldots, x_{n-1}\right) \\
& =1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{k=1, i=0}^{n-1}(-1)^{k+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right)\right) \\
& \quad+1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{i=0}^{n-1}(-1)^{n+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{n-1}\right)\right) \\
& =1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}(\Sigma(1,0)) .
\end{aligned}
$$

Now notice that

$$
\begin{aligned}
(-1)^{k} w\left(g^{-1}, x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) & =(-1)^{k+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
(-1)^{n} w\left(g^{-1}, x_{1}, \ldots, x_{n-1}\right) & =(-1)^{n+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Then the formula (5.3) in Lemma 5.21 becomes

$$
\begin{aligned}
w\left(x_{1}, \ldots, x_{n}\right)= & 1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left[w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)\right. \\
& +\sum_{k=1}^{n-1}(-1)^{k+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& \left.+(-1)^{n+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{n-1}\right)\right] .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\Sigma(1,0)-\Sigma(1,1)= & \sum_{k=1}^{n-1}(-1)^{k+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& +(-1)^{n+0} w \circ \sigma_{n-1,0}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Hence,

$$
w\left(x_{1}, \ldots, x_{n}\right)=1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left[w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,0)-\Sigma(1,1)\right],
$$

whence

$$
\begin{aligned}
1_{\left(x_{1}, \ldots, x_{n}\right)} & \prod_{g \in \Lambda} \theta_{g}(\Sigma(1,0)) \\
& =w\left(x_{1}, \ldots, x_{n}\right)+1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) .
\end{aligned}
$$

Lemma 5.24. For all $n>1, w \in Z_{p a r}^{n}(G, \mathcal{A}), g \in \Lambda$ and $x_{1}, \ldots, x_{n} \in G$:

$$
\begin{aligned}
1_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)}(& \left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
= & -\alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\left.\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ \sigma_{n-1,0}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right)}\right. \\
& +1_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(-w\left(\tau_{1}^{g}\left(x_{1}\right),\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right)+\Sigma(2,2)\right. \\
& \left.+\sum_{i=1}^{n-1}(-1)^{i+1} w \circ \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, x_{3}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Proof. Note that since $w \in Z_{\text {par }}^{n}(G, \mathcal{A})$ we have that

$$
\begin{aligned}
0= & \left(\delta^{n} w\right) \circ \sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right) \\
= & \left.\left(\delta^{n} w\right)\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}, \overline{\left(x_{1}^{-1} g\right.}\right)^{-1}, x_{2}, \ldots, x_{n}\right) \\
= & \alpha_{g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}}\left(1 \overline{x_{1}^{-1} g}\right)-1 x_{1}^{-1} g \\
& -1_{g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}} w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \left.+1_{g^{-1} x_{1}} w\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g},\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right)\right) \\
& +\sum_{k=2}^{n-1}(-1)^{k+1} 1_{g^{-1} x_{1} \ldots x_{k}} w\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g},\left(\overline{x_{1}^{-1} g}\right)^{-1}, x_{2}, \ldots, x_{k} x_{k+1}, \ldots x_{n}\right) \\
& +(-1)^{n+1} 1_{g^{-1} x_{1} \ldots x_{n}} w\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}, \overline{\left.\left(\overline{x_{1}^{-1} g}\right)^{-1}, x_{2}, \ldots, x_{n-1}\right) .}\right.
\end{aligned}
$$

Observe that we can rewrite some factors of the latter equality.

$$
\begin{aligned}
\eta_{1}^{g}\left(x_{1}\right) & =g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}, \\
\overline{x_{1}^{-1} g}\left(x_{2}, \ldots, x_{n}\right) & =\left(\left(\overline{x_{1}^{-1} g}\right)^{-1}, x_{2}, \ldots, x_{n}\right), \\
\tau_{n-1,0}^{g}\left(x_{1}\right) & =g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g}, \\
\sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots x_{n}\right) & =\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g},\left(\overline{x_{1}^{-1} g}\right)^{-1}, x_{2}, \ldots, x_{k} x_{k+1}, \ldots x_{n}\right) \\
\sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) & =\left(g^{-1} x_{1} \cdot \overline{x_{1}^{-1} g},\left(\overline{x_{1}^{-1} g}\right)^{-1}, x_{2}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
-1_{\eta_{1}^{g}\left(x_{1}\right)} w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)= & -\alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1,0}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& -1_{g^{-1} x_{1}} w\left(\tau_{1}^{g}\left(x_{1}\right),\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right) \\
& +\sum_{k=2}^{n-1}(-1)^{k} 1_{g^{-1} x_{1} \ldots x_{k}} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots x_{n}\right) \\
& +(-1)^{n} 1_{g^{-1} x_{1} \ldots x_{n}} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) . \tag{1}
\end{align*}
$$

Observe that

$$
\begin{aligned}
\Sigma(1,1)-\Sigma(2,2)= & \sum_{k=2}^{n-1}(-1)^{k+1} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{1+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, \ldots, x_{n}\right) \\
& +(-1)^{n+1} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Whence,

$$
\begin{aligned}
\Sigma(2,2)+ & \sum_{i=1}^{n-1}(-1)^{1+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, \ldots, x_{n}\right) \\
= & \Sigma(1,1)+\sum_{k=2}^{n-1}(-1)^{k} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{k} x_{k+1}, \ldots, x_{n}\right) \\
& +(-1)^{n} w \circ \sigma_{n-1,1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Thus adding $\Sigma(1,1)$ then multiplying both side of equality (1) by $1_{\sigma_{n+1}^{g}\left(x_{1}, \ldots, x_{n}\right)}=$ $1_{\eta_{1}^{g}\left(x_{1}\right)} 1_{\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)}$, we get

$$
\left.\begin{array}{rl}
1_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)} & \left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
= & -\alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{n_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1,0}^{x_{1}^{-1} g}\right. \\
& \left.\left.+x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(-w\left(\tau_{1}^{g}\left(x_{1}\right),\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right)+\Sigma(2,2)\right. \\
n-1 & i+1 \\
i
\end{array} \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, x_{3}, \ldots, x_{n}\right)\right) .
$$

Lemma 5.25. For all $1<j<n, w \in Z_{p a r}^{n}(G, \mathcal{A}), g \in \Lambda$ and $x_{1}, \ldots, x_{n} \in G$:

$$
\begin{aligned}
1_{\sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right)}(& \left.-w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{x_{j-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right)+\Sigma(j, j)\right) \\
= & (-1)^{j} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1} w} w \sigma_{n-1, j-1}^{-1 g}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +1_{\sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(-w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right)\right. \\
& +\Sigma(j+1, j+1) \\
& +\sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \left.+\sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

(here by $\Sigma(n, n)$ we mean $\left.0_{\mathcal{A}}\right)$.
Proof. This proof is analogous to that of Lemma 5.24

$$
\begin{aligned}
0= & \left(\delta^{n} w\right) \circ \sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right) \\
= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ \sigma_{n-1, j-1}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{s=1}^{j-1}(-1)^{s} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{s}\right)} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right) \\
& +(-1)^{j} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{j}\right)} w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{\left(x_{j-1}^{-1} \ldots x_{1}^{-1} g\right.}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right) \\
& +(-1)^{j+1} 1_{g^{-1} x_{1} \ldots x_{j}} w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right) \\
& +\sum_{t=j+1}^{n-1}(-1)^{t+1} 1_{g^{-1} x_{1} \ldots x_{t}} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{t} x_{t+1}, \ldots, x_{n}\right) \\
& +(-1)^{n+1} 1_{g^{-1} x_{1} \ldots x_{n}} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& -1_{\eta_{1}^{g}\left(x_{1} \ldots x_{j}\right)} w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{x_{j-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right) \\
& =(-1)^{j} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1, j-1}^{x_{1}^{-1} g}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \left.\quad+\sum_{s=1}^{j-1}(-1)^{s+j} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{s}\right)} w \circ \sigma_{n-1, j-1}^{g}\left(x_{2}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right) \\
& \quad-1_{g^{-1} x_{1} \ldots x_{j}} w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right) \\
& \quad+\sum_{t=j+1}^{n-1}(-1)^{t+j+1} 1_{g^{-1} x_{1} \ldots x_{t}} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{t} x_{t+1}, \ldots, x_{n}\right) \\
& \quad+(-1)^{n+j+1} 1_{g^{-1} x_{1} \ldots x_{n}} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{n-1}\right) . \tag{1}
\end{align*}
$$

Notice that

$$
\begin{aligned}
\Sigma(j, j)-\Sigma(j+1, j+1)= & \sum_{t=j+1}^{n-1}(-1)^{t+j} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{t} x_{t+1}, \ldots, x_{n}\right) \\
& +\sum_{i=j}^{n-1}(-1)^{j+i} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, x_{2}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& +(-1)^{n+j} w \circ \sigma_{n-1, j}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Thus adding $\Sigma(j, j)$ to equality (1) and then multiplying both sides by the idempotent element

$$
1_{\sigma_{n, j}^{g}}\left(x_{1}, \ldots, x_{n}\right)=1_{\eta_{1}^{g}\left(x_{1}\right)} 1_{\eta_{1}^{g}\left(x_{1} x_{2}\right)} \ldots 1_{\eta_{1}^{g}\left(x_{1} x_{2} \ldots x_{j}\right)} 1_{\eta_{1}^{g}\left(g^{-1} x_{1} \ldots x_{j}, x_{j+1}, \ldots x_{n}\right)}
$$

we get

$$
\begin{aligned}
1_{\sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right)}(& \left.-w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{x_{j-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right)+\Sigma(j, j)\right) \\
= & (-1)^{j} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1, j-1}^{-1_{g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +1_{\sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(-w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right)\right. \\
& +\Sigma(j+1, j+1) \\
& +\sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \left.+\sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Lemma 5.26. For all $w \in Z_{\text {par }}^{1}(G, \mathcal{A}), g \in \Lambda$ and $x \in G$:

$$
-1_{\eta_{1}^{g}(x)} w\left(g^{-1} x\right)=-\alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} w\left(\left(\overline{x^{-1} g}\right)^{-1}\right)\right)-1_{g^{-1} x} w \circ \tau_{1}^{g}(x)
$$

Moreover, for all $n>1, w \in Z_{p a r}^{n}(G, \mathcal{A}), g \in \Lambda$ and $x_{1}, \ldots, x_{n} \in G$

$$
\begin{aligned}
-1_{\eta_{1}^{g}\left(x_{1} \ldots x_{n}\right)} w & \left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right),\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\right) \\
= & (-1)^{n} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ \sigma_{n-1, n-1}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +1_{\sigma_{n, n}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(\sum_{s=1}^{n-1}(-1)^{s+n} w \circ \sigma_{n-1, n-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right. \\
& \left.-w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Proof. We first observe that for $n=1$, since $w \in Z_{p a r}^{1}(G, \mathcal{A})$ we have

$$
\begin{aligned}
0 & =\left(\delta^{1} w\right)\left(\eta_{1}^{g}(x),\left(\overline{x^{-1} g}\right)^{-1}\right) \\
& =\alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} w\left(\left(\overline{x^{-1} g}\right)^{-1}\right)\right)-1_{\eta_{1}^{g}(x)} w\left(g^{-1} x\right)+1_{g^{-1} x} w \circ \tau_{1}^{g}(x) .
\end{aligned}
$$

Next for $n>1$, we have that

$$
\begin{aligned}
0= & \left(\delta^{n} w\right) \circ \sigma_{n, n}^{g}\left(x_{1}, \ldots, x_{n}\right) \\
= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1, n-1}^{\overline{1}_{1}^{-1}}\right. \\
& \left.\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{s=1}^{n-1}(-1)^{s} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{s}\right)} w \circ \sigma_{n-1, n-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right) \\
& +(-1)^{n} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{n}\right)} w\left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right),\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\right) \\
& +(-1)^{n+1} 1_{g^{-1} x_{1} \ldots x_{n}} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Thus to obtain the desire equality we have to multiply both sides by $1_{\sigma_{n, n}^{g}\left(x_{1}, \ldots, x_{n}\right)}$.
Lemma 5.27. For all $n>0, w \in Z_{\text {par }}^{n}(G, \mathcal{A})$ and $x_{1}, \ldots, x_{n} \in G$, define the idempotent element

$$
e=\prod_{i=1}^{n} 1_{\sigma_{n, i}^{g}\left(x_{1}, \ldots, x_{n}\right)}=1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)} \prod_{i=1}^{n} 1_{\eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)} .
$$

Then

$$
\begin{aligned}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& =\quad e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-e\left(w \circ \tau_{n}^{g}\right)\left(x_{1}, \ldots, x_{n}\right) \\
& \quad+e \sum_{j=1}^{n-1} \sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \quad+e \sum_{j=2}^{n} \sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Proof. By Lemma 5.24

$$
\begin{aligned}
1_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)}(& \left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
= & -\alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1,0}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +1_{\sigma_{n, 1}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left(-w\left(\tau_{1}^{g}\left(x_{1}\right),\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right)+\Sigma(2,2)\right. \\
& \left.+\sum_{i=1}^{n-1}(-1)^{i+1} w \circ \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, x_{3}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
-\alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w\right. & \left.\circ \sigma_{n-1,0}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)} 1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\left[\sum_{j=0}^{n-1}(-1)^{j+1} w \circ \frac{\sigma_{n-1, j}^{-1} g}{x_{1}}\left(x_{2}, \ldots, x_{n}\right)\right. \\
& \left.+\sum_{j=2}^{n}(-1)^{j+1} w \circ \sigma_{n-1, j-1}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right] .
\end{aligned}
$$

By Lemma 5.25

$$
\begin{aligned}
\sum_{j=2}^{n} & (-1)^{j+1} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ}^{\overline{x_{1}^{-1} g}}\left(x_{n-1, j-1}, \ldots, x_{n}\right)\right) \\
& =\sum_{j=2}^{n-1} 1_{\sigma_{n, j}^{g}\left(x_{1}, \ldots, x_{n}\right)}\left[w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{x_{j-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right)-\Sigma(j, j)\right. \\
& -w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right)+\Sigma(j+1, j+1) \\
& +\sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \left.\left.+\sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right)\right] \\
& +(-1)^{n+1} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \overline{\sigma_{n-1, n-1}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \sum_{j=2}^{n-1}\left[w\left(\tau_{j-1}^{g}\left(x_{1}, \ldots, x_{j-1}\right),\left(\overline{\left(x_{j-1}^{-1} \ldots x_{1}^{-1} g\right.}\right)^{-1} x_{j}, x_{j+1}, \ldots, x_{n}\right)-\Sigma(j, j)\right. \\
& \left.\quad-w\left(\tau_{j}^{g}\left(x_{1}, \ldots, x_{j}\right),\left(\overline{x_{j}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{j+1}, x_{j+2}, \ldots, x_{n}\right)+\Sigma(j+1, j+1)\right] \\
& = \\
& \quad w\left(\tau_{1}^{g}\left(x_{1}\right),\left(\overline{x_{1}^{-1} g}\right)^{-1} x_{2}, x_{3}, \ldots, x_{n}\right)-\Sigma(2,2) \\
& \quad-w\left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n}\right),\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& =e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +e \sum_{j=2}^{n-1} \sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \left.\left.+e \sum_{j=2}^{n-1} \sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right)\right] \\
& +e(-1)^{n+1} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w \circ \sigma_{n-1, n-1}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& -\operatorname{ew}\left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n}\right),\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\right) \\
& \left.+e \sum_{i=1}^{n-1}(-1)^{i+1} w \circ \sigma_{n-1, i}^{g}\left(x_{1} x_{2}, x_{3}, \ldots, x_{n}\right)\right) \text {. }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& =e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}^{n-1} \sum_{j=0}^{n}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad+e \sum_{j=1}^{n-1} \sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \left.\left.\quad+e \sum_{j=2}^{n-1} \sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)\right)\right] \\
& \quad+e(-1)^{n+1} \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\left.\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ \sigma_{n-1, n-1}\left(x_{2}, \ldots, x_{n}\right)\right)} \quad-e w\left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n}\right),\left(\overline{\left.\left.x_{n-1}^{-1} \ldots x_{1}^{-1} g\right)^{-1} x_{n}\right) .}\right.\right.\right.
\end{aligned}
$$

Now by Lemma 5.26 we have that

$$
\begin{aligned}
& \quad e w\left(\tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right),\left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\right) \\
& \quad+(-1)^{n+1} e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1} w \circ \sigma_{n-1, n-1}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& = \\
& e \sum_{s=1}^{n-1}(-1)^{s+n} w \circ \sigma_{n-1, n-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right) \\
& \quad-e\left(w \circ \tau_{n}^{g}\right)\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& \quad=e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}^{n-1} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-e\left(w \circ \tau_{n}^{g}\right)\left(x_{1}, \ldots, x_{n}\right) \\
& \quad+e \sum_{j=1}^{n-1} \sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \\
& \quad+e \sum_{j=2}^{n} \sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Lemma 5.28. For all $n>0, w \in Z_{p a r}^{n}(G, \mathcal{A})$ and $x_{1}, \ldots, x_{n} \in G$

$$
\begin{aligned}
& \left(\delta^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right)-\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right)-w\left(x_{1}, \ldots, x_{n}\right) \\
& =1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-w^{\prime}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Proof. Let $n=1$. By Remark $5.201_{\eta_{1}^{g}(x)} \in H$, then

$$
\theta_{g}\left(-w\left(g^{-1} x\right)\right)=\theta_{g}\left(-1_{\eta_{1}^{g}(x)} w\left(g^{-1} x\right)\right)
$$

Thus using that fact and Lemma 5.23 we have

$$
\begin{aligned}
\left(\delta^{0} \varepsilon\right)(x)-\alpha_{x}\left(1_{x^{-1} \varepsilon}\right)-w(x) & =1_{x} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x\right)\right) \\
& =1_{x} \prod_{g \in \Lambda} \theta_{g}\left(-1_{\eta_{1}^{g}(x)} w\left(g^{-1} x\right)\right),
\end{aligned}
$$

by Lemma 5.26

$$
\begin{aligned}
1_{x} \prod_{g \in \Lambda} \theta_{g}\left(-1_{\eta_{1}^{g}(x)} w\left(g^{-1} x\right)\right)= & \left.-1_{x} \prod_{g \in \Lambda} \theta_{g}\left(\alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} w\left(\overline{x^{-1} g}\right)^{-1}\right)\right)\right) \\
& -1_{x} \prod_{g \in \Lambda} \theta_{g}\left(1_{g^{-1} x} w \circ \tau_{1}^{g}(x)\right)
\end{aligned}
$$

By Remark 5.20 we obtain

$$
\theta_{g}\left(1_{g^{-1} x} w \circ \tau_{1}^{g}(x)\right)=\theta_{g}\left(1_{g^{-1}} 1_{g^{-1} x} w \circ \tau_{1}^{g}(x)\right)=\theta_{g}\left(1_{\left(g^{-1}, x\right)} w \circ \tau_{1}^{g}(x)\right) .
$$

In that proof of Lemma 5.21 we show that

$$
\prod_{g \in \Lambda} \theta_{g}\left(1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)}\right)=1_{\left(x_{1}, \ldots, x_{n}\right)} .
$$

Hence,

$$
1_{x} \prod_{g \in \Lambda} \theta_{g}\left(1_{g^{-1} x} w \circ \tau_{1}^{g}(x)\right)=1_{x} \prod_{g \in \Lambda} \theta_{g}\left(w \circ \tau_{1}^{g}(x)\right) .
$$

Therefore, by Definition 5.22 and the fact that $\left(\overline{x^{-1} g}\right)^{-1}=w\left(\sigma_{0,0}^{\overline{x^{-1 g} g}}\right)$ we have that

$$
\left.\left.\begin{array}{rl}
\left(\delta^{0} \varepsilon\right)(x)-\alpha_{x}\left(1_{x^{-1} \varepsilon}\right)-w(x)= & -1_{x} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}(x)}\left(1 _ { \eta _ { 1 } ^ { g } (x) ^ { - 1 } } w \left(\sigma_{0,0}^{x^{-1} g}\right.\right.
\end{array}\right)\right)
$$

For $n>1$. By Lemma 5.27 we get

$$
\begin{align*}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& =\quad e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-e\left(w \circ \tau_{n}^{g}\right)\left(x_{1}, \ldots, x_{n}\right) \\
& \quad+e \sum_{j=1}^{n-1} \sum_{i=j}^{n-1}(-1)^{i+j} w \circ \sigma_{n-1, i}^{g}\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n}\right) \tag{1}\\
& \quad+e \sum_{j=2}^{n} \sum_{s=1}^{j-1}(-1)^{s+j} w \circ \sigma_{n-1, j-1}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right), \tag{2}
\end{align*}
$$

where

$$
e=\prod_{i=1}^{n} 1_{\sigma_{n, i}^{g}\left(x_{1}, \ldots, x_{n}\right)}=1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)} \prod_{i=1}^{n} 1_{\eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)} .
$$

Taking $j^{\prime}=j-1$ in the sum (2), we rewrite it as

$$
\sum_{j^{\prime}=1}^{n-1} \sum_{s=1}^{j^{\prime}}(-1)^{s+j^{\prime}+1} w \circ \sigma_{n-1, j^{\prime}}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)
$$

switching the order of summation we get

$$
\sum_{s=1}^{n-1} \sum_{j^{\prime}=s}^{n-1}(-1)^{s+j^{\prime}+1} w \circ \sigma_{n-1, j^{\prime}}^{g}\left(x_{1}, \ldots, x_{s} x_{s+1}, \ldots, x_{n}\right)
$$

and that is the opposite of the formula (1). Then

$$
\begin{aligned}
& e\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& \quad=e \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-e\left(w \circ \tau_{n}^{g}\right)\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Applying θ_{g} to the both sides of previous formula, and since $\eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right) \in H$ for all i, we may remove $\prod_{i=1}^{n} 1_{\eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)}$ from e. Moreover using the fact that $\prod_{g \in \Lambda} \theta_{g}\left(1_{\left(g^{-1}, x_{1}, \ldots, x_{n}\right)}\right)=1_{\left(x_{1}, \ldots, x_{n}\right)}$, we obtain

$$
\begin{aligned}
& 1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g}\left(-w\left(g^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)+\Sigma(1,1)\right) \\
& =1_{t\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\right. \\
& \left.\quad \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad-1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Finally, using Definition 5.22 and Lemma 5.23 we obtain the desire result.
Lemma 5.29. For all $x \in G$ and $a: \Lambda^{\prime} \rightarrow \mathcal{A}$ one has

$$
\alpha_{x}\left(1_{x^{-1}} \prod_{g \in \Lambda} \theta_{g}(a(g))\right)=1_{x} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right) .
$$

Proof. First observe using (ii) of Lemma 5.17 that

$$
1_{x} \prod_{g \in \Lambda} a_{g}=\prod_{g \in \Lambda, \mathcal{A}_{g} \subseteq \mathcal{D}_{x}} a_{g}=\prod_{g, \overline{x^{-1} g \in \Lambda}} a_{g},
$$

where a_{g} is an arbitrary element of \mathcal{A}_{g}. We may replace the condition $g \in \Lambda$ by a stronger one $g, \overline{x^{-1} g} \in \Lambda$, and since we may put $1_{g^{-1} x}$ inside of θ_{g}. Thus,

$$
1_{x} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right)=1_{x} \prod_{g, \overline{x^{-1} g \in \Lambda}} \theta_{g}\left(1_{g^{-1} x} \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right)\right) .
$$

Observe that

$$
1_{g^{-1} x} \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right)=\alpha_{g^{-1} x_{1}} \circ \alpha_{\overline{x_{1}^{-1} g}}\left(1_{\left(\overline{x^{-1} g}\right)^{-1}} 1_{\eta_{1}^{g}(x)^{-1}}, a\left(\overline{x^{-1} g}\right)\right)
$$

denote the argument of $\alpha_{x_{1}^{-1} g}$ in the previous equality by $b=b(g, x)$, then by Remark 5.20 we get

$$
\begin{aligned}
\theta_{g} \circ \alpha_{g^{-1} x} \circ \alpha_{\overline{x^{-1} g}}(b) & =\operatorname{pr}_{g} \circ \alpha_{g}\left(1_{g^{-1}} \alpha_{g^{-1} x} \circ \alpha_{\overline{x^{-1} g}}(b)\right) \\
& =\operatorname{pr}_{g} \circ \alpha_{g} \circ \alpha_{g^{-1}} \circ \alpha_{x}\left(1_{x^{-1}} 1_{x^{-1} g} \alpha \overline{x^{-1} g}\right. \\
& (b)) \\
& =\operatorname{pr}_{g} \circ \alpha_{x}\left(1_{x^{-1}} 1_{x^{-1} g} \alpha_{x^{-1} g}(b)\right) .
\end{aligned}
$$

As $\overline{x \overline{x-1} g}=g \in \Lambda$, by (ii) of Lemma 5.17 we have $\mathcal{A}_{\overline{x^{-1} g}} \subseteq \mathcal{D}_{x^{-1}}$ and $\alpha_{x}\left(\mathcal{A}_{\overline{x^{-1} g}}\right)=$ \mathcal{A}_{g}. Moreover, $\mathcal{A}_{\overline{x^{-1} g}} \subseteq \mathcal{D}_{x^{-1} g}$. Hence, in view of Lemma 5.15

$$
\begin{aligned}
\operatorname{pr}_{g} \circ \alpha_{x}\left(1_{x^{-1}} 1_{x^{-1} g} \alpha \overline{x^{-1} g}\right. & (b))
\end{aligned}=\alpha_{x} \circ \operatorname{pr}_{\overline{x^{-1} g}}\left(1_{x^{-1}} 1_{x^{-1} g} \alpha \overline{x^{-1} g}(b)\right), ~(b) ~=\alpha_{x} \circ \mathrm{pr}_{\overline{x^{-1} g}} \circ \alpha_{\overline{x^{-1} g}}(b)
$$

and consequently

$$
\theta_{g} \circ \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right)=\alpha_{x} \circ \theta_{\overline{x^{-1} g}}(b)=\alpha_{x} \circ \theta_{\overline{x^{-1} g}}\left(a\left(\overline{x^{-1} g}\right)\right) .
$$

Here we used Remark 5.20 to remove $1_{\eta_{1}^{g}(x)-1}$ and $1_{\left(\overline{\left.x^{-1} g\right)}\right.}$ from b. It follows that

$$
\begin{aligned}
& 1_{x} \prod_{g, \overline{x^{-1} g \in \Lambda}} \theta_{g}\left(1_{g^{-1} x} \alpha_{\eta_{1}^{g}(x)}\left(1_{\eta_{1}^{g}(x)^{-1}} a\left(\overline{x^{-1} g}\right)\right)\right) \\
& \quad=\prod_{g, \overline{x^{-1} g \in \Lambda}} \alpha_{x} \circ \theta_{\overline{x^{-1} g}}\left(a\left(\overline{x^{-1} g}\right)\right)=\alpha_{x}\left(\prod_{g, \overline{x^{-1} g \in \Lambda}} \theta_{\overline{x^{-1} g}}\left(a\left(\overline{x^{-1} g}\right)\right)\right) .
\end{aligned}
$$

To check the latter equality we have to check it in every block \mathcal{A}_{t} of \mathcal{A}, where $t \in \Lambda$, it is easy to check since $\alpha_{x}\left(\mathcal{A}_{\overline{x^{-1} g}}\right)=\mathcal{A}_{g}$ and $\theta_{\overline{x^{-1} g}}: \mathcal{A} \rightarrow \mathcal{A}_{\overline{x^{-1} g}}$. Finally, let $g^{\prime}=\overline{x^{-1} g} \in \Lambda$. Then $g=\overline{x \overline{x^{-1} g}}=\overline{x g^{\prime}} \in \Lambda$, then

$$
\alpha_{x}\left(\prod_{g^{\prime}, \overline{x g^{\prime}} \in \Lambda} \theta_{g^{\prime}}\left(a\left(g^{\prime}\right)\right)\right)=\alpha_{x}\left(1_{x^{-1}} \prod_{g^{\prime} \in \Lambda} \theta_{g^{\prime}}\left(a\left(g^{\prime}\right)\right)\right)
$$

what give us the desire result.
Lemma 5.30. For all $n>0, w \in Z_{p a r}^{n}(G, \mathcal{A})$ and $x_{1}, \ldots, x_{n} \in G$

$$
\begin{aligned}
& 1_{\left(x_{1} \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)-1} \sum_{j=0}^{n-1}(-1)^{j} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& =\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Proof. Using Lemma 5.29 with

$$
a(g)=\sum_{j=0}^{n-1}(-1)^{j} w \circ \sigma_{n-1, j}^{g}\left(x_{2}, \ldots, x_{n}\right),
$$

where n, w and x_{2}, \ldots, x_{n} are fixed and $g \in \Lambda^{\prime}$, we see that

$$
\begin{aligned}
& 1_{\left(x_{1} \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)-1} \sum_{j=0}^{n-1}(-1)^{j} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& =1_{\left(x_{1} \ldots, x_{n}\right)} \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{j=0}^{n-1}(-1)^{j} w \circ \sigma_{n-1, j}^{g}\left(x_{2}, \ldots, x_{n}\right)\right)\right),
\end{aligned}
$$

since $1_{\left(x_{1}, \ldots, x_{n}\right)}=\alpha_{x_{1}}\left(1_{x_{1}^{-1}} 1_{\left(x_{2}, \ldots, x_{n}\right)}\right)$, by Definition 5.22 we obtain

$$
\begin{aligned}
& 1_{\left(x_{1} \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)-1} \sum_{j=0}^{n-1}(-1)^{j} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& =\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Theorem 5.31. Let $n>0$ and $w \in Z_{\text {par }}^{n}(G, \mathcal{A})$. Then $w=\delta^{n-1} \varepsilon+w^{\prime}$. In particular $w^{\prime} \in Z_{p a r}^{n}(G, \mathcal{A})$.

Proof. By Lemma 5.28 we have that

$$
\begin{aligned}
& w^{\prime}\left(x_{1}, \ldots, x_{n}\right)+\left(\delta^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right) \\
& =w\left(x_{1}, \ldots, x_{n}\right) \\
& \quad+1_{\left(x_{1}, \ldots, x_{n}\right)} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} \sum_{j=0}^{n-1}(-1)^{j+1} w \circ \sigma_{n-1, j}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \quad+\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

and by Lemma 5.30 we get

$$
w^{\prime}\left(x_{1}, \ldots, x_{n}\right)+\left(\delta^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right)=w\left(x_{1}, \ldots, x_{n}\right) .
$$

5.3 Existence and uniqueness of a globalization

The aim in this section is to complete the construction of \tilde{w} satisfying the conditions of Theorem 5.14. We will introduce some formulas which will be used here as well.

Lemma 5.32. Let $g \in \Lambda^{\prime}$. Then

$$
\begin{aligned}
\eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) & =\eta_{n-1}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right), n \geq 2, \\
\eta_{n}^{g}\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right) & =\eta_{n-1}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right), 1 \leq i \leq n-2, \\
\eta_{n}^{g}\left(x_{1}, \ldots, x_{n-1}, x_{n} x_{n+1}\right) & =\eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) \eta_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right), n \geq 1 .
\end{aligned}
$$

Proof. For the very first equality

$$
\begin{aligned}
\overline{\eta_{n-1}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n}\right) & =\eta\left(x_{n}^{-1} \overline{x_{n-1}^{-1} \ldots \overline{x_{1}^{-1} g}}\right) \\
& =\eta\left(x_{n}^{-1} \overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right) \\
& =\eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

The second equality

$$
\begin{aligned}
\eta_{n-1}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right) & =\eta\left(x_{n}^{-1} \overline{x_{n-1}^{-1} \ldots\left(x_{i} x_{i+1}\right)^{-1} \ldots x_{1}^{-1} g}\right) \\
& =\eta\left(x_{n}^{-1} \overline{x_{n-1}^{-1} \ldots x_{i+1}^{-1} x_{i}^{-1} \ldots x_{1}^{-1} g}\right) \\
& =\eta_{n}^{g}\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Finally, for the last one equality we have

$$
\begin{aligned}
\eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) \eta_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right)= & \left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n}\left(\overline{x_{n}^{-1} \ldots x_{1}^{-1} g}\right) \\
& \left.\cdot\left(\overline{\left(x_{n}^{-1} \ldots x_{1}^{-1} g\right.}\right)^{-1} x_{n+1} \overline{\left(x_{n+1}^{-1} \ldots x_{1}^{-1} g\right.}\right) \\
= & \left(\overline{x_{n-1}^{-1} \ldots x_{1}^{-1} g}\right)^{-1} x_{n} x_{n+1}\left(\overline{x_{n+1}^{-1} \ldots x_{1}^{-1} g}\right) \\
= & \eta_{n}^{g}\left(x_{1}, \ldots, x_{n-1}, x_{n} x_{n+1}\right)
\end{aligned}
$$

Definition 5.33. Define $\widetilde{w^{\prime}}: G^{n} \rightarrow \mathcal{A}$ by removing $1_{\left(x_{1}, \ldots, x_{n}\right)}$ from the definition of w^{\prime} in Definition 5.22, i.e.

$$
\widetilde{w^{\prime}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in \Lambda} \theta_{g} \circ w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)
$$

Lemma 5.34. Let $n>0, w \in Z_{p a r}^{n}(G, A)$ and $x_{1}, \ldots, x_{n} \in G$. Then

$$
\tilde{\delta}^{n} \widetilde{w^{\prime}}=0 .
$$

Proof. By Definition 5.13 we have

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \widetilde{w^{\prime}}\right)\left(x_{1}, \ldots, x_{n+1}\right)= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \widetilde{w^{\prime}}\left(x_{2}, \ldots, x_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{x_{1}} \widetilde{w^{\prime}}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right) \\
& +(-1)^{n+1} 1_{x_{1}} \widetilde{w^{\prime}}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Now switching $\widetilde{w^{\prime}}$ by its definition we get

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \widetilde{w^{\prime}}\right)\left(x_{1}, \ldots, x_{n+1}\right)= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \prod_{g \in \Lambda} \theta_{g}\left(w \circ \tau_{n}^{g}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) \\
& +1_{x_{1}} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{i=1}^{n}(-1)^{i} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right) \\
& +1_{x_{1}} \prod_{g \in \Lambda} \theta_{g}\left((-1)^{n+1} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Thus using Lemma 5.29 we have

$$
\begin{aligned}
& \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \prod_{g \in \Lambda} \theta_{g}\left(w \circ \tau_{n}^{g}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) \\
& \quad=1_{x_{1}} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\left(w \circ \overline{\tau_{n}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \tilde{w^{\prime}}\right)\left(x_{1}, \ldots, x_{n+1}\right)= & 1_{x_{1}} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\left(w \circ \tau_{n}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) \\
& +1_{x_{1}} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{i=1}^{n}(-1)^{i} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right) \\
& +1_{x_{1}} \prod_{g \in \Lambda} \theta_{g}\left((-1)^{n+1} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

By Remark 5.20 we have

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \widetilde{w}^{\prime}\right)\left(x_{1}, \ldots, x_{n+1}\right)= & 1_{x_{1}} \prod_{g \in \Lambda} \theta_{g} \circ \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1 _ { \eta _ { 1 } ^ { g } (x _ { 1 }) ^ { - 1 } } \left(w \circ \tau_{n}^{x_{1}^{-1} g}\right.\right. \\
& \left.\left.+x_{x_{1}} \prod_{g \in \Lambda} \theta_{g}\left(\sum_{i=1}^{n}(-1)^{i} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{i}\right)} w \circ x_{n+1}\right)\right)\right) \\
& +1_{x_{1}} \prod_{g \in \Lambda}^{g} \theta_{g}\left(\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right)
\end{aligned}
$$

Therefore $\tilde{\delta}^{n} \widetilde{w^{\prime}}=0$ if

$$
\begin{aligned}
0= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\left(w \circ \overline{\tau_{n}^{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{i}\right)} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right) \\
& +(-1)^{n+1} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{n}\right)} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

The right part of the previous formula is an expansion of cocycle identity

$$
\left(\delta^{n} w\right) \circ \tau_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right)=0
$$

Indeed,

$$
\begin{aligned}
\left(\delta^{n} w\right) & \circ \tau_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right) \\
= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}} w\left(\eta_{2}^{g}\left(x_{1}, x_{2}\right), \ldots, \eta_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right)\right)\right) \\
\quad & +\sum_{i=1}^{n}(-1)^{i} 1_{\eta_{1}^{g}\left(x_{1}\right) \ldots \eta_{i}^{g}(\ldots)} w\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{i}^{g}(\cdots) \eta_{i+1}^{g}(\cdots), \ldots, \eta_{n+1}^{g}(\cdots)\right) \\
& +(-1)^{n+1} 1_{\eta_{1}^{g}\left(x_{1}\right) \ldots \eta_{n+1}^{g}(\ldots)} w\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{n}^{g}(\cdots)\right),
\end{aligned}
$$

where $\eta_{i}^{g}(\cdots)$ means $\eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)$. By Lemma 5.32 we have

1. $\left(\eta_{2}^{g}\left(x_{1}, x_{2}\right), \ldots, \eta_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}^{g}\right)\right)=\tau_{n}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n+1}\right)$;
2. $\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{i}^{g}(\cdots) \eta_{i+1}^{g}(\cdots), \ldots, \eta_{n+1}^{g}(\cdots)\right)=\tau_{n}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)$;
3. $1_{\eta_{1}^{g}\left(x_{1}\right) \ldots \eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)}=1_{\eta_{1}^{g}\left(x_{1} \ldots x_{i}\right)}$.

Hence,

$$
\begin{aligned}
0= & \left(\delta^{n} w\right) \circ \tau_{n+1}^{g}\left(x_{1}, \ldots, x_{n+1}\right) \\
= & \alpha_{\eta_{1}^{g}\left(x_{1}\right)}\left(1_{\eta_{1}^{g}\left(x_{1}\right)^{-1}}\left(w \circ \tau_{n}^{\overline{x_{1}^{-1} g}}\left(x_{2}, \ldots, x_{n+1}\right)\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{i}\right)} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right) \\
& +(-1)^{n+1} 1_{\eta_{1}^{g}\left(x_{1} \ldots x_{n}\right)} w \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Definition 5.35. For arbitrary $n \in \mathbb{Z}^{+}$and $x_{1}, \ldots, x_{n} \in G$, define $\widetilde{w}: G^{n} \rightarrow \mathcal{A}$

$$
\widetilde{w}=\widetilde{w^{\prime}}+\hat{\delta}^{n-1} \varepsilon,
$$

where

$$
\begin{aligned}
\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right)= & \alpha_{x_{1}}\left(1_{x^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} \varepsilon\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right) \\
& +(-1)^{n} \varepsilon\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Now we can proof the next theorem which establish the existence of a globalization.

Theorem 5.36. Let \mathcal{A} be a direct product of indecomposable unital rings and $\alpha=$ $\left\{\alpha_{g}: \mathcal{D}_{g^{-1}} \rightarrow \mathcal{D}_{g} \mid g \in G\right\}$ a (non-necessarily transitive) unital partial action of G on \mathcal{A}. Then for any $n \geq 0$ each cocycle $w \in Z_{\text {par }}^{n}(G, \mathcal{A})$ with values in the induced $K_{\text {par }}(G)$-module is globalizable.

Proof. By Lemma 5.10 we have the case $n=0$. Now take $n>0$. First consider the transitive case, the map $\widetilde{w}: G^{n} \rightarrow \mathcal{A}$ satisfies $w\left(g_{1}, \ldots, g_{n}\right)=1_{\left(g_{1}, \ldots, g_{n}\right)} \tilde{w}\left(g_{1}, \ldots, g_{n}\right)$ which is a condition of Theorem 5.14. Indeed, recall that $w^{\prime}=1_{\left(x_{1}, \ldots, x_{n}\right)} w^{\prime}$ by Definition 5.33 and $1_{\left(x_{1}, \ldots, x_{n}\right)}\left(\hat{\delta}^{n-1} \varepsilon\right)=\delta^{n-1} \varepsilon$ by Remark 3.40 and Definition 5.13 , thus using Theorem 5.31 we have

$$
\begin{aligned}
1_{\left(x_{1}, \ldots, x_{n}\right)} \widetilde{w}\left(x_{1}, \ldots, x_{n}\right) & =1_{\left(x_{1}, \ldots, x_{n}\right)} \widetilde{w}^{\prime}\left(x_{1}, \ldots, x_{n}\right)+1_{\left(x_{1}, \ldots, x_{n}\right)}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right) \\
& =w^{\prime}\left(x_{1}, \ldots, x_{n}\right)+\left(\delta^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right) \\
& =w\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Then to use Theorem 5.14 we only have to show that $\widehat{\delta}^{n} \widetilde{w}=0$. Notice that by Definition 5.35

$$
\left(\tilde{\delta}^{n} \widetilde{w}\right)\left(x_{1}, \ldots, x_{n+1}\right)=\left(\tilde{\delta}^{n} \widetilde{w}^{\prime}\right)\left(x_{1}, \ldots, x_{n+1}\right)+\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right)
$$

By Lemma $5.34 \tilde{\delta}^{n} \widetilde{w^{\prime}}=0$. Hence,

$$
\left(\tilde{\delta}^{n} \widetilde{w}\right)\left(x_{1}, \ldots, x_{n+1}\right)=\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right) .
$$

Then observe that

$$
\begin{align*}
\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right)= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{2}, \ldots, x_{n+1}\right)\right) \tag{5.4}\\
& +\sum_{i=1}^{n}(-1)^{i} 1_{x_{1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right) \tag{5.5}\\
& +(-1)^{n+1} 1_{x_{1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right) . \tag{5.6}
\end{align*}
$$

Now observe that (5.5) is equal to

$$
\begin{aligned}
\sum_{i=1}^{n}(-1)^{i} 1_{x_{1}}[& \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(w_{(i, 2)}, \ldots, w_{(i, i)} \ldots, w_{(i, n)}\right)\right) \\
& +\sum_{j=1}^{n-1}(-1)^{j} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, j)} w_{(i, j+1)}, \ldots, w_{(i, n)}\right) \\
& \left.+(-1)^{n} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, i)} \ldots, w_{(i, n-1)}\right)\right],
\end{aligned}
$$

where

$$
w_{(i, j)}=\left\{\begin{array}{cc}
x_{j} & \text { if } j<i \\
x_{i} x_{i+1} & \text { if } j=i \\
x_{j+1} & \text { if } j>i
\end{array}\right.
$$

for $1 \leq i \leq n$ and $1 \leq j \leq n-1$. Define $\gamma(i, j)=\left(w_{(i, 1)}, \ldots, w_{(i, j)} w_{(i, j+1)}, \ldots, w_{(i, n)}\right)$, note that if $j>i$ then

$$
\begin{aligned}
\gamma(i, j) & =\left(w_{(i, 1)}, \ldots, w_{(i, i)}, \ldots, w_{(i, j)} w_{(i, j+1)}, \ldots, w_{(i, n)}\right) \\
& =\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n+1}\right) \\
& =\left(w_{(j+1,1)}, \ldots, w_{(j+1, i)} w_{(j+1, i+1)}, \ldots, w_{(j+1, j+1)}, \ldots, w_{(i, n)}\right) \\
& =\gamma(j+1, i),
\end{aligned}
$$

and if $j=i$

$$
\gamma(i, i)=\left(x_{1}, \ldots, x_{i} x_{i+1} x_{i+2}, \ldots, x_{n+1}\right)=\gamma(i+1, i) .
$$

Thus if $j \geq i$ we have $\gamma(i, j)=\gamma(j+1, i)$ and if $j<i \gamma(i, j)=\gamma(j, i-1)$. Hence if $j \geq i$

$$
(-1)^{i+j} 1_{x_{1}} \varepsilon(\gamma(i, j))+(-1)^{i+j+1} 1_{x_{1}} \varepsilon(\gamma(j+1, i))=0 .
$$

Therefore,

$$
\begin{aligned}
\sum_{i=1}^{n} & \sum_{j=1}^{n-1}(-1)^{i+j} 1_{x_{1}} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, j)} w_{(i, j+1)}, \ldots, w_{(i, n)}\right) \\
& =1_{x_{1}} \sum_{i=1}^{n} \sum_{j=1}^{n-1}(-1)^{i+j} \varepsilon(\gamma(i, j)) \\
& =1_{x_{1}} \sum_{i, j=1, j \geq i}^{n-1}(-1)^{i+j} \varepsilon(\gamma(i, j))+(-1)^{i+j+1} \varepsilon(\gamma(j+1, i)) \\
& =0 .
\end{aligned}
$$

Hence we have that (5.5) is equal to

$$
\begin{aligned}
\sum_{i=1}^{n}(-1)^{i} 1_{x_{1}} & {\left[\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(w_{(i, 2)}, \ldots, w_{(i, i)} \ldots, w_{(i, n)}\right)\right)\right.} \\
& \left.+(-1)^{n} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, i)} \ldots, w_{(i, n-1)}\right)\right] .
\end{aligned}
$$

On the other hand (5.6) is equal to

$$
\begin{aligned}
(-1)^{n+1} 1_{x_{1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n}\right)= & (-1)^{n+1} \alpha_{x_{1}}\left(1_{x^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i+n+1} 1_{x_{1}} \varepsilon\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right) \\
& -1_{x_{1}} \varepsilon\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right)= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{2}, \ldots, x_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} 1_{x_{1}}\left[\alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right)\right. \\
& \left.+(-1)^{n} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, i)} \ldots, w_{(i, n-1)}\right)\right] \\
& +(-1)^{n+1} \alpha_{x_{1}}\left(1_{x^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i+n+1} 1_{x_{1}} \varepsilon\left(w_{(i, 1)}, \ldots, w_{(i, i)} \ldots, w_{(i, n-1)}\right) \\
& -1_{x_{1}} \varepsilon\left(x_{1}, \ldots, x_{n-1}\right) \\
= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{2}, \ldots, x_{n+1}\right)\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right) \\
& +1_{x_{1}} \varepsilon\left(x_{1}, \ldots, x_{n} x_{n+1}\right) \\
& +(-1)^{n+1} \alpha_{x_{1}}\left(1_{x^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) \\
& -1_{x_{1}} \varepsilon\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right)= & \alpha_{x_{1}}\left(1_{x_{1}^{-1}}\left(\hat{\delta}^{n-1} \varepsilon\right)\left(x_{2}, \ldots, x_{n+1}\right)\right) \tag{5.7}\\
& +\sum_{i=1}^{n}(-1)^{i} \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right) \tag{5.8}\\
& +(-1)^{n+1} \alpha_{x_{1}}\left(1_{x^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right) . \tag{5.9}
\end{align*}
$$

The terms of the expansion of (5.7) are

$$
\begin{aligned}
& \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \alpha_{x_{2}}\left(1_{x_{2}^{-1}} \varepsilon\left(x_{3}, \ldots, x_{n+1}\right)\right)\right), \\
& \alpha_{x_{1}}\left((-1)^{i-1} 1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right), 2 \leq i \leq n, \\
& (-1)^{n} \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right),
\end{aligned}
$$

while the summands in (5.8) and (5.9) are

$$
\begin{aligned}
& -1_{x_{1}} \alpha_{x_{1} x_{2}}\left(1_{x_{2}^{-1} x_{1}^{-1} \varepsilon\left(x_{3}, \ldots, x_{n+1}\right)}\right), \\
& (-1)^{i} \alpha_{x_{1}}\left(1_{x_{1}^{-1}} \varepsilon\left(x_{2}, \ldots, x_{i} x_{i+1}, \ldots, x_{n+1}\right)\right), 2 \leq i \leq n, \\
& (-1)^{n+1} \alpha_{x_{1}}\left(1_{\left.x_{1}^{-1} \varepsilon\left(x_{2}, \ldots, x_{n}\right)\right)}\right.
\end{aligned}
$$

Thus the terms of the expansion of $\left(\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon\right)\left(x_{1}, \ldots, x_{n+1}\right)$ cancels and $\tilde{\delta}^{n} \hat{\delta}^{n-1} \varepsilon=0$. Finally, for the non transitive case suppose that \mathcal{A} is a product of blocks:

$$
\mathcal{A}=\prod_{\lambda \in \Lambda} \mathcal{A}_{\lambda}
$$

i.e. each \mathcal{A}_{λ} is an indecomposable unital ring, and let α be a unital partial action of G on \mathcal{A}. If α is not necessarily transitive, then for a given block \mathcal{A}_{λ} define its orbit by

$$
o_{\lambda}=\left\{\mathcal{A}_{\lambda^{\prime}}: \exists g \in G, \mathcal{A}_{\lambda} \subseteq \mathcal{D}_{g^{-1}}, \alpha_{g}\left(\mathcal{A}_{\lambda}\right)=\mathcal{A}_{\lambda^{\prime}}\right\} .
$$

These are the block-orbits of \mathcal{A} with respect to α. Note that for any pair $\lambda, \lambda^{\prime} \in \Lambda$ such that $o_{\lambda} \cap o_{\lambda^{\prime}} \neq \varnothing$ there exist $\lambda^{\prime \prime} \in \Lambda$ and $g, g^{\prime} \in G$ such that $\mathcal{A}_{\lambda} \subseteq \mathcal{D}_{g^{-1}}, \mathcal{A}_{\lambda^{\prime}} \subseteq \mathcal{D}_{g^{\prime-1}}$ and $\alpha_{g}\left(\mathcal{A}_{\lambda}\right)=\mathcal{A}_{\lambda^{\prime \prime}}=\alpha_{g^{\prime}}\left(\mathcal{A}_{\lambda^{\prime}}\right)$, then since $\mathcal{A}_{\lambda^{\prime \prime}} \subseteq \mathcal{D}_{g} \cap \mathcal{D}_{g^{\prime}}$ we have $\mathcal{A}_{\lambda^{\prime}} \subseteq \mathcal{D}_{\left(g^{-1} g^{\prime}\right)^{-1}}$ and $\mathcal{A}_{\lambda}=\alpha_{g^{-1} g^{\prime}}\left(\mathcal{A}_{\lambda^{\prime}}\right)$, therefore $\mathcal{A}_{\lambda} \in o_{\lambda^{\prime}}$, whence $o_{\lambda}=o_{\lambda^{\prime}}$. So we can take a partition of $\left\{\mathcal{A}_{\lambda} \mid \lambda \in \Lambda\right\}$ of block-orbits. Let $\Upsilon \subseteq \Lambda$ be such that $\left\{o_{\mu}: \mu \in \Upsilon\right\}$ is a partition of $\left\{\mathcal{A}_{\lambda} \mid \lambda \in \Lambda\right\}$. For any $\mu \in \Upsilon$, put $\mathcal{O}_{\mu}=\prod_{\mathcal{A}_{\lambda} \in o_{\mu}} \mathcal{A}_{\lambda}$. Therefore

$$
\mathcal{A}=\prod_{\mu \in \Upsilon} \mathcal{O}_{\mu} .
$$

The ring \mathcal{O}_{μ} will be called the orbit ideal corresponding to μ. Due to the way we construct each orbit ideal \mathcal{O}_{μ} we have that α restricted to \mathcal{O}_{μ} is a transitive unital partial action of G on \mathcal{O}_{μ}. So the construction of \widetilde{w} reduces to the transitive case over each \mathcal{O}_{μ}.

For the following theorem we will use the next results from [7].
Remark 5.37. Let \mathcal{R} be a ring and $\left\{\mathcal{R}_{\mu}\right\}_{\mu \in M}$ a family of unital ideals of \mathcal{R}. Now define the homomorphism $\phi: \mathcal{R} \rightarrow \prod_{\mu \in M} \mathcal{R}_{\mu}$ given by $r \mapsto\left(1_{\mu} \cdot r\right)_{\mu \in M}$, where 1_{μ} is the unity of \mathcal{R}_{μ}. Then ϕ satisfies $\pi_{\mu^{\prime}} \circ \phi(r)=1_{\mu^{\prime}} \cdot r$, where $\pi_{\mu^{\prime}}: \prod_{\mu \in M} \mathcal{R}_{\mu} \rightarrow \mathcal{R}_{\mu^{\prime}}$ is the natural projection. When a homomorphism satisfies the previous condition we say that it respects projections, moreover ϕ is the unique homomorphism $\mathcal{R} \rightarrow \prod_{\mu \in M} \mathcal{R}_{\mu}$ whose respects projections.

Lemma 5.38. Let \mathcal{C} be a not necessarily unital ring and $\left\{\mathcal{C}_{\mu} \mid \mu \in M\right\}$ a family of pairwise distinct unital ideals in \mathcal{C}. Suppose that I and J are unital ideals in \mathcal{C} such that

$$
I \cong \prod_{\mu \in M_{1}} \mathcal{C}_{\mu} \text { and } J \cong \prod_{\mu \in M_{2}} \mathcal{C}_{\mu},
$$

where $M_{1}, M_{2} \subseteq M, \mathcal{C}_{\mu} \subseteq I$ for all $\mu \in M_{1}$ and $\mathcal{C}_{\mu^{\prime}} \subseteq J$ for all $\mu^{\prime} \in M_{2}$. If the above isomorphisms respect projections, then there is an isomorphism

$$
I+J \cong \prod_{\mu \in M_{1} \cup M_{2}} \mathcal{C}_{\mu},
$$

which also respects projections.
Proof. First observe that $I+J$ is a unital ring with unity element $1_{I}+1_{J}-1_{I} 1_{J}$. Indeed, for any $v \in I$ and $w \in J$ we have that

$$
\begin{aligned}
(v+w)\left(1_{I}+1_{J}-1_{I} 1_{J}\right) & =v 1_{I}+v 1_{J}-v 1_{I} 1_{J}+w 1_{I}+w 1_{J}-w 1_{I} 1_{J} \\
& =v+v 1_{J}-v 1_{J}+w 1_{I}+w-w 1_{I} \\
& =v+w
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1_{I}+1_{J}-1_{I} 1_{J}\right)(v+w) & =1_{I} v+1_{J} v-1_{I} 1_{J} v+1_{I} w+1_{J} w-1_{I} 1_{J} w \\
& =v+1_{J} v-1_{J} v+1_{I} w+w-1_{I} w \\
& =v+w .
\end{aligned}
$$

Now define $J^{\prime}=J\left(1_{J}-1_{I} 1_{J}\right)$. Observe that for any $u \in I \cap J^{\prime}$ we have that $u=0$. Indeed, for $u \in J^{\prime}$ there exist $j \in J$ such that $u=j\left(1_{J}-1_{I} 1_{J}\right)$, so if $u \in I$ then $j-j 1_{I} \in I$, whence $j \in I$ and $u=0$. Hence, $I+J=I \oplus J^{\prime}$ and $J=(I \cap J) \oplus J^{\prime}$. Notice that for any $\mu \in M_{1}$ and $j \in J$, we have that $1_{\mu} j\left(1_{I}-1_{I} 1_{J}\right)=1_{\mu} j-1_{\mu} j=$ 0 . Therefore, since the isomorphism $J \cong \prod_{\mu \in M_{2}} \mathcal{C}_{\mu}$ respects projections it can be restricted to the isomorphism

$$
J^{\prime} \cong \prod_{\mu \in M_{2} \backslash M_{1}} \mathcal{C}_{\mu} \subseteq \prod_{\mu \in M_{2}} \mathcal{C}_{\mu},
$$

such that respects projections. Then

$$
I+J=I \oplus J^{\prime} \cong\left(\prod_{\mu \in M_{1}} \mathcal{C}_{\mu}\right) \oplus\left(\prod_{\mu \in M_{2} \backslash M_{1}} \mathcal{C}_{\mu}\right) \cong\left(\prod_{\mu \in M_{1}} \mathcal{C}_{\mu}\right) \times\left(\prod_{\mu \in M_{2} \backslash M_{1}} \mathcal{C}_{\mu}\right)
$$

the latter being isomorphic to $\prod_{\mu \in M_{1} \sqcup\left(M_{2} \backslash M_{1}\right)} \mathcal{C}_{\mu}$, which proves

$$
I+J \cong \prod_{\mu \in M_{1} \cup M_{2}} \mathcal{C}_{\mu}
$$

Furthermore, since all the isomorphisms used respect projections, the latter one too.

Proposition 5.39. Let \mathcal{A} be a direct product $\prod_{g \in \Lambda} \mathcal{A}_{g}$ of indecomposable unital rings, α a transitive unital partial action of G on \mathcal{A} and (β, \mathcal{B}) an enveloping action of (α, \mathcal{A}) with $\mathcal{A} \subseteq \mathcal{B}$. Then \mathcal{B} embeds as an ideal into $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$, where \mathcal{A}_{g} denotes the ideal $\beta_{g}\left(\mathcal{A}_{1}\right)$ in \mathcal{B}. Moreover, $\mathcal{M}(\mathcal{B}) \cong \prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$, and β^{*} is transitive, when seen as a partial action of G on $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$.

Proof. By Remark 5.37 there is a unique homomorphism $\phi: \mathcal{B} \rightarrow \prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$, which respects projections. We will prove that ϕ is injective. Since $\mathcal{B}=\sum_{g \in G} \beta_{g}(\mathcal{A})$, each element of \mathcal{B} belongs to an ideal I of \mathcal{B} of the form $\sum_{i=1}^{k} \beta_{x_{i}}(\mathcal{A}), x_{1}, \ldots, x_{k} \in G$. Therefore, it suffices to show that the restriction of ϕ to any such I is injective. Using Remark 5.18, we may construct for any $i=1, \ldots, k$ an isomorphism

$$
\beta_{x_{i}}(\mathcal{A})=\beta_{x_{i}}\left(\prod_{g \in \Lambda} \mathcal{A}_{g}\right) \cong \prod_{g \in \Lambda} \beta_{x_{i}}\left(\mathcal{A}_{g}\right)=\prod_{g \in \Lambda} \mathcal{A}_{\overline{x_{i} g}}
$$

which respects projections. Notice that it follows from the definition of Λ^{\prime} that the ideals $\mathcal{A}_{g}, g \in \Lambda^{\prime}$, are pairwise distinct. Hence by Lemma 5.38 there is an isomorphism

$$
\psi: I \rightarrow \prod_{g \in \Lambda^{\prime \prime}} \mathcal{A}_{g}
$$

where $\Lambda^{\prime \prime}=\left\{\overline{x_{i} g} \mid g \in \Lambda, i=1, \ldots, k\right\} \subseteq \Lambda^{\prime}$, and it also respects projections. We claim that the restriction of ϕ to I coincides with ψ if one understands the product in the right-hand side of

$$
\psi: I \rightarrow \prod_{g \in \Lambda^{\prime \prime}} \mathcal{A}_{g}
$$

as an ideal in $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$. Indeed, for all $g \in \Lambda^{\prime \prime}$ and $b \in I$ one has

$$
\operatorname{pr}_{g} \circ \psi(b)=1_{\mathcal{A}_{g}} b=\operatorname{pr}_{g} \circ \phi(b),
$$

because ϕ and ψ respect projections. Now if $g \in \Lambda^{\prime} \backslash \Lambda^{\prime \prime}$, then $\overline{x_{i}^{-1} g} \notin \Lambda$ for all $i=1, \ldots, k$, since otherwise $g=\overline{x_{i} \overline{x_{i}^{-1} g}} \in \Lambda^{\prime \prime}$. Hence, for all $b=\sum_{i=1}^{k} \beta_{x_{i}}\left(a_{i}\right) \in I$ $\left(a_{i} \in \mathcal{A}\right)$ in view of Remark 5.18

$$
\operatorname{pr}_{g} \circ \phi(b)=1_{\mathcal{A}_{g}} b=\sum_{i=1}^{k} \beta_{x_{i}}\left(1_{\mathcal{A}} \overline{x_{i}^{-1} g} a_{i}\right)=\sum_{i=1}^{k} \beta_{x_{i}}(0)=0 .
$$

This proves the claim, and thus injectivity of ϕ. Moreover, since $\phi(I)=\prod_{g \in \Lambda^{\prime \prime}} \mathcal{A}_{g}$ is an ideal in $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$, it follows that $\phi(\mathcal{B})$ is also an ideal in $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$.

Regarding the second statement of the proposition, notice that each element of $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$ acts as a multiplier of \mathcal{B}, as $\phi(\mathcal{B})$ is an ideal in $\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$. Conversely, let $w \in \mathcal{M}(\mathcal{B})$. Then $w 1_{\mathcal{A}_{g}}=w 1_{\mathcal{A}_{g}} \cdot 1_{\mathcal{A}_{g}} \in \mathcal{A}_{g}$ for all $g \in \Lambda^{\prime}$. Define $a \in \prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g}$ by $\operatorname{pr}_{g}(a)=w 1_{\mathcal{A}_{g}}$. We need to show that $\phi(w b)=a \phi(b)$ and $\phi(b w)=\phi(b) a$. Indeed using the fact that ϕ respects projections, we get

$$
\operatorname{pr}_{g}(\phi(w b))=1_{\mathcal{A}_{g}} \cdot w b=w 1_{\mathcal{A}_{g}} \cdot 1_{\mathcal{A}_{g}} b=w 1_{\mathcal{A}_{g}} \cdot \operatorname{pr}_{g}(\phi(b))=\operatorname{pr}_{g}(a \phi(b))
$$

for all $g \in \Lambda^{\prime}$. Similarly $\operatorname{pr}_{g}(\phi(b w))=\operatorname{pr}_{g}(a \phi(b))$ for arbitrary $g \in \Lambda^{\prime}$. The transitivity of β^{*} easily follows from the definition of \mathcal{A}_{g} for $g \in \Lambda^{\prime}$.

Finally the next theorem allow us to obtain the uniqueness of a globalization.
Theorem 5.40. Let \mathcal{A} be a direct product $\prod_{g \in \Lambda} \mathcal{A}_{g}$ of indecomposable unital rings, α a unital partial action of G on \mathcal{A} and $w_{i} \in Z_{\text {par }}^{n}(G, \mathcal{A}), i=1,2(n>0)$. Suppose that (β, \mathcal{B}) is an enveloping action of (α, \mathcal{A}) and $u_{i} \in Z^{n}(G, \mathcal{M}(\mathcal{B}))$ is a globalization of $w_{i} i=1,2$. If w_{1} is cohomologous to w_{2}, then u_{1} is cohomologous to u_{2}. In particular, any two globalizations of the same partial n-cocycle are cohomologous.

Proof. Using the same argument used in the proof of Theorem 5.36 we can consider only the transitive case and by Proposition 5.39 we can assume, without loss of generality, that $\mathcal{M}(\mathcal{B})=\prod_{g \in \Lambda^{\prime}} \mathcal{A}_{g} \supseteq \mathcal{A}$. Define homomorphism $\vartheta_{g}: \mathcal{M}(\mathcal{B}) \rightarrow \mathcal{M}(\mathcal{B})$ by

$$
\vartheta_{g}=\beta_{g} \circ \operatorname{pr}_{1}
$$

and $u_{i}^{\prime} \in C^{n}(G, \mathcal{M}(\mathcal{B}))$ by

$$
u_{i}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ u_{i} \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right), i=1,2
$$

Note that the definition of u_{i}^{\prime} is analogous to that of w^{\prime} in Definition 5.22, and the definition of ϑ_{g} is analogous to that of 5.19 then using Theorem 5.31 we have that $u_{i}^{\prime} \in Z^{n}(G, \mathcal{M}(\mathcal{B}))$ and u_{i} is cohomologous to $u_{i}^{\prime}, i=1,2$. Suppose that w_{1} is cohomologous to w_{2}. Then if we prove that u_{1}^{\prime} is cohomologous to u_{2}^{\prime} then u_{1}^{\prime} and u_{2}^{\prime} are cohomologous. First observe that since u_{i} is a globalization of w_{i} we have $1_{\left(x_{1}, \ldots, x_{n}\right)} u_{i}\left(x_{1}, \ldots, x_{n}\right)=w_{i}\left(x_{1}, \ldots, x_{n}\right)$, then for arbitrary $h_{1}, \ldots, h_{n} \in H$

$$
\operatorname{pr}_{1} \circ u_{i}\left(h_{1}, \ldots, h_{n}\right)=\operatorname{pr}_{1}\left(1_{\left(h_{1}, \ldots, h_{n}\right)} u_{i}\left(h_{1}, \ldots, h_{n}\right)\right)=\operatorname{pr}_{1} \circ w_{i}\left(h_{1}, \ldots, h_{n}\right)
$$

whence

$$
u_{i}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ w_{i} \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right), i=1,2 .
$$

If $w_{2}=w_{1}+\delta^{n-1} \xi$ for some $\xi \in C_{\text {par }}^{n-1}(G, \mathcal{A})$, then we get $u_{2}^{\prime}=u_{1}^{\prime}+\left(\delta^{n-1} \xi\right)^{\prime}$, where

$$
\left(\delta^{n-1} \xi\right)^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ\left(\delta^{n-1} \xi\right) \circ \tau_{n}^{g}\left(x_{1}, \ldots, x_{n}\right) .
$$

Then is enough to prove that

$$
\left(\delta^{n-1} \xi\right)^{\prime}=\delta^{n-1} \xi^{\prime},
$$

where

$$
\xi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)=\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \xi \circ \tau_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right) .
$$

Observe that since we can omit the idempotents $1_{\eta_{1}^{g}\left(x_{1}\right) \ldots \eta_{i}^{g}\left(x_{1}, \ldots, x_{i}\right)}$ in ϑ_{g}, then $\left(\delta^{n-1} \xi\right)^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ is equal to

$$
\begin{aligned}
\prod_{g \in \Lambda^{\prime}} \vartheta_{g}[& \beta_{\eta_{i}^{g}\left(x_{1}\right)}\left(\xi \circ \tau_{n-1}^{\overline{x^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} \xi\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{i}^{g}(\cdots) \eta_{i+1}^{g}(\cdots), \ldots, \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \left.+(-1)^{i} \xi\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right)\right)\right] .
\end{aligned}
$$

On the other hand $\left(\delta^{n-1} \xi^{\prime}\right)\left(x_{1}, \ldots, x_{n}\right)$ is equal to

$$
\begin{aligned}
& \beta_{x_{1}}\left(\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \xi \circ \tau_{n-1}^{g}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} \prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \xi\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{i}^{g}(\cdots) \eta_{i+1}^{g}(\cdots), \ldots, \eta_{n}^{g}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& +(-1)^{i} \prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \xi\left(\eta_{1}^{g}\left(x_{1}\right), \ldots, \eta_{n-1}^{g}\left(x_{1}, \ldots, x_{n-1}\right)\right) .
\end{aligned}
$$

Hence to prove that $\left(\delta^{n-1} \xi^{\prime}\right)\left(x_{1}, \ldots, x_{n}\right)=\left(\delta^{n-1} \xi\right)^{\prime}\left(x_{1}, \ldots, x_{n}\right)$, since ϑ_{g} is an homomorphism, we only have to show that

$$
\beta_{x_{1}}\left(\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \xi \circ \tau_{n-1}^{g}\left(x_{2}, \ldots, x_{n}\right)\right)=\prod_{g \in \Lambda^{\prime}} \vartheta_{g} \circ \beta_{\eta_{i}^{g}\left(x_{1}\right)} \circ \xi \circ \tau_{n-1}^{\overline{x^{-1} g}}\left(x_{2}, \ldots, x_{n}\right)
$$

which is consequence of the global version of Lemma 5.29.
Corollary 5.41. Let \mathcal{A} be a direct product $\prod_{g \in \Lambda} \mathcal{A}_{g}$ of indecomposable unital rings, α a partial action of G on \mathcal{A} and (β, \mathcal{B}) an enveloping action of (α, \mathcal{A}). Then $H_{\text {par }}^{n}(G, \mathcal{A})$ is isomorphic to the classical cohomology group $H^{n}(G, \mathcal{M}(\mathcal{B}))$.

Proof. By Proposition 5.7 the map $\rho: H_{\text {par }}^{n}(G, \mathcal{M}(\mathcal{B})) \rightarrow H_{\text {par }}^{n}(G, \mathcal{A})$ is an homomorphism, thus the case $n=0$ is Lemma 5.10, finally for $n>0$ we have that ρ is invertible by Theorems 5.36 and 5.40 .

Bibliography

[1] C. A. Weibel, An Introduction to Homological Algebra, Cambridge, England: Cambridge University Press, 1994.
[2] E.R. Alvares, M.M. Alves, M.J. Redondo, Cohomology of partial smash products, J. Algebra 482 (2017) 204-223.
[3] J. Rotman, An Introduction to Homological Algebra Second Edition, Springer, 2008.
[4] L. Solomon, The Burnside algebra of a finite group, J. Combin. Theory 2 (1967) 603-615.
[5] M. Dokuchaev, M. Khrypchenko, and J.J. Simón, Globalization of group cohomology in the sense of Alvares-Alves-Redondo, J. Algebra, 546, (2020) 604-640.
[6] M. Dokuchaev, R. Exel, Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Amer. Math. Soc. 357(5) (2005) 1931-1952.
[7] M. Dokuchaev, M. Khrypchenko, J.J. Simón, Globalization of partial cohomology of groups, Trans. Amer. Math. Soc. (to appear), arXiv :1706.02546, 2017.
[8] M. Dokuchaev, R. Exel, J.J. Simón, Globalization of twisted partial actions. Trans. Amer. Math. Soc. 362, 8 (2010), 4137-4160.
[9] M. Dokuchaev, Recent developments around partial actions, São Paulo Journal of Mathematical Sciences 13 (1), 195-247
[10] M. Dokuchaev, B. Novikov, Partial projective representations and partial actions, J. Pure Appl. Algebra $214(3)$ (2010) 251-268.
[11] M. Dokuchaev, B. Novikov, Partial projective representations and partial actions II, J. Pure Appl. Algebra 216(2) (2012) 438-455.
[12] M. Dokuchaev, B. Novikov, H. Pinedo, The partial Schur multiplier of a group, J. Algebra 392 (2013) 199-225.
[13] M. Dokuchaev, N. Sambonet, Schur's theory for partial projective representations, Israel J. Math. 232(1) (2019) 373-399.
[14] M. Dokuchaev, M. Khrypchenko, Partial cohomology of groups, J. Algebra 427 (2015) 142-182.
[15] N. Jacobson, Basic Algebra II: Second Edition, Dover Publications, 2009.
[16] R. Exel, Partial Dynamical Systems Fell Bundles and Applications, Universidade Federal de Santa Catarina, 2014. 3481-3494.
[17] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126(12) (1998) 3481-3494.
[18] R. Exel, Approximately finite C^{*}-algebras and partial automorphisms, Math. Scand. 77(2) (1995) 281-288.
[19] R. Exel, Twisted partial actions: aclassification of regular C^{*}-algebraic bundles, Proc. Lond. Math. Soc. 74(3) (1997) 417-443.
[20] P. J. Freyd, Abelian Categories, an Introduction to the Theory of Functors, New York, Harper \& Row, 1964.
$(-)^{G_{p a r}}, 58$
G-invariants, 58
$K_{p a r}(G), 14$
$\mathcal{S}(G), 11$
$\operatorname{CovPair}(A, G), 22$
ParRep $G, 7$
$\operatorname{Der}_{p a r}(G, M), 62$
r th derived couple, 38
Bigraded module, 30, 31
Cohomology modules of an algebra, 81
Complex, 30
Covariant pair, 22
Derived couple, 35
Differential bigraded module, 35
Exact couple, 33
Factor complex, 30
Filtration, 32
First filtration of $\operatorname{Tot}(M), 32$

Morphism between covariant pairs, 22
Morphism of partial representations, 7
Partial action, 15
Partial augmentation ideal, 62
Partial representation, 6
Partial smash product, 19
Partial smash product universal property, 22

Regular semigroup, 7
Respect projections, 134
Second filtration of $\operatorname{Tot}(M), 33$
Semigroup, 7
Semigroup homomorphism, 7
Spectral sequence, 40
Subcomplex, 30
Third quadrant bicomplex, 48
Total complex, 31
Vector space of partial derivations, 62

[^0]: ${ }^{1}$ For more information about cohomology of algebras see [15, Section 6.11].

