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Resumo

Este trabalho é um estudo completo dos artigos [2] e [5]. Consideraremos a coho-
mologia parcial H}, (G, M) de um grupo G com valores num Kpa,(G)-médulo M,
introduzida em [2], que é definida como o functor derivado a direita do functor de
invariantes parciais. Mostrando que o functor de invariantes parciais é representavel,
poderemos relacionar a cohomologia parcial de grupo com o espaco de derivagoes
parciais e o ideal de aumento parcial; depois, construiremos uma resolugao projetiva
da dlgebra B como K, (G)-modulo, onde B é una subdlgebra de K, (G). Isto per-
mitira dar uma outra caracterizacao da cohomologia parcial de grupo em termos de
classes de funcgoes que satisfazem uma certa identidade de m-cociclos. Mostramos a
existéncia de uma sequéncia espectral de Grothendieck que relaciona a cohomologia
do produto smash parcial com a cohomologia parcial do grupo e a cohomologia da
algebra. Dada uma acao parcial unital & de G em uma algebra A, consideramos a
estrutura de K, (G)-médulo de A induzida pela acdo a e estudamos o problema
de globalizacdo para a cohomologia parcial em A. O problema é reduzido a uma
propriedade de extensibilidade de cociclos. Além disso, se A é um produto de blocos,
mostramos que qualquer cociclo é globalizavel e que as globalizagoes de cociclos co-
homélogos também sao cohomdélogas, de onde temos que H},, (G, M) é isomérfico ao
grupo de cohomologia usual H"(G, M(B)), onde B é a élgebra sob a agao envolvente
de a e M(B) é a élgebra de multiplicadores de B.



Abstract

This work is a full study of the papers [2] and [5]. We consider the partial group
cohomology H,,, (G, M) of a group G with values in Kp,(G)-module M, introduced
in [2], which is defined as the right derived functor of the functor of partial invariants.
Showing that the functor of partial invariants is representable, we relate the partial
group cohomology with the space of partial derivations and the partial augmentation
ideal; next, we construct a projective resolution of the algebra B as a K, (G)-module,
where B is a commutative subalgebra of K, (G). This allows us to give another
characterization of the partial group cohomology in terms of classes of functions that
satisfy a certain identity of n-cocycles. We show the existence of a Grothendieck
spectral sequence that relates the cohomology of the partial smash product with the
partial group cohomology and the algebra cohomology. Given a unital partial action
a of G on a algebra A we consider the K, (G)-module structure of A induced by
« and study the globalization problem for the partial cohomology with values in A.
The problem is reduced to an extendibility property of cocycles. Moreover, if A is
a product of indecomposable blocks, we show that any cocycle is globalizable, and
globalizations of cohomologous cocycles are also cohomologous, whence we have that
H}..(G, M) is isomorphic to the usual cohomology group H"(G, M(B)), where B is
the algebra under the enveloping action of o and M (B) is the multiplier algebra of
B.

i



Index

Index] 1
(I__Introductionl 3
2__Preliminaries| 6
[2.1 Partial representations, inverse semigroups and partial actions| . . . .
[2.2  Partial smash product| . . . . . .. ... ... 19
[2.3  Spectral sequences| . . . . . ... 0oL 30
[3  Partial group cohomology| 58
[3.1 Partial group cohomologyl . . . . . .. ... ... .. ... ...... 58
[3.2  The 1-st cohomology group| . . . . . . ... ... ... ... ..... 67
[3.3 A projective resolutionof B|. . . . . ... ..o 70
[4  Grothendieck spectral sequence| 81
b __Globalization| 94
[>.1  From globalization to an extendibility propertyl] . . . . . . ... . .. 94
5.2 The construction of w0/l . . . . L 105



INDEX INDEX

[>.3  Existence and uniqueness of a globalization|. . . . . . . . .. ... .. 126

[Bibliography| 139




CHAPTER 1

Introduction

Partial actions, partial representations, the corresponding crossed product and the
interaction between them were introduced by R. Exel in [I7, I8, 19] as methods
of study C*-algebras. Those works started the development of the theory of partial
projective group representations in [10, 1T, T2, [13], and the study of group cohomology
based on partial actions in [2], [5] and [14]. For an overview of publications on partial
actions, related concepts and more details see [16] and [9]. Spectral sequences were
invented by J. Leray and R. C. Lyndon in 1940s. In homological algebra and algebraic
topology, spectral sequence is a tool that allows us to compute homology groups
using approximations of it. In an informal way we can think of a spectral sequence
(E",d"),>1 as a book with infinite pages, where the next page is the homology of the
previous page, and as we go through the pages we get closer to the homology that we
want to compute.

We begin recalling preliminaries in Chapter [2 We give the definition of a partial
group representation and an inverse semigroup, next we show some properties of
the semigroup S(G) introduced by R. Exel in [I7], with that we define the algebra
Ko (G) as the K-algebra with base S(G), and show that the category of partial
representations of G' and the category of representations of K, (G) are isomorphic.
We also recall the definition of a partial action of G on an algebra A, and show that a
unital partial action of G on A induces a structure of K,,,(G)-module to A. In Section
ﬂ we recall the construction of the partial smash product (also called partial skew
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group ring) Ax,G, and some kind of universal property for the partial smash product.
We also give the definition of a covariant pair, which is a pair in Rep A x ParRep G
with certain compatibility property. Then we show that the category of the partial
smash representations and the category of covariant pairs are equivalent. Later we
show, as is proved in [6], that the partial group algebra K, (G) is isomorphic to
a partial smash algebra B xg G, where the algebra B is the commutative algebra
generated by the idempotents of S(G). As a last result of this section we show
that the algebra B has a structure of K, (G)-module given by conjugation. Finally,
in Section [2.3] we recall some definitions and fundamental known results regarding
spectral sequences with the final objective of proving Theorem [2.106, which is used
to obtain the main result of the Chapter [4

In Section we work with some results obtained in [2]. We define the partial
group cohomology HJ;, (G, M) of a group G with values in a K, (G)-module M as
the right derived functor of the functor of partial invariants (—)%» which we prove
to be equivalent to functor Homy , (¢ (B, —), that is, (—)%r is representable. Later
we define partial derivations as K-linear maps ¢ : Ky, (G) — M which satisfy a
certain Leibniz rule, and the partial augmentation ideal defined as the kernel of the
map K., (G) — B such that [g1][g2]...[9n] = €(g1,g2,....9n)- After that we relate the
partial group cohomology with the vector space of partial derivations Der,q, (G, M)
and the partial augmentation ideal. In Sections [3.2| and we study a part of
the theory developed in [5]. Using the results obtained in the previous section to
give another characterization of the 1-st cohomology group HZ}M(G, M) in term of
classes of maps d : G — M of maps that satisfy certain conditions, which form a
vector space denoted D(G, M), showing an isomorphism between the vector space
of partial derivations Dery,, (G, M) and D(G,M). Later we define the projective
modules P, as the direct sum of some submodules of K, (G), with the modules
P, we construct a projective resolution of K, (G)-module of B in order to obtain
another characterization of HJ, (G, M). After that we define the groups C7., (G, M)
in an analogous way to the groups C™(G, M) used in the construction of the classical
cohomology group H"(G, M). Then we show that Homg,, )(Pn, M) = C7., (G, M)
and that H! (G, M) is related to some functions of C7' (G, M).

par par
Chapter {4 corresponds to the final section of [2]. We relate the cohomology of
partial smash products with the partial group cohomology and algebra cohomology,
showing with Theorem that there exists a Grothendieck spectral sequence that
relates those cohomologies.

In Section [5.1 we study the final section of [5]. We work with an algebra A over a
commutative ring K and a unital partial action a of G on .A. We can define a K, (G)-
module structure on 4 and study the globalization problem for the cohomology with
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values in this module. We fix an enveloping action (B, ) of «, and since the algebra
B is not necessary unital we work more generally with the multiplier algebra M (B)
of B. First we prove that a cocycle w € 7 (G, .A) is globalizable if, and only if,
there exists a certain extension w : G — A which satisfies some n-cocycle equality.
In Section we take an arbitrary cocycle w € ZJ, (G, A) and construct a more
manageable n-cocycle w' € ZJ, (G, A) cohomologus to w. In Section using the
results obtained in the two previous sections we show that if A is product of blocks
then any cocycle from 7}, (G, A) is globalizable (Theorem . We prove Theorem
which says that globalizations of cohomologous cocycles are also cohomologous.
Using Theorems @ and we prove that H), (G, M) is isomorphic to the usual
cohomology group H"(G, M(B)).




CHAPTER 2

Preliminaries

In this chapter we recall all the necessary definitions and results that will be used
through this work. Let G be a group and K be any field. We denote by 15 the
identity of G.

2.1 Partial representations, inverse semigroups and partial actions

First we will show the definitions and some known results about partial representa-
tions, inverse semigroups and partial actions. Most of the results in this part are
taken from [16].

Definition 2.1. A partial representation of G on the K -vector space V' is a map
7 G — Endg (V) such that, for any s,t € G, we have:

(a) w(s)m(O)m(t™") = m(st)m(t™),
(b) m(s™H)m(s)m(t) = m(s™")m(st),
(¢) 7(le) = 1,

where 1 = idy. More generally, we recall that a map © : G — S is a partial represen-
tation, where S is an unital algebra or just a monoid, if it satisfies items (a), (b) and

(c).
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In other words, 7 is a partial representation of G if the equality 7 (s)7(t) = 7(st)
holds when the two sides are multiplied either by m(s™!) on the left or by m(t7!) on
the right.

Example 2.2. Any representation of G is a partial representation; moreover, if H is
any subgroup of G and w : H — Endg (V') is a partial representation of H, then the
map 7 : H — Endg (V) given by

#(g) = {W(g) ifge H

0 otherwise

defines a partial representation of G.

Definition 2.3. Let 7 : G — Endg(V) and 7' : G — Endg(W) be two partial
representations of G. A morphism of partial representations is a morphism of
vector spaces f 'V — W, such that the next diagram commutes:

f

W
k ™' (g)
W

that is fomw(g) =7'(g) o f Vg € G.

The category of partial representations of GG, denoted ParRep G is the category
whose objects are pairs (V, ), where V' is a K-vector space and 7 : G — Endg (V) is
a partial representation of G on V', and whose morphisms are morphisms of partial
representations.

Definition 2.4. A set S together with a binary operation - is called a semigroup if
satisfies the associative property, i.e. for all a,b,c € S, the equation a-(b-c) = (a-b)-c
holds.

Definition 2.5. Given two semigroups S and T, a map f : S — T is an homomor-
phism between semigroups if satisfies that f(ab) = f(a)f(b) for all a,b € S.

Definition 2.6. A semigroup S is said to be regular, if for each x in S there ezists
an element x* in S such that

i) rrtr =z,
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i) r*rx* =zt
The element x* is called an inverse of x. If moreover the idempotent elements of S
commute then S is said to be an inverse semigroup.
Remark 2.7. If S is an inverse semigroup, then for each x € S the element xx* is
idempotent, since (zz*)(zz*) = x(z*za*) = za*.

The next proposition gives us a definition equivalent to Definition [2.6] showing
that the uniqueness of the inverse elements is a necessary and sufficient condition for
a regular semigroup to be an inverse semigroup.

Proposition 2.8. Let S be a reqular semigroup. Then any x in S has an unique
wmverse if, and only if, the idempotents of S commute.

Proof. Let S be a regular semigroup in which the idempotents of S commute and let
u and v be inverses of x. Then

u = uzru = u(zvr)u = (uz)(vr)u,
where both ux and vz are idempotents. Thus, since idempotents commute, we have
u = (ux)(vr)u = (vr)(ur)u = veu = (vev)zu = v(zv)(zu),
then
u=v(xv)(zu) = v(zu)(zv) = v(zur)v = vev = v.
Hence u = v.

To prove the converse, let S be a regular semigroup such that each element has
a unique inverse. Let e and f arbitrary idempotents in S and let x be the inverse of
ef. The element fze is an idempotent. Indeed,

(fze)? = flxefz)e = fue.

Moreover fxe is the inverse of ef, since

(fre)ef(fre) = (fre?)(f*ze) = fre
and
(ef)(fze)(ef) = (ef*)x(e*f) = (ef)z(ef) = ef.
Any idempotent is self-inverse, and by the uniqueness of the inverse we have that
ef = fxe, so ef is idempotent and it is self-inverse. Notice that we have proved that

the product of idempotents is an idempotent, in particular, so is fe. Now observe
that

ef(fe)(ef) = (ef)(ef) = ef and fe(ef)fe = fe,

that is, fe is the inverse of ef, but since ef is self-inverse then fe =ef. m
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Corollary 2.9. If S is an inverse semigroup, then (z*)* = x for any x € S.

Remark 2.10. Given s and ¢ in an inverse semigroup S, we have that (st)* = t*s*.
Indeed, since xx* is idempotent for any x in .S, then

st(t*s™)st = s(tt*)(s"s)t = s(s*s)(tt")t = st,

and
(t*s™)st(t*s™) = t*(s"s)(tt")s™ = t*(tt*)(s"s)s* = t*s".

Proposition 2.11. Let S be an inverse semigroup. Then the relation given by
s <t< s=te, for some idempotent e,

18 a partial order.
Proof.

e Reflexive: For s € S, we have s < s since s = ss~'s and s7's is idempotent.

o Antisymmetric: Given a,b € S, if a < b and b < a, then a = be and b = ai
where e and i are idempotents, as ez = 7e we have:

a = be = aie = aiet = bet = ai = b.

e Transitive: Let a,b and ¢ be in .S such that a < b and b < ¢. Hence a = be; y
b = cey, Therefore a = c(eqe) since ege; is idempotent, thus a < c.

O

The partial order obtained in Proposition[2.11]is called the natural partial order
on the inverse semigroup.

The next lemma gives equivalent definitions of the natural partial order.

Lemma 2.12. For an inverse semigroup S the next conditions are equivalent:

1. s<t,
2. s = ft for some idempotent f,
3. st <t

4. s =85,
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5. s=ts's.

Proof.

e (1) = (2). If s < t then s = te for some idempotent e. Taking f = tet™!, f is
idempotent since

2= (tet Y(tet™) =tt et =tet ' = f

and ft = (tet )t = tt e = te = s.

(2) = (3). Since s = ft then s7' =t~ f, hence s+ < ¢ 1.

(3) = (4). If s < 7! then s7! = ¢t le for some idempotent e, hence s = et.
Thus ss™! = ettte = ett™!, Therefore s = et = (ett ')t = ss~1t.

e (4) = (5). As s = 1t then s7! = t71ss™! and s7's = t7'ss™!t, hence
s=ss H(tt71t) = ( s7) = ts7ts.
e (5) = (1). It is clear by the definition of the natural partial order of an inverse

semigroup.

[]

Definition 2.13. A partial function f : X — Y, is a function f : X' — Y’ where
X' CX andY' CY. Given two partial functions f : X =Y and g : Y — W the
composition go f : X — W s the partial function with domain f~'(dom g N im f),
such that g o f(z) = g(f(x)) for any x € f~'(domgNim f).

Definition 2.14. Let X be a set. Then
I(X)={f:A=>B|ACX, BC X and f is a bijection }

with the composition of partial functions is an inverse monoid, called the symmetric
inverse semigroup over X.

The Wagner—Preston representation Theorem says that any inverse semi-
group can be embedded in a symmetric inverse semigroup. Then for s in an inverse
semigroup S we can understand the elements ss* as the identity map on the image
of s and s*s as the identity map on the domain of s. Thus we can understand the
natural partial order as follows: s <t if, and only if, s is a restriction of ¢.

10
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Definition 2.15. Let ~ be an equivalence relation of a semigroup S. We say that ~
s a congruence if it is compatible with the semigroup operation, that is, ~C S x S
1s an equivalence relation and for x,y,a,b € S, if x ~y and a ~ b then ab ~ by.

It is easy to see that if we have a congruence ~ of a semigroup S, then the set
of the equivalence classes S/ ~ is a semigroup with the operation induced by S.
Moreover, the natural projection 7w : S — S/ ~ is a surjective homomorphism.

Definition 2.16. Let S be a semigroup, if R C S x S we define the congruence
generated by R as the intersection of all the congruences that contains R.

Remark 2.17. The congruence generated by R C S x S exists since the arbitrary
intersection of congruences is a congruence and the fact that ~= 5 x §'is trivially a
semigroup congruence of S.

One of the most important inverse monoids in this work is S(G), defined by R.
Exel in [I7], which plays an important role in the construction of the partial group
algebra Kpa,(G).

Definition 2.18. Let G be a group. Denote by S(G) the monoid defined by the
generators [t|, t € G, and relations:

(1) [le] = 1;
(2) [sls][t] = [s~"][st];
(3) IslEE=") = [st]t~"];
for any t,s € G. That is, define S(G) = [G]/C, where is [G] the free semigroup

generated by the set of symbols {[g] | g € G} and ( is the congruence generated by the
set

R ={([s™"I[s]ft], [s~"1[st), ([slt]fe "], [st][t™"]), ([La], 1) | 8.t € G} S [G] x [G].

Remark 2.19. Let ¢ : [G] — G be the semigroup homomorphism given by [g] — g,
and let 7 : [G] — S(G) be the natural projection . Define

Q= {(z,y) € [G] x [G] | ¥(z) = ¥(y)}.
Clearly €2 is an equivalence relation and it is a congruence since v is a homomor-

phism. Furthermore, notice that R C Q, therefore ( C Q. Thus, for any z € S(G) we
have that ¢(771(2)) is well-defined. Indeed, if a,b € [G] are such that 7(a) = 7(b)

11
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then (a,b) € ¢ C Q, therefore ¥(a) = ¥ (b). Then we can define the semigroup
homomorphism

n:S(G) = G
2 = (r7(2))

Therefore, 1 is a semigroup homomorphism such that 7([g]) = g, for all g € G.

We define for each g € G the element e, = [g][g7"] € Kpar(G). Notice that for
all g € G the element e, is idempotent, ese, = [g][g 7 ][9llg™!] = [9]lg~'] = e,4. Also
these elements satisfy the following relation:

lglen = egnlg).

Indeed,

[glen = [g)[A][h"] = [gh][h"] = [gh][h""g"g]
[(gh) " g] = [gh]l(gh)~"][g]
= €gh g].

Then we have that the elements e, commute among themselves,

egen = [9]lg ™ en = lgleg-1nlg™"]

= egg1nl9l[g7"] = eney
The next useful results were proved first in [I7].
Proposition 2.20. Any element w in S(G) admits a decomposition
W = €4,€q,---€g,[5],
where n > 0 and g1, 92, ..., gn, S are elements of G. In addition, one can assume that
i) g # 95 Jori # 5,
it) g; # s for any 1.

Proof. Let S be the subset of S(G) consisting of those w that do admit a decompo-
sition as above. Since n = 0 is allowed, we see that each [s] belongs to S. To prove

the statement we only have to verify that S is a subsemigroup of S(G), in view of
the fact that the set {[s] € S(G)} generates S(G).

12
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Let w = e, €, ...e., [s]. It suffices to demonstrate that w(t] belongs to S, since this
will prove S to be a right ideal and hence a subsemigroup. Now, note that

[s][t] = [s][s "] s][t] = [s][s~"][st] = es[st].

So
wlt] = epy...en [8][t] = er,...er, €5]8][t] = e, ...€, €5]st].

If s # r; for any i € {1,2,...,n} then e, ...e. es[st] € S, on the other hand if s = r;
for some ¢ € {1,2,...,n} we have e,,...e, es[st] = e, ...e., [st] € S since the elements
ey are central idempotents. O]

Remark 2.21. Let n : S(G) — G be the homomorphism of semigroups defined above.
It is clear that n(e,) = 1 for any g € G. Now let w be in S(G), and assume that we
have two decomposition e, e,,...e, [s] and ep, ep,...ep,, [t] of w. Then

s =n(er €ry...r, [8]) = nlen, eny-..en,[t]) = t.

Now let e be an idempotent element in S(G), then by Proposition there exists a
decomposition e, e,,...e,. [g] of e. Since e is idempotent then

Cr\Cry-eCr [G€r Crynnilr [g] = €ri€0y..€r, [0,

thus
g =n(ereryer,9]) = n(er ery...er, [gler ery 0, 9]) = g*.

Since G is a group, it follows that ¢ = 1. Therefore e = e, e,,...e,, , that means that
the set {e, | g € G} generates all the idempotents of S(G).

Finally, if e and f are idempotents in S(G) we have that e[s] = f[t] if, and only
if, s = t and ee; = fes. Indeed, by the first part we have s = ¢, then e[s] = f][s]
therefore ee, = e[s|[s7!] = f[s][s7!] = fes.

Remark 2.22. In fact any a € S(G) admits a unique standard decomposition
a=¢ep ... 8]
up to the order of the ¢,’s. For more details see [17].

Proposition 2.23. S(G) is an inverse semigroup.

Proof. First observe that by definition of S(G) for any g € G we have that [¢7!] is
an inverse of [g], moreover given ¢t € G we have that [t7!][g7!] is an inverse of [g][t].

Indeed,
911t (g~ 19l lE] = (9l [l fe][t~"1¢] = [a][t],

13



2.1 Partial representations, inverse semigroups and partial actions Preliminaries

and
P 1 e 1 R 2 e 1 2 e e

Thus by induction we prove that for g1, g, ..., g, € G we have g [g.%] ... [97"] is
an inverse of [g1][ga] ... [gn]. Finally by Remark idempotents are generated by
the set {¢, | ¢ € G}, and we have that ese, = epe, for any g, h € G. O

Let us denote by s~* the inverse of s in S(G).

Lemma 2.24. Let n be the morphism defined in Remark |2.21. Then for each s €
S(G) we have s = ss~[n(s)].

Proof. Let s be in §(G), then by Proposition and Remark we have s =
e[n(s)] for some idempotent e € E(S(G)). Then

Definition 2.25. Given a group G and a field K, the partial group algebra
K,u-(G) is the semigroup algebra of S(G) over K, i.e. the algebra with K -basis
S(G).

K,4r(G) has the following universal property.
Proposition 2.26. The map
Vg€l =gl € Kpar(G)

18 a partial representation, which we will call the universal partial representation
of G. In addition, for any partial representation m of G in a unital K -algebra B there
exists a unique algebra homomorphism

¢ Kpor(G) = B,
such that 7(g) = ¢([g]), for any g € G.

Proof. 1t is clear that by Definition [2.25] 1 is a partial representation.

In order to prove the universal property of K, (G), we define F' as the free K-
algebra generated by set of symbols {[g] lg e }, and I the ideal of I’ generated by
the set

{[s70slt] = [s™"][st], [s][e]e™"] = [st][t™'] | s,t € G} C F

14
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Notice that [g] € F/I — [g] € Kpu(G) is an algebra isomorphism. Indeed, by
the universal property of free algebras there exists an unique algebra morphism f :
F — Kpor(G) such that f([g]) = [g]. Observe that ker f = I, therefore the map
F/I — K, (G) induced by f is an algebra isomorphism.

By the universal property of free algebras there exists an unique algebra morphism
¢ : F — B such that 7(g) = ¢'([g]). Notice that I C ker (¢'), since

¢ ([s7][s[t] — [s™"][st]) = m(s™ st — s~ (st)) = 0.

Then there exist an unique morphism ¢ : F//I — B such that ¢([g]) = 7(g). Finally,
as Ky, (G) = F/I, there exist an unique morphism ¢ : K, (G) — B such that
m(9) = o(lg])-

[l

Theorem 2.27. The categories ParRep G and Rep K., (G) are isomorphic.

Proof. Let V' be a K-vector space and let my : G — Endg (V) be a partial repre-
sentation of G' in V. Then by Proposition there is an unique representation
v Kpar(G) — Endg (V) such that ¢y ([g]) = mv(g). Now given two partial rep-
resentations 7y : G — Endg (V) and mw : G — Endg(W) of G and a morphism
of partial representations f : V' — W. Thus from f o m,(g) = mw(g) o f we have
that f o ov([g]) = ow([g]) o f. Therefore f defines a morphism of representation.
Conversely, if ¢y : K, (G) — Endg (V) is a representation, then my(g9) = ¢v([g])
gives a partial representation of G in V. O

Another important concept in this work is the notion of a partial action.

Definition 2.28. Let G be a group and A an algebra. A partial action o of G on A
is given by a collection {Dy} . of ideals of A and a collection {ay : Dy-1 — Dy}
of algebra isomorphisms, satisfying the following conditions:

geG

(1) Do = A and o, = ida,

(2) ay, (Dy-1 N Dgny-1) = Dy N Dy,

(3) if £ € D1 N Dygpy-—1 then agan(x) = agn(z).
Remark 2.29.

1. We can see in [16] that the conditions (2) and (3) can be replaced by the
condition:

15
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o o o0y C agy, for any g and hin G (where if f and f’ are maps then f C f
means that f is a restriction of f’),

4

Moreover, condition (2) can be replaced by the “weaker” assumption:
e DyNDy1 CO (D(gh)fl).

2. Notice that given a partial action 6 of G on A we have that 6, and 0}, are partial
functions, for any g,h € G, therefore 0, o 0, means the composition of partial
function. Thus the domain of 6§, o 8, is the set

{x € Dy-1: Qh(l‘) S Dgfl} = lel(Dgfl) = 9;1(Dh N Dgfl).

by

0, (Dn N Dy1) Dy N Dyt /\
x |

Gg [¢] 0[,

Example 2.30. An action of G on an algebra A is clearly a partial action, defining
D, = A for any g € G and ay the map a € A~ g(a) € A. Moreover, any unital ideal
of A carries a partial action: if B is such an ideal, with unit 1g, then a partial G-
action 3 on B is obtained by defining D, = BNg(B) and B, to be the restriction of a
to the ideal Dy-1. Note that each ideal Dy of B is also unital, with unit u, = 159(1p).
We can see this example more details in [16, p.15].

Definition 2.31. Let (A, {Dg}yes {ag}geG> and (B,{Eg}geG,{Bg}geG> be partial
actions. A morphism of partial actions

@ (A, {Dg}gega{eg}gec‘) - <B> {Eg}gEG’{ﬁg}geG>

is an algebra morphism ¢ : A — B such that (D,) C E, and

16
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(]
Dy —2 D,
v i
By E,
g ﬁg

commutes for each g € G. That is ¢ (ag(x)) = By (¢(x)) for any g € G and x € Dy-1.

Definition 2.32. A partial action « is called unital if each Dy is a unital algebra,
that is Dy = ug,A where ug is a central idempotent in A.

The next fact is very well known and allows us to relate the concepts of partial
action and partial representation. Moreover we can also relate the concept of K, (G)-
module.

Lemma 2.33. Let (A, «) be an unital partial action of a group G on an algebra A.
Then the map

1 :G — Endg(A)
g — 7y

where 7' (a) = ay(14-1a) is a partial representation of G.

Proof. We have 7{_(a) = a1, (a) = a thus nf, = id4. Now observe that

To1Ty T (a) = ag-1(1ay(1g-104(14-1a)))
= ag10y0p(lp-11p-15-10)
= ag1agy (111 1a)
= ag_l(lglghagh(l(gh)_m))

= ag*l(lgagh(l(gh)*la)) = nglﬁgh(a)
Finally the last condition of Definition is proved in an analogous way.
O

Remark 2.34. By Lemma and Theorem we have that if (A, «) is an unital
partial action of a group G on an algebra A, then A has a structure of K, (G)-module
given by «.

17
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Lemma 2.35. Ifmy : G — Endg (M) and mn : G — Endg (N) are partial represen-
tation, then 0 : G — Endg(Homg (M, N)), given by 0(g)(f) = nx(g) o foma(g™),

18 a partial representation.

Proof. Tt is clear that 0(1g) = id Homy(Mm,N)- Now observe that
(s )0(s)0(t)(f) = mn(s™Han(s)mn(t) o fomar(t™ ) mar(s™ ) mar(s)
=7mn(s ) mn(st) o fomp(t™ s ) mas(s)
=0(s7)0(st)(f)
and

0(s)0(t)0(t™")(f) = 7TN(S) N(t)WN(t Yo fomu()ma(t )ma(s™)
= o fomy(t)my(s™H)

O

Lemma 2.36. Let A be a unital algebra. If m: G — A is a partial representation,
then 6 : G — A°P, given by 0(g) = m(g~") is a partial representation.

Proof. First notice that §(1¢) = 7(1g) = 14. Furthermore, for any s,t € G we have
that
0(sH0(s)0(t) = w(t (s Hr(s) = w(t s Hm(s) = O(s~ )0 (st)

and

>
—
»
—
>
—~
~
N—
>
—~
~
L
N~—
I
N
—~
~
~—
N
—~
~
L
N~—
N
—
»
L
N—
I

r(t)m(s ) = 0(st)0(t ).
O

Lemma 2.37. if7: G — A, 0 : G — B are partial representation of G on the unital
algebras A and B, then ¥ : G — A ®k B, given by ¥(g) = 7(g) ® 0(g), is a partial
representation on the algebra A Q@ B.

Proof. For any s,t € GG, we have that

W(s ) W(s)U(t) = (m(s™") @0(s))(m(s) ® 0(s))(w(t) ® O(t))
= (s~ )m(s)m(t) ® O(s~)0(s)0(1)
= (s H)m(st) @ O(s 1)O(st)
= W(s 1)U(st).
In an analogous way we have that U(s)U(¢t)¥(¢t™!) = U(st)¥(¢t~!). Finally, since
lag, = 1a ® 1 we have that V(1) = lag.B- O

18



2.2 Partial smash product Preliminaries

2.2 Partial smash product

Now we are able to construct a new algebra called partial smash product (also referred
to as the “partial skew group ring” or “partial cross product” ) denoted by A x, G,
where « is a partial action of a group G on an algebra A.

Definition 2.38. Given a partial action o of G on A, we define the partial smash
product A x, G to consist of all linear combinations

> ag#y,

geG

where ag € Dy and a, = 0 except for finitely many g’s, and the #g are used as place
markers. Therefore

Axa G =) Dyt#g

geqG

1s a K-module with the product defined as
(ag#9)(bn#th) = ag(g-1(ag)br)#gh.
Note that a,-1(ay) € Dy-1, by, € Dy, and therefore
ag(og-1(ag)bn) € ag(Dy-1Dy) C ag(Dy-1 N Dy) C Dy N Dgjy C Dy,

Thus the product in Definition [2.38]is well-defined.
Remark 2.39. Notice that 1,4#1¢ is the unit element of A x, GG. Indeed,

(La#tle) (ba#th) = (alal (14) bh> #16h = bp#th,

(ag#tg) (La#tla) = oy (ag-1 (ay) 14) #9lc = ag#g.

Example 2.40. Let A be the commutative algebra A = k [z,y] / (z*, %), G = (g : g* = 1)
the cyclic group of order 2 and I = Ay the ideal generated by y (generated by y and
xy as vector space). Consider the partial action o of G on A given by D, = I,
ay(y) = 2y, ag(zy) = y. Then the partial smash product A X, G is not associative.
In particular for u = x#1 + xy#g we have that: u-u = y#g then (u-u)-u=0 and
u- (u-u) = zysty.

In what follows we assume that each partial action is unital. In this case the
partial smash product is automatically associative and the formula of the product in
A X, G is simplified as we will see in the next lemma.

19



2.2 Partial smash product Preliminaries

Lemma 2.41. Let (A, {Dg},cq {%}gee> be a unital partial action, i.e. each do-

main D, is an ideal of the form Au,, where u, is a central idempotent of A for each

g € G. Then, for g,h € G,

(1) If Auy, = Ae, where e, is a central idempotent, then u, = e, and we have that
ag(ug-1) =uy, Vg € G.

(1) (aug#g) (bup#h) = aoy (bupug-1) ugn#gh, for any a,b € A. In particular if
a=0b=1,4 then (u,#g) (un#h) = ugugnFgh.

(III) The map o : G — A % G such that mo(g) = uy#g Vg € G is a partial
representation of G- in A X, G.

(IV) ag(ug-1up) = ugug, and the map oy, o, - Dgr N Dy — Dy N Dy, is an
-

isomorphism.

(V) The smash product A x, G is associative.

Proof.

(I) If Au, = Ae, we have that u, = ae, and e, = bu,, thus
Ug = A€y = Cgey = Ugey = €Uy = buguy = buy, = eg4.
(IT) Note that by (2) of Definition we have ay (bupug-1) € Dy N Dy, thus:
(aug#g) (bup#h) = o (ay-1 (aug) buy) #gh
= ag (g1 (aug) bupug-—1) #gh
= augag (bupug-1) #gh
= aoy (bupug—1) ugn#gh.

(III) As uy,#1¢ is the unit element of A x, G then 7 satisfies (c) of Definition [2.1}
Now notice that

mo(s ™) mo(s)mo(t) = (usg-1#s™") (us#ts) (ui#t)
= (us—1#1a) (w#t)
= Ug—1uFFt
= (ug17#5™ ) (ug#st)
= mo(s ) mo(st),

which proves part (b) of Definition 2.1 and the item (a) can be proved in an
analogous way.

20
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(IV) As the domains D, are unital ideals for each g € G then
Dy N Dy = Aug-uy, and Dy N Dy, = Augigy,.
It is clear that oy (Dy-1 N Dy) € Acg(ug-1us), moreover given a € A we have
ag(ag-1(aug)ug-1up) = og(og-1(aug))ag(ug-1up) = acg(ug-1up),
hence Aag(ug-1up) = ag(Dg-1 N Dy). Now by (2) of Definition [2.2§
ag(Dg-1 N Dy) = Dy N Dy,
thus
Dy N Dyp, = Acg(ug-1up).
Then by (1) ag(ug-1up) = ugtigs.

(V) Using we have that

(aug#g)((bun#h)(cunF#w))
= (aug#g) (bOéh<CUth*1 )uhw#h’w>

= aozg(bozh(cuwuhq)uhwugfl)ughw#ghw

= aq, buhug )ag(ah(cuwuh 1)Uy Ug—1 ) Ughaw FEGW
(ah(c wlh )ug’l)O‘g(uhwugfl)ughw#ghw

ag(ah(cuwuh—l)uhug—1)ughwugughw#ghw by

—1)ag(an( Joun (Up—14-1Up-1) ) UghuF#ghw

~1) Qg (CU U1 g—1Up—1 ) Ugh FHGHW

Qg (CUUR-1 g1 Up—1 ) Ugh, Fghw

Qg (CUUp-1g-1)0gh (Up-1g-1Up-1 ) Ughy Fghw

1) Qg (CUyUp—14-1)UgUghUghwFghw

= ao (bupug—1)ughogn (ClyUp-14-1)UghwFHghw

= (aay (bupug—1) ugn#gh)(cu,F#w)

= ((aug#g)(bup#th))(cuw#w).

-1

ClyyUp—1

bupg—1

\_/\_/\_/\_/\_/\_/\_/\_/

[]

Remark 2.42. The universal property of K, (G) and the map m given in of
Lemma endow A x, G with a structure of a K, (G)-bimodule such that

lg] - aup#h = (ug#g)(aup#h) = og(aupug-1 )ug#gh,
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and

aupF#h - [g] = (aup#h)(ug#9g) = acy,(ugup—1 )upg#hg = aupup,#hyg.
Since A X, G is associative we have that ([g] - aup#h) - [s| = [g] - (aup#h - [s]).
Definition 2.43. Let A be an algebra on which the group G acts partially. Define
the canonical inclusion ¢g : A — A X4 G by ¢o(a) = auy #1la = a#le.

Remark 2.44. Notice that A = Au,,,, then u;, = 14 the unity of A. It is easy to see
that ¢g is a monomorphism of algebras. Indeed,

do(a)do(b) = (a#la)(b#1a) = abd#tla = ¢o(ab),
and ¢o(a) = auy#1e = 0#1¢ if, and only if, au;, = 0 but u;, = 14 then a = 0.
Definition 2.45. Given a K-vector space V and a partial action o of a group G on
an algebra A, a pair of maps (¢v,my) is said to be a covariant pair if ¢y : A —

Endg (V) is a representation and my - G — Endg (V) is a partial representation such
that:

ov (ag(aug-1)) = mv(g)ov(a)my(g).
Definition 2.46. Given two covariant pairs (¢y,my) and (¢w,mw), a morphism

between covariant pairs f : (¢pv,my) — (pw,mw) is a linear map f :V — W
such that fomy(g) = mw(g) o f and f o ¢y(a) = pw(a)o f Vg € G and Ya € A.

We denote by CovPair(A, G) the category of covariant pairs (¢y,my).
Remark 2.47. Observe that if (¢y, ) a covariant pair then
ov(ug) = pv(ag(laug)) = mv(g)dv(La)mv (™) = mv(g)mv (g ™).
The partial smash product universal property is given by the following
result.

Theorem 2.48. Let a be an unital partial action of a group G on an algebra A, V a
K -vector space and (¢y,my) a covariant pair related to these data. Then there exists
a unique algebra morphism ¢ : A xo G — Endg (V) such that the diagram:

Ax, G
% K
A é e
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15 commutative.

Proof. Define ¢ : A x, G — Endg (V) by ¢(auy,#g) = ¢v(a)my(g). Notice that ¢ is
well-defined. Indeed, for a,b € A and g € G such that au, = bu,, by Remark we

have that

Now we will prove that ¢ is an algebra morphism. Let a,b € A and g, h € G, then

by Remark
¢ ((aug#g)(bup#th)) =

(acrg (bunug—) ugn gh)
v (acy (buptg-1) ugn) v (gh)

ov (o (bupug-1) ag(upug-1)) my (gh)
dv (ag (bupug-1)) mv (gh)

a
a

a)my (g)dv (bun) v (g~ )Wv(gh)

(a)

(a)

(a)

(@)mv(g)ev (bun) wv (g~ )mv(g)my(h)
(a) v(

(a) bupug1) v (h)
(a) ug-1bup) Ty (h)
(a)

(ug-1)¢v (bun) 7y (h)
(bup#h)

(9)
(9)ov (
a)my (g)dv (bun) ¢y (ug-1)my (h)
a)my(g)dv (
a)my (g)dv (
(9)
v(9)¢

a)rmylg

= pv(a)m

¢
¢
= ¢v
= ¢v
= ¢v
= ¢v
= ¢v v
= ov dv
= ¢v ov
= ¢v ov

9)¢

= ¢lauy#tg)p(bunth).

It only remains to show that the above diagram commutes. For each g € G we have

¢mo(g) = ¢ (ug#g)

= ¢v(ug)my(9g)
=my(g)mv (g )mv(g)
mv(9),
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and for a € A,

Poo(a) = ¢ (aur,#1a)
= ¢y (a)my(lc)
= (Zﬁv(a).

Then the diagram commutes. Finally to prove that ¢ is unique, notice that if there
exists another ¢’ with the same proprieties, we have that for any g € G and a € A,

P(ug#yg) = dmo(g) = ¢'mo(g) = &' (ug#tg)

da#la) = ¢do(a) = ¢'¢o(a) = ¢'(a#lc)
thus ¢(a#1la)d(ug#tg) = ¢'(a#tla) (ug#tg), and then d(auy#tg) = ¢'(auytg).
[l

We can generalize the last theorem. Let A be and algebra on which the group
G acts partially and S be a monoid, if we have ¢g : A — S a representation and
Ts : G — S a partial representation such that ¢g (ay(au,—1)) = ms(g)ps(a)my(gt).
Then there exist a unique algebra morphism ¢ : A x, G — S such that the diagram:

Ax, G

A G

S

is commutative. The proof is analogous to that of the previous theorem.

Proposition 2.49. Let A be an algebra on which the group G acts partially. Then
Rep A x4 G is isomorphic to CovPair(A, G), the category of covariant pairs.

Proof. Define the functor F' : CovPair(A, G) — Rep A%, G as follows: for a covariant
pair (¢v, my), F(¢y,my) = & where ®V is the representation obtained using Theo-
rem [2.48 If we have a morphism between covariant pairs f : (¢v,mv) = (dw, Tw),
where V' and W are K-vector spaces, then f defines a morphism between the rep-
resentations ®¥ and ®" obtained using Theorem for (¢, my) and (dw, mw)
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respectively. Indeed, as f is a morphism between covariant pairs we have that, for
any g € G and a € A:

fomy(g) =mw(g)o fand fodv(a)=dw(a)o [,
then by Theorem [2.48

fo@ (molg)) = @ (mo(g)) o f and f o @ (do(a)) = @Y (¢o(a)) o f,

thus evaluating my(g) = uy#¢g and ¢o(a) = auy,#lg
fo @ (ug#g) = D" (ug#tg) o f

and
fo @V(aulc#lg) = @W(aulc#l(;) of,

then we have that:

fo®Y (aug#tg) = fo® ((ug#g)(aur,#1c))
=fo (Dv(ug#g) o (I)V<CLU1G#1g)
= OW(ug#g) o f o @ (aur,#1c)
= W (uy#tg) 0 O (aur#1) o f
= " (auy#g) o f.

Thus f is a morphism between the representations ® and ®%, then set F(f) = f.

Now define the functor G : Rep A x, G — CovPair(A, G) as follows: for a rep-
resentation ® : Rep A X, G — Endg(V) in Rep A %, G, define ¢y, = ® o ¢ and
Ty, = ® o my, Gy, Ty, 1S a covariant pair, then make F(®) = (¢v,, my, ). Indeed,

Pvy (Ozg(augl)) = ®og (ag(au_l))
= & (g (au, Nui #1¢)
® ((ugtto) (ausguy 1)
= @ (ug#tg) © ((awrg#lc)(ug1#97"))
— Byt Blaus, #10) Bty )
— (B0 m(e) (@0 ofa) (2 o157
= v, (9)dva (@) (7).

Let ® : Ax, G — V and &' : A x, G — W be representations of A x, G,
and a morphism between ® and ®’ defined by f : V — W. Notice that f defines a
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morphism of covariant pairs between (® o ¢g, ® o) and (P’ o ¢y, P’ 0 ). Indeed, as
f defines a morphism between ® and @', we have that f o ®(au,#g) = ' (au,#g)o f
for all @ € A and g € G. Then in particular we have

f o ®(ugttg) = ' (ug#tg) o f = f o (P om(g)) = (¢ om(g)) o f

and

fo®(au,#1g) = P (aui #1g) o f = fo (Pody(a)) = (¥ ogo(a)) o f.

Then f defines a morphism between covariant pairs, thus define G(f) = f. Now it is
easy to see that F'G' = Irep A, and GF = Icovpar(a,c), Where Trep Ax,q is the identity
functor of Rep A X, G and Icoypar(a,q) is the identity functor of CovPar(A, G).

]

Notice that the algebra K,q,(G) has a natural G-grading (see Remark [2.51)). This
will lead us to show that for any group G the partial group algebra K, (G) is iso-
morphic to a partial smash product, a fact established in [0, Theorem 6.9]. First let
us recall what is a G-graded algebra.

Definition 2.50. A G-graded algebra is an algebra with a decomposition
A=A,
geG

where each Ay is a subspace of A such that AyAy C Apg, forall g,h € G.

Remark 2.51. K, (G) has a natural G-grading:
K, (G) = P B,.
geG

where each subspace B, is generated by elements of the form [hy][hs]...[h,] such that
g = hlhg...hn, that is:

Bg = <[h1][h2][hn] | g = hlhg...hn> .
Then for all z € By and y € By, 2y € By, and thus B,Bj, C By

In order to prove that the partial group algebra K, (G) is isomorphic to a partial
smash product for any group G we are going to recall that for each g € G we denote
eg = [9]lg7] € Kpar(G). Now define the subalgebra

g

Bi= (e, g€ G) C KpurlG).
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Remark 2.52.

e B corresponds to the uniform subalgebra B, coming from the natural grading
of Kper(G). Indeed, if s = [hq]...[h,] € S(G) is such that hq, ..., h, = 1¢, then
by Proposition 2.20] s = e,,...e,, [t], thus using the map 7 defined in Remark
we have 7(s) =t = 1g. Therefore s = ¢, ..., .

e B is a commutative algebra generated by idempotents.

Theorem 2.53. Given a group G, there is a partial action B of G on the above
defined commutative algebra B, such that K., (G) = B x5 G.

Proof. We have to define a partial action § of G on B. So define the domains
D, = e4,B and the morphism 3, : Dy-1 — D, by:

69(69*1@116}12“'6}%) = [g]eg*1€h1eh2"-ehn [g_l]
= legh, €ghy--Cqn, [9][9 7]
= €4€gh,€Cghy---Cqh, -
Then § is a partial action. Indeed, it is clear that D, , = B and 3, = idp, thus
satisfies the condition (I) of Definition [2.28] Recall that since 5, and /3, are partial

functions the domain of 3,/ is the set B,-1 (Dy-1 N Dy). Notice that for any g € G,
the ideal D, = e,B is unital with unit e,, so:

Br-1 (Dg-1 N Dy) = By-1(eg-1€,B)
= Bh—l (6g716h)ﬂh—1 (ehB)
= e(gn1Pu-1 (enB) = e(gm-1Bu-1 (Dn)
= e(gh)_1Dh_1 = D(gh)—l N Dy-1 C D(gh)—1 = dom (ﬂgh) .
Then dom (8,5,) € dom (f,p), thus:

BB (e(gh)_leh_lewlem...ewn) = By (€neg—1€nu, Enwy - --Chu,, )
= egegheghwleghm...eghwn
= eghe(gh)hqeghwleghm...eghwn

= th (€(gh)716h71€w1€w2...€wn) .
Then fgf S Bon, and by Remark A is a partial action of G on B.

Notice that the map 7y : G — B xg G given by m(g) = e,#g¢ is a partial
representation of G in B x3 G. Indeed, my(e) = [lg]#1a, now observe that for all
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g,h € G:

To(9~ )mo(g)mo(h) = (eg—1#g ") (eg#q) (en#h)
= (By-1(eg)#1c) (en#th) = (e, #1c)(entth)
= egrep#th
= 5g*1(eg)egh)eh#h)
= (eg1#97 ") (egn#tgh)
= mo(g™")mo(gh).

Thus by the universal property of K, (G) there exists an unique algebra mor-
phism
T Kpa,«(G) — B X g G,
such that 7([g]) = mo(9) = e#g9-
Observe that (e,#g)(en#h) = By(eg-1ren)#gh = egegn#gh. Then

ﬁ([gl] [92]---[971]) = €9,€g195--Cg19...gn HJ192-+-Gn.-

The canonical inclusion of B into K, (G), ¢p(a) = a[lg], and the canonical partial
representation wp(g) = [g] form a covariant pair relative to the algebra K. (G).
Indeed,

b (By (aeg-1)) = dp (agey) = ageq[1q]
= a4l9llg"[16] = lglallc]lg™"]
= 75(9)¢(a)r(97),

where a = ey, ep,...ep, and ag = egn, €ghy..-Cqh,, -

n

By Theorem there is an unique algebra morphism ¢ : B x5 G — K (G)
such that 7 = pomy and ¢ = popy. Then for g € G and a € B, m5(g) = pomo(g)
and ¢p(a) = ¢ o ¢p(a), that means [g] = p(e,#9) and a[lg| = ¢(a[lg|#1e), thus
plaeg#g) = alg].

Finally observe that 7 and ¢ are mutually inverse. Indeed,

p o7 ([g1]lga]--[gn]) = (e #91)(egs#2).. (€4, #n))
= [91”92]---[%]7
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and for a = ey, ep,...ep, € B

it o plaeg#g) = 7 ([gllg 1Pl by '1[h2l[hy '] [hn] [y ]19])
= (eg#tg)(eg1#£9™" ) (en #ha) (€1 #hT ). (en, #hn) (e #05,) (eg#E9)
= (e,#1c)(en, #1a)...(en, #1c)(€g#9) = (€n,eny...en, #1a)(e,#9)
= (en, €hy---Ch,€gF7)
= aeg#g.

Then 7 and ¢ are inverse to each other, thus K, (G) = B x5 G. O

Theorem 2.54. Let B be the K-algebra defined above. Then there is a partial rep-
resentation m : G — Endg(B) defined by w(g)(b) = [g]blg™] for any g € G and
be B.

Proof. First observe that m(1g)(b) = [1g]|b[lg] = « for all b € B, then 7(e) = idp,
thus 7 satisfies the first condition of Definition [2.1] for the other two conditions notice
that for all s,t € G-

st]ft = ]b[t][(st) ]
= 7(st) ([t~1]b]t])
= m(st)r(t)(0),

and analogously 7(s™H7(s)m(t) = n(s™!)m(st). O
Corollary 2.55. B has a structure of a left K,q(G)-module induced by
¢B : Kpar(G) — EndK(B),

such that ¢p([g]) (z) = [glzlg™"].

Proof. Observe that ¢p is the algebra morphism obtained from applying the univer-
sal property of K. (G) (Proposition [2.48) to the partial representation 7 : G —
Endg(B) defined in Theorem [2.54] O
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2.3 Spectral sequences

In this section we will introduce some definitions and results from spectral sequence
theory. The final objective of this sections is to prove Theorem [2.106, which will be
used to obtain Theorem [4.4] which shows that there exists a Grothendieck spectral
sequence relating cohomology of partial smash products with partial group cohomol-
ogy and algebra cohomology. The theory in this section is taken from [3], some of the
proofs have been given differently.

Definition 2.56. Let R be any ring. A complex (C,d) for R is an indezed family
C = {Ci}licz of R-modules together with an indexed family of module morphisms
d= {dz : Cz — Ci—l}iEZ such that di—ldi =0.

dp+2 dp+1 dp dp—1
== O — Cppy — Cp — Cpoy — Cpg — -+ -

Given two complexes (C,d) and (C',d') a (chain) homomorphism of C into C' is
an indexed family of module morphisms o = {a; : C; — Cl}icz such that the next
diagram commutes

Ci Ci—a
o ka’i—l
Ci Cia

d/

for anyi € Z.

Definition 2.57. A complex (K1) is a subcomplex of a complex (C,d) if for all
n € Z we have that:

(i) Ky C Cy;

(ii) The map 1, is the restriction of d,, to K,, i.e. l, = d,|k, -

Definition 2.58. Given a subcomplex (K,1) of a complex (C,d), the factor complex
C/K is the family of factor modules {C;/K;}icz with the family of boundary maps
{dl : CZ/KZ — O'—I/Ki—l} mnduced by d.

Definition 2.59. A graded module is an indezed family
M = (MPEZ)
of R-modules. Graded modules M are often denoted by M,.
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Definition 2.60. A bigraded module is a doubly indexed family

M = (Mp,gezxz)
of R-modules. Bigraded modules M are often denoted by M,,.

Definition 2.61. Let M and N be bigraded modules, and let (a,b) € ZxZ. A bigraded
map of bidegree (a,b), denoted by f: M — N, is a family of module homomorphisms

f=lpqg: Mg — Np+a,q+b)(p,q)erZ'

The bidegree of f is (a,b), and we denote it by deg(f) = (a,b).

Given bigraded modules A, B, C' and two bigraded maps f: A — B and g: B —

C', the exactness of A 4 B % C means that im f = kerg; i.e. if deg(f) = (a,b)
then im f,_, ,—» = ker g, , for all p,q € Z.

Definition 2.62. A bicomplex is an ordered triple (M,d',d"), where M = (M, ,) is
a bigraded module, d'; d’ : M — M are differentials of bidegree (—1,0) and (0, —1),
respectively (so that d', d" are morphisms of bigraded modules such that d'd =0 and
d"d"=0), and

d;)7q_1
Definition 2.63. If M is a bicomplez, then its total complex , denoted by Tot(M),
18 the complex with nth term:

dly+d_y = 0.

-1,q%.,q =

Tot(M), = @ M,

ptg=n

and with differentials D,, : Tot(M),, — Tot(M),_1 given by

D, = Z (d ,+d,).

ptq=n

We can see a bigraded module M,, as the integer pairs in the Cartesian plane
where each module M, , € M,, is represented by the point (p,q), in that sense
Tot(M),, is the set of the integer pairs in the line defined by y = —x + n.

Lemma 2.64. If M is a bicomplex, then (Tot(M), D) is a complex.

Proof. Observe that each direct summand of Tot(M), is a module M, , such that
p+q=n, and note that imd, , C M, , and imd, , C M, , 1. In both cases M, ,
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u " > "
dp1 g1 i1 g1 Birat

/"
fi;m.g—x

Figure 2.1: Bicomplex Figure 2.2: Total complex

and M, ,_; are summands of Tot(M),,_; and therefore im D,, C Tot(M),_;. We show
that D is a differential.

DD =Y (d +d")(d +d")
=Y dd +> (dd' +d'd)+> d'd" =0.
O

Definition 2.65. A filtration of a module M is a family (M,),ez of submodules of
M such that
- C M,y CM,C My C---.

The factor modules of this filtration are the modules M, /M, with p € Z.

A filtration of a graded module M, is a family (FPM,),ez of graded modules such
that
- C FPIM, C FPM,, C FP*IM, C ---

for alln € 7Z.

Definition 2.66. A filtration of a complex C is a family of subcomplezes (FPC),ez
of C such that
- CFPICCFPCCFPICC -,

where FPC C FP*'C means that FPC is a subcomplex of FPT'C.
Limiting the first or the second index of the direct summands of Tot(M ) we obtain
the following filtrations.
Definition 2.67. The first filtration of Tot(M) is given by
("F? Tot(M)), = @D Min-s

1<p

= D My_og42® My_1 411D My, where g=n—p.
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Clearly, varying p for each fixed n, we have a filtration of Tot(M),. We denote
(*FP Tot(M)) by "FP. Let us check that ("F?),,>q is a subcomplex of Tot(M) for each
fixed p € Z:

Dip-iMip—i = (& s+ d} ;) My C d' My +d" M,
C My i ® M; i1
C ("F? Tot(M))

n—1"
Definition 2.68. The second filtration of Tot(M) is given by
("FP Tot(M)), = @D Ma—j;

J<p
= D My_1p—2® M1, D M,,, whereq=n—p.

BN

Figure 2.3: First filtration Figure 2.4: Second filtration

We denote (HFP Tot(M)) by LFP. Analogously to ({FP),>o we have that (1 FP),,>¢
is a subcomplex of Tot(M).

Definition 2.69. An exact couple is a 5-tuple (D, E,a, (3,7), where D and E are
bigraded modules, o : D — D, : D — FE and v : E — D are bigraded maps, and
there is exactness at each verter: ker a = im~y, ker § = im «, and kery = im 3.

SN A

E
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Proposition 2.70. Fach filtration (FPC),ecz of a complex C determines an ezvact
couple

(1,-1)
k %0

whose bigraded maps have the displayed bidegrees.

Proof. We write for simplicity FPC as FP. For each fixed p, there is a short exact
sequence of complexes,

0 —s PPt 2 pr 2 pry et g

(where jP~! is the inclusion and v? is the natural map) that gives rise to the long
exact sequence of homology

s H(FP™) =5 Hy(F?) =5 Ho(F7/F7~1)
Hy o (FPY) =2 1, (FP) 2 Hy (FPJFPY) = e

where a = j77! 8 =P, and v = O the connecting homomorphism (for more details
see [3, p. 333]). We write ¢ = n — p, then we have

o Hyeg(FP71) =5 Hyyo(FP) = Hy(FP/F?) =
Hp+q—1(Fp_1) = Hp+q—1(Fp) i) Hp+q—1<Fp/Fp_1) -

There are two types of homology groups: homology of a subcomplex FP or F?~! and
homology of a quotient complex FP/FP~1. Define

D = (Dy4), where Dy, g = Hpo(F?), E = (Epq), where L, = Hyy(F?/FP71).
With this notation, the long exact sequence is, for fixed g,

-—= D DB,
p1q+1( 1 pq(oo) pq(lo)

Dp—l,q ; Dp,q—l ; Ep,q—l —

Therefore, (D, E, a, 3,7) is an exact couple with the displayed bidegrees. O
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Notation. It is a universal agreement to write n = p 4+ ¢, and we will use this
notation from now on.

Each exact couple determines another exact couple, but first we have to introduce
another important notion.

Definition 2.71. A differential bigraded module is an ordered pair (M, d), where
M is a bigraded module and d : M — M is a bigraded map with dd = 0. If (M,d) is a
differential bigraded module, where d has bidegree (a,b), then its homology H (M, d)
is the bigraded module whose (p,q) term is

ker d, ,

imdp,_q,g-p

H(M, d)pvq =

A bicomplex (M,d',d") gives rise to two differential bigraded modules, namely,
(M,d") and (M,d"). However, (M,d + d”) is not a differential bigraded module
because d' + d” : M — M is not a bigraded map.

Remark 2.72. Let (M, d) be a differential bigraded module. Then for any (p, q) € ZxZ
and z € kerd, , we set cls z as the respective homology class of z.

Proposition 2.73. If (D, E, «, 3,7) is an exact couple, then d* = v is a differential
d' : E — E, and there is an exact couple (D?, E? o2 3%,4?), called the derived
couple, with D* = im« and E* = H(E,d").

Proof. Let «, 3,7 have respective bidegrees (aq,ba), (as,bs), (ay,by). The bigraded
map d' : E — E, where d* = 3, makes sense since 3: D — E and v : E — D. Note
that v3 = 0, because the original couple is exact, and so d' is a differential: d*d' =
B(vB)y = 0. Since bidegrees add, the bidegree of d1 is (ag,by) = (ag + a, bz + b,).
Define E? = H(E,d'). Thus E}, = kerd, /imd,_, ., . Define D* =ima C D.
Thus, D2 = M p_q,q-b, © qu We now deﬁne the blgraded maps. Define o? :
D? = D to be the restriction a|p2; that is, a®> = ai, where i : D* — D is the
inclusion. Since inclusions have bidegree (0,0), a? has bidegree (aq,bs), the same

bidegree as that of ov. If € D2, then x = au (for u € Dy, 4-s,), and

azq:x:auHax:aau.
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Define 8% : D? — E? as follows. If y € D2, then y = av (for v € D,_4,_ 4-s.), and

p,q’
d'Bv = B(yB)v = 0 whence we have that Sv is a cycle. Since v = a~ 'y, we set

B*(y) = cls(Ba'y).

We have to prove that 52 does not depend on the choice v of the preimage o=y, so we
must show that if y = av’, then cls(fv') = cls(Bv). Now v/ —v € ker a« = im 7, so that
v' —v = yw for some w € E, and hence cls(8(v' —v)) = cls(fyw) = cls(d'w) = cls(0),
then B(v' — v) is a boundary. Note that 52 has bidegree (ag — a4, bg — bs). We now
define 4% : E* — D?. Let cls(z) € E; , so that z € E,, and d'z = 7z = 0. Hence,
vz € ker f = imq, thus vz € ima = D?; displaying subscripts, 7, ,2 € Dypiaygib,-
Define 72 by

72 els(2) =z

We must to show that 4% does not depend on the choice of cycle. Indeed, if w €
im cl}l)_adl,q_bd1 is a boundary, then w = d'z = Bz, for some © € E,_, 4-1,, and
so yw = (yB)yx = 0. Observe that 72 has the bidegree (a,b,), the same bidegree
as that of . It just remains to prove exactness. Since all the maps are well-defined,

there is no reason to display subscripts. First of all, adjacent composites are 0.

B%a? iz = au > aou — cls(Bataau) = cls(Bau) = 0.
V6% 2 = au s cls(Bu) — ypu = 0.
o?y? s cls(2) = vz e ayz = 0.

We have verified the inclusions of the form im C ker. Now must proof the reverse
inclusions.

ker a? C im~2. If x € kero?, then x € D? and az = 0. Hence, x € kera = im 7,
so that © = ~y for some y € E. Now x € ima = ker 3, and 0 = fx = Syy = dly.
Thus, y is a cycle, and z = yy = 72 cls(y) € im~2.

ker 52 C im o?. If x € ker 82, then € D? = ima and 3%z = 0. Thus, * = au and
0 = B2z = cls(Batau) = cls(Bu). Hence, Bu € imd'; that is, fu = d'w = Bryw for
somew € E. Now u—vyw € ker 8 = ima = D? and o?(u—yw) = au—ayw = au = .
Therefore, z € im a?.

ker v2 C im 32, If cls(z) € ker~2, then 72 cls(z) = vz = 0. Thus, 2z € kery = im 3,
so that z = fv for some v € D. Hence, 8*(av) = cls(fatav) = cls(Bv) = cls(z),
and cls(z) € im 2.

]

The next lemma shows a characterization for the map d' that will be necessary
for some results.
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Lemma 2.74. Let (FPC)pEZ be a filtration of a complex C, and let the correspond-
ing exact couple be (D, E, «,,7). Then the differential d}a’q c By, — E,_q4 is the
connecting homomorphism

Hp g (Fp/Fp_1> = Hpiq (Fp_l/Fp_Q)

arising from 0 — FP~Y/FP=2 — FP/FP=2 — FP /P15 (),

Proof. Let (C,d,) be a complex, then we have the next two short exact sequences:

)

0— FP1 2 P Iy FP/FPTL 0
and A
0 — Frot/pp=2 1y pp/pp=2 Ty pp /et ),
where i is the inclusion, 7 is the natural map, ¢ and 7 are induced by ¢ and =
respectively. For x in F?, let us denote by T the class of x in F?P/FP~! write T for

the class of z in FP/FP~2 and we use the notation cls z to refer to the class of a cycle
z in its respective homology group. Define

b FPC, — FPC,_4
as the restriction of d,, to FP, and the maps

cﬁ? & FrC,_4

. Frc, FrC,_4
‘ FP—QC'n FP_QCn_l

and d_ﬁ: —
Fp—lCn Fp—lC’n_l

as the morphisms induced by d?.

Notice that the connecting homomorphism v, , : H,(F?/FP~') — H, {(FP™')
arises from the diagram

FrC, —™— FPC,/FP~1C, — 0

0 —— P10, , —s FPC, ;.

Then for % € ker db, v,.,, satisfies
Ypa(cls(2)) = cls(i ' dlr (7).

On the other hand we have the connecting homomorphism 8,, : H,(F?/FP~') —
H, 1 (FP~1/FP=2) arises from
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FrC,/FP=2C, — X FrC,/FP-1C,

lga

FP- 10 1/Fp_ n— 1—>ch 1/Fp_

Then for z € ker &b, 0y q satisfies

Oy.q(cls(z)) = cls(i db7(2))

Finally recall that 3, , is the map induced by the natural map FP~! — FP~! /FP=2
that is, 8,1 4(clsw) = cls(w). Hence

cs (i 'dhm 1 (2)) = Byp-rq(cls(i dbn T (Z)))
= 5p71,q7p,q< )-
Thus 0pq = Bp—1,4Vpq = dzla,q' -

Definition 2.75. Given an ezact couple (D, E,«a, 3,7), we define its rth derived
couple (D", E",a", B",~") recursively in the next way: the (r + 1)st derived couple
(DY Erl ortt grtl At s the derived couple of (DT, E" o, 37, 4").

We assume that (D, E, «, 3, 7) correspond to its 1st derived couple (D', E*, a!, 3!, 41).

Corollary 2.76. Let (D, E,«, 3,7) be the exact couple arising from a filtration (FP)
of a complex C' and let (D", E", ", 5",~") be its respective rth derived couple:

A

where a, = 1—r and b, = r—1. Then (D", E",a", ",~") has the followmg properties:

(i) the bigraded maps o, 5", 4" have bidegrees (1,—1), (1 —r,r — 1), (—1,0), re-
spectively;
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(ii) the differential d" is induced by Ba~" vy, and d" has bidegree (—r,r —1);

r+1 __ T ; T .
(ii) E)5 =kerd, /imdy, . ;

(iv) D}, = im(ap_1441)(Qp-2g12) - (Qp—ri1,g4r-1); 0 particular, for the evact cou-

ple in Proposition

D;,q _ im(jp—ljp—Qmjp—r—i-l)* . Hn(Fp—r-i—l) N Hn(Fp)

Proof.

(i)

(iii)

First observe that the derived couple preserve the bidegrees of af and 7, i.e.
deg(a) = deg(a’) and deg(vy) = deg(v"), where i € {2,3,...}. Then deg(a”) =
deg(ar) = (1, —1) and deg(y") = deg(y) = (—1,0).
Recall that if the maps " and 5" have bidegrees (aqr,bor) and (agr, bgr), re-
spectively, then 8"*! has bidegree (agr — aqr,bgr — bor). Hence, by induction,
if
deg(p"") = (1—(r—1),(r = 1) = 1),

then

deg(f)=1—-(r—-1)—-1,0r—-1)—-1+1)=1A—-r,r—1).

Finally to complete the induction observe that for r = 2 the map 32 has bidegree
(-L,)=(1—-rr—1).

As ", 4" have bidegrees (1 — r,r — 1), (—1,0) respectively and bidegrees adds,
then the bidegree of d" = 34" is (—r,r — 1). Denote by cls®(z) = cls(cls(z)),
the class of cls(z) in E3, where 2 is a cycle in the complex (E? d?). Now we
define cls"(2) recursively by setting cls”(z) = cls(cls”*(z)), the class of cls"!(2)
in E”, where cls"'(2) is a cycle in the complex (E"~',d"~'). Then using the
above notation we have

d(cls"H(2)) = By (cls"(2))
= 4" el (2))
= B"y(2)
= cls(f" a7 y(2))
= cls(cls(8"*a"1(2)))
= cs"H(Ba T y(2)).

It is clear since the bidegree of d" is (—r,r — 1).
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(iv) Observe

g = a(p—17q+1)D€;—11,q+1)

a(pfl,q+1)a(p72,q+2)Dgp_fz,qw)

= Oé(p—1,q+1)CY(p—2,q+2)---a(p—r+1,q+r—1)D(p—r+1,q+r—1)
= Im(Qp—1,g+1) Up-2,g+2) - Qp—r+1,g+r-1)) -

For the last statement recall that «y,, = jP : H,, (F?) — Hpyy (FPT!) and that
JETE T = (R )

*

]

Definition 2.77. A spectral sequence is a sequence (E",d"),>1 of differential bi-
graded modules such that E™' = H(E",d") for allT € Z*.

Given a spectral sequence (E",d"),>; and a fixed r € Z', we say that the terms
By form the rth page of the spectral sequence (E”,d"),>;. Thus, it is useful think
a spectral sequence as a book where the rth page of the book correspond to the rth
page of the spectral sequence, so we have that for each page of the book the next
page is its own homology.

Theorem 2.78. Any filtration of a complex yields a spectral sequence as described

Corollary [2.76,

Proof. A filtration gives an exact couple, as in Proposition [2.70] and the E” terms of
its derived couples define a spectral sequence.

]

Definition 2.79. If M is a module, then a subquotient of M is a module of the
form M'/M", where M" C M’ C M.

If {E",d"} is a spectral sequence, then E? = H(E' d') is a subquotient of E?.
Hence, E? = Z?/B? = kerd'/ im d', where

B*cC 7’ C E.

So any submodule of E? is equal to S/B? for a unique submodule S of Z? with B* C S.
Hence, in particular, for the relative cycles Z® and boundaries B? there exist unique
submodules B? and Z2 of Z? such that B3> = B2/B? and Z® = Z3/B?. Then we can
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identify Z3, B® with Z3, B3 respectively. Therefore B®/B? C Z3/B? C Z?/B? = E?
so that
B*CB*CZ*CZ*CE.

More generally, for each r, there is a chain
B2g.'.gBTgZTg..'gZ2gEl'

Definition 2.80. Given a spectral sequence {E",d"} and the above identification of
the submodules Z" and BT, define Z* = (. Z" and B* = J,. B". Then B® C Z*,
and the limit term of the spectral sequence is the bigraded module E>° defined by

= Zgjz/qu

Lemma 2.81. Let {E",d"} be a spectral sequence. Then, for any p,q € Z,

(i) Extt = Ey if and only if ZJt = Z7 - and Bytt = B)

p.q’

(i) If E;tt = Ey  for all > s, then ES = E>.

Proof. Since it is clear that we are working with the p, ¢ terms of the spectral sequence
we will omit (in this proof) the subscripts.

(i) Recall that if X/Y is a subquotient of Z, then Y C X C Z, and so X/Y = Z if
and only if Y = {0} and X = Z. If Z’”“/B’”+1 E™1 = E" then B™! = {0} in
E™ = Z"/B"; that is, B"** C B", but since B’" C B™! we have that B"™! = B".
Hence, £™ ! = Z’“H/B’”r1 Z’"“/BT = E" = Z"/B", so that Z""!' = Z". The
converse is obvious.

(ii) If E" = E™™ for all > s, then Z* = Z" for all r > s; hence, Z° = ., 2" =
Z*®. Also, B* = B for all 7 > s; hence, B* = J,., B" = B*. Therefore,

E* = 7°)B* = Z>°/B™ = E™.
0

Given a filtration (F?) of a complex C with inclusions ? : F? — C, we have the
map ¥ : H, (F?) — H,(C) induced by 4*. Since F? C FP*! we have ims? C imi?*;
that is, (im?) is a filtration of H,(C).

Definition 2.82. If (FFC) is a filtration of a complex C and i* : FP — C are
inclusions, define

PPH,(C) = im®.
We call (PPH,,(C)) the induced filtration of H,(C).
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Definition 2.83. A filtration (FPM) of a graded module M = (M,) is bounded if,
for each n, there exist integers s = s(n) and t = t(n) such that

F*M, = {0} and F'M, = M,.

Given a bounded filtration {F?} of a complex C, the induced filtration on ho-
mology is also bounded, moreover it has the same bounds. Indeed, we have that
if i? : F? — C is the inclusion, then ®?H, = im®, where ¥ : H, (F?) — H,(C).

* 9

Since for each n there exist r,s € Z such that F*C,, = 0 and F'C,, = C,,, we have
®*H,, = {0} and ®'H,, = H,,. Hence, for each n € Z, there is a finite chain,

{0} = ®*H,, C ®**'H, C-.- C ®'H, = H,,.
Of course, it is clear that ®'H,, = {0} for all i < s, and ®’H,, = H,, for all j > t.

Definition 2.84. A spectral sequence (E", al’“)r21 converges to a graded module H,
if there exist some bounded filtration (PP H,,) of H, such that

00 ~v —1
B = OPH, /OP T H,
for alln and p,q with p+ q =n. We denote the convergence by
E;’q :p> H,.

Since spectral sequences are often referred by its second page, it is common to
write the convergence of a spectral sequence as

2
EM ? H,.

Theorem 2.85. Let (FPC), be a bounded filtration of a complex C, and let (E",d"),~,
be the spectral sequence of Theorem[2.78. Then

(i) for each p,q, we have E% = E7 . for large v (depending on p, q),

(1) qu = H,(C), by means of the induced filtration of H,(C).
Top

Proof. Recall that the induced filtration ($PH) is bounded with the same bounds
s(n) and t(n) as (FPC). Then
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(i)

If p is “large”; that is, p > t(n), then FP~'C, = F?C,, and FPC,/FP~'C, =
0. By definition, E,, = Hyq (FP/FP7"), and so E,, = {0}. Since EJ  is a
subquotient of E), 4, we have £} = {0} for all . Similarly, if p is “small” that
is, p < s(n), then FPC,, =0, and By = {0} for all r. Focus on first subscrlpts
For any fixed (p, ¢),d" (E'“ ) C E}_, 4 Forlarger, the index p—r is small, and so
B —_— = {0}. Hence, kerd} , = EJ . Let us compute E/*' =kerd; /im dpM#
Now imdy,, , = {O} because the domaln of di,, 4 is E;M# = {0} when 7 is
large. Therefore, V%! = kerd] ,/{0} = E / {O} , for large r (depending

on p, q ) Thus, the p,q term of £ is constant for large r, which says that
£y ., by Lemma [2.81 -

We continue focusing on the first index in the subscript by writing # for every
second index. Consider the exact sequence obtained from the r th derived
couple:

Dy 2#—>D+r 1#—>ET —>D; g (1)

The indices arise from the bidegrees displayed in Corollary (i) : " has
bidegree (1,—1), 5" has bidegree (1 —r,r — 1), and +" has bidegree (—1,0); as
in Corollary [2.76} - (iv), the module

Dy, =im (7772 Y, (R o H, (FP).
Replacing p first by p +r — 1 and then by p 47 — 2, we have
Dpypyy =im (7772 gP) CH,, (FPTT)

and
D;+»,- 2.4 = lm (jp+7‘73 - .jpfl)* g Hn (Fp+7“*2) )

For large r, FP*"=1C,, = F'™(C, = C,, and the composition jP*"=2.. 57 of
inclusions applied to FPC, is just the inclusion ¢ : FPC, — C,, . Therefore,

Dy, 1y = imi?, = ®H,. Similarly, D}, ,, = ®*~'H, for large . Hence,

we may rewrite the exact sequence (1) as

" 1H,(C) % ®PH,(C) — KL, — D}

p—1,¢
where the first arrow is inclusion. Indeed, recall that o” is just the restriction
of = jP*" 2 to Dy, , = ®"'H,(C) and that

L H(FP2) < H (P,
which for larger r is equal to the identity map

P2 H,(C) — H,(C).
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Finally, if r is large
Dy = i (72 ). H () = H, (1) = 0
because FP~"C,, = 0 for larger . Hence, we have the next exact sequence
0 — & 'H,(C) = ®"H,(C) = E  — 0,

then
®’H,(C)/®"'H,(C) = E; , = E>*.

]

Definition 2.86. Let (M, d',d") be a bicomplex. The transposed bicomplex (M*,§',0")
of (M,d',d") is the bicomplex such that M;q =M,,, 0 =d" and " =d'.

Lemma 2.87. If Tot(M) is the total complex of a bicomplex (M,d’',d"). Then
(i) the second filtration of Tot(M) is equal to the first filtration of Tot(M?), i.e
U P Tot(M), = 'FP Tot(M"),,
(i1) Tot(M) = Tot(M?).

Proof. The transpose M* is defined by M} = M,,, thus

HFpTOt @ oy @ g = IFPTOt(Mt)n
J<p J<p
and
Tot( Alt 6}9 6}9 —’Tbt M),.
pt+q=n p+gq=n

]

Definition 2.88. A first quadrant bicomplex is a bicomplex (M,,) for which
M, , = {0} whenever p or q is negative.

Theorem 2.89. Let M be a first quadrant bicomplex, and let '"E” and "E" be the
spectral sequences determined by the first and second filtrations of Tot(M). Then

(i) The first and second filtrations are bounded, and the bounds for either filtration
are s(n) = —1 and t(n) =
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g Irpoo __ I II oo __ I ppr ;
(i1) For) all p,q, we have "E5S = “E7 and B> = “E] . for large v (depending on
p,q).

(ii) 'E2 = H,(Tot(M)) and "E? = H,(Tot(M)).

Proof. Part (i) is obvious. Statements (i) and (iii) for 'E follow from Theorem [2.85]
Since Tot (M*) = Tot (M), where M* is the transpose, and since the second filtration
of Tot(M) equals the first filtration of M, we have "E>* = "E! for large r and
NE2, = H, (Tot (M")) = H,(Tot(})). O

Let (M,d,d") be a bicomplex. Define M, , as the pth column of M (see figure

2.1), hence (Mp*,dg*) is a complex, where the map d,, is the restriction of d” in

M Therefore we can define a new bigraded module H” (M), whose (p,q) term is
H, (M,..).

For each fixed ¢, the gth row H" (M), , of H"(M)
- Hy (Mp+1,*) , Hy (Mp,*) , Hy (Mp—l,*) )
can be made into a complex if we define d',, : H, (M,,.) — H, (M, 1) by
d'y:cls(z) = cls (d), 2)

where z € kerd) . There is a new bigraded module whose (p,q) term, denoted by
H!H!(M), is the pth homology of (H"(M).q,d'), i.c. H H!(M) = H,(H"(M),).

Definition 2.90. If (M, d’,d") is a bicomplez, its first iterated homology, denoted
by H'H"(M), is the bigraded module whose (p,q) term is H H}(M).

Proposition 2.91. If M is a first quadrant bicomplex, then
IE;,q = Hq (MIL*) = H”(M)pvq
and
172
E ., = HZ’)H;’(M) = H,(Tot(M)).

p

Proof. Since it is clear that we are working with IET let us omit the prescript I for
this proof. As in Proposition m proof, £, , = H, (Fp/Fp ), where

(FP), =" ® My o4120D My_14:1® M,
(prl)n = DMy og12D My 1441
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n—1

Hence, the nth term of F?/F?P~!is M, ,. The differential (F?/FP~1) — (F?/FP~1)
is
D, :a, + (Fp_l)n — D,a, + (Fp_l)

n—1"
where a,, € (F?), ; we have just seen that we may assume a,, € M, ,. Now D,a, =
(d;q + d;;’q) an € My_1,DM,,1.But M1, C (FP7Y) |, sothat Dya, = d; ,an mod

(FP=Y), . Thus, only d” survives in F?/FP~!. More precisely, since n = p + ¢
ker D,, (kerdy , + (FP~1),)/(FP~1), kerdy,

H, (FP/PPY) = =2 — ~ "0 _ g (M,,.).
) = B~ Wy 7)) (), im0 (Vo)

Therefore, 'E} , = Hy (M,) and the elements of 'E}  have the form cls(z), where
z € M,, and d"z = 0. Now Lemma identifies the map d' with the connecting
homomorphism arising from 0 — FP~1/FP~2 — FP/FP=2 — FP/FP~1 — (. So it
only remains to prove that d’ = d*. As d* : H,, (FP/FP™Y) — H,,, | (FP~1/FP72)
is the connecting homomorphism, it arises from the diagram

¢
Mp—1,q+l D Mp,q ? Mp,q > 0

|

i
0 ? Mpfl,q ? Mp,qfl S Mpfl,qv

where D : (ap 1411, pq) = (d"ap g, d"ay 1 401 + d'ayy), i is the natural inclusion and
¢ is the natural projection. Let z € M,  be a cycle; that is, d) 2 = 0. Choose
¢~'z = (0,2), so that D(0,z) = (0,d, ,z). Then

7 Pq
d'cls(z) = cls (i 'Dr'z) = cls(d'z) = d’ cls(2).

Hence,

ker d’

2 _ KXTApg g

E,, = = = H H(M),
I & py1,q

as required.

[
Now we can construct the analogous of H'H"”(M). Let (M,d',d") a bicomplex,

take its transpose bicomplex (M*, ', "), where &' = d” and §" = d’'. Recall that for
each fixed p we have that (M ., 0, ) = (M, ,,d. ) is a complex, thus taking homology
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of pth columns of M* gives a bigraded module, denoted by H'(M), whose (p, q) term
is Hy(Mj ). For each fixed ¢, the gth row H'(M), , of H'(M)

() H (L) H ()
can be made into a complex if we define &, : H, (ML) — Hy (M!_, ) by
&, cls(z) > cls (5;7(]2) :

where 2 € kerd, .. There is a new bigraded module whose (p,q) term, denoted by
HJH;(M), is the pth homology of (H"(M).4,d"), i.e. HH,(M) = Hy(H'(M).).
Notice that H'(M) is just H"(M?"). Therefore

H;,H;(M) = H,(H'(M),) = Hp<H”(Mt)*,q) = H;/;H:;/ (Mt) :

Definition 2.92. If (M,d',d") is a bicomplez, its second iterated homology is
the bigraded module whose (p,q) terms is H H}(M).

Proposition 2.93. If M is a first quadrant bicomplex, then
HE;,q = Hq (M*J))
and

"E? = H)H,(M) = H,(Tot(M)).

p

Proof. By Proposition we have

171

Ep,th = H, (M;*)
and

‘B2 M= H H(M") = H,(Tot(M")),

where IE”  M? refers to the (p,q) term in the r-page of the spectral sequence ob-
tained from the first filtration of Tot(M"). By our previous discussion we have
that H'H” (M') = H"H'(M), we also know that H, (M!,) = H,(M,,) and by
Lemma the second filtration of Tot(M) is the first filtration of Tot (M) and
Tot(M) = Tot(M?"). Hence,

11 11 11
Ep,q = Ep,th = H, (M;*) = H,(M,,)
and

HEg = IE2 M =HH!(M") = H/H,(M) = H,(Tot(M")) = H,(Tot(M)),
p

as required.
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Definition 2.94. A spectral sequence (E”,d") collapses on the p-axis if Eiq = {0}
for all ¢ # 0; a spectral sequence (E",d") collapses on the q-azis if E;g,q = {0} for all
p#0.

Proposition 2.95. Let M be a first quadrant bicomplex and let (E”,d") be the spectral
sequence induced by the first or the second filtration of Tot(M).

(i) If (E",d") collapses on either axis, then E5% = Eg’q for all p,q.

(i) If (E",d") collapses on the p-azis, then H,(Tot(M)) = E? o if (E",d") collapses
on the q-azis, then H,(Tot(M)) = Eg .

Proof. For the item (i) assume that (E", d") collapses on the p-axis and choose r > 2.
First of all, £, = {0} for all » > 2 and ¢ # 0, because E7 , is a subquotient of
E?, = {0}. Now Eji' = kerdyo/imdl,, ... Now d, = 0, because its target is
B} .., which is off the p-axis (see figure , hence is {0}; thus, kerdy , = E ;.
Also, dy,, .1 = 0, because its domain is off the axis, and so imdy,, ., = {0}.
Therefore, E;’ng = E,,/{0} = E}, and Lemma [2.81] gives £> = E?. The proof for
the case where (E",d") collapses on the g-axis is analogous.

For the item (7i), observe that since M is a first quadrant bicomplex, by Theorem
2.89 we have that the induced filtration on H, = H,(Tot(M)) is

{0} =¢'H, C®°H,C---C®"'H, C®"H, = H,.

If the spectral sequence collapses on the p-axis, then {0} = E]iq for all p < n—1,
because 1 < ¢. By part (i) we have £ = Eiq. Now by Theorem and since the
spectral sequence collapses on the p-axis we have that {0} = E5 = ®?H,,/ or1H,

for all p < n — 1. Hence, {0} = ®'H, = ®H, = ... = ®"'H, and H, =
o"H,/®" 'H, =~ Ei,o- A similar argument can be given when the spectral sequence
collapses on the g-axis. O

Definition 2.96. A third quadrant bicomplex (or cohomology bicomplex) is
a bicomplex (M, ,) for which M, , = {0} whenever p or q is positive.

As it is common, for third quadrant bicomplexes we change the signs of p, ¢, and
n, and we switch its positions.

pPq
MPY = M_, _,.
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d3

d2

Figure 2.5: Differentials with bidegree (—r,7 — 1).

Consider the first filtration of Tot(M) when M is a third quadrant bicomplex.

(‘F7) = D Mo

1<—p

e M_n70 @ “e @ M—p,—n-i-p

and
(IFpr)in _ @ M
i<—p+1
= an,O DD pr,fner D pr+1,fn+p71-
Thus,

{0})=F"!'CF"CF "™ C...CF"=Tot(M).
If we lower indices and change their sign, we have
{O}ZFn+1 Cr,CF,1C- - gF():TOt(M),

that is, the filtration so labeled is a decreasing filtration. Similarly, lowered indices on
the second filtration give another decreasing filtration of Tot(M ). Now think in the
induced filtration (®?H,,) of H,(Tot(M)), if we define V,H" = &~PH_,, we obtain an
induced filtration (V,H") of Tot(M) where M is a third quadrant bicomplex.

A third quadrant spectral sequence will be denoted by (E,,d,), and in an analo-
gous way to cohomology we will denote each element of the spectral sequence as EP*9.
Moreover, we write H_,,(Tot(M)) = H™(Tot(M)), call it the nth cohomology module
and, for 1 <r < oo,

., _,=d» 'E7 _ ='EP and "ET
) —q -,

__ I rpq
—P,—q r —D, ro - ET )

q
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We also have a version of Theorem for third quadrant bicomplex.

Theorem 2.97. Let M be a third quadrant bicomplezx, and let 'E, and "E, be the
spectral sequences determined by the first and second filtrations of Tot(M). Then

(i) The first and second filtrations are bounded.

(ii) For all p,q, we have 'EP: = 'EP4 qnd WEPY = NEPY for large r (depending on
p:q)-

(iii) ERY = H™(Tot(M)) and "ED? = H™(Tot(M)).
p p

Proof. The bounds are s(n) = n+1 and ¢(n) = 0, and so statements (i) and (ii7) for
'E follow from Theorem . Since Tot (M*") = Tot (M), where M" is the transpose,
and since the second filtration of Tot(M) equals the first filtration of M*, we have
g =gy for large r and "E2 = H, (Tot (M")) = H,,(Tot(M)). O

Proposition 2.98. Let M be a third quadrant bicomplex and let (E,,d,) be the spec-
tral sequence induced by the first or the second filtration of Tot(M).

(i) If (E.,d,) collapses on either axis, then EP? = E? for all p, q.

(ii) If (E,,d,) collapses on the p-ais, then H"(Tot(M)) = Ey°; if (E,,d,) collapses
on the g-axis, then H™(Tot(M)) = ES™.

Proof. For part (i), assume that (F,,d,) collapses on the p-axis, and choose r > 2.
First of all, EP? = {0} for all » > 2 and ¢ # 0, because EP? is a subquotient of
EY? = {0}. Now EP| = kerd?®/im d?+"~"+'. Now @2 = 0, because its target is off
the axis, hence is {0}; thus, ker d?° = EP?. Also, d?*"~"+1 = {0}, because its domain
is off the axis, and so im d?*"~"+! = {0}. Therefore, E?, = E?°/{0} = EP° and

Lemma gives Fo, = Ey. If (E,,d,) collapses on the g-axis the proof is analogous.
For part (ii), we have that the induced filtration on H" = H"(Tot(M)) is

{0} = \Ijn+1Hn g \Ijan g ct g \I;]_Hn g \IJOHn = Hn

Suppose the spectral sequence collapses on the p-axis; if p < n, then 0 < ¢. Therefore,
V,H" /U, H" = EP? = EF = {0} because EY? is off the p-axis for all p < n.
Hence, ¥V, H" = ¥, {H" = --- = \1H" = VoH" = H" and H" = V,H"/{0} =
v, H" /Y, H" = Ey 0 A similar argument can be given when the spectral sequence
collapses on the g-axis.

]
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Remark 2.99. All concepts defined in this section for the category of modules can be
extended to any abelian category thanks to the Full Imbedding Theorem [20)].

Definition 2.100. Let C be in Ob(Comp(A)), where A is an abelian category and
Comp(A) denotes the category of the complezes in A. A Cartan-FEilenberg pro-
jective resolution (or a proper projective resolution) of C is an exact sequence of
complezes from Comp(.A),

— Moy — -+ — Mgy — Mey — 0,

such that the following sequences in A are projective resolutions for each p:

(i) - — M,y — M,y — C, — 0;
(ii) - — Zy1 — Zpo — Z,(C) — 0;
(111) -+ — B,1 — Bpo — B,(C) = 0;
(w) - — H,1 — H,o— H,(C) — 0.

There is a dual notion of Cartan—Eilenberg injective resolution.

Definition 2.101. Let C be a complex in Comp(.A), where A is an abelian category.
A Cartan-FEilenberg injective resolution (or a proper injective resolution) of C
is an exact sequence of complexes from Comp(.A),

0= Meo—> Mg _—1—---— My _q —,

such that the following sequences in A are injective resolutions for each p:

(1)) 0= Cp — M,o— M, 1 —---;
(1)) 0 = Z,(C) = Zpo — Zp—1 — -+ ;
(i) 0 — B,(C) = Bpg — By 1 — -+ ;
(w) 0 = H,(C) = Hyg— Hp 1 — -+
A Cartan—Eilenberg projective resolution can be viewed as a large commu-
tative diagram M in A. For each p, the pth row M, , is a deleted projective resolution
of Cy; for each ¢, the gth column M, , is a complex each of whose terms is projective.

Also we can see Cartan—Eilenberg projective resolution as a bicomplex in the
next way: given a Cartan—FEilenberg projective resolution M,
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v 7 v 7 v 17 v
n—1,1

Observe that d' and d” are differentials with bidegree (—1,0) and (0,—1) re-
spectively, then we can make it into a bicomplex with a sign change. Define
AT, IT (—=1)?d; . Changing sign does not affect kernels and images, and so A”A” = 0.
Finally,

dllvq 1 +Ap lq pq = (- l)pd/ p,g—1 pq+ (_l)p_ldg—lqu;q
:( 1) ( D,q— ld// dgfl,qd;,q)
0.

Therefore, (M,d', A”) is a bicomplex. We can do the same construction in the Car-
tan—Eilenberg injective resolution case.

From [I] we have the next well known result.

Proposition 2.102. (Horseshoe Lemma). Given a diagram in an abelian cate-
gory A with enough projectives,
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where the columns are projective resolutions and the row is exact, then there exist a
projective resolution of A and chain maps so that the three columns form an exact
sequence of complexes.

Remark 2.103. The dual of Horseshoe Lemma in which projective resolutions are
replaced by injective resolutions is also true.

Theorem 2.104. If A is an abelian category with enough projectives (or injectives),
then any C in Ob(Comp(A)) has a Cartan—FEilenberg projective (or injective) reso-
lution.

Proof. Let C =— Cs N Ch N Co LN C_1 — be a complex. For each p € Z, there
are exact sequences

0—B,—~Z2,—H,—0 and 0—Z2,—C,— B,1 —0.

Choose projective resolutions B, . and H,, of B, and H,, respectively; by Propo-
sition (Horseshoe Lemma), there is a projective resolution Z, . of Z, so that
0 = Bpsx = Zp« — Hp,, — 0is an exact sequence of complexes. Using the Horse-
shoe Lemma again, there is a projective resolution M, , of C), so that 0 — Z,, —
M, — B,_1. — 0 is an exact sequence of complexes. Then we have the next two
commutative diagrams with exact columns and rows

By > Zpa > Hpq Zpy — Mypy —— Bpo1a
By > Zpo » Hyo Zpo — Myo —— Byo1p
Bp > Zp 7 Hp Zp 7 Cp 7 p_]_

For each p, define chain maps d, , : M, ; — M,_1 4 as the composition
dpg: Mpq— Bp1q = Zp-14 = Mp_14.

Since the above diagrams are commutative with exact columns and rows, we have
~J ~ 3 ~ :

that Z,, = kerd, ,, By, = imd,1, and H,, = Z,,/B,,. We have a commutative

two-dimensional diagram whose columns are the projective resolutions M, o of C,,.
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Yoo Y a Y +
e Mg,l > 1,1 > M[)71 _— M—l,l E—
Y e Y me Y e +
— MQO > 1,0 > M070 — Mfl,O E—
> Cg ” Cl ” CO > Cfl >
We have constructed a Cartan-Eilenberg projective resolution. O

Definition 2.105. Let B be an abelian category with enough projectives (or with
enough injectives), and let F' : B — Ab be an additive functor of either variance. An
object B is called right F-acyclic if (RPF)B = {0} for allp > 1. An object B is
called left F-acyclic if (L,F)B = {0} for allp > 1.

Theorem 2.106. Grothendieck third quadrant spectral sequence.

Let A S B L5 C be covariant additive functors, where A, B and C are abelian
categories with enough injectives. Assume that F' is left exact and that GE is right
F-acyclic for any injective object E in A. Then for any A € Ob(A) there is a third
quadrant spectral sequence with

B = (RPF)(R'G)A = R"(FG)A

p

with n = p+q.

Proof. For an object A in A choose an injective resolution E =0 —+ A — E° — B! —,
and apply G to its deletion E4 to obtain the complex

GEY=0— GE’ - GE' - GE?> — - .

By Theorem[2.104] there exist a Cartan-Eilenberg injective resolution of GE4: a third
quadrant bicomplex M whose rows are complexes and whose columns are deleted
injective resolutions. So the diagram of M with GE# after raising indices is
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Consider the bicomplex F'M and its total complex Tot(FM). Let us compute
its first iterated homology. For fixed p, the pth column MP?* is a deleted injective
resolution of GEP, and so F'MP* is a complex

0 — FMP — FMP' — FMP? —s ...

whose gth homology is (R?F)(GEP):
HY(FMP*) = (R'F)(GEP).

Now EP? is injective, so that GEP is right F-acyclic; that is, (R1F)(GE?) = {0} for

all ¢ > 1. Hence,
0 .
q vy J(RVF)(GEP) ifq=0
m (M >—{ 0} ifg>0.

But F is assumed to be left exact, so that R°F = F. All that survives on the p-axis,
0 — FG(E®) = FG(E') — FG(E?) —,

and this is FG applied to the deleted injective resolution E4. Hence, its pth homology
is RP(FG)A:
1ppa _ RP(FG)A ifqg=0
2 {0} if ¢ > 0.
Thus, the first spectral sequence of F'M collapses on the p-axis, and we have by

Proposition 2.9
H"(Tot(FM)) = R"(FG)A.
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To compute the second iterated homology of FFM we can do it in terms of the first
iterated homology of FM*. We first transpose the indices p, ¢ in the bicomplex F M,

noting that
ker F'd?P

im Fda—1p’
Apply F to the commutative diagram in which j : B — Z and i : Z — M are

inclusions, and § : M — B is the surjection arising from d by changing its target;
note that d = 150:

HY(FM*?) =

Matlp

P

0 — s Zap % pfap — 9 Batle o ).

We are now going to use the hypothesis that M is a Cartan—Eilenberg injective
resolution. Since Z%P is 1nJectlve [being a term in the injective resolution of Z(GEP)],

the exact sequence 0 — ZP4 — NP4 BN VA3 N splits. Therefore, the sequence
remains exact after applying F', so that F'7 is monic, ker F'9 = im F'z, and FJ is epic.

Similarly, the exact sequence 0 — B?P Ly gar y Har () splits, because BYP is
injective, so that it, too, remains exact after applying F. Hence, F'j is monic.

It is clearer to give the next argument in the category of abelian groups Ab (this
is no loss in generality, thanks to the Full Imbedding Theorem [20]). We compute
ker F'd/im Fd. Now F'd = F(ijo). Since both F'i and F'j are injections, the numerator

ker F'd = ker F0 = im Fi = (F1)(FZ).
The denominator
im Fd = (Fd)(FM) = (F0)[(Fj)(FO)(FM)] = (F4)[(Fj)(FB)],

because Fé : FM — F'B is a surjection. Now use the fact that the homomorphism
Fi: FZ — FM and the subgroup (Fj)(FB) C FZ give a surjection

FZ . (F)FZ)
(F7)(FB) (Fi)[(F7)(FB)]

moreover, this is an isomorphism because F'i is an injection. Therefore,

kee Fd  (Fi)(FZ) _ FZ
imFd — (Fi)[(Fj)(FB)]  (Fj)(FB)’
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But FZ/(Fj)(FB) = coker Fj & FH, because 0 — FB —% FZ — FH — 0 is
exact. Restoring indices, we conclude that

ker F'd%P

im F'da—1.»p

HY(FM*?) = = FHTP;
that is, F commutes with H?. By hypothesis, each
0— HY(GE*) — H™ — H¥ — ... — H% —

is an injective resolution of H?(GE#). By definition, H(GE#) = (R‘G)A, so that
the modules H?(M*?) form an injective resolution of (RYG)A. Hence,

UpEPt = HPHY(FM) = HP(FHY(M)) = (RPF)(R'G)A,

for F' commutes with H?, and so (RPF)(R!G)A = R"(FG)A, because both spectral
p
sequences have the same limit by Proposition and , namely, R"(FG)A. O
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CHAPTER 3

Partial group cohomology

Now we will introduce one of our main objects of study, the right derived functor of
the functor of partial representations which we will call the partial group cohomology.

3.1 Partial group cohomology

The main objective in this section is to relate this cohomology with the vector space
of partial derivations and the partial augmentation ideal. This section corresponds to
the study of the first part of [2].

Definition 3.1. Let G be a group, V a K-vector space and
qbv : Kpa'r<G> — EndK(V)
an object in Rep Kpar(G). The set of G-invariants of V is defined as:

Ve = {v eV : v(g)) (1) = dv(e,)(v) Vg € G}

It is easy to see that Vv is a K-vector space. If f 'V — W is a morphism in
Rep K4 (G), then:

ow ([9]) (f () = [ (év (l9]) (v)) = f (év () (v) = dw (eg) (f(v)),

o8
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hence f induces a linear map fCvor : VGrar — YW Gpar,
Remark 3.2. By Definition (—)Cer is a functor from Rep Ku,(G) to Rep K.

Lemma 3.3. Let ¢y be an object of Rep Kpo(G). If f € Homg,, () (B,V) then f
is uniquely defined by the element f(1).

Proof. Recall the ¢p structure of B given by Corollary 2.55] For ey eg,...€,, € B:

flegieg--eq,) = f([Mlh ] [ ml LA ] [ha ][Ry ])
—f<¢B< [hm>(1)
where h; = g; and h; = g; ',g;. Then f only depends of f(1). O

Proposition 3.4. (—)% : Rep K, (G) — Rep K is a left exact functor.

Proof. To see that (—)% is a left exact functor is enough to see that there exist a

natural isomorphism
(_)GPGT g Hoprar(G) (B7 _)

Define 7 : (—)“»* — Homyg,, ()(B, —) such that
ny o (V)Crer — Homg,,, () (B, V)

is given by u ~ f, with f,(1) = u. For all u € (V)% we have that ny(u) is
well-defined by Lemma . Also furo(1) = u+v = (fu + f,)(1), then ny is a
morphism of vector spaces. Moreover f, = f, < f,(1) = fu(1) & v = u, hence ny is
a monomorphism.

Let f € Homg,, () (B,V), then we have that:

ov (lg) (f(l))— f (o ([g])(l))
7 (lgltl™)
—f([ llg~"11lgllg™)
= f (¢5(lglls™']) (1))
=1 (¢5(eg) (1)) = v (eg) (F(1)).
Hence f(1) € V. That means that for all f € Homg,,, () (B, V) there exist u €

Ve such that f, = f. Then, 1y is an isomorphism. So 7 is a natural isomorphism
if the next diagram commutes for any morphism f: V — W in Rep K., (G)
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Gpa'r'
VGP‘”‘ f WGch'r
nv nw
Homyg,, ) (B, V) —— Homg,,,. @) (B, W)
f

where f = Homg,,, ) (B, f).

Notice that it is enough to show that my o fOrer(z)(1) = Homg,, ) (B, f) o
nv(z)(1), because the morphisms in Homy, () (B, V) are defined only by the image
of 1. Let z € V, then:

nw o ferr(2)(1) = nw (f(2))(1)
= f(2)
=f (TZV(Z>(1))
= Homyg,,, (B, f)(nv(2)(1)).

This proves that the diagram commutes and hence 7 is a natural isomorphism.

[]

Now we are able to define the partial cohomology groups of a group G and a
Kpar(G)-module M.

Definition 3.5. If G is a group and M an object in Rep K, (G), then the partial
cohomology groups of G with coefficients in M are defined as:

Hgar (G, M) = EXt?}(par(G) (B, M),

that is, H”., (G, M) is the right derived functor of (—=)%rr = Homyg,, () (B, —).

par

Remark 3.6. Recall that Ext} (=, M) = R" Hom KparG}(—, M), so:

H]T)Lar(G7 M) = EXt?{pm-(G) (B’ M)
=R" HOpraT(G) (B, M) = H" (HOHIKPM(G)(B, M)) .

If (C,¢€) is a protective resolution of B of K, (G)-modules,

d d d d
O(—B(G—CO(—101<—202<—303<—4"',
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then we have the cochain complex

Ydy

0 — Homp,,, ) (B, M) == Homg,,, ) (Co. M) == -+,

where 7. = Homg,, (@)(€, M) and 4, = Homg,, (@) (d;i, M), the functor Homg,, ) (—, M)
applied to the morphisms e and d; respectively, for ¢ > 1. Thus

ker Hom(d,, 1, M)
im Hom (d,,, M)

H;:Lar(G> M) =

Let € be the following morphism
€: K0 (G) = B,

given by € ([91][g2]---[9u]) = g1]lg2]---[9n][9"]--[92 ' 1[97 '] = €g€g100--Co100...00-
Notice that € is a K, (G)-module morphism. Indeed, for all a € K, (G), we
have that e(a) = ¢p(a)(1).

Remark 3.7. Observe that for all z € S(G) we have that:

¢ ([91]lg2)---[gnlz) = [o]lge)---[gnle(@)[g, ). [95 Ngr -

Lemma 3.8. The morphism € : Kp..(G) — B wverifies the following properties.

(a) e(zy)x = ze(y) for all z,y € S(G);
(b) e(zy) = e(xy)e(x); for all x,y € S(G).

Proof. Take x = [¢1][g2]...[9-] and y = [hq][h2]...[hs], recall that B is commutative and
lglen = egnlg] = egeqnlg]. Then we have that:

xe(y) = [91][92]---[9r]€h16h1h2---€h1h2...hs
= [91]lg2]---[9r—1]eg.n [9r]€nsns - Chins.. 1,
= €g192...9r 1 [91][92]---[gr]ehlhg---ehlhz...hs

= €g192...9rh1€g1g2...9rh1h2---€g1g2...grh1ha.. . hs [91”92]-‘-[97*]
= €g192...9rh1€g192...grh1h2---€g1g2...grh1ha...hs €g1 {91]692 [92]"'69r [gr]
= €4,€g1g--Cg10...9r Crga...grh1 €g1n...grhiha -+ Carga...grhiha...hs [91] [G2] - [Gr]

= e(zy),
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and

e(xy)e(x) = €g1€g192---€g192...9r€9192...9rh1 €g192...grh1 ha - - €g1g...grh1 ha..hs €1 €g1 g2 -+ -Cg1g2...gr

= €g1€g192---€9192...9r€9192...9rh1 €1 92...grh1 ha - -Cg1g2...grh1 ha ... hs
= e(zy).

Definition 3.9. The set IG = ker e s called the partial augmentation ideal.

Remark 3.10. Since € is a Kp,,(G)-module morphism then /G = kere is a left ideal
of K,4r(G), hence is a left K, (G)-module.

Definition 3.11. Let G be a group and M a left K-module. Define the vector space
of partial derivations as follows:

Derpe, (G, M) = {0 € Homg (Kpar (G), M) : 6(ab) = ad(b) + e(ab)d(a) Va,b € S(G)} .

In particular, we say that § € Dery,, (G, M) is inner if §([g]) = [g]m — eym for some
m € M. We denote by Int,,,. (G, M) the space of inner partial derivations.

Remark 3.12. Notice that if w is an idempotent of S(G) then

o (w )25( ) (w) e(w)d(w)

Thus §(w) = 2wd(w) = 4wd(w) = 26(w), hence §(w) = 0.

In order to prove some relation between the groups H,, (
we start with the following exact sequence in Rep K, (G)

G, M) and Der,,, (G, M)

0= IG % Kpor(G) 5 B — 0.

Observe that €(e(z)) = e(z) for all # € Kpo(G). Then z — e(z) € IG for all
z € Kupur(G).

Proposition 3.13. There is a natural i.somorphism

HoprM(G)(IG, —) = Derpe, (G, —).
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Proof. Define
n: Homg ) (IG, =) = Derpe, (G, —),

given by
nv - Homg,,, @) (IG, M) — Derp,, (G, M)
;o
such that
Fi Kpar(G) = M
x = flx—e(x)).

Notice that f is a partial derivation. Indeed, for z, y € S(G) by Lemma (3.8 we have
that:

~

flzy) = floy — e(xy)) = floy — ve(y) + e(zy)z — e(zy)e(x))
=xf(y —e(y)) + e(zy) f(z — €(x))
= 2f(y) + e(zy) f(2).

Then f € Derye, (G, M).

Now we want to check that for any o : M — M’ morphism of K, (G)-modules
we have that:
nve o Hompg,, () (IG, ) = Dery,, (G, ar) o .

Let f € Homg,,, () (IG, M) then

nur o Hompe,, ) (IG, @) (f) = mur (e o f)
—aof:ize€ Kpar(G) = af (x — €(x)) € M
and R
Dery, (G, a) oy (f) = ao f: 2 € Ko (G) = af (z — e(z)) € M.

Then 7 is a natural transformation.

Finally observe that 7, is an isomorphism for all M. Let f € Homg , () (I/G, M)

~

such that ny(f) = f =0, thus
F(2) = 0¥2 € Kpor(G) & f(z — €(2)) = 0 V2 € Kpor(G)
=0=f(z—€e(x)) = f(x)Vx € IG
= f(z)=0Vzr e IG
= f=0.
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Hence 1, is a monomorphism.
Let § € Dery,, (G, M), define

§0:IG— M
x = §(x).

Then ¢’ € Homg,,, () (IG, M). Indeed, let x € IG and a € Kp,(G), thus:

r= g z; and a = 5 a;,

jeJ il

where z;, a; € K,q,(G) and recall that IG is a left ideal of K, (G). Then:
8 (ax) = 25(%‘%‘) = Z a;0(x;) + e(a;x;)o(a;)
1,J (]
= ad'(z) + Z e(a;x)d(a;)

= ad'(z).
Hence §' € Homg,,, () (I/G, M) and by Remark ,
(') (z) =8 (z — e(z)) = 6(x — e(x)) = 0(z) — d(e(z)) = &(x),

for all z € Kpor(G). Thus 1y(6") = § hence Homg,,, () (IG, M) = Derp,. (G, M).
[

Lemma 3.14. If 6 € Int,q (G, M), then 6(x) = (x — e(x)) - m for all x € Kpa(G),
for some m € M.

Proof. Recall that for g, h € G, §([h][g]) = [R]6([g]) + €([A][g])([h]). Then

d([]lg]) = [h]([g] — eq) - m + eneng([A] —en) - m
= ([h][g] — [h]eg + eneng[h] — enengen) - m
= ([h][g] — [h]ey + en[hley — eneng) - m
= ([hllg] — [hleg + [hleg — e([R][g])) - m
= ([hllg] — €([Allg])) - m.
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Then take x, = [¢1][g2]...]gn], by induction over n, if our lemma is valid for each w
with k& < n. Then

0(zu[h]) = a0 ([h]) + €(2n[h])0 (xn)

=2, ([h] — en) - m + e(x,[h]) (20 — €(z)) -
h] — xnep + e(xn )xn — e(xn h) (:cn)) -m
h] — xpep + xpe ( ) ( ))
| = e(xalh])) - m.

Hence 6(\) = (A —€()) -m) for all A € S(G). As S(G) is a basis of K, (G) as an
algebra, then 0(z) = (v — €(x)) - m for all z € K, (G). O

3

[
= (2]
= (al
= (znlh

The following theorem is one of the main results of this work, it gives a charac-
terization of partial cohomology groups via the vector space of partial invariants, the
vector space of partial derivations and the partial augmentation ideal.

Theorem 3.15. Let G be a group and M an object in Rep Ko, (G). Then
par(G M) MGPIZT' = Hoprar(G) (B7 M)7

(G, M) = Derpe, (G, M)/ Intpo, (G, M);

(G, M) = Exti-" )(IG, M), n>2.

par

Hpor
Proof. Associated to the short exact sequence
0= IG5 Kpor(G) 5 B — 0
there is a long exact sequence
0 — Homg,, () (B, M) < Homg, () (Kpar(G), M) —— Homg, () (IG, M)
— Bxtye () (B, M) — Exty ) (Kpar(G), M) — Exty o(IG, M)

— Bxti () (B, M) — Exti ) (Kpar(G), M) ——— ...

where i* = Hoprar(G) (i, M) and ¢ = Homg,, (e)(€, M). Then we have that:
(G, M) = Exty (B, M) = Homg,, ()(B, M) = M.

par

Besides, since K, (G) is projective, we have that Extf ) (Kper(G), M) = 0 for
any n € N, then for n > 2 we have the next exact sequence:

0 — Exty! o(IG, M) — Ext () (B, M) — 0.
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Hence Hy,, (G, M) = Extj! o (IG, M), ¥n > 2.

par

We also have the next exact sequence:

0 — Homyg,, () (B, M) < Homg,, () (Kpar(G), M)
— Homyg,, )(IG, M) — Bxtl (B, M) 0.

Then H) (G, M) = Ext}(par(G)(B,M) >~ Homyg,,, () (IG,M)/imi*. Using the iso-

par
morphism 7,, defined in Proposition [3.13 we have that

Hoprar(G)(]G, M) = Derp,, (G, M),
thus if we check that ny(imé*) = Intp,, (G, M) then:
H,,.(G,M) = Deryo, (G, M) / Intpr (G, M).

Indeed, let f" € im3*, then f" = f o for some f € Homg,,, @) (Kper(G), M), hence
we have that ny(f') = f oi. Thus for all z € S(G)

i () (&) = f o i(x — e(2)) = Flz— @) = (z — e(x) £(1).
Hence nM(im z*) C Intp,, (G, M).

Finally let 0 € Int,, (G, M), then by Lemma §(z) = (z — e(z)) - m for all
v € Kpor(G) and some m € M, then take f € Homg,, (@) (Kpar(G), M) defined by
f(1) = m. Thus

——

foi(r) = foi(z—e(x) = flz—ex))

=(x—e€(x)) -m=20d(x).

Hence ny(f o) = 0, then nM(imi*) = Int,,, (G, M).
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3.2 The 1-st cohomology group

In this section we are going to use Theorem to give another characterization of
the 1-st cohomology group H;a,,(G, M) using maps d : G — M satisfying a certain
property. This section correspond to the study of [5].

Recall that B is the subalgebra of K, (G) generated by the set of the idempotent
elements of S(G) and the action of K,,-(G) on B is given by conjugation

s-e=ses L.

First we will show some small results in order to have the necessary tools to reach
our goal.

Lemma 3.16. For arbitrary 6 € Derye, (G, M) and s € S(G), e an idempotent
element of S(G) one has

(i) o(es) =e-d(s),
(ii) 0(se) = ses™-4(s).
Proof. By Remark we have d(e) = 0 for any idempotent e € S(G), then
(i) d(es) = ed(s)+ e(es)d(e) = ed(s),
(ii) d(se) = sd(e) + €(se)d(s) = se(e)s™1d(s) = ses™1d(s).

We will use the isomorphism
H;M(G, M) = Dery,, (G, M)/Intpm(G, M)

given in Theorem m to obtain another interpretation of H,, (G, M) in terms of
certain maps f: G — M. We introduce those maps in the following lemma.

Lemma 3.17. Let M be a K,q(G)-module and d : G — M a map such that for all
g,heG
¢g - d(gh) = [g] - d(h) + egn - d(g).
Then the K -linear map 6 : Kpor(G) — M defined by
d(elg]) = e-d(g),

where e is an idempotent of S(G), is a partial derivation.
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Proof. First of all, we show that § is well-defined. Since
el - d(le) = [le] - d(1e) + €1, - d(1q),
then d(1¢) = 0. Hence
0=re,-d(gg™") =lg]-d(g™") +d(g)
thus d(g) = —[g]d(g™"). Therefore
d(g) = —[gld(g™") = —[gl(~[g7"1d(9)) = e4d(g).

By Remark we have that e[g] = f[h] in S(G) if, and only if, g = h and ege = e, f,
where e and f are idempotents of S(G). Then

d(elgl) = e~ d(g) = eeq - d(g) = fe, - d(g) = [ - d(g) = 0(flg]) = o(f[n]).
Now given two arbitrary elements e[g] and f[h] of S(G) their product is
elglflh] = elgleg— flh]

= elglflg~"1lgl[n]
= elg]flg~"]lgh].

Recall that e[g]f[g~!] is an idempotent, then

d(elgl f[n]) = d(elgl flg~"lgh]) = elg] flg™"] - d(gh).
On the other hand we have that

= e[g]f - d(h) + e(e[g] f[h])e - d(g)

= elglfegr - d(h) +elgl fenflg e - d(g)
= elglflg~"lg] - d(h) + elg] flg~ eqn - d(g)
= elglflg™"] (lg] - d(h) + egn - d(g))

= elglflg™"] (eq - d(gh))

= elglflg™"] - d(gh) = d(e[g] f[h])

Thus 0 is a partial derivation.
]

Definition 3.18. Let us denote by D(G, M) the K-vector space of maps d: G — M
which satisfy
eg - d(gh) = [g] - d(h) + egp - d(g).

68



3.2 The 1-st cohomology group Partial group cohomology

Proposition 3.19. There is a bijective correspondence between the partial derivations
of Kpar(G) with values in M and the elements of D(G, M).

Proof. Let 6 € Der,, (G, M), then we have that

eq - 0([gh]) = d(eglgh]) = o([gl[n]) = lg] - 6([h]) + e(lg][A]) - 6([g])
= lg] - 0([A]) + egeqn - 5([9])
91 - 0([A]) + eqn - 0(eglg])
91 - o([n]

~0([A]) + egn - 3([9))-

Hence if we define d : G — M by d(g) = d([g]) then d € D(G, M). Conversely, if
d € D(G, M), then § given by d(elg]) = e - d(g) is in Derpe, (G, M) by Lemma [3.17]
Now observe that if d +— 0 — d’ then

d'(g) = 0([g]) = 0(1slg]) = ls(a) - d(g) = d(g),

and if 0 — d— &'

=9
=19

[
[
[
[

Definition 3.20. Define the set
D(G,M)={d:G—=M|3meMVge G:d(g)=I[g] - m—ey-m}

Remark 3.21. Observe that PD(G, M) is a K-subspace of D(G, M). To see that it is
enough to notice that given d € PD(G, M) we have

lg] - d(h) + egn - d(g) = [g] - ([A] - m — en - m) + egn - ([g] - m — €4 - m)
= [g][h] - m — [glen - m + egnlg] - M — egne, - M
= eglgh] - m —egn[g] - m + egnlg] - m — €egegn - m
= ¢g - ([gh] - m —egn - m) = ¢eg - d(gh).

Then PD(G, M) C D(G, M).

Theorem 3.22. Let M be a Kpo,(G)-module. Then H,, (G, M) is isomorphic to the
quotient of the additive group D(G, M) modulo the subgroup PD(G, M).

Proof. We know by Theorem [3.15| that H! (G, M) = Derpy, (G, M)/ Inty,,. (G, M)

par

and by Proposition [3.19 we have that Der,,, (G, M) = D(G, M) via

¢ : Derpe, (G, M) — D(G, M),
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given by d(g) = ¢(9)(9) = d([g])-

Then is enough show that ¢(Int,.. (G, M)) = PD(G, M). Let 6 € Int,. (G, M),
then 0([g]) = [g] -m — e, - m and d = ¢(0) satisfies d(g) = [g] - m — e, - m for
all g in G, thus p(d) € PD(G, M). On the other hand, given d € PD(G, M), then
d(g) = [g] - m — e, - m. Now define ¢ by d(e[g]) = e - d(g), thus the map § is in
Int,q (G, M) since

(lg]) = 0(1s)l9)) = 1s(e) - d(g) = [g] - m — €5 - m.
Hence
v(0)(9) = d([9]) = o(1sxl9]) = Ls(e) - d(g) = d(g).
Thus ¢(0) = d. Therefore PD(G, M) = Int,,, (G, M) via ¢.
O
Corollary 3.23. Let (A, «) be a unital partial G-module. Consider the corresponding

K,ar(G)-module structure on A given by Lemma . Then H),, (G, A) is isomorphic
to the quotient of the additive group of functions

{f:G—=AlVgeG:1,f(gh) = ag(ly-1f(h) + Lenf(g)}

by the subgroup

{f:G—=A|Jac AVg e G: f(g) = ay(l,-1a) — 14a}.

3.3 A projective resolution of B

Theorem gives us a characterization of H}, (G, M) without explicitly showing
an exact resolution of B. We will construct an exact resolution of B that will allow
us to calculate the partial cohomology groups. As we did in Theorem [3.22] we will use
the classes of certain maps f : G — M to characterize the elements of H,,, (G, M).

Lemma 3.24. Let R be a unital ring and {e;}ic;r € E(R) a set of idempotents of R.
Then the left R-module @,.; Re; is projective.

Proof. Indeed, each Re; is a projective left R-module, since Re; & R(1p — €;) is
isomorphic to R, a free module of rank 1. Finally, a direct sum of projective modules
is projective (see [15, Proposition 3.10]). O

Notation. Denote by ¢,
E(S(G)).

g¢») the product of idempotent elements ey, €4, 4,-.-€41g5...9, €

.....
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Remark 3.25. Notice that

€(g1,..s9n) = €91€g192---€g192...9n = €1 (69192'“69192~--9n) = €91€(g192,93,,gn)"
More generally
€(g1,-s9n) = €91€9192---€g192...9:€g192...9i9i+1+--Cg192...9n

= 69192---9i(69169192"'69192---9i9i+1"'691!]2---gn)

= €9192..9:€(91,...9iGit+1,--9n) -

Now we will define the family of projective Kqr(G)-modules {P,;}ienufoy, which
are the modules that will constitute the projective resolution of B.

Definition 3.26. Define

Py = Kpor (G)
Py = @ Kpar(G) - €(g1,g2...,9n), M € N
91,92,--,9n€G

By Lemma each P, is a projective K, (G)-module.

Givenw € P, we have that w(g1, g2, - . ., gn) is generated by the elements se(g, 4,...g,)
with s € S(G), with that idea in mind it would be convenient to us to have an
equivalent description of the modules P, such that each generator s = se(g, g,..4,) 18
identified with an element s(g1, ..., g,) that satisfies certain conditions.

Remark 3.27. For each n € N the module P, is isomorphic, as a K-vector space to
the vector space over K with basis

R, =1{5(g1,...,90) | s € S(G), g1, ..., 90 € G, 5 's < €(g1,gn) }
where

5(917 7gn> = t(hl, 7hn> 2N {(gla -.-,gnl (t )

Proof. We understand the element se, . 4,) € P, such that it is specifically in the
coordinate (gi,...,gn) of P,. The set {se, . 4.) | s € S(G)} of elements of P, form
a basis of the K-vector space P,. Now define the map ¢ : R, — P, given by

770(3(917 s agn)) = 56(91,..-,971)'
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It is clear that v is an epimorphism, since for all s € S(G) we have that

..... o) (915, 0n) € Ry, hence Y(seqg,, . g.)(91,---,9n)) = S€(g,,...n)- Besides
if Y(t(g1,-.9n)) = ¥V(s(g1, -, gn)), then sew, . 4.) = te(g...g,)- Therefore

g1y s Gn) = (g1, e, Gn)-

Thus 9 is an isomorphism. O

Let us identify each element t € Ky (G) - €q,,..9) € P with t(g1,...,9,). We
extend the characterization of P, from Remark to n = 0 by identifying Py with
the K-vector space with basis

{s()|seS(G)}

Notice that for all ¢ € S(G) and s(¢1, ..., gn) We have

t-5(gu, s Gn) = tse(g,...gn) = t5(91, s Gn)-

Now observe

Therefore tse, ..,

In order to show that the projective modules P, form a projective resolution of
B we have to define the morphisms P, — P, ;. But first we need the following
definition.

Definition 3.28. Define the K-linear maps 0, : Py — B, and 0y : P, — P,_1,
n € N, as follows

Do(s()) =851
di(s(g)) =s(lgl() —())

O (s(g1,- - 9n) =5([1] (g2, -- - gn)

n—1

+ Z<_1)l (gla -5 3iGiv 1,y - - - 7gn>

(=) (g1 s gnn)):
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Each 0, is a K, (G)-module morphism. Since the K, (G)-module structure on
B is given by the conjugation, we have that for 0,

Oo(ts()) =ts(ts) P =tss 't =t-s5 =t-0(s()).
Now, for n > 0 observe

On(ts(g1, s gn)) = ts ([g1)(92s - Gn) + - 4+ (=1)" (91, s Gn—1))
=1t 0n(s(g1, .-, Gn)).

Observe that if s(g1, ..., gn) € P, then s[¢1](g2, ..., gn) € P,_1. Indeed, since s(g1, ..., gn) €
P, we have s7's < ey, 4.), thus s = se, 4., then

..........

s[g1] = S€(g1,..., gn)[gl]
= 5€g1€g192---€g192...9n [91]
= seg, [01]€g5---€gs...gn

= 3[91]6(92 ,,,,, gn)?

thus (s{g1])'s[g1] < €(gs.....gn) and s[g1](g2, ..., gn) € Pr1.

Let us denote B by P_; and consider the morphism 7 : S(G) — G from Remark
221

Definition 3.29. Define K-linear maps o, : P, — P,y1, n € NU{—1,0}, as follows

o_1(e) = e(),
((»ZS H(n(s)),
In(5(g1, 92+, gn)) = 55~ (1(5), 91, g2, -, gn), 1 € N.

By Lemma we have s < [n(s)] and st < [n(s)7!], then ss™* < e, for all
s € 8(G), and if moreover s™'s < e, 4.y, then

-----

ssTt=s(s71s)sTH < [n(s)]sts[n(s) 7]
<

Thus ss™! < ey and o,, is well-defined.

8),91,-,9n)

Lemma 3.30. We have that

Oyoo_y =idg,
Op+1 00, + 0,100, =idp,, n € NU{0}.
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Proof. Tt suffices to verify on the K-basis of P,, n € NU{—1,0}. The first case
opoo_1(e) =(e()) =e.
Now for n =0
(Or000+0-100)(s()) = n(ss" (n(s))) + o-1(ss7")
=ss [n(s)]() —ss™ () +ss71() = s().
For n > 1 observe

(8n+1 oan)(s(gl,...,gn)) :an+ (SS ( ( ) gla"'vgn>>
([n 191,92, gn) = (N($)g1 - gn)

_|_

(_1)Z+1(77(3)» Gis e GiGit1s -+ Gn)
i=1

+ (=1)" (n(s), 91, g2, -+ Gn-1))

and

s([g1) (g2, > gn)

(Unfl o an)(‘S(gla -'-7gn)> =O0n—-1

3 —~
_

+ (_1>i(gla"‘Jgigi—l-h'"agn)
=1

~1)"(g1, - gn-1))

slg1)) " (n(slg1]), g2, v Gn))

+ (_1>i33_1(n(3)agla -y 9iGi+1, 7gn)
=1

.

_|_
= s[g1]

~—

3

+ (_1>n5571(77<5)7 91,92, -+ gnfl)-
Finally, notice that n(s[g:]) = n(s)g1, and

slgr](slg]) ™! = slg](ss™ n(s)][g1]) " = seq,[n(s)” 1]33_1
= 5[ (s)"']ss 677(8) = 5571677(5)91'
Then
slgn)(slg]) " ((s[g1]), g2, -+ gn) = 55~ ([0(3)]91, G2, -+ Gn)-
Therefore

(8n+1 o0y + Op—10© an)(s(gbg?? agn)) = S(glnga "'7971)‘

74
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Lemma 3.31. For n € NU{0} the set 0,(P,) generates P11 as a Kpa, (G)-module.

Proof. Let s(g1, ..., gnt1) € Poi1. Since s71s < ey, g we have

7777 gﬂr‘rl)

S€q; = S€(g1,92,.,9n) €1 = S€(g1,92,.s0n) — S

consider ¢ = [n(s)"!]s[g1] € S(G), then we obtain

17 = [1(s) MJseq s n(s)] = [n(s) s~ In(s)] = 57s

Furthermore, as ss < e,(y), then ss™! = e,ss71, thus s = €,(5s. Whence
1

= [g7 s en slon] = o1 s sl < (97 eqonngnan) [91]

Which means that t(gs, ..., gnt1) is well-defined. Finally,
n(t) = n(ln(s)"Islg:]) = n(s)""n(s)1 = g1.
Therefore
5 0n(t(gay o Gry1)) = 5 -t M(), G2, vy Gng1) = 55 18(g1s ooy Gng1) = 5(G15 oy Gn)-

Then s(g1, g2, -, gnt1) is in the K4 (G)-module generated by o, (P,).

Proposition 3.32. The sequence
B A PR B0
1$ a projective resolution of B.

Proof. The exactness in B is clear since dy is an epimorphism by the first item of
Lemma [3.30, By Lemma each P, is projective then we only have to prove that
the sequence is exact. The inclusion ker d,, C im 0,41, is follows from the second item
of Lemma [3.30] Indeed, given z € ker d,, we have

Z = (an—i-l 00p+ 0p—10 an)<z) = an—&-l © Jn<z)
Therefore ker 0,, C im d,,,1. For the converse inclusion first observe

Do 001 00(s()) =0001(ss(n(s)))
= do(ss™H([n(s)]1() = ()
)

=0y(s()—ss'()) =851 —s5'ss =0.
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By Lemma we have that oo(P) generates Py, then 9y 0 9, = 0. By Lemma [3.30]
we have 0,11 00, =idp, —0,-100, and 0,00,_1 =idp, , —0,-200,-1. Thus using
an inductive argument, if 9,,_1 0 9, = 0 then

Op © Opyq 00, =0y 0 (idp, — 01 00p)
=0, —0,00,-100,
=0,— (idp, , —04-200,-1) 0 0p
=0, —0p+ 0,_200,_100,
=0.

By Lemma on(P,) generates P, then 0, 0 0,41 = 0. O
Definition 3.33. Let M be a K,,-(G)-module. Define the following additive groups

Cpar (G, M) = M,

par

Cm (G7 M) = {f : Gn — M ‘ f(g17927 7gn) S 6(91792 ----- gn) ’ M}’ n e N

par

Lemma 3.34. Let M be a K,q(G)-module. Then

HOHlear(G)(Pn, M) = Cm (G, M)

par

Proof. For n = 0 we have that Py = K, (G), then

Homg,, () (Po, M) = M = C),

par*

Recall that Hom (0 A;, —) = [[ Hom (A;, —) (for any family of modules {A4;}). Then,
forn € N,

I

HOIIlK (G)(Pm M) H HOIHKPM(G)(KPQT(G)e(gh__yn), M)

par

It

—

o
=
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given by ¢ — ¢ such that G, g.)(5€(g1,...00)) = ©(5€(g1,...00)(G15 -, Gn)). And

Hoprar(G)(KPm‘(G)e(gl gn) M) - Cn (G7 M)

~~~~~ par

g»))- Then the isomorphism

.....

Hoprar(G’) (Pn, M) — Cgar(G> M)

o — [y

is such that

fg&(glv "'7gn) = @95(917 7971) = @(6(91 ..... gn)> = 90<€(5]1 ~~~~~ gn)(gla 7gn>)

Conversely, each f" € C, (G, M) corresponds to ¢ € Homg,,, (a)(F,, M) defined by

par
©(5(g1,9n) = 5 [ (915, Gn)-

Definition 3.36. Let M be a K, (G)-module and n € NU{0}. Define the K-linear
map 6" : C" (G, M) — C"TY(G, M) as follows:

par par

(6°m) (9) =lg] - m — ey - m,m € C2, (G, M)
D) g1 se) =01 F g2 sm)

"‘Z 691 i f 91,5 9iGi1s -+ Gnt1)

+ (_1)n+1691~-~9n+1 : f (917 v 7g7l) ne N f € pa’r(G M)

Lemma 3.37. For alln e NU{0} and f € G, M) we have

par(
0"f = [f o0,

where f and 0" f are identified with the morphisms from Homg,, ) (Pn, M) as in
Remark(3.38. In particular,

co (G, M) S ot @ M) S

par par

1 a cochain complex of abelian groups.

Proof. Remark- 3.35allows us to understand f € C,
such that

(G, M) as amap in Homg,,, ) (Pn, M)

par

f(s(gla 7gn)) =S f(gla "'7gn)7
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3.3 A projective resolution of B Partial group cohomology

and let us understand 0" f € Homg,, (@) (Fn, M) as a map in C}, (G, M) such that

par

5nf(.gl7 7gn) = 5nf(e(g1 ..... gn)(gb 7gn))

Thus it suffices to verify 6" f = f o 9,1 on the generators

{6(91 ,,,,, Gn+1) ‘ 91,92, -+, Gn+1 € G}

of P,.1. We first consider the case n = 0. Let m € C% (G, M). Then as an element

par

of Homg,,, ) (Kpar(G), M), m sends s( ) to s-m. Then

m o di(ey(9)) = mley(lg]() = ()
= [g)-m— ey -m = (*m)(9)

= (8"m)(ey(9))-
Now let n € N and f a function from C? (G, M). Thus

par
J o0 (6(91 ----- Gn+1) (91, ce vgn-i-l)) =€(g1,rGn+1) ([91] - f (927 s agn+1)
+Z f(91,-- 199415 > Gns1)

+(_1)n+1f (gl’ s 7971))
=€(g1,sGnt1) ([gl] : f (927 cee agn+1)

+Z 691 gi (gla"‘vgigiJrl?"’vgnJrl)

+(_1)n+1691~--9n+1 ' f (gla s >gn))
=C(g1,09n+1) (5nf) (gla <o 79n+1)
:(5nf) ( (g1,-gn+1) (917‘--79n+1))

]
Definition 3.38. Denote ker 6" by Z7.,.(G, M) n € NU{0}, andim 6"~" by By, (G, M)
n € N, where 0" is given by Definition
Theorem 3.39. Let G be a group and M a Ky (G)-module. Then H),.(G, M) =
Zpor(G, M) and Hy, (G, M) = Z},,(G, M)/ B},.(G, M).
Proof. This follows from Proposition [3.32] Lemma and Lemma O
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Remark 3.40. For a K, (G)-module A coming from an unital partial G-module (A, o)
and n € N we have

Coan(GLA) = {f 1 G" = A [ (g1, 90) € Lgrg) A}

where
1(91 ----- gn) — 191 19192 s 191~~~gn €A

Then formulas of Definition take the following form
(6%) (9) = ay (1-1a) — 14a,a € Ch, (G, A) = A,

par

(5nf) (gla s 7gn+1) = Qg (191_1f <927 s 7gn+1)>

+ Z(_l)z]'glng (917 - 9iGi4 1, - - - 7gn+1)

=1
+ _1)n+1191-~gn+1f (91, o 79n)

neN,fecn (G M)

Example 3.41. Let G be the cyclic group Co = {1,z | 2> = 1}. Observe that
S(G) ={e, [z],e,} where e = [1]. Take M = K,,-(C2), therefore
CO <027 Kpar(c2>> = Kpar(CQ)v

par

and, forn > 1,

C;;Lar(027 Kpar(02)) ={f:(Co)" — Kpar(CZ) | f(91,92,---,9n) € €(91.92,-s gn)'Kpar(CZ>}'

For the case n = 1 we have

C;ar<027Kpar(C2)) ={f:Cy = Kpar(C2) | f(9) € g+ Kpar(Ca)},

notice that f(1) € e+ Kpor (C2) = Kpor (C2) and f(z) € ey - Kpor (C2) = KCy. Indeed,
it is easy to see that e, - S(Cy) = {[x], €.} = Cy and since [x] generates e, - Kpar(Co)
as an algebra, we have that e, - K,a(Ca) = KCy. Thus,

Cl (O, Kpar(C3)) 2 Kpor (Co) & K.

par

Now, take any ey, g,...g0) € S(Cs), if there exist j € {1,...,n} such that g; = x then
€(g1.g2,gn) = €x- Indeed, let us take j € {1,...,n} such that is the smallest element
that satisfies g; = x, therefore g; =1 for all i < j. Thus,

€(91,92,-9n) — €91€g192 - - - €g192...9;€9192...9; - - - €g192..9n = €2Cg;41 - - - Cx.gn = Ca-
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3.3 A projective resolution of B Partial group cohomology

Hence, for f € Cp. (Cy, Kpor(C2)) we have that f(gi,...,9n) € €+ Kpor(C2) =
Kpar(Co) if g = 1 for all i € {1,...,n} and f(g1,...,9n) € €z * Kpar(C2) other-

wise. Therefore

b (C2, Kpar (C2)) =2 Kpar(Co) @ (KCy)"
If we check 6° in the basis {e, [x],e.} of CD,,.(Ca, Kpar(C2)) we have that

C?’l

0%(e) = (0, [2] — o),
8°([a]) = (0,5 — [z]),
0%(ea) = (0, [x] — €a),

where the first coordinate correspond to e - Kpar(Cg) and the second coordinate cor-
respond to e, « Kpar(C2). Therefore ker 6° = (C’Q, K,ur(C2)) is the vector space
generated by {e + [x], e, + [x]}, which is (Kpar(Cz)) rer as Theorem says.
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CHAPTER 4

Grothendieck spectral sequence

We will use spectral sequence theory to relate cohomology of partial smash prod-
uct with partial group cohomology and algebra cohomology. In order to do that we
will show that there exists a pair of functors which satisfies the conditions of Theo-
rem [2.106] thus we will obtain a Grothendieck spectral sequence relating the desired
cohomologies. This section corresponds to the study of the final part of [2].

Definition 4.1. If A is a k-algebra, where k is a commutative ring, then its en-
veloping algebra is
A= ARy AP.

Proposition 4.2. Let R and S be k-algebras, where k is a commutative ring. Then
any (R, S)-bimodule M is a left R ®j S°?-module, where

(r @k s)m = rms.
In particular if A is a k-algebra, then A is a A°-bimodule.

Definition 4.3. (Cohomology modules of an algebra). E| Let A be an algebra and let
M be an A-bimodule (A°-module), we define the nth cohomology module H" (A, M)
of A with coefficients in M as Ext’i. (A, M).

For more information about cohomology of algebras see [I5, Section 6.11].
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Theorem 4.4. For any A X, G-bimodule M there is a third quadrant cohomology
spectral sequence starting with Ey and converging to H*(A x, G, M):

Ey" = Hp,, (G, HY(A, M)) = H"™ (A % G, M).

We need some preparation in order to construct the functors that will be used in
the proof of Theorem (1.4l Recall that we are working with an unital partial action

(A, {Dg}yecrs {ag}gEG)’ and that we denote the unity of D, by u,.

Take a pair of representations
¢X : Kpar(G) — EndK(X) S Ob(Rep Kpar<G))

and
Dy (A Xy G) — Endg (M) € Ob(Rep(A x4 G)°).

Taking h = 1 in Remark we obtain the homomorphism K, (G) = A x, G
of algebras given by [g] — uy,#g¢, which induce the algebra homomorphism B —
(A x4 G)° defined by e, — u#1le ® Liax,c)or. It follows that M is a B-module.
Moreover, X is a bimodule over B, because B is a commutative subalgebra of K., (G).
Thus we can consider the representation

A:(AX,G) — Endg(X ®p5 M) € Rep(A x, G)°,
given by
Alaugttg @ buntth)(z @ m) = dx([9])(x) @ Par(aug#tg © bungth)(m).

It follows from the definition of the module structures that for x ® m in X ®p M we
have

dx(es)(x) @m =12 Q Py (us#lg @ 1)(m).
Thus in order to verify that A is well defined we have to show that

Alaugtg @ buntth)(dx (es)(x) @ m) = Alaug#tg @ bup#th)(z @ Cpr(us#le © 1)(m)).
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Indeed,

Alaug#g @ bup#th)(dx(es)(x) @ m)
= ¢x([9])(0x(e5)(2)) @ Punr(aug#g @ bup#h)(m)
= ¢x([gles)(7) @ Por(aug#g @ bup#h)(m)
= ¢ox(egs[9])(2) ® P (aug#g @ bup#h)(m)

(
(
= ¢x(egs)0x ([9])(2) © Pas(aug#tg @ bunsth)(m)
= ox([9])(x) @ Pas(ugsttle @ 1)@ (aug#tg @ bupgth)(m)
= ox([9])(2) © Par((ugs#le) (aug#g) @ bunth)(m) (1)
= ox([g]) () ® Pu((aug#g)(usttle) ® bupsth)(m) (2)
D(x)

where from (1) to (2) we use that by Lemma [2.41]

(ugs#1a)(aug#g) = augugs#g
= augoy(usug—1)#g

= (aug#g)(utle).

In particular, if we take M = A X, G we have that X ®p (4 %, G) is an object in
Rep(A %, G)¢, where

(aug#tg @ bungth) - (z @ cusdts) = ox([9])(x) @ (aug#tg)(custts)(buntth).  (4.1)

Observe that M can be viewed as an object in Rep A°, where the morphism
on 2 A° — Endg (M) is the composition

A° 280 (4w, G)° 2 Endy (M),
given by
a® b aulc#lg & bulc#lg — @M(Gulc#lg X bulc#lg).

Recall that by m of Lemma n 2.41) we have that G —> A o G given by g — u,#g is
a partial representation. Furthermore, by Lemmas [2.36] and [2.37] we have that M is
an object in ParRep G with the map G — Endx (M ) given by

g€ G (ug#g@ug1#9g") € (A Xy G) = Pp(ughg @ug-1#g~") € Endg (M).
Therefore, by Lemma there exists a partial representation

p: G — Endg (Homg (A, M)),
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given by
1(9)(f)(x) = Par(ug#g @ ug-1#g~") flag-1(ugw)),
where f € Homg (A, M) and x € A. Notice that x induces a partial representation

7 : G — Endg(Homae(A, M)),
given by
T(9)(f)() = nlg)(f)(@) = Parlugdtg @ ug-1g~") f (g1 (ug)),

where f € Homye(A, M) and z € A. So we only have to verify that 7(g)(f) €
Homye (A, M) for all f € Homae(A, M)

m(9)(f)(ax)

= Opr(ug#g ® Ugfl#g_l)f<ag*1(ugaxb))

= Opr(ug#g @ Ug—l#gil)f(ag‘l(ug@>ag‘1(u9x>ag‘1(ugb)) (3)
= Qpr(ug#g @ Ugfl#g_l)q)M(ag*I(uga)ulc#lG ® ag-1(ugh)ur#1a) f(ag-1(ugz)) (4)
= Oar((ug#g) (g1 (uga)uro #1a) @ (ag-1 (ugb)ur #16) (ug-1#9~")) f (g1 (ugz))  (5)
= Cur((awio#1a) (ugttg) ® (ug-1#g~") (burg#1e)) fog-1 (ugz)) (6)
= Oyr(aur,#la © buy #16)Par(ug#hg © ug1#g~ ") f (g (ug))

= Opr(au#la @ bui#16)m(9)(f)(2).

&3
S
=

(3) to (4) recall that f € Homye(A, M), from (5) to (6) we use that

(ug#tg)(ag-1(uga)ur#1la) = ugog(ag-1(uga)ug-1)u #g
= ugag(ay-1(uga))#tyg
= uga#tg = (au1,#1c) (v #9)

and analogously,
(g1 (ugb)ulc#lG)(ug”#g_l) = O‘gfl(ugb)ugfl#g_l

= ug-10,-1(bu,ug) g Hgl

= (ug-1#g~") (urg#1c).

Then 7(g)(f) € Homae(A, M). Therefore m € RepPar K, and take @ € Rep K0 (G)
such that 7(g) = 7([g]).

Now we consider the natural transformations

Homy,, () (—, Hom e (A, M)) — Hom(a,, e (— @5 (A x4 G), M)
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and
Hom(ax,c)e(— @5 (A Xo G), M) LN Homg,,, (@) (—, Hom 4 (A, M))

defined as follows: given a K, (G)-module X and H € Homg,, () (X, Homue (A, M)),
the map I'x(H) is defined by

Px(H)(z @ aug#tg) := ®u(l @ aug#g) H(x)(1a),
and given T' € Hom 4,y (X ®@p (A xq G), M), the map Ax(T) is defined by
Ax(T)(z)(a) := T(z @ (aui,#1e)).
The map 'y (H) is well defined since

Ux(H) (e - © @ aug#g)

= Py (Lanae @ aug#g) H (e - w) (14)

= Py (1 ® aug#g) (7 (en)) H(z)(1)

= O (1@ aug#g) m(h)m(h™ 1) H(z)(1)

= p(1 @ aug#g)Pp(un#th @ up—14th ™" )w(h™ ") H () (ap-1 (upl))

= Oy (1 @ aug#g) P (uh#h ® Up-1 #h’l) Dy (uh-l#h’I ® uh#h)
H(z) (an (up-rap-1 (upl)))

= @y (1 @ aug#g) Pas ((un#th) (un—1#h™") @ (un#th) (up-1#h~"))
H(z) (un)

= Py (1 @ aug#tg) Pur ((un#le) ® (un#le)) H(x) (un)

= Oy (un#tle @ (un#tla) (aug#g)) H(z) (un)

= Oy (1 ® (un#lc) (aug#g)) Pur(un#le ® uig#le)H(x) (un)
= Py (1 ® (un#le) (aug#g)) oar(un @ uig)(H(x) (unl))

= Qu (1 ® (un#le) (aug#g)) H(x) (un (upl))

= O (1@ (un#lc) (aug#tg)) H(x) (lup)

= Py (1 ® (un#le) (aug#g)) dm(urg @ up)H(z) (1)

= Oy (1@ (wn#lc) (aug#tg)) Pului#le @ wn#le)H(z) (1)
= Oy (1@ (un#le) (un#lc) (aug#tg)) H(z)(1)

= Pn (1 ® (un#lc) (aug#yg)) H(z)(1)

= FX( ) r @ (un#le) (aug#g))

|
}1
><

T ® ey - (aug#yg)) -
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Next we show that I'x(H) is a homomorphism of (A x, G)°-modules:

Ix(H) (A (cup#h ® dus#s) (x @ aug#g))

S0 (H) (ox (M) (@) @ ((cundth) @ (dusdts)) - (augdtg))
=T'x(H) (¢x([h])(2) @ (cun#h) (aug#g) (dus#s))
= O (Lawac ® (cuntth) (aug#g) (dus#s)) H (¢x([h])(2)) (14)
= Qo (1 ® (cunt#th) (aug#tg) (dus#ts)) w(h)(H(z))(1)
= ®yr (1@ (cup#th) (aug#g) (dus#s)) Par (un#th @ up—1#h™") H(x)(up—)
= O/ (1 @ (cup#h) (aug#g) (dus#s)) P (uh#h ® Up—1 #h’l)
cOnr (U1 @ up—1)H(z)(1)
= Dy (1 @ (cup#th) (aug#g) (dus#s)) Par (un#th @ up-1#h~")
Do (ur#le @ up—1#1q)H(x)(1)
= Dy (1 ® (cup#th) (aug#g) (dus#s)) Par (wp#th @ up1#h™") H(z)(1)
= Qo (un#th @ (=1 (cun) #1la) (aug#g) (dustts)) H(x)(1)
= Qo (un#h @ (aug#tg) (dustts)) Pu((uro#le) ® a1 (cun)#le)H(x)(1)
= Qo (un#th @ (aug#g) (dus#s)) dar(uig @ ap-1(cun))H(z)(1)
= Qo (un#th ® (aug#tg) (dustts)) H(x) (ap-1 (cun))
= Qo (un#th @ (aug#tg) (dus#s)) dar(an—1(cun) ® urg)H(z)(1)
= Qo (un#h @ (aug#tg) (dustts)) Par (ap-1 (cun) #le ® (uro#le)) H(z)(1)
= Py ((un#h) (a1 (cun) #1a) ® (aug#g) (dus#s)) H(z)(1)
= Qo ((unoun (up-rap-1 (cun)) #h) @ (aug#tg) (dus#s)) H(z)(1)
= Oy (cun#th ® (aug#g) (dustts)) H(x)(1)
= Oy (cun#h @ dus#ts) P (1 ® aug#tg) H(x)(1)
= O (cup#h @ (dus#s)) I'x (H) (x ® auy#g) .

On the other hand, Ax(T") € Homg,,, () (X, Hom4e (A, M)) because

Ax(T)(z)((c®d) - ) T (@ (curg#la) (auig#1la) (duis#1a))
T (@ ((cwg#le) @ (duig#1c)) - (aui#1c))
T (A((cur#1lc) ® (dui#1c))(z ® (aui#1c)))
= @M( cur#1la ® dur,#1a) T (x @ aur,#1e)
= Oy (cur,#le @ duy,#1a) Ax (T)(x)(a),

which shows that Ax(7")(z) is a homomorphism of A°-modules. Furthermore, Ax(7T)
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is a homomorphism of Kpar(G)-modules, since

(T)( x([g])(2)) (a)
T (ox([9])(7) ® aur#1a) = T (dx (eglg])(v) @ aui #1a)
T( )

(
) ox([9]) (z) ® au #1
(

(ox (eg g
- T( ([ ]) a:) ® (ug#tle) (aug#tle)) = T (dx([9]) () ® aug#tlc)
= T (¢x([9))(@) @ (ug#tg) (g1 (ag) #1) (ug1#g7"))
I@T( ug#g ® ug-1#9~ )(37 ® (ag-1 (aug) #1c)))

Dy (ug#tg @ ug1#g™") T (z @ Oég 1 (auy) #1¢)
= Or (ug#g @ ug1#g7") Ax(T) (@) (g1 (auy)) = 7(g9)Ax (T)(2)(a).
Moreover, A oI = id, since
Ax(Tx(H))(x)(a) = x(H)(z ® aur#1c)
= Oy (ur#le ® aur#1a)H(x)(1)
= ¢u(wg ® auig ) H(z)(1)
= H(z)(a),

and I' o A = id, because
Ix(Ax(T))(z ® aug#tg) = Prr(law,c @ aug#tg) Ax (T)(2)(14)
= Oy (1 ® aug#9)T (z @ w1, #1la) = T(x ® aug#g).
Finally, observe that for any morphism f : X — Y in Rep K, (G) and H €
Homyg,,, (@) (Y, Homue (A, M)) we have
I'x (Homyg,,, () (f, Homae (A, M))(H))(z ® aug#g)

=Ix(H o f)(x ® augtg)

= Py (Laxac @ aug#tg) ((H o f)(2)(14))

= Iy (H)(f(z) ® augitg)

=Dy(H) o (f ®id)(z @ aug#tg)

= Homax,c) (f ®p (A xq G), M)(Dy(H))(z ® aug#g).

Thus the next diagram commutes
Hom.. ) (V: Homae (A, M)) ——— Hompe,.. (X, Home (A, M)
FY FX

HOIIl(ANaG)e(X Xp (A A a G), M)

Hom (AxaG)e (Y Xp (A A a G) )

*
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where f* = HoprM(G)(f, Hom e (A, M)) and f, = Homax,c)-(f @5 (A xq G), M).
The previous facts lead us to the following two propositions.
Proposition 4.5. The functors
Homg, . @) (—, Home (A, M)) and Hom(ay,c)-(— @5 (A xq G), M)
are naturally isomorphic by means of T

Proposition 4.6. Up to the natural isomorphism I', we have the commutative dia-
gram of functors

Rep(A x, G)© r Rep K
x /
Rep Kpur(G)
where
Fl(M> = HOIIlAe(A, M), FQ(X) = HOHlear(G)(B,X)
and

F(M) = Hom(ANag)e(A A G, M)

Proof. Recall that Fy (M) = Homae (A, M) € Ob(Rep Kpur(G)) due the map 7 defined
above, and B is a K, (G)-module by Corollary 2.55] Now, if we take X = B and
M = A %, G, the map A defines a (A X, G)¢-module structure for B ®p (A X, G)
given by

(auy#g & bup#h) - (W @ cus#s) = [g] - w R (auy,#g @ bup#h) - (cus#s)
= [glwlg™] ® (aug#tg)(cusdts) (bupth).

Furthermore, observe that for any x € A x, G we have

(aug#g @ bup#h) - (1p ® z) = e, ® (aug#g)x(bup#h)
= 15 @ (ug#lc)(aug#g)x(bun#th)
= 1p ® (auy#g)x(bun#h).

Whence we get that B&pg (A x,G) and Ax, G are isomorphic as (A x, G)®-modules,
because BRp (A x,G) = Ax,G as abelian groups by means of the map b®z — b-z,
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where b € B and z € Ax,G. Then using Proposition[4.5to the particular case X = B
we have for any M € Ob(Rep(A4 x, G)¢) that

F2F1M = HOHIKPM(G)(B,HOHlAe(A, M))
~ HOHl(AMag)e(B Xp (A N G), M)
~ Hom(ax,q)e (A xa G, M).

Finally, if f : X — Y is a morphism in Rep(A %, G)¢ we want the next diagram to
commute

FyF(f)
Homg,,.(a) (B,Homy:(A, X)) Homg,,, (@) (B,Homu:(A,Y))
X Ty
Hom(Axag)e(B KB (A X o G), X) F(f) Hom(ANan)e(B KB (A X o G)Y)

where vx and 7y are the isomorphisms given by I'g, when M = X and M =Y
respectively, i.e.

Yx (H) (b ® aug#tg) = (Lan,c @ aug#g) - H(b)(1a)
and
Yy (H')(b® aug#g) = (Lax,a © aug#g) - H'(b)(14),

for H € Homg,,, () (B,Homue(A, X)), H € Homg,, ) (B, Homs(A,Y)), a € A
and b € B. Now, observe that

(F2Fy(f)(H)) (b)(a) = f(H (b)(a))
and
(F(N)(W)) (b @ augttg) = f(W(b® aug#tg)),
where W € Hom(ay, ) (B ®p (A Xq G), X). Therefore,

W (FaFu(f)H) (0 ® aug#tg) = (Lawae @ aug#tg) - (FoFy(f)H) (b)(14)
(Lawac ® aug#g) - f(H(D)(14))
F(Lasac ® aug#tg) - H(b)(14))
f(yx (H) (b ® aug#g))
F(f)(vx(H)) (b @ auy#g).

Thus, the above diagram commutes. O]

H(b)(14
H

14

89



Grothendieck spectral sequence

Observe that if the functor F; is left exact and Fy(N) is right Fy-acyclic for any
injective object N in Rep(A x, G)¢, then by Theorem [2.106| for any object M in
Rep(A %, G)¢ there exists a third quadrant spectral sequence with

Eg’q = (RPFQ)(RqFl)M = RP+¢I(F2F1)M.
p

Now notice that

(RPFL)(RIF))M = (RPF,)(RHomye (A, M))
= (RPFy)HY(A, M)
= R’ Homg,, (o) (B, H1(A, M))
=H! (G,HY(A,M))

par

and
= R”(Hom(Axag)e(A Hq G, M))
= H"(Ax,G,M).

Thus

BY" = Hy, (G H(A, M) = HP (A G, M),

p

which proves Theorem [£.4] So it only remains to check that the functors Fy and F;
have the desired properties. But first we have to show some necessary results.

The next fact is a corollary of [4, Theorem 1].

Lemma 4.7. Let S be a finite commutative semigroup, in which all the elements are
tdempotents. Then Z.S has a basis of orthogonal idempotents. Consequently the same
basis works for KS.

Proof. First define the map ( : S x S — Z by ((a,b) =1 if a < b and ((a,b) =0
otherwise. Now define for each ¢ € S the Z-linear map (. : ZS — Z given by
C.(a) = ((c,a), where a € S. Then for a,b € S we have that:

e if c <aand c <b, then ¢ < ab, whence (.(ab) =1 = (.(a)(.(b),

e if c £ aorc<b, then ¢ £ ab, whence (.(ab) = 0 = (.(a)C.(b).

Therefore, (. is a homomorphism of ZS into Z. If there exists x € ZS such that
C(r) =0 forall c € S, then x = ) _s1(a)a for some set {¢)(a) € Z | a € S}, and
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applying (. we have that 0 =) . _1(a) for all ¢ € S. Since S is finite it has maximal
elements, thus for each maximal element m we have that 0 = > __ (a) = (m).
Hence, by descending induction we have that 1(a) = 0 for all a € S, therefore z = 0.
Whence we have that if z,y € ZS and (.(x) = (.(y) for all ¢ € S, then x = y. Now
define p : S x .S — Z recursively as follows:

e u(a,b)=01if a £ b,

e u(a,a) =1,
e if a < b, suppose that pu(a, z) has been defined on the set {z | a < z < b}. Then
define
pla,b) == > nla, 2),
a<lz<b
for a,b € S.

Notice that

Z :u(aa Z) = 611757

a<z<b
where 9, = 1 if a = b and d,, = 0 otherwise. For each a € S define
Wy = Z,u(b, a)b € ZS.
bes
Observe that, since p(b,a) =01if b £ a and (.(a) =0 if ¢ £ b, then
Colwa) =Y (b, a)Ge(b) = > pulb,a) = o

besS c<b<a

Then for a,c € S and x € ZS
Ce(rwa) = () Ce(wq) = Cc(x)(sa,c = Ca(x)éa,c = Ca(7)Ce(wa) = Co(Cal@)wy).

Therefore

2w, = (u(T)wy, for all a € S and = € ZS.

Hence, for any pair a,b € S, wyw, = (u(wp)w, = dgpw,, so that the w, are pairwise
orthogonal idempotents of ZS. Finally, let w = ) _¢w,, observe that (.(w) = 1 for
all c € S. Then (.(bw) = (.(b)(.(w) = (.(b) for all ¢ € S so that bw = w and w is
thus an identity element of ZS. Therefore given x € ZS we may write

T =ze= waa = Z Co(x)wy.

a€S a€eS
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Lemma 4.8. Let S be a commutative semigroup consisting of idempotent. Let, fur-
thermore, K be a field and KS be the semigroup algebra of S. If I is a finitely
generated ideal of K.S then I is generated by an idempotent of KS.

Proof. Let I be a finitely generated ideal of K'S and let ry,rs,..., 7, be generators
of I. Choose idempotents uq, ..., u, of S such that each r; is a combination of these
idempotents, and let T" be the subsemigroup of S generated by wuq, ..., u,. Then T is
a finite commutative semigroup consisting only of idempotents, and by Lemma
the space KT has a basis of orthogonal idempotents wy,...,wy. Each generator r;
lies in K'T" and therefore we may write r; = >, a; jw; for i = 1,...,n (with a;; € K).
Whence w;r; = «; jw;. Moreover, the set

W = {w;|a;; # 0 for some i}

is contained in I. Indeed, if w; € W, then there exists r; € I such that «; ; # 0, hence
w; = o jleri € I. On the other hand, any generator of I is a K-linear combination
of these elements and therefore the ideal generated by W coincides with /. Finally we
show that the ideal generated by W is generated by the element u = ijew w; € 1.

First observe that u is idempotent since w;w; = 0 if ¢ # j and
uu = E W;W; = E w;w; = E w; = Uu.
wj,wiGW U)jEW IUjGW

Moreover, uw; = w; for each j. Hence, if y € I then y = ij bjw; with b; € KS,
and therefore yu = ijew bjw;ju = ijeW bjw; =y , thus u acts as an identity for
the elements of 1. O

Remark 4.9. Recall that if A is a R-module then A is flat if for any finitely generated
ideal J of R the map

Jor A’ Rog A
is injective where j : J — R is the inclusion map.

Lemma 4.10. Any B-module X s flat.

Proof. To use Remark [£.9we have to show that for any finitely generated left ideal I of
B, the morphism /@3 X — B X = X is injective. By Lemma.§ and the fact that
B = K, where S is the commutative semigroup S = {eg e4,...¢4, | 9; € G, n > 1},
we have that [ is generated by an idempotent v. Now assume that >, y;®z; € I@pX
is such that >, v; ® ; = 0in B ®p X, hence >, y; - x; = 0 in X. Since y; € I for
each 7 we have y; = uy; and therefore

I®BX5Zyz’@)sz‘:Zin@Bxi:U@B <Zyz$z) =0,
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which proves that I ® g X — B ®p X is injective. O

Corollary 4.11. The functor — ®@p (A X4 G) : Rep K, (G) — Rep(A x4 G)° is
exact.

Finally we can prove the next proposition which completes the proof of Theorem

£

Proposition 4.12. The functor Fy is left exact and Fy(N) is right Fy-acyclic for
every injective object N in Rep(A %, G)°.

Proof. We know that the Hom functor is left exact so that F, = Homg,, (c)(B, —)
is left exact. On the other hand if N is an injective object in Rep(A4 %, G)¢, then
Hom(ax,c)-(—, N) is an exact functor and Corollary says that — ®@p (A x4 G) is
an exact functor, so the isomorphism of functors

Homg,,, ) (—, Homue (A, N)) ~ Hom(ay, ) (— @5 (A xq G), N)

implies that Homg,,, (@) (—, Homue (A, N)) is exact. Hence Exty (B, Fi(N)) =0
for any n > 1 and so Fi(N) is Fy-acyclic. O
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CHAPTER b

Globalization

Given a unital partial action a of G on a unital algebra A, we work with an en-
veloping action (B, ) of (A, «) and the multiplier algebra M(B) of B. We study
the globalization problem for the partial cohomology with values in A. We reduce
the globalization problem to an extendibility property of partial cocycles. Further-
more, we show that if A is a product of blocks then any cocycle from 77 (G, A) is
globalizable and that globalizations of cohomologous cocycles are also cohomologous.
Finally, under the above assumption of A, we prove that ng(G, M) is isomorphic
to the usual cohomology group H" (G, M(B)). This chapter corresponds to the study
of the final part of [5].

5.1 From globalization to an extendibility property

In this section o will be a unital partial action of a group G on an algebra A. First
we will recall some definitions and results extracted form [6] that will be necessary
for the development of this work.

Definition 5.1. An action (8 of a group G on an algebra B is said to be an envelop-
ing action for the partial action o of G on an algebra A if there exists and algebra
isomorphism ¢ of A onto an ideal of B such that for all g € G the following three
properties are satisfied.
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(1) ¢(Dg) = o(A) N By(p(A));
(11) @ o ay(x) = Pgop(x) for all x in Dy-1;
(i1i) B is generated by | e By(9(A)).

From [6] we have the next theorem.

Theorem 5.2. Let A be a unital algebra. Then a partial action o of a group G on A
admits an enveloping action § if and only if each ideal D, (g € G) is a unital algebra.
Moreover, (3, if it exists, is unique up to isomorphisms.

Definition 5.3. Let L and R be K-linear maps from A to itself. We will say that
the pair (L, R) is a multiplier of A if, for every a and b in A, one has that

(i) L(ab) = L(a)b,
(ii) R(ab) = aR(b),
(iii) R(a)b = aL(b).

Remark 5.4. We will denote L(a) by La and R(a) by aR, thus Definition says
that the pair (L, R) is a multiplier of A if, for every a and b in A, one has that

(i) L(ab) = (La)b,
(i) (ab)R = a(bR),
(iii) (aR)b = a(LD).

Moreover given another multiplier (L', R') of A we have that LL'z = Lo L'(z) and
rtRR = R o R(z).

If K = A, then every (L, R) in Enda(A4) x End4(4.A) satisfies conditions (7)
and (7i) of Definition . Then (L, R) is a multiplier if, and only if, (aR)b = a(Lb).
Definition 5.5. The multiplier algebra of A is the set M(A) consisting of all mul-
tipliers (L, R) of A. Given (L, R) and (L', R") in M(A), and X\ € K we define

AL, R) = (AL, AR),
(L,R)+ (L'R)=(L+L,R+R),
(L,R)(L',R') = (LL', RR)).
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Notice that by Remark the algebra A has a natural structure of Ky, (G)-
module. We also fix an enveloping action (B, ) of o with an injective morphism
¢ : (A o) = (B, ). Since the algebra B does not always have an identity element,
and since the technique used in [5] needs to have a unital algebra we will work more
generally with the multiplier algebra M(B) of B. For a multiplier v = (L, R) € M(B)
and b € B we set by = bR and b = Lb. Thus one always has (ay)b = a(yb) for
arbitrary a,b € B.

The action 3 induces an action 3 of G' on M(B), where §3;(u) = Bguﬁg_l, for
u € M(B) and g € G, that is, if u = (L, R) then
ﬂ;<u> = (ﬁg oLo 6;17ﬁg oRo B;l) = (ﬁgLﬁ;I,ﬁ;IRﬁg>

Indeed, to prove that 5* is an action of G on M(B), observe that for u = (L, R) €
M(B), g € G and arbitrary a,b € B we have

5*(3)(6@—5 o R o fy-1(ab) B*(L)(ab) = By 0 L o fg-1(ab)
Byg(R(Bg-1(a)By-1(D))) = Bg(L(Byg-1(a)By-1(b)))
9(Bg=1(a)R(By-1(b))) = By(L(By-1(a))By-1(b))
(ﬁg o Rofy-1(b)) = (By 0 Lo Byg-1(a))b
BT (R)(b), = (L) (a)b,
and

BT (R)(a)b = ByRpBy-(a)b
= By(R(Bg-1(a))By-1(b))
= By(Bg-1(a) L(Bg-1(D)))
= a(By LBy (D))
= af"(L)(b).

Hence f*(u) is in M(A). Finally observe
By B (u) = BrByuBy—1Bn-1 = BrguBing)—

and

5;(“”) = Byuvfy-1 = (/Bguﬁgfl)(ﬁgvﬁg*) = 6;(“)6;(“)
Denote by C"(G, M(B)), Z"(G, M(B)), B"(G, M(B)) and H"(G, M(B)) the cor-

responding groups of n-cochains, n-cocycles, n-coboundaries and n-cohomologies of
G with values in the additive group of M(B).
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Definition 5.6. Given n € N and v € C"(G, M(B)), define the restriction of u to
A to be the map w : G™ — A, such that

gO(’LU (9177971)) :@(1(91 ..... gn))u(gl>"'7gn)

where g1,...,g, € G. Ifn =0 and u € C°(G, M(B)) = M(B), then w is the element
of A, satisfying
p(w) = o(lau.

Notice that we could replace

e (w(g1,---,90) = ¢ (Lgrgn) w(g1s- -, Gn)
by
(W (gr -y 90) = (g 90) ¢ (Lgrogm)

in Definition E 6] because both options are equivalent. Indeed, since ¢(.A) is an ideal
of B and ¢(1(y,,..4.)) is a central idempotent of p(.A)

.....

(L gs,ngn) )09, -+ 00) = (9L, i9))P(Lg1,09))) 0915 - - )
= (11,90 (P (Lign,.gm)) (91,-..,9n)) € p(A)
= ((Lgr,nnga)) (91, - - 90)) 2 (L(g1, )
= ¢(L(gr,ng) (W91, -, 90)9 (1(91 ..... 0))
= ( (917 e 7971)‘:0(1(91 ----- )) ( Glyeens gn))
= (g1, 9n)P(Lig,.., gn))-
We will write p(u) = w when w is a restriction of u. Note that p(u) € C;,, (G, A)
since
p)(g1, - 9n) = ¢ ((1(g1...000) (P(L(gu.g)u(91 - - 9n)))
= Lgrog)? " (P (L1095 n)) € Ligr, g A
Proposition 5.7. The restriction map p : C"(G,M(B)) — C» (G, A) induces a

par

homomorphism of the cohomology groups H"(G, M(B)) — H" (G, A).

par
Proof. First observe that p is an homomorphism since

2 (p(u+0) (g1, 90) = ¢ (Lgrrogn)) (W +0) (g1, -, gn)

= ¢ (..., n>)U(91,--.,gn)+90(1<gl ..... o) V(g1 0n)
=@ (p(u) (g1,---,90)) + 0 (p(V) (g1, 9n)) -

So it only remains to show that p commutes with the coboundary operators, that
is, the next diagram commutes
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6n+1

cs —— C"TYG, M(B)) ——

Let n = 0 and u = (L,R) € C%G,M(B)) = M(B). Then for all g € G by
Definition [5.6{ and the fact that ¢ is a morphism of partial actions we have

@ ((8°p(w)) (9)) = ¢ (ag (1g-1p(u)) — 1yp(u))
= By (¢ (14-1) p(p(u))) — ¢ (1) (p(u))
=By (p(Lg-1) o (La)u) — ¢ (1) o (L) u
= Bg(p(Lg-1)u) — (1g)u
= Bg(R(p(14-1))) — p(1g)u
= ﬁg(R(SO(O‘g*(lg)))) - ‘P(lg)u
= Bg(R(By-1(p(1g)))) — p(1g)u
=@ (19) (6; u) — u)
= ¢ (1,) (%) (9)
= ¢ (p (0°u) (9))

whence 6°p(u) = p(6%u).

Consider now n € N and u € C*(G, M(B)). For arbitrary gi,...,g,11 € G, first
notice that

691 <90(1g;1)90 (1(92 ----- gn+1)) u (927 cee ’gn-i-l))
= 691 (R(gz ,,,,, Gn+1) <90(lgf1)(p (1(92 ~~~~~ gn+1))>>

= 691 (R(92 ,,,,, Gn+1) <Bgl‘190 (1(91,92,~~7gn+1)))>
=@ (1(91,92,...,gn+1)) 6;1 (u(927 ce 7gn+1))7

where U(ga,..o.gnt1) = (L(gz ----- 9n+1)7R(92 ----- 9n+1))‘ Thus
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5.1 From globalization to an extendibility property Globalization

@ ((0"(w) (91, 9a11)) =9 (g (15720(0) (921 -+ 9uin))

n

+ Z<_1)llglgzp(u) (917 - GiGit 1, - - 7gn+1)
i=1

+ (_1)n+1191---gn+1p(u) (917 R 7971) >
=B (v (Lg—1) @ (p(w) (g2, - - gn11)) )

n

+ Z(—l)i%@ (Lgr.g)) 0 (p(w) (915, GiGis1s- -+ Gnt1))

i=1

+ (=1 (1gyg0rn) 2 (p(0) (g1, - gn))

3

—~
|
—_
S~—
3
+
=
©
—~
—_
Q
=
Q
3 .
+ .
AR
~—
©
—~
[u—
—~
Q
=
Q
<
~—
I
—~
Q
[

..... -+ 0n)

n

+ Z(_l)lu (gla <oy 9iGit 1, - - 7gn+1)
=1

+(=D)" (g1, - -, gn))
= S0<1(91 ~~~~~ gn+1)) (5nu) (917 ce agn-i—l)
=@ (p(0"u) (g1, gns1)) -
so that 0"p(u) = p(6™u).
[
Definition 5.8. Given w € Z (G, A), by a globalization of w we mean u €
Z"(G, M(B)) satisfying

90(w (917"'7971)) = @(1(91 77777 gn))u(gl7"‘7gn)'

If w admits a globalization, then we say that w is globalizable.

In the proof of Theorem given in [6] the enveloping action (B, ) for (A, a)
was constructed as the restriction of the global action (F, ) to the subalgebra

B=Y B,(p(A)).

geG
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5.1 From globalization to an extendibility property Globalization

Here F is the ring of functions G — A and

Bo(H)le = fg™'t)

for all z,t € G, where the notation f|; is used for the value f(¢) if f € F. The
injective morphism ¢ : A — B is then defined by the formula

o(a)ly = ap-1(1ia).
Notice that
Sp(ag(lg‘la)”t = @t—l(ltag(lg‘la))

= Q-1 (O{g(]_gfl 1971,5&))

= Oétflg(]_gfl ]_gflta)
= 80(19‘1a)’9‘1t
= 69(90(19*160”157

then p(ay(1,-1a)) = By(p(1ly-1a)). Clearly, ¢(A) C B, so ¢ is a morphism (A, a) —
(B, 8) too. Since all enveloping actions of (A, «) are isomorphic to each other by
Theorem 5.2 we may assume that (B, 3) and ¢ are of this form.

Remark 5.9. Notice that if u € C"(G, F) is such that u(gy, ..., g.)B, Bu(g1,...,g,) C
B then u(gy, ..., gn) € M(B) in the next sense, define R : b € B+ bu(gy,...,g,) € B
and L :b € B~ u(gy,...,g,)b € B, thus the pair (L, R) is in End(Bg) x End(zB).
So identify u(gy, ..., gn) with (L, R), finally notice that for arbitrary a,b € B we have

(aR)b = (au(gy, ..., gn))b = a(u(g, ..., gn)b) = a(Lb).
Hence u(g1,. .., g9,) € M(B).

Lemma 5.10. Any w € ZSGT(G, A) is uniquely globalizable.

Proof. Define u € C°(G, F) = F to be the constant function taking the value w € A
at any t € G. Using Remark we have 1,-1w = a1 (Lw) since w € Z),.(G, A),
then using that ¢(a)|; = a4-1(1;a), we obtain

¢ (La)l ul, = Lrw = g (Lw) = p(w)],
yielding Definition [5.§|

Ba(p(a))leule = p(a)lg-1w = ap-14(1g-1a)w = ay-14(1g-1,a) - 115w

= ap1(1-1aw) = B, (o(aw))].
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5.1 From globalization to an extendibility property Globalization

)). Hence Bu C B since

Then fy(p(a))liule = By(p(aw))ls, so Bylp(A))u € By(p(A)).
= By(¢(wa))|,, which implies

B =3 e Bo(p(A)). In a similar way ul, 5,(¢(a ))|
uB C B, and thus u € C°(G, M(B)).

To prove the 0-cocycle identity 3;(u) = u for u, it suffices to show that 5, (uf) =
uBy(f) for any f € F. We have that

Bg(uf”t = (uf)|g*1t = ulgfltf|g*1t = u|t/89(f)|t7

whence u € Z°(G, M(B)). Now if u; and us in Z°(G, M(B)) are globalizations of w,
then ¢(14)u; = ¢(14)us, using the 0-cocycle identity we have

ﬂg(¢(1A)uz) - ﬁg“&(lfl)Bguiﬁg*l)

= ¢(14)Byus

= By(p(1a))us,
for i = 1,2. Then 5,(¢(a))u; = By(¢(a))us for all g € G and all a € A, hence uy = us
since B =) By(p(A)). O

Remark 5.11. Recall that A has a trivial G-module structure given by the trivial
action g-x =z, for all g € G and = € A.

For the case w € Z"

par

Lemma 5.12. Let w € C™(G, A). Then u € C™*(G,F), defined by

(G, A), n € N, we will need the next lemma.

w(gr, .-y gn)|, =(—1)"w (t_l,gl, . ,gn_l) +w (t_lgl,gg, . ,gn)

n—1

+ Z(_l)lﬁj (t_lv g1s---5,9i9i+1, - - - 7gn)

i=1
s an n-cocycle with respect to the action 8 of G on F.
Proof. Observe that

WGy g, = @ (g1, 90) — O"D) (9102, 90) (1)

where 6" : C"(G, A) — C"t1(G, A) is the coboundary operator which corresponds to
the trivial G-module, i.e.

(gnﬂ;) (917 S 7gn+1) =w (927 cee agn—i—l)
+Z W (g1 - -5 GiGit1s - - Gnt1)

+( 1)"+1 (G1,--+9n)
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5.1 From globalization to an extendibility property Globalization

Calculating the value of (6™u) (g1, ..., gn+1) at t € G, we obtain using that 5,(f)], =
flg~'t)

n

w(g2; - - gns1) | +Z (gL, - - Gigists - -5 Gnr1) e

+ (—1)”“ (g1, 90)],

which in view of (1) equals
0 (92, o) = (0"D) (t7 g1, 920 G

+Z W(G1,- -5 GiGit1s - - - Gnt1)

+Z Z+l 571 t 17917'"’gig’i+17"'7gn+l)
+ ( 1)n+1 (gh s ;gn) + (_1)H(STLU~}> (t_17g17 s 7gn) .
The latter is readily seen to be (5”“5”6)) (t g1,y Gny1) = 04 O

The existence of a globalization of a globalization of w €
to certain extendibility property.

7Z7.(G, A) is equivalent

Definition 5.13. For any f € C"(G, A) define 6" : C"(G, A) — C™1(G, A) b
(5 ) (91, gusr) =0, (1 SYLUSA)

+Z g1f glu"‘7gigi+1a"'7gn+1>

+ (_1)n+1191f (917 < agn) .

Theorem 5.14. A cocycle w € Z}, (G, A), n € N, is globalizable if, and only if,
there ezists w € C™(G, A) such that

5™ = 0 (5.1)
and
w(g1, -, 9n) = Lgi,g)W(G15 - -5 Gn); (5.2)
forall g1,...,9, € G.
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5.1 From globalization to an extendibility property Globalization

Proof. If w is globalizable and u € Z"(G, M(B)) is its globalization, then we define
w € C"(G, A) such that

© (W (g1,---59n) =0 (Qa)u (g1, 9n) =u(g1,---,gn) @ (1a) .

Clearly, @ (g1, ..., gn) € A, since ¢(.A) is an ideal in B, and moreover ([5.2)) is satisfied.
Note that

(Ba(p(1) (1)) e = Bylp(La)) (1) s
= o(La)]g-10 p-1(1e1a)
= ap-19(Lg-11) 1 (Ly)
= 1t*191t*1
= a1 (1g1y)

e(Lg)le,

then p(oy(1,-1a)) = By(¢(1,-1a))¢(14). Therefore

By (g2, gnr1)) o (1g,) = (6571 92, - 9n11) By, ) (Bay (9 (1)) ¢ (14))
(g2, -+ Gns1) 0 (14))) ¢ (14)

( (W (g2, - -+ Gnt1))]) ¥ (1a)
= p(ag, (1,-10(g2; - - - gnt1)))-

E}b
?@i

Thus using the formula

5;1 (U (927 s agn-i-l)) ¥ (191) = QO(Oégl(l (927 B agn-i-l)))

we obtain (5.1)) by applying both sides of the cocycle identity

Bg (u(g2,- -, gnt1)) +Z U(G1s - GiGit1s - Gn1)
+(_1)n+1 (glv"'vgn):()

to (P(lgl)-
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5.1 From globalization to an extendibility property Globalization

Conversely, given w € C"(G,.A) satisfying (5.1) and (5.2)), define u € C"(G, F)
using Lemma by

w(gr, .-, 9n)], =(—1)"w (t’l,gl, o ,gn,l) +w (tilgl,gg, o ,gn)

n—1

+ Z(_l)zﬁj (t_lvgla s 9iGit 1y - - 7gn) .

=1

Then u € Z™(G, F). Now using that p(a)|; = a-1(1;a), (5.2) and the cocycle identity
for w, we obtain

(w91, gn))ly = e (Lew (g1, -, gn))
=liw (t_lgla g2, - 7gn>

+ Z(_l)ilt—lgy..giw (tilmgla <5 9iGit 1, - 7gn)

+ (_1)n1t*191---gn (t_la gi,--- agn—l)
= 1t71]‘(t 191,92,.,9n) W (t glaQQa-"agn)

n—1
+ E : 1t_lgl 3 'gi1(t_1791w-79i9i+17-~~79n)
=1

X@(t 1,917...,gigi+1,...,gn)

+ (=1D)"L1gy g L1910 gn @ (T 91,y Gt
= 11,91, 9mt (91, - Gu) |,
= ¢ (Lgrg) |, w (g1, 90)]

whence
pw(g - gn))le = e(Lgr.gn b9, -5 gn)-
We have yet to prove that u(gi, ..., g,) € M(B), i.e

w(gi, .., gn)B, Bu(gr,...,g,) C B
for all gq,...,g,. Since (5.1))

Liw (g1, 9n)|, = 1t*1ﬂ; (t_191,927 . 7gn)
+Z 1t 1w 7917-"agigi+17"'7gn)

" L@ (U791, o)
=1 (L (g1, -, 90)),
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5.2 The construction of w' Globalization

it follows that

w(gi,-- gn)l0(a)], = a1 (L (g1, - -, gn)) a1 (Lia) = @ (W (g1, .-, gn) @)l
whence

w(gi,- -5 9n) 0(A) € o(A).

Now u being an n-cocycle with values in (F, ) satisfies

6t—1 (u (917 “ee 7gn)) QD(CL) =u (tilgla g2, ... 7gn) QO(CL)
n—1
Y (=D (g gigies - Gnra) p(a)
i=1

+ (=1)"u (t_l, gi,- .. ,gn_l) v(a),

where the right-hand side is an element of ¢(A) thanks to the previous statement.
Therefore, Si-1(u(g1,-..,9n))p(A) C ©(A), so, applying ;, we obtain

w (g - 9n) Bi(p(A)) S Bi(e(A)).

Similarly, 8;(0(A))u (g1, - - ) € Be(0(A)), proving u(gy, - - -, g)B, Bu(gs, -, gn) C
B since B = deg By(p(A)).

O

5.2 The construction of v’

From now on we assume that A = [],., Ax, where each A, is an indecomposable
unital ring, i.e. Ay cannot be written as Ay = A} x A3} with non-zero A} or A3
ideals of A,. Each A, is called a block of A. The main objective is to show that
every w € Z,, (G, A) can be replaced by a more manageable w' € Z7 (G, .A) which
will be used in the construction of w satisfying the conditions of Theorem [5.14] Let
us identify the identity of A, p € A, with the primitive idempotent 14, of A which
is the function A — [J,., Ax whose value at p is the identity of A, and the value in
A # p is the zero of A, then the block A, is identified with the ideal generated by
14,, and the canonical projection pr, : A — Ay with the multiplication by 14, in A.
We write a = [] ¢, @x, where Ay € A and ay € A, for all A € Ay, if

pr (CL) _ ay AE Al;
A 04 otherwise.

Thus, each idempotent e of A is central and is of the form H/\E A, Lay, so that
eA = [liea, Ar, therefore each Dy is of the form [\, Ax, for some A, C A
Moreover we have the next lemma
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5.2 The construction of w' Globalization

Lemma 5.15. Let I = [] ¢y, Ax and J = [ ca, Ax be unital ideals of A and
v : I — J an isomorphism. Then there exists a bijection o : Ay — Ag, such that

¢ (pry(a)) = pryo(pla)) for alla € I and X € A;.

Proof. Note that {14,},cs, and {14, },c,, are the sets of centrally primitive idem-
potents of I and J, respectively. Since ¢ is an isomorphism,

¢ (la,) = 1-’40(}\)7

for some bijection ¢ : Ay — Ay. Then

@ (pra(a)) = ¢ (La,a) = 1a,,,p(a) = prypy(p(a)).
O

Definition 5.16. A unital partial action o of a group G on A is called transitive,
if for all N, \" € A there exists x € G, such that Ay C Dy-1 and o, (Ay) = Ay

Assume that « is a transitive partial action. We fix \g € A, note that for all A € A
there exists x € G such that a,(A,,) = A\. Denote by H the stabilizer of the block
A,,, i.e. the subgroup

H={zeG| A\, CD,1 and o, (Ay,) = Ay}

of G. Let A’ be a left transversal of H in G containing the identity element 1 of G,
ie. G = UQGA, gH, a disjoint union. Then A can be identified with a subset of A’,
namely, )\q is identified with 1, and

A, =a,(A) for ge AC A

Indeed, note that for all A € A there exists g € G such that A4, C D,-1 and Ay =
ay(Ay), then for any x € H since o, (A1) = Ay = ap-1(A1), Ay € D, ND,-1 and
A; € Dys, thus Ay C a,-1(Dy N Dy-1). Hence

Ay = ay(Ar) = aglaz(Ar)) = aga(Ar).
Therefore o, (A;) = A, for all win gH. If g,¢' € G are such that ay(A;) = A\ =
ay(Ay), then g7'¢' € H and gH = ¢'H.

Given = € G, denote by T the (unique) element of A’; such that x € ZH. Observe
that 27 = 7y for all z,y € G. Indeed, note that xyH = zyH, thus 27,7y € A’ are
such that 2yH = 2xyH = 7yH. Hence 27 = 77.

We will use the following easy fact throughout the text.
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5.2 The construction of w' Globalization

Lemma 5.17. Given x € G and g € A, one has
(i) ge A& Ay C Dy
(11) if g € A, thenTg € A & A, C D1, and in this situation o, (Ay) = Azg.

Proof.

(i) We only need to see the “<=" part, so let A; C Dy-1 for some g € A’. Then
a, (A;) must be a block of A, so it equals A; for some ¢t € A. Hence a;(A;) C
Dy, N Dy, thus Ay C ay-1(Dy N D) = dom(ay-1 0 o). Then

A = ay-1 0 (A1) = ag-1.(Ar).
Consequently, g7t € H, and g =t € A.

(ii) Let g,7g € A. Then A; C Dzg-1 N Dy-1, and since (Tg) 'zg € H, one has
that a(@)—lxg(Al) = A, then Oé(x—g)—lxg(.Al) - DTg(xg)—l N D(I—g)—l. Hence A; C
V5(29) -1 (Dzgag)-1 N D(zg)-1). Therefore azg o az5)-144 is applicable to A; and
as « is a partial action so too is g = Qzg.(z5)-12g- Thus A; C D(,4)-1 and using
again that o is a partial action we see that Ay, = ay (A1) € ag(D(yg)-1 NDy-1) =
D,-1 N Dy, so that «, is applicable to A,. Moreover, since (Tg) 'zg € H we
have

i (Ag) = Qag(Ar) = g © Aag) 129 (A1) = az5( A1),
and consequently a, (A,;) = Azg, as a, (A,) must be a block.

Conversely,

A, CD,-n =g9geNA, CD,-NDy, =D,-1D; =

./41 = Oégl (.Ag) C CK;I (Dx—lpg) - Dg—lx—l — ./41 - Dg—lx—l N Dg—lx_1x—g —

A1 = (ag)tag (A1) € Aag)-1ag (Dg121 N Dy-iz-izg) € Diag)

which gives Tg € A.

If follows that
.Ag CD,1 & Ji_lg ceANes A C Dgflm.

In particular,
Af g Dxa

for all z € G, such that T € A.
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5.2 The construction of w' Globalization

Remark 5.18. Let (B, ) be a globalization of (A, «), assume that A C B, and set
Ay = B4(A1). Then S, (Ay) = Azg, for g € A’ and x € G. Indeed,

-Axg - 53?9(“41) = 52:(“49)‘

Definition 5.19. For g € A and a € A, define the homomorphism 0, : A — A,
given by
0y(a) = ay(pri(a)) = pry(ay(ly-1a)).

Remark 5.20. Notice that 1, HheA 1y4,, for some Ay € A | then if a = [] ., as,
where a; € A,. Then 1ja = [];,c,, an. Then by Lemma - we have ay(1,-1ap) €
Dy, Thus

pry(ay(lg-1a)) = ag(ar) = ay(pry(a)).
It follows that, since 0,(cy(14-1a)) = pr,(a) then

a= H Oy (ag(1,-1

geA

Moreover, if € G is such that A; C D,, then pr,(1,a) = pry(a) = a1, whence
0,(a) = 0,(1,a). In particular, this holds if x € H and z = g~!

Lemma 5.21. Let n >0 and w € Z, (G, A). Then
W (21, Tn) = L,z H b, [w (g_lxl, To, ... ,mn)
geA
n—1
+ Z(—l)kw (g_l, Tlyeoos ThThats - - - ,:L“n)
k=1
+ (=D"w (g 21, 20) | (5.3)

Proof. Using the partial n-cocycle identity we have that
(lgw(zy, .y xy)) =1w(g w2y, T

+ Z<_1)klg*1$1...ka(g_la Lisee s ThTht1s - - - ,ZL‘n)

+ (_1)n1g—1x1...znw(gil7 L1y .- 7xn71)7

and by Remark
w(zy, . H9 1 (Lgw(zy, ..., x))).

geA
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5.2 The construction of w' Globalization

Thus
w(zy, .. HQ (Lyw(zy, ... 2)))
geA
—HQ aw(g ey, we, .., 1y,)
geA

+ Z(—l)klgqxl_nka(g_l, Ty ooy TRThal, - -y Tpy)

+ (_1)n1g_1x1‘..aznw<gila L1y 7xn71)]

= H 99[1(9_1,961 ..... xn)(w(gilxlv Loy ... 7xn>

+ Z(—l)kw (g7 @1, T, T

k
+ (_1)nw(g—1’ L1y - 7$n—1))]'

]

Define the map 1 : G — H such that for z € G, we have n(z) = 7'z € H. Let
n >0 and g € A'. Define n¢ : G* — H by

w (@ wn) =0 (02 ek )
and 77 : G" — H" by

Tg (131, s 73371) = (77!1] (ml) 7775 (:L‘th) a~--,77ﬁ (mla"'vxn))'
Note that

n{ (x1)ng (x1,22) ... 02 (21, ..., 25) :n(a:;

Indeed,




5.2 The construction of w' Globalization

and

(21, 22) = (27 9)  wawy tay g,
Thus
i (w0)ns (21, 02) = g~ wizawy a7 g = (g 'y g).
Now using an inductive argument over n we have that
m (@) 03 (z1,22) -y (21,0, To1) 0 (21, -, Tn)

= n(x,- 1In12 1‘1‘19)772 (1, .+, Tn)

= (g7 mxy . we )l ag) (l ay g) T (et L e )
=g 'mwy. (vt )

:n(:vgl...xl_lg).

Moreover, we will define the maps oy ; : G™ — G"tn>0,0<i<n,by

opo(T1,..., 1) = (97 @1, ),
afm (X1, ... x,) = <Tig (xl,...,xi),(xi_l...x;lg)_l,xiﬂ,...,xn) , 0<i<n,
o . (X1, .., Tp) = <Tg (X1, ..y xp), (2t .xl’lg)’l) )

If n =0, then we set
olo=9 "' €G.

Definition 5.22. Given n >0 and w € C},, (G, A), define w' € C}, (G, A) and ¢ €

€ (G, A) by
W (x1, .. 2) = Ly, 0 H@ oworTd (1. .., 1Ty),
geA
n—1
e, p1) = Ly mn 1)H9 (Z Dwoad_y, (xl,...,xn_1)>.
geA =0

When n = 1, Definition for € should be understood as

€—H9 EA

geA
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Let us introduce the following notation that will be used in the results below.

n—1
Slm)= > (=D)wood | (w1, wktsr, . T)
k=li=m
n—1
+ Y (=) woo) y(x1,...,Tn1),
=m

where 1 </ <n-—1and 0 <m <n— 1(n is assumed to be fixed ).

Lemma 5.23. For all w € Z}

par

(G, A) and x € G we have:

(6%) (z) — az (1y-18) —w(z) =1, H 0, (—w (¢7'2)).

geEA

Moreover, forn > 1,w € Z"(G,A) and xy,...,z, € G :

(6" 7e) (z1,..., @) — ayy <11,1—1€ (xg, ... ,J;n)> —w (T, ., xy)

= Liay,zm) H o, (—w (g_lxl,xg, - ,:L‘n) + 3(1, 1)) )

Proof. Recall that by Remark we have that
(0%) (9) = ay (14-1a) — 14a,

thus
(6%) (z) — ay (1,-18) — w(z) = 1.6 — w(z).

By Lemma[5.21
w(w) =1, [] bg(w(gz) —w(g™)).

geA

Whence, and using Definition of ¢ we have

(6%) (2) = ap (Lo18) = w(@) = =1 [ [ 8 (w (g7")) = Lo [ ] Ou(w(g™ ) —w(g™))

geA geA

=1, H 0, (—w (g_la:)) )
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Now for n > 0, using Remark first, Definition and finally definition of
¥(1,0) we have

((5n—15) (T1y .oy @) — Qg <111—1€ (2, .. ,xn)>

n—1
= (_]-)k]-zla:kg (Ilv oy LTyl - - al‘n) + (_1>n1z1xn5 (:L‘h ce 7xn—1)
k=1
n—1
= (o1, 2m) H b, ( Z (—1)Fiw o oy 1 (T, TR, - ,xn))
geA k=1,i=0

n—1
+ 1(a:1 ,,,,, Ty) H eg (—1)"”11} e} O-Z—l,i (33'1, C 7xn1)>

geA
Now notice that
(_1)kw (g_lv Tiyeo oy TeLE41y - - - ,ZEn) = (_1)k+0w © UZ—I,O (l’l, oy Tty - 9'1:71)
(=D™w (97" 21, @1) = (=1)"Pwoof_ o (1, .., 20-1).

Then the formula (5.3) in Lemma becomes

w (21, Tn) =L,z HGg [w (g’lxl,xg, . ,xn)

geA
n—1
+ Z(_1>k+0w o O-Z,—l,O <x17 oy TpThey1,y - - 7xn>
k=1
Observe that
n—1

S(1L,0) = S(L,1) = (~1)"wool y (21, 2T, -, Tn)

+ (_1)n+0w o 0—2_170<x1, .« e 73:”,]_).

w(zy,. .. Tn) = gy, 2 H Gg[w(g_lxl, T, ..., Ty) +2(1,0) — X(1,1)],
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whence

1(%1,...,:&”) H 09(2<17 O))

geA

=w (@1, 0) + Ly | Oo(—w(g w1, 20, ) + 2(1,1)).

geA

Lemma 5.24. For alln > 1,w € 2"

1,,751’1(117.“’%)(—w(g_lxl, To, ..., x,) + 25(1,1))

=i
= — Qyt(ay) (Lg (@)1 w 0 0,1 (22, - )

rr(GLA), g €N and xy, .., € G

+ 102’1(3517.“’33”)(—’lU(Tig(l'l), (l‘l_lg)_lx% Z3,... axn) + 2(27 2)

n—1

+ > (D) wo ol (w1ms, 7, ., w).

i=1

Proof. Note that since w € Z, (G, A) we have that

0= (6"w)ooy,(x1,...,7,)
= (0"w) (g ey -2y tg, (211 g) e, )
- gflml,ﬂ(1(11—719)71951—15110((:51_19)_1’ To,. .. 71:71))

~1
1g_1x1_x1,1gw (g T1,T2, ... ,xn)

+ 1g—1x1u} <gilxl : xl_lga (xl_lg)ilx% T3, ... axn>
-1

3

+ Z(_l)lﬁ_llg*lxy..ka (g_lxl : xl_lga ($;lg)_17 L2y y TpLle1,
k=2
+ (_1)n+119_1x1...xnw(971$1 : xl_lga (xl_lg)ila T, ... 7-/171171)-

Observe that we can rewrite some factors of the latter equality.

ni(z1) =g w27,

9
op 11 (T1s o TRTpgs - T

0-791—1,1 (Il? sy Ip—1) = (g_lxl ’ xl_lg’ (‘rl_lg)_la T, 7'1:71—1)'
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5.2 The construction of w' Globalization

Therefore,
i
_117‘17(951)11}(9_11717 To,. .. 7-1771) = - an‘f(aﬁl)(lni’(ml)*lw © Unl—l?o(%, S 7xn))
— Ly w({(z1), (27 9) g, 23, .. ., 7)
n—1
+ Z(—l)klg_lxl._.mkw ooy 11 (T1,. ., TpTpyr, .. Tp)
k=2
+(=1)"1y-1p pwo 02_1,1 (T1, .y Tpt) (1)
Observe that
n—1
2(17 1) - 2(27 2) = <_1)k+1w °© O-rglfl,l(xlv coe s TpL41y - - - 7‘rn)
k=2
n—1
+) (=D"Mwooy | (m122, ..., 20)
=1
+ (—1)n+1w00';ql_171<l'1, .,l‘n_l).
Whence,
n—1
2(27 2)+ Z(_l)lJriw © UrgLfl,i(xlx% s 7xn)
=1

n—1
= 2(1, 1) + Z(—l)kw o) 0,,91_171(1'1, ey BTt 1y - - - ,.fl?n)
k=2

+ (=1)"woo) | (21,...,25-1).

Thus adding ¥(1,1) then multiplying both side of equality (1) by 1,9 (2. )
177{’(361)1(57*13:1,3:2,...,1”), we get

1o 1($1’...,$n)(—w(g*1:r;1, To, ... ,l’n) + 2(1, 1))

1
= — O{nf(zl)(lnf(zl)flw o O'nl_l?o(l'g, . ,.%n))
+ 105“1(3517._.7%)(—w(Tlg(afl), (27 g) o, 23, .. 1n) +2(2,2)
n—1
+ Z(—l)“lw ooy 4 i(T172,73,...,7,)).
i=1
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5.2 The construction of w' Globalization

Lemma 5.25. Foralll <j<nwe 2" (G, A),g € AN and xy,...,2, € G :

par
102‘]'(961,...,:)3”)(_w(Tffl(xlv e axj—l)a (x;jl s xl_lg)_lxja Tty axn) + Z(]v]))
; -1
=(—1) (e (Lpg (@)1 wo o, 7 ;1 (22,..., 7))
+ lafl’j(xl,.,.,xn)(_w(qu(xh s 71:]’)? (Ig_l : 'xl_lg)_lxj-i-l? Lj425 - 7xn)
+ E(] +1,57+1)
+Z Z—H’UJOO' 1, (‘Tl,...,l’jlfj+1,...,l'n>
—f-z ) wood . (1, Tsloq1, ..., X))
(here by ¥(n,n) we mean 04).
Proof. This proof is analogous to that of Lemma [5.24
=(0"w) ooy ; (x1,..., 1)
o1
=09 (0)) <1n‘1’( 1w o opti (2, ,:cn))
j—1
+ Z(_Uslnf(xl...xs)w ooy i (T, BTty 1)
s=1
+ (=1 L9 (W <Tjg_1 (w1, mjoa), (2l oay ) g, ,xn)
+ (—l)j“lgflxl“_xjw <7']“‘-J (1,...,25), (x;l 2 ) T, T, ,mn>
n—1
+ Z (1) M grgy mw o od_y (21, T, - T)
t=j+1
+ (_1>n+11g—1z1...xnw © O-Z_l’j (371, s 7xn71)
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5.2 The construction of w' Globalization

Therefore,

-1 —T_\-1
—19(a1.a))W (Tj_l (T1, i), (00 20 G) Xy, Ty, ,azn>
Ty

= (_1)ja77517(131)(177517( 1)~ U)OO'n 1g] 1(%27...,3771))

+Z( D)9 (0, w0 0y i (T, T, T)
s=1

-1

g -1 _\—1
— g tgy. W <7'j (T1, s xg), (2 .2y g) :vj+1,:vj+2,...,xn>

+ Z (=) 1y w o oy 1 (T, T, T)
t=j+1
+ (D)™ g w0 0f (21, Tn) (1)

Notice that
n—1

S0 —SGH L+ = D (D) P wood (. w2
t—j+1

41
+ E LY wooy (21,20, .., 052541, .., Tn)

+ (—1)"+jw ooy (T, ).

Thus adding Y(7, 7) to equality (1) and then multiplying both sides by the idempotent
element

107%’]. (l’l, . ,-Tn) = 177?(431)177f($1952) . 177?(951132._%)17]?(gf1x1._.zj7xj+17“_$n)
we get
Los (aron) (mw(Tf oy (@1, 2ymn), (250 e ) T s @) + B(4,))
i -1
:(_1)JO‘W§7($1)(1 (1)1 WO Ty gl] (T2, @)
+ 10Z7j(x1,-..,xn)(_w(Tjg(xb s 737]')7 (x;1 : 'xlilg>71xj+17 Lj+25 - - ,.Tn)

+X(+1,7+1)

+Z(—1)i“woag_1’i(9{:1,...,:L'jxj+1,...,:1:n)
+Z(— ) Hwool | (21, BT, E).
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5.2 The construction of w' Globalization

O
Lemma 5.26. For allw € Z,,.(G,A),g€ A and z € G :
—Lyg@w (97'%) =~ (%‘f(@—lw ((56‘19)‘1>> — lg-1zw o 7 (x)
Moreover, for alln > 1,w € Z}, (G, A),g € A and z1,...,2, € G
At (7 (@) (a0 ) )
—1
= (=1)"ayga) (1 {(@) WO Tn it (T2, >In))
n—1
+ 10'71 n (%15 sTn) < Z(_l)SJrnw © 0-797,71,7171 (xh cee s Lslsy1y - - - 713”)
s=1
—wOTg(xl,...,acn))
Proof. We first observe that for n = 1, since w € Z,,,.(G, A) we have
0= (8'w)(i(x), (x71g)™")
= Oéng(m)(17,{(3;)*1’60((37_19)71)) — Lyg@w (g’lx) + 1,-1,w o 7 ().
Next for n > 1, we have that
= (0"w)oad, (x1,...,7,)
P
= Q9 (1) (1 9(p)1 W O ot lgn (T, ... ,a:n))
n—1
—l—Z )°1 nd (.. aWOo Ty 1 (T, By, )
s=1
+ (-1)"1, 9 (1) W (Tﬁfl (21, .. Tue1), (2t .. .xflg)_lxn>
+ (=) My pwo T (T, T)
Thus to obtain the desire equality we have to multiply both sides by 159 (), .2 U

Lemma 5.27. For alln > 0,w € Z" (G, A) and z1,...,z, € G, define the idempo-

par
tent element .

Sl | T Hlm _—

=1
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5.2 The construction of w'

Globalization
Then
e(—w(g oy, 2oy ..., ) + 2(1,1))
n—1 -
. x*l
= €9 () <1nf(ar1)*1 Z(_l)le o anl_fj(xg, . ,mn)>
j=0
—e(wotd)(z1,...,2,)
n—1 n—1
+e Z(—]_)H_JwOO'Z_17i(ZL'1,...,Ij$j+1,...,$n)
=1 i=j
n j—1
+e (1) Mwool i, (w1, ., Telorr, ..., Tn).
7j=2 s=1

Proof. By Lemma [5.24]

102’1(@,...,:0”)<_w(gilx17 Xy 7xn) + 2(17 1))

—1
= — O{nf(zl)(lnf(zl)flw o 0'21_1?0(1,‘2, . ,.%n))

+ 105“1(3517_.7%)(—w(Tlg(xl), (27 g) o, w3, .. n) +2(2,2)

n—1
+ Z(_l)l—’—lw o O-Zfl,i(xlx% Z3, ... 7$n))
=1
Observe that
xflg
_Oéﬁf(zl)(lﬁf(zl)’lw © an—l,O('rQa cee ,xn»
n—1
. 1
= ang(zl)l,ﬁ(ml)—l [Z(—l)]‘f‘lw e} Uzil?j(l'g, R, ,$n)
7=0
i . 1
+ Z<_1)]+1w © Uzlfl?jfl<x2a e Ty |
=2
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5.2 The construction of w' Globalization

By Lemma [5.25
Z(_1>J+1anf(x1)(177‘?(331)*12‘0 o O-nl—l?j—l(x% s an))
j=2
n—1
= ]‘0'7917]'(9017~~~:l“n) |:w<7']‘g_1($17 Ce ,l‘j_l); (I']__ll . xl_lg)_lxj, q;j+17 ... ,ZL‘n) - E(],])
=2
—w(r (21, .., 25), (m;l U ) T, Ty, ) 01,5+ 1)
n—1
+ Z(—l)iﬂw ooy (1, T, )
i=j
j—1
+ Z(—l)”%u oay i q(T1, . Ty, ,xn))]
s=1
1
+ (_1)n+1anf(x1)(1nf(x1)_1w © Unl—l?n—l(x% <. 79571))
Note that
n—1
Z [w(Tffl(:vl, Ce s Tjo1), ($J_fl ot g, ) — 25, 5)
j=2

—w(rf(@y,. o wy), (a7 ) T e, e, @)+ B( + 15+ 1)]

= w(Tiq(xl)v (xl_lg)_l'r% XT3y ,In) - 2(27 2)

—w(rd_(xq, .. m), (2t T hg) ).
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5.2 The construction of w' Globalization

Thus
e(—w(g oy, 29, ..., 2,) + B(1,1))
n—1 -
. 1‘71
:eozniz(zl) <].77i7(x1)—1 (—1)7+1w o} O-nl—l?j (.TQ, ce ,an))
§=0
n—1 n—1
+e Z Z(—l)lﬂw o szl,i(xh . ,Ijl’j_H, Ce ,ZL‘n)
=2 i=j
n—1 j7—1
+e Z Z(—l)sﬂw o0y 41 (T1, T, ,xn))]
7j=2 s=1
=
+ e(_l)n—i_lani](ﬂﬂ)(]‘77{(361)_110 © O-nlfl‘?nfl(x% cee 7x7l))
—ew(t?_[(z1,...,2), (2t . 2 g) )
n—1
+e Z(—l)”lw ooy | (T, 23, .., Tn)).
=1
Hence,

=€ () (177{’(901)—1 ( 1)j+1w o O-nlfl ]($27 , xn)>
5=0
n—1 n—1
—1—622(—1)”%}009 i, ooy, xy)
Jj=1i=j
n—1 j—1
+€ZZ(_1)S+onan 1,5 1(.1'1, y Lsls41, ,an))]
7j=2 s=1
+ e(—l)""'lang(m)(117;1;(951),110 00, 11 (T2 Tn))
—ew(rd ((z1,...,2), (21 ot g) ).
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5.2 The construction of w' Globalization

Now by Lemma [5.26| we have that
ew (Tng_l (21, Tn1), (.. .:Ul_lg)’lxn>

Ty
+ (—1)”+1ea7ﬁ(ml) (1 9(ay)~1W © I (W ,xn))

n—1
:eZ(—1)5+"w 00y 11 (T1, o Tegy1, .o, Tp)
s=1
—e(woTtd)(xy,...,2,)

Therefore,

e(_w(g_lxla T, ... ,an) + 2(17 1))
-1

g (gt (- w0 7L, )
7=0

—e(wor])(a1,..., )
n—1 n—1

+€ZZ 2+JU}OO’ (xla--wwja:jJrl;---’xn)
j=1 i=j
n j—1

+GZZ S+]w00'n 1,7— l(xlw"axsstrlu...,QZn).
Jj=2 s=1

Lemma 5.28. For alln > 0,w € 77, (G, A) and x1,...,2, € G

(6"7e) (z1,..., @) — Qg <1x1—16($2, . ,xn)) —w (T1,..., %)

n—1 —
]+l Ty g
Loy | | Og 0 Qg (ayy | Lyg(ay)? E woa, (Ta,. .. Tn)

gEA ]:0

—w' (x1,...,2,)
Proof. Let n =1. By Remark- L9y € H, then

Og(—w(g™' 7)) = Oy(—Lygmywig'x)).
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5.2 The construction of w' Globalization

Thus using that fact and Lemma [5.23 we have

(8%)(2) = a(lom10) —w(z) =1, [ ] by (~w(g™"a))

geA
= 190 H 99(_177{(17)11](9711,))’
geA
by Lemma [5.26

1, H ‘99<_177‘17($)w(g_1‘r>> =—-1, H 69<ani’(x)(Lﬁ(z)*lw(x_lg)_l)))

geA geA

— 1, [ 0s(1g-10w 0 7 (2)).

geA

By Remark we obtain

9

99(19—19011) o7 (x)) = 99(19—1 ly-1,w o (x)) = 99(1(9—1’1)21) oTi(x)).

In that proof of Lemma [5.21| we show that

geEA

Hence,

L [] 6,(1g-10w o 7 (2)) = 1, [ [ Oy (w o 7{(2)).

geA geEA

Therefore, by Definition [5.22| and the fact that (z—1g)~! = w(ofi(_)ilg) we have that

(0%)(2) — ap(1p1) —w(z) = — 1, H 0 0 g (a) (1’7i’(z)*1w (Jg’(*)ilg»

geA
—w'(z).
For n > 1. By Lemma we get
6(—W(g_11}1, L2, ... 7xn) + 2(17 1))

. 1
= eaﬂf@l) (177f(1‘1)71 <_1)J+1w © Unl lgj (ill'z, 7$n))
7=0
—e(wor])(z1,...,on)
n—1 n—1
+ezz<_1)l+]woag 1z(x17 y LjLj+1, ,.an)
=1 i=j
n j—1
+€ZZ<—1)S+JU)OO'TZ 1,9 1(1’1, ,$S$S+1, 7xn)7
7j=2 s=1
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5.2 The construction of w' Globalization

where
e_ng(mH = ly101,.., Hlnlm,,"

Taking 7' =j — 1 in the sum (2), we rewrite it as

n—1 j'

Z Z(_1)5+j’+1w o afhu/ (T4, ey TsTgaty ey Tp)

§'=1 s=1

switching the order of summation we get

—_

1

n—1iln

(1) o Oy 1 (T1ye e TsTsgny 5 W)

v

s=1j

s

and that is the opposite of the formula (1). Then

e(—w(g 'y, 2o, .., 20) + 2(1,1))

n—1
. x*l
= €09 (gy) (1,7{(901)71 Z(—l)le o anl_l?j (g, ... ,xn)>
=0
—e(wotd) (x1,...,2n).

Applying 6, to the both sides of previous formula, and since n/(zy,...,2;) € H
for all i, we may remove [[_, L9(ey,...;) from e. Moreover using the fact that

ngA 0y(Lig-121,20)) = L(a1,...0n), We Obtain

Lias,. 7xn)H6’ w(g oy, 2o, .., 2n) + 2(1,1))

geA
- 1t (x1,.Tn) H 8 O Qg (x1 nd(z1)~!
geEN
n—1 —
Z(—l)”“w © Uﬁlfj(xz, oy Tn)
§=0
- 1(-7317---7$n) H 99 owo Tg(lj, .. 7.’,Un).
geA
Finally, using Definition and Lemma [5.23| we obtain the desire result. O]

Lemma 5.29. Forallz € G and a: ' — A one has

Oy <1x1 H Qg(a(g))> =1, H Qg O Qg (z) <1n{’(x)*1a(x_1g)) .

geA geN
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5.2 The construction of w' Globalization

Proof. First observe using |(ii)| of Lemma that
Llla="11 a= 11 @
€N gENACD.  giigen

where a, is an arbitrary element of .4,. We may replace the condition g € A by a
stronger one g,x71g € A, and since we may put 1,-1, inside of 6,. Thus,

1, H@ O Qg () (1 9 ()~ 1(1,(37 g > =1, H 0 ( 1z (z) <1nf(m)—1a(x_1g>>> :
geh gw~tgeA

Observe that

1g_1xanz1:(x) (1,7i;($)71a(x*1g)> = Qg-1g4, O CKE (1(17719)71 1n£17(m)71,a($71g)>

denote the argument of «, g in the previous equality by b = b(g, x), then by Remark

[6.20] we get
g0 g1,0 aﬁ(b) = pr, oqy (19710457713; o aﬁ@))

= PIy 00l 0 Q-1 0 Qy <1x71 1$71gaﬁ(b)>
= pr, oay (1p-11,-150,-14(D)) .

As xzx—lg =g € A, by of Lemma |5.17] we have Aﬂ C D, and a, <Aﬂ> =
A,. Moreover, Aﬁ C Dy-14. Hence, in view of Lemma

pr, o0, <1$71 1$71gaﬂ(b)> = Qg O PI'=1, <1m*11x*19am(b))
= Qy O pI‘ Oé (b)
= Qg © eﬁ(b%

and consequently

Og © () <1nff(:¢)*1a (x_—lg)) =0 QE(I)) = Q0 Qﬁ (a (x_—lg)) :

Here we used Remark - to remove 1,9(,)_; and 1 . , from b. It follows that

H 99 <1g—1x()éni1($) <1n£17(x)—10,(x_1g>)>

g,z lgeA
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5.2 The construction of w' Globalization

To check the latter equality we have to check it in every block A; of A, where t € A,
) = A, and e A = A -1 Finally, let

it is easy to check since a,

g =x"1g € A. Theng—xx—lg—EEA then

o | TI b0 aten] =a <1xlﬂegf<a<g'>>>,

g zg’ €A g'eA
what give us the desire result. O]
Lemma 5.30. For alln > 0,w € 7, (G, A) and 1, ...,7, € G
n—1 -
T s S0P o)
geA 7=0
= aml(lml_le(xz, cey T))

Proof. Using Lemma with

—_

n—

a(g) = (—1)jwoag_17j (X9, ..., Tp),

W,
o

where n,w and x,, ..., x, are fixed and g € A’, we see that

n—1 ‘ x—lg
n) H 99 © Qpd (21) 177!f(x1)*1 (_1)Jw © O-nlfl,j ($27 cee 79571)

geA 3=0
n—1
= Lwyozn) Xy (1:):11 H 0, (Z(—l)jw o Ufzfl,j (g, ... ,xn)>> ,
geA 7=0
since Lz, . 2,) = Qay <1x1-1 Lias,..., xn)) , by Definition [5.22| we obtain

T 3
L L
—~
8
3
SN—
SN——

. 1
e [ 1050 sty <1n~‘f<m>—1 (=Y wool (s,

geh
= Qg (1,-18(22, ..., T0)).
[
Theorem 5.31. Letn >0 and w € Z, (G, A). Then w = 6""'e +w'. In particular
w' e 7, (G, A).
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5.3 Existence and uniqueness of a globalization Globalization

Proof. By Lemma [5.28| we have that

W (z1, ... ) + (677 E) (21, @)

=w(xy,...,x,)
n—1
. 1
+ Ly, zn) H Og © s () (177?(3:1)_1 (-1 wo O'nl_l?j (2, .. ,xn)>
geA =0
+ o, <1m;15 (x9,... ,xn)> :
and by Lemma [5.30] we get
W (T, )+ (677E) (2, x) = w (0, @)

5.3 Existence and uniqueness of a globalization

The aim in this section is to complete the construction of w satisfying the conditions
of Theorem [5.14. We will introduce some formulas which will be used here as well.

Lemma 5.32. Let g € A'. Then

—
77791($1a---795n) :7721_19(90%--',1%)7”2 27
NI(X1, oy iy Ty e ) =00 (T1y e T, ), 1 <0 < — 2,
772 (xlw"axn—laxnxn-‘—l) :771% (I‘l,...,xn) 77791+1 (xl,...,$n+1),n Z 1.

Proof. For the very first equality

—1
nftl—lg (112, o axn) = n(l’;l$nil . l’l_lg)
= 77(55;155;&1 Ty 1g)
=1 (1, -5 Tn)
The second equality
001 (1, Wiy ) = 0y ety (i) )
=z, 't oahatx )
=09 (L1, Tiy Tig1, -, Tp) -



5.3 Existence and uniqueness of a globalization Globalization

Finally, for the last one equality we have

lxn(m L :L‘l_lg)

00 (@0, ) Dy (T, Tst) = (2,1 -2y )
cartg) (T 1)
= (z,y .27 g) e mga (2l - 21 g)

- 777’; (xla « 3 Tn-1, xnxn—l—l) .

]

Definition 5.33. Define w o Gr— A by removing 1(z, ... 2,) from the definition of
w’ in Definition i.e

w (... x) = HengOTg(l‘l,...,l’n).
geN
Lemma 5.34. Let n > 0,w € Z,,. (G, A) and xy,...,7, € G. Then
0" = 0.
Proof. By Definition [5.13| we have
(6" (1, .. ., Tns1) = o, <1z;1£f (22, ... ,xn+1)>

-+ Z<_1)11‘T1U7/ (.’171, C. ,xixi+1, Ce ,$n+1>
=1
+ (=) M w0 (2, . 2.

Now switching w' by its definition we get

(5”@;’)(x1,...,xn+1 —0411< —1H0 wo Ty xg,...,xnﬂ)))

geEN
+ 1 H9 (E wOTg($1,~~-,$i$i+1,~--»$n+1)>
geA i=1
n+1
+12:1HQ wortd(x1,...,3,)) -
geA
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5.3 Existence and uniqueness of a globalization Globalization

Thus using Lemma [5.29| we have

(07 (1:1:11 H Gg(w e} TS(Z‘Q, c. >$n+1))>

geA

-1
=1, H 8y 0 g (1) (17751;(351)71(10 0TI 9 (24, .. ,In+1))) '

geA
Then
~ o~ 1
(5n,w/> ('Tlﬁ s 7$n+1) = 1901 H 09 © Ond(a1) <177f($1)*1 (w o 7_7951 7 (.Tg, st axn-i-l)))
geA
+ 1z H9 (Z )'w o 74 (xla--‘,Iixz‘+1,---7$n+1)>
geN =1
—i—lleH )" word (z1,...,2,)).
geN

By Remark we have

(6"w') (x1, ..., Tng1) = 1o, H@ O (g (4) <1 9(21)~ 1(wo7' o (xa, . .,:cnﬂ)))

geA
+1x1 H9 (Z I(z1.. a:)wo’rg (-7317'"axixi+17-"7xn+1)>
geA i=1
+1$1H0 "Hlng(gc1 WO TS (X1, ..., 2y)) .
geN

Therefore 0™’ = 0 if

0= ayg(ar (Lm (W o (s, ) )
—l—Z 9(z1o)W O TS (L1, oo Tiiqn, - Tng1)
+ (_l)nﬂln{’(m..‘zn)w oTI(x1,...,2p).
The right part of the previous formula is an expansion of cocycle identity

(0"w) o7 (z1,...,¥p41) = 0.

128



5.3 Existence and uniqueness of a globalization Globalization

Indeed,

(6"w) o Tg—&—l(wla ey Tpg)
= anf(m)(1nf(z1)_1w(ng(l‘17 :)32), s ’nZ-&-l(xla s 7In+1)))

- Z<_1)117ﬁ($1)m§()w (nf(xl)v s an( te )nf+1( c ), c.. ,T]g+1(. .. ))
i=1
+ (—1)n+11775(11).”7751“(._,)w (7’]?(‘%1)7 . ’ng( .. )) ’
where nf(--+) means n/(zy,...,2;). By Lemma we have

-1
L1

L. (Ug(xla@)a-~a772+1($17---7$z+1)):Tn g($27"'7xn+1);

2. (ng(xl)a s 777?(' te )nf-&-l(' ")7 s 7772+1(' o )) - Tg (Ilv cey LTy . 7xn+1)§

3. 17751](371)---775(9017---,901‘) = 177‘17(3&1951)

Hence,
0=(6"w) oy 1 (@1, .., Tns1)
= Q) <177‘1’(:v1)‘1(w 0TI (@, ,In+1))>
+ Z(—l)il,ﬁ(mlmxi)w OTI(T1,y oy TiTig 1y ey Tt)
i=1
+ (—1)"+11,ﬁ(z1._xn)w oI (x1,. .., x,).

Definition 5.35. For arbitrary n € Z* and x4, ...,x, € G, define w : G" — A

where

Now we can proof the next theorem which establish the existence of a globalization.

129



5.3 Existence and uniqueness of a globalization Globalization

Theorem 5.36. Let A be a direct product of indecomposable unital rings and o =
{ag : Dy-1 = Dy | g € G} a (non-necessarily transitive) unital partial action of G
on A. Then for any n > 0 each cocycle w € 7}, (G, A) with values in the induced
Ko (G)-module is globalizable.

Proof. By Lemma [5.10] we have the case n = 0. Now take n > 0. First consider the
transitive case, the map w : G" — A satisfies w(g1,...,9n) = Lig,...0)0(G15 - - - Gn)
which is a condition of Theorem . Indeed, recall that w' = 1, 5, w’ by Def-

,,,,,

inition and 1(;, . mn)(gn_lg) = 0" !¢ by Remark and Definition , thus

using Theorem [5.31| we have

Voroam)@ (21, 20) = Loy, )@ (21, o, ) + Loy 2oy (07726 (20, )
=w (21,...,2,) + (" e) (21,...,7,)
=w(xy,...,%,)

Then to use Theorem we only have to show that 5" = 0. Notice that by
Definition [(.35]

(0"W) (21, . .., Tng1) = (8"wW) (21, . .., Tngr) + (076" L) (21, . .., L)
By Lemma o' = 0. Hence,
(0" W) (21, .. Tpg1) = (00" ) (@1, ... Ti).

Then observe that

(576" 1) (w1, . ., Tnst) = (1x;1(5”—15) (3, ... ,mn+1)) (5.4)
+ ) (1)1, (0"7) (@1, wiig, - ) (5.5)

=1
+ (=), (6" ) (2, . . ) - (5.6)

Now observe that (5.5)) is equal to

Z(—l)ilxl [Ozm (1%—16 (w(m), ce sy W) - ,w(m)))
i=1

n—1

+ Z<_1)jg (w(i’l), e WeENWE 1)y - - - >w(i»")>
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where
Z; lfj <1
Wiy = TiTip1 i j=1
Tj+1 lfj > 1
for 1 <i<mnand1<j<n—1 Define v(i,j) = (W), Wi Wi jt1)s - - - Win)),
note that if j > ¢ then

v(i,j) = (w(i,l), s Wiig)s e W) W(E,541)5 - - - ,w(i,n))
= (.Z'l, SR T R P P 1) B P ,xn+1)
= (w(j+1,1)7 e WERLH) WG4y - - s W45 - - 7w(i,n))
=7(j +1,1),
and if j =14
V(i,9) = (T1, -+, TiTig1Tig2, - - o, Tngr) = (0 + 1,4).
Thus if j > 4 we have (i,j) = v(j + 1,4) and if j < v(4,j) = 7(j,i — 1). Hence if
Jj=i
(1)1 (v(3, ) + (1) e (v( + 1,9)) = 0.

Therefore,
n n—1
( 1)Z+] 1;516 (w(z 1)y« -+ ,w(i,j)w(i7j+1), Ce ,w(m))
i=1 j=1
n n—1
= 1o, Y > (—=1)"e(3(i, )
i=1 j=1
n—1
=1, Y (=)Me(y(i,5) + (=) e(r(G + 1,1))
i,j=1,7>1
=0.

Hence we have that (5.5)) is equal to

Z(—]_)@lxl |:Oéml <1$;1€ (w(ivg), < Wi - 7w(z,n)))

=1

+ (—1)n€ (w(i,l)a Ce 7w(i,i) ce ,U)(i’nfl)) ] .
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On the other hand (5.6 is equal to

(=)™, (") (a, . wn) = (=) ag, (1-re(xa, ., xy))

Thus,

(676" e) (1, .. Tpy1) = Qg

1,-1(87') (s, ... ,xn+1)>

S

_|_

(_1)2111 |:Oé;p1 (1$1—1€ (332, ey LTy e ,LE‘nJrl))
=1

.

1) (w(i,1)7 sy Wiigy - 7w(i,n71)) }

+
+ 1)”+10zx1(1w715($2, cey )

3 /\ /\

[y

_|_

(—1)”"“13315(10(2-,1), e 7w(i,i) Ce ,w(i,n_l))
=1

— zlg(l‘l,.. y Tp— 1)

(1xf1 (5” 1 IQ,...,l}H_l))

n

+ E Ckxl ( —16(]72,...,l‘ixi+1,...,l‘n+1)>

+ ]-1716(x17 s 7$nxn+1)
+ (—1)"*10@1(193_15(352, cey X))

— 1$1€(ZE1, e ,iL‘n_l).

.

Therefore,
(670" ) (x1, ... Tnst) = O, (1 (0" (2o, . .. ,mn+1)> (5.7)
+ Y (—1) ', (1%_18 (T, .oy Tiigy - - ,:z;nH)) (5.8)

+ (:1)”“0%1(13;715(@, ey X)) (5.9)
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The terms of the expansion of (5.7)) are

g, (110, <1x;15(x3, e ,xn+1)>> :

Qg (—1)i_11$;15(x2, ey LTy ,xn+1)> ,2<i<n,

(—1)"ay, (1%_15(:62, . ,xn)> ,
while the summands in (5.8]) and (5.9) are

_13310[zl$2 (11,2719:;15(1;37'”@”4_1)) )

(—1)i()5xl 1$1—1€ (.CUQ, D VPR A I ,anrl)) ,2 S 1 S n,

(_1)n+1a501 (1 ml_le(zg,...,rn)>

Thus the terms of the expansion of (0" e)(21, ..., Tn41) cancels and 6"6" e = 0.
Finally, for the non transitive case suppose that A is a product of blocks:

A=T[ A

AEA

i.e. each A, is an indecomposable unital ring, and let o be a unital partial action of
G on A. If « is not necessarily transitive, then for a given block Ay define its orbit
by

o) = {.A)\/ : Elg S G, Ay C Dg—l,Oég (A)\) = A)\/}.

These are the block-orbits of A with respect to a. Note that for any pair A\, \' € A such
that oy Moy # @ there exist \” € A and g,¢' € G such that Ay C Dy-1, Ay C Dy
and ay(Ay) = Ay = ag(Ay), then since Ay» C Dy N Dy we have Ay C D141
and Ay = ay-1,(Ay), therefore Ay € oy, whence 0y = o). So we can take a partition
of {Ay | A € A} of block-orbits. Let T C A be such that {o, : 4 € T} is a partition
of {Ay | A€ A} Forany p € Y, put O, =[] 4, ¢,, Ar- Therefore

A=TJo.

peY

The ring O, will be called the orbit ideal corresponding to p. Due to the way we
construct each orbit ideal O, we have that a restricted to O, is a transitive unital
partial action of G on O,. So the construction of w reduces to the transitive case
over each O,,.

[]
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For the following theorem we will use the next results from [7].

Remark 5.37. Let R be aring and {R, },em a family of unital ideals of R. Now define
the homomorphism ¢ : R — [ ,c;, Ry, given by r — (1,-7)enm, where 1, is the unity
of R, Then ¢ satisfies 7, 0 ¢(r) = 1,/ -, where m : [[ 5y Ry = Ry is the natural
projection. When a homomorphism satisfies the previous condition we say that it
respects projections, moreover ¢ is the unique homomorphism R — [] peM R,
whose respects projections.

Lemma 5.38. Let C be a not necessarily unital ring and {C, | p € M} a family of
patrwise distinct unital ideals in C. Suppose that I and J are unital ideals in C such

that
1= HCHandJ%’ HCM,

neMy pneMa
where My, My C M,C, C I for all p € My and Cy C J for all ' € Ms. If the above
1somorphisms respect projections, then there is an isomorphism

I+J7= [ ¢

which also respects projections.

Proof. First observe that I + J is a unital ring with unity element 1; +1; — 1;1;.
Indeed, for any v € I and w € J we have that

(U+w)(1]+1j—1jlj):Ulj—f-UlJ—Ul[lJ—l—U}l]+w1J—U}1[1J
=v+ovl;—vl;+wl;+w—wl;

=v+w
and

(1[+1J—1[1J)(U+U}) = 1]U—|—1J1}—1]1JU+1I’LU—|—1]U)—1]1J?U
=v+1lv—-—1v+1;w+w-— 1w
=v+w.
Now define J' = J(1; — 1;1,) . Observe that for any u € I N J we have that u = 0.
Indeed, for u € J' there exist j € J such that u = j (1, — 1;1,), so if uw € I then
j—jly €I, whence j € I and u=0. Hence, [+ J=1® J and J=(INJ)D J.
Notice that for any 1 € M; and j € J, we have that 1,5(1; —1,;1;) =1,j — 1,j =
0. Therefore, since the isomorphism J =2 H#G a1, Cu Tespects projections it can be
restricted to the isomorphism

7= [ cc]]c.

pneMo\ My neEMz
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such that respects projections. Then

I+J:I@J’%(HCM)® II ¢ %<HCM>>< II c|.

neM;y HEMo\ My pneM; HEMa\ My

the latter being isomorphic to [ e My LMo\ M) C,., which proves

I+J7= J[ c.

pneMiUMo

Furthermore, since all the isomorphisms used respect projections, the latter one too.
]

Proposition 5.39. Let A be a direct product ngA A, of indecomposable unital rings,
a a transitive unital partial action of G on A and (8, B) an enveloping action of (c, A)
with A C B. Then B embeds as an ideal into ngA, Ay, where A, denotes the ideal
By (A1) in B. Moreover, M(B) = [],cr Ay, and B is transitive, when seen as a
partial action of G on [ e Ay

Proof. By Remark there is a unique homomorphism ¢ : B — [] genr Ag, which
respects projections. We will prove that ¢ is injective. Since B = > 9eG B4(A), each

element of B belongs to an ideal I of B of the form Y.  B,.(A),zy,..., 2, € G,
Therefore, it suffices to show that the restriction of ¢ to any such [ is injective. Using
Remark [5.18, we may construct for any ¢ = 1, ...,k an isomorphism

52 A) = fu (H Ag) T 5 (A) = [ Ao

geA geA geA

which respects projections. Notice that it follows from the definition of A’ that the
ideals A,, g € A, are pairwise distinct. Hence by Lemma there is an isomorphism

I = ] A

geA”

where A" = {Z;g | g € A,i =1,...,k} C A, and it also respects projections. We
claim that the restriction of ¢ to I coincides with ¢ if one understands the product
in the right-hand side of

I = [ A,

geA”
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as an ideal in ngA/ A,. Indeed, for all g € A” and b € I one has
pr, o)(b) = 14,b = pr, o(b),

because ¢ and ¢ respect projections. Now if g € A’ \A”, then z; g ¢ A for all

i =1,...,k, since otherwise ¢ = z;7; 'g € A”. Hence, for all b = Zi:l Be, (a;) € 1
(a; € A) in view of Remark

pr, o¢(b) b—Zﬂxl(lA T ) Zﬁxz =

This proves the claim, and thus injectivity of ¢. Moreover, since ¢(I) = [[,cpn Ay is
an ideal in ], Ay, it follows that ¢(B) is also an ideal in [], _,/ Aj,-

Regarding the second statement of the proposition, notice that each element of
[I,enr Ay acts as a multiplier of B, as ¢(B) is an ideal in [,/ Ay Conversely, let
w € M(B). Then wly, = wly, - 14, € A, for all g € A'. Define a € ngA, A, by
pr,(a) = wly,. We need to show that ¢(wb) = ap(b) and ¢(bw) = ¢(b)a. Indeed
using the fact that ¢ respects projections, we get

pr (d(wb)) = 14, - wb = wly, - 14,0 = wly, -pr,(¢(b)) = pr,(ap(b))

for all g € A’. Similarly pr,(¢(bw)) = pr,(ag(b)) for arbitrary g € A’. The transitivity
of B* easily follows from the definition of A, for g € A'. n

geN’ geN

Finally the next theorem allow us to obtain the uniqueness of a globalization.

Theorem 5.40. Let A be a direct product ngA A, of indecomposable unital rings, o
a unital partial action of G on A and w; € Z,,,(G,A),i=1,2(n > 0). Suppose that
(B8, B) is an enveloping action of (a, A) and u; € Z™(G, M(B)) is a globalization of
w; 1 = 1,2. If wy is cohomologous to wsy, then uy is cohomologous to us. In particular,
any two globalizations of the same partial n-cocycle are cohomologous.

Proof. Using the same argument used in the proof of Theorem [5.36] we can consider
only the transitive case and by Proposition [5.39| we can assume, without loss of
generality, that M(B) = [[,c, Ay 2 A. Define homomorphism 9, : M(B) — M(B)
by

199 = 59 ©pry
and u, € C"(G, M(B)) by

w1,y Ty) = Hﬁgouiorg(xl,...,mn),z':1,2.

geN’
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Note that the definition of u} is analogous to that of w’ in Definition [5.22] and the
definition of ¥, is analogous to that of then using Theorem we have that
u;, € Z"(G, M(B)) and w; is cohomologous to u;, ¢ = 1,2. Suppose that w; is
cohomologous to ws. Then if we prove that u) is cohomologous to wu}, then u} and
ul, are cohomologous. First observe that since w; is a globalization of w; we have
Ly, a)ti(T1, ..o Ty) = wi(21, ..., xy,), then for arbitrary hq,..., h, € H

pry oui(hb Sy hn) = Pf1(1(h1,,..,hn)ui(h1, Sy hn)) = pry Owi(hb Sy hn)

whence
w(wy, . x,) = H Ygow; o121, .., 2y), 1 =1,2.
gen’
If wy = wy 4 6"7'¢ for some £ € O MG, A), then we get uy = uf + (671¢)" | where

(5"_15)/ (T1,...,x,) = H Y40 (5"_15) o7 (x1,. .., xy).

geN’

Then is enough to prove that
(5n—1§)/ _ 5n—1§/’

where

& (1, Tpy) = Hﬁgofoﬁ]_l (1,0 Tn1) -

geN

Observe that since we can omit the idempotents 1,
is equal to

(z1)..nf (z1

o1
H 199 ﬁnf(zﬂ(g © Tn—lg($27 o axn))
geN

+ Z(_l)ig(ngly(xl)v s 777?(' o )77;9+1(' o )7 s 7771%(1’17 SR 71‘”))

+ (=1 (1), - omi (@1, ) |-
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On the other hand (§"1¢')(zy,. .., z,) is equal to

By (H Vy00Td ((12,... ,:En)>

geN’

3 TT 0y 0 €RG. ()b )

geN’

+ (=0 ] 00 l(aa). o mioy ().

geN’

Hence to prove that (6" '¢') (21, ..., x,) = (6" 1) (x4, ..., x,), since ¥, is an homo-
morphism, we only have to show that

Bay (H oy o5o73_1<x2,...,mn>> =[] 950 By obom (@2 20)

geN geN
which is consequence of the global version of Lemma [5.29 [

Corollary 5.41. Let A be a direct product ngA A, of indecomposable unital rings, o
a partial action of G on A and (3, B) an enveloping action of (a, A). Then H}, (G, A)
is isomorphic to the classical cohomology group H"(G, M(B)).

Proof. By Proposition the map p : H, (G, M(B)) — H},.(G,A) is an homo-
morphism, thus the case n = 0 is Lemma [5.10] finally for n > 0 we have that p is
invertible by Theorems and O
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