• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Master's Dissertation
Full name
Emmanuel Jerez Usuga
Knowledge Area
Date of Defense
São Paulo, 2020
Dokuchaev, Mikhailo (President)
Alves, Marcelo Muniz Silva
Khrypchenko, Mykola
Title in English
Group cohomology based on partial representations
Keywords in English
Partial action
Partial smash product
Spectral sequence
Abstract in English
We consider the partial group cohomology $H_^n(G,M)$ of a group $G$ with values in $\K_G$-module $M$, which is defined as the right derived functor of the functor of partial invariants. Showing that the functor of partial invariants is representable, we relate the partial group cohomology with the space of partial derivations and the partial augmentation ideal; next, we construct a projective resolution of the algebra $B$ as a $\K_G$-module, where $B$ is a commutative subalgebra of $\K_G$. This allows us to give another characterization of the partial group cohomology in terms of classes of functions that satisfy a certain identity of $n$-cocycles. We show the existence of a Grothendieck spectral sequence that relates the cohomology of the partial smash product with the partial group cohomology and the algebra cohomology. Given a unital partial action $\alpha$ of $G$ on a algebra $\mathcal$ we consider the $\K_G$-module structure of $\mathcal$ induced by $\alpha$ and study the globalization problem for the partial cohomology with values in $\mathcal$. The problem is reduced to an extendibility property of cocycles. Moreover, if $\mathcal$ is a product of indecomposable blocks, we show that any cocycle is globalizable, and globalizations of cohomologous cocycles are also cohomologous, whence we have that $H_^n(G,M)$ is isomorphic to the usual cohomology group $H^n(G, \mathcal(\mathcal))$, where $\mathcal$ is the algebra under the enveloping action of $\alpha$ and $\mathcal(\mathcal)$ is the multiplier algebra of $\mathcal$.
Title in Portuguese
Cohomologia de grupo baseada em representações parciais
Keywords in Portuguese
Ação parcial
Produto parcial smash
Sequência espectral
Abstract in Portuguese
Consideraremos a cohomologia parcial $H_^n(G, M)$ de um grupo $G$ com valores num $K_G$-módulo $M$, introduzida em \cite, que é definida como o functor derivado à direita do functor de invariantes parciais. Mostrando que o functor de invariantes parciais é representável, poderemos relacionar a cohomologia parcial de grupo com o espaço de derivações parciais e o ideal de aumento parcial; depois, construiremos uma resolução projetiva da álgebra $B$ como $K_G$-modulo, onde $B$ é una subálgebra de $K_G$. Isto permitirá dar uma outra caracterização da cohomologia parcial de grupo em termos de classes de funções que satisfazem uma certa identidade de $n$-cociclos. Mostramos a existência de uma sequência espectral de Grothendieck que relaciona a cohomologia do produto smash parcial com a cohomologia parcial do grupo e a cohomologia da álgebra. Dada uma ação parcial unital $\alpha$ de $G$ em uma álgebra $\mathcal$, consideramos a estrutura de $K_G$-módulo de $\mathcal$ induzida pela ação $\alpha$ e estudamos o problema de globalização para a cohomologia parcial em $\mathcal$. O problema é reduzido a uma propriedade de extensibilidade de cociclos. Além disso, se $\mathcal$ é um produto de blocos, mostramos que qualquer cociclo é globalizável e que as globalizações de cociclos cohomólogos também são cohomólogas, de onde temos que $H_^n(G,M)$ é isomórfico ao grupo de cohomologia usual $H^n(G,\mathcal(\mathcal))$, onde $\mathcal$ é a álgebra sob a ação envolvente de $\alpha$ e $\mathcal(\mathcal)$ é a álgebra de multiplicadores de $\mathcal$.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Emmanuel_Mestrado.pdf (1.05 Mbytes)
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.