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Resumo

Este trabalho é um estudo completo dos artigos [2] e [5]. Consideraremos a coho-
mologia parcial Hn

par(G,M) de um grupo G com valores num Kpar(G)-módulo M ,
introduzida em [2], que é definida como o functor derivado à direita do functor de
invariantes parciais. Mostrando que o functor de invariantes parciais é representável,
poderemos relacionar a cohomologia parcial de grupo com o espaço de derivações
parciais e o ideal de aumento parcial; depois, construiremos uma resolução projetiva
da álgebra B como Kpar(G)-modulo, onde B é una subálgebra de Kpar(G). Isto per-
mitirá dar uma outra caracterização da cohomologia parcial de grupo em termos de
classes de funções que satisfazem uma certa identidade de n-cociclos. Mostramos a
existência de uma sequência espectral de Grothendieck que relaciona a cohomologia
do produto smash parcial com a cohomologia parcial do grupo e a cohomologia da
álgebra. Dada uma ação parcial unital α de G em uma álgebra A, consideramos a
estrutura de Kpar(G)-módulo de A induzida pela ação α e estudamos o problema
de globalização para a cohomologia parcial em A. O problema é reduzido a uma
propriedade de extensibilidade de cociclos. Além disso, se A é um produto de blocos,
mostramos que qualquer cociclo é globalizável e que as globalizações de cociclos co-
homólogos também são cohomólogas, de onde temos que Hn

par(G,M) é isomórfico ao
grupo de cohomologia usual Hn(G,M(B)), onde B é a álgebra sob a ação envolvente
de α e M(B) é a álgebra de multiplicadores de B.
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Abstract

This work is a full study of the papers [2] and [5]. We consider the partial group
cohomology Hn

par(G,M) of a group G with values in Kpar(G)-module M , introduced
in [2], which is defined as the right derived functor of the functor of partial invariants.
Showing that the functor of partial invariants is representable, we relate the partial
group cohomology with the space of partial derivations and the partial augmentation
ideal; next, we construct a projective resolution of the algebra B as a Kpar(G)-module,
where B is a commutative subalgebra of Kpar(G). This allows us to give another
characterization of the partial group cohomology in terms of classes of functions that
satisfy a certain identity of n-cocycles. We show the existence of a Grothendieck
spectral sequence that relates the cohomology of the partial smash product with the
partial group cohomology and the algebra cohomology. Given a unital partial action
α of G on a algebra A we consider the Kpar(G)-module structure of A induced by
α and study the globalization problem for the partial cohomology with values in A.
The problem is reduced to an extendibility property of cocycles. Moreover, if A is
a product of indecomposable blocks, we show that any cocycle is globalizable, and
globalizations of cohomologous cocycles are also cohomologous, whence we have that
Hn
par(G,M) is isomorphic to the usual cohomology group Hn(G,M(B)), where B is

the algebra under the enveloping action of α and M(B) is the multiplier algebra of
B.
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CHAPTER 1

Introduction

Partial actions, partial representations, the corresponding crossed product and the
interaction between them were introduced by R. Exel in [17, 18, 19] as methods
of study C∗-algebras. Those works started the development of the theory of partial
projective group representations in [10, 11, 12, 13], and the study of group cohomology
based on partial actions in [2], [5] and [14]. For an overview of publications on partial
actions, related concepts and more details see [16] and [9]. Spectral sequences were
invented by J. Leray and R. C. Lyndon in 1940s. In homological algebra and algebraic
topology, spectral sequence is a tool that allows us to compute homology groups
using approximations of it. In an informal way we can think of a spectral sequence
(Er, dr)r≥1 as a book with infinite pages, where the next page is the homology of the
previous page, and as we go through the pages we get closer to the homology that we
want to compute.

We begin recalling preliminaries in Chapter 2. We give the definition of a partial
group representation and an inverse semigroup, next we show some properties of
the semigroup S(G) introduced by R. Exel in [17], with that we define the algebra
Kpar(G) as the K-algebra with base S(G), and show that the category of partial
representations of G and the category of representations of Kpar(G) are isomorphic.
We also recall the definition of a partial action of G on an algebra A, and show that a
unital partial action of G on A induces a structure of Kpar(G)-module to A. In Section
2.2 we recall the construction of the partial smash product (also called partial skew
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Introduction

group ring) AoαG, and some kind of universal property for the partial smash product.
We also give the definition of a covariant pair, which is a pair in RepA × ParRepG
with certain compatibility property. Then we show that the category of the partial
smash representations and the category of covariant pairs are equivalent. Later we
show, as is proved in [6], that the partial group algebra Kpar(G) is isomorphic to
a partial smash algebra B oβ G, where the algebra B is the commutative algebra
generated by the idempotents of S(G). As a last result of this section we show
that the algebra B has a structure of Kpar(G)-module given by conjugation. Finally,
in Section 2.3 we recall some definitions and fundamental known results regarding
spectral sequences with the final objective of proving Theorem 2.106, which is used
to obtain the main result of the Chapter 4.

In Section 3.1 we work with some results obtained in [2]. We define the partial
group cohomology Hn

par(G,M) of a group G with values in a Kpar(G)-module M as
the right derived functor of the functor of partial invariants (−)Gpar , which we prove
to be equivalent to functor HomKpar(G)(B,−), that is, (−)Gpar is representable. Later
we define partial derivations as K-linear maps δ : Kpar(G) → M which satisfy a
certain Leibniz rule, and the partial augmentation ideal defined as the kernel of the
map Kpar(G) → B such that [g1][g2]...[gn] 7→ e(g1,g2,...,gn). After that we relate the
partial group cohomology with the vector space of partial derivations Derpar(G,M)
and the partial augmentation ideal. In Sections 3.2 and 3.3 we study a part of
the theory developed in [5]. Using the results obtained in the previous section to
give another characterization of the 1-st cohomology group H1

par(G,M) in term of
classes of maps d : G → M of maps that satisfy certain conditions, which form a
vector space denoted D(G,M), showing an isomorphism between the vector space
of partial derivations Derpar(G,M) and D(G,M). Later we define the projective
modules Pn as the direct sum of some submodules of Kpar(G), with the modules
Pn we construct a projective resolution of Kpar(G)-module of B in order to obtain
another characterization of Hn

par(G,M). After that we define the groups Cn
par(G,M)

in an analogous way to the groups Cn(G,M) used in the construction of the classical
cohomology group Hn(G,M). Then we show that HomKpar(G)(Pn,M) ∼= Cn

par(G,M)
and that Hn

par(G,M) is related to some functions of Cn
par(G,M).

Chapter 4 corresponds to the final section of [2]. We relate the cohomology of
partial smash products with the partial group cohomology and algebra cohomology,
showing with Theorem 2.106 that there exists a Grothendieck spectral sequence that
relates those cohomologies.

In Section 5.1 we study the final section of [5]. We work with an algebra A over a
commutative ring K and a unital partial action α of G onA. We can define a Kpar(G)-
module structure on A and study the globalization problem for the cohomology with
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Introduction

values in this module. We fix an enveloping action (B, β) of α, and since the algebra
B is not necessary unital we work more generally with the multiplier algebra M(B)
of B. First we prove that a cocycle w ∈ Zn

par(G,A) is globalizable if, and only if,
there exists a certain extension w̃ : Gn → A which satisfies some n-cocycle equality.
In Section 5.2 we take an arbitrary cocycle w ∈ Zn

par(G,A) and construct a more
manageable n-cocycle w′ ∈ Zn

par(G,A) cohomologus to w. In Section 5.3 using the
results obtained in the two previous sections we show that if A is product of blocks
then any cocycle from Zn

par(G,A) is globalizable (Theorem 5.36). We prove Theorem
5.40 which says that globalizations of cohomologous cocycles are also cohomologous.
Using Theorems 5.36 and 5.40 we prove that Hn

par(G,M) is isomorphic to the usual
cohomology group Hn(G,M(B)).
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CHAPTER 2

Preliminaries

In this chapter we recall all the necessary definitions and results that will be used
through this work. Let G be a group and K be any field. We denote by 1G the
identity of G.

2.1 Partial representations, inverse semigroups and partial actions

First we will show the definitions and some known results about partial representa-
tions, inverse semigroups and partial actions. Most of the results in this part are
taken from [16].

Definition 2.1. A partial representation of G on the K-vector space V is a map
π : G→ EndK(V ) such that, for any s, t ∈ G, we have:

(a) π(s)π(t)π(t−1) = π(st)π(t−1),

(b) π(s−1)π(s)π(t) = π(s−1)π(st),

(c) π(1G) = 1,

where 1 = idV . More generally, we recall that a map π : G→ S is a partial represen-
tation, where S is an unital algebra or just a monoid, if it satisfies items (a), (b) and
(c).
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

In other words, π is a partial representation of G if the equality π(s)π(t) = π(st)
holds when the two sides are multiplied either by π(s−1) on the left or by π(t−1) on
the right.

Example 2.2. Any representation of G is a partial representation; moreover, if H is
any subgroup of G and π : H → EndK(V ) is a partial representation of H, then the
map π̃ : H → EndK(V ) given by

π̃(g) =

{
π(g) if g ∈ H

0 otherwise

defines a partial representation of G.

Definition 2.3. Let π : G → EndK(V ) and π′ : G → EndK(W ) be two partial
representations of G. A morphism of partial representations is a morphism of
vector spaces f : V → W , such that the next diagram commutes:

V W

V W

π(g)

f

f

π′(g)

that is f ◦ π(g) = π′(g) ◦ f ∀g ∈ G.

The category of partial representations of G, denoted ParRepG is the category
whose objects are pairs (V, π), where V is a K-vector space and π : G→ EndK(V ) is
a partial representation of G on V , and whose morphisms are morphisms of partial
representations.

Definition 2.4. A set S together with a binary operation · is called a semigroup if
satisfies the associative property, i.e. for all a, b, c ∈ S, the equation a ·(b ·c) = (a ·b) ·c
holds.

Definition 2.5. Given two semigroups S and T , a map f : S → T is an homomor-
phism between semigroups if satisfies that f(ab) = f(a)f(b) for all a, b ∈ S.

Definition 2.6. A semigroup S is said to be regular, if for each x in S there exists
an element x∗ in S such that

i) xx∗x = x,
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

ii) x∗xx∗ = x∗.

The element x∗ is called an inverse of x. If moreover the idempotent elements of S
commute then S is said to be an inverse semigroup.

Remark 2.7. If S is an inverse semigroup, then for each x ∈ S the element xx∗ is
idempotent, since (xx∗)(xx∗) = x(x∗xx∗) = xx∗.

The next proposition gives us a definition equivalent to Definition 2.6, showing
that the uniqueness of the inverse elements is a necessary and sufficient condition for
a regular semigroup to be an inverse semigroup.

Proposition 2.8. Let S be a regular semigroup. Then any x in S has an unique
inverse if, and only if, the idempotents of S commute.

Proof. Let S be a regular semigroup in which the idempotents of S commute and let
u and v be inverses of x. Then

u = uxu = u(xvx)u = (ux)(vx)u,

where both ux and vx are idempotents. Thus, since idempotents commute, we have

u = (ux)(vx)u = (vx)(ux)u = vxu = (vxv)xu = v(xv)(xu),

then
u = v(xv)(xu) = v(xu)(xv) = v(xux)v = vxv = v.

Hence u = v.

To prove the converse, let S be a regular semigroup such that each element has
a unique inverse. Let e and f arbitrary idempotents in S and let x be the inverse of
ef . The element fxe is an idempotent. Indeed,

(fxe)2 = f(xefx)e = fxe.

Moreover fxe is the inverse of ef, since

(fxe)ef(fxe) = (fxe2)(f 2xe) = fxe

and
(ef)(fxe)(ef) = (ef 2)x(e2f) = (ef)x(ef) = ef.

Any idempotent is self-inverse, and by the uniqueness of the inverse we have that
ef = fxe, so ef is idempotent and it is self-inverse. Notice that we have proved that
the product of idempotents is an idempotent, in particular, so is fe. Now observe
that

ef(fe)(ef) = (ef)(ef) = ef and fe(ef)fe = fe,

that is, fe is the inverse of ef , but since ef is self-inverse then fe = ef .
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

Corollary 2.9. If S is an inverse semigroup, then (x∗)∗ = x for any x ∈ S.

Remark 2.10. Given s and t in an inverse semigroup S, we have that (st)∗ = t∗s∗.
Indeed, since xx∗ is idempotent for any x in S, then

st(t∗s∗)st = s(tt∗)(s∗s)t = s(s∗s)(tt∗)t = st,

and
(t∗s∗)st(t∗s∗) = t∗(s∗s)(tt∗)s∗ = t∗(tt∗)(s∗s)s∗ = t∗s∗.

Proposition 2.11. Let S be an inverse semigroup. Then the relation given by

s ≤ t⇔ s = te, for some idempotent e,

is a partial order.

Proof.

• Reflexive: For s ∈ S, we have s ≤ s since s = ss−1s and s−1s is idempotent.

• Antisymmetric: Given a, b ∈ S, if a ≤ b and b ≤ a, then a = be and b = ai
where e and i are idempotents, as ei = ie we have:

a = be = aie = aiei = bei = ai = b.

• Transitive: Let a, b and c be in S such that a ≤ b and b ≤ c. Hence a = be1 y
b = ce2, Therefore a = c(e2e1) since e2e1 is idempotent, thus a ≤ c.

The partial order obtained in Proposition 2.11 is called the natural partial order
on the inverse semigroup.

The next lemma gives equivalent definitions of the natural partial order.

Lemma 2.12. For an inverse semigroup S the next conditions are equivalent:

1. s ≤ t,

2. s = ft for some idempotent f ,

3. s−1 ≤ t−1,

4. s = ss−1t,
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

5. s = ts−1s.

Proof.

• (1) ⇒ (2). If s ≤ t then s = te for some idempotent e. Taking f = tet−1, f is
idempotent since

f 2 = (tet−1)(tet−1) = tt−1tet−1 = tet−1 = f

and ft = (tet−1)t = tt−1te = te = s.

• (2)⇒ (3). Since s = ft then s−1 = t−1f , hence s−1 ≤ t−1.

• (3) ⇒ (4). If s−1 ≤ t−1 then s−1 = t−1e for some idempotent e, hence s = et.
Thus ss−1 = ett−1e = ett−1, Therefore s = et = (ett−1)t = ss−1t.

• (4) ⇒ (5). As s = ss−1t then s−1 = t−1ss−1 and s−1s = t−1ss−1t, hence
s = ss−1(tt−1t) = t(t−1ss−1t) = ts−1s.

• (5)⇒ (1). It is clear by the definition of the natural partial order of an inverse
semigroup.

Definition 2.13. A partial function f : X → Y , is a function f : X ′ → Y ′ where
X ′ ⊆ X and Y ′ ⊆ Y . Given two partial functions f : X → Y and g : Y → W the
composition g ◦ f : X → W is the partial function with domain f−1(dom g ∩ im f),
such that g ◦ f(x) = g(f(x)) for any x ∈ f−1(dom g ∩ im f).

Definition 2.14. Let X be a set. Then

I(X) := {f : A→ B | A ⊆ X, B ⊆ X and f is a bijection }

with the composition of partial functions is an inverse monoid, called the symmetric
inverse semigroup over X.

The Wagner–Preston representation Theorem says that any inverse semi-
group can be embedded in a symmetric inverse semigroup. Then for s in an inverse
semigroup S we can understand the elements ss∗ as the identity map on the image
of s and s∗s as the identity map on the domain of s. Thus we can understand the
natural partial order as follows: s ≤ t if, and only if, s is a restriction of t.
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

Definition 2.15. Let ∼ be an equivalence relation of a semigroup S. We say that ∼
is a congruence if it is compatible with the semigroup operation, that is, ∼⊆ S × S
is an equivalence relation and for x, y, a, b ∈ S, if x ∼ y and a ∼ b then ab ∼ by.

It is easy to see that if we have a congruence ∼ of a semigroup S, then the set
of the equivalence classes S/ ∼ is a semigroup with the operation induced by S.
Moreover, the natural projection π : S → S/ ∼ is a surjective homomorphism.

Definition 2.16. Let S be a semigroup, if R ⊆ S × S we define the congruence
generated by R as the intersection of all the congruences that contains R.

Remark 2.17. The congruence generated by R ⊆ S × S exists since the arbitrary
intersection of congruences is a congruence and the fact that ∼= S × S is trivially a
semigroup congruence of S.

One of the most important inverse monoids in this work is S(G), defined by R.
Exel in [17], which plays an important role in the construction of the partial group
algebra Kpar(G).

Definition 2.18. Let G be a group. Denote by S(G) the monoid defined by the
generators [t], t ∈ G, and relations:

(1) [1G] = 1;

(2) [s−1][s][t] = [s−1][st];

(3) [s][t][t−1] = [st][t−1];

for any t, s ∈ G. That is, define S(G) = [G]/ζ, where is [G] the free semigroup
generated by the set of symbols {[g] | g ∈ G} and ζ is the congruence generated by the
set

R = {([s−1][s][t], [s−1][st]), ([s][t][t−1], [st][t−1]), ([1G], 1) | s, t ∈ G} ⊆ [G]× [G].

Remark 2.19. Let ψ : [G] → G be the semigroup homomorphism given by [g] 7→ g,
and let π : [G]→ S(G) be the natural projection . Define

Ω = {(x, y) ∈ [G]× [G] | ψ(x) = ψ(y)}.

Clearly Ω is an equivalence relation and it is a congruence since ψ is a homomor-
phism. Furthermore, notice that R ⊆ Ω, therefore ζ ⊆ Ω. Thus, for any z ∈ S(G) we
have that ψ(π−1(z)) is well-defined. Indeed, if a, b ∈ [G] are such that π(a) = π(b)
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

then (a, b) ∈ ζ ⊆ Ω, therefore ψ(a) = ψ(b). Then we can define the semigroup
homomorphism

η : S(G) → G

z 7→ ψ(π−1(z))

Therefore, η is a semigroup homomorphism such that η([g]) = g, for all g ∈ G.

We define for each g ∈ G the element eg = [g][g−1] ∈ Kpar(G). Notice that for
all g ∈ G the element eg is idempotent, egeg = [g][g−1][g][g−1] = [g][g−1] = eg. Also
these elements satisfy the following relation:

[g]eh = egh[g].

Indeed,

[g]eh = [g][h][h−1] = [gh][h−1] = [gh][h−1g−1g]

= [gh][(gh)−1g] = [gh][(gh)−1][g]

= egh[g].

Then we have that the elements eg commute among themselves,

egeh = [g][g−1]eh = [g]eg−1h[g
−1]

= egg−1h[g][g−1] = eheg.

The next useful results were proved first in [17].

Proposition 2.20. Any element ω in S(G) admits a decomposition

ω = eg1eg2 ...egn [s],

where n ≥ 0 and g1, g2, ..., gn, s are elements of G. In addition, one can assume that

i) gi 6= gj for i 6= j,

ii) gi 6= s for any i.

Proof. Let S be the subset of S(G) consisting of those ω that do admit a decompo-
sition as above. Since n = 0 is allowed, we see that each [s] belongs to S. To prove
the statement we only have to verify that S is a subsemigroup of S(G), in view of
the fact that the set {[s] ∈ S(G)} generates S(G).
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2.1 Partial representations, inverse semigroups and partial actions Preliminaries

Let ω = er1er2 ...ern [s]. It suffices to demonstrate that ω[t] belongs to S, since this
will prove S to be a right ideal and hence a subsemigroup. Now, note that

[s][t] = [s][s−1][s][t] = [s][s−1][st] = es[st].

So
ω[t] = er1 ...ern [s][t] = er1 ...ernes[s][t] = er1 ...ernes[st].

If s 6= ri for any i ∈ {1, 2, ..., n} then er1 ...ernes[st] ∈ S, on the other hand if s = ri
for some i ∈ {1, 2, ..., n} we have er1 ...ernes[st] = er1 ...ern [st] ∈ S since the elements
eg are central idempotents.

Remark 2.21. Let η : S(G)→ G be the homomorphism of semigroups defined above.
It is clear that η(eg) = 1G for any g ∈ G. Now let ω be in S(G), and assume that we
have two decomposition er1er2 ...ern [s] and eh1eh2 ...ehm [t] of ω. Then

s = η(er1er2 ...ern [s]) = η(eh1eh2 ...ehm [t]) = t.

Now let e be an idempotent element in S(G), then by Proposition 2.20 there exists a
decomposition er1er2 ...ern [g] of e. Since e is idempotent then

er1er2 ...ern [g]er1er2 ...ern [g] = er1er2 ...ern [g],

thus
g = η(er1er2 ...ern [g]) = η(er1er2 ...ern [g]er1er2 ...ern [g]) = g2.

Since G is a group, it follows that g = 1G. Therefore e = er1er2 ...ern , that means that
the set {eg | g ∈ G} generates all the idempotents of S(G).

Finally, if e and f are idempotents in S(G) we have that e[s] = f [t] if, and only
if, s = t and ees = fes. Indeed, by the first part we have s = t, then e[s] = f [s]
therefore ees = e[s][s−1] = f [s][s−1] = fes.

Remark 2.22. In fact any α ∈ S(G) admits a unique standard decomposition

α = εr1 . . . εrn [s]

up to the order of the εr’s. For more details see [17].

Proposition 2.23. S(G) is an inverse semigroup.

Proof. First observe that by definition of S(G) for any g ∈ G we have that [g−1] is
an inverse of [g], moreover given t ∈ G we have that [t−1][g−1] is an inverse of [g][t].
Indeed,

[g][t][t−1][g−1][g][t] = [g][g−1][g][t][t−1][t] = [g][t],

13



2.1 Partial representations, inverse semigroups and partial actions Preliminaries

and
[t−1][g−1][g][t][t−1][g−1] = [t−1][t][t−1][g−1][g][g−1] = [t−1][g−1].

Thus by induction we prove that for g1, g2, ..., gn ∈ G we have [g−1
n ][g−1

n−1] . . . [g−1
1 ] is

an inverse of [g1][g2] . . . [gn]. Finally by Remark 2.21 idempotents are generated by
the set {eg | g ∈ G}, and we have that egeh = eheg for any g, h ∈ G.

Let us denote by s−1 the inverse of s in S(G).

Lemma 2.24. Let η be the morphism defined in Remark 2.21. Then for each s ∈
S(G) we have s = ss−1[η(s)].

Proof. Let s be in S(G), then by Proposition 2.20 and Remark 2.21 we have s =
e[η(s)] for some idempotent e ∈ E(S(G)). Then

ss−1[η(s)] = s(e[η(s)])−1[η(s)] = s[η(s)−1]e[η(s)] = s([η(s)−1]e)(e[η(s)]) = ss−1s = s.

Definition 2.25. Given a group G and a field K, the partial group algebra
Kpar(G) is the semigroup algebra of S(G) over K, i.e. the algebra with K-basis
S(G).

Kpar(G) has the following universal property.

Proposition 2.26. The map

ψ : g ∈ G 7→ [g] ∈ Kpar(G)

is a partial representation, which we will call the universal partial representation
of G. In addition, for any partial representation π of G in a unital K-algebra B there
exists a unique algebra homomorphism

φ : Kpar(G)→ B,

such that π(g) = φ([g]), for any g ∈ G.

Proof. It is clear that by Definition 2.25, ψ is a partial representation.

In order to prove the universal property of Kpar(G), we define F as the free K-
algebra generated by set of symbols

{
[g] | g ∈ G

}
, and I the ideal of F generated by

the set {
[s−1][s][t]− [s−1][st], [s][t][t−1]− [st][t−1] | s, t ∈ G

}
⊆ F.

14
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Notice that [g] ∈ F/I 7→ [g] ∈ Kpar(G) is an algebra isomorphism. Indeed, by
the universal property of free algebras there exists an unique algebra morphism f :
F → Kpar(G) such that f([g]) = [g]. Observe that ker f = I, therefore the map
F/I → Kpar(G) induced by f is an algebra isomorphism.

By the universal property of free algebras there exists an unique algebra morphism
φ′ : F → B such that π(g) = φ′([g]). Notice that I ⊆ ker (φ′), since

φ′([s−1][s][t]− [s−1][st]) = π(s−1st− s−1(st)) = 0.

Then there exist an unique morphism φ : F/I → B such that φ([g]) = π(g). Finally,
as Kpar(G) ∼= F/I, there exist an unique morphism φ : Kpar(G) → B such that
π(g) = φ([g]).

Theorem 2.27. The categories ParRepG and RepKpar(G) are isomorphic.

Proof. Let V be a K-vector space and let πV : G → EndK(V ) be a partial repre-
sentation of G in V . Then by Proposition 2.26 there is an unique representation
φV : Kpar(G) → EndK(V ) such that φV ([g]) = πV (g). Now given two partial rep-
resentations πV : G → EndK(V ) and πW : G → EndK(W ) of G and a morphism
of partial representations f : V → W . Thus from f ◦ πV (g) = πW (g) ◦ f we have
that f ◦ φV ([g]) = φW ([g]) ◦ f . Therefore f defines a morphism of representation.
Conversely, if φV : Kpar(G) → EndK(V ) is a representation, then πV (g) = φV ([g])
gives a partial representation of G in V .

Another important concept in this work is the notion of a partial action.

Definition 2.28. Let G be a group and A an algebra. A partial action α of G on A
is given by a collection {Dg}g∈G of ideals of A and a collection {αg : Dg−1 → Dg}g∈G
of algebra isomorphisms, satisfying the following conditions:

(1) De = A and αe = idA,

(2) αh
(
Dh−1 ∩D(gh)−1

)
= Dh ∩Dg−1,

(3) if x ∈ Dh−1 ∩D(gh)−1 then αgαh(x) = αgh(x).

Remark 2.29.

1. We can see in [16] that the conditions (2) and (3) can be replaced by the
condition:

15
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• αg ◦αh ⊆ αgh for any g and h in G (where if f and f ′ are maps then f ⊆ f ′

means that f is a restriction of f ′),

Moreover, condition (2) can be replaced by the “weaker” assumption:

• Dh ∩Dg−1 ⊆ θh
(
D(gh)−1

)
.

2. Notice that given a partial action θ of G on A we have that θg and θh are partial
functions, for any g, h ∈ G, therefore θg ◦ θh means the composition of partial
function. Thus the domain of θg ◦ θh is the set

{x ∈ Dh−1 : θh(x) ∈ Dg−1} = θ−1
h (Dg−1) = θ−1

h (Dh ∩Dg−1).

Example 2.30. An action of G on an algebra A is clearly a partial action, defining
Dg = A for any g ∈ G and αg the map a ∈ A 7→ g(a) ∈ A. Moreover, any unital ideal
of A carries a partial action: if B is such an ideal, with unit 1B, then a partial G-
action β on B is obtained by defining Dg = B∩g(B) and βg to be the restriction of αg
to the ideal Dg−1. Note that each ideal Dg of B is also unital, with unit ug = 1Bg(1B).
We can see this example more details in [16, p.15].

Definition 2.31. Let
(
A, {Dg}g∈G , {αg}g∈G

)
and

(
B, {Eg}g∈G , {βg}g∈G

)
be partial

actions. A morphism of partial actions

ϕ :
(
A, {Dg}g∈G , {θg}g∈G

)
→
(
B, {Eg}g∈G , {βg}g∈G

)
is an algebra morphism ϕ : A→ B such that ϕ(Dg) ⊂ Eg and

16
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Dg−1 Dg

Eg−1 Eg

ϕ

αg

βg

ϕ

commutes for each g ∈ G. That is ϕ (αg(x)) = βg (ϕ(x)) for any g ∈ G and x ∈ Dg−1.

Definition 2.32. A partial action α is called unital if each Dg is a unital algebra,
that is Dg = ugA where ug is a central idempotent in A.

The next fact is very well known and allows us to relate the concepts of partial
action and partial representation. Moreover we can also relate the concept of Kpar(G)-
module.

Lemma 2.33. Let (A,α) be an unital partial action of a group G on an algebra A.
Then the map

πα :G→ EndK(A)

g 7→ παg

where παg (a) = αg(1g−1a) is a partial representation of G.

Proof. We have πα1G(a) = α1G(a) = a thus πα1G = idA. Now observe that

παg−1παg π
α
h (a) = αg−1(1gαg(1g−1αh(1h−1a)))

= αg−1αgαh(1h−11h−1g−1a)

= αg−1αgh(1h−11(gh)−1a)

= αg−1(1g1ghαgh(1(gh)−1a))

= αg−1(1gαgh(1(gh)−1a)) = παg−1παgh(a)

Finally the last condition of Definition 2.1 is proved in an analogous way.

Remark 2.34. By Lemma 2.33 and Theorem 2.27 we have that if (A,α) is an unital
partial action of a group G on an algebra A, then A has a structure of Kpar(G)-module
given by α.

17



2.1 Partial representations, inverse semigroups and partial actions Preliminaries

Lemma 2.35. If πM : G→ EndK(M) and πN : G→ EndK(N) are partial represen-
tation, then θ : G → EndK(HomK(M,N)), given by θ(g)(f) = πN(g) ◦ f ◦ πM(g−1),
is a partial representation.

Proof. It is clear that θ(1G) = idHomK(M,N). Now observe that

θ(s−1)θ(s)θ(t)(f) = πN(s−1)πN(s)πN(t) ◦ f ◦ πM(t−1)πM(s−1)πM(s)

= πN(s−1)πN(st) ◦ f ◦ πM(t−1s−1)πM(s)

= θ(s−1)θ(st)(f)

and

θ(s)θ(t)θ(t−1)(f) = πN(s)πN(t)πN(t−1) ◦ f ◦ πM(t)πM(t−1)πM(s−1)

= πN(st)πN(t−1) ◦ f ◦ πM(t)πM(s−1t−1)

= θ(st)θ(t−1)(f).

Lemma 2.36. Let A be a unital algebra. If π : G → A is a partial representation,
then θ : G→ Aop, given by θ(g) = π(g−1) is a partial representation.

Proof. First notice that θ(1G) = π(1G) = 1A. Furthermore, for any s, t ∈ G we have
that

θ(s−1)θ(s)θ(t) = π(t−1)π(s−1)π(s) = π(t−1s−1)π(s) = θ(s−1)θ(st)

and
θ(s)θ(t)θ(t−1) = π(t)π(t−1)π(s−1) = π(t)π(s−1t−1) = θ(st)θ(t−1).

Lemma 2.37. if π : G→ A, θ : G→ B are partial representation of G on the unital
algebras A and B, then Ψ : G → A ⊗K B, given by Ψ(g) = π(g) ⊗ θ(g), is a partial
representation on the algebra A⊗K B.

Proof. For any s, t ∈ G, we have that

Ψ(s−1)Ψ(s)Ψ(t) = (π(s−1)⊗ θ(s−1))(π(s)⊗ θ(s))(π(t)⊗ θ(t))
= π(s−1)π(s)π(t)⊗ θ(s−1)θ(s)θ(t)

= π(s−1)π(st)⊗ θ(s−1)θ(st)

= Ψ(s−1)Ψ(st).

In an analogous way we have that Ψ(s)Ψ(t)Ψ(t−1) = Ψ(st)Ψ(t−1). Finally, since
1A⊗KB = 1A ⊗ 1B we have that Ψ(1G) = 1A⊗KB.

18
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2.2 Partial smash product

Now we are able to construct a new algebra called partial smash product (also referred
to as the “partial skew group ring” or “partial cross product” ) denoted by Aoα G,
where α is a partial action of a group G on an algebra A.

Definition 2.38. Given a partial action α of G on A, we define the partial smash
product Aoα G to consist of all linear combinations∑

g∈G

ag#g,

where ag ∈ Dg and ag = 0 except for finitely many g’s, and the #g are used as place
markers. Therefore

Aoα G =
∑
g∈G

Dg#g

is a K-module with the product defined as

(ag#g)(bh#h) = αg(αg−1(ag)bh)#gh.

Note that αg−1(ag) ∈ Dg−1 , bh ∈ Dh and therefore

αg(αg−1(ag)bh) ∈ αg(Dg−1Dh) ⊂ αg(Dg−1 ∩Dh) ⊂ Dg ∩Dgh ⊂ Dgh.

Thus the product in Definition 2.38 is well-defined.

Remark 2.39. Notice that 1A#1G is the unit element of Aoα G. Indeed,

(1A#1G) (bh#h) = α1G

(
α1−1

G
(1A) bh

)
#1Gh = bh#h,

(ag#g) (1A#1G) = αg (αg−1 (ag) 1A) #g1G = ag#g.

Example 2.40. Let A be the commutative algebra A = k [x, y] / 〈x2, y2〉, G = 〈g : g2 = 1〉
the cyclic group of order 2 and I = Ay the ideal generated by y (generated by y and
xy as vector space). Consider the partial action α of G on A given by Dg = I,
αg(y) = xy, αg(xy) = y. Then the partial smash product A oα G is not associative.
In particular for u = x#1 + xy#g we have that: u · u = y#g then (u · u) · u = 0 and
u · (u · u) = xy#g.

In what follows we assume that each partial action is unital. In this case the
partial smash product is automatically associative and the formula of the product in
Aoα G is simplified as we will see in the next lemma.
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Lemma 2.41. Let
(
A, {Dg}g∈G , {αg}g∈G

)
be a unital partial action, i.e. each do-

main Dg is an ideal of the form Aug, where ug is a central idempotent of A for each
g ∈ G. Then, for g, h ∈ G,

(I) If Aug = Aeg where eg is a central idempotent, then ug = eg and we have that
αg(ug−1) = ug, ∀g ∈ G.

(II) (aug#g) (buh#h) = aαg (buhug−1)ugh#gh, for any a, b ∈ A. In particular if
a = b = 1A then (ug#g) (uh#h) = ugugh#gh.

(III) The map π0 : G → A oα G such that π0(g) = ug#g ∀g ∈ G is a partial
representation of G in Aoα G.

(IV) αg(ug−1uh) = ugugh and the map αg
∣∣
Dg−1∩Dh

: Dg−1 ∩ Dh → Dg ∩ Dgh is an

isomorphism.

(V) The smash product Aoα G is associative.

Proof.

(I) If Aug = Aeg we have that ug = aeg and eg = bug, thus

ug = aeg = aegeg = ugeg = egug = bugug = bug = eg.

(II) Note that by (2) of Definition 2.28 we have αg (buhug−1) ∈ Dg ∩Dgh, thus:

(aug#g) (buh#h) = αg (αg−1 (aug) buh) #gh

= αg (αg−1 (aug) buhug−1) #gh

= augαg (buhug−1) #gh

= aαg (buhug−1)ugh#gh.

(III) As u1G#1G is the unit element of AoαG then π0 satisfies (c) of Definition 2.1.
Now notice that

π0(s−1)π0(s)π0(t) = (us−1#s−1)(us#s)(ut#t)

= (us−1#1G)(ut#t)

= us−1ut#t

= (us−1#s−1)(ust#st)

= π0(s−1)π0(st),

which proves part (b) of Definition 2.1, and the item (a) can be proved in an
analogous way.
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(IV) As the domains Dg are unital ideals for each g ∈ G then

Dg−1 ∩Dh = Aug−1uh and Dg ∩Dgh = Augugh.

It is clear that αg(Dg−1 ∩Dh) ⊆ Aαg(ug−1uh), moreover given a ∈ A we have

αg(αg−1(aug)ug−1uh) = αg(αg−1(aug))αg(ug−1uh) = aαg(ug−1uh),

hence Aαg(ug−1uh) = αg(Dg−1 ∩Dh). Now by (2) of Definition 2.28

αg(Dg−1 ∩Dh) = Dg ∩Dgh,

thus
Dg ∩Dgh = Aαg(ug−1uh).

Then by (I) αg(ug−1uh) = ugugh.

(V) Using (II) we have that

(aug#g)((buh#h)(cuw#w))

= (aug#g)(bαh(cuwuh−1)uhw#hw)

= aαg(bαh(cuwuh−1)uhwug−1)ughw#ghw

= aαg(buhαh(cuwuh−1)uhwug−1ug−1)ughw#ghw

= aαg(buhug−1)αg(αh(cuwuh−1)uhwug−1)ughw#ghw

= aαg(buhug−1)αg(αh(cuwuh−1)ug−1)αg(uhwug−1)ughw#ghw

= aαg(buhug−1)αg(αh(cuwuh−1)uhug−1)ughwugughw#ghw by (IV)

= aαg(buhug−1)αg(αh(cuwuh−1)αh(uh−1g−1uh−1))ughw#ghw

= aαg(buhug−1)αgαh(cuwuh−1g−1uh−1)ughw#ghw

= aαg(buhug−1)αgh(cuwuh−1g−1uh−1)ughw#ghw

= aαg(buhug−1)αgh(cuwuh−1g−1)αgh(uh−1g−1uh−1)ughw#ghw

= aαg(buhug−1)αgh(cuwuh−1g−1)ugughughw#ghw

= aαg(buhug−1)ughαgh(cuwuh−1g−1)ughw#ghw

= (aαg (buhug−1)ugh#gh)(cuw#w)

= ((aug#g)(buh#h))(cuw#w).

Remark 2.42. The universal property of Kpar(G) and the map π0 given in (III) of
Lemma 2.41 endow Aoα G with a structure of a Kpar(G)-bimodule such that

[g] · auh#h = (ug#g)(auh#h) = αg(auhug−1)ugh#gh,
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and
auh#h · [g] = (auh#h)(ug#g) = aαh(uguh−1)uhg#hg = auhuhg#hg.

Since Aoα G is associative we have that ([g] · auh#h) · [s] = [g] · (auh#h · [s]).
Definition 2.43. Let A be an algebra on which the group G acts partially. Define
the canonical inclusion φ0 : A→ Aoα G by φ0(a) = au1G#1G = a#1G.

Remark 2.44. Notice that A = Au1G , then u1G = 1A the unity of A. It is easy to see
that φ0 is a monomorphism of algebras. Indeed,

φ0(a)φ0(b) = (a#1G)(b#1G) = ab#1G = φ0(ab),

and φ0(a) = au1G#1G = 0#1G if, and only if, au1G = 0 but u1G = 1A then a = 0.

Definition 2.45. Given a K-vector space V and a partial action α of a group G on
an algebra A, a pair of maps (φV , πV ) is said to be a covariant pair if φV : A →
EndK(V ) is a representation and πV : G→ EndK(V ) is a partial representation such
that:

φV (αg(aug−1)) = πV (g)φV (a)πV (g−1).

Definition 2.46. Given two covariant pairs (φV , πV ) and (φW , πW ), a morphism
between covariant pairs f : (φV , πV ) → (φW , πW ) is a linear map f : V → W
such that f ◦ πV (g) = πW (g) ◦ f and f ◦ φV (a) = φW (a) ◦ f ∀g ∈ G and ∀a ∈ A.

We denote by CovPair(A,G) the category of covariant pairs (φV , πV ).

Remark 2.47. Observe that if (φV , πV ) a covariant pair then

φV (ug) = φV (αg(1Aug−1)) = πV (g)φV (1A)πV (g−1) = πV (g)πV (g−1).

The partial smash product universal property is given by the following
result.

Theorem 2.48. Let α be an unital partial action of a group G on an algebra A, V a
K-vector space and (φV , πV ) a covariant pair related to these data. Then there exists
a unique algebra morphism φ : Aoα G→ EndK(V ) such that the diagram:

Aoα G

A G

EndK(V )

φ0

φV

π0

πV

φ
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is commutative.

Proof. Define φ : Aoα G→ EndK(V ) by φ(aug#g) = φV (a)πV (g). Notice that φ is
well-defined. Indeed, for a, b ∈ A and g ∈ G such that aug = bug, by Remark 2.47 we
have that

φ (aug#g) = φV (a)πV (g)

= φV (a)πV (g)πV (g−1)πV (g)

= φV (a)φV (ug)πV (g)

= φV (aug)πV (g)

= φV (bug)πV (g)

= φV (b)φV (ug)πV (g)

= φV (b)πV (g)πV (g−1)πV (g)

= φV (b)πV (g)

= φ (bug#g) .

Now we will prove that φ is an algebra morphism. Let a, b ∈ A and g, h ∈ G, then
by Remark 2.47

φ ((aug#g)(buh#h)) = φ (aαg (buhug−1)ugh#gh)

= φV (aαg (buhug−1)ugh) πV (gh)

= φV (a)φV (αg (buhug−1)αg(uhug−1))πV (gh)

= φV (a)φV (αg (buhug−1))πV (gh)

= φV (a)πV (g)φV (buh) πV (g−1)πV (gh)

= φV (a)πV (g)φV (buh) πV (g−1)πV (g)πV (h)

= φV (a)πV (g)φV (buh)φV (ug−1)πV (h)

= φV (a)πV (g)φV (buhug−1) πV (h)

= φV (a)πV (g)φV (ug−1buh) πV (h)

= φV (a)πV (g)φV (ug−1)φV (buh) πV (h)

= φV (a)πV (g)φ(buh#h)

= φ(aug#g)φ(buh#h).

It only remains to show that the above diagram commutes. For each g ∈ G we have

φπ0(g) = φ (ug#g)

= φV (ug)πV (g)

= πV (g)πV (g−1)πV (g)

= πV (g),
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and for a ∈ A,

φφ0(a) = φ (au1G#1G)

= φV (a)πV (1G)

= φV (a).

Then the diagram commutes. Finally to prove that φ is unique, notice that if there
exists another φ′ with the same proprieties, we have that for any g ∈ G and a ∈ A,

φ(ug#g) = φπ0(g) = φ′π0(g) = φ′(ug#g)

φ(a#1G) = φφ0(a) = φ′φ0(a) = φ′(a#1G)

thus φ(a#1G)φ(ug#g) = φ′(a#1G)φ′(ug#g), and then φ(aug#g) = φ′(aug#g).

We can generalize the last theorem. Let A be and algebra on which the group
G acts partially and S be a monoid, if we have φS : A → S a representation and
πS : G → S a partial representation such that φS (αg(aug−1)) = πS(g)φS(a)πV (g−1).
Then there exist a unique algebra morphism φ : Aoα G→ S such that the diagram:

Aoα G

A G

S

φ0

φS

π0

πS

φ

is commutative. The proof is analogous to that of the previous theorem.

Proposition 2.49. Let A be an algebra on which the group G acts partially. Then
RepAoα G is isomorphic to CovPair(A,G), the category of covariant pairs.

Proof. Define the functor F : CovPair(A,G)→ RepAoαG as follows: for a covariant
pair (φV , πV ), F (φV , πV ) = ΦV where ΦV is the representation obtained using Theo-
rem 2.48. If we have a morphism between covariant pairs f : (φV , πV ) → (φW , πW ),
where V and W are K-vector spaces, then f defines a morphism between the rep-
resentations ΦV and ΦW obtained using Theorem 2.48 for (φV , πV ) and (φW , πW )
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respectively. Indeed, as f is a morphism between covariant pairs we have that, for
any g ∈ G and a ∈ A:

f ◦ πV (g) = πW (g) ◦ f and f ◦ φV (a) = φW (a) ◦ f,

then by Theorem 2.48

f ◦ ΦV (π0(g)) = ΦW (π0(g)) ◦ f and f ◦ ΦV (φ0(a)) = ΦW (φ0(a)) ◦ f,

thus evaluating π0(g) = ug#g and φ0(a) = au1G#1G

f ◦ ΦV (ug#g) = ΦW (ug#g) ◦ f

and
f ◦ ΦV (au1G#1G) = ΦW (au1G#1G) ◦ f,

then we have that:

f ◦ ΦV (aug#g) = f ◦ ΦV ((ug#g)(au1G#1G))

= f ◦ ΦV (ug#g) ◦ ΦV (au1G#1G)

= ΦW (ug#g) ◦ f ◦ ΦV (au1G#1G)

= ΦW (ug#g) ◦ ΦW (au1G#1G) ◦ f
= ΦW (aug#g) ◦ f.

Thus f is a morphism between the representations ΦV and ΦW , then set F (f) = f .

Now define the functor G : RepA oα G → CovPair(A,G) as follows: for a rep-
resentation Φ : RepA oα G → EndK(V ) in RepA oα G, define φVΦ

= Φ ◦ φ0 and
πVΦ

= Φ ◦ π0, φVΦ
, πVΦ

is a covariant pair, then make F (Φ) = (φVΦ
, πVΦ

). Indeed,

φVΦ
(αg(au

−1
g )) = Φ ◦ φ0

(
αg(au

−1
g )
)

= Φ
(
αg(au

−1
g )u1G#1G

)
= Φ

(
(ug#g)(au1Gug−1#g−1)

)
= Φ (ug#g) Φ

(
(au1G#1G)(ug−1#g−1)

)
= Φ(ug#g)Φ(au1G#1G)Φ(ug−1#g−1)

=
(
Φ ◦ π0(g)

)(
Φ ◦ φ0(a)

)(
Φ ◦ π0(g−1)

)
= πVΦ

(g)φVΦ
(a)πVΦ

(g−1).

Let Φ : A oα G → V and Φ′ : A oα G → W be representations of A oα G,
and a morphism between Φ and Φ′ defined by f : V → W . Notice that f defines a
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morphism of covariant pairs between (Φ ◦ φ0,Φ ◦ π0) and (Φ′ ◦ φ0,Φ
′ ◦ π0). Indeed, as

f defines a morphism between Φ and Φ′, we have that f ◦Φ(aug#g) = Φ′(aug#g) ◦ f
for all a ∈ A and g ∈ G. Then in particular we have

f ◦ Φ(ug#g) = Φ′(ug#g) ◦ f ⇒ f ◦
(
Φ ◦ π0(g)

)
=
(
Φ′ ◦ π0(g)

)
◦ f

and

f ◦ Φ(au1G#1G) = Φ′(au1G#1G) ◦ f ⇒ f ◦
(
Φ ◦ φ0(a)

)
=
(
Φ′ ◦ φ0(a)

)
◦ f.

Then f defines a morphism between covariant pairs, thus define G(f) = f. Now it is
easy to see that FG = IRepAoαG and GF = ICovPar(A,G), where IRepAoαG is the identity
functor of RepAoα G and ICovPar(A,G) is the identity functor of CovPar(A,G).

Notice that the algebra Kpar(G) has a natural G-grading (see Remark 2.51). This
will lead us to show that for any group G the partial group algebra Kpar(G) is iso-
morphic to a partial smash product, a fact established in [6, Theorem 6.9]. First let
us recall what is a G-graded algebra.

Definition 2.50. A G-graded algebra is an algebra with a decomposition

A =
⊕
g∈G

Ag

where each Ag is a subspace of A such that AhAg ⊆ Ahg, for all g, h ∈ G.

Remark 2.51. Kpar(G) has a natural G-grading:

Kpar(G) =
⊕
g∈G

Bg,

where each subspace Bg is generated by elements of the form [h1][h2]...[hn] such that
g = h1h2...hn, that is:

Bg := 〈[h1][h2]...[hn] | g = h1h2...hn〉 .

Then for all x ∈ Bg and y ∈ Bh, xy ∈ Bgh, and thus BgBh ⊆ Bgh.

In order to prove that the partial group algebra Kpar(G) is isomorphic to a partial
smash product for any group G we are going to recall that for each g ∈ G we denote
eg = [g][g−1] ∈ Kpar(G). Now define the subalgebra

B := 〈eg | g ∈ G〉 ⊆ Kpar(G).
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Remark 2.52.

• B corresponds to the uniform subalgebra B1G coming from the natural grading
of Kpar(G). Indeed, if s = [h1]...[hn] ∈ S(G) is such that h1, ..., hn = 1G, then
by Proposition 2.20 s = er1 ...erm [t], thus using the map η defined in Remark
2.21 we have η(s) = t = 1G. Therefore s = er1 ...erm .

• B is a commutative algebra generated by idempotents.

Theorem 2.53. Given a group G, there is a partial action β of G on the above
defined commutative algebra B, such that Kpar(G) ∼= B oβ G.

Proof. We have to define a partial action β of G on B. So define the domains
Dg = egB and the morphism βg : Dg−1 → Dg by:

βg(eg−1eh1eh2 ...ehn) = [g]eg−1eh1eh2 ...ehn [g−1]

= 1egh1egh2 ...eghn [g][g−1]

= egegh1egh2 ...eghn .

Then β is a partial action. Indeed, it is clear that D1G = B and β1G = idB, thus β
satisfies the condition (I) of Definition 2.28. Recall that since βg and βh are partial
functions the domain of βgβh is the set βh−1 (Dg−1 ∩Dh). Notice that for any g ∈ G,
the ideal Dg = egB is unital with unit eg, so:

βh−1 (Dg−1 ∩Dh) = βh−1

(
eg−1ehB

)
= βh−1

(
eg−1eh

)
βh−1

(
ehB

)
= e(gh)−1βh−1

(
ehB

)
= e(gh)−1βh−1

(
Dh

)
= e(gh)−1Dh−1 = D(gh)−1 ∩Dh−1 ⊆ D(gh)−1 = dom (βgh) .

Then dom (βgβh) ⊆ dom (βgh), thus:

βgβh
(
e(gh)−1eh−1ew1ew2 ...ewn

)
= βg (eheg−1ehw1ehw2 ...ehwn)

= egegheghw1eghw2 ...eghwn
= eghe(gh)h−1eghw1eghw2 ...eghwn

= βgh
(
e(gh)−1eh−1ew1ew2 ...ewn

)
.

Then βgβh ⊆ βgh, and by Remark 2.29 β is a partial action of G on B.

Notice that the map π0 : G → B oβ G given by π0(g) = eg#g is a partial
representation of G in B oβ G. Indeed, π0(e) = [1G]#1G, now observe that for all
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g, h ∈ G:

π0(g−1)π0(g)π0(h) = (eg−1#g−1)(eg#g)(eh#h)

= (βg−1(eg)#1G)(eh#h) = (e−1
g #1G)(eh#h)

= eg−1eh#h

= βg−1(eg)egh)eh#h)

= (eg−1#g−1)(egh#gh)

= π0(g−1)π0(gh).

Thus by the universal property of Kpar(G) there exists an unique algebra mor-
phism

π̂ : Kpar(G)→ B oβ G,

such that π̂
(
[g]
)

= π0(g) = eg#g.

Observe that (eg#g)(eh#h) = βg(eg−1eh)#gh = egegh#gh. Then

π̂
(
[g1][g2]...[gn]

)
= eg1eg1g2 ...eg1g2...gn#g1g2...gn.

The canonical inclusion of B into Kpar(G), φB(a) = a[1G], and the canonical partial
representation πB(g) = [g] form a covariant pair relative to the algebra Kpar(G).
Indeed,

φB (βg (aeg−1)) = φB (ageg) = ageg[1G]

= ag[g][g−1][1G] = [g]a[1G][g−1]

= πB(g)φ(a)πB(g−1),

where a = eh1eh2 ...ehn and ag = egh1egh2 ...eghn .

By Theorem 2.48 there is an unique algebra morphism ϕ : B oβ G → Kpar(G)
such that πB = ϕ ◦π0 and φB = ϕ ◦φ0. Then for g ∈ G and a ∈ B, πB(g) = ϕ ◦π0(g)
and φB(a) = ϕ ◦ φ0(a), that means [g] = ϕ(eg#g) and a[1G] = ϕ(a[1G]#1G), thus
ϕ(aeg#g) = a[g].

Finally observe that π̂ and ϕ are mutually inverse. Indeed,

ϕ ◦ π̂
(
[g1][g2]...[gn]

)
= ϕ

(
(eg1#g1)(eg2#g2)...(egn#gn)

)
= [g1][g2]...[gn],
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and for a = eh1eh2 ...ehn ∈ B

π̂ ◦ ϕ(aeg#g) = π̂
(
[g][g−1][h1][h−1

1 ][h2][h−1
2 ]...[hn][h−1

n ][g]
)

= (eg#g)(eg−1#g−1)(eh1#h1)(eh−1
1

#h−1
1 )...(ehn#hn)(eh−1

n
#h−1

n )(eg#g)

= (eg#1G)(eh1#1G)...(ehn#1G)(eg#g) = (eh1eh2 ...ehn#1G)(eg#g)

= (eh1eh2 ...ehneg#g)

= aeg#g.

Then π̂ and ϕ are inverse to each other, thus Kpar(G) ∼= B oβ G.

Theorem 2.54. Let B be the K-algebra defined above. Then there is a partial rep-
resentation π : G → EndK(B) defined by π(g)(b) = [g]b[g−1] for any g ∈ G and
b ∈ B.

Proof. First observe that π(1G)(b) = [1G]b[1G] = x for all b ∈ B, then π(e) = idB,
thus π satisfies the first condition of Definition 2.1, for the other two conditions notice
that for all s, t ∈ G:

π(s)π(t)π(t−1)(b) = [s][t][t−1]b[t][t−1][s−1]

= [st][t−1]b[t][(st)−1]

= π(st)
(
[t−1]b[t]

)
= π(st)π(t−1)(b),

and analogously π(s−1)π(s)π(t) = π(s−1)π(st).

Corollary 2.55. B has a structure of a left Kpar(G)-module induced by

φB : Kpar(G)→ EndK(B),

such that φB
(
[g]
)
(x) = [g]x[g−1].

Proof. Observe that φB is the algebra morphism obtained from applying the univer-
sal property of Kpar(G) (Proposition 2.48) to the partial representation π : G →
EndK(B) defined in Theorem 2.54.
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2.3 Spectral sequences

In this section we will introduce some definitions and results from spectral sequence
theory. The final objective of this sections is to prove Theorem 2.106, which will be
used to obtain Theorem 4.4, which shows that there exists a Grothendieck spectral
sequence relating cohomology of partial smash products with partial group cohomol-
ogy and algebra cohomology. The theory in this section is taken from [3], some of the
proofs have been given differently.

Definition 2.56. Let R be any ring. A complex (C, d) for R is an indexed family
C = {Ci}i∈Z of R-modules together with an indexed family of module morphisms
d = {di : Ci → Ci−1}i∈Z such that di−1di = 0.

· · · −→ Cp+2
dp+2−→ Cp+1

dp+1−→ Cp
dp−→ Cp−1

dp−1−→ Cp−2 −→ · · · .

Given two complexes (C, d) and (C′, d′) a (chain) homomorphism of C into C′ is
an indexed family of module morphisms α = {αi : Ci → C ′i}i∈Z such that the next
diagram commutes

Ci Ci−1

C ′i C ′i−1

αi

di

d′i

αi−1

for any i ∈ Z.

Definition 2.57. A complex (K, l) is a subcomplex of a complex (C, d) if for all
n ∈ Z we have that:

(i) Kn ⊆ Cn;

(ii) The map ln is the restriction of dn to Kn, i.e. ln = dn|Kn.

Definition 2.58. Given a subcomplex (K, l) of a complex (C, d), the factor complex
C/K is the family of factor modules {Ci/Ki}i∈Z with the family of boundary maps
{di : Ci/Ki → Ci−1/Ki−1} induced by d.

Definition 2.59. A graded module is an indexed family

M = (Mp∈Z)

of R-modules. Graded modules M are often denoted by M•.
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Definition 2.60. A bigraded module is a doubly indexed family

M = (M(p,q)∈Z×Z)

of R-modules. Bigraded modules M are often denoted by M••.

Definition 2.61. Let M and N be bigraded modules, and let (a, b) ∈ Z×Z. A bigraded
map of bidegree (a, b), denoted by f : M → N, is a family of module homomorphisms

f = (fp,q : Mp,q → Np+a,q+b)(p,q)∈Z×Z .

The bidegree of f is (a, b), and we denote it by deg(f) = (a, b).

Given bigraded modules A,B,C and two bigraded maps f : A→ B and g : B →
C, the exactness of A

f→ B
g→ C means that im f = ker g; i.e. if deg(f) = (a, b)

then im fp−a,q−b = ker gp,q for all p, q ∈ Z.

Definition 2.62. A bicomplex is an ordered triple (M,d′, d′′), where M = (Mp,q) is
a bigraded module, d′, d′′ : M → M are differentials of bidegree (−1, 0) and (0,−1),
respectively (so that d′, d′′ are morphisms of bigraded modules such that d′d′ = 0 and
d′′d′′ = 0), and

d′p,q−1d
′′
p,q + d′′p−1,qd

′
p,q = 0.

Definition 2.63. If M is a bicomplex, then its total complex , denoted by Tot(M),
is the complex with nth term:

Tot(M)n =
⊕
p+q=n

Mp,q,

and with differentials Dn : Tot(M)n → Tot(M)n−1 given by

Dn =
∑
p+q=n

(d′p,q + d′′p,q).

We can see a bigraded module M•• as the integer pairs in the Cartesian plane
where each module M(p,q) ∈ M•• is represented by the point (p, q), in that sense
Tot(M)n is the set of the integer pairs in the line defined by y = −x+ n.

Lemma 2.64. If M is a bicomplex, then (Tot(M), D) is a complex.

Proof. Observe that each direct summand of Tot(M)n is a module Mp,q such that
p+ q = n, and note that im d′p,q ⊆Mp−1,q and im d′′p,q ⊆Mp,q−1. In both cases Mp−1,q

31



2.3 Spectral sequences Preliminaries

Figure 2.1: Bicomplex Figure 2.2: Total complex

and Mp,q−1 are summands of Tot(M)n−1 and therefore imDn ⊆ Tot(M)n−1. We show
that D is a differential.

DD =
∑

(d′ + d′′)(d′ + d′′)

=
∑

d′d′ +
∑

(d′d′′ + d′′d′) +
∑

d′′d′′ = 0.

Definition 2.65. A filtration of a module M is a family (Mp)p∈Z of submodules of
M such that

· · · ⊆Mp−1 ⊆Mp ⊆Mp+1 ⊆ · · · .
The factor modules of this filtration are the modules Mp/Mp−1 with p ∈ Z.

A filtration of a graded module M• is a family (F pM•)p∈Z of graded modules such
that

· · · ⊆ F p−1Mn ⊆ F pMn ⊆ F p+1Mn ⊆ · · · ,
for all n ∈ Z.

Definition 2.66. A filtration of a complex C is a family of subcomplexes (F pC)p∈Z
of C such that

· · · ⊆ F p−1C ⊆ F pC ⊆ F p+1C ⊆ · · · ,
where F pC ⊆ F p+1C means that F pC is a subcomplex of F p+1C.

Limiting the first or the second index of the direct summands of Tot(M) we obtain
the following filtrations.

Definition 2.67. The first filtration of Tot(M) is given by(
IF p Tot(M)

)
n

=
⊕
i≤p

Mi,n−i

= · · · ⊕Mp−2,q+2 ⊕Mp−1,q+1 ⊕Mp,q, where q = n− p.
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Clearly, varying p for each fixed n, we have a filtration of Tot(M)n. We denote(
IF p Tot(M)

)
by IF p. Let us check that (IF p)n≥0 is a subcomplex of Tot(M) for each

fixed p ∈ Z:

Di,n−iMi,n−i =
(
d′i,n−i + d′′i,n−i

)
Mi,n−i ⊆ d′Mi,n−i + d′′Mi,n−i

⊆Mi−1,n−i ⊕Mi,n−i−1

⊆
(

IF p Tot(M)
)
n−1

.

Definition 2.68. The second filtration of Tot(M) is given by(
IIF p Tot(M)

)
n

=
⊕
j≤p

Mn−j,j

= · · · ⊕Mq−1,p−2 ⊕Mq+1,p−1 ⊕Mq,p, where q = n− p.

Figure 2.3: First filtration Figure 2.4: Second filtration

We denote
(

IIF p Tot(M)
)

by IIF p. Analogously to (IF p)n≥0 we have that (IIF p)n≥0

is a subcomplex of Tot(M).

Definition 2.69. An exact couple is a 5-tuple (D,E, α, β, γ), where D and E are
bigraded modules, α : D → D, β : D → E and γ : E → D are bigraded maps, and
there is exactness at each vertex: kerα = im γ, ker β = imα, and ker γ = im β.

D D

E

α

βγ
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Proposition 2.70. Each filtration (F pC)p∈Z of a complex C determines an exact
couple

D D

E

α (1,−1)

β (0, 0)γ (−1, 0)

whose bigraded maps have the displayed bidegrees.

Proof. We write for simplicity F pC as F p. For each fixed p, there is a short exact
sequence of complexes,

0 −→ F p−1 jp−1

−→ F p vp−→ F p/F p−1 −→ 0

(where jp−1 is the inclusion and vp is the natural map) that gives rise to the long
exact sequence of homology

· · · → Hn(F p−1)
α−→ Hn(F p)

β−→ Hn(F p/F p−1)
γ−→

Hn−1(F p−1)
α−→ Hn−1(F p)

β−→ Hn−1(F p/F p−1)→ · · · ,

where α = jp−1
∗ , β = vp∗, and γ = ∂ the connecting homomorphism (for more details

see [3, p. 333]). We write q = n− p, then we have

· · · → Hp+q(F
p−1)

α−→ Hp+q(F
p)

β−→ Hp+q(F
p/F p−1)

γ−→

Hp+q−1(F p−1)
α−→ Hp+q−1(F p)

β−→ Hp+q−1(F p/F p−1)→ · · · .

There are two types of homology groups: homology of a subcomplex F p or F p−1 and
homology of a quotient complex F p/F p−1. Define

D = (Dp,q), where Dp,q = Hp+q(F
p), E = (Ep,q), where Ep,q = Hp+q(F

p/F p−1).

With this notation, the long exact sequence is, for fixed q,

· · · → Dp−1,q+1
α−→

(1,−1)
Dp,q

β−→
(0,0)

Ep,q
γ−→

(−1,0)

Dp−1,q
α−→ Dp,q−1

β−→ Ep,q−1 → · · · .

Therefore, (D,E, α, β, γ) is an exact couple with the displayed bidegrees.
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Notation. It is a universal agreement to write n = p + q, and we will use this
notation from now on.

Each exact couple determines another exact couple, but first we have to introduce
another important notion.

Definition 2.71. A differential bigraded module is an ordered pair (M,d), where
M is a bigraded module and d : M →M is a bigraded map with dd = 0. If (M,d) is a
differential bigraded module, where d has bidegree (a, b), then its homology H(M,d)
is the bigraded module whose (p, q) term is

H(M,d)p,q =
ker dp,q

im dp−a,q−b
.

A bicomplex (M,d′, d′′) gives rise to two differential bigraded modules, namely,
(M,d′) and (M,d′′). However, (M,d′ + d′′) is not a differential bigraded module
because d′ + d′′ : M →M is not a bigraded map.

Remark 2.72. Let (M,d) be a differential bigraded module. Then for any (p, q) ∈ Z×Z
and z ∈ ker dp,q we set cls z as the respective homology class of z.

Proposition 2.73. If (D,E, α, β, γ) is an exact couple, then d1 = βγ is a differential
d1 : E → E, and there is an exact couple (D2, E2, α2, β2, γ2), called the derived
couple, with D2 = imα and E2 = H(E, d1).

D2 D2

E2

α2

β2γ2

Proof. Let α, β, γ have respective bidegrees (aα, bα), (aβ, bβ), (aγ, bγ). The bigraded
map d1 : E → E, where d1 = βγ, makes sense since β : D → E and γ : E → D. Note
that γβ = 0, because the original couple is exact, and so d1 is a differential: d1d1 =
β(γβ)γ = 0. Since bidegrees add, the bidegree of d1 is (ad1 , bd1) = (aβ + aγ, bβ + bγ).
Define E2 = H(E, d1). Thus E2

p,q = ker d1
p,q/ im d1

p−ad1 ,q−bd1
. Define D2 = imα ⊆ D.

Thus, D2
p,q = imαp−aα,q−bα ⊆ Dp,q. We now define the bigraded maps. Define α2 :

D2 → D2 to be the restriction α|D2 ; that is, α2 = αi, where i : D2 → D is the
inclusion. Since inclusions have bidegree (0, 0), α2 has bidegree (aα, bα), the same
bidegree as that of α. If x ∈ D2

p,q, then x = αu (for u ∈ Dp−aα,q−bα), and

α2
p,q : x = αu 7→ αx = ααu.
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Define β2 : D2 → E2 as follows. If y ∈ D2
p,q, then y = αv (for v ∈ Dp−aα,q−bα), and

d1βv = β(γβ)v = 0 whence we have that βv is a cycle. Since v = α−1y, we set

β2(y) = cls(βα−1y).

We have to prove that β2 does not depend on the choice v of the preimage α−1y, so we
must show that if y = αv′, then cls(βv′) = cls(βv). Now v′−v ∈ kerα = im γ, so that
v′−v = γw for some w ∈ E, and hence cls(β(v′−v)) = cls(βγw) = cls(d1w) = cls(0),
then β(v′ − v) is a boundary. Note that β2 has bidegree (aβ − aα, bβ − bα). We now
define γ2 : E2 → D2. Let cls(z) ∈ E2

p,q, so that z ∈ Ep,q and d1z = βγz = 0. Hence,
γz ∈ ker β = imα, thus γz ∈ imα = D2; displaying subscripts, γp,qz ∈ Dp+aγ ,q+bγ .
Define γ2 by

γ2 : cls(z) 7→ γz.

We must to show that γ2 does not depend on the choice of cycle. Indeed, if w ∈
im d1

p−ad1 ,q−bd1
is a boundary, then w = d1x = βγx, for some x ∈ Ep−ad1 ,q−bd1 , and

so γw = (γβ)γx = 0. Observe that γ2 has the bidegree (aγ, bγ), the same bidegree
as that of γ. It just remains to prove exactness. Since all the maps are well-defined,
there is no reason to display subscripts. First of all, adjacent composites are 0.

β2α2 : x = αu 7→ ααu 7→ cls(βα−1ααu) = cls(βαu) = 0.

γ2β2 : x = αu 7→ cls(βu) 7→ γβu = 0.

α2γ2 : cls(z) 7→ γz 7→ αγz = 0.

We have verified the inclusions of the form im ⊆ ker. Now must proof the reverse
inclusions.

kerα2 ⊆ im γ2. If x ∈ kerα2, then x ∈ D2 and αx = 0. Hence, x ∈ kerα = im γ,
so that x = γy for some y ∈ E. Now x ∈ imα = ker β, and 0 = βx = βγy = d1y.
Thus, y is a cycle, and x = γy = γ2 cls(y) ∈ im γ2.

ker β2 ⊆ imα2. If x ∈ ker β2, then x ∈ D2 = imα and β2x = 0. Thus, x = αu and
0 = β2x = cls(βα−1αu) = cls(βu). Hence, βu ∈ im d1; that is, βu = d1w = βγw for
some w ∈ E. Now u−γw ∈ ker β = imα = D2, and α2(u−γw) = αu−αγw = αu = x.
Therefore, x ∈ imα2.

ker γ2 ⊆ im β2. If cls(z) ∈ ker γ2, then γ2 cls(z) = γz = 0. Thus, z ∈ ker γ = im β,
so that z = βv for some v ∈ D. Hence, β2(αv) = cls(βα−1αv) = cls(βv) = cls(z),
and cls(z) ∈ im β2.

The next lemma shows a characterization for the map d1 that will be necessary
for some results.
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Lemma 2.74. Let (F pC)p∈Z be a filtration of a complex C, and let the correspond-

ing exact couple be (D,E, α, β, γ). Then the differential d1
p,q : Ep,q → Ep−1,q is the

connecting homomorphism

Hp+q

(
F p/F p−1

)
→ Hp+q−1

(
F p−1/F p−2

)
arising from 0→ F p−1/F p−2 → F p/F p−2 → F p/F p−1 → 0.

Proof. Let (C, dn) be a complex, then we have the next two short exact sequences:

0 −→ F p−1 i−→ F p π−→ F p/F p−1 −→ 0

and

0 −→ F p−1/F p−2 î−→ F p/F p−2 π̂−→ F p/F p−1 −→ 0,

where i is the inclusion, π is the natural map, î and π̂ are induced by i and π
respectively. For x in F p, let us denote by x the class of x in F p/F p−1, write x̂ for
the class of x in F p/F p−2 and we use the notation cls z to refer to the class of a cycle
z in its respective homology group. Define

dpn : F pCn → F pCn−1

as the restriction of dn to F p, and the maps

d̂pn :
F pCn
F p−2Cn

→ F pCn−1

F p−2Cn−1

and dpn :
F pCn
F p−1Cn

→ F pCn−1

F p−1Cn−1

as the morphisms induced by dpn.

Notice that the connecting homomorphism γp,q : Hn(F p/F p−1) → Hn−1(F p−1)
arises from the diagram

F pCn F pCn/F
p−1Cn 0

0 F p−1Cn−1 F pCn−1.

π

dpn

i

Then for z ∈ ker dpn, γp,q satisfies

γp,q(cls(z)) = cls(i−1dpnπ
−1(z)).

On the other hand we have the connecting homomorphism ∂p,q : Hn(F p/F p−1) →
Hn−1(F p−1/F p−2) arises from
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F pCn/F
p−2Cn F pCn/F

p−1Cn

F p−1Cn−1/F
p−2Cn−1 F pCn−1/F

p−2Cn−1.

π̂

d̂pn

î

Then for z ∈ ker dpn, ∂p,q satisfies

∂p,q(cls(z)) = cls(̂i−1d̂pnπ̂
−1(z))

= cls(̂i−1d̂pn(π−1(z)̂))

= cls(̂i−1dpnπ
−1(z)̂))

= cls
(
i−1dpnπ

−1(z)̂
)
.

Finally recall that βp−1,q is the map induced by the natural map F p−1 → F p−1/F p−2,
that is, βp−1,q(clsw) = cls(ŵ). Hence

cls
(
i−1dpnπ

−1(z)̂
)

= βp−1,q

(
cls(i−1dpnπ

−1(z))
)

= βp−1,qγp,q(z).

Thus ∂p,q = βp−1,qγp,q = d1
p,q.

Definition 2.75. Given an exact couple (D,E, α, β, γ), we define its rth derived
couple (Dr, Er, αr, βr, γr) recursively in the next way: the (r + 1)st derived couple
(Dr+1, Er+1, αr+1, βr+1, γr+1) is the derived couple of (Dr, Er, αr, βr, γr).

We assume that (D,E, α, β, γ) correspond to its 1st derived couple (D1, E1, α1, β1, γ1).

Corollary 2.76. Let (D,E, α, β, γ) be the exact couple arising from a filtration (F p)
of a complex C and let (Dr, Er, αr, βr, γr) be its respective rth derived couple:

D D

E

α (1,−1)

β (0, 0)γ (−1, 0)

Dr Dr

Er

αr (1,−1)

βr (ar, br)γr (−1, 0)

where ar = 1−r and br = r−1. Then (Dr, Er, αr, βr, γr) has the following properties:

(i) the bigraded maps αr, βr, γr have bidegrees (1,−1), (1 − r, r − 1), (−1, 0), re-
spectively;
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(ii) the differential dr is induced by βα−r+1γ, and dr has bidegree (−r, r − 1);

(iii) Er+1
p,q = ker drp,q/ im drp+r,q−r+1;

(iv) Dr
p,q = im(αp−1,q+1)(αp−2,q+2) · · · (αp−r+1,q+r−1); in particular, for the exact cou-

ple in Proposition 2.70,

Dr
p,q = im(jp−1jp−2...jp−r+1)∗ : Hn(F p−r+1)→ Hn(F p).

Proof.

(i) First observe that the derived couple preserve the bidegrees of αi and γi, i.e.
deg(α) = deg(αi) and deg(γ) = deg(γi), where i ∈ {2, 3, . . .}. Then deg(αr) =
deg(α) = (1,−1) and deg(γr) = deg(γ) = (−1, 0).

Recall that if the maps αr and βr have bidegrees (aαr , bαr) and (aβr , bβr), re-
spectively, then βr+1 has bidegree (aβr − aαr , bβr − bαr). Hence, by induction,
if

deg(βr−1) = (1− (r − 1), (r − 1)− 1),

then
deg(βr) = (1− (r − 1)− 1, (r − 1)− 1 + 1) = (1− r, r − 1).

Finally to complete the induction observe that for r = 2 the map β2 has bidegree
(−1, 1) = (1− r, r − 1).

(ii) As βr, γr have bidegrees (1− r, r − 1), (−1, 0) respectively and bidegrees adds,
then the bidegree of dr = βrγr is (−r, r − 1). Denote by cls2(z) = cls(cls(z)),
the class of cls(z) in E3, where z is a cycle in the complex (E2, d2). Now we
define clsr(z) recursively by setting clsr(z) = cls(clsr−1(z)), the class of clsr−1(z)
in Er, where clsr−1(z) is a cycle in the complex (Er−1, dr−1). Then using the
above notation we have

dr(clsr−1(z)) = βrγr(clsr−1(z))

= βrγr−1(clsr−2(z))

= βrγ(z)

= cls(βr−1α−1γ(z))

= cls(cls(βr−2α−2γ(z)))

= clsr−1(βα−r+1γ(z)).

(iii) It is clear since the bidegree of dr is (−r, r − 1).
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(iv) Observe

Dr
p,q = α(p−1,q+1)D

r−1
(p−1,q+1)

= α(p−1,q+1)α(p−2,q+2)D
r−2
(p−2,q+2)

= α(p−1,q+1)α(p−2,q+2)...α(p−r+1,q+r−1)D(p−r+1,q+r−1)

= im(α(p−1,q+1)α(p−2,q+2)...α(p−r+1,q+r−1)).

For the last statement recall that αp,q = jp∗ : Hp+q (F p)→ Hp+q (F p+1) and that
jp−1
∗ jp−2

∗ · · · jp−r+1
∗ = (jp−1jp−2 · · · jp−r+1)∗ .

Definition 2.77. A spectral sequence is a sequence (Er, dr)r≥1 of differential bi-
graded modules such that Er+1 = H(Er, dr) for all r ∈ Z+.

Given a spectral sequence (Er, dr)r≥1 and a fixed r ∈ Z+, we say that the terms
Er
p,q form the rth page of the spectral sequence (Er, dr)r≥1. Thus, it is useful think

a spectral sequence as a book where the rth page of the book correspond to the rth
page of the spectral sequence, so we have that for each page of the book the next
page is its own homology.

Theorem 2.78. Any filtration of a complex yields a spectral sequence as described
Corollary 2.76.

Proof. A filtration gives an exact couple, as in Proposition 2.70, and the Er terms of
its derived couples define a spectral sequence.

Definition 2.79. If M is a module, then a subquotient of M is a module of the
form M ′/M ′′, where M ′′ ⊆M ′ ⊆M.

If {Er, dr} is a spectral sequence, then E2 = H(E1, d1) is a subquotient of E1.
Hence, E2 = Z2/B2 = ker d1/ im d1, where

B2 ⊆ Z2 ⊆ E1.

So any submodule of E2 is equal to S/B2 for a unique submodule S of Z2 with B2 ⊆ S.
Hence, in particular, for the relative cycles Z3 and boundaries B3 there exist unique
submodules B3

∗ and Z3
∗ of Z2 such that B3 = B3

∗/B
2 and Z3 = Z3

∗/B
2. Then we can
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identify Z3, B3 with Z3
∗ , B

3
∗ respectively. Therefore B3/B2 ⊆ Z3/B2 ⊆ Z2/B2 = E2,

so that
B2 ⊆ B3 ⊆ Z3 ⊆ Z2 ⊆ E1.

More generally, for each r, there is a chain

B2 ⊆ · · · ⊆ Br ⊆ Zr ⊆ · · · ⊆ Z2 ⊆ E1.

Definition 2.80. Given a spectral sequence {Er, dr} and the above identification of
the submodules Zr and Br, define Z∞ =

⋂
r Z

r and B∞ =
⋃
r B

r. Then B∞ ⊆ Z∞,
and the limit term of the spectral sequence is the bigraded module E∞ defined by

E∞p,q = Z∞p,q/B
∞
p,q.

Lemma 2.81. Let {Er, dr} be a spectral sequence. Then, for any p, q ∈ Z,

(i) Er+1
p,q = Er

p,q if and only if Zr+1
p,q = Zr

p,q and Br+1
p,q = Br

p,q,

(ii) If Er+1
p,q = Er

p,q for all r ≥ s, then Es
p,q = E∞p,q.

Proof. Since it is clear that we are working with the p, q terms of the spectral sequence
we will omit (in this proof) the subscripts.

(i) Recall that if X/Y is a subquotient of Z, then Y ⊆ X ⊆ Z, and so X/Y = Z if
and only if Y = {0} and X = Z. If Zr+1/Br+1 = Er+1 = Er, then Br+1 = {0} in
Er = Zr/Br; that is, Br+1 ⊆ Br, but since Br ⊆ Br+1 we have that Br+1 = Br.
Hence, Er+1 = Zr+1/Br+1 = Zr+1/Br = Er = Zr/Br, so that Zr+1 = Zr. The
converse is obvious.

(ii) If Er = Er+1 for all r ≥ s, then Zs = Zr for all r ≥ s; hence, Zs =
⋂
r≥s Z

r =
Z∞. Also, Bs = Br for all r ≥ s; hence, Bs =

⋃
r≥sB

r = B∞. Therefore,

Es = Zs/Bs = Z∞/B∞ = E∞.

Given a filtration (F p) of a complex C with inclusions ip : F p → C, we have the
map ip∗ : H• (F p)→ H•(C) induced by ip. Since F p ⊆ F p+1, we have im ip∗ ⊆ im ip+1

∗ ;
that is, (im ip∗) is a filtration of H•(C).

Definition 2.82. If (F PC) is a filtration of a complex C and ip : F p → C are
inclusions, define

ΦpHn(C) = im ip∗.

We call (ΦpHn(C)) the induced filtration of Hn(C).
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Definition 2.83. A filtration (F pM) of a graded module M = (Mn) is bounded if,
for each n, there exist integers s = s(n) and t = t(n) such that

F sMn = {0} and F tMn = Mn.

Given a bounded filtration {F p} of a complex C, the induced filtration on ho-
mology is also bounded, moreover it has the same bounds. Indeed, we have that
if ip : F p → C is the inclusion, then ΦpHn = im ip∗, where ip∗ : Hn (F p) → Hn(C).
Since for each n there exist r, s ∈ Z such that F sCn = 0 and F tCn = Cn, we have
ΦsHn = {0} and ΦtHn = Hn. Hence, for each n ∈ Z, there is a finite chain,

{0} = ΦsHn ⊆ Φs+1Hn ⊆ · · · ⊆ ΦtHn = Hn.

Of course, it is clear that ΦiHn = {0} for all i ≤ s, and ΦjHn = Hn for all j ≥ t.

Definition 2.84. A spectral sequence (Er, dr)r≥1 converges to a graded module H•
if there exist some bounded filtration (ΦpHn) of H• such that

E∞p,q
∼= ΦpHn/Φ

p−1Hn

for all n and p, q with p+ q = n. We denote the convergence by

Er
p,q ⇒

p
Hn.

Since spectral sequences are often referred by its second page, it is common to
write the convergence of a spectral sequence as

E2
p,q ⇒

p
Hn.

Theorem 2.85. Let (F pC)p be a bounded filtration of a complex C, and let (Er, dr)r≥1

be the spectral sequence of Theorem 2.78. Then

(i) for each p, q, we have E∞p,q = Er
p,q for large r (depending on p, q

)
,

(ii) E2
p,q ⇒

p
Hn(C), by means of the induced filtration of Hn(C).

Proof. Recall that the induced filtration (ΦpH) is bounded with the same bounds
s(n) and t(n) as (F pC). Then
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(i) If p is “large”; that is, p > t(n), then F p−1Cn = F pCn, and F pCn/F
p−1Cn =

0. By definition, Ep,q = Hp+q (F p/F p−1) , and so Ep,q = {0}. Since Er
p,q is a

subquotient of Ep,q, we have Er
p,q = {0} for all r. Similarly, if p is “small”; that

is, p < s(n), then F pCn = 0, and Er
p,q = {0} for all r. Focus on first subscripts.

For any fixed (p, q), dr
(
Er
p,q

)
⊆ Er

p−r,#. For large r, the index p−r is small, and so
Er
p−r,# = {0}. Hence, ker drp,q = Er

p,q. Let us compute Er+1
p,q = ker drp,q/ im drp+r,#.

Now im drp+r,# = {0}, because the domain of drp+r,# is Er
p+r,# = {0} when r is

large. Therefore, Er+1
p,q = ker drp,q/{0} = Er

p,q/{0} = Er
p,q for large r (depending

on p, q ). Thus, the p, q term of Er
p,q is constant for large r, which says that

E∞p,q = Er
p,q, by Lemma 2.81.

(ii) We continue focusing on the first index in the subscript by writing # for every
second index. Consider the exact sequence obtained from the r th derived
couple:

Dr
p+r−2,#

αr−→ Dr
p+r−1,#

βr−→ Er
p,q

γr−→ Dr
p−1,q. (1)

The indices arise from the bidegrees displayed in Corollary 2.76 (i) : αr has
bidegree (1,−1), βr has bidegree (1− r, r − 1), and γr has bidegree (−1, 0); as
in Corollary 2.76(iv), the module

Dr
p,q = im

(
jp−1jp−2 · · · jp−r+1

)
∗ : Hn

(
F p−r+1

)
→ Hn (F p) .

Replacing p first by p+ r − 1 and then by p+ r − 2, we have

Dr
p+r−1,# = im

(
jp+r−2 · · · jp

)
∗ ⊆ Hn

(
F p+r−1

)
and

Dr
p+r−2,# = im

(
jp+r−3 · · · jp−1

)
∗ ⊆ Hn

(
F p+r−2

)
.

For large r, F p+r−1Cn = F t(n)Cn = Cn, and the composition jp+r−2 . . . jp of
inclusions applied to F pCn is just the inclusion ipn : F pCn → Cn . Therefore,
Dr
p+r−1,# = im ip∗n = ΦpHn. Similarly, Dr

p+r−2,# = Φp−1Hn for large r. Hence,
we may rewrite the exact sequence (1) as

Φp−1Hn(C)
αr→ ΦpHn(C)→ Er

p,q → Dr
p−1,q,

where the first arrow is inclusion. Indeed, recall that αr is just the restriction
of α = jp+r−2

∗ to Dr
p+r−2,# = Φp−1Hn(C) and that

jp+r−2
∗ : Hn(F p+r−2)→ Hn(F p+r−1),

which for larger r is equal to the identity map

jp+r−2
∗ : Hn(C)→ Hn(C).
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Finally, if r is large

Dr
p−1,q = im

((
jp−2 · · · jp−r

)
∗ : Hn

(
F p−r)→ Hn

(
F p−1

))
= 0,

because F p−rCn = 0 for larger r. Hence, we have the next exact sequence

0→ Φp−1Hn(C)→ ΦpHn(C)→ Er
p,q → 0,

then
ΦpHn(C)/Φp−1Hn(C) ∼= Er

p,q = E∞p,q.

Definition 2.86. Let (M,d′, d′′) be a bicomplex. The transposed bicomplex (M t, δ′, δ′′)
of (M,d′, d′′) is the bicomplex such that M t

p,q = Mq,p, δ
′ = d′′ and δ′′ = d′.

Lemma 2.87. If Tot(M) is the total complex of a bicomplex (M,d′, d′′). Then

(i) the second filtration of Tot(M) is equal to the first filtration of Tot(M t), i.e.

IIF p Tot(M)n = IF p Tot(M t)n,

(ii) Tot(M) = Tot(M t).

Proof. The transpose M t is defined by M t
p,q = Mq,p, thus

IIF p Tot(M)n =
⊕
j≤p

Mn−j,j =
⊕
j≤p

M t
j,n−j = IF p Tot(M t)n

and
Tot(M t)n =

⊕
p+q=n

Mq,p =
⊕
p+q=n

Mp,q = Tot(M)n.

Definition 2.88. A first quadrant bicomplex is a bicomplex (Mp,q) for which
Mp,q = {0} whenever p or q is negative.

Theorem 2.89. Let M be a first quadrant bicomplex, and let IEr and IIEr be the
spectral sequences determined by the first and second filtrations of Tot(M). Then

(i) The first and second filtrations are bounded, and the bounds for either filtration
are s(n) = −1 and t(n) = n,

44



2.3 Spectral sequences Preliminaries

(ii) For all p, q, we have IE∞p,q = IEr
p,q and IIE∞p,q = IIEr

p,q for large r (depending on
p, q).

(iii) IE2
p,q ⇒

p
Hn(Tot(M)) and IIE2

p,q ⇒
p
Hn(Tot(M)).

Proof. Part (i) is obvious. Statements (ii) and (iii) for IE follow from Theorem 2.85.
Since Tot (M t) = Tot (M), where M t is the transpose, and since the second filtration
of Tot(M) equals the first filtration of M t, we have IIE∞p,q = IIEr

p,q for large r and
IIE2

p,q ⇒
p
Hn (Tot (M t)) = Hn(Tot(M)).

Let (M,d′, d′′) be a bicomplex. Define Mp,∗ as the pth column of M (see figure
2.1), hence (Mp,∗, d

′′
p,∗) is a complex, where the map d′′p,∗ is the restriction of d′′ in

Mp,∗. Therefore we can define a new bigraded module H ′′(M), whose (p, q) term is
Hq (Mp,∗).

For each fixed q, the qth row H ′′(M)∗,q of H ′′(M)

. . . , Hq (Mp+1,∗) , Hq (Mp,∗) , Hq (Mp−1,∗) , . . . ,

can be made into a complex if we define d′p : Hq (Mp,∗)→ Hq (Mp−1,∗) by

d′p : cls(z) 7→ cls
(
d′p,qz

)
,

where z ∈ kerd′′p,q. There is a new bigraded module whose (p, q) term, denoted by

H ′pH
′′
q (M), is the pth homology of (H ′′(M)∗,q, d′), i.e. H ′pH

′′
q (M) = Hp(H

′′(M)∗,q).

Definition 2.90. If (M,d′, d′′) is a bicomplex, its first iterated homology, denoted
by H ′H ′′(M), is the bigraded module whose (p, q) term is H ′pH

′′
q (M).

Proposition 2.91. If M is a first quadrant bicomplex, then

IE1
p,q = Hq (Mp,∗) = H ′′(M)p,q

and
IE2

p,q = H ′pH
′′
q (M)⇒

p
Hn(Tot(M)).

Proof. Since it is clear that we are working with IEr
p,q let us omit the prescript I for

this proof. As in Proposition 2.70 proof, Ep,q = Hn (F p/F p−1) , where

(F p)n = · · · ⊕Mp−2,q+2 ⊕Mp−1,q+1 ⊕Mp,q,(
F p−1

)
n

= · · · ⊕Mp−2,q+2 ⊕Mp−1,q+1.
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Hence, the nth term of F p/F p−1 is Mp,q. The differential (F p/F p−1)n → (F p/F p−1)n−1

is
Dn : an +

(
F p−1

)
n
7→ Dnan +

(
F p−1

)
n−1

,

where an ∈ (F p)n ; we have just seen that we may assume an ∈ Mp,q. Now Dnan =(
d′p,q + d′′p,q

)
an ∈Mp−1,q⊕Mp,q−1. ButMp−1,q ⊆ (F p−1)n−1 , so thatDnan ≡ d′′p,qan mod

(F p−1)n−1 . Thus, only d′′ survives in F p/F p−1. More precisely, since n = p+ q

Hn

(
F p/F p−1

)
=

kerDn

imDn+1

=
(ker d′′p,q + (F p−1)n)/(F p−1)n

(im d′′p,q+1 + (F p−1)n)/(F p−1)n
∼=

ker d′′p,q
im d′′p,q+1

= Hq (Mp,∗) .

Therefore, IE1
p,q = Hq (Mp,∗) and the elements of IE1

p,q have the form cls(z), where
z ∈ Mp,q and d′′z = 0. Now Lemma 2.74 identifies the map d1 with the connecting
homomorphism arising from 0 → F p−1/F p−2 → F p/F p−2 → F p/F p−1 → 0. So it
only remains to prove that d′ = d1. As d1 : Hp+q (F p/F p−1) → Hp+q−1 (F p−1/F p−2)
is the connecting homomorphism, it arises from the diagram

Mp−1,q+1 ⊕Mp,q Mp,q 0

0 Mp−1,q Mp,q−1 ⊕Mp−1,q,

φ

D

i

where D : (ap−1,q+1, ap,q) 7→ (d′′ap,q, d
′′ap−1,q+1 + d′ap,q), i is the natural inclusion and

φ is the natural projection. Let z ∈ Mp,q be a cycle; that is, d′′p,qz = 0. Choose

φ−1z = (0, z), so that D(0, z) =
(
0, d′p,qz

)
. Then

d1 cls(z) = cls
(
i−1Dπ−1z

)
= cls(d′z) = d′ cls(z).

Hence,

E2
p,q =

ker d′p,q

im d′p+1,q

= H ′pH
′′
q (M),

as required.

Now we can construct the analogous of H ′H ′′(M). Let (M,d′, d′′) a bicomplex,
take its transpose bicomplex (M t, δ′, δ′′), where δ′ = d′′ and δ′′ = d′. Recall that for
each fixed p we have that (M t

p,∗, δ
′′
p,∗) = (M∗,p, d

′
∗,p) is a complex, thus taking homology
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of pth columns of M t gives a bigraded module, denoted by H ′(M), whose (p, q) term
is Hq(M

t
p,∗). For each fixed q, the qth row H ′(M)∗,q of H ′(M)

. . . , Hq

(
M t

p+1,∗
)
, Hq

(
M t

p,∗
)
, Hq

(
M t

p−1,∗
)
, . . . ,

can be made into a complex if we define δ′p : Hq

(
M t

p,∗
)
→ Hq

(
M t

p−1,∗
)

by

δ′p : cls(z) 7→ cls
(
δ′p,qz

)
,

where z ∈ kerδ′′p,q. There is a new bigraded module whose (p, q) term, denoted by

H ′′pH
′
q(M), is the pth homology of (H ′′(M)∗,q, δ′), i.e. H ′′pH

′
q(M) = Hp(H

′(M)∗,q).
Notice that H ′(M) is just H ′′(M t). Therefore

H ′′pH
′
q(M) = Hp(H

′(M)∗,q) = Hp(H
′′(M t)∗,q) = H ′pH

′′
q

(
M t
)
.

Definition 2.92. If (M,d′, d′′) is a bicomplex, its second iterated homology is
the bigraded module whose (p, q) terms is H ′′pH

′
q(M).

Proposition 2.93. If M is a first quadrant bicomplex, then

IIE1
p,q = Hq (M∗,p)

and
IIE2

p,q = H ′′pH
′
q(M)⇒

p
Hn(Tot(M)).

Proof. By Proposition 2.91 we have

IE1
p,qM

t = Hq

(
M t

p,∗
)

and
IE2

p,qM
t = H ′pH

′′
q (M t)⇒

p
Hn(Tot(M t)),

where IEr
p,qM

t refers to the (p, q) term in the r-page of the spectral sequence ob-
tained from the first filtration of Tot(M t). By our previous discussion we have
that H ′H ′′ (M t) = H ′′H ′(M), we also know that Hq

(
M t

p,∗
)

= Hq (M∗,p) and by
Lemma 2.87 the second filtration of Tot(M) is the first filtration of Tot (M t) and
Tot(M) = Tot(M t). Hence,

IIE1
p,q = IE1

p,qM
t = Hq

(
M t

p,∗
)

= Hq (M∗,p)

and

IIE2
p,q = IE2

p,qM
t = H ′pH

′′
q (M t) = H ′′pH

′
q(M)⇒

p
Hn(Tot(M t)) = Hn(Tot(M)),

as required.
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Definition 2.94. A spectral sequence (Er, dr) collapses on the p-axis if E2
p,q = {0}

for all q 6= 0; a spectral sequence (Er, dr) collapses on the q-axis if E2
p,q = {0} for all

p 6= 0.

Proposition 2.95. Let M be a first quadrant bicomplex and let (Er, dr) be the spectral
sequence induced by the first or the second filtration of Tot(M).

(i) If (Er, dr) collapses on either axis, then E∞p,q = E2
p,q for all p, q.

(ii) If (Er, dr) collapses on the p-axis, then Hn(Tot(M)) ∼= E2
n,0; if (Er, dr) collapses

on the q-axis, then Hn(Tot(M)) ∼= E2
0,n.

Proof. For the item (i) assume that (Er, dr) collapses on the p-axis and choose r ≥ 2.
First of all, Er

p,q = {0} for all r ≥ 2 and q 6= 0, because Er
p,q is a subquotient of

E2
p,q = {0}. Now Er+1

p,0 = ker drp,0/ im drp+r,−r+1. Now drp,0 = 0, because its target is
Er
p−r,r−1 which is off the p-axis (see figure 2.5), hence is {0}; thus, ker drp,0 = Er

p,0.
Also, drp+r,−r+1 = 0, because its domain is off the axis, and so im drp+r,−r+1 = {0}.
Therefore, Er+1

p,0 = Er
p,0/{0} = Er

p,0 and Lemma 2.81 gives E∞ = E2. The proof for
the case where (Er, dr) collapses on the q-axis is analogous.

For the item (ii), observe that since M is a first quadrant bicomplex, by Theorem
2.89 we have that the induced filtration on Hn = Hn(Tot(M)) is

{0} = Φ−1Hn ⊆ Φ0Hn ⊆ · · · ⊆ Φn−1Hn ⊆ ΦnHn = Hn.

If the spectral sequence collapses on the p-axis, then {0} = E2
p,q for all p ≤ n − 1,

because 1 ≤ q. By part (i) we have E∞p,q = E2
p,q. Now by Theorem 2.85 and since the

spectral sequence collapses on the p-axis we have that {0} = E∞p,q = ΦpHn/Φ
p−1Hn

for all p ≤ n − 1. Hence, {0} = Φ−1Hn = Φ0Hn = · · · = Φn−1Hn and Hn =
ΦnHn/Φ

n−1Hn
∼= E2

n,0. A similar argument can be given when the spectral sequence
collapses on the q-axis.

Definition 2.96. A third quadrant bicomplex (or cohomology bicomplex) is
a bicomplex (Mp,q) for which Mp,q = {0} whenever p or q is positive.

As it is common, for third quadrant bicomplexes we change the signs of p, q, and
n, and we switch its positions.

Mp,q = M−p,−q.
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Figure 2.5: Differentials with bidegree (−r, r − 1).

Consider the first filtration of Tot(M) when M is a third quadrant bicomplex.(
IF−p

)
−n =

⊕
i≤−p

Mi,−n−i

= M−n,0 ⊕ · · · ⊕M−p,−n+p

and (
IF−p+1

)
−n =

⊕
i≤−p+1

Mi,−n−i

= M−n,0 ⊕ · · · ⊕M−p,−n+p ⊕M−p+1,−n+p−1.

Thus,
{0} = F−n−1 ⊆ F−n ⊆ F−n+1 ⊆ · · · ⊆ F 0 = Tot(M).

If we lower indices and change their sign, we have

{0} = Fn+1 ⊆ Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = Tot(M),

that is, the filtration so labeled is a decreasing filtration. Similarly, lowered indices on
the second filtration give another decreasing filtration of Tot(M). Now think in the
induced filtration (ΦpHn) of Hn(Tot(M)), if we define ΨpH

n = Φ−pH−n we obtain an
induced filtration (ΨpH

n) of Tot(M) where M is a third quadrant bicomplex.

{0} = Ψn+1H
n ⊆ ΨnH

n ⊆ · · · ⊆ Ψ1H
n ⊆ Ψ0H

n = Hn.

A third quadrant spectral sequence will be denoted by (Er, dr), and in an analo-
gous way to cohomology we will denote each element of the spectral sequence as Ep,q

r .
Moreover, we write H−n(Tot(M)) = Hn(Tot(M)), call it the nth cohomology module
and, for 1 ≤ r ≤ ∞,

dr−p,−q = dp,qr , IEr
−p,−q = IEp,q

r , and IIEr
−p,−q = IIEp,q

r .
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We also have a version of Theorem 2.89 for third quadrant bicomplex.

Theorem 2.97. Let M be a third quadrant bicomplex, and let IEr and IIEr be the
spectral sequences determined by the first and second filtrations of Tot(M). Then

(i) The first and second filtrations are bounded.

(ii) For all p, q, we have IEp,q
∞ = IEp,q

r and IIEp,q
∞ = IIEp,q

r for large r (depending on
p, q).

(iii) IEp,q
2 ⇒

p
Hn(Tot(M)) and IIEp,q

2 ⇒
p
Hn(Tot(M)).

Proof. The bounds are s(n) = n+1 and t(n) = 0, and so statements (ii) and (iii) for
IE follow from Theorem 2.85 . Since Tot (M t) = Tot (M), where M t is the transpose,
and since the second filtration of Tot(M) equals the first filtration of M t, we have
IIE∞p,q = IIEr

p,q for large r and IIE2
p,q ⇒

p
Hn (Tot (M t)) = Hn(Tot(M)).

Proposition 2.98. Let M be a third quadrant bicomplex and let (Er, dr) be the spec-
tral sequence induced by the first or the second filtration of Tot(M).

(i) If (Er, dr) collapses on either axis, then Ep,q
∞ = Ep,q

2 for all p, q.

(ii) If (Er, dr) collapses on the p-axis, then Hn(Tot(M)) ∼= En,0
2 ; if (Er, dr) collapses

on the q-axis, then Hn(Tot(M)) ∼= E0,n
2 .

Proof. For part (i), assume that (Er, dr) collapses on the p-axis, and choose r ≥ 2.
First of all, Ep,q

r = {0} for all r ≥ 2 and q 6= 0, because Ep,q
r is a subquotient of

Ep,q
2 = {0}. Now Ep,0

r+1 = ker dp,0r / im dp+r,−r+1
r . Now dp,0r = 0, because its target is off

the axis, hence is {0}; thus, ker dp,0r = Ep,0
r . Also, dp+r,−r+1

r = {0}, because its domain
is off the axis, and so im dp+r,−r+1

r = {0}. Therefore, Ep,0
r+1 = Ep,0

r /{0} = Ep,0
r and

Lemma 2.81 gives E∞ = E2. If (Er, dr) collapses on the q-axis the proof is analogous.

For part (ii), we have that the induced filtration on Hn = Hn(Tot(M)) is

{0} = Ψn+1H
n ⊆ ΨnH

n ⊆ · · · ⊆ Ψ1H
n ⊆ Ψ0H

n = Hn.

Suppose the spectral sequence collapses on the p-axis; if p < n, then 0 < q. Therefore,
ΨpH

n/Ψp+1H
n = Ep,q

∞ = Ep,q
2 = {0} because Ep,q

2 is off the p-axis for all p < n.
Hence, ΨnH

n = Ψn−1H
n = · · · = Ψ1H

n = Ψ0H
n = Hn and Hn = ΨnH

n/{0} =
ΨnH

n/Ψn+1H
n ∼= En,0

2 . A similar argument can be given when the spectral sequence
collapses on the q-axis.
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Remark 2.99. All concepts defined in this section for the category of modules can be
extended to any abelian category thanks to the Full Imbedding Theorem [20].

Definition 2.100. Let C be in Ob(Comp(A)), where A is an abelian category and
Comp(A) denotes the category of the complexes in A. A Cartan-Eilenberg pro-
jective resolution (or a proper projective resolution) of C is an exact sequence of
complexes from Comp(A),

→M•,q → · · · →M•,1 →M•,0 → 0,

such that the following sequences in A are projective resolutions for each p:

(i) · · · →Mp,1 →Mp,0 → Cp → 0;

(ii) · · · → Zp,1 → Zp,0 → Zp(C)→ 0;

(iii) · · · → Bp,1 → Bp,0 → Bp(C)→ 0;

(iv) · · · → Hp,1 → Hp,0 → Hp(C)→ 0.

There is a dual notion of Cartan–Eilenberg injective resolution.

Definition 2.101. Let C be a complex in Comp(A), where A is an abelian category.
A Cartan-Eilenberg injective resolution (or a proper injective resolution) of C
is an exact sequence of complexes from Comp(A),

0→M•,0 →M•,−1 → · · · →M•,−q →,

such that the following sequences in A are injective resolutions for each p:

(i) 0→ Cp →Mp,0 →Mp,−1 → · · · ;

(ii) 0→ Zp(C)→ Zp,0 → Zp,−1 → · · · ;

(iii) 0→ Bp(C)→ Bp,0 → Bp,−1 → · · · ;

(iv) 0→ Hp(C)→ Hp,0 → Hp,−1 → · · · ;

A Cartan–Eilenberg projective resolution can be viewed as a large commu-
tative diagram M in A. For each p, the pth row Mp,• is a deleted projective resolution
of Cp; for each q, the qth column M•,q is a complex each of whose terms is projective.
Also we can see Cartan–Eilenberg projective resolution as a bicomplex in the
next way: given a Cartan–Eilenberg projective resolution M,
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Mn+1,3 Mn+1,2 Mn+1,2 Mn+1,0 0

Mn,3 Mn,2 Mn,2 Mn,0 0

Mn−1,3 Mn−1,2 Mn−1,2 Mn−1,0 0

d′n+1,3

d′′n+1,3

d′n+1,2

d′′n+1,2

d′n+1,1

d′′n+1,1

d′n+1,0

d′n,3

d′′n,3

d′n,2

d′′n,2

d′n,1

d′′n,1

d′n,0
d′′n−1,3 d′′n−1,2 d′′n−1,1

Observe that d′ and d′′ are differentials with bidegree (−1, 0) and (0,−1) re-
spectively, then we can make it into a bicomplex with a sign change. Define
∆′′p,q = (−1)pd′′p,q. Changing sign does not affect kernels and images, and so ∆′′∆′′ = 0.
Finally,

d′p,q−1∆′′p,q + ∆′′p−1,qd
′
p,q = (−1)pd′p,q−1d

′′
p,q + (−1)p−1d′′p−1,qd

′
p,q

= (−1)p(d′p,q−1d
′′
p,q − d′′p−1,qd

′
p,q)

= 0.

Therefore, (M,d′,∆′′) is a bicomplex. We can do the same construction in the Car-
tan–Eilenberg injective resolution case.

From [1] we have the next well known result.

Proposition 2.102. (Horseshoe Lemma). Given a diagram in an abelian cate-
gory A with enough projectives,

P ′1 P ′′1

P ′0 P ′′0

0 A′ A A′′ 0,

ε′ ε′′

i q

52



2.3 Spectral sequences Preliminaries

where the columns are projective resolutions and the row is exact, then there exist a
projective resolution of A and chain maps so that the three columns form an exact
sequence of complexes.

Remark 2.103. The dual of Horseshoe Lemma in which projective resolutions are
replaced by injective resolutions is also true.

Theorem 2.104. If A is an abelian category with enough projectives (or injectives),
then any C in Ob(Comp(A)) has a Cartan–Eilenberg projective (or injective) reso-
lution.

Proof. Let C =→ C2
d2−→ C1

d1−→ C0
d0−→ C−1 → be a complex. For each p ∈ Z, there

are exact sequences

0→ Bp → Zp → Hp → 0 and 0→ Zp → Cp → Bp−1 → 0.

Choose projective resolutions Bp,∗ and Hp,∗ of Bp and Hp, respectively; by Propo-
sition 2.102 (Horseshoe Lemma), there is a projective resolution Zp,∗ of Zp so that
0 → Bp,∗ → Zp,∗ → Hp,∗ → 0 is an exact sequence of complexes. Using the Horse-
shoe Lemma again, there is a projective resolution Mp,∗ of Cp so that 0 → Zp,∗ →
Mp,∗ → Bp−1,∗ → 0 is an exact sequence of complexes. Then we have the next two
commutative diagrams with exact columns and rows

Bp,1 Zp,1 Hp,1

Bp,0 Zp,0 Hp,0

Bp Zp Hp

Zp,1 Mp,1 Bp−1,1

Zp,0 Mp,0 Bp−1,0

Zp Cp Bp−1.

For each p, define chain maps dp,q : Mp,q →Mp−1,q as the composition

dp,q : Mp,q → Bp−1,q → Zp−1,q →Mp−1,q.

Since the above diagrams are commutative with exact columns and rows, we have
that Zp,q ∼= ker dp,q, Bp,q

∼= im dp+1,q and Hp,q
∼= Zp,q/Bp,q. We have a commutative

two-dimensional diagram whose columns are the projective resolutions Mp,• of Cp.
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M2,1 M1,1 M0,1 M−1,1

M2,0 M1,0 M0,0 M−1,0

C2 C1 C0 C−1

d2,1 d1,1 d0,1

d2,0 d1,0 d0,0

We have constructed a Cartan-Eilenberg projective resolution.

Definition 2.105. Let B be an abelian category with enough projectives (or with
enough injectives), and let F : B → Ab be an additive functor of either variance. An
object B is called right F-acyclic if (RpF )B = {0} for all p ≥ 1. An object B is
called left F-acyclic if (LpF )B = {0} for all p ≥ 1.

Theorem 2.106. Grothendieck third quadrant spectral sequence.

Let A G→ B F→ C be covariant additive functors, where A, B and C are abelian
categories with enough injectives. Assume that F is left exact and that GE is right
F -acyclic for any injective object E in A. Then for any A ∈ Ob(A) there is a third
quadrant spectral sequence with

Ep,q
2 = (RpF )(RqG)A⇒

p
Rn(FG)A

with n = p+ q.

Proof. For an objectA inA choose an injective resolution E = 0→ A→ E0 → E1 →,
and apply G to its deletion EA to obtain the complex

GEA = 0→ GE0 → GE1 → GE2 → · · · .

By Theorem 2.104, there exist a Cartan–Eilenberg injective resolution of GEA: a third
quadrant bicomplex M whose rows are complexes and whose columns are deleted
injective resolutions. So the diagram of M with GEA after raising indices is
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M0,1 M1,1 M2,1 M3,1

M0,0 M1,0 M2,0 M3,0

GE0 GE1 GE2 GE3

0 0 0 0

Consider the bicomplex FM and its total complex Tot(FM). Let us compute
its first iterated homology. For fixed p, the pth column Mp,∗ is a deleted injective
resolution of GEp, and so FMp,∗ is a complex

0 −→ FMp,0 −→ FMp,1 −→ FMp,2 −→ · · ·

whose qth homology is (RqF )(GEp):

Hq(FMp,∗) = (RqF )(GEp).

Now Ep is injective, so that GEp is right F -acyclic; that is, (RqF )(GEp) = {0} for
all q ≥ 1. Hence,

Hq(FMp,∗) =

{
(R0F )(GEp) if q = 0
{0} if q > 0.

But F is assumed to be left exact, so that R0F = F . All that survives on the p-axis,

0→ FG(E0)→ FG(E1)→ FG(E2)→,

and this is FG applied to the deleted injective resolution EA. Hence, its pth homology
is Rp(FG)A:

IEp,q
2 =

{
Rp(FG)A if q = 0
{0} if q > 0.

Thus, the first spectral sequence of FM collapses on the p-axis, and we have by
Proposition 2.98

Hn(Tot(FM)) ∼= Rn(FG)A.
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To compute the second iterated homology of FM we can do it in terms of the first
iterated homology of FM t. We first transpose the indices p, q in the bicomplex FM,
noting that

Hq(FM∗,p) =
kerFdq,p

imFdq−1,p
.

Apply F to the commutative diagram in which j : B → Z and i : Z → M are
inclusions, and δ : M → B is the surjection arising from d by changing its target;
note that d = ijδ:

M q+1,p

0 Zq,p M q,p Bq+1,p 0.i

d

δ

ij

We are now going to use the hypothesis that M is a Cartan–Eilenberg injective
resolution. Since Zq,p is injective [being a term in the injective resolution of Z(GEp)],

the exact sequence 0→ Zp,q i−→Mp,q δ−→ Bq+1,p → 0 splits. Therefore, the sequence
remains exact after applying F , so that Fi is monic, kerFδ = imFi, and Fδ is epic.

Similarly, the exact sequence 0 → Bq,p j−→ Zq,p → Hq,p → 0 splits, because Bq,p is
injective, so that it, too, remains exact after applying F . Hence, Fj is monic.

It is clearer to give the next argument in the category of abelian groups Ab (this
is no loss in generality, thanks to the Full Imbedding Theorem [20]). We compute
kerFd/ imFd. Now Fd = F (ijδ). Since both Fi and Fj are injections, the numerator

kerFd = kerFδ = imFi = (Fi)(FZ).

The denominator

imFd = (Fd)(FM) = (Fi)[(Fj)(Fδ)(FM)] = (Fi)[(Fj)(FB)],

because Fδ : FM → FB is a surjection. Now use the fact that the homomorphism
Fi : FZ → FM and the subgroup (Fj)(FB) ⊆ FZ give a surjection

FZ

(Fj)(FB)
−→ (Fi)(FZ)

(Fi)[(Fj)(FB)]
;

moreover, this is an isomorphism because Fi is an injection. Therefore,

kerFd

imFd
=

(Fi)(FZ)

(Fi)[(Fj)(FB)]
∼=

FZ

(Fj)(FB)
.
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But FZ/(Fj)(FB) = cokerFj ∼= FH, because 0 → FB
Fj−→ FZ → FH → 0 is

exact. Restoring indices, we conclude that

Hq(FM∗,p) =
kerFdq,p

imFdq−1,p
∼= FHq,p;

that is, F commutes with Hq. By hypothesis, each

0→ Hq(GEA)→ Hq,0 → Hq,1 → · · · → Hq,p →

is an injective resolution of Hq(GEA). By definition, Hq(GEA) = (RqG)A, so that
the modules Hq(M∗,p) form an injective resolution of (RqG)A. Hence,

IIEp,q
2 = HpHq(FM) = Hp(FHq(M)) = (RpF )(RqG)A,

for F commutes with Hq, and so (RpF )(RqG)A⇒
p
Rn(FG)A, because both spectral

sequences have the same limit by Proposition 2.91 and 2.93 , namely, Rn(FG)A.
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CHAPTER 3

Partial group cohomology

Now we will introduce one of our main objects of study, the right derived functor of
the functor of partial representations which we will call the partial group cohomology.

3.1 Partial group cohomology

The main objective in this section is to relate this cohomology with the vector space
of partial derivations and the partial augmentation ideal. This section corresponds to
the study of the first part of [2].

Definition 3.1. Let G be a group, V a K-vector space and

φV : Kpar(G)→ EndK(V )

an object in RepKpar(G). The set of G-invariants of V is defined as:

V Gpar :=
{
v ∈ V : φV

(
[g]
)
(v) = φV (eg)(v) ∀g ∈ G

}
.

It is easy to see that V Gpar is a K-vector space. If f : V → W is a morphism in
RepKpar(G), then:

φW
(
[g]
)

(f(v)) = f
(
φV
(
[g]
)
(v)
)

= f
(
φV
(
eg
)
(v)
)

= φW
(
eg
)

(f(v)) ,
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hence f induces a linear map fGpar : V Gpar → WGpar .

Remark 3.2. By Definition 3.1, (−)Gpar is a functor from RepKpar(G) to RepK.

Lemma 3.3. Let φV be an object of RepKpar(G). If f ∈ HomKpar(G)(B, V ) then f
is uniquely defined by the element f(1).

Proof. Recall the φB structure of B given by Corollary 2.55. For eg1eg2 ...egm ∈ B:

f
(
eg1eg2 ...egm

)
= f

(
[h1][h2]...[hm]1[h−1

m ]...[h−1
2 ][h−1

1 ]
)

= f
(
φB
(
[h1][h2]...[hm]

)
(1)
)

= φV
(
[h1][h2]...[hm]

)
(f(1)) ,

where h1 = g1 and hi = g−1
i−1gi. Then f only depends of f(1).

Proposition 3.4. (−)Gpar : RepKpar(G)→ RepK is a left exact functor.

Proof. To see that (−)Gpar is a left exact functor is enough to see that there exist a
natural isomorphism

(−)Gpar ∼= HomKpar(G)(B,−).

Define η : (−)Gpar → HomKpar(G)(B,−) such that

ηV : (V )Gpar → HomKpar(G)(B, V )

is given by u 7→ fu with fu(1) = u. For all u ∈ (V )Gpar we have that ηV (u) is
well-defined by Lemma 3.3. Also fu+v(1) = u + v =

(
fu + fv

)
(1), then ηV is a

morphism of vector spaces. Moreover fv = fu ⇔ fv(1) = fu(1)⇔ v = u, hence ηV is
a monomorphism.

Let f ∈ HomKpar(G)(B, V ), then we have that:

φV
(
[g]
)

(f(1)) = f
(
φB
(
[g]
)
(1)
)

= f
(
[g]1[g−1]

)
= f

(
[g][g−1]1[g][g−1]

)
= f

(
φB
(
[g][g−1]

)
(1)
)

= f
(
φB
(
eg
)
(1)
)

= φV
(
eg
)

(f(1)) .

Hence f(1) ∈ V Gpar . That means that for all f ∈ HomKpar(G)(B, V ) there exist u ∈
V Gpar such that fu = f . Then, ηV is an isomorphism. So η is a natural isomorphism
if the next diagram commutes for any morphism f : V → W in RepKpar(G)
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V Gpar WGpar

HomKpar(G)(B, V ) HomKpar(G)(B,W )

ηV

fGpar

f̂

ηW

where f̂ = HomKpar(G)(B, f).

Notice that it is enough to show that ηW ◦ fGpar(z)
(
1
)

= HomKpar(G)(B, f) ◦
ηV (z)

(
1
)
, because the morphisms in HomKpar(G)(B, V ) are defined only by the image

of 1. Let z ∈ V , then:

ηW ◦ fGpar(z)
(
1
)

= ηW (f(z))(1)

= f(z)

= f
(
ηV (z)

(
1
))

= HomKpar(G)(B, f)(ηV (z)
(
1
)
).

This proves that the diagram commutes and hence η is a natural isomorphism.

Now we are able to define the partial cohomology groups of a group G and a
Kpar(G)-module M .

Definition 3.5. If G is a group and M an object in RepKpar(G), then the partial
cohomology groups of G with coefficients in M are defined as:

Hn
par

(
G,M

)
= ExtnKpar(G)

(
B,M

)
,

that is, Hn
par

(
G,M

)
is the right derived functor of (−)Gpar ∼= HomKpar(G)(B,−).

Remark 3.6. Recall that ExtnKpar(G)(−,M) = Rn Hom{KparG}(−,M), so:

Hn
par(G,M) = ExtnKpar(G)

(
B,M

)
= Rn HomKpar(G)(B,M) = Hn

(
HomKpar(G)(B,M)

)
.

If (C, ε) is a protective resolution of B of Kpar(G)-modules,

0← B
ε← C0

d1← C1
d2← C2

d3← C3
d4← · · · ,
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then we have the cochain complex

0→ HomKpar(G)(B,M)
γε−→ HomKpar(G)(C0,M)

γd1−→ · · · ,

where γε = HomKpar(G)(ε,M) and γdi = HomKpar(G)(di,M), the functor HomKpar(G)(−,M)
applied to the morphisms ε and di respectively, for i ≥ 1. Thus

Hn
par(G,M) =

ker Hom(dn+1,M)

im Hom (dn,M)
.

Let ε be the following morphism

ε : Kpar(G)→ B,

given by ε ([g1][g2]...[gn]) = [g1][g2]...[gn][g−1
n ]...[g−1

2 ][g−1
1 ] = eg1eg1g2 ...eg1g2...gn .

Notice that ε is a Kpar(G)-module morphism. Indeed, for all a ∈ Kpar(G), we
have that ε(a) = φB(a)(1).

Remark 3.7. Observe that for all x ∈ S(G) we have that:

ε ([g1][g2]...[gn]x) = [g1][g2]...[gn]ε(x)[g−1
n ]...[g−1

2 ][g−1
1 ].

Lemma 3.8. The morphism ε : Kpar(G)→ B verifies the following properties.

(a) ε(xy)x = xε(y) for all x, y ∈ S(G);

(b) ε(xy) = ε(xy)ε(x); for all x, y ∈ S(G).

Proof. Take x = [g1][g2]...[gr] and y = [h1][h2]...[hs], recall that B is commutative and
[g]eh = egh[g] = egegh[g]. Then we have that:

xε(y) = [g1][g2]...[gr]eh1eh1h2 ...eh1h2...hs

= [g1][g2]...[gr−1]egrh1 [gr]eh1h2 ...eh1h2...hs

= eg1g2...grh1 [g1][g2]...[gr]eh1h2 ...eh1h2...hs

= eg1g2...grh1eg1g2...grh1h2 ...eg1g2...grh1h2...hs [g1][g2]...[gr]

= eg1g2...grh1eg1g2...grh1h2 ...eg1g2...grh1h2...hseg1 [g1]eg2 [g2]...egr [gr]

= eg1eg1g2 ...eg1g2...greg1g2...grh1eg1g2...grh1h2 ...eg1g2...grh1h2...hs [g1][g2]...[gr]

= ε(xy)x,
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and

ε(xy)ε(x) = eg1eg1g2 ...eg1g2...greg1g2...grh1eg1g2...grh1h2 ...eg1g2...grh1h2...hseg1eg1g2 ...eg1g2...gr

= eg1eg1g2 ...eg1g2...greg1g2...grh1eg1g2...grh1h2 ...eg1g2...grh1h2...hs

= ε(xy).

Definition 3.9. The set IG = ker ε is called the partial augmentation ideal.

Remark 3.10. Since ε is a Kpar(G)-module morphism then IG = ker ε is a left ideal
of Kpar(G), hence is a left Kpar(G)-module.

Definition 3.11. Let G be a group and M a left K-module. Define the vector space
of partial derivations as follows:

Derpar(G,M) = {δ ∈ HomK(Kpar(G),M) : δ(ab) = aδ(b) + ε(ab)δ(a) ∀a, b ∈ S(G)} .

In particular, we say that δ ∈ Derpar(G,M) is inner if δ
(
[g]
)

= [g]m− egm for some
m ∈M. We denote by Intpar(G,M) the space of inner partial derivations.

Remark 3.12. Notice that if w is an idempotent of S(G) then

δ(w) = δ(ww) = wδ(w) + ε(w)δ(w)

= wδ(w) + wδ(w)

= 2wδ(w).

Thus δ(w) = 2wδ(w) = 4wδ(w) = 2δ(w), hence δ(w) = 0.

In order to prove some relation between the groups Hn
par(G,M) and Derpar(G,M)

we start with the following exact sequence in RepKpar(G)

0→ IG
i→ Kpar(G)

ε→ B → 0.

Observe that ε
(
ε(x)

)
= ε(x) for all x ∈ Kpar(G). Then x − ε(x) ∈ IG for all

x ∈ Kpar(G).

Proposition 3.13. There is a natural isomorphism

HomKpar(G)(IG,−) ∼= Derpar(G,−).
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Proof. Define
η : HomKpar(G)(IG,−)→ Derpar(G,−),

given by

ηM : HomKpar(G)(IG,M)→ Derpar(G,M)

f 7→ f̂

such that

f̂ : Kpar(G)→M

x 7→ f(x− ε(x)).

Notice that f̂ is a partial derivation. Indeed, for x, y ∈ S(G) by Lemma 3.8 we have
that:

f̂(xy) = f(xy − ε(xy)) = f(xy − xε(y) + ε(xy)x− ε(xy)ε(x))

= xf(y − ε(y)) + ε(xy)f(x− ε(x))

= xf̂(y) + ε(xy)f̂(x).

Then f̂ ∈ Derpar(G,M).

Now we want to check that for any α : M → M ′ morphism of Kpar(G)-modules
we have that:

ηM ′ ◦ HomKpar(G)(IG, α) = Derpar(G,α) ◦ ηM .
Let f ∈ HomKpar(G)(IG,M) then

ηM ′ ◦ HomKpar(G)(IG, α)(f) = ηM ′(α ◦ f)

= α̂ ◦ f : x ∈ Kpar(G) 7→ αf
(
x− ε(x)

)
∈M ′

and
Derpar(G,α) ◦ ηM(f) = α ◦ f̂ : x ∈ Kpar(G) 7→ αf

(
x− ε(x)

)
∈M ′.

Then η is a natural transformation.

Finally observe that ηM is an isomorphism for all M . Let f ∈ HomKpar(G)(IG,M)

such that ηM(f) = f̂ = 0, thus

f̂(x) = 0 ∀x ∈ Kpar(G)⇔ f(x− ε(x)) = 0 ∀x ∈ Kpar(G)

⇒ 0 = f(x− ε(x)) = f(x) ∀x ∈ IG
⇒ f(x) = 0 ∀x ∈ IG
⇒ f = 0.
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Hence ηM is a monomorphism.

Let δ ∈ Derpar(G,M), define

δ′ : IG→M

x 7→ δ(x).

Then δ′ ∈ HomKpar(G)(IG,M). Indeed, let x ∈ IG and a ∈ Kpar(G), thus:

x =
∑
j∈J

xj and a =
∑
i∈I

ai,

where xj, ai ∈ Kpar(G) and recall that IG is a left ideal of Kpar(G). Then:

δ′(ax) =
∑
i,j

δ(aixj) =
∑
i,j

aiδ(xj) + ε(aixj)δ(ai)

= aδ′(x) +
∑
i∈I

ε(aix)δ(ai)

= aδ′(x).

Hence δ′ ∈ HomKpar(G)(IG,M) and by Remark 3.12,

ηM(δ′)(x) = δ′
(
x− ε(x)

)
= δ
(
x− ε(x)

)
= δ(x)− δ

(
ε(x)

)
= δ(x),

for all x ∈ Kpar(G). Thus ηM(δ′) = δ hence HomKpar(G)(IG,M) ∼= Derpar(G,M).

Lemma 3.14. If δ ∈ Intpar(G,M), then δ(x) = (x − ε(x)) ·m for all x ∈ Kpar(G),
for some m ∈M.

Proof. Recall that for g, h ∈ G, δ
(
[h][g]

)
= [h]δ

(
[g]
)

+ ε
(
[h][g]

)
δ
(
[h]
)
. Then

δ
(
[h][g]

)
= [h]

(
[g]− eg

)
·m+ ehehg

(
[h]− eh

)
·m

= ([h][g]− [h]eg + ehehg[h]− ehehgeh) ·m
= ([h][g]− [h]eg + eh[h]eg − ehehg) ·m
=
(
[h][g]− [h]eg + [h]eg − ε

(
[h][g]

))
·m

=
(
[h][g]− ε

(
[h][g]

))
·m.
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Then take xn = [g1][g2]...[gn], by induction over n, if our lemma is valid for each xk
with k ≤ n. Then

δ(xn[h]) = xnδ
(
[h]
)

+ ε
(
xn[h]

)
δ
(
xn
)

= xn
(
[h]− eh

)
·m+ ε

(
xn[h]

)(
xn − ε(xn)

)
·m

=
(
xn[h]− xneh + ε

(
xn[h]

)
xn − ε

(
xn[h]

)
ε
(
xn
))
·m

=
(
xn[h]− xneh + xnε

(
[h]
)
− ε
(
xn[h]

))
=
(
xn[h]− ε

(
xn[h]

))
·m.

Hence δ(λ) =
(
λ− ε

(
λ
)
·m
)

for all λ ∈ S(G). As S(G) is a basis of Kpar(G) as an
algebra, then δ(x) = (x− ε(x)) ·m for all x ∈ Kpar(G).

The following theorem is one of the main results of this work, it gives a charac-
terization of partial cohomology groups via the vector space of partial invariants, the
vector space of partial derivations and the partial augmentation ideal.

Theorem 3.15. Let G be a group and M an object in RepKpar(G). Then

H0
par(G,M) = MGpar = HomKpar(G)(B,M);

H1
par(G,M) = Derpar(G,M)

/
Intpar(G,M);

Hn
par(G,M) = Extn−1

Kpar(G)(IG,M), n ≥ 2.

Proof. Associated to the short exact sequence

0→ IG
i→ Kpar(G)

ε→ B → 0

there is a long exact sequence

0 HomKpar(G)(B,M) HomKpar(G)(Kpar(G),M) HomKpar(G)(IG,M)

Ext1
Kpar(G)(B,M) Ext1

Kpar(G)(Kpar(G),M) Ext1
Kpar(G)(IG,M)

Ext2
Kpar(G)(B,M) Ext2

Kpar(G)(Kpar(G),M) ...

ε∗ i∗

where i∗ = HomKpar(G)(i,M) and ε∗ = HomKpar(G)(ε,M). Then we have that:

H0
par(G,M) = Ext0

Kpar(G)(B,M) ∼= HomKpar(G)(B,M) ∼= MGpar .

Besides, since Kpar(G) is projective, we have that ExtnKpar(G)(Kpar(G),M) = 0 for
any n ∈ N, then for n ≥ 2 we have the next exact sequence:

0→ Extn−1
Kpar(G)(IG,M)→ ExtnKpar(G)(B,M)→ 0.
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Hence Hn
par(G,M) = Extn−1

Kpar(G)(IG,M), ∀n ≥ 2.

We also have the next exact sequence:

0→ HomKpar(G)(B,M)
ε∗−→ HomKpar(G)(Kpar(G),M)

i∗−→ HomKpar(G)(IG,M) −→ Ext1
Kpar(G)(B,M)→ 0.

Then H1
par(G,M) = Ext1

Kpar(G)(B,M) ∼= HomKpar(G)(IG,M)
/

im i∗. Using the iso-
morphism ηM defined in Proposition 3.13 we have that

HomKpar(G)(IG,M) ∼= Derpar(G,M),

thus if we check that ηM
(

im i∗
)

= Intpar(G,M) then:

H1
par(G,M) = Derpar(G,M)

/
Intpar(G,M).

Indeed, let f ′ ∈ im i∗, then f ′ = f ◦ i for some f ∈ HomKpar(G)(Kpar(G),M), hence

we have that ηM(f ′) = f ◦ î. Thus for all x ∈ S(G)

ηM
(
f ′
)
(x) = f ◦ i(x− ε(x)) = f(x− ε(x)) = (x− ε(x))f(1).

Hence ηM
(

im i∗
)
⊆ Intpar(G,M).

Finally let δ ∈ Intpar(G,M), then by Lemma 3.14 δ(x) =
(
x − ε(x)

)
· m for all

x ∈ Kpar(G) and some m ∈ M , then take f ∈ HomKpar(G)(Kpar(G),M) defined by
f(1) = m. Thus

f ◦ î(x) = f ◦ i(x− ε(x)) = f(x− ε(x))

= (x− ε(x)) ·m = δ(x).

Hence ηM(f ◦ i) = δ, then ηM
(

im i∗
)

= Intpar(G,M).
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3.2 The 1-st cohomology group

In this section we are going to use Theorem 3.15 to give another characterization of
the 1-st cohomology group H1

par(G,M) using maps d : G → M satisfying a certain
property. This section correspond to the study of [5].

Recall that B is the subalgebra of Kpar(G) generated by the set of the idempotent
elements of S(G) and the action of Kpar(G) on B is given by conjugation

s · e = ses−1.

First we will show some small results in order to have the necessary tools to reach
our goal.

Lemma 3.16. For arbitrary δ ∈ Derpar(G,M) and s ∈ S(G), e an idempotent
element of S(G) one has

(i) δ(es) = e · δ(s),

(ii) δ(se) = ses−1 · δ(s).

Proof. By Remark 3.12 we have δ(e) = 0 for any idempotent e ∈ S(G), then

(i) δ(es) = eδ(s) + ε(es)δ(e) = eδ(s),

(ii) δ(se) = sδ(e) + ε(se)δ(s) = sε(e)s−1δ(s) = ses−1δ(s).

We will use the isomorphism

H1
par(G,M) ∼= Derpar(G,M)

/
Intpar(G,M)

given in Theorem 3.15 to obtain another interpretation of H1
par(G,M) in terms of

certain maps f : G→M . We introduce those maps in the following lemma.

Lemma 3.17. Let M be a Kpar(G)-module and d : G → M a map such that for all
g, h ∈ G

eg · d(gh) = [g] · d(h) + egh · d(g).

Then the K-linear map δ : Kpar(G)→M defined by

δ(e[g]) = e · d(g),

where e is an idempotent of S(G), is a partial derivation.
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Proof. First of all, we show that δ is well-defined. Since

e1G · d(1G) = [1G] · d(1G) + e1G · d(1G),

then d(1G) = 0. Hence

0 = eg · d(gg−1) = [g] · d(g−1) + d(g)

thus d(g) = −[g]d(g−1). Therefore

d(g) = −[g]d(g−1) = −[g](−[g−1]d(g)) = egd(g).

By Remark 2.21 we have that e[g] = f [h] in S(G) if, and only if, g = h and ege = egf ,
where e and f are idempotents of S(G). Then

δ(e[g]) = e · d(g) = eeg · d(g) = feg · d(g) = f · d(g) = δ(f [g]) = δ(f [h]).

Now given two arbitrary elements e[g] and f [h] of S(G) their product is

e[g]f [h] = e[g]eg−1f [h]

= e[g]f [g−1][g][h]

= e[g]f [g−1][gh].

Recall that e[g]f [g−1] is an idempotent, then

δ(e[g]f [h]) = δ(e[g]f [g−1][gh]) = e[g]f [g−1] · d(gh).

On the other hand we have that

e[g] · δ(f [h])+ε(e[g]f [h]) · δ(e[g])

= e[g]f · d(h) + ε(e[g]f [h])e · d(g)

= e[g]feg−1 · d(h) + e[g]fehf [g−1]e · d(g)

= e[g]f [g−1][g] · d(h) + e[g]f [g−1]egh · d(g)

= e[g]f [g−1] ([g] · d(h) + egh · d(g))

= e[g]f [g−1] (eg · d(gh))

= e[g]f [g−1] · d(gh) = δ(e[g]f [h]).

Thus δ is a partial derivation.

Definition 3.18. Let us denote by D(G,M) the K-vector space of maps d : G→M
which satisfy

eg · d(gh) = [g] · d(h) + egh · d(g).
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Proposition 3.19. There is a bijective correspondence between the partial derivations
of Kpar(G) with values in M and the elements of D(G,M).

Proof. Let δ ∈ Derpar(G,M), then we have that

eg · δ([gh]) = δ(eg[gh]) = δ([g][h]) = [g] · δ([h]) + ε([g][h]) · δ([g])

= [g] · δ([h]) + egegh · δ([g])

= [g] · δ([h]) + egh · δ(eg[g])

= [g] · δ([h]) + egh · δ([g]).

Hence if we define d : G → M by d(g) = δ([g]) then d ∈ D(G,M). Conversely, if
d ∈ D(G,M), then δ given by δ(e[g]) = e · d(g) is in Derpar(G,M) by Lemma 3.17.
Now observe that if d 7→ δ 7→ d′ then

d′(g) = δ([g]) = δ(1S(G)[g]) = 1S(G) · d(g) = d(g),

and if δ 7→ d 7→ δ′

δ′(e[g]) = e · d(g) = e · δ([g]) = δ(e[g]).

Definition 3.20. Define the set

PD(G,M) := {d : G→M | ∃m ∈M ∀g ∈ G : d(g) = [g] ·m− eg ·m}

Remark 3.21. Observe that PD(G,M) is a K-subspace of D(G,M). To see that it is
enough to notice that given d ∈ PD(G,M) we have

[g] · d(h) + egh · d(g) = [g] · ([h] ·m− eh ·m) + egh · ([g] ·m− eg ·m)

= [g][h] ·m− [g]eh ·m+ egh[g] ·m− egheg ·m
= eg[gh] ·m− egh[g] ·m+ egh[g] ·m− egegh ·m
= eg · ([gh] ·m− egh ·m) = eg · d(gh).

Then PD(G,M) ⊆ D(G,M).

Theorem 3.22. Let M be a Kpar(G)-module. Then H1
par(G,M) is isomorphic to the

quotient of the additive group D(G,M) modulo the subgroup PD(G,M).

Proof. We know by Theorem 3.15 that H1
par(G,M) ∼= Derpar(G,M)/ Intpar(G,M)

and by Proposition 3.19 we have that Derpar(G,M) ∼= D(G,M) via

ϕ : Derpar(G,M)→ D(G,M),
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given by d(g) = ϕ(δ)(g) = δ([g]).

Then is enough show that ϕ(Intpar(G,M)) = PD(G,M). Let δ ∈ Intpar(G,M),
then δ([g]) = [g] · m − eg · m and d = ϕ(δ) satisfies d(g) = [g] · m − eg · m for
all g in G, thus ϕ(δ) ∈ PD(G,M). On the other hand, given d ∈ PD(G,M), then
d(g) = [g] · m − eg · m. Now define δ by δ(e[g]) = e · d(g), thus the map δ is in
Intpar(G,M) since

δ([g]) = δ(1S(G)[g]) = 1S(G) · d(g) = [g] ·m− eg ·m.

Hence
ϕ(δ)(g) = δ([g]) = δ(1S(G)[g]) = 1S(G) · d(g) = d(g).

Thus ϕ(δ) = d. Therefore PD(G,M) ∼= Intpar(G,M) via ϕ.

Corollary 3.23. Let (A, α) be a unital partial G-module. Consider the corresponding
Kpar(G)-module structure on A given by Lemma 2.33. Then H1

par(G,A) is isomorphic
to the quotient of the additive group of functions

{f : G→ A | ∀g ∈ G : 1gf(gh) = αg(1g−1f(h)) + 1ghf(g)}

by the subgroup

{f : G→ A | ∃a ∈ A ∀g ∈ G : f(g) = αg(1g−1a)− 1ga}.

3.3 A projective resolution of B

Theorem 3.15 gives us a characterization of Hn
par(G,M) without explicitly showing

an exact resolution of B. We will construct an exact resolution of B that will allow
us to calculate the partial cohomology groups. As we did in Theorem 3.22 we will use
the classes of certain maps f : G→M to characterize the elements of Hn

par(G,M).

Lemma 3.24. Let R be a unital ring and {ei}i∈I ⊆ E(R) a set of idempotents of R.
Then the left R-module

⊕
i∈I Rei is projective.

Proof. Indeed, each Rei is a projective left R-module, since Rei ⊕ R(1R − ei) is
isomorphic to R, a free module of rank 1. Finally, a direct sum of projective modules
is projective (see [15, Proposition 3.10]).

Notation. Denote by e(g1,...,gn) the product of idempotent elements eg1eg1g2 ...eg1g2...gn ∈
E(S(G)).
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Remark 3.25. Notice that

e(g1,...,gn) = eg1eg1g2 ...eg1g2...gn = eg1(eg1g2 ...eg1g2...gn) = eg1e(g1g2,g3,...,gn).

More generally

e(g1,...,gn) = eg1eg1g2 ...eg1g2...gieg1g2...gigi+1
...eg1g2...gn

= eg1g2...gi(eg1eg1g2 ...eg1g2...gigi+1
...eg1g2...gn)

= eg1g2...gie(g1,...,gigi+1,...,gn).

Now we will define the family of projective Kpar(G)-modules {Pi}i∈N∪{0}, which
are the modules that will constitute the projective resolution of B.

Definition 3.26. Define

P0 = Kpar(G)

Pn =
⊕

g1,g2,...,gn∈G

Kpar(G) · e(g1,g2...,gn), n ∈ N.

By Lemma 3.24 each Pn is a projective Kpar(G)-module.

Given ω ∈ Pn we have that ω(g1, g2, . . . , gn) is generated by the elements se(g1,g2,...gn)

with s ∈ S(G), with that idea in mind it would be convenient to us to have an
equivalent description of the modules Pn such that each generator s = se(g1,g2,...gn) is
identified with an element s(g1, ..., gn) that satisfies certain conditions.

Remark 3.27. For each n ∈ N the module Pn is isomorphic, as a K-vector space to
the vector space over K with basis

Rn = {s(g1, ..., gn) | s ∈ S(G), g1, ..., gn ∈ G, s−1s ≤ e(g1,...,gn)}

where

s(g1, ..., gn) = t(h1, ..., hn)⇔
{

(g1, ..., gn) = (h1, ..., hn),
s = t.

Proof. We understand the element se(g1,...,gn) ∈ Pn such that it is specifically in the
coordinate (g1, . . . , gn) of Pn. The set {se(g1,...,gn) | s ∈ S(G)} of elements of Pn form
a basis of the K-vector space Pn. Now define the map ψ : Rn → Pn given by

ψ(s(g1, . . . , gn)) = se(g1,...,gn).
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It is clear that ψ is an epimorphism, since for all s ∈ S(G) we have that

s−1se(g1,...,gn) ≤ e(g1,...,gn),

thus se(g1,...,gn)(g1, . . . , gn) ∈ Rn, hence ψ(se(g1,...,gn)(g1, . . . , gn)) = se(g1,...,gn). Besides
if ψ(t(g1, ..., gn)) = ψ(s(g1, ..., gn)), then se(g1,...,gn) = te(g1,...,gn). Therefore

t(g1, ..., gn) = s(g1, ..., gn).

Thus ψ is an isomorphism.

Let us identify each element t ∈ Kpar(G) · e(g1,...,gn) ⊆ Pn with t(g1, . . . , gn). We
extend the characterization of Pn from Remark 3.3 to n = 0 by identifying P0 with
the K-vector space with basis

{s( ) | s ∈ S(G)}.

Notice that for all t ∈ S(G) and s(g1, ..., gn) we have

t · s(g1, ..., gn) = tse(g1,...,gn) = ts(g1, ..., gn).

Now observe

(ts)−1ts = s−1t−1ts ≤ s−1s ≤ e(g1,...,gn).

Therefore tse(g1,...,gn) = ts(g1, ..., gn) is well-defined.

In order to show that the projective modules Pn form a projective resolution of
B we have to define the morphisms Pn → Pn−1. But first we need the following
definition.

Definition 3.28. Define the K-linear maps ∂n : P0 → B, and ∂0 : Pn → Pn−1,
n ∈ N, as follows

∂0(s( )) = ss−1

∂1(s(g)) = s([g]( )− ( ))

∂n (s (g1, . . . , gn)) = s
(

[g1] (g2, . . . , gn)

+
n−1∑
i=1

(−1)i (g1, . . . , gigi+1, . . . , gn)

+ (−1)n (g1, . . . , gn−1)
)
.
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Each ∂n is a Kpar(G)-module morphism. Since the Kpar(G)-module structure on
B is given by the conjugation, we have that for ∂0

∂0(ts( )) = ts(ts)−1 = tss−1t−1 = t · ss−1 = t · ∂0(s( )).

Now, for n ≥ 0 observe

∂n(ts(g1, ..., gn)) = ts ([g1](g2, ..., gn) + . . .+ (−1)n(g1, ..., gn−1))

= t · ∂n(s(g1, ..., gn)).

Observe that if s(g1, ..., gn) ∈ Pn then s[g1](g2, ..., gn) ∈ Pn−1. Indeed, since s(g1, ..., gn) ∈
Pn we have s−1s ≤ e(g1,...,gn), thus s = se(g1,...,gn), then

s[g1] = se(g1,...,gn)[g1]

= seg1eg1g2 ...eg1g2...gn [g1]

= seg1 [g1]eg2 ...eg2...gn

= s[g1]e(g2,...,gn),

thus (s[g1])−1s[g1] ≤ e(g2,...,gn) and s[g1](g2, ..., gn) ∈ Pn−1.

Let us denote B by P−1 and consider the morphism η : S(G) → G from Remark
2.21.

Definition 3.29. Define K-linear maps σn : Pn → Pn+1, n ∈ N∪{−1, 0}, as follows

σ−1(e) = e( ),

σ0(s( )) = ss−1(η(s)),

σn(s(g1, g2..., gn)) = ss−1(η(s), g1, g2, ..., gn), n ∈ N.

By Lemma 2.24 we have s ≤ [η(s)] and s−1 ≤ [η(s)−1], then ss−1 ≤ eη(s) for all
s ∈ S(G), and if moreover s−1s ≤ e(g1,...,gn), then

ss−1 = s(s−1s)s−1 ≤ [η(s)]s−1s[η(s)−1]

≤ [η(s)]e(g1,...,gn)[η(s)−1] = e(η(s),g1,...,gn).

Thus ss−1 ≤ e(η(s),g1,...,gn) and σn is well-defined.

Lemma 3.30. We have that

∂0 ◦ σ−1 = idB,

∂n+1 ◦ σn + σn−1 ◦ ∂n = idPn , n ∈ N ∪ {0}.
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Proof. It suffices to verify on the K-basis of Pn, n ∈ N ∪ {−1, 0}. The first case

σ0 ◦ σ−1(e) = ∂0(e( )) = e.

Now for n = 0

(∂1 ◦ σ0 + σ−1 ◦ ∂0) (s( )) = ∂1(ss−1(η(s))) + σ−1(ss−1)

= ss−1[η(s)]( )− ss−1( ) + ss−1( ) = s( ).

For n ≥ 1 observe

(∂n+1 ◦ σn)(s(g1, ..., gn)) = ∂n+1(ss−1(η(s), g1, ..., gn))

= ss−1
(
[η(s)](g1, g2, ..., gn)− (η(s)g1, ..., gn)

+
n−1∑
i=1

(−1)i+1(η(s), g1, ..., gigi+1, ..., gn)

+ (−1)n+1(η(s), g1, g2, ..., gn−1)
)
,

and

(σn−1 ◦ ∂n)(s(g1, ..., gn)) =σn−1

(
s([g1](g2, ..., gn)

+
n−1∑
i=1

(−1)i(g1, ..., gigi+1, ..., gn)

+ (−1)n(g1, ..., gn−1)
)

= s[g1](s[g1])−1(η(s[g1]), g2, ..., gn))

+
n−1∑
i=1

(−1)iss−1(η(s), g1, .., gigi+1, ..., gn)

+ (−1)nss−1(η(s), g1, g2, ..., gn−1).

Finally, notice that η(s[g1]) = η(s)g1, and

s[g1](s[g1])−1 = s[g1](ss−1[η(s)][g1])−1 = seg1 [η(s)−1]ss−1

= s[η(s)−1]ss−1eη(s)g1 = ss−1eη(s)g1 .

Then
s[g1](s[g1])−1(η(s[g1]), g2, ..., gn) = ss−1([η(s)]g1, g2, ..., gn).

Therefore

(∂n+1 ◦ σn + σn−1 ◦ ∂n)(s(g1, g2, ..., gn)) = s(g1, g2, ..., gn).
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Lemma 3.31. For n ∈ N ∪ {0} the set σn(Pn) generates Pn+1 as a Kpar(G)-module.

Proof. Let s(g1, ..., gn+1) ∈ Pn+1. Since s−1s ≤ e(g1,g2,...,gn+1) we have

seg1 = se(g1,g2,...,gn)eg1 = se(g1,g2,...,gn) = s,

consider t = [η(s)−1]s[g1] ∈ S(G), then we obtain

tt−1 = [η(s)−1]seg1s
−1[η(s)] = [η(s)−1]ss−1[η(s)] = s−1s

Furthermore, as ss−1 ≤ eη(s), then ss−1 = eη(s)ss
−1, thus s = eη(s)s. Whence

t−1t = [g−1
1 ]s−1eη(s)s[g1] = [g−1

1 ]s−1s[g1] ≤ [g−1]e(g1,...,gn+1)[g1]

= e(g2,...,gn+1)eg−1
1
≤ e(g2,...,gn+1).

Which means that t(g2, ..., gn+1) is well-defined. Finally,

η(t) = η([η(s)−1]s[g1]) = η(s)−1η(s)g1 = g1.

Therefore

s · σn(t(g2, ..., gn+1)) = s · tt−1(η(t), g2, ..., gn+1) = ss−1s(g1, ..., gn+1) = s(g1, ..., gn).

Then s(g1, g2, ..., gn+1) is in the Kpar(G)-module generated by σn(Pn).

Proposition 3.32. The sequence

· · · ∂2→ P1
∂1→ P0

∂0→ B → 0

is a projective resolution of B.

Proof. The exactness in B is clear since ∂0 is an epimorphism by the first item of
Lemma 3.30. By Lemma 3.24 each Pn is projective then we only have to prove that
the sequence is exact. The inclusion ker ∂n ⊆ im ∂n+1, is follows from the second item
of Lemma 3.30. Indeed, given z ∈ ker ∂n we have

z = (∂n+1 ◦ σn + σn−1 ◦ ∂n)(z) = ∂n+1 ◦ σn(z).

Therefore ker ∂n ⊆ im ∂n+1. For the converse inclusion first observe

∂0 ◦ ∂1 ◦ σ0(s( )) = ∂0 ◦ ∂1(ss−1(η(s)))

= ∂0(ss−1([η(s)]( )− ( )))

= ∂0(s( )− ss−1( )) = ss−1 − ss−1ss−1 = 0.
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By Lemma 3.31 we have that σ0(P0) generates P1, then ∂0 ◦ ∂1 = 0. By Lemma 3.30
we have ∂n+1 ◦σn = idPn −σn−1 ◦ ∂n and ∂n ◦σn−1 = idPn−1 −σn−2 ◦ ∂n−1. Thus using
an inductive argument, if ∂n−1 ◦ ∂n = 0 then

∂n ◦ ∂n+1 ◦ σn = ∂n ◦ (idPn − σn−1 ◦ ∂n)

= ∂n − ∂n ◦ σn−1 ◦ ∂n
= ∂n − (idPn−1 − σn−2 ◦ ∂n−1) ◦ ∂n
= ∂n − ∂n + σn−2 ◦ ∂n−1 ◦ ∂n
= 0.

By Lemma 3.31 σn(Pn) generates Pn+1 then ∂n ◦ ∂n+1 = 0.

Definition 3.33. Let M be a Kpar(G)-module. Define the following additive groups

C0
par(G,M) = M,

Cn
par(G,M) = {f : Gn →M | f(g1, g2, ..., gn) ∈ e(g1,g2,...,gn) ·M}, n ∈ N.

Lemma 3.34. Let M be a Kpar(G)-module. Then

HomKpar(G)(Pn,M) ∼= Cn
par(G,M).

Proof. For n = 0 we have that P0 = Kpar(G), then

HomKpar(G)(P0,M) ∼= M = C0
par.

Recall that Hom (
⊕

Ai,−) ∼=
∏

Hom (Ai,−) (for any family of modules {Ai}). Then,
for n ∈ N,

HomKpar(G)(Pn,M) ∼=
∏

g1,...,gn∈G

HomKpar(G)(Kpar(G)e(g1,..,gn),M)

∼=
∏

g1,...,gn∈G

e(g1,..,gn) ·M

= Cn
par(G,M).

Remark 3.35. The two isomorphisms used in Lemma 3.34 are

HomKpar(G)(Pn,M)→
∏

g1,...,gn∈G

HomKpar(G)(Kpar(G)e(g1,...,gn),M)
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given by ϕ 7→ ϕ̂ such that ϕ̂(g1,...,gn)(se(g1,...,gn)) = ϕ(se(g1,...,gn)(g1, ..., gn)). And

HomKpar(G)(Kpar(G)e(g1,...,gn),M)→ Cn
par(G,M)

given by ψ 7→ Φψ such that Φψ(g1, ..., gn) = ψ(e(g1,...,gn)). Then the isomorphism

HomKpar(G)(Pn,M) −→ Cn
par(G,M)

ϕ 7−→ fϕ,

is such that

fϕ(g1, ..., gn) = Φϕ̂(g1, ..., gn) = ϕ̂(e(g1,...,gn)) = ϕ(e(g1,...,gn)(g1, ..., gn))

Conversely, each f ′ ∈ Cn
par(G,M) corresponds to ϕ ∈ HomKpar(G)(Pn,M) defined by

ϕ(s(g1, ..., gn)) = s · f ′(g1, ..., gn).

Definition 3.36. Let M be a Kpar(G)-module and n ∈ N∪ {0}. Define the K-linear
map δn : Cn

par(G,M)→ Cn+1
par (G,M) as follows:(

δ0m
)

(g) = [g] ·m− eg ·m,m ∈ C0
par(G,M)

(δnf) (g1, . . . , gn+1) = [g1] · f (g2, . . . , gn+1)

+
n∑
i=1

(−1)ieg1...gi · f (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1eg1...gn+1 · f (g1, . . . , gn) , n ∈ N, f ∈ Cn
par(G,M).

Lemma 3.37. For all n ∈ N ∪ {0} and f ∈ Cn
par(G,M) we have

δnf = f ◦ ∂n+1,

where f and δnf are identified with the morphisms from HomKpar(G)(Pn,M) as in
Remark 3.35. In particular,

C0
par(G,M)

δ0

→ C1
par(G,M)

δ1

→ · · ·

is a cochain complex of abelian groups.

Proof. Remark 3.35 allows us to understand f ∈ Cn
par(G,M) as a map in HomKpar(G)(Pn,M)

such that
f(s(g1, ..., gn)) = s · f(g1, ..., gn),
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and let us understand δnf ∈ HomKpar(G)(Pn,M) as a map in Cn
par(G,M) such that

δnf(g1, ..., gn) = δnf(e(g1,...,gn)(g1, ..., gn)).

Thus it suffices to verify δnf = f ◦ ∂n+1 on the generators

{e(g1,...,gn+1) | g1, g2, ..., gn+1 ∈ G}

of Pn+1. We first consider the case n = 0. Let m ∈ C0
par(G,M). Then as an element

of HomKpar(G)(Kpar(G),M), m sends s( ) to s ·m. Then

m ◦ ∂1(eg(g)) = m(eg([g]( )− ( ))

= [g] ·m− eg ·m = (δ0m)(g)

= (δ0m)(eg(g)).

Now let n ∈ N and f a function from Cn
par(G,M). Thus

f ◦ ∂n+1

(
e(g1,...,gn+1) (g1, . . . , gn+1)

)
=e(g1,...,gn+1) · ([g1] · f (g2, . . . , gn+1)

+
n∑
i=1

(−1)if (g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f (g1, . . . , gn)
)

=e(g1,...,gn+1) · ([g1] · f (g2, . . . , gn+1)

+
n∑
i=1

(−1)ieg1...gi · f (g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1eg1...gn+1 · f (g1, . . . , gn)
)

=e(g1,...,gn+1) · (δnf) (g1, . . . , gn+1)

= (δnf)
(
e(g1,...,gn+1) (g1, . . . , gn+1)

)

Definition 3.38. Denote ker δn by Zn
par(G,M), n ∈ N∪{0}, and im δn−1 by Bn

par(G,M)
n ∈ N, where δn is given by Definition 3.36.

Theorem 3.39. Let G be a group and M a Kpar(G)-module. Then H0
par(G,M) ∼=

Z0
par(G,M) and Hn

par(G,M) ∼= Zn
par(G,M)/Bn

par(G,M).

Proof. This follows from Proposition 3.32, Lemma 3.34 and Lemma 3.37.
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Remark 3.40. For aKpar(G)-moduleA coming from an unital partialG-module (A, α)
and n ∈ N we have

Cn
par(G,A) =

{
f : Gn → A | f (g1, . . . , gn) ∈ 1(g1,...,gn)A

}
,

where
1(g1,...,gn) = 1g11g1g2 . . . 1g1...gn ∈ A.

Then formulas of Definition 3.36 take the following form(
δ0a
)

(g) =αg (1g−1a)− 1ga, a ∈ C0
par(G,A) = A,

(δnf) (g1, . . . , gn+1) =αg1

(
1g−1

1
f (g2, . . . , gn+1)

)
+

n∑
i=1

(−1)i1g1...gif (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+11g1...gn+1f (g1, . . . , gn)

n ∈ N, f ∈ Cn
par(G,M).

Example 3.41. Let G be the cyclic group C2 = {1, x | x2 = 1}. Observe that
S(G) = {e, [x], ex} where e = [1]. Take M = Kpar(C2), therefore

C0
par(C2, Kpar(C2)) = Kpar(C2),

and, for n ≥ 1,

Cn
par(C2, Kpar(C2)) = {f : (C2)n → Kpar(C2) | f(g1, g2, . . . , gn) ∈ e(g1,g2,...,gn)·Kpar(C2)}.

For the case n = 1 we have

C1
par(C2, Kpar(C2)) = {f : C2 → Kpar(C2) | f(g) ∈ eg ·Kpar(C2)},

notice that f(1) ∈ e ·Kpar(C2) = Kpar(C2) and f(x) ∈ ex ·Kpar(C2) ∼= KC2. Indeed,
it is easy to see that ex · S(C2) = {[x], ex} ∼= C2 and since [x] generates ex ·Kpar(C2)
as an algebra, we have that ex ·Kpar(C2) ∼= KC2. Thus,

C1
par(C2, Kpar(C2)) ∼= Kpar(C2)⊕KC2.

Now, take any e(g1,g2,...,gn) ∈ S(C2), if there exist j ∈ {1, . . . , n} such that gj = x then
e(g1,g2,...,gn) = ex. Indeed, let us take j ∈ {1, . . . , n} such that is the smallest element
that satisfies gj = x, therefore gi = 1 for all i < j. Thus,

e(g1,g2,...,gn) = eg1eg1g2 . . . eg1g2...gjeg1g2...gj . . . eg1g2...gn = exexgj+1
. . . ex...gn = ex.
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Hence, for f ∈ Cn
par(C2, Kpar(C2)) we have that f(g1, . . . , gn) ∈ e · Kpar(C2) =

Kpar(C2) if gi = 1 for all i ∈ {1, . . . , n} and f(g1, . . . , gn) ∈ ex · Kpar(C2) other-
wise. Therefore

Cn
par(C2, Kpar(C2)) ∼= Kpar(C2)⊕ (KC2)n−1.

If we check δ0 in the basis {e, [x], ex} of C0
par(C2, Kpar(C2)) we have that

δ0(e) = (0, [x]− ex),
δ0([x]) = (0, ex − [x]),

δ0(ex) = (0, [x]− ex),

where the first coordinate correspond to e · Kpar(C2) and the second coordinate cor-
respond to ex · Kpar(C2). Therefore ker δ0 = H0

par(C2, Kpar(C2)) is the vector space
generated by {e+ [x], ex + [x]}, which is (Kpar(C2))Gpar as Theorem 3.15 says.
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CHAPTER 4

Grothendieck spectral sequence

We will use spectral sequence theory to relate cohomology of partial smash prod-
uct with partial group cohomology and algebra cohomology. In order to do that we
will show that there exists a pair of functors which satisfies the conditions of Theo-
rem 2.106, thus we will obtain a Grothendieck spectral sequence relating the desired
cohomologies. This section corresponds to the study of the final part of [2].

Definition 4.1. If A is a k-algebra, where k is a commutative ring, then its en-
veloping algebra is

Ae = A⊗k Aop.

Proposition 4.2. Let R and S be k-algebras, where k is a commutative ring. Then
any (R, S)-bimodule M is a left R⊗k Sop-module, where

(r ⊗k s)m = rms.

In particular if A is a k-algebra, then A is a Ae-bimodule.

Definition 4.3. (Cohomology modules of an algebra). 1 Let A be an algebra and let
M be an A-bimodule (Ae-module), we define the nth cohomology module Hn(A,M)
of A with coefficients in M as ExtnAe(A,M).

1For more information about cohomology of algebras see [15, Section 6.11].
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Theorem 4.4. For any A oα G-bimodule M there is a third quadrant cohomology
spectral sequence starting with E2 and converging to H•(Aoα G,M):

Ep,q
2 = Hp

par(G,H
q(A,M))⇒

p
Hp+q(Aoα G,M).

We need some preparation in order to construct the functors that will be used in
the proof of Theorem 4.4. Recall that we are working with an unital partial action(
A, {Dg}g∈G , {αg}g∈G

)
, and that we denote the unity of Dg by ug.

Take a pair of representations

φX : Kpar(G)→ EndK(X) ∈ Ob(RepKpar(G))

and
ΦM : (Aoα G)e → EndK(M) ∈ Ob(Rep(Aoα G)e).

Taking h = 1 in Remark 2.42 we obtain the homomorphism Kpar(G) → A oα G
of algebras given by [g] 7→ ug#g, which induce the algebra homomorphism B →
(A oα G)e defined by es 7→ us#1G ⊗ 1(AoαG)op . It follows that M is a B-module.
Moreover, X is a bimodule over B, because B is a commutative subalgebra ofKpar(G).
Thus we can consider the representation

∆ : (Aoα G)e → EndK(X ⊗B M) ∈ Rep(Aoα G)e,

given by

∆(aug#g ⊗ buh#h)(x⊗m) = φX([g])(x)⊗ ΦM(aug#g ⊗ buh#h)(m).

It follows from the definition of the module structures that for x⊗m in X ⊗BM we
have

φX(es)(x)⊗m = x⊗ ΦM(us#1G ⊗ 1)(m).

Thus in order to verify that ∆ is well defined we have to show that

∆(aug#g ⊗ buh#h)(φX(es)(x)⊗m) = ∆(aug#g ⊗ buh#h)(x⊗ΦM(us#1G ⊗ 1)(m)).
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Indeed,

∆(aug#g ⊗ buh#h)(φX(es)(x)⊗m)

= φX([g])(φX(es)(x))⊗ ΦM(aug#g ⊗ buh#h)(m)

= φX([g]es)(x)⊗ ΦM(aug#g ⊗ buh#h)(m)

= φX(egs[g])(x)⊗ ΦM(aug#g ⊗ buh#h)(m)

= φX(egs)φX([g])(x)⊗ ΦM(aug#g ⊗ buh#h)(m)

= φX([g])(x)⊗ ΦM(ugs#1G ⊗ 1)ΦM(aug#g ⊗ buh#h)(m)

= φX([g])(x)⊗ ΦM((ugs#1G)(aug#g)⊗ buh#h)(m) (1)

= φX([g])(x)⊗ ΦM((aug#g)(us#1G)⊗ buh#h)(m) (2)

= φX([g])(x)⊗ ΦM(aug#g ⊗ buh#h)ΦM(us#1G ⊗ 1)(m)

= ∆(aug#g ⊗ buh#h)(x⊗ ΦM(us#1G ⊗ 1)(m)),

where from (1) to (2) we use that by Lemma 2.41

(ugs#1G)(aug#g) = augugs#g

= augαg(usug−1)#g

= (aug#g)(us#1G).

In particular, if we take M = A oα G we have that X ⊗B (A oα G) is an object in
Rep(Aoα G)e, where

(aug#g ⊗ buh#h) · (x⊗ cus#s) = φX([g])(x)⊗ (aug#g)(cus#s)(buh#h). (4.1)

Observe that M can be viewed as an object in RepAe, where the morphism
φM : Ae → EndK(M) is the composition

Ae
φ0⊗φ0−→ (Aoα G)e

ΦM−→ EndK(M),

given by

a⊗ b 7→ au1G#1G ⊗ bu1G#1G 7→ ΦM(au1G#1G ⊗ bu1G#1G).

Recall that by (III) of Lemma 2.41 we have that G→ Aoα G given by g 7→ ug#g is
a partial representation. Furthermore, by Lemmas 2.36 and 2.37 we have that M is
an object in ParRepG with the map G→ EndK(M) given by

g ∈ G 7→ (ug#g ⊗ ug−1#g−1) ∈ (Aoα G)e 7→ ΦM(ug#g ⊗ ug−1#g−1) ∈ EndK(M).

Therefore, by Lemma 2.35 there exists a partial representation

µ : G→ EndK(HomK(A,M)),
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given by
µ(g)(f)(x) = ΦM(ug#g ⊗ ug−1#g−1)f(αg−1(ugx)),

where f ∈ HomK(A,M) and x ∈ A. Notice that µ induces a partial representation

π : G→ EndK(HomAe(A,M)),

given by

π(g)(f)(x) = µ(g)(f)(x) = ΦM(ug#g ⊗ ug−1#g−1)f(αg−1(ugx)),

where f ∈ HomAe(A,M) and x ∈ A. So we only have to verify that π(g)(f) ∈
HomAe(A,M) for all f ∈ HomAe(A,M)

π(g)(f)(axb)

= ΦM(ug#g ⊗ ug−1#g−1)f(αg−1(ugaxb))

= ΦM(ug#g ⊗ ug−1#g−1)f(αg−1(uga)αg−1(ugx)αg−1(ugb)) (3)

= ΦM(ug#g ⊗ ug−1#g−1)ΦM(αg−1(uga)u1G#1G ⊗ αg−1(ugb)u1G#1G)f(αg−1(ugx)) (4)

= ΦM((ug#g)(αg−1(uga)u1G#1G)⊗ (αg−1(ugb)u1G#1G)(ug−1#g−1))f(αg−1(ugx)) (5)

= ΦM((au1G#1G)(ug#g)⊗ (ug−1#g−1)(bu1G#1G))f(αg−1(ugx)) (6)

= ΦM(au1G#1G ⊗ bu1G#1G)ΦM(ug#g ⊗ ug−1#g−1)f(αg−1(ugx))

= ΦM(au1G#1G ⊗ bu1G#1G)π(g)(f)(x).

From (3) to (4) recall that f ∈ HomAe(A,M), from (5) to (6) we use that

(ug#g)(αg−1(uga)u1G#1G) = ugαg(αg−1(uga)ug−1)ug#g

= ugαg(αg−1(uga))#g

= uga#g = (au1G#1G)(ug#g)

and analogously,

(αg−1(ugb)u1G#1G)(ug−1#g−1) = αg−1(ugb)ug−1#g−1

= ug−1αg−1(bu1Gug)ug−1#g−1

= (ug−1#g−1)(bu1G#1G).

Then π(g)(f) ∈ HomAe(A,M). Therefore π ∈ RepParK, and take π̃ ∈ RepKpar(G)
such that π(g) = π̃([g]).

Now we consider the natural transformations

HomKpar(G)(−,HomAe(A,M))
Γ−→ Hom(AoαG)e(−⊗B (Aoα G),M)
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and
Hom(AoαG)e(−⊗B (Aoα G),M)

Λ−→ HomKpar(G)(−,HomAe(A,M))

defined as follows: given aKpar(G)-moduleX andH ∈ HomKpar(G)(X,HomAe(A,M)),
the map ΓX(H) is defined by

ΓX(H)(x⊗ aug#g) := ΦM(1⊗ aug#g)H(x)(1A),

and given T ∈ Hom(AoαG)e(X ⊗B (Aoα G),M), the map ΛX(T ) is defined by

ΛX(T )(x)(a) := T (x⊗ (au1G#1G)).

The map ΓX(H) is well defined since

ΓX(H) (eh · x⊗ aug#g)

= ΦM (1AoαG ⊗ aug#g)H (eh · x) (1A)

= ΦM (1⊗ aug#g) (π̃ (eh))H(x)(1)

= ΦM (1⊗ aug#g) π(h)π(h−1)H(x)(1)

= ΦM(1⊗ aug#g)ΦM(uh#h⊗ uh−1#h−1)π(h−1)H(x)(αh−1 (uh1))

= ΦM (1⊗ aug#g) ΦM

(
uh#h⊗ uh−1#h−1

)
ΦM

(
uh−1#h−1 ⊗ uh#h

)
H(x) (αh (uh−1αh−1 (uh1)))

= ΦM (1⊗ aug#g) ΦM

(
(uh#h)

(
uh−1#h−1

)
⊗ (uh#h)

(
uh−1#h−1

))
H(x) (uh)

= ΦM (1⊗ aug#g) ΦM ((uh#1G)⊗ (uh#1G))H(x) (uh)

= ΦM (uh#1G ⊗ (uh#1G) (aug#g))H(x) (uh)

= ΦM (1⊗ (uh#1G) (aug#g)) ΦM(uh#1G ⊗ u1G#1G)H(x) (uh)

= ΦM (1⊗ (uh#1G) (aug#g))φM(uh ⊗ u1G)(H(x) (uh1))

= ΦM (1⊗ (uh#1G) (aug#g))H(x) (uh (uh1))

= ΦM (1⊗ (uh#1G) (aug#g))H(x) (1uh)

= ΦM (1⊗ (uh#1G) (aug#g))φM(u1G ⊗ uh)H(x) (1)

= ΦM (1⊗ (uh#1G) (aug#g)) ΦM(u1G#1G ⊗ uh#1G)H(x) (1)

= ΦM (1⊗ (uh#1G) (uh#1G) (aug#g))H(x)(1)

= ΦM (1⊗ (uh#1G) (aug#g))H(x)(1)

= ΓX(H) (x⊗ (uh#1G) (aug#g))

= ΓX(H) (x⊗ eh · (aug#g)) .
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Next we show that ΓX(H) is a homomorphism of (Aoα G)e-modules:

ΓX(H) (∆ (cuh#h⊗ dus#s) (x⊗ aug#g))
4.1
= ΓX(H)

(
φX([h])(x)⊗ ((cuh#h)⊗ (dus#s)) · (aug#g)

)
= ΓX(H) (φX([h])(x)⊗ (cuh#h) (aug#g) (dus#s))

= ΦM (1AoαG ⊗ (cuh#h) (aug#g) (dus#s))H (φX([h])(x)) (1A)

= ΦM (1⊗ (cuh#h) (aug#g) (dus#s))π(h)(H(x))(1)

= ΦM (1⊗ (cuh#h) (aug#g) (dus#s)) ΦM

(
uh#h⊗ uh−1#h−1

)
H(x)(uh−1)

= ΦM (1⊗ (cuh#h) (aug#g) (dus#s)) ΦM

(
uh#h⊗ uh−1#h−1

)
· φM(u1G ⊗ uh−1)H(x)(1)

= ΦM (1⊗ (cuh#h) (aug#g) (dus#s)) ΦM

(
uh#h⊗ uh−1#h−1

)
· ΦM(u1G#1G ⊗ uh−1#1G)H(x)(1)

= ΦM (1⊗ (cuh#h) (aug#g) (dus#s)) ΦM

(
uh#h⊗ uh−1#h−1

)
H(x)(1)

= ΦM (uh#h⊗ (αh−1 (cuh) #1G) (aug#g) (dus#s))H(x)(1)

= ΦM (uh#h⊗ (aug#g) (dus#s)) ΦM((u1G#1G)⊗ αh−1(cuh)#1G)H(x)(1)

= ΦM (uh#h⊗ (aug#g) (dus#s))φM(u1G ⊗ αh−1(cuh))H(x)(1)

= ΦM (uh#h⊗ (aug#g) (dus#s))H(x) (αh−1 (cuh))

= ΦM (uh#h⊗ (aug#g) (dus#s))φM(αh−1(cuh)⊗ u1G)H(x)(1)

= ΦM (uh#h⊗ (aug#g) (dus#s)) ΦM (αh−1 (cuh) #1G ⊗ (u1G#1G))H(x)(1)

= ΦM ((uh#h) (αh−1 (cuh) #1G)⊗ (aug#g) (dus#s))H(x)(1)

= ΦM ((uhαh (uh−1αh−1 (cuh)) #h)⊗ (aug#g) (dus#s))H(x)(1)

= ΦM (cuh#h⊗ (aug#g) (dus#s))H(x)(1)

= ΦM (cuh#h⊗ dus#s) ΦM (1⊗ aug#g)H(x)(1)

= ΦM (cuh#h⊗ (dus#s)) ΓX(H) (x⊗ aug#g) .

On the other hand, ΛX(T ) ∈ HomKpar(G)(X,HomAe(A,M)) because

ΛX(T )(x)((c⊗ d) · a) = T (x⊗ (cu1G#1G) (au1G#1G) (du1G#1G))

= T (x⊗ ((cu1G#1G)⊗ (du1G#1G)) · (au1G#1G))

= T (∆((cu1G#1G)⊗ (du1G#1G))(x⊗ (au1G#1G)))

= ΦM (cu1G#1G ⊗ du1G#1G)T (x⊗ au1G#1G)

= ΦM (cu1G#1G ⊗ du1G#1G) ΛX(T )(x)(a),

which shows that ΛX(T )(x) is a homomorphism of Ae-modules. Furthermore, ΛX(T )
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is a homomorphism of Kpar(G)-modules, since

ΛX(T ) (φX([g])(x)) (a)

= T (φX([g])(x)⊗ au1G#1G) = T (φX(eg[g])(x)⊗ au1G#1G)

= T ((φX (eg)φX([g])) (x)⊗ au1G#1G)

= T (φX([g])(x)⊗ (ug#1G) (au1G#1G)) = T (φX([g])(x)⊗ aug#1G)

= T
(
φX([g])(x)⊗ (ug#g) (αg−1 (aug) #1G)

(
ug−1#g−1

))
4.1
= T

(
∆(ug#g ⊗ ug−1#g−1)(x⊗ (αg−1 (aug) #1G))

)
= ΦM

(
ug#g ⊗ ug−1#g−1

)
T (x⊗ αg−1 (aug) #1G)

= ΦM

(
ug#g ⊗ ug−1#g−1

)
ΛX(T )(x) (αg−1 (aug)) = π(g)ΛX(T )(x)(a).

Moreover, Λ ◦ Γ = id, since

ΛX(ΓX(H))(x)(a) = ΓX(H)(x⊗ au1G#1G)

= ΦM(u1G#1G ⊗ au1G#1G)H(x)(1)

= φM(u1G ⊗ au1G)H(x)(1)

= H(x)(a),

and Γ ◦ Λ = id, because

ΓX(ΛX(T ))(x⊗ aug#g) = ΦM(1AoαG ⊗ aug#g)ΛX(T )(x)(1A)

= ΦM(1⊗ aug#g)T (x⊗ u1G#1G) = T (x⊗ aug#g).

Finally, observe that for any morphism f : X → Y in RepKpar(G) and H ∈
HomKpar(G)(Y,HomAe(A,M)) we have

ΓX
(

HomKpar(G)(f,HomAe(A,M))(H)
)
(x⊗ aug#g)

= ΓX(H ◦ f)(x⊗ aug#g)

= ΦM(1AoαG ⊗ aug#g)
(
(H ◦ f)(x)(1A)

)
= ΓY (H)(f(x)⊗ aug#g)

= ΓY (H) ◦ (f ⊗ id)(x⊗ aug#g)

= Hom(AoαG)e(f ⊗B (Aoα G),M)
(
ΓY (H)

)
(x⊗ aug#g).

Thus the next diagram commutes

HomKpar(G)(Y,HomAe(A,M)) HomKpar(G)(X,HomAe(A,M))

Hom(AoαG)e(Y ⊗B (Aoα G),M) Hom(AoαG)e(X ⊗B (Aoα G),M)

ΓY

f ∗

f∗

ΓX
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where f ∗ = HomKpar(G)(f,HomAe(A,M)) and f∗ = Hom(AoαG)e(f ⊗B (Aoα G),M).

The previous facts lead us to the following two propositions.

Proposition 4.5. The functors

HomKpar(G)(−,HomAe(A,M)) and Hom(AoαG)e(−⊗B (Aoα G),M)

are naturally isomorphic by means of Γ.

Proposition 4.6. Up to the natural isomorphism Γ, we have the commutative dia-
gram of functors

Rep(Aoα G)e RepK

RepKpar(G)

F

F1 F2

where
F1(M) = HomAe(A,M), F2(X) = HomKpar(G)(B,X)

and
F (M) = Hom(AoαG)e(Aoα G,M).

Proof. Recall that F1(M) = HomAe(A,M) ∈ Ob(RepKpar(G)) due the map π defined
above, and B is a Kpar(G)-module by Corollary 2.55. Now, if we take X = B and
M = A oα G, the map ∆ defines a (A oα G)e-module structure for B ⊗B (A oα G)
given by

(aug#g ⊗ buh#h) · (w ⊗ cus#s) = [g] · w ⊗ (aug#g ⊗ buh#h) · (cus#s)
= [g]w[g−1]⊗ (aug#g)(cus#s)(buh#h).

Furthermore, observe that for any x ∈ Aoα G we have

(aug#g ⊗ buh#h) · (1B ⊗ x) = eg ⊗ (aug#g)x(buh#h)

= 1B ⊗ (ug#1G)(aug#g)x(buh#h)

= 1B ⊗ (aug#g)x(buh#h).

Whence we get that B⊗B (AoαG) and AoαG are isomorphic as (AoαG)e-modules,
because B⊗B (AoαG) ∼= AoαG as abelian groups by means of the map b⊗x 7→ b ·x,
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where b ∈ B and x ∈ AoαG. Then using Proposition 4.5 to the particular case X = B
we have for any M ∈ Ob(Rep(Aoα G)e) that

F2F1M = HomKpar(G)(B,HomAe(A,M))

' Hom(AoαG)e(B ⊗B (Aoα G),M)

' Hom(AoαG)e(Aoα G,M).

Finally, if f : X → Y is a morphism in Rep(A oα G)e we want the next diagram to
commute

HomKpar(G)(B,HomAe(A,X)) HomKpar(G)(B,HomAe(A, Y ))

Hom(AoαG)e(B ⊗B (Aoα G), X) Hom(AoαG)e(B ⊗B (Aoα G)Y )

γX

F2F1(f)

F (f)

γY

where γX and γY are the isomorphisms given by ΓB, when M = X and M = Y
respectively, i.e.

γX(H)(b⊗ aug#g) = (1AoαG ⊗ aug#g) ·H(b)(1A)

and
γY (H ′)(b⊗ aug#g) = (1AoαG ⊗ aug#g) ·H ′(b)(1A),

for H ∈ HomKpar(G)(B,HomAe(A,X)), H ′ ∈ HomKpar(G)(B,HomAe(A, Y )), a ∈ A
and b ∈ B. Now, observe that(

F2F1(f)(H)
)
(b)(a) = f(H(b)(a))

and (
F (f)(W )

)
(b⊗ aug#g) = f

(
W (b⊗ aug#g)

)
,

where W ∈ Hom(AoαG)e(B ⊗B (Aoα G), X). Therefore,

γY
(
F2F1(f)H

)
(b⊗ aug#g) = (1AoαG ⊗ aug#g) ·

(
F2F1(f)H

)
(b)(1A)

= (1AoαG ⊗ aug#g) · f
(
H(b)(1A)

)
= f

(
(1AoαG ⊗ aug#g) ·H(b)(1A)

)
= f

(
γX(H)(b⊗ aug#g)

)
= F (f)

(
γX(H)

)
(b⊗ aug#g).

Thus, the above diagram commutes.
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Observe that if the functor F2 is left exact and F1(N) is right F2-acyclic for any
injective object N in Rep(A oα G)e, then by Theorem 2.106 for any object M in
Rep(Aoα G)e there exists a third quadrant spectral sequence with

Ep,q
2 = (RpF2)(RqF1)M ⇒

p
Rp+q(F2F1)M.

Now notice that

(RpF2)(RqF1)M = (RpF2)(Rq HomAe(A,M))

= (RpF2)Hq(A,M)

= Rp HomKpar(G)(B,H
q(A,M))

= Hp
par(G,H

q(A,M))

and

Rn(F2F1)M = (RnF )M

= Rn(Hom(AoαG)e(Aoα G,M))

= Hn(Aoα G,M).

Thus
Ep,q

2 = Hp
par(G,H

q(A,M))⇒
p
Hp+q(Aoα G,M),

which proves Theorem 4.4. So it only remains to check that the functors F1 and F2

have the desired properties. But first we have to show some necessary results.

The next fact is a corollary of [4, Theorem 1].

Lemma 4.7. Let S be a finite commutative semigroup, in which all the elements are
idempotents. Then ZS has a basis of orthogonal idempotents. Consequently the same
basis works for KS.

Proof. First define the map ζ : S × S → Z by ζ(a, b) = 1 if a ≤ b and ζ(a, b) = 0
otherwise. Now define for each c ∈ S the Z-linear map ζc : ZS → Z given by
ζc(a) = ζ(c, a), where a ∈ S. Then for a, b ∈ S we have that:

• if c ≤ a and c ≤ b, then c ≤ ab, whence ζc(ab) = 1 = ζc(a)ζc(b),

• if c � a or c � b, then c � ab, whence ζc(ab) = 0 = ζc(a)ζc(b).

Therefore, ζc is a homomorphism of ZS into Z. If there exists x ∈ ZS such that
ζc(x) = 0 for all c ∈ S, then x =

∑
a∈S ψ(a)a for some set {ψ(a) ∈ Z | a ∈ S}, and
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applying ζc we have that 0 =
∑

a≥c ψ(a) for all c ∈ S. Since S is finite it has maximal
elements, thus for each maximal element m we have that 0 =

∑
a≥m ψ(a) = ψ(m).

Hence, by descending induction we have that ψ(a) = 0 for all a ∈ S, therefore x = 0.
Whence we have that if x, y ∈ ZS and ζc(x) = ζc(y) for all c ∈ S, then x = y. Now
define µ : S × S → Z recursively as follows:

• µ(a, b) = 0 if a � b,

• µ(a, a) = 1,

• if a < b, suppose that µ(a, z) has been defined on the set {z | a ≤ z < b}. Then
define

µ(a, b) = −
∑
a≤z<b

µ(a, z),

for a, b ∈ S.

Notice that ∑
a≤z≤b

µ(a, z) = δa,b,

where δa,b = 1 if a = b and δa,b = 0 otherwise. For each a ∈ S define

wa =
∑
b∈S

µ(b, a)b ∈ ZS.

Observe that, since µ(b, a) = 0 if b � a and ζc(a) = 0 if c � b, then

ζc(wa) =
∑
b∈S

µ(b, a)ζc(b) =
∑
c≤b≤a

µ(b, a) = δa,c.

Then for a, c ∈ S and x ∈ ZS

ζc(xwa) = ζc(x)ζc(wa) = ζc(x)δa,c = ζa(x)δa,c = ζa(x)ζc(wa) = ζc(ζa(x)wa).

Therefore
xwa = ζa(x)wa, for all a ∈ S and x ∈ ZS.

Hence, for any pair a, b ∈ S, wbwa = ζa(wb)wa = δa,bwa, so that the wa are pairwise
orthogonal idempotents of ZS. Finally, let w =

∑
a∈S wa, observe that ζc(w) = 1 for

all c ∈ S. Then ζc(bw) = ζc(b)ζc(w) = ζc(b) for all c ∈ S so that bw = w and w is
thus an identity element of ZS. Therefore given x ∈ ZS we may write

x = xe =
∑
a∈S

xwa =
∑
a∈S

ζc(x)wa.
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Lemma 4.8. Let S be a commutative semigroup consisting of idempotent. Let, fur-
thermore, K be a field and KS be the semigroup algebra of S. If I is a finitely
generated ideal of KS then I is generated by an idempotent of KS.

Proof. Let I be a finitely generated ideal of KS and let r1, r2, ..., rm be generators
of I. Choose idempotents u1, ..., un of S such that each ri is a combination of these
idempotents, and let T be the subsemigroup of S generated by u1, ..., un. Then T is
a finite commutative semigroup consisting only of idempotents, and by Lemma 4.7
the space KT has a basis of orthogonal idempotents w1, ..., wN . Each generator ri
lies in KT and therefore we may write ri =

∑
j αi,jwj for i = 1, ..., n (with αi,j ∈ K).

Whence wjri = αi,jwj. Moreover, the set

W = {wj |αi,j 6= 0 for some i}

is contained in I. Indeed, if wj ∈ W , then there exists ri ∈ I such that αi,j 6= 0, hence
wj = α−1

i,j wjri ∈ I. On the other hand, any generator of I is a K-linear combination
of these elements and therefore the ideal generated by W coincides with I. Finally we
show that the ideal generated by W is generated by the element u =

∑
wj∈W wj ∈ I.

First observe that u is idempotent since wjwi = 0 if i 6= j and

uu =
∑

wj ,wi∈W

wjwi =
∑
wj∈W

wjwj =
∑
wj∈W

wj = u.

Moreover, uwj = wj for each j. Hence, if y ∈ I then y =
∑

wj
bjwj with bj ∈ KS,

and therefore yu =
∑

wj∈W bjwju =
∑

wj∈W bjwj = y , thus u acts as an identity for
the elements of I.

Remark 4.9. Recall that if A is a R-module then A is flat if for any finitely generated
ideal J of R the map

J ⊗R A
j⊗1A→ R⊗R A

is injective where j : J → R is the inclusion map.

Lemma 4.10. Any B-module X is flat.

Proof. To use Remark 4.9 we have to show that for any finitely generated left ideal I of
B, the morphism I⊗BX → B⊗BX ∼= X is injective. By Lemma 4.8 and the fact that
B = KS, where S is the commutative semigroup S = {eg1eg2 ...egn | gi ∈ G, n ≥ 1},
we have that I is generated by an idempotent u. Now assume that

∑
i yi⊗xi ∈ I⊗BX

is such that
∑

i yi ⊗ xi = 0 in B ⊗B X, hence
∑

i yi · xi = 0 in X. Since yi ∈ I for
each i we have yi = uyi and therefore

I ⊗B X 3
∑
i

yi ⊗B xi =
∑
i

uyi ⊗B xi = u⊗B

(∑
i

yi · xi

)
= 0,
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which proves that I ⊗B X → B ⊗B X is injective.

Corollary 4.11. The functor − ⊗B (A oα G) : RepKpar(G) → Rep(A oα G)e is
exact.

Finally we can prove the next proposition which completes the proof of Theorem
4.4.

Proposition 4.12. The functor F2 is left exact and F1(N) is right F2-acyclic for
every injective object N in Rep(Aoα G)e.

Proof. We know that the Hom functor is left exact so that F2 = HomKpar(G)(B,−)
is left exact. On the other hand if N is an injective object in Rep(A oα G)e, then
Hom(AoαG)e(−, N) is an exact functor and Corollary 4.11 says that −⊗B (AoαG) is
an exact functor, so the isomorphism of functors

HomKpar(G)(−,HomAe(A,N)) ' Hom(AoαG)e(−⊗B (Aoα G), N)

implies that HomKpar(G)(−,HomAe(A,N)) is exact. Hence ExtnKpar(G)(B,F1(N)) = 0
for any n ≥ 1 and so F1(N) is F2-acyclic.
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CHAPTER 5

Globalization

Given a unital partial action α of G on a unital algebra A, we work with an en-
veloping action (B, β) of (A, α) and the multiplier algebra M(B) of B. We study
the globalization problem for the partial cohomology with values in A. We reduce
the globalization problem to an extendibility property of partial cocycles. Further-
more, we show that if A is a product of blocks then any cocycle from Zn

par(G,A) is
globalizable and that globalizations of cohomologous cocycles are also cohomologous.
Finally, under the above assumption of A, we prove that Hn

par(G,M) is isomorphic
to the usual cohomology group Hn(G,M(B)). This chapter corresponds to the study
of the final part of [5].

5.1 From globalization to an extendibility property

In this section α will be a unital partial action of a group G on an algebra A. First
we will recall some definitions and results extracted form [6] that will be necessary
for the development of this work.

Definition 5.1. An action β of a group G on an algebra B is said to be an envelop-
ing action for the partial action α of G on an algebra A if there exists and algebra
isomorphism ϕ of A onto an ideal of B such that for all g ∈ G the following three
properties are satisfied.
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(i) ϕ(Dg) = ϕ(A) ∩ βg(ϕ(A));

(ii) ϕ ◦ αg(x) = βg ◦ ϕ(x) for all x in Dg−1;

(iii) B is generated by
⋃
g∈G βg(ϕ(A)).

From [6] we have the next theorem.

Theorem 5.2. Let A be a unital algebra. Then a partial action α of a group G on A
admits an enveloping action β if and only if each ideal Dg (g ∈ G) is a unital algebra.
Moreover, β, if it exists, is unique up to isomorphisms.

Definition 5.3. Let L and R be K-linear maps from A to itself. We will say that
the pair (L,R) is a multiplier of A if, for every a and b in A, one has that

(i) L(ab) = L(a)b,

(ii) R(ab) = aR(b),

(iii) R(a)b = aL(b).

Remark 5.4. We will denote L(a) by La and R(a) by aR, thus Definition 5.3 says
that the pair (L,R) is a multiplier of A if, for every a and b in A, one has that

(i) L(ab) = (La)b,

(ii) (ab)R = a(bR),

(iii) (aR)b = a(Lb).

Moreover given another multiplier (L′, R′) of A we have that LL′x = L ◦ L′(x) and
xRR′ = R′ ◦R(x).

If K = A, then every (L,R) in EndA(AA) × EndA(AA) satisfies conditions (i)
and (ii) of Definition 5.3. Then (L,R) is a multiplier if, and only if, (aR)b = a(Lb).

Definition 5.5. The multiplier algebra of A is the set M(A) consisting of all mul-
tipliers (L,R) of A. Given (L,R) and (L′, R′) in M(A), and λ ∈ K we define

λ(L,R) = (λL, λR),

(L,R) + (L′, R′) = (L+ L′, R +R′),

(L,R)(L′, R′) = (LL′, RR′).
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Notice that by Remark 2.34 the algebra A has a natural structure of Kpar(G)-
module. We also fix an enveloping action (B, β) of α with an injective morphism
ϕ : (A, α) → (B, β). Since the algebra B does not always have an identity element,
and since the technique used in [5] needs to have a unital algebra we will work more
generally with the multiplier algebraM(B) of B. For a multiplier γ = (L,R) ∈M(B)
and b ∈ B we set bγ = bR and γb = Lb. Thus one always has (aγ)b = a(γb) for
arbitrary a, b ∈ B.

The action β induces an action β∗ of G on M(B), where β∗g(u) = βguβ
−1
g , for

u ∈M(B) and g ∈ G, that is, if u = (L,R) then

β∗g(u) = (βg ◦ L ◦ β−1
g , βg ◦R ◦ β−1

g ) = (βgLβ
−1
g , β−1

g Rβg).

Indeed, to prove that β∗ is an action of G on M(B), observe that for u = (L,R) ∈
M(B), g ∈ G and arbitrary a, b ∈ B we have

β∗(R)(ab) = βg ◦R ◦ βg−1(ab)

= βg(R(βg−1(a)βg−1(b)))

= βg(βg−1(a)R(βg−1(b)))

= a(βg ◦R ◦ βg−1(b))

= aβ∗(R)(b),

β∗(L)(ab) = βg ◦ L ◦ βg−1(ab)

= βg(L(βg−1(a)βg−1(b)))

= βg(L(βg−1(a))βg−1(b))

= (βg ◦ L ◦ βg−1(a))b

= β∗(L)(a)b,

and

β∗(R)(a)b = βgRβg−1(a)b

= βg(R(βg−1(a))βg−1(b))

= βg(βg−1(a)L(βg−1(b)))

= a(βgLβg−1(b))

= aβ∗(L)(b).

Hence β∗(u) is in M(A). Finally observe

β∗hβ
∗
g(u) = βhβguβg−1βh−1 = βhguβ(hg)−1

and
β∗g(uv) = βguvβg−1 = (βguβg−1)(βgvβg−1) = β∗g (u)β∗g(v).

Denote by Cn(G,M(B)), Zn(G,M(B)), Bn(G,M(B)) and Hn(G,M(B)) the cor-
responding groups of n-cochains, n-cocycles, n-coboundaries and n-cohomologies of
G with values in the additive group of M(B).
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Definition 5.6. Given n ∈ N and u ∈ Cn(G,M(B)), define the restriction of u to
A to be the map w : Gn → A, such that

ϕ (w (g1, . . . , gn)) = ϕ
(
1(g1,...,gn)

)
u (g1, . . . , gn)

where g1, . . . , gn ∈ G. If n = 0 and u ∈ C0(G,M(B)) =M(B), then w is the element
of A, satisfying

ϕ(w) = ϕ(1A)u.

Notice that we could replace

ϕ (w (g1, . . . , gn)) = ϕ
(
1(g1,...,gn)

)
u (g1, . . . , gn)

by
ϕ (w (g1, . . . , gn)) = u (g1, . . . , gn)ϕ

(
1(g1,...,gn)

)
in Definition 5.6 because both options are equivalent. Indeed, since ϕ(A) is an ideal
of B and ϕ(1(g1,...,gn)) is a central idempotent of ϕ(A)

ϕ(1(g1,...,gn))u(g1, . . . , gn) =
(
ϕ(1(g1,...,gn))ϕ(1(g1,...,gn))

)
u(g1, . . . , gn)

= ϕ(1(g1,...,gn)

(
ϕ(1(g1,...,gn))u(g1, . . . , gn)

)
∈ ϕ(A)

=
(
ϕ(1(g1,...,gn))u(g1, . . . , gn)

)
ϕ(1(g1,...,gn))

= ϕ(1(g1,...,gn))
(
u(g1, . . . , gn)ϕ(1(g1,...,gn))

)
=
(
u(g1, . . . , gn)ϕ(1(g1,...,gn))

)
ϕ(1(g1,...,gn))

= u(g1, . . . , gn)ϕ(1(g1,...,gn)).

We will write ρ(u) = w when w is a restriction of u. Note that ρ(u) ∈ Cn
par(G,A)

since

ρ(u)(g1, . . . , gn) = ϕ−1
(
ϕ(1(g1,...,gn))(ϕ(1(g1,...,gn))u(g1, . . . , gn))

)
= 1(g1,...,gn)ϕ

−1
(
ϕ(1(g1,...,gn))u(g1, . . . , gn)

)
∈ 1(g1,...,gn)A

Proposition 5.7. The restriction map ρ : Cn(G,M(B)) → Cn
par(G,A) induces a

homomorphism of the cohomology groups Hn(G,M(B))→ Hn
par(G,A).

Proof. First observe that ρ is an homomorphism since

ϕ (ρ(u+ v) (g1, . . . , gn)) = ϕ
(
1(g1,...,gn)

)
(u+ v) (g1, . . . , gn)

= ϕ
(
1(g1,...,gn)

)
u (g1, . . . , gn) + ϕ

(
1(g1,...,gn)

)
v (g1, . . . , gn)

= ϕ (ρ(u) (g1, . . . , gn)) + ϕ (ρ(v) (g1, . . . , gn)) .

So it only remains to show that ρ commutes with the coboundary operators, that
is, the next diagram commutes
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5.1 From globalization to an extendibility property Globalization

· · · Cn+1(G,M(B)) Cn(G,M(B)) Cn−1(G,M(B)) · · ·

· · · Cn
par(G,A) Cn

par(G,A) Cn
par(G,A) · · ·

ρ

δn+1

ρ

δn

ρ

δn−1

δn+1 δn δn−1

Let n = 0 and u = (L,R) ∈ C0(G,M(B)) = M(B). Then for all g ∈ G by
Definition 5.6 and the fact that ϕ is a morphism of partial actions we have

ϕ
((
δ0ρ(u)

)
(g)
)

= ϕ (αg (1g−1ρ(u))− 1gρ(u))

= βg (ϕ (1g−1)ϕ(ρ(u)))− ϕ (1g)ϕ(ρ(u))

= βg (ϕ (1g−1)ϕ (1A)u)− ϕ (1g)ϕ (1A)u

= βg(ϕ(1g−1)u)− ϕ(1g)u

= βg(R(ϕ(1g−1)))− ϕ(1g)u

= βg(R(ϕ(αg−1(1g))))− ϕ(1g)u

= βg(R(βg−1(ϕ(1g))))− ϕ(1g)u

= ϕ (1g)
(
β∗g(u)− u

)
= ϕ (1g)

(
δ0u
)

(g)

= ϕ
(
ρ
(
δ0u
)

(g)
)
,

whence δ0ρ(u) = ρ(δ0u).

Consider now n ∈ N and u ∈ Cn(G,M(B)). For arbitrary g1, . . . , gn+1 ∈ G, first
notice that

βg1

(
ϕ(1g−1

1
)ϕ
(
1(g2,...,gn+1)

)
u (g2, . . . , gn+1)

)
= βg1

(
R(g2,...,gn+1)

(
ϕ(1g−1

1
)ϕ
(
1(g2,...,gn+1)

)))
= βg1

(
R(g2,...,gn+1)

(
βg−1

1
ϕ
(
1(g1,g2,...,gn+1)

)))
= ϕ

(
1(g1,g2,...,gn+1)

)
β∗g1

(u(g2, . . . , gn+1)),

where u(g2,...,gn+1) = (L(g2,...,gn+1), R(g2,...,gn+1)). Thus
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5.1 From globalization to an extendibility property Globalization

ϕ ((δnρ(u)) (g1, . . . , gn+1)) =ϕ
(
αg1

(
1g−1

1
ρ(u) (g2, . . . , gn+1)

)
+

n∑
i=1

(−1)i1g1...giρ(u) (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+11g1...gn+1ρ(u) (g1, . . . , gn)
)

= βg1

(
ϕ (1g1−1)ϕ (ρ(u) (g2, . . . , gn+1))

)
+

n∑
i=1

(−1)iϕ (1g1...gi)ϕ (ρ(u) (g1, . . . , gigi+1, . . . , gn+1))

+ (−1)n+1ϕ
(
1g1...gn+1

)
ϕ (ρ(u) (g1, . . . , gn))

= βg1

(
ϕ(1g−1

1
)ϕ
(
1(g2,...,gn+1)

)
u (g2, . . . , gn+1)

)
+

n∑
i=1

(−1)iϕ (1g1...gi)ϕ
(
1(g1,...,g1g1+1,...,gn+1)

)
× u (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1ϕ
(
1g1...gn+1

)
ϕ
(
1(g1,...,gn)

)
u (g1, . . . , gn)

=ϕ(1(g1,...,gn+1))
(
β∗g1

(u (g2, . . . , gn+1))

+
n∑
i=1

(−1)iu (g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1u (g1, . . . , gn)
)

=ϕ(1(g1,...,gn+1)) (δnu) (g1, . . . , gn+1)

=ϕ (ρ (δnu) (g1, . . . , gn+1)) .

so that δnρ(u) = ρ(δnu).

Definition 5.8. Given w ∈ Zn
par(G,A), by a globalization of w we mean u ∈

Zn(G,M(B)) satisfying

ϕ (w (g1, . . . , gn)) = ϕ
(
1(g1,...,gn)

)
u (g1, . . . , gn) .

If w admits a globalization, then we say that w is globalizable.

In the proof of Theorem 5.2 given in [6] the enveloping action (B, β) for (A, α)
was constructed as the restriction of the global action (F , β) to the subalgebra

B =
∑
g∈G

βg(ϕ(A)).
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Here F is the ring of functions G→ A and

βg(f)|t = f(g−1t)

for all x, t ∈ G, where the notation f |t is used for the value f(t) if f ∈ F . The
injective morphism ϕ : A → B is then defined by the formula

ϕ(a)|t = αt−1(1ta).

Notice that

ϕ(αg(1g−1a))|t = αt−1(1tαg(1g−1a))

= αt−1(αg(1g−11g−1ta))

= αt−1g(1g−11g−1ta)

= ϕ(1g−1a)|g−1t

= βg(ϕ(1g−1a))|t,

then ϕ(αg(1g−1a)) = βg(ϕ(1g−1a)). Clearly, ϕ(A) ⊆ B, so ϕ is a morphism (A, α)→
(B, β) too. Since all enveloping actions of (A, α) are isomorphic to each other by
Theorem 5.2, we may assume that (B, β) and ϕ are of this form.

Remark 5.9. Notice that if u ∈ Cn(G,F) is such that u(g1, . . . , gn)B,Bu(g1, . . . , gn) ⊆
B then u(g1, . . . , gn) ∈M(B) in the next sense, define R : b ∈ B 7→ bu(g1, . . . , gn) ∈ B
and L : b ∈ B 7→ u(g1, . . . , gn)b ∈ B, thus the pair (L,R) is in End(BB) × End(BB).
So identify u(g1, . . . , gn) with (L,R), finally notice that for arbitrary a, b ∈ B we have

(aR)b = (au(g1, . . . , gn))b = a(u(g1, . . . , gn)b) = a(Lb).

Hence u(g1, . . . , gn) ∈M(B).

Lemma 5.10. Any w ∈ Z0
par(G,A) is uniquely globalizable.

Proof. Define u ∈ C0(G,F) = F to be the constant function taking the value w ∈ A
at any t ∈ G. Using Remark 3.40 we have 1t−1w = αt−1 (1tw) since w ∈ Z0

par(G,A),
then using that ϕ(a)|t = αt−1(1ta), we obtain

ϕ (1A)|t u|t = 1t−1w = αt−1 (1tw) = ϕ(w)|t ,

yielding Definition 5.8.

βg(ϕ(a))|tu|t = ϕ(a)|g−1tw = αt−1g(1g−1ta)w = αt−1g(1g−1ta) · 1t−1gw

= αt−1g(1g−1taw) = βg(ϕ(aw))|t.
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Then βg(ϕ(a))|tu|t = βg(ϕ(aw))|t, so βg(ϕ(A))u ⊆ βg(ϕ(A)). Hence Bu ⊆ B since
B =

∑
g∈G βg(ϕ(A)). In a similar way u|t βg(ϕ(a))|t = βg(ϕ(wa))|t , which implies

uB ⊆ B, and thus u ∈ C0(G,M(B)).

To prove the 0-cocycle identity β∗g(u) = u for u, it suffices to show that βg(uf) =
uβg(f) for any f ∈ F . We have that

βg(uf)|t = (uf)|g−1t = u|g−1tf |g−1t = u|tβg(f)|t,

whence u ∈ Z0(G,M(B)). Now if u1 and u2 in Z0(G,M(B)) are globalizations of w,
then ϕ(1A)u1 = ϕ(1A)u2, using the 0-cocycle identity we have

βg(ϕ(1A)ui) = βg(ϕ(1A)βguiβg−1)

= ϕ(1A)βgui

= βg(ϕ(1A))ui,

for i = 1, 2. Then βg(ϕ(a))u1 = βg(ϕ(a))u2 for all g ∈ G and all a ∈ A, hence u1 = u2

since B =
∑

g∈G βg(ϕ(A)).

Remark 5.11. Recall that A has a trivial G-module structure given by the trivial
action g · x = x, for all g ∈ G and x ∈ A.

For the case w ∈ Zn
par(G,A), n ∈ N , we will need the next lemma.

Lemma 5.12. Let w̃ ∈ Cn(G,A). Then u ∈ Cn(G,F), defined by

u (g1, . . . , gn)|t =(−1)nw̃
(
t−1, g1, . . . , gn−1

)
+ w̃

(
t−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)iw̃
(
t−1, g1, . . . , gigi+1, . . . , gn

)
is an n-cocycle with respect to the action β of G on F .

Proof. Observe that

u (g1, . . . , gn)|t = w̃ (g1, . . . , gn)− (δ̃nw̃)
(
t−1, g1, . . . , gn

)
(1)

where δ̃n : Cn(G,A)→ Cn+1(G,A) is the coboundary operator which corresponds to
the trivial G-module, i.e.

(δ̃nw̃) (g1, . . . , gn+1) = w̃ (g2, . . . , gn+1)

+
n∑
i=1

(−1)iw̃ (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1w̃ (g1, . . . , gn)
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Calculating the value of (δnu) (g1, . . . , gn+1) at t ∈ G, we obtain using that βg(f)|t =
f(g−1t)

u(g2, . . . , gn+1)|g−1
1 t +

n∑
i=1

(−1)iu(g1, . . . , gigi+1, . . . , gn+1)|t

+ (−1)n+1u (g1, . . . , gn)
∣∣
t
,

which in view of (1) equals

w̃ (g2, . . . , gn+1)− (δ̃nw̃)
(
t−1g1, g2, . . . , gn+1

)
+

n∑
i=1

(−1)iw̃ (g1, . . . , gigi+1, . . . , gn+1)

+
n∑
i=1

(−1)i+1(δ̃nw̃)
(
t−1, g1, . . . , gigi+1, . . . , gn+1

)
+ (−1)n+1w̃ (g1, . . . , gn) + (−1)n(δ̃nw̃)

(
t−1, g1, . . . , gn

)
.

The latter is readily seen to be
(
δ̃n+1δ̃nw̃

)
(t−1, g1, . . . , gn+1) = 0A.

The existence of a globalization of a globalization of w ∈ Zn
par(G,A) is equivalent

to certain extendibility property.

Definition 5.13. For any f ∈ Cn(G,A) define δ̃n : Cn(G,A)→ Cn+1(G,A) by

(δ̃nf) (g1, . . . , gn+1) =αg1

(
1g−1

1
f (g2, . . . , gn+1)

)
+

n∑
i=1

(−1)i1g1f (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+11g1f (g1, . . . , gn) .

Theorem 5.14. A cocycle w ∈ Zn
par(G,A), n ∈ N, is globalizable if, and only if,

there exists w̃ ∈ Cn(G,A) such that

δ̃nw̃ = 0 (5.1)

and
w(g1, . . . , gn) = 1(g1,...,gn)w̃(g1, . . . , gn), (5.2)

for all g1, . . . , gn ∈ G.
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Proof. If w is globalizable and u ∈ Zn(G,M(B)) is its globalization, then we define
w̃ ∈ Cn(G,A) such that

ϕ (w̃ (g1, . . . , gn)) = ϕ (1A)u (g1, . . . , gn) = u (g1, . . . , gn)ϕ (1A) .

Clearly, w̃ (g1, . . . , gn) ∈ A, since ϕ(A) is an ideal in B, and moreover (5.2) is satisfied.
Note that (

βg(ϕ(1A))ϕ(1A)
)
|t = βg(ϕ(1A))|tϕ(1A)|t

= ϕ(1A)|g−1t αt−1(1t1A)

= αt−1g(1g−1t)αt−1(1t)

= 1t−1g1t−1

= αt−1(1g1t)

= ϕ(1g)|t,

thus βg(ϕ(1A))ϕ(1A) = ϕ(1g). Hence

ϕ(αg(1g−1a)) = ϕ(αg(1g−1a))ϕ(1g)

= βg(ϕ(1g−1a))βg(ϕ(1A))ϕ(1A)

= βg(ϕ(1g−1a))ϕ(1A),

then ϕ(αg(1g−1a)) = βg(ϕ(1g−1a))ϕ(1A). Therefore

β∗g1
(u (g2, . . . , gn+1))ϕ (1g1) =

(
βg1u (g2, . . . , gn+1) β−1

g1

)
(βg1 (ϕ (1A))ϕ (1A))

= (βg1 (u (g2, . . . , gn+1)ϕ (1A)))ϕ (1A)

= (βg1 [ϕ (w̃ (g2, . . . , gn+1))])ϕ (1A)

= ϕ(αg1(1g−1
1
w̃(g2, . . . , gn+1))).

Thus using the formula

β∗g1
(u (g2, . . . , gn+1))ϕ (1g1) = ϕ(αg1(1g−1

1
w̃(g2, . . . , gn+1)))

we obtain (5.1) by applying both sides of the cocycle identity

β∗g1
(u (g2, . . . , gn+1)) +

n∑
i=1

(−1)iu (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1u (g1, . . . , gn) = 0

to ϕ(1g1).
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Conversely, given w̃ ∈ Cn(G,A) satisfying (5.1) and (5.2), define u ∈ Cn(G,F)
using Lemma 5.12 by

u (g1, . . . , gn)|t =(−1)nw̃
(
t−1, g1, . . . , gn−1

)
+ w̃

(
t−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)iw̃
(
t−1, g1, . . . , gigi+1, . . . , gn

)
.

Then u ∈ Zn(G,F). Now using that ϕ(a)|t = αt−1(1ta), (5.2) and the cocycle identity
for w, we obtain

ϕ (w (g1, . . . , gn))|t =αt−1 (1tw (g1, . . . , gn))

= 1t−1w
(
t−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)i1t−1g1...giw
(
t−1, g1, . . . , gigi+1, . . . , gn

)
+ (−1)n1t−1g1...gnw

(
t−1, g1, . . . , gn−1

)
= 1t−11(t−1g1,g2,...,gn)w̃

(
t−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)i1t−1g1 . . . gi1(t−1,g1,...,gigi+1,...,gn)

× w̃
(
t−1, g1, . . . , gigi+1, . . . , gn

)
+ (−1)n1t−1g1...gn1(t−1,g1,...,gn−1)w̃

(
t−1, g1, . . . , gn−1

)
= 1(t−1,g1,...,gn)u (g1, . . . , gn)

∣∣
t

= ϕ
(
1(g1,...,gn)

)∣∣
t
u (g1, . . . , gn)

∣∣
t
,

whence
ϕ(w(g1, . . . , gn))|t = ϕ(1(g1,...,gn)t)|tu(g1, . . . , gn).

We have yet to prove that u(g1, . . . , gn) ∈M(B), i.e.

u(g1, . . . , gn)B,Bu(g1, . . . , gn) ⊆ B

for all g1, . . . , gn. Since (5.1)

1t−1u (g1, . . . , gn)|t = 1t−1w̃
(
t−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)i1t−1w̃
(
t−1, g1, . . . , gigi+1, . . . , gn

)
+ (−1)n1t−1w̃

(
t−1, g1, . . . , gn−1

)
=αt−1 (1tw̃ (g1, . . . , gn)) ,
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it follows that

u (g1, . . . , gn)|t ϕ(a)|t = αt−1 (1tw̃ (g1, . . . , gn))αt−1 (1ta) = ϕ (w̃ (g1, . . . , gn) a)|t ,

whence
u (g1, . . . , gn)ϕ(A) ⊆ ϕ(A).

Now u being an n-cocycle with values in (F , β) satisfies

βt−1 (u (g1, . . . , gn))ϕ(a) =u
(
t−1g1, g2, . . . , gn

)
ϕ(a)

+
n−1∑
i=1

(−1)iu
(
t−1, g1, . . . , gigi+1, . . . , gn+1

)
ϕ(a)

+ (−1)nu
(
t−1, g1, . . . , gn−1

)
ϕ(a),

where the right-hand side is an element of ϕ(A) thanks to the previous statement.
Therefore, βt−1(u(g1, . . . , gn))ϕ(A) ⊆ ϕ(A), so, applying βt, we obtain

u (g1, . . . , gn) βt(ϕ(A)) ⊆ βt(ϕ(A)).

Similarly, βt(ϕ(A))u (g1, . . . , gn) ⊆ βt(ϕ(A)), proving u(g1, . . . , gn)B,Bu(g1, . . . , gn) ⊆
B since B =

∑
g∈G βg(ϕ(A)).

5.2 The construction of w′

From now on we assume that A =
∏

λ∈ΛAλ, where each Aλ is an indecomposable
unital ring, i.e. Aλ cannot be written as Aλ ∼= A1

λ × A2
λ with non-zero A1

λ or A2
λ

ideals of Aλ. Each Aλ is called a block of A. The main objective is to show that
every w ∈ Zn

par(G,A) can be replaced by a more manageable w′ ∈ Zn
par(G,A) which

will be used in the construction of w̃ satisfying the conditions of Theorem 5.14. Let
us identify the identity of Aµ, µ ∈ Λ, with the primitive idempotent 1Aµ of A which
is the function Λ→

⋃
λ∈ΛAλ whose value at µ is the identity of Aµ and the value in

λ 6= µ is the zero of Aλ, then the block Aµ is identified with the ideal generated by
1Aµ , and the canonical projection prλ : A → Aλ with the multiplication by 1Aλ in A.
We write a =

∏
λ∈Λ1

aλ, where Λ1 ⊆ Λ and aλ ∈ Aλ for all λ ∈ Λ1, if

prλ(a) =

{
aλ λ ∈ Λ1,
0A otherwise.

Thus, each idempotent e of A is central and is of the form
∏

λ∈Λ1
1Aλ , so that

eA =
∏

λ∈Λ1
Aλ, therefore each Dg is of the form

∏
λ∈Λg
Aλ, for some Λg ⊆ Λ.

Moreover we have the next lemma
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Lemma 5.15. Let I =
∏

λ∈Λ1
Aλ and J =

∏
λ∈Λ2
Aλ be unital ideals of A and

ϕ : I → J an isomorphism. Then there exists a bijection σ : Λ1 → Λ2, such that
ϕ (prλ(a)) = prσ(λ)(ϕ(a)) for all a ∈ I and λ ∈ Λ1.

Proof. Note that {1Aλ}λ∈Λ1
and {1Aλ}λ∈Λ2

are the sets of centrally primitive idem-
potents of I and J, respectively. Since ϕ is an isomorphism,

ϕ (1Aλ) = 1Aσ(λ)
,

for some bijection σ : Λ1 → Λ2. Then

ϕ (prλ(a)) = ϕ (1Aλa) = 1Aσ(λ)
ϕ(a) = prσ(λ)(ϕ(a)).

Definition 5.16. A unital partial action α of a group G on A is called transitive,
if for all λ′, λ′′ ∈ Λ there exists x ∈ G, such that Aλ′ ⊆ Dx−1 and αx (Aλ′) = Aλ′′ .

Assume that α is a transitive partial action. We fix λ0 ∈ Λ, note that for all λ ∈ Λ
there exists x ∈ G such that αx(Aλ0) = Aλ. Denote by H the stabilizer of the block
Aλ0 , i.e. the subgroup

H = {x ∈ G | Aλ0 ⊆ Dx−1 and αx (Aλ0) = Aλ0}

of G. Let Λ′ be a left transversal of H in G containing the identity element 1 of G,
i.e. G =

⋃
g∈Λ′ gH, a disjoint union. Then Λ can be identified with a subset of Λ′,

namely, λ0 is identified with 1, and

Ag = αg (A1) for g ∈ Λ ⊆ Λ′.

Indeed, note that for all λ ∈ Λ there exists g ∈ G such that A1 ⊆ Dg−1 and Aλ =
αg(A1), then for any x ∈ H since αx(A1) = A1 = αx−1(A1), A1 ⊆ Dx ∩ Dx−1 and
A1 ⊆ Dg−1 , thus A1 ⊆ αx−1(Dx ∩ Dg−1). Hence

Aλ = αg(A1) = αg(αx(A1)) = αgx(A1).

Therefore αw(A1) = Aλ for all w in gH. If g, g′ ∈ G are such that αg(A1) = Aλ =
αg′(A1), then g−1g′ ∈ H and gH = g′H.

Given x ∈ G, denote by x̄ the (unique) element of Λ′, such that x ∈ x̄H. Observe
that xy = xy for all x, y ∈ G. Indeed, note that xyH = xȳH, thus xy, xy ∈ Λ′ are
such that xyH = xyH = xyH. Hence xy = xy.

We will use the following easy fact throughout the text.
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Lemma 5.17. Given x ∈ G and g ∈ Λ′, one has

(i) g ∈ Λ⇔ A1 ⊆ Dg−1;

(ii) if g ∈ Λ, then xg ∈ Λ⇔ Ag ⊆ Dx−1 , and in this situation αx (Ag) = Axg.

Proof.

(i) We only need to see the “⇐=” part, so let A1 ⊆ Dg−1 for some g ∈ Λ′. Then
αg (A1) must be a block of A, so it equals At for some t ∈ Λ. Hence αt(A1) ⊆
Dg ∩ Dt, thus A1 ⊆ αt−1(Dg ∩ Dt) = dom(αg−1 ◦ αt). Then

A1 = αg−1 ◦ αt(A1) = αg−1t(A1).

Consequently, g−1t ∈ H, and g = t ∈ Λ.

(ii) Let g, xg ∈ Λ. Then A1 ⊆ D(xg)−1 ∩ Dg−1 , and since (xg)−1xg ∈ H, one has
that α(xg)−1xg(A1) = A1, then α(xg)−1xg(A1) ⊆ Dxg(xg)−1 ∩ D(xg)−1 . Hence A1 ⊆
αxg(xg)−1(Dxg(xg)−1 ∩ D(xg)−1). Therefore αxg ◦ α(xg)−1xg is applicable to A1 and
as α is a partial action so too is αxg = αxg·(xg)−1xg· Thus A1 ⊆ D(xg)−1 and using
again that α is a partial action we see that Ag = αg (A1) ⊆ αg(D(xg)−1∩Dg−1) =
Dx−1 ∩ Dg, so that αx is applicable to Ag. Moreover, since (xg)−1xg ∈ H we
have

αx(Ag) = αxg(A1) = αxg ◦ α(xg)−1xg(A1) = αxg(A1),

and consequently αx (Ag) = Axg, as αx (Ag) must be a block.

Conversely,

Ag ⊆ Dx−1 =⇒ g ∈ Λ,Ag ⊆ Dx−1 ∩ Dg = Dx−1Dg =⇒
A1 = α−1

g (Ag) ⊆ α−1
g (Dx−1Dg) ⊆ Dg−1x−1 =⇒ A1 ⊆ Dg−1x−1 ∩ Dg−1x−1xg =⇒

A1 = α(xg)−1xg (A1) ⊆ α(xg)−1xg (Dg−1x−1 ∩ Dg−1x−1xg) ⊆ D(xg)−1

which gives xg ∈ Λ.

If follows that
Ag ⊆ Dx−1 ⇔ x−1g ∈ Λ⇔ A1 ⊆ Dg−1x.

In particular,
Ax ⊆ Dx,

for all x ∈ G, such that x ∈ Λ.
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Remark 5.18. Let (B, β) be a globalization of (A, α), assume that A ⊆ B, and set
Ag = βg(A1). Then βx (Ag) = Axg, for g ∈ Λ′ and x ∈ G. Indeed,

Axg = βxg(A1) = βx(Ag).

Definition 5.19. For g ∈ Λ and a ∈ A, define the homomorphism θg : A → Ag
given by

θg(a) = αg(pr1(a)) = prg(αg(1g−1a)).

Remark 5.20. Notice that 1g =
∏

h∈Λg
1Ah , for some Λg ⊆ Λ , then if a =

∏
s∈Λ as,

where as ∈ As. Then 1ga =
∏

h∈Λg
ah. Then by Lemma 5.17 we have αg(1g−1ah) ∈

Dgh. Thus
prg(αg(1g−1a)) = αg(a1) = αg(pr1(a)).

It follows that, since θg(αg(1g−1a)) = prg(a) then

a =
∏
g∈Λ

θg(αg(1g−1a)).

Moreover, if x ∈ G is such that A1 ⊆ Dx, then pr1(1xa) = pr1(a) = a1, whence
θg(a) = θg(1xa). In particular, this holds if x ∈ H and x = g−1.

Lemma 5.21. Let n > 0 and w ∈ Zn
par(G,A). Then

w (x1, . . . , xn) = 1(x1,...,xn)

∏
g∈Λ

θg
[
w
(
g−1x1, x2, . . . , xn

)
+

n−1∑
k=1

(−1)kw
(
g−1, x1, . . . , xkxk+1, . . . , xn

)
+ (−1)nw

(
g−1, x1, . . . , xn−1

) ]
. (5.3)

Proof. Using the partial n-cocycle identity we have that

αg−1(1gw(x1, . . . , xn)) = 1g−1w(g−1x1, x2, . . . , xn)

+
n−1∑
k=1

(−1)k1g−1x1...xkw(g−1, x1, . . . , xkxk+1, . . . , xn)

+ (−1)n1g−1x1...xnw(g−1, x1, . . . , xn−1),

and by Remark 5.20

w(x1, . . . , xn) =
∏
g∈Λ

θg(αg−1(1gw(x1, . . . , xn))).
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Thus

w(x1, . . . , xn) =
∏
g∈Λ

θg(αg−1(1gw(x1, . . . , xn)))

=
∏
g∈Λ

θg[1g−1w(g−1x1, x2, . . . , xn)

+
n−1∑
k=1

(−1)k1g−1x1...xkw(g−1, x1, . . . , xkxk+1, . . . , xn)

+ (−1)n1g−1x1...xnw(g−1, x1, . . . , xn−1)]

=
∏
g∈Λ

θg[1(g−1,x1,...,xn)(w(g−1x1, x2, . . . , xn)

+
n−1∑
k=1

(−1)kw
(
g−1, x1, . . . , xkxk+1, . . . , xn

)
+ (−1)nw(g−1, x1, . . . , xn−1))].

It remains to observe

θg
(
1(g−1,x1,...,xn)

)
= prg

(
αg
(
1g−11(g−1,x1,...,xn)

))
= prg

(
1g1(x1,...,xn)

)
= prg

(
1(x1,...,xn)

)
so that ∏

g∈Λ

θg
(
1(g−1,x1,...,xn)

)
=
∏
g∈Λ

prg
(
1(x1,...,xn)

)
= 1(x1,...,xn).

Define the map η : G → H such that for x ∈ G, we have η(x) = x−1x̄ ∈ H. Let
n > 0 and g ∈ Λ′. Define ηgn : Gn → H by

ηgn (x1, . . . , xn) = η
(
x−1
n x−1

n−1 . . . x
−1
1 g
)

and τ gn : Gn → Hn by

τ gn (x1, . . . , xn) = (ηg1 (x1) , ηg2 (x1, x2) , . . . , ηgn (x1, . . . , xn)) .

Note that

ηg1 (x1) ηg2 (x1, x2) . . . ηgn (x1, . . . , xn) = η
(
x−1
n . . . x−1

1 g
)

= ηg1 (x1 . . . xn) .

Indeed,

ηg1(x1) = g−1x1x
−1
1 g
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and
ηg2(x1, x2) = (x−1

1 g)−1x2x
−1
2 x−1

1 g.

Thus
ηg1(x1)ηg2(x1, x2) = g−1x1x2x

−1
2 x−1

1 g = η(x−1
2 x−1

1 g).

Now using an inductive argument over n we have that

ηg1 (x1) ηg2 (x1, x2) . . . ηgn−1 (x1, . . . , xn−1) ηgn (x1, . . . , xn)

= η(x−1
n−1x

−1
n−2 . . . x

−1
1 g)ηgn (x1, . . . , xn)

= (g−1x1x2 . . . xn−1)(x−1
n−1x

−1
n−2 . . . x

−1
1 g)(x−1

n−1 . . . x
−1
1 g)−1xn(x−1

n x−1
n−1 . . . x

−1
1 g)

= g−1x1x2 . . . xn−1xn(x−1
n x−1

n−1 . . . x
−1
1 g)

= η
(
x−1
n . . . x−1

1 g
)
.

Moreover, we will define the maps σgn,i : Gn → Gn+1, n > 0, 0 ≤ i ≤ n, by

σgn,0 (x1, . . . , xn) =
(
g−1, x1, . . . , xn

)
,

σgn,i (x1, . . . , xn) =
(
τ gi (x1, . . . , xi) , (x

−1
i . . . x−1

1 g)−1, xi+1, . . . , xn

)
, 0 < i < n,

σgn,n (x1, . . . , xn) =
(
τ gn (x1, . . . , xn) , (x−1

n . . . x−1
1 g)−1

)
.

If n = 0, then we set
σg0,0 = g−1 ∈ G.

Definition 5.22. Given n > 0 and w ∈ Cn
par(G,A), define w′ ∈ Cn

par(G,A) and ε ∈
Cn−1
par (G,A) by

w′ (x1, . . . , xn) = 1(x1,...,xn)

∏
g∈Λ

θg ◦ w ◦ τ gn (x1, . . . , xn) ,

ε (x1, . . . , xn−1) = 1(x1,...,xn−1)

∏
g∈Λ

θg

(
n−1∑
i=0

(−1)iw ◦ σgn−1,i (x1, . . . , xn−1)

)
.

When n = 1, Definition 5.22 for ε should be understood as

ε =
∏
g∈Λ

θg
(
w
(
g−1
))
∈ A.
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Let us introduce the following notation that will be used in the results below.

Σ(l,m) =
n−1∑

k=l,i=m

(−1)k+iw ◦ σgn−1,i (x1, . . . , xkxk+1, . . . , xn)

+
n−1∑
i=m

(−1)n+iw ◦ σgn−1,i (x1, . . . , xn−1) ,

where 1 ≤ l ≤ n− 1 and 0 ≤ m ≤ n− 1(n is assumed to be fixed ).

Lemma 5.23. For all w ∈ Z1
par(G,A) and x ∈ G we have:(

δ0ε
)

(x)− αx (1x−1ε)− w(x) = 1x
∏
g∈Λ

θg
(
−w

(
g−1x

))
.

Moreover, for n > 1, w ∈ Zn(G,A) and x1, . . . , xn ∈ G :

(
δn−1ε

)
(x1, . . . , xn)− αx1

(
1x−1

1
ε (x2, . . . , xn)

)
− w (x1, . . . , xn)

= 1(x1,...,xn)

∏
g∈Λ

θg
(
−w

(
g−1x1, x2, . . . , xn

)
+ Σ(1, 1)

)
.

Proof. Recall that by Remark 3.40 we have that(
δ0a
)

(g) = αg (1g−1a)− 1ga,

thus (
δ0ε
)

(x)− αx (1x−1ε)− w(x) = −1xε− w(x).

By Lemma 5.21

w(x) = 1x
∏
g∈Λ

θg(w(g−1x)− w(g−1)).

Whence, and using Definition of ε we have(
δ0ε
)

(x)− αx (1x−1ε)− w(x) = −1x
∏
g∈Λ

θg
(
w
(
g−1
))
− 1x

∏
g∈Λ

θg(w(g−1x)− w(g−1))

= 1x
∏
g∈Λ

θg
(
−w

(
g−1x

))
.
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Now for n > 0, using Remark 3.40 first, Definition 5.22, and finally definition of
Σ(1, 0) we have(
δn−1ε

)
(x1, . . . , xn)− αx1

(
1x−1

1
ε (x2, . . . , xn)

)
=

n−1∑
k=1

(−1)k1x1...xkε (x1, . . . , xkxk+1, . . . , xn) + (−1)n1x1...xnε (x1, . . . , xn−1)

= 1(x1,...,xn)

∏
g∈Λ

θg

(
n−1∑

k=1,i=0

(−1)k+iw ◦ σgn−1,i (x1, . . . , xkxk+1, . . . , xn)

)

+ 1(x1,...,xn)

∏
g∈Λ

θg

(
n−1∑
i=0

(−1)n+iw ◦ σgn−1,i (x1, . . . , xn−1)

)
= 1(x1,...,xn)

∏
g∈Λ

θg(Σ(1, 0)).

Now notice that

(−1)kw
(
g−1, x1, . . . , xkxk+1, . . . , xn

)
= (−1)k+0w ◦ σgn−1,0 (x1, . . . , xkxk+1, . . . , xn)

(−1)nw
(
g−1, x1, . . . , xn−1

)
= (−1)n+0w ◦ σgn−1,0 (x1, . . . , xn−1) .

Then the formula (5.3) in Lemma 5.21 becomes

w (x1, . . . , xn) = 1(x1,...,xn)

∏
g∈Λ

θg
[
w
(
g−1x1, x2, . . . , xn

)
+

n−1∑
k=1

(−1)k+0w ◦ σgn−1,0 (x1, . . . , xkxk+1, . . . , xn)

+ (−1)n+0w ◦ σgn−1,0 (x1, . . . , xn−1)
]
.

Observe that

Σ(1, 0)− Σ(1, 1) =
n−1∑
k=1

(−1)k+0w ◦ σgn−1,0 (x1, . . . , xkxk+1, . . . , xn)

+ (−1)n+0w ◦ σgn−1,0(x1, . . . , xn−1).

Hence,

w (x1, . . . , xn) = 1(x1,...,xn)

∏
g∈Λ

θg[w(g−1x1, x2, . . . , xn) + Σ(1, 0)− Σ(1, 1)],
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whence

1(x1,...,xn)

∏
g∈Λ

θg(Σ(1, 0))

= w (x1, . . . , xn) + 1(x1,...,xn)

∏
g∈Λ

θg(−w(g−1x1, x2, . . . , xn) + Σ(1, 1)).

Lemma 5.24. For all n > 1, w ∈ Zn
par(G,A), g ∈ Λ and x1, . . . , xn ∈ G :

1σgn,1(x1,...,xn)(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=− αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,0(x2, . . . , xn))

+ 1σgn,1(x1,...,xn)(−w(τ g1 (x1), (x−1
1 g)−1x2, x3, . . . , xn) + Σ(2, 2)

+
n−1∑
i=1

(−1)i+1w ◦ σgn−1,i(x1x2, x3, . . . , xn)).

Proof. Note that since w ∈ Zn
par(G,A) we have that

0 = (δnw) ◦ σgn,1 (x1, . . . , xn)

= (δnw) (g−1x1 · x−1
1 g, (x−1

1 g)−1, x2, . . . , xn)

=α
g−1x1·x−1

1 g
(1

(x−1
1 g)−1x−1

1 g
w((x−1

1 g)−1, x2, . . . , xn))

− 1
g−1x1·x−1

1 g
w
(
g−1x1, x2, . . . , xn

)
+ 1g−1x1

w
(
g−1x1 · x−1

1 g, (x−1
1 g)−1x2, x3, . . . , xn

)
+

n−1∑
k=2

(−1)k+11g−1x1...xkw
(
g−1x1 · x−1

1 g, (x−1
1 g)−1, x2, . . . , xkxk+1, . . . xn

)
+ (−1)n+11g−1x1...xnw(g−1x1 · x−1

1 g, (x−1
1 g)−1, x2, . . . , xn−1).

Observe that we can rewrite some factors of the latter equality.

ηg1(x1) = g−1x1 · x−1
1 g,

σ
x−1

1 g
n−1,0(x2, . . . , xn) = ((x−1

1 g)−1, x2, . . . , xn),

τ g1 (x1) = g−1x1 · x−1
1 g,

σgn−1,1 (x1, . . . , xkxk+1, . . . xn) =
(
g−1x1 · x−1

1 g, (x−1
1 g)−1, x2, . . . , xkxk+1, . . . xn

)
σgn−1,1 (x1, . . . , xn−1) = (g−1x1 · x−1

1 g, (x−1
1 g)−1, x2, . . . , xn−1).

113



5.2 The construction of w′ Globalization

Therefore,

−1ηg1(x1)w(g−1x1, x2, . . . , xn) =− αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,0(x2, . . . , xn))

− 1g−1x1
w(τ g1 (x1), (x−1

1 g)−1x2, x3, . . . , xn)

+
n−1∑
k=2

(−1)k1g−1x1...xkw ◦ σ
g
n−1,1 (x1, . . . , xkxk+1, . . . xn)

+ (−1)n1g−1x1...xnw ◦ σ
g
n−1,1 (x1, . . . , xn−1) . (1)

Observe that

Σ(1, 1)− Σ(2, 2) =
n−1∑
k=2

(−1)k+1w ◦ σgn−1,1(x1, . . . , xkxk+1, . . . , xn)

+
n−1∑
i=1

(−1)1+iw ◦ σgn−1,i(x1x2, . . . , xn)

+ (−1)n+1w ◦ σgn−1,1(x1, . . . , xn−1).

Whence,

Σ(2, 2)+
n−1∑
i=1

(−1)1+iw ◦ σgn−1,i(x1x2, . . . , xn)

= Σ(1, 1) +
n−1∑
k=2

(−1)kw ◦ σgn−1,1(x1, . . . , xkxk+1, . . . , xn)

+ (−1)nw ◦ σgn−1,1(x1, . . . , xn−1).

Thus adding Σ(1, 1) then multiplying both side of equality (1) by 1σgn+1(x1,...,xn) =
1ηg1(x1)1(g−1x1,x2,...,xn), we get

1σgn,1(x1,...,xn)(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=− αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,0(x2, . . . , xn))

+ 1σgn,1(x1,...,xn)(−w(τ g1 (x1), (x−1
1 g)−1x2, x3, . . . , xn) + Σ(2, 2)

+
n−1∑
i=1

(−1)i+1w ◦ σgn−1,i(x1x2, x3, . . . , xn)).

114



5.2 The construction of w′ Globalization

Lemma 5.25. For all 1 < j < n,w ∈ Zn
par(G,A), g ∈ Λ and x1, . . . , xn ∈ G :

1σgn,j(x1,...,xn)(−w(τ gj−1(x1, . . . , xj−1), (x−1
j−1 . . . x

−1
1 g)−1xj, xj+1, . . . , xn) + Σ(j, j))

=(−1)jαηg1(x1)(1ηg1(x1)−1w ◦ σ−1g
n−1,j−1(x2, . . . , xn))

+ 1σgn,j(x1,...,xn)(−w(τ gj (x1, . . . , xj), (x
−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn)

+ Σ(j + 1, j + 1)

+
n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn))

(here by Σ(n, n) we mean 0A).

Proof. This proof is analogous to that of Lemma 5.24

0 = (δnw) ◦ σgn,j (x1, . . . , xn)

=αηg1(x1)

(
1ηg1(x1)−1w ◦ σx

−1
1 g
n−1,j−1 (x2, . . . , xn)

)
+

j−1∑
s=1

(−1)s1ηg1(x1...xs)w ◦ σ
g
n−1,j−1 (x1, . . . , xsxs+1, . . . , xn)

+ (−1)j1ηg1(x1...xj)w
(
τ gj−1 (x1, . . . , xj−1) , (x−1

j−1 . . . x
−1
1 g)−1xj, xj+1, . . . , xn

)
+ (−1)j+11g−1x1...xjw

(
τ gj (x1, . . . , xj) , (x

−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn

)
+

n−1∑
t=j+1

(−1)t+11g−1x1...xtw ◦ σ
g
n−1,j (x1, . . . , xtxt+1, . . . , xn)

+ (−1)n+11g−1x1...xnw ◦ σ
g
n−1,j (x1, . . . , xn−1)
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Therefore,

−1ηg1(x1...xj)w
(
τ gj−1 (x1, . . . , xj−1) , (x−1

j−1 . . . x
−1
1 g)−1xj, xj+1, . . . , xn

)
= (−1)jαηg1(x1)(1ηg1(x1)−1w ◦ σx

−1
1 g
n−1,j−1(x2, . . . , xn))

+

j−1∑
s=1

(−1)s+j1ηg1(x1...xs)w ◦ σ
g
n−1,j−1(x2, . . . , xsxs+1, . . . , xn))

− 1g−1x1...xjw
(
τ gj (x1, . . . , xj) , (x

−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn

)
+

n−1∑
t=j+1

(−1)t+j+11g−1x1...xtw ◦ σ
g
n−1,j (x1, . . . , xtxt+1, . . . , xn)

+ (−1)n+j+11g−1x1...xnw ◦ σ
g
n−1,j (x1, . . . , xn−1) . (1)

Notice that

Σ(j, j)− Σ(j + 1, j + 1) =
n−1∑
t=j+1

(−1)t+jw ◦ σgn−1,j(x1, . . . , xtxt+1, . . . , xn)

+
n−1∑
i=j

(−1)j+iw ◦ σgn−1,i(x1, x2, . . . , xjxj+1, . . . , xn)

+ (−1)n+jw ◦ σgn−1,j(x1, . . . , xn−1).

Thus adding Σ(j, j) to equality (1) and then multiplying both sides by the idempotent
element

1σgn,j(x1, . . . , xn) = 1ηg1(x1)1ηg1(x1x2) . . . 1ηg1(x1x2...xj)1ηg1(g−1x1...xj ,xj+1,...xn)

we get

1σgn,j(x1,...,xn)(−w(τ gj−1(x1, . . . , xj−1), (x−1
j−1 . . . x

−1
1 g)−1xj, xj+1, . . . , xn) + Σ(j, j))

=(−1)jαηg1(x1)(1ηg1(x1)−1w ◦ σ−1g
n−1,j−1(x2, . . . , xn))

+ 1σgn,j(x1,...,xn)(−w(τ gj (x1, . . . , xj), (x
−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn)

+ Σ(j + 1, j + 1)

+
n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn)).
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Lemma 5.26. For all w ∈ Z1
par(G,A), g ∈ Λ and x ∈ G :

−1ηg1(x)w
(
g−1x

)
= −αηg1(x)

(
1ηg1(x)−1w

(
(x−1g)−1

))
− 1g−1xw ◦ τ g1 (x)

Moreover, for all n > 1, w ∈ Zn
par(G,A), g ∈ Λ and x1, . . . , xn ∈ G

−1ηg1(x1...xn)w
(
τ gn−1 (x1, . . . , xn−1) , (x−1

n−1 . . . x
−1
1 g)−1xn

)
= (−1)nαηg1(x1)

(
1ηg1(x1)−1w ◦ σx

−1
1 g
n−1,n−1 (x2, . . . , xn)

)
+ 1σgn,n(x1,...,xn)

( n−1∑
s=1

(−1)s+nw ◦ σgn−1,n−1 (x1, . . . , xsxs+1, . . . , xn)

− w ◦ τ gn (x1, . . . , xn)
)

Proof. We first observe that for n = 1, since w ∈ Z1
par(G,A) we have

0 = (δ1w)(ηg1(x), (x−1g)−1)

= αηg1(x)(1ηg1(x)−1w((x−1g)−1))− 1ηg1(x)w
(
g−1x

)
+ 1g−1xw ◦ τ g1 (x).

Next for n > 1, we have that

0 = (δnw) ◦ σgn,n (x1, . . . , xn)

=αηg1(x1)

(
1ηg1(x1)−1w ◦ σx

−1
1 g
n−1,n−1 (x2, . . . , xn)

)
+

n−1∑
s=1

(−1)s1ηg1(x1...xs)w ◦ σ
g
n−1,n−1 (x1, . . . , xsxs+1, . . . , xn)

+ (−1)n1ηg1(x1...xn)w
(
τ gn−1 (x1, . . . , xn−1) , (x−1

n−1 . . . x
−1
1 g)−1xn

)
+ (−1)n+11g−1x1...xnw ◦ τ gn (x1, . . . , xn) .

Thus to obtain the desire equality we have to multiply both sides by 1σgn,n(x1,...,xn).

Lemma 5.27. For all n > 0, w ∈ Zn
par(G,A) and x1, . . . , xn ∈ G, define the idempo-

tent element

e =
n∏
i=1

1σgn,i(x1,...,xn) = 1(g−1,x1,...,xn)

n∏
i=1

1ηgi (x1,...,xi).
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Then

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

= eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
− e(w ◦ τ gn) (x1, . . . , xn)

+ e
n−1∑
j=1

n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+ e
n∑
j=2

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn).

Proof. By Lemma 5.24

1σgn,1(x1,...,xn)(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=− αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,0(x2, . . . , xn))

+ 1σgn,1(x1,...,xn)(−w(τ g1 (x1), (x−1
1 g)−1x2, x3, . . . , xn) + Σ(2, 2)

+
n−1∑
i=1

(−1)i+1w ◦ σgn−1,i(x1x2, x3, . . . , xn)).

Observe that

−αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,0(x2, . . . , xn))

=αηg1(x1)1ηg1(x1)−1

[ n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

+
n∑
j=2

(−1)j+1w ◦ σx
−1
1 g
n−1,j−1(x2, . . . , xn)

]
.
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By Lemma 5.25

n∑
j=2

(−1)j+1αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,j−1(x2, . . . , xn))

=
n−1∑
j=2

1σgn,j(x1,...,xn)

[
w(τ gj−1(x1, . . . , xj−1), (x−1

j−1 . . . x
−1
1 g)−1xj, xj+1, . . . , xn)− Σ(j, j)

− w(τ gj (x1, . . . , xj), (x
−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn) + Σ(j + 1, j + 1)

+
n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn))
]

+ (−1)n+1αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,n−1(x2, . . . , xn))

Note that

n−1∑
j=2

[
w(τ gj−1(x1, . . . , xj−1), (x−1

j−1 . . . x
−1
1 g)−1xj, xj+1, . . . , xn)− Σ(j, j)

− w(τ gj (x1, . . . , xj), (x
−1
j . . . x−1

1 g)−1xj+1, xj+2, . . . , xn) + Σ(j + 1, j + 1)
]

=w(τ g1 (x1), (x−1
1 g)−1x2, x3, . . . , xn)− Σ(2, 2)

− w(τ gn−1(x1, . . . , xn), (x−1
n−1 . . . x

−1
1 g)−1xn).
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Thus

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
+ e

n−1∑
j=2

n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+ e
n−1∑
j=2

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn))
]

+ e(−1)n+1αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,n−1(x2, . . . , xn))

− ew(τ gn−1(x1, . . . , xn), (x−1
n−1 . . . x

−1
1 g)−1xn)

+ e
n−1∑
i=1

(−1)i+1w ◦ σgn−1,i(x1x2, x3, . . . , xn)).

Hence,

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
+ e

n−1∑
j=1

n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+ e
n−1∑
j=2

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn))
]

+ e(−1)n+1αηg1(x1)(1ηg1(x1)−1w ◦ σx
−1
1 g
n−1,n−1(x2, . . . , xn))

− ew(τ gn−1(x1, . . . , xn), (x−1
n−1 . . . x

−1
1 g)−1xn).
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Now by Lemma 5.26 we have that

ew
(
τ gn−1 (x1, . . . , xn−1) , (x−1

n−1 . . . x
−1
1 g)−1xn

)
+ (−1)n+1eαηg1(x1)

(
1ηg1(x1)−1w ◦ σx

−1
1 g
n−1,n−1 (x2, . . . , xn)

)
= e

n−1∑
s=1

(−1)s+nw ◦ σgn−1,n−1 (x1, . . . , xsxs+1, . . . , xn)

− e(w ◦ τ gn) (x1, . . . , xn)

Therefore,

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

=eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
− e(w ◦ τ gn) (x1, . . . , xn)

+ e
n−1∑
j=1

n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn)

+ e
n∑
j=2

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn).

Lemma 5.28. For all n > 0, w ∈ Zn
par(G,A) and x1, . . . , xn ∈ G(

δn−1ε
)

(x1, . . . , xn)− αx1

(
1x−1

1
ε (x2, . . . , xn)

)
− w (x1, . . . , xn)

= 1(x1,...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j (x2, . . . , xn)

)
− w′ (x1, . . . , xn)

Proof. Let n = 1. By Remark 5.20 1ηg1(x) ∈ H, then

θg(−w(g−1x)) = θg(−1ηg1(x)w(g−1x)).
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Thus using that fact and Lemma 5.23 we have

(δ0ε)(x)− αx(1x−1ε)− w(x) = 1x
∏
g∈Λ

θg(−w(g−1x))

= 1x
∏
g∈Λ

θg(−1ηg1(x)w(g−1x)),

by Lemma 5.26

1x
∏
g∈Λ

θg(−1ηg1(x)w(g−1x)) =− 1x
∏
g∈Λ

θg(αηg1(x)(1ηg1(x)−1w(x−1g)−1)))

− 1x
∏
g∈Λ

θg(1g−1xw ◦ τ g1 (x)).

By Remark 5.20 we obtain

θg(1g−1xw ◦ τ g1 (x)) = θg(1g−11g−1xw ◦ τ g1 (x)) = θg(1(g−1,x)w ◦ τ g1 (x)).

In that proof of Lemma 5.21 we show that∏
g∈Λ

θg(1(g−1,x1,...,xn)) = 1(x1,...,xn).

Hence,

1x
∏
g∈Λ

θg(1g−1xw ◦ τ g1 (x)) = 1x
∏
g∈Λ

θg(w ◦ τ g1 (x)).

Therefore, by Definition 5.22 and the fact that (x−1g)−1 = w(σx
−1g

0,0 ) we have that

(δ0ε)(x)− αx(1x−1ε)− w(x) = − 1x
∏
g∈Λ

θg ◦ αηg1(x)

(
1ηg1(x)−1w

(
σx
−1g

0,0

))
− w′(x).

For n > 1. By Lemma 5.27 we get

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

= eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
− e(w ◦ τ gn) (x1, . . . , xn)

+ e
n−1∑
j=1

n−1∑
i=j

(−1)i+jw ◦ σgn−1,i(x1, . . . , xjxj+1, . . . , xn) (1)

+ e
n∑
j=2

j−1∑
s=1

(−1)s+jw ◦ σgn−1,j−1(x1, . . . , xsxs+1, . . . , xn), (2)
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where

e =
n∏
i=1

1σgn,i(x1,...,xn) = 1(g−1,x1,...,xn)

n∏
i=1

1ηgi (x1,...,xi).

Taking j′ = j − 1 in the sum (2), we rewrite it as

n−1∑
j′=1

j′∑
s=1

(−1)s+j
′+1w ◦ σgn−1,j′ (x1, . . . , xsxs+1, . . . , xn) ,

switching the order of summation we get

n−1∑
s=1

n−1∑
j′=s

(−1)s+j
′+1w ◦ σgn−1,j′ (x1, . . . , xsxs+1, . . . , xn) ,

and that is the opposite of the formula (1). Then

e(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

= eαηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn)

)
− e(w ◦ τ gn) (x1, . . . , xn) .

Applying θg to the both sides of previous formula, and since ηgi (x1, . . . , xi) ∈ H
for all i, we may remove

∏n
i=1 1ηgi (x1,...,xi) from e. Moreover using the fact that∏

g∈Λ θg(1(g−1,x1,...,xn)) = 1(x1,...,xn), we obtain

1(x1,...,xn)

∏
g∈Λ

θg(−w(g−1x1, x2, . . . , xn) + Σ(1, 1))

= 1t(x1,...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)(1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j(x2, . . . , xn))

− 1(x1,...,xn)

∏
g∈Λ

θg ◦ w ◦ τ gn(x1, . . . , xn).

Finally, using Definition 5.22 and Lemma 5.23 we obtain the desire result.

Lemma 5.29. For all x ∈ G and a : Λ′ → A one has

αx

(
1x−1

∏
g∈Λ

θg(a(g))

)
= 1x

∏
g∈Λ

θg ◦ αηg1(x)

(
1ηg1(x)−1a(x−1g)

)
.
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Proof. First observe using (ii) of Lemma 5.17 that

1x
∏
g∈Λ

ag =
∏

g∈Λ,Ag⊆Dx

ag =
∏

g,x−1g∈Λ

ag,

where ag is an arbitrary element of Ag. We may replace the condition g ∈ Λ by a
stronger one g, x−1g ∈ Λ, and since we may put 1g−1x inside of θg. Thus,

1x
∏
g∈Λ

θg ◦ αηg1(x)

(
1ηg1(x)−1a(x−1g)

)
= 1x

∏
g,x−1g∈Λ

θg

(
1g−1xαηg1(x)

(
1ηg1(x)−1a(x−1g)

))
.

Observe that

1g−1xαηg1(x)

(
1ηg1(x)−1a(x−1g)

)
= αg−1x1

◦ α
x−1

1 g

(
1(x−1g)−11ηg1(x)−1 , a(x−1g)

)
denote the argument of αx−1

1 g in the previous equality by b = b(g, x), then by Remark
5.20 we get

θg ◦ αg−1x ◦ αx−1g(b) = prg ◦αg
(

1g−1αg−1x ◦ αx−1g(b)
)

= prg ◦αg ◦ αg−1 ◦ αx
(

1x−11x−1gαx−1g(b)
)

= prg ◦αx (1x−11x−1gαx−1g(b)) .

As xx−1g = g ∈ Λ, by (ii) of Lemma 5.17 we have Ax−1g ⊆ Dx−1 and αx

(
Ax−1g

)
=

Ag. Moreover, Ax−1g ⊆ Dx−1g. Hence, in view of Lemma 5.15

prg ◦αx
(

1x−11x−1gαx−1g(b)
)

= αx ◦ prx−1g

(
1x−11x−1gαx−1g(b)

)
= αx ◦ prx−1g ◦αx−1g(b)

= αx ◦ θx−1g(b),

and consequently

θg ◦ αηg1(x)

(
1ηg1(x)−1a

(
x−1g

))
= αx ◦ θx−1g(b) = αx ◦ θx−1g

(
a
(
x−1g

))
.

Here we used Remark 5.20 to remove 1ηg1(x)−1 and 1(x−1g)−1 from b. It follows that

1x
∏

g,x−1g∈Λ

θg

(
1g−1xαηg1(x)

(
1ηg1(x)−1a(x−1g)

))

=
∏

g,x−1g∈Λ

αx ◦ θx−1g(a(x−1g)) = αx

 ∏
g,x−1g∈Λ

θx−1g(a(x−1g))

 .
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To check the latter equality we have to check it in every block At of A, where t ∈ Λ,

it is easy to check since αx

(
Ax−1g

)
= Ag and θx−1g : A → Ax−1g. Finally, let

g′ = x−1g ∈ Λ. Then g = xx−1g = xg′ ∈ Λ, then

αx

 ∏
g′,xg′∈Λ

θg′ (a (g′))

 = αx

(
1x−1

∏
g′∈Λ

θg′ (a (g′))

)
,

what give us the desire result.

Lemma 5.30. For all n > 0, w ∈ Zn
par(G,A) and x1, . . . , xn ∈ G

1(x1...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)jw ◦ σx
−1
1 g
n−1,j (x2, . . . , xn)

)
= αx1(1x−1

1
ε(x2, . . . , xn))

Proof. Using Lemma 5.29 with

a(g) =
n−1∑
j=0

(−1)jw ◦ σgn−1,j (x2, . . . , xn) ,

where n,w and x2, . . . , xn are fixed and g ∈ Λ′, we see that

1(x1...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)jw ◦ σx
−1
1 g
n−1,j (x2, . . . , xn)

)

= 1(x1...,xn)αx1

(
1x−1

1

∏
g∈Λ

θg

(
n−1∑
j=0

(−1)jw ◦ σgn−1,j (x2, . . . , xn)

))
,

since 1(x1,...,xn) = αx1

(
1x−1

1
1(x2,...,xn)

)
, by Definition 5.22 we obtain

1(x1...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)jw ◦ σx
−1
1 g
n−1,j (x2, . . . , xn)

)
= αx1(1x−1

1
ε(x2, . . . , xn)).

Theorem 5.31. Let n > 0 and w ∈ Zn
par(G,A). Then w = δn−1ε+ w′. In particular

w′ ∈ Zn
par(G,A).
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Proof. By Lemma 5.28 we have that

w′ (x1, . . . , xn) +
(
δn−1ε

)
(x1, . . . , xn)

=w (x1, . . . , xn)

+ 1(x1,...,xn)

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1

n−1∑
j=0

(−1)j+1w ◦ σx
−1
1 g
n−1,j (x2, . . . , xn)

)
+ αx1

(
1x−1

1
ε (x2, . . . , xn)

)
,

and by Lemma 5.30 we get

w′ (x1, . . . , xn) +
(
δn−1ε

)
(x1, . . . , xn) = w (x1, . . . , xn) .

5.3 Existence and uniqueness of a globalization

The aim in this section is to complete the construction of w̃ satisfying the conditions
of Theorem 5.14. We will introduce some formulas which will be used here as well.

Lemma 5.32. Let g ∈ Λ′. Then

ηgn (x1, . . . , xn) = η
x−1

1 g
n−1 (x2, . . . , xn) , n ≥ 2,

ηgn (x1, . . . , xi, xi+1, . . . , xn) = ηgn−1 (x1, . . . , xixi+1, . . . , xn) , 1 ≤ i ≤ n− 2,

ηgn (x1, . . . , xn−1, xnxn+1) = ηgn (x1, . . . , xn) ηgn+1 (x1, . . . , xn+1) , n ≥ 1.

Proof. For the very first equality

η
x−1

1 g
n−1 (x2, . . . , xn) = η(x−1

n x−1
n−1 . . . x

−1
1 g)

= η(x−1
n x−1

n−1 . . . x
−1
1 g)

= ηgn (x1, . . . , xn) .

The second equality

ηgn−1 (x1, . . . , xixi+1, . . . , xn) = η(x−1
n x−1

n−1 . . . (xixi+1)−1 . . . x−1
1 g)

= η(x−1
n x−1

n−1 . . . x
−1
i+1x

−1
i . . . x−1

1 g)

= ηgn (x1, . . . , xi, xi+1, . . . , xn) .
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Finally, for the last one equality we have

ηgn (x1, . . . , xn) ηgn+1 (x1, . . . , xn+1) = (x−1
n−1 . . . x

−1
1 g)−1xn(x−1

n . . . x−1
1 g)

· (x−1
n . . . x−1

1 g)−1xn+1(x−1
n+1 . . . x

−1
1 g)

= (x−1
n−1 . . . x

−1
1 g)−1xnxn+1(x−1

n+1 . . . x
−1
1 g)

= ηgn (x1, . . . , xn−1, xnxn+1) .

Definition 5.33. Define w̃′ : Gn → A by removing 1(x1,...,xn) from the definition of
w′ in Definition 5.22, i.e.

w̃′ (x1, . . . , xn) =
∏
g∈Λ

θg ◦ w ◦ τ gn (x1, . . . , xn) .

Lemma 5.34. Let n > 0, w ∈ Zn
par (G,A) and x1, . . . , xn ∈ G. Then

δ̃nw̃′ = 0.

Proof. By Definition 5.13 we have

(δ̃nw̃′) (x1, . . . , xn+1) =αx1

(
1x−1

1
w̃′ (x2, . . . , xn+1)

)
+

n∑
i=1

(−1)i1x1w̃
′ (x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+11x1w̃
′ (x1, . . . , xn) .

Now switching w̃′ by its definition we get

(δ̃nw̃′) (x1, . . . , xn+1) =αx1

(
1x−1

1

∏
g∈Λ

θg (w ◦ τ gn (x2, . . . , xn+1))

)

+ 1x1

∏
g∈Λ

θg

(
n∑
i=1

(−1)iw ◦ τ gn (x1, . . . , xixi+1, . . . , xn+1)

)
+ 1x1

∏
g∈Λ

θg
(
(−1)n+1w ◦ τ gn (x1, . . . , xn)

)
.
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Thus using Lemma 5.29 we have

αx1

(
1x−1

1

∏
g∈Λ

θg(w ◦ τ gn(x2, . . . , xn+1))

)
= 1x1

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1(w ◦ τx

−1
1 g

n (x2, . . . , xn+1))
)
.

Then

(δ̃nw̃′) (x1, . . . , xn+1) = 1x1

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1(w ◦ τx

−1
1 g

n (x2, . . . , xn+1))
)

+ 1x1

∏
g∈Λ

θg

(
n∑
i=1

(−1)iw ◦ τ gn (x1, . . . , xixi+1, . . . , xn+1)

)
+ 1x1

∏
g∈Λ

θg
(
(−1)n+1w ◦ τ gn (x1, . . . , xn)

)
.

By Remark 5.20 we have

(δ̃nw̃′) (x1, . . . , xn+1) = 1x1

∏
g∈Λ

θg ◦ αηg1(x1)

(
1ηg1(x1)−1(w ◦ τx

−1
1 g

n (x2, . . . , xn+1))
)

+ 1x1

∏
g∈Λ

θg

(
n∑
i=1

(−1)i1ηg1(x1...xi)w ◦ τ
g
n (x1, . . . , xixi+1, . . . , xn+1)

)
+ 1x1

∏
g∈Λ

θg
(
(−1)n+11ηg1(x1...xn)w ◦ τ gn (x1, . . . , xn)

)
.

Therefore δ̃nw̃′ = 0 if

0 =αηg1(x1)

(
1ηg1(x1)−1(w ◦ τx

−1
1 g

n (x2, . . . , xn+1))
)

+
n∑
i=1

(−1)i1ηg1(x1...xi)w ◦ τ
g
n (x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+11ηg1(x1...xn)w ◦ τ gn (x1, . . . , xn) .

The right part of the previous formula is an expansion of cocycle identity

(δnw) ◦ τ gn+1(x1, . . . , xn+1) = 0.
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Indeed,

(δnw) ◦ τ gn+1(x1, . . . , xn+1)

=αηg1(x1)(1ηg1(x1)−1w(ηg2(x1, x2), . . . , ηgn+1(x1, . . . , xn+1)))

+
n∑
i=1

(−1)i1ηg1(x1)...ηgi (··· )w
(
ηg1(x1), . . . , ηgi (· · · )η

g
i+1(· · · ), . . . , ηgn+1(· · · )

)
+ (−1)n+11ηg1(x1)...ηgn+1(··· )w (ηg1(x1), . . . , ηgn(· · · )) ,

where ηgi (· · · ) means ηgi (x1, . . . , xi). By Lemma 5.32 we have

1. (ηg2(x1, x2), . . . , ηgn+1(x1, . . . , x
g
n+1)) = τ

x−1
1 g

n (x2, . . . , xn+1);

2. (ηg1(x1), . . . , ηgi (· · · )η
g
i+1(· · · ), . . . , ηgn+1(· · · )) = τ gn (x1, . . . , xixi+1, . . . , xn+1) ;

3. 1ηg1(x1)...ηgi (x1,...,xi) = 1ηg1(x1...xi).

Hence,

0 = (δnw) ◦ τ gn+1(x1, . . . , xn+1)

=αηg1(x1)

(
1ηg1(x1)−1(w ◦ τx

−1
1 g

n (x2, . . . , xn+1))
)

+
n∑
i=1

(−1)i1ηg1(x1...xi)w ◦ τ
g
n (x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+11ηg1(x1...xn)w ◦ τ gn (x1, . . . , xn) .

Definition 5.35. For arbitrary n ∈ Z+ and x1, . . . , xn ∈ G, define w̃ : Gn → A

w̃ = w̃′ + δ̂n−1ε,

where

(δ̂n−1ε)(x1, . . . , xn) =αx1(1x−1ε(x2, . . . , xn))

+
n−1∑
i=1

(−1)iε(x1, . . . , xixi+1, . . . , xn)

+ (−1)nε(x1, . . . , xn−1).

Now we can proof the next theorem which establish the existence of a globalization.
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Theorem 5.36. Let A be a direct product of indecomposable unital rings and α =
{αg : Dg−1 → Dg | g ∈ G} a (non-necessarily transitive) unital partial action of G
on A. Then for any n ≥ 0 each cocycle w ∈ Zn

par(G,A) with values in the induced
Kpar(G)-module is globalizable.

Proof. By Lemma 5.10 we have the case n = 0. Now take n > 0. First consider the
transitive case, the map w̃ : Gn → A satisfies w(g1, . . . , gn) = 1(g1,...,gn)w̃(g1, . . . , gn)

which is a condition of Theorem 5.14. Indeed, recall that w′ = 1(x1,...,xn)w̃′ by Def-

inition 5.33 and 1(x1,...,xn)(δ̂
n−1ε) = δn−1ε by Remark 3.40 and Definition 5.13, thus

using Theorem 5.31 we have

1(x1,...,xn)w̃ (x1, . . . , xn) = 1(x1,...,xn)w̃′ (x1, . . . , xn) + 1(x1,...,xn)(δ̂
n−1ε) (x1, . . . , xn)

= w′ (x1, . . . , xn) + (δn−1ε) (x1, . . . , xn)

= w (x1, . . . , xn) .

Then to use Theorem 5.14 we only have to show that δ̂nw̃ = 0. Notice that by
Definition 5.35

(δ̃nw̃)(x1, . . . , xn+1) = (δ̃nw̃′)(x1, . . . , xn+1) + (δ̃nδ̂n−1ε)(x1, . . . , xn+1)

By Lemma 5.34 δ̃nw̃′ = 0. Hence,

(δ̃nw̃)(x1, . . . , xn+1) = (δ̃nδ̂n−1ε)(x1, . . . , xn+1).

Then observe that

(δ̃nδ̂n−1ε)(x1, . . . , xn+1) =αx1

(
1x−1

1
(δ̂n−1ε) (x2, . . . , xn+1)

)
(5.4)

+
n∑
i=1

(−1)i1x1(δ̂n−1ε) (x1, . . . , xixi+1, . . . , xn+1) (5.5)

+ (−1)n+11x1(δ̂n−1ε) (x1, . . . , xn) . (5.6)

Now observe that (5.5) is equal to

n∑
i=1

(−1)i1x1

[
αx1

(
1x−1

1
ε
(
w(i,2), . . . , w(i,i) . . . , w(i,n)

))
+

n−1∑
j=1

(−1)jε
(
w(i,1), . . . , w(i,j)w(i,j+1), . . . , w(i,n)

)
+ (−1)nε

(
w(i,1), . . . , w(i,i) . . . , w(i,n−1)

) ]
,
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where

w(i,j) =


xj if j < i

xixi+1 if j = i
xj+1 if j > i

for 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1. Define γ(i, j) = (w(i,1), . . . , w(i,j)w(i,j+1), . . . , w(i,n)),
note that if j > i then

γ(i, j) = (w(i,1), . . . , w(i,i), . . . , w(i,j)w(i,j+1), . . . , w(i,n))

= (x1, . . . , xixi+1, . . . , xjxj+1, . . . , xn+1)

= (w(j+1,1), . . . , w(j+1,i)w(j+1,i+1), . . . , w(j+1,j+1), . . . , w(i,n))

= γ(j + 1, i),

and if j = i
γ(i, i) = (x1, . . . , xixi+1xi+2, . . . , xn+1) = γ(i+ 1, i).

Thus if j ≥ i we have γ(i, j) = γ(j + 1, i) and if j < i γ(i, j) = γ(j, i − 1). Hence if
j ≥ i

(−1)i+j1x1ε (γ(i, j)) + (−1)i+j+11x1ε (γ(j + 1, i)) = 0.

Therefore,

n∑
i=1

n−1∑
j=1

(−1)i+j1x1ε
(
w(i,1), . . . , w(i,j)w(i,j+1), . . . , w(i,n)

)
= 1x1

n∑
i=1

n−1∑
j=1

(−1)i+jε(γ(i, j))

= 1x1

n−1∑
i,j=1, j≥i

(−1)i+jε(γ(i, j)) + (−1)i+j+1ε(γ(j + 1, i))

= 0.

Hence we have that (5.5) is equal to

n∑
i=1

(−1)i1x1

[
αx1

(
1x−1

1
ε
(
w(i,2), . . . , w(i,i) . . . , w(i,n)

))
+ (−1)nε

(
w(i,1), . . . , w(i,i) . . . , w(i,n−1)

) ]
.
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On the other hand (5.6) is equal to

(−1)n+11x1(δ̂n−1ε)(x1, . . . , xn) = (−1)n+1αx1(1x−1ε(x2, . . . , xn))

+
n−1∑
i=1

(−1)i+n+11x1ε(x1, . . . , xixi+1, . . . , xn)

− 1x1ε(x1, . . . , xn−1).

Thus,

(δ̃nδ̂n−1ε)(x1, . . . , xn+1) =αx1

(
1x−1

1
(δ̂n−1ε) (x2, . . . , xn+1)

)
+

n∑
i=1

(−1)i1x1

[
αx1

(
1x−1

1
ε (x2, . . . , xixi+1, . . . , xn+1)

)
+ (−1)nε

(
w(i,1), . . . , w(i,i) . . . , w(i,n−1)

) ]
+ (−1)n+1αx1(1x−1ε(x2, . . . , xn))

+
n−1∑
i=1

(−1)i+n+11x1ε(w(i,1), . . . , w(i,i) . . . , w(i,n−1))

− 1x1ε(x1, . . . , xn−1)

=αx1

(
1x−1

1
(δ̂n−1ε) (x2, . . . , xn+1)

)
+

n∑
i=1

(−1)iαx1

(
1x−1

1
ε (x2, . . . , xixi+1, . . . , xn+1)

)
+ 1x1ε(x1, . . . , xnxn+1)

+ (−1)n+1αx1(1x−1ε(x2, . . . , xn))

− 1x1ε(x1, . . . , xn−1).

Therefore,

(δ̃nδ̂n−1ε)(x1, . . . , xn+1) =αx1

(
1x−1

1
(δ̂n−1ε) (x2, . . . , xn+1)

)
(5.7)

+
n∑
i=1

(−1)iαx1

(
1x−1

1
ε (x2, . . . , xixi+1, . . . , xn+1)

)
(5.8)

+ (−1)n+1αx1(1x−1ε(x2, . . . , xn)). (5.9)
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The terms of the expansion of (5.7) are

αx1

(
1x−1

1
αx2

(
1x−1

2
ε(x3, . . . , xn+1)

))
,

αx1

(
(−1)i−11x−1

1
ε(x2, . . . , xixi+1, . . . , xn+1)

)
, 2 ≤ i ≤ n,

(−1)nαx1

(
1x−1

1
ε(x2, . . . , xn)

)
,

while the summands in (5.8) and (5.9) are

−1x1αx1x2

(
1x−1

2 x−1
1 ε(x3,...,xn+1)

)
,

(−1)iαx1

(
1x−1

1
ε (x2, . . . , xixi+1, . . . , xn+1)

)
, 2 ≤ i ≤ n,

(−1)n+1αx1

(
1x−1

1 ε(x2,...,xn))

Thus the terms of the expansion of (δ̃nδ̂n−1ε)(x1, . . . , xn+1) cancels and δ̃nδ̂n−1ε = 0.
Finally, for the non transitive case suppose that A is a product of blocks:

A =
∏
λ∈Λ

Aλ

i.e. each Aλ is an indecomposable unital ring, and let α be a unital partial action of
G on A. If α is not necessarily transitive, then for a given block Aλ define its orbit
by

oλ = {Aλ′ : ∃g ∈ G,Aλ ⊆ Dg−1 , αg (Aλ) = Aλ′} .

These are the block-orbits ofA with respect to α. Note that for any pair λ, λ′ ∈ Λ such
that oλ ∩ oλ′ 6= ∅ there exist λ′′ ∈ Λ and g, g′ ∈ G such that Aλ ⊆ Dg−1 , Aλ′ ⊆ Dg′−1

and αg(Aλ) = Aλ′′ = αg′(Aλ′), then since Aλ′′ ⊆ Dg ∩ Dg′ we have Aλ′ ⊆ D(g−1g′)−1

and Aλ = αg−1g′(Aλ′), therefore Aλ ∈ oλ′ , whence oλ = oλ′ . So we can take a partition
of {Aλ | λ ∈ Λ} of block-orbits. Let Υ ⊆ Λ be such that {oµ : µ ∈ Υ} is a partition
of {Aλ | λ ∈ Λ}. For any µ ∈ Υ, put Oµ =

∏
Aλ∈oµ Aλ. Therefore

A =
∏
µ∈Υ

Oµ.

The ring Oµ will be called the orbit ideal corresponding to µ. Due to the way we
construct each orbit ideal Oµ we have that α restricted to Oµ is a transitive unital
partial action of G on Oµ. So the construction of w̃ reduces to the transitive case
over each Oµ.
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For the following theorem we will use the next results from [7].

Remark 5.37. LetR be a ring and {Rµ}µ∈M a family of unital ideals ofR. Now define
the homomorphism φ : R →

∏
µ∈M Rµ given by r 7→ (1µ ·r)µ∈M , where 1µ is the unity

of Rµ. Then φ satisfies πµ′ ◦φ(r) = 1µ′ · r, where πµ′ :
∏

µ∈M Rµ → Rµ′ is the natural
projection. When a homomorphism satisfies the previous condition we say that it
respects projections, moreover φ is the unique homomorphism R →

∏
µ∈M Rµ

whose respects projections.

Lemma 5.38. Let C be a not necessarily unital ring and {Cµ | µ ∈M} a family of
pairwise distinct unital ideals in C. Suppose that I and J are unital ideals in C such
that

I ∼=
∏
µ∈M1

Cµ and J ∼=
∏
µ∈M2

Cµ,

where M1,M2 ⊆ M, Cµ ⊆ I for all µ ∈ M1 and Cµ′ ⊆ J for all µ′ ∈ M2. If the above
isomorphisms respect projections, then there is an isomorphism

I + J ∼=
∏

µ∈M1∪M2

Cµ,

which also respects projections.

Proof. First observe that I + J is a unital ring with unity element 1I + 1J − 1I1J .
Indeed, for any v ∈ I and w ∈ J we have that

(v + w)(1I + 1J − 1I1J) = v1I + v1J − v1I1J + w1I + w1J − w1I1J

= v + v1J − v1J + w1I + w − w1I

= v + w

and

(1I + 1J − 1I1J)(v + w) = 1Iv + 1Jv − 1I1Jv + 1Iw + 1Jw − 1I1Jw

= v + 1Jv − 1Jv + 1Iw + w − 1Iw

= v + w.

Now define J ′ = J (1J − 1I1J) . Observe that for any u ∈ I ∩ J ′ we have that u = 0.
Indeed, for u ∈ J ′ there exist j ∈ J such that u = j (1J − 1I1J), so if u ∈ I then
j − j1I ∈ I, whence j ∈ I and u = 0. Hence, I + J = I ⊕ J ′ and J = (I ∩ J) ⊕ J ′.
Notice that for any µ ∈ M1 and j ∈ J , we have that 1µj(1I − 1I1J) = 1µj − 1µj =
0. Therefore, since the isomorphism J ∼=

∏
µ∈M2

Cµ respects projections it can be
restricted to the isomorphism

J ′ ∼=
∏

µ∈M2\M1

Cµ ⊆
∏
µ∈M2

Cµ,
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such that respects projections. Then

I + J = I ⊕ J ′ ∼=

( ∏
µ∈M1

Cµ

)
⊕

 ∏
µ∈M2\M1

Cµ

 ∼= ( ∏
µ∈M1

Cµ

)
×

 ∏
µ∈M2\M1

Cµ

 ,

the latter being isomorphic to
∏

µ∈M1t(M2\M1) Cµ, which proves

I + J ∼=
∏

µ∈M1∪M2

Cµ.

Furthermore, since all the isomorphisms used respect projections, the latter one too.

Proposition 5.39. Let A be a direct product
∏

g∈ΛAg of indecomposable unital rings,
α a transitive unital partial action of G on A and (β,B) an enveloping action of (α,A)
with A ⊆ B. Then B embeds as an ideal into

∏
g∈Λ′ Ag, where Ag denotes the ideal

βg (A1) in B. Moreover, M(B) ∼=
∏

g∈Λ′ Ag, and β∗ is transitive, when seen as a
partial action of G on

∏
g∈Λ′ Ag.

Proof. By Remark 5.37 there is a unique homomorphism φ : B →
∏

g∈Λ′ Ag, which
respects projections. We will prove that φ is injective. Since B =

∑
g∈G βg(A), each

element of B belongs to an ideal I of B of the form
∑k

i=1 βxi(A), x1, . . . , xk ∈ G.
Therefore, it suffices to show that the restriction of φ to any such I is injective. Using
Remark 5.18, we may construct for any i = 1, . . . , k an isomorphism

βxi(A) = βxi

(∏
g∈Λ

Ag

)
∼=
∏
g∈Λ

βxi (Ag) =
∏
g∈Λ

Axig

which respects projections. Notice that it follows from the definition of Λ′ that the
ideals Ag, g ∈ Λ′, are pairwise distinct. Hence by Lemma 5.38 there is an isomorphism

ψ : I →
∏
g∈Λ′′

Ag,

where Λ′′ = {xig | g ∈ Λ, i = 1, . . . , k} ⊆ Λ′, and it also respects projections. We
claim that the restriction of φ to I coincides with ψ if one understands the product
in the right-hand side of

ψ : I →
∏
g∈Λ′′

Ag
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as an ideal in
∏

g∈Λ′ Ag. Indeed, for all g ∈ Λ′′ and b ∈ I one has

prg ◦ψ(b) = 1Agb = prg ◦φ(b),

because φ and ψ respect projections. Now if g ∈ Λ′\Λ′′, then x−1
i g /∈ Λ for all

i = 1, . . . , k, since otherwise g = xix
−1
i g ∈ Λ′′. Hence, for all b =

∑k
i=1 βxi (ai) ∈ I

(ai ∈ A) in view of Remark 5.18

prg ◦φ(b) = 1Agb =
k∑
i=1

βxi

(
1A
x−1
i g

ai

)
=

k∑
i=1

βxi(0) = 0.

This proves the claim, and thus injectivity of φ. Moreover, since φ(I) =
∏

g∈Λ′′ Ag is
an ideal in

∏
g∈Λ′ Ag, it follows that φ(B) is also an ideal in

∏
g∈Λ′ Ag.

Regarding the second statement of the proposition, notice that each element of∏
g∈Λ′ Ag acts as a multiplier of B, as φ(B) is an ideal in

∏
g∈Λ′ Ag. Conversely, let

w ∈ M(B). Then w1Ag = w1Ag · 1Ag ∈ Ag for all g ∈ Λ′. Define a ∈
∏

g∈Λ′ Ag by
prg(a) = w1Ag . We need to show that φ(wb) = aφ(b) and φ(bw) = φ(b)a. Indeed
using the fact that φ respects projections, we get

prg(φ(wb)) = 1Ag · wb = w1Ag · 1Agb = w1Ag · prg(φ(b)) = prg(aφ(b))

for all g ∈ Λ′. Similarly prg(φ(bw)) = prg(aφ(b)) for arbitrary g ∈ Λ′. The transitivity
of β∗ easily follows from the definition of Ag for g ∈ Λ′.

Finally the next theorem allow us to obtain the uniqueness of a globalization.

Theorem 5.40. Let A be a direct product
∏

g∈ΛAg of indecomposable unital rings, α
a unital partial action of G on A and wi ∈ Zn

par(G,A), i = 1, 2 (n > 0). Suppose that
(β,B) is an enveloping action of (α,A) and ui ∈ Zn(G,M(B)) is a globalization of
wi i = 1, 2. If w1 is cohomologous to w2, then u1 is cohomologous to u2. In particular,
any two globalizations of the same partial n-cocycle are cohomologous.

Proof. Using the same argument used in the proof of Theorem 5.36 we can consider
only the transitive case and by Proposition 5.39 we can assume, without loss of
generality, that M(B) =

∏
g∈Λ′ Ag ⊇ A. Define homomorphism ϑg :M(B)→M(B)

by
ϑg = βg ◦ pr1

and u′i ∈ Cn(G,M(B)) by

u′i(x1, . . . , xn) =
∏
g∈Λ′

ϑg ◦ ui ◦ τ gn(x1, . . . , xn), i = 1, 2.

136



5.3 Existence and uniqueness of a globalization Globalization

Note that the definition of u′i is analogous to that of w′ in Definition 5.22, and the
definition of ϑg is analogous to that of 5.19 then using Theorem 5.31 we have that
u′i ∈ Zn(G,M(B)) and ui is cohomologous to u′i, i = 1, 2. Suppose that w1 is
cohomologous to w2. Then if we prove that u′1 is cohomologous to u′2 then u′1 and
u′2 are cohomologous. First observe that since ui is a globalization of wi we have
1(x1,...,xn)ui(x1, . . . , xn) = wi(x1, . . . , xn), then for arbitrary h1, . . . , hn ∈ H

pr1 ◦ui(h1, . . . , hn) = pr1(1(h1,...,hn)ui(h1, . . . , hn)) = pr1 ◦wi(h1, . . . , hn)

whence
u′i(x1, . . . , xn) =

∏
g∈Λ′

ϑg ◦ wi ◦ τ gn(x1, . . . , xn), i = 1, 2.

If w2 = w1 + δn−1ξ for some ξ ∈ Cn−1
par (G,A), then we get u′2 = u′1 + (δn−1ξ)

′
, where(

δn−1ξ
)′

(x1, . . . , xn) =
∏
g∈Λ′

ϑg ◦
(
δn−1ξ

)
◦ τ gn (x1, . . . , xn) .

Then is enough to prove that

(δn−1ξ)′ = δn−1ξ′,

where
ξ′ (x1, . . . , xn−1) =

∏
g∈Λ′

ϑg ◦ ξ ◦ τ gn−1 (x1, . . . , xn−1) .

Observe that since we can omit the idempotents 1ηg1(x1)...ηgi (x1,...,xi) in ϑg, then (δn−1ξ)′(x1, . . . , xn)
is equal to

∏
g∈Λ′

ϑg

[
βηgi (x1)(ξ ◦ τx

−1g
n−1 (x2, . . . , xn))

+
n−1∑
i=1

(−1)iξ(ηg1(x1), . . . , ηgi (· · · )η
g
i+1(· · · ), . . . , ηgn(x1, . . . , xn))

+ (−1)iξ(ηg1(x1), . . . , ηgn−1(x1, . . . , xn−1))

]
.
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On the other hand (δn−1ξ′)(x1, . . . , xn) is equal to

βx1

(∏
g∈Λ′

ϑg ◦ ξ ◦ τ gn−1(x2, . . . , xn)

)

+
n−1∑
i=1

(−1)i
∏
g∈Λ′

ϑg ◦ ξ(ηg1(x1), . . . , ηgi (· · · )η
g
i+1(· · · ), . . . , ηgn(x1, . . . , xn))

+ (−1)i
∏
g∈Λ′

ϑg ◦ ξ(ηg1(x1), . . . , ηgn−1(x1, . . . , xn−1)).

Hence to prove that (δn−1ξ′)(x1, . . . , xn) = (δn−1ξ)′(x1, . . . , xn), since ϑg is an homo-
morphism, we only have to show that

βx1

(∏
g∈Λ′

ϑg ◦ ξ ◦ τ gn−1(x2, . . . , xn)

)
=
∏
g∈Λ′

ϑg ◦ βηgi (x1) ◦ ξ ◦ τx
−1g

n−1 (x2, . . . , xn)

which is consequence of the global version of Lemma 5.29.

Corollary 5.41. Let A be a direct product
∏

g∈ΛAg of indecomposable unital rings, α
a partial action of G on A and (β,B) an enveloping action of (α,A). Then Hn

par(G,A)
is isomorphic to the classical cohomology group Hn(G,M(B)).

Proof. By Proposition 5.7 the map ρ : Hn
par(G,M(B)) → Hn

par(G,A) is an homo-
morphism, thus the case n = 0 is Lemma 5.10, finally for n > 0 we have that ρ is
invertible by Theorems 5.36 and 5.40.
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