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Resumo

Gabriel de Arêa Leão Souza. Grupos livres explícitos em anéis com divisão. Disser-

tação (Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São

Paulo, 2023.

Seja 𝐾 um corpo. Obteremos condições para elementos da forma {1 + 𝛼 𝐢, 1 + 𝛽𝐣} gerarem um grupo

livre de posto 2 em uma álgebra de quatérnios sobre 𝐾 , inclusive em característica 2, baseado em um artigo

dos professores Jairo Gonçalves, Arnaldo Mandel e Mazi Shirvani [GMS99]. Estes resultados serão, então,

utilizados para encontrar pares de elementos que gerem um grupo livre em diversas classes de anéis com

divisão, como corpos totais de frações de domínios de Ore e anéis de séries de Malcev-Neumann. Com isso,

procura-se responder parcialmente uma conjectura de Lichtman ([Lic77]), a respeito da existência de grupos

livres não-abelianos no grupo multiplicativo de anéis com divisão não-comutativos.

Palavras-chave: grupos livres. anéis com divisão. quatérnios.





Abstract

Gabriel de Arêa Leão Souza. Explicit free groups in division rings. Thesis (Master’s).

Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2023.

Let 𝐾 be a field. We will obtain conditions for elements of the form {1 + 𝛼 𝐢, 1 + 𝛽𝐣} to generate a free

group of rank 2 in a quaternion algebra over 𝐾 , including the case where the characteristic of the field 𝐾 is

2, based on an article by Professors Jairo Gonçalves, Arnaldo Mandel and Mazi Shirvani [GMS99]. These

results will then be applied to obtain pairs of elements that freely generate a free group in many other

classes of division rings, such as total fields of fractions of Ore domains and Malcev-Neumann series rings.

With these results, we plan to partially answer a conjecture by Lichtman ([Lic77]), regarding the existence

of non-abelian free groups in the multiplicative group of non-commutative division rings.

Keywords: free groups. division rings. quaternions.
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Symbols and Acronyms

PID Principal ideal domain

f.g. Finitely generated

Ring 𝑅 Associative ring 𝑅 with unity 1

Ring homomorphism Ring homomorphism preserving the unity

Domain 𝑅 Possibly noncommutative ring 𝑅 with no zero divisors

Integral domain Commutative domain

ℕ Natural numbers (including 0)

ℕ
† Natural numbers without 0

ℤ,ℚ,ℝ,ℂ Integers, rationals, reals, complex numbers

𝔽𝑞 The unique (up to isomorphism) field of order 𝑞

≅ Is isomorphic to

⊂ Inclusion

⫋ Strict inclusion

⊲ Proper normal subgroup

⊴ Not-necessarily proper normal subgroup

𝐻 ≤ 𝐺 𝐻 is a subgroup of 𝐺

𝑀𝑛(𝑅) Ring of “𝑛 × 𝑛” matrices over the ring 𝑅

𝐺𝑙𝑛(𝐹 ) Multiplicative group of “𝑛 × 𝑛” invertible matrices over the field 𝐹

U (𝑅) Group of units of the ring 𝑅

𝑅
†

𝑅 ⧵ {0}

id𝑋 Identity function of the set 𝑋

A (𝑋 ) Group of bijections of the set 𝑋

F (𝑋, 𝑌 ) Set of functions from 𝑋 to 𝑌

[𝑥, 𝑦] = 𝑥
−1
𝑦
−1
𝑥𝑦

𝑥
𝑦 = 𝑦

−1
𝑥𝑦

⊔ Disjoint union

𝜕𝑝(𝑥) Degree of the polynomial 𝑝(𝑥)
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Introduction

In 1927, extending a result previously established by J. Wedderburn in 1907, E. Artin
proved the following theorem, which completely classifies semisimple (artinian) rings and
is today known as the “Wedderburn-Artin Theorem” ([Art27]):

Theorem (Wedderburn-Artin). Let 𝑅 be a semisimple ring. Then, there exists a natural
number 𝑘 and pairs (𝑛𝑖 , 𝐷𝑖), 𝑖 = 1, ..., 𝑘, uniquely determined up to permutations, where the
𝐷𝑖 are division rings and 𝑛𝑖 ∈ ℕ

†, such that

𝑅 ≅ 𝑀𝑛1
(𝐷1) ×⋯ ×𝑀𝑛𝑘

(𝐷𝑘)

This result, due to its completeness, paved way to a whole method of studying non-
commutative rings; namely, one could search for properties that allow for a regression to
the semisimple case, and later try to lift the results thus obtained to the original ring (look,
for instance, at the Jacobson radical theory, [Lam01]).

Simultaneously, the previous theorem sheds light onto the importance of studying the
structure of division rings. These objects, even though they present some good properties
derived from the equality U (𝐷) = 𝐷

†, have very particular difficulties, such as the fact that
they don’t have any non-trivial quotients.

Some of the main results on non-commutative division rings are evidence to some of
the more pathological behavior they display. Theorems such as those of J. Wedderburn
[Wed05], C. Stuth [Stu64] and I. Kaplansky [Kap51], as well as the famous result by H.
Cartan [Car47], extended by R. Brauer [Bra49], and proven independently in almost trivial
fashion by L. Hua [Hua49], known today as the “Brauer-Cartan-Hua Theorem”, show us
how relatively mild hypothesis over some subgroup of the multiplicative group of a non-
commutative division ring necessarily imply its centrality or commutativity. This strongly
suggests that the multiplicative group of a non-commutative division ring has a very “wild”
structure, and doesn’t generally display good properties such as chain conditions.

Some years later, in 1972, Belgian mathematician J. Tits proved the so-called “Tits
Alternative” [Tit72], presented below:

Theorem (Tits Alternative). Let 𝐺 be a f.g. subgroup of 𝐺𝑙𝑛(𝐹 ), where 𝐹 is a field. Then, one
of the following is true:

• Either 𝐺 is a solvable-by-locally finite group;

• Or 𝐺 contains a free group of rank 2;
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Soon after, the question appeared on whether the same would be true if the field 𝐹
were replaced by a non-commutative division ring [SY74]. Even though he gave a negative
answer to the conjecture when he found a division ring 𝐷 and a multiplicative subgroup
𝐺 ≤ 𝐷

∗ which is neither solvable-by-locally finite nor does it contain a free group of rank
2, A. Lichtman proposed the following conjecture ([Lic77]):

Conjecture. If 𝐷 is a non-commutative division ring, then 𝐷† contains a free subgroup of
rank 2.

This conjecture has stood the test of time and is still open to this day, in spite of many
special cases having been established, such as that in which 𝐷 is finite-dimensional over
its center [Gon84]. An important observation is that, even in this case, the proof used isn’t
constructive, due to its close proximity to the proof of the Tits Alternative. This opens
yet another can of worms: what are the generators of the free group of rank 2, should it
exist?

It is that question upon which we focus the bulk of our work, whose objective is to
collect different results that explicitly obtain free pairs in division rings. We have structured
it in 3 chapters. The first discusses the required group-theoretic preliminaries, such as
central series and ordered groups. The second discusses some classes of rings which allow
us to construct the studied division rings. And the last one is where the actual free groups
are obtained by using results previously established in the other two chapters. We have
also included a couple small appendices, versing on variants of the main conjecture.
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Chapter 1

Group-theoretic preliminaries

When it comes to choosing the starting-point of a dissertation, there are many possibil-
ities. For what follows, we have opted for assuming only the contents of an undergraduate
degree in mathematics and the corresponding courses in group, ring and Galois theories.
Other than that, most concepts will be defined and constructed as needed.

We should emphasize that we have no intent of being encyclopedic - indeed, the
theorems, lemmas, corollaries, definitions and so on will always be presented with a goal
in mind, which are the main results of the third chapter. Thus, we will sometimes omit
important results, whose proofs are not out of reach. When deemed convenient, we will
briefly mention such results, but without necessarily providing a proof.

1.1 Free groups

We begin with one of the fundamental notions to be used throughout: that of a free
group. Roughly speaking, free groups are those groups which do not satisfy any algebraic
relations between their elements besides those imposed by the three axioms which define
a group. Loosely following the exposition of J. Rotman [Rot99], we begin with the ensuing
definition:

Definition. A group 𝐹 is said to be free of basis 𝑋 ⊂ 𝐹 if, for every group 𝐻 and for
every function 𝑓 ∶ 𝑋 → 𝐻 , there exists a unique group homomorphism 𝜑 ∶ 𝐹 → 𝐻

such that 𝜑|𝑋 = 𝑓 . If |𝑋 | < ∞, |𝑋 | is said to be the rank of 𝐹 . Otherwise, 𝐹 is said to be of
infinite rank.

One can (rightfully) wonder the validity of using the definite article when talking
about the rank of a free group. We settle this issue in what follows.

Proposition 1.1.1. The rank of a free group is unique.

Proof. Suppose 𝐹 is a free group of basis 𝑋 . For every function 𝑓 ∶ 𝑋 → ℤ2, the definition
of a free group yields a unique group homomorphism 𝜑𝑓 ∶ 𝐹 → ℤ2 which restricts to 𝑓 on
𝑋 . At the same time, any homomorphism 𝜑 ∶ 𝐹 → ℤ2 defines a function 𝜑∣

𝑋
∶ 𝑋 → ℤ2.
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This allows us to construct a one-to-one correspondence between functions from 𝑋

to ℤ2 and homomorphisms from 𝐹 to ℤ2. Indeed, if Hom(𝐹 ,ℤ2) denotes the set of group
homomorphisms from 𝐹 to ℤ2, we define

Φ∶Hom(𝐹 ,ℤ2) → F (𝑋,ℤ2) Ψ∶F (𝑋,ℤ2) → Hom(𝐹 ,ℤ2)

𝜑 ↦ 𝜑∣
𝑋

𝑓 ↦ 𝜑𝑓

It’s straightforward to see that Φ and Ψ are mutual inverses, meaning there are exactly 2
|𝑋 |

homomorphisms from 𝐹 to ℤ2. If 𝐹 is also free of basis 𝑌 , then the same reasoning yields
2
|𝑌 | homomorphisms and, since this number should only depend on 𝐹 itself, |𝑋 | = |𝑌 |. ■

Proposition 1.1.2. 1 Let 𝑋 be a non-empty set. Then, there exists (up to isomorphism) a
unique free group of basis 𝑌 , with |𝑌 | = |𝑋 |.

Proof. Existence: Consider a set 𝑋 −1 with the same cardinality of 𝑋 , such that 𝑋 ∩𝑋
−1
= ∅

and, given a bijection 𝑓 ∶ 𝑋 → 𝑋
−1, write 𝑓 (𝑥) =∶ 𝑥−1. Let, then,  = 𝑋 ∪ 𝑋

−1
∪ {1} and

define

(𝑋 ) =

{

(𝑎𝑖) ∈ ∏

𝑖∈ℕ

 ∣ ∃𝑁 ∈ ℕ such that 𝑎𝑖 = 1, ∀𝑖 > 𝑁

}

called the set of words in 𝑋 . If (𝑎𝑖) ∈ (𝑋 ) and 𝑎𝑖 = 1 for all 𝑖 bigger than some 𝑁 , we denote
(𝑎𝑖) = (𝑎0, 𝑎1, ..., 𝑎𝑁 ). The word (1, 1, 1, ...) is called the empty word, and will be denoted by 1.

A word (𝑎𝑖) is said to be reduced if it’s empty or if it satisfies the following condition:
“if 𝑁 ∈ ℕ is the biggest natural number such that 𝑎𝑁 ≠ 1, then 𝑎𝑖 ≠ 1 for all 𝑖 ≤ 𝑁 and, for
all 𝑥 ∈ 𝑋 , 𝑥 and 𝑥−1 aren’t adjacent in (𝑎𝑖)”.

Now let 𝐹 be the set of reduced words in 𝑋 and, for each 𝑥 ∈ 𝑋 , define the maps
|𝑥 | ∶ 𝐹 → 𝐹 and |𝑥

−1
| ∶ 𝐹 → 𝐹 as follows:2

|𝑥
𝜀
|((𝑎𝑖)) =

{

(𝑥
𝜀
, 𝑎0, 𝑎1, ...) if 𝑎0 ≠ 𝑥−𝜀

(𝑎1, 𝑎2, ...) if 𝑎0 = 𝑥−𝜀
, 𝜀 = ±1

They are trivially well-defined and both are bijections for all 𝑥 ∈ 𝑋 , since |𝑥 | ◦ |𝑥
−1
| =

|𝑥
−1
| ◦ |𝑥 | = id𝐹 .

Thus, consider the subset [𝑋 ] = {|𝑥 | ∣ 𝑥 ∈ 𝑋} ⊂ A (𝐹 ) and the group it generates,
F . If 𝑔 ∈ F , then 𝑔 = |𝑥

𝜀1

1
| ◦ ⋯ ◦ |𝑥

𝜀𝑛

𝑛
| where 𝑛 ∈ ℕ and 𝜀𝑖 = ±1, ∀𝑖, such that |𝑥 | and |𝑥

−1
|

are never adjacent. We also refer to this description of 𝑔 as a reduced word in the |𝑥
𝜀𝑖

𝑖
|.

This factorization is unique: 𝑔(1) = (𝑥
𝜀1

1
, ..., 𝑥

𝜀𝑛

𝑛
) meaning, if 𝑔 = |𝑥

′𝛿1

1
| ◦ ⋯ ◦ |𝑥

′𝛿𝑚

𝑚
| is another

reduced expression for 𝑔, (𝑥 𝜀1
1
, ..., 𝑥

𝜀𝑛

𝑛
) = (𝑥

′𝛿1

1
, ..., 𝑥

′𝛿𝑚

𝑚
). Ergo, 𝑛 = 0 forces 𝑚 = 0 and, if 𝑛 ≠ 0,

we obtain 𝑛 = 𝑚 and 𝑥 𝜀𝑖
𝑖
= 𝑥

′𝛿𝑖

𝑖
.

Let 𝐺 be an arbitrary group and let 𝑓 ∶ [𝑋 ] → 𝐺 be a function. Due to the uniqueness

1 For what follows, it will always be implicit that 𝜀𝑖 = ±1, unless written otherwise.
2 The set 𝐹 is a free group of basis 𝑋 with juxtaposition as its operation, but verifying associativity is not

trivial.
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of the previous factorization, the function 𝜑 ∶ F → 𝐺 defined by

𝜑(|𝑥
𝜀1

1
| ◦ ⋯ ◦ |𝑥

𝜀𝑛

𝑛
|) = 𝑓 (|𝑥1|)

𝜀1
⋯ 𝑓 (|𝑥𝑛|)

𝜀𝑛

is well-defined. If 𝑤, 𝑣 ∈ F , we write 𝑤 = |𝑥
𝜀1

1
| ◦⋯ ◦ |𝑥

𝜀𝑛

𝑛
| and 𝑣 = |𝑥

′𝛿1

1
| ◦⋯ ◦ |𝑥

′𝛿𝑚

𝑚
| as reduced

words. There are two possibilities:

1. |𝑥
𝜀𝑛

𝑛
| ≠ |𝑥

′−𝛿1

1
|. In this case, 𝑤 ◦ 𝑣 = |𝑥

𝜀1

1
| ◦ ⋯ ◦ |𝑥

𝜀𝑛

𝑛
| ◦ |𝑥

′𝛿1

1
| ◦ ⋯ ◦ |𝑥

′𝛿𝑚

𝑚
| is reduced, hence

it’s trivial that 𝜑(𝑤 ◦ 𝑣) = 𝜑(𝑤)𝜑(𝑣).

2. |𝑥
𝜀𝑛

𝑛
| = |𝑥

′−𝛿1

1
|. Take 𝑗 = max{𝑘 ∈ ℕ

†
∣ |𝑥

𝜀𝑛−𝑘+1

𝑛−𝑘+1
| = |𝑥

′−𝛿𝑘

𝑘
|}. We can write 𝑤 ◦ 𝑣 =

|𝑥
𝜀1

1
| ◦ ⋯ ◦ |𝑥

𝜀𝑛−𝑗

𝑛−𝑗
| ◦ |𝑥

′𝛿𝑗+1

𝑗+1
| ◦ ⋯ ◦ |𝑥

′𝛿𝑚

𝑚
| as a reduced word. Notice that

𝜑(𝑤 ◦ 𝑣) = 𝑓 (|𝑥1|)
𝜀1
⋯ 𝑓 (|𝑥𝑛−𝑗 |)

𝜀𝑛−𝑗
𝑓 (|𝑥

′

𝑗+1
|)
𝛿𝑗+1

⋯ 𝑓 (|𝑥
′

𝑚
|)
𝛿𝑚

= 𝑓 (|𝑥1|)
𝜀1
⋯ 𝑓 (|𝑥𝑛−𝑗 |)

𝜀𝑛−𝑗

(𝑓 (|𝑥𝑛−𝑗+1|)
𝜀𝑛−𝑗+1

𝑓 (|𝑥𝑛−𝑗+1|)
−𝜀𝑛−𝑗+1

) 𝑓 (|𝑥
′

𝑗+1
|)
𝛿𝑗+1

⋯ 𝑓 (|𝑥
′

𝑚
|)
𝛿𝑚

= 𝑓 (|𝑥1|)
𝜀1
⋯ 𝑓 (|𝑥𝑛−𝑗 |)

𝜀𝑛−𝑗
𝑓 (|𝑥𝑛−𝑗+1|)

𝜀𝑛−𝑗+1
𝑓 (|𝑥

′

𝑗
|)
𝛿𝑗
𝑓 (|𝑥

′

𝑗+1
|)
𝛿𝑗+1

⋯ 𝑓 (|𝑥
′

𝑚
|)
𝛿𝑚

by the definition of 𝑗. We proceed inductively to obtain 𝜑(𝑤 ◦ 𝑣) = 𝜑(𝑤)𝜑(𝑣).

Therefore, 𝜑 is a group homomorphism and, by definition, F is a free group of basis
[𝑋 ]. Since 𝑥 ↦ |𝑥 | is a bijection from 𝑋 to [𝑋 ], existence is established.

Uniqueness: Let 𝑋 and 𝑌 be non-empty sets, 𝐹 free of basis 𝑋 , 𝐺 free of basis 𝑌 and
𝑓 ∶ 𝑋 → 𝑌 a bijection. Composing 𝑓 with the standard inclusion map, we get a function
̃
𝑓 ∶ 𝑋 → 𝐺, such that there is a unique homomorphism 𝜑 ∶ 𝐹 → 𝐺 extending it. Doing
the same to the function 𝑓 −1 ∶ 𝑌 → 𝑋 , we obtain a homomorphism 𝜓 ∶ 𝐺 → 𝐹 .

Notice, then, that 𝜑 ◦ 𝜓 ∶ 𝐺 → 𝐺 is a group homomorphism such that (𝜑 ◦ 𝜓 )(𝑦) =

𝜑(𝑓
−1
(𝑦)) = 𝑓 (𝑓

−1
(𝑦)) = 𝑦, if 𝑦 ∈ 𝑌 . Since id𝐺 ∶ 𝐺 → 𝐺 is another group homomorphism

such that id𝐺 ∣𝑌= id𝑌 , we get, using uniqueness, that 𝜑 ◦ 𝜓 = id𝐺 . Analogously, 𝜓 ◦ 𝜑 = id𝐹

and 𝐹 ≅ 𝐺. ■

Corollary 1.1.2.1. Let 𝐺 be an arbitrary group. Then, there exists a free group 𝐹 and a
surjective homomorphism 𝜓 ∶ 𝐹 → 𝐺. In particular, 𝐺 ≅ 𝐹 /𝑁 for some 𝑁 ⊴ 𝐹 .

Proof. Let 𝑋 = 𝐺. By Proposition 1.1.2, there exists a free group 𝐹 of basis 𝑌 , with a
bijection 𝑓 ∶ 𝑌 → 𝑋 . By definition, there is a group homomorphism 𝜓 ∶ 𝐹 → 𝑋 = 𝐺

such that 𝜓 ∣𝑌= 𝑓 . Since 𝑓 is surjective, the same is true of 𝜓 . ■

This corollary allows us to make the following construction:

Definition. Let 𝐺 be a group and write 𝐺 ≅ 𝐹 /𝑁 , where 𝐹 is free of basis 𝑋 and 𝑁 ⊴𝐹 . Let
𝑅 be a set of generators for 𝑁 as a normal subgroup. Then, we write 𝐺 = ⟨𝑋 ∣ 𝑅⟩, which is
called a presentation of 𝐺.

This way of expressing a group 𝐺 as a quotient of a free group is really helpful, since
it really facilitates defining homomorphisms with domain 𝐺.3

3 This follows from the definition of a free group and from the First Isomorphism Theorem.



6

1 | GROUP-THEORETIC PRELIMINARIES

While the proof of Proposition 1.1.2 is very technical, it has one major advantage in that
it gives us a way of expressing the elements of a free group in terms of the basis. This will
be of major importance in what comes; so much so that we make it into the two following
corollaries, which will be used without reference for the remainder of our work.

Corollary 1.1.2.2. Let 𝐹 be a group generated by 𝑋 ≠ ∅. Then, 𝐹 is free of basis 𝑋 if, and
only if, every element of 𝐹 can be uniquely written as a reduced word in 𝑋 .

Proof. We saw the “only if” part in the construction of a free group - indeed, every element
of F had a unique expression as a reduced word in [𝑋 ]. On the other hand, if every
element of 𝐹 can be uniquely written as a reduced word in 𝑋 , the extension 𝜑 obtained
in Proposition 1.1.2 remains well-defined, and the proof can be continued unchanged,
proving the freedom of 𝐹 . ■

Definition. The length of a reduced word 𝑤 = 𝑥
𝜀1

1
⋯ 𝑥

𝜀𝑛

𝑛
in a free group 𝐹 is 𝑙(𝑤) = 𝑛. By

definition, 𝑙(1) = 0.

Corollary 1.1.2.3. Let 𝐹 be a group generated by 𝑋 ≠ ∅. Then, 𝐹 is free of basis 𝑋 if, and
only if, every reduced word of length greater than 0 is different from the identity.

Proof. The first part is trivial using the previous corollary. For the other implication,
suppose an element can be written in more than one way as a reduced word; that is,
suppose 𝑥 𝜀1

1
⋯ 𝑥

𝜀𝑛

𝑛
= 𝑦

𝛿1

1
⋯ 𝑦

𝛿𝑚

𝑚
, where 𝑥 𝜀1

1
⋯ 𝑥

𝜀𝑛

𝑛
and 𝑦𝛿1

1
⋯ 𝑦

𝛿𝑚

𝑚
are reduced.

Then, we obtain 𝑥
𝜀1

1
⋯ 𝑥

𝜀𝑛

𝑛
𝑦
−𝛿𝑚

𝑚
⋯ 𝑦

−𝛿1

1
= 1. By hypothesis, the word on the left can’t be

reduced, and it’s easy to see that 𝑚 = 𝑛 and 𝑦
𝛿𝑖

𝑖
= 𝑥

𝜀𝑖

𝑖
(if any of these equalities failed,

we could cancel out as much as possible and get a non-trivial reduced word equal to the
empty word). ■

One important observation is that free groups can be lifted through homomorphisms;
this will become extremely relevant in Chapter 3.

Proposition 1.1.3. Let 𝐺 and 𝐻 be groups and let 𝜃 ∶ 𝐺 → 𝐻 be a homomorphism.
Suppose 𝑔1, 𝑔2 ∈ 𝐺 are such that 𝜃(𝑔1), 𝜃(𝑔2) freely generate a free group (that is, the group
they generate is free of basis 𝑋 = {𝜃(𝑔1), 𝜃(𝑔2)}). Then, 𝑔1, 𝑔2 freely generate a free group in
𝐺.

Proof. Let 𝑤1 ⋯𝑤𝑛 = 1 be a reduced word in 𝐺, with 𝑤𝑖 ∈ {𝑔1, 𝑔2, 𝑔
−1

1
, 𝑔

−1

2
}, ∀𝑖. Then,

𝜃(𝑤1)⋯ 𝜃(𝑤𝑛) = 1. By hypothesis, this implies 𝑛 = 0. ■

Let 𝐹 be a free group of basis 𝑋 , where |𝑋 | = 𝑛. If 𝑌 ⫋ 𝑋 , it’s clear, by the character-
izations obtained before, that the subgroup of 𝐹 generated by 𝑌 is free of basis 𝑌 . This
means any free group of rank 𝑛 contains free groups of any rank less than 𝑛 as subgroups.
Surprisingly, the converse is also true, as we prove below.

Proposition 1.1.4. Let 𝐹 be a free group of rank 2. Then, 𝐹 contains a free subgroup of
(countably) infinite rank.
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Proof. Let 𝑋 = {𝑥, 𝑦} be a basis for 𝐹 , consider the set 𝑌 = {𝑦
−1
𝑥𝑦, 𝑦

−2
𝑥𝑦

2
, ...} and let 𝐻

be the subgroup of 𝐹 generated by 𝑌 . Let 𝑤 = 𝑎
𝜀1

1
⋯ 𝑎

𝜀𝑛

𝑛
be a reduced word with 𝑎𝑖 ∈ 𝑌 .

Using induction, we will show that, when 𝑤 is written as a reduced word in 𝑋 , it ends in
𝑥
𝜀𝑛
𝑦
𝑚, with 𝑎𝑛 = 𝑦−𝑚

𝑥
𝜀𝑛
𝑦
𝑚. If 𝑛 = 1, 𝑤 = 𝑎

𝜀1

1
= 𝑦

−𝑚
𝑥
𝜀1
𝑦
𝑚.

Suppose that the result is true for 𝑙(𝑤) = 𝑛 − 1 and let 𝑤 = 𝑎
𝜀1

1
⋯ 𝑎

𝜀𝑛

𝑛
be reduced in

𝑌 . Ergo, 𝑤 = 𝑤
′
𝑎
𝜀𝑛

𝑛
, with 𝑤

′ reduced in 𝑌 , with length 𝑛 − 1. Moreover, 𝑤′ is such that
𝑤

′
= 𝑧𝑥

𝜀𝑛−1
𝑦
𝑚, with 𝑎𝑛−1 = 𝑦−𝑚

𝑥
𝜀𝑛−1
𝑦
𝑚, when reduced in 𝑋 , by the induction hypothesis (in

particular, 𝑧 is a reduced word in 𝑋 which does not end in 𝑥−𝜀𝑛−1).

𝑤 = 𝑧𝑥
𝜀𝑛−1
𝑦
𝑚
𝑎
𝜀𝑛

𝑛
. There are two possibilities for 𝑎𝑛:

• 𝑎𝑛 = 𝑦−𝑚
𝑥𝑦

𝑚. This means 𝑤 = 𝑧𝑥
𝜀𝑛−1
𝑥
𝜀𝑛
𝑦
𝑚. As 𝑤 is reduced in 𝑌 , 𝜀𝑛 ≠ −𝜀𝑛−1, and so

the preceding expression is reduced in 𝑋 .

• 𝑎𝑛 = 𝑦−𝑘
𝑥𝑦

𝑘
, 𝑘 ≠ 𝑚. This means 𝑤 = 𝑧𝑥

𝜀𝑛−1
𝑦
𝑚−𝑘

𝑥
𝜀𝑛
𝑦
𝑘 as a reduced word in 𝑋 .

In any case, we establish the induction result and, as a consequence, 𝑤 ≠ 1 when
reduced in 𝑋 . Thus, 𝐻 is free of basis 𝑌 . ■

Before moving on to the next section, it is worth noting the following result, known as
the “Nielsen-Schreier Theorem”, which establishes the fact that every subgroup of a free
group is itself free. There exists an algebraic proof not too distant from the contents here
exposed, which can be found in [BC68], but to show it would be to wander away from the
goals of our work.

We also take this opportunity to note that many results on free groups, including the
Nielsen-Schreier Theorem below, can be proven using geometry and algebraic topology.
For a sample of how this can be done, we refer the reader to [Rot99].

Theorem (Nielsen-Schreier). Let 𝐻 be a subgroup of a free group 𝐹 . Then, 𝐻 is free of basis
𝑌 , for some subset 𝑌 ⊂ 𝐹 . Furthermore, if 𝐹 has rank 𝑟 and 𝐻 has index 𝑛 in 𝐹 , then 𝐻 has
rank 𝑛(𝑟 − 1) + 1.

1.2 Free products
Similarly to how free groups capture the notion of “independence” between its basis

elements, free products are a way to obtain new groups from some that were previously
given, in such a way that elements from distinct factors are “independent” in the resulting
group. As was done before, we begin with a fairly abstract definition.

Definition. Let 𝐴𝑖 , 𝑖 ∈ 𝐼 be groups. A free product of the 𝐴𝑖 is a group 𝑃 and a family of
homomorphisms 𝜄𝑗 ∶ 𝐴𝑗 → 𝑃 such that, given any group 𝐺 and any family of homomor-
phisms 𝑓𝑗 ∶ 𝐴𝑗 → 𝐺, there exists a unique group homomorphism 𝜑 ∶ 𝑃 → 𝐺 such that
𝜑 ◦ 𝜄𝑗 = 𝑓𝑗 for all 𝑗.

It’s worth pointing out, for readers with a background in category theory, that just as
the definition of a free group was that of a free object in the category of groups, the free
product is just the coproduct in the same category.
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For what follows, we’ll study free products in a similar manner to what was done for
free groups. In so doing, we’ll constantly alternate between the expositions in [Rot99],
[MKS75] and [LS01].

Proposition 1.2.1. Given a free product (𝑃, 𝜄𝑖) of the groups 𝐴𝑖 , the functions 𝜄𝑗 ∶ 𝐴𝑗 → 𝑃

are injections.

Proof. Just consider the group 𝐺 = 𝐴𝑗 and the family of homomorphisms 𝑓𝑗 = id𝐴𝑗
. Thus,

𝜑 ∶ 𝑃 → 𝐴𝑗 is such that 𝜑 ◦ 𝜄𝑗 = id𝐴𝑗 . As 𝜄𝑗 has a left inverse, it’s an injection. ■

Proposition 1.2.2. Let {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} be groups. Then there exists a unique (up to isomorphism)
free product of the 𝐴𝑖 .

Proof. Existence: Write 𝐴𝑖 = ⟨𝑋𝑖 ∣ 𝑅𝑖⟩, where the 𝑋𝑖 and 𝑅𝑖 are each pairwise disjoint.
Define 𝑃 = ⟨⋃𝑋𝑖 ∣ ⋃ 𝑅𝑖⟩. If 𝐹𝑖 is a free group of basis 𝑋𝑖 , and 𝐹 , a free group of basis ⋃𝑋𝑖 ,
we have the following:

𝐹𝑖 𝑃

𝑋𝑖 ⋃
𝑖∈𝐼
𝑋𝑖 𝐹

Thus, for each 𝑖, there exists a homomorphism 𝜑𝑖 ∶ 𝐹𝑖 → 𝑃 . But also note, using the
diagram, that 𝑅𝑖 ⊂ ker 𝜑𝑖 . Therefore, there is an induced homomorphism 𝜄𝑖 ∶ 𝐴𝑖 → 𝑃 .

Let 𝑓𝑗 ∶ 𝐴𝑗 → 𝐺 be a family of homomorphisms, where 𝐺 is an arbitrary group. By
considering the projections 𝜋𝑗 ∶ 𝐹𝑗 → 𝐴𝑗 , the 𝑓𝑗 induce functions (𝑓𝑗 ◦ 𝜋𝑗) ∣𝑋𝑗∶ 𝑋𝑗 → 𝐺. As
the 𝑋𝑗 are pairwise disjoint, this in turn induces 𝑓 ∶ ⋃𝑋𝑗 → 𝐺 such that 𝑓 ∣𝑋𝑗= (𝑓𝑗 ◦ 𝜋𝑗) ∣𝑋𝑗

.
Therefore, there exists a unique homomorphism Φ ∶ 𝐹 → 𝐺 which restricts to 𝑓 . In
particular, Φ ∣𝑋𝑗

= (𝑓𝑗 ◦ 𝜋𝑗) ∣𝑋𝑗
, ∀𝑗.

There are also unique homomorphisms 𝜙𝑗 ∶ 𝐹𝑗 → 𝐺 extending (𝑓𝑗 ◦ 𝜋𝑗) ∣𝑋𝑗
. Looking at

𝐹𝑗 as a subset of 𝐹 , it is clear that Φ ∣𝐹𝑗= 𝜙𝑗 . Moreover, it is evident that, since ker 𝜋𝑗 = ⟨𝑅𝑗⟩,
then 𝑅𝑗 ⊂ ker 𝜙𝑗 . Ergo, 𝑅𝑗 ⊂ ker Φ, ∀𝑗 and the universal property of the quotient gives us a
unique homomorphism induced by Φ from 𝑃 to 𝐺. The uniqueness of all the constructed
objects finishes the proof.

Uniqueness: Let 𝑃1, 𝑃2 be two free products of the groups 𝐴𝑖 . Consider the following
diagram:

𝑃1

𝐴𝑗 𝑃2

𝜄
1

𝑗

𝜄
2

𝑗

By definition, there are unique homomorphisms 𝜙 ∶ 𝑃1 → 𝑃2 and 𝜓 ∶ 𝑃2 → 𝑃1 which
restrict to 𝜄1

𝑗
and 𝜄2

𝑗
, respectively. Then, an argument similar to that of Proposition 1.1.2

proves they are both isomorphisms. ■
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We will denote the free product of 𝐴𝑗 , 𝑗 ∈ 𝐽 by∗𝑗∈𝐽
𝐴𝑗 . Similarly to what we did for free

groups, it will be convenient to describe an arbitrary element of a free product. This is done
next, loosely following the exposition of [LS01, Theorem IV.1.2] and [MKS75, Corollary
4.1.1]. Beforehand, though, we remark that a free group of basis 𝑋 has presentation
𝐹 = ⟨𝑋 ∣⟩. Hence, the free product of free groups 𝐹𝑖 of basis 𝑋𝑖 is a free group of basis
⋃𝑋𝑖 .

Definition. Let 𝑃 be a group containing 𝐴𝑗 , ∀𝑗 ∈ 𝐽 . A sequence 𝑔1 ⋯ 𝑔𝑛 ∈ 𝑃 , 𝑛 ∈ ℕ is said
to be reduced in the 𝐴𝑗 if either 𝑛 = 0, or the following is true: “each 𝑔𝑖 ≠ 1 belongs to one
of the 𝐴𝑗 , such that no two elements of the same 𝐴𝑗 are ever adjacent”.

Proposition 1.2.3 (Normal form). For a group 𝐺 generated by subgroups 𝐴𝑗 ⊂ 𝐺, where
𝐴𝑖 ∩ 𝐴𝑗 = 1 if 𝑖 ≠ 𝑗, the following are equivalent:

i) 𝐺 ≅ ∗𝑗∈𝐽
𝐴𝑗 ;

ii) Every element of 𝐺 can be uniquely written as a reduced sequence in the 𝐴𝑗 ;

iii) Every non-empty reduced sequence in the 𝐴𝑗 is different from the identity;

Proof. Up to some small adaptations, the proof of the first two implications is identical to
that of Proposition 1.1.2 and its subsequent corollaries. Now let 𝐴𝑗 = ⟨𝑋𝑗 ∣ 𝑅𝑗⟩. We may
view the 𝑋𝑗 as being subsets of 𝐴𝑗 . If 𝐹𝑗 is a free group of basis 𝑋𝑗 , for each 𝑗, we know 𝐹𝑗

projects onto 𝐴𝑗 , with the kernel being the normal subgroup generated by 𝑅𝑗 (we call this
the normal closure of 𝑅𝑗 in 𝐹𝑗). Hence, we obtain a group homomorphism 𝜑𝑗 ∶ 𝐹𝑗 → 𝐺

with 𝑅𝑗 ⊂ ker 𝜑𝑗 .

At the same time, if 𝐹 is the free group of basis 𝑋 = ⋃𝑋𝑗 , then it’s the free product
of the 𝐹𝑗 . This yields a group homomorphism 𝜓 ∶ 𝐹 → 𝐺 which restricts to 𝜑𝑗 on each
𝐹𝑗 . In particular, its kernel contains the union ⋃ 𝑅𝑗 . This shows that there is a group
homomorphism Ψ ∶ ∗𝑗∈𝐽

𝐴𝑗 → 𝐺. Moreover, since the 𝑋𝑗 generate 𝐺, both 𝜓 and Ψ are
surjective.

Suppose 𝑔1 ⋯ 𝑔𝑚 ∈ ker Ψ, where 𝑔1 ⋯ 𝑔𝑚 is reduced (we know every element of the
free product can be uniquely written in this form, from the first implication). We claim
𝑔1 ⋯ 𝑔𝑚 is in the normal closure of 𝑅 in 𝐹 , where 𝑅 = ⋃ 𝑅𝑗 . We prove this by induction on
𝑚, with the base case (𝑚 = 1) being trivial, since, in that case, 𝜑1(𝑔1) = 1, meaning 𝑔1 is in
the normal closure of 𝑅1 = 𝑅.

For the inductive step, Ψ(𝑔1 ⋯ 𝑔𝑚) = 1 means 𝜑𝑗1(𝑔1)⋯ 𝜑𝑗𝑛
(𝑔𝑛) = 1, where 𝑔𝑖 ∈ 𝐴𝑗𝑖

. The
image of 𝜑𝑗 is 𝐴𝑗 , from the definition, which means, by hypothesis, the sequence above
can’t be reduced. The only way this can happen (since 𝐴𝑖 ∩ 𝐴𝑗 = 1 if 𝑖 ≠ 𝑗) is if 𝜑𝑗𝑖 (𝑔𝑖) = 1

for some 𝑖, meaning 𝑔𝑖 is in the normal closure of 𝑅𝑗𝑖 in 𝐹𝑗𝑖
. Then, one of two things may

happen:

• 𝑗𝑖−1 ≠ 𝑗𝑖+1. In this case, 𝑔1⋯ 𝑔𝑖−1𝑔𝑖+1⋯ 𝑔𝑚 is reduced and in the kernel of Ψ. By the
induction hypothesis, 𝑔1 ⋯ 𝑔𝑖−1𝑔𝑖+1 ⋯ 𝑔𝑚 is in the normal closure of 𝑅 in 𝐹 . Thus,
𝑔
−1

𝑖+1
⋯ 𝑔

−1

𝑚
𝑔1⋯ 𝑔𝑖−1 is in that same subgroup. Since 𝑅𝑗 ⊂ 𝑅, 𝑔−1

𝑖+1
⋯ 𝑔

−1

𝑚
𝑔1⋯ 𝑔𝑖−1𝑔𝑖 is also

in the normal closure of 𝑅 and thus, the same is true for 𝑔1 ⋯ 𝑔𝑚.
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• 𝑗𝑖−1 = 𝑗𝑖+1. Now, if 𝑔𝑖−1 ≠ 𝑔
−1

𝑖+1
, then 𝑔1 ⋯ (𝑔𝑖−1𝑔𝑖+1)⋯ 𝑔𝑚 is reduced an the preceding

case applies. Otherwise, 𝑔𝑖−1𝑔𝑖𝑔−1𝑖−1 is in the normal closure of 𝑅 in 𝐹 . Looking at the
sequence 𝑔1 ⋯ 𝑔𝑖−2𝑔𝑖+2⋯ 𝑔𝑚, we may repeat the process. If, at any point, 𝑔𝑖−𝑘 ≠ 𝑔−1𝑖+𝑘 ,
we may apply induction as before. Otherwise, the original sequence was of the form
𝑤𝑔𝑖𝑤

−1, which is in the normal closure of 𝑅 in 𝐹 .

Thus, in any case, the element 𝑔1 ⋯ 𝑔𝑚 is in the normal closure of 𝑅 in 𝐹 , showing this
contains the kernel of Ψ. The reverse inclusion was already established, implying Ψ is
injective, by Proposition 1.2.2, and thus finishing the proof. ■

In general, just as with free groups, identifying whether two (or more) subgroups have
any relations between them is not an easy task. The following result gives us a pivotal tool
in this regard, which will be our main way of proving many of the theorems of Chapter
3.

Theorem 1.2.4 (Ping-Pong Lemma). Let𝐺 be a group generated by two non-trivial subgroups
𝐻 and 𝐾 , with |𝐻 | > 2, and suppose 𝐺 acts on a non-empty set 𝑋 . Denoting 𝐻 †

= 𝐻 ⧵ {1}

(the same for 𝐾 ), suppose there are two non-empty subsets 𝑃 ≠ 𝑄 of 𝑋 such that 𝑃𝐻 †
⊂ 𝑄

and 𝑄𝐾†
⊂ 𝑃 . Then, 𝐺 ≅ 𝐻 ∗ 𝐾 .

Proof. Consider a non-trivial reduced sequence 𝑤 = 𝑤1𝑤2 ⋯𝑤𝑛 in 𝐺 (that is, the 𝑤𝑖

alternate between 𝐻 and 𝐾 ), and suppose 𝑤 = 1.

If 𝑤1 and 𝑤𝑛 are both in 𝐾 , we can conjugate by a non-identity element of 𝐻 and obtain
a relation of the same form that both begins and ends in 𝐻 . If 𝑤1 ∈ 𝐻 and 𝑤𝑛 ∈ 𝐾 , then,
as |𝐻 | > 2, we can pick an element 𝑥 ∈ 𝐻 different from 𝑤

−1

1
and, therefore, 𝑥𝑤𝑥−1 begins

and ends in 𝐻 . The same argument deals with the case in which 𝑤1 ∈ 𝐾 and 𝑤𝑛 ∈ 𝐻 .

Thus, we can assume, without losing generality, that both 𝑤1 and 𝑤𝑛 are in 𝐻 . Using
an inductive argument and the hypotheses, it’s easy to show that 𝑃𝑤 ⊂ 𝑄. If 𝑦 ∈ 𝐾 , 𝑦𝑤𝑦−1

begins and ends in 𝐾 . The same reasoning now shows 𝑄𝑦𝑤𝑦−1
⊂ 𝑃 .

But, since 𝑤 = 1, 𝑃 = 𝑃𝑤, whence 𝑃 ⊂ 𝑄. At the same time, 𝑄 = 𝑄𝑦𝑤𝑦
−1, implying

𝑄 ⊂ 𝑃 . We thus obtain 𝑃 = 𝑄, a contradiction. Therefore, such a relation cannot exist,
proving the result, by Proposition 1.2.3. ■

Before moving on, we remark that, similarly to how every subgroup of a free group is
free, there’s a generalization of this result, due to Kurosh, that shows that every subgroup
of a free product is a free product. For a precise statement and proof (which makes heavy
use of algebraic topology), see [Rot99].

1.3 Nilpotent groups
We now change gears a bit to discuss chain conditions in groups and properties derived

from them. We’ll mainly continue to follow some of the exposition in [LS01], [MKS75]
and [Rot99], whenever convenient. We begin with the following definition.

Definition. A subnormal series for a group 𝐺 is a finite sequence 1 ⊴ 𝑁1 ⊴ ... ⊴ 𝑁𝑘 = 𝐺.
It is called a normal series if 𝑁𝑗 ⊴ 𝐺, for all 𝑗.
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An important example of a normal series is the derived series of a solvable group 𝐺.
That said, there are many others, such as those defined below.

Definition. A normal series 1 ⊴ 𝐻1 ⊴ 𝐻2 ⊴ ... ⊴ 𝐻𝑘 ⊴ ... ⊴ 𝐺 is called a central series if
𝐻𝑗/𝐻𝑗−1 ≤ 𝑍 (𝐺/𝐻𝑗−1) for all 𝑗.

There are two extremely important examples of sequences of subgroups which might
be central series in certain contexts. In order to define them, it’s worth recalling the
following construction.

Definition. Let 𝐺 be a group and let 𝐻, 𝐾 be subgroups of 𝐺. We define the commutator
subgroup of 𝐻 and 𝐾 by [𝐻, 𝐾 ] = ⟨[ℎ, 𝑘] ∣ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾⟩; i.e., it’s the subgroup of 𝐺
generated by the commutators of the elements of 𝐻 and those of 𝐾 .

Definition. Let 𝐺 be a group. The upper central series 1 = 𝑍0(𝐺) ⊴ 𝑍1(𝐺) ⊴ 𝑍2(𝐺) ⊴ ...

is inductively defined by 𝑍1(𝐺) = 𝑍 (𝐺) and 𝑍𝑛(𝐺) is the unique normal subgroup of 𝐺
containing 𝑍𝑛−1(𝐺) such that 𝑍𝑛(𝐺)/𝑍𝑛−1(𝐺) = 𝑍 (𝐺/𝑍𝑛−1(𝐺)).

Definition. Let 𝐺 be a group. The lower central series 𝐺 = 𝛾1(𝐺) ⊵ 𝛾2(𝐺) ⊵ 𝛾3(𝐺) ⊵ ... is
inductively defined by 𝛾1(𝐺) = 𝐺 and 𝛾𝑛(𝐺) = [𝛾𝑛−1(𝐺), 𝐺].

When the group 𝐺 is clear from context, the terms of these sequences will be simply
denoted 𝑍𝑛 and 𝛾𝑛 respectively. It’s worth noting that, in spite of the name, both may fail to
be central series, by failing to reach 𝐺 or 1, respectively (an example is the group 𝑆5).

The following result will be pivotal in establishing the relationship between the upper
and lower central series.

Proposition 1.3.1. Let 𝐺 be a group.

1. If 𝐻, 𝐾 ≤ 𝐺 and 𝑓 ∶ 𝐺 → 𝐿 is a homomorphism, then 𝑓 ([𝐻, 𝐾 ]) = [𝑓 (𝐻 ), 𝑓 (𝐾 )];

2. If 𝐾 ⊴ 𝐺 and 𝐾 ≤ 𝐻 ≤ 𝐺, then [𝐻, 𝐺] ≤ 𝐾 ⟺ 𝐻 /𝐾 ≤ 𝑍 (𝐺/𝐾 );

Proof. 1. Let [ℎ, 𝑘] be a commutator in the subgroup [𝐻, 𝐾 ]. Then, 𝑓 ([ℎ, 𝑘]) =

𝑓 (ℎ
−1
𝑘
−1
ℎ𝑘) = 𝑓 (ℎ)

−1
𝑓 (𝑘)

−1
𝑓 (ℎ)𝑓 (𝑘) = [𝑓 (ℎ), 𝑓 (𝑘)] ∈ [𝑓 (𝐻 ), 𝑓 (𝐾 )]. Similarly,

[𝑓 (ℎ), 𝑓 (𝑘)] = 𝑓 (ℎ)
−1
𝑓 (𝑘)

−1
𝑓 (ℎ)𝑓 (𝑘) = 𝑓 ([ℎ, 𝑘]), completing the proof.

2. Suppose [𝐻, 𝐺] ≤ 𝐾 . Then, if 𝜋 ∶ 𝐺 → 𝐺/𝐾 is the natural projection, 𝜋 ([𝐻, 𝐺]) = 1.
By the preceding item, 𝜋 ([𝐻, 𝐺]) = [𝜋 (𝐻 ), 𝜋 (𝐺)] = [𝐻 /𝐾, 𝐺/𝐾 ]. Thus, [𝐻 /𝐾, 𝐺/𝐾 ] =

1, and therefore, 𝐻 /𝐾 ≤ 𝑍 (𝐺/𝐾 ). On the other hand, if 𝐻 /𝐾 ≤ 𝑍 (𝐺/𝐾 ), then
[𝐻 /𝐾, 𝐺/𝐾 ] = 1. As such, 𝜋 ([𝐻, 𝐺]) = 1. Therefore, if [ℎ, 𝑔] ∈ [𝐻, 𝐺], 𝜋 ([ℎ, 𝑔]) = 1

which implies [ℎ, 𝑔] ∈ 𝐾 , meaning [𝐻, 𝐺] ≤ 𝐾 .

■

Definition. A group is said to be nilpotent if it admits a central series.

Proposition 1.3.2. Let 𝐺 = 𝐺1 ⊵ 𝐺2 ⊵ ... ⊵ 𝐺𝑛+1 = 1 be a central series for a group 𝐺. Then,
𝛾𝑖+1 ≤ 𝐺𝑖+1 ≤ 𝑍𝑛−𝑖 . In particular, if 𝐺 is nilpotent, there exists 𝑛 ∈ ℕ such that 𝛾𝑛+1 = 1 and
𝑍𝑛 = 𝐺.
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Proof. For the first inclusion, we induct on 𝑖. The base case is trivial. Suppose, then, 𝛾𝑖 ≤ 𝐺𝑖 .
By Proposition 1.3.1, since 𝐺𝑖/𝐺𝑖+1 ≤ 𝑍 (𝐺/𝐺𝑖+1), we get [𝐺𝑖 , 𝐺] ≤ 𝐺𝑖+1. By the induction
hypothesis, we then obtain 𝛾𝑖+1 = [𝛾𝑖 , 𝐺] ≤ [𝐺𝑖 , 𝐺] ≤ 𝐺𝑖+1.

For the second inclusion, we induct on 𝑛 − 𝑖. When 𝑖 = 𝑛, the result is clear. Suppose it
is valid for 𝑛− 𝑖 = 𝑗; i.e., that 𝐺𝑛−(𝑗−1) ≤ 𝑍𝑗 . We wish to check 𝐺𝑛−𝑗 ≤ 𝑍𝑗+1. Using the induction
hypothesis, there is a surjective group homomorphism 𝜓 ∶ 𝐺/𝐺𝑛−(𝑗−1) → 𝐺/𝑍𝑗 given
by 𝜓 (𝑔𝐺𝑛−(𝑗−1)) = 𝑔𝑍𝑗 . In particular, 𝜓 (𝑍 (𝐺/𝐺𝑛−(𝑗−1))) ≤ 𝑍 (𝐺/𝑍𝑗). Thus, 𝜓 (𝐺𝑛−𝑗/𝐺𝑛−(𝑗−1)) ≤

𝑍 (𝐺/𝑍𝑗) = 𝑍𝑗+1/𝑍𝑗 . But 𝜓 (𝐺𝑛−𝑗/𝐺𝑛−(𝑗−1)) = (𝐺𝑛−𝑗𝑍𝑗)/𝑍𝑗 . The Correspondence Theorem then
implies 𝐺𝑛−𝑗 ≤ 𝐺𝑛−𝑗𝑍𝑗 ≤ 𝑍𝑗+1, finishing the proof. ■

As an immediate consequence of Proposition 1.3.2, we can characterize nilpotent
groups as follows:

Theorem 1.3.3. Let 𝐺 be a group. Then, the following are equivalent:

1. 𝐺 is nilpotent;

2. The lower central series is a normal series;

3. The upper central series is a normal series;

Proof. Trivial from the preceding remarks. ■

Definition. Let 𝐺 be a nilpotent group. The length 𝑛 of the upper and lower central series
of 𝐺 (which is the smallest length of a central series of 𝐺, by Proposition 1.3.2) is called
the nilpotency class of 𝐺.

Thus, the only nilpotent group of class 0 is the trivial group, those of class 1 are the
abelian groups and those of class 2 are the groups whose commutators are central. The
next couple of results, despite having simple proofs, show some of the good properties of
nilpotent groups.

Proposition 1.3.4. Let 𝐺 be a nilpotent group and let 1 ≠ 𝑁 ⊴ 𝐺. Then, 𝑁 ∩ 𝑍 (𝐺) ≠ 1. In
particular, 𝑍 (𝐺) ≠ 1.

Proof. Let 𝑐 be the nilpotency class of 𝐺 and consider its upper central series, 1 = 𝑍0 ⊴

𝑍1 ⊴ ... ⊴ 𝑍𝑐 = 𝐺. Since 𝑁 ≠ 1, the set {𝑛 ∈ ℕ ∣ 𝑁 ∩ 𝑍𝑛 ≠ 1} is non-empty, meaning it has a
minimum. Let, then, 𝑛 ∈ ℕ be such that 𝑁 ∩ 𝑍𝑛 = 1, but 𝑁 ∩ 𝑍𝑛+1 ≠ 1.

As [𝐺, 𝑁 ∩𝑍𝑛+1] ≤ [𝐺, 𝑁 ] ≤ 𝑁 , since 𝑁 ∩𝑍𝑛+1 ≤ 𝑁 , 𝑁 ⊴𝐺, and [𝐺, 𝑁 ∩𝑍𝑛+1] ≤ [𝐺, 𝑍𝑛+1] ≤

𝑍𝑛, by Proposition 1.3.1, we get [𝐺, 𝑁 ∩ 𝑍𝑛+1] = 1. Thus, 𝑁 ∩ 𝑍𝑛+1 ⊂ 𝑍 (𝐺) = 𝑍1, meaning
𝑁 ∩ 𝑍1 ≠ 1. So 𝑛 = 0 and the result is proved. ■

Recall that a group is deemed solvable if there exists an 𝑛 ∈ ℕ such that𝐺(𝑛)
= 1, where

the subgroups 𝐺(𝑘) are defined inductively as 𝐺 (0)
= 𝐺 and 𝐺

(𝑘)
= [𝐺

(𝑘−1)
, 𝐺

(𝑘−1)
] (𝐺(1) is

usually denoted 𝐺′, and, from the definition of the lower central series, 𝐺′
= 𝛾2(𝐺)).

While the following fact won’t be used, it is an interesting remark with a simple proof,
using an equivalent characterization of solvable groups (see, for instance, [Isa11, Lemma
3.9])



1.3 | NILPOTENT GROUPS

13

Proposition 1.3.5. Let 𝐺 be a nilpotent group. Then, 𝐺 is solvable.

Proof. Indeed, the factors of a central series for 𝐺 are all central and, in particular, abelian.
■

Proposition 1.3.6. Let 𝐺 be a nilpotent group of class 𝑐 and let 𝑁 ⊴ 𝐺 and 𝐻 ≤ 𝐺. Then, 𝐻
and 𝐺/𝑁 are both nilpotent, and their nilpotency classes are bounded from above by 𝑐.

Proof. Using induction, we will show that 𝛾𝑖(𝐻 ) ≤ 𝛾𝑖(𝐺). The base case is clear. Now
suppose 𝛾𝑖(𝐻 ) ≤ 𝛾𝑖(𝐺). We obtain: 𝛾𝑖+1(𝐻 ) = [𝛾𝑖(𝐻 ), 𝐻 ] ≤ [𝛾𝑖(𝐺), 𝐻 ] ≤ [𝛾𝑖(𝐺), 𝐺] = 𝛾𝑖+1(𝐺),
finishing the induction. Ergo, if 𝛾𝑐+1(𝐺) = 1, then 𝛾𝑐+1(𝐻 ) = 1.

Now let 𝜋 ∶ 𝐺 → 𝐺/𝑁 be the canonical projection. We’ll prove that
𝛾𝑖(𝐺/𝑁 ) = 𝜋 (𝛾𝑖(𝐺)). Again, the base case is trivial. Using the induction hypoth-
esis, 𝛾𝑖+1(𝐺/𝑁 ) = [𝛾𝑖(𝐺/𝑁 ), 𝐺/𝑁 ] = [𝜋 (𝛾𝑖(𝐺)), 𝜋 (𝐺)], and, using Proposition 1.3.1,
[𝜋 (𝛾𝑖(𝐺)), 𝜋 (𝐺)] = 𝜋 ([𝛾𝑖(𝐺), 𝐺]) = 𝜋 (𝛾𝑖+1(𝐺)), whence the result. In particular,
𝛾𝑐+1(𝐺) = 1 ⟹ 𝛾𝑐+1(𝐺/𝑁 ) = 1. ■

We can separate out a piece of the above proof, and obtain the following:

Proposition 1.3.7. Let 𝐺 be a group and 𝑁 ⊴ 𝐺. Then, 𝐺/𝑁 is nilpotent of class 𝑐 if, and
only if, 𝑐 is the smallest natural number such that 𝛾𝑐+1 ⊂ 𝑁 .

It’s worth noting that, contrary to what happens for solvable groups, the converse
to Proposition 1.3.6 is false (an easy example is 𝐷3, whose center is trivial, and yet has a
normal subgroup isomorphic to 𝐶3). What is true is that, if both 𝑁 ⊴ 𝐺 and 𝐺/𝑁 ′ (where
𝑁

′
= [𝑁 , 𝑁 ]) are nilpotent, then 𝐺 is nilpotent, but the proof is outside the scope of this

work; for reference, see [Isa11, Exercise 1D.17], or [Rot99, page 116].

In what follows, we’ll explore some properties of the lower central series - and of
commutators, more generally - to obtain some results about nilpotent groups which will
be frequently used in the subsequent sections. This exploration will follow some of the
exposition in [MKS75] and [Pas14].

We begin by extending the notion of commutators to more than two elements. Since
the commutator bracket is non-associative, it becomes important to set-up a convention
on the order of performing the brackets. We do so in the following definition, opting for
bracketing always from the left:

Definition. Let 𝐺 be a group and 𝑥1, ..., 𝑥𝑛 ∈ 𝐺. The commutator of weight 𝐧 of the 𝑥𝑖
is defined as follows:

[𝑥1, ..., 𝑥𝑛] =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑥1 if n = 1
[𝑥1, 𝑥2] if n = 2
[[𝑥1, ..., 𝑥𝑛−1], 𝑥𝑛] if n > 2

Analogously, if 𝑋1, ..., 𝑋𝑛 are subgroups of 𝐺, then [𝑋1, ..., 𝑋𝑛] ∶= [[𝑋1, ..., 𝑋𝑛−1], 𝑋𝑛].
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Proposition 1.3.8 (Witt-Hall identity). 4 Let 𝐺 be a group and let 𝑥, 𝑦, 𝑧 ∈ 𝐺. Then, the
following identity holds:

[𝑥, 𝑦
−1
, 𝑧]

𝑦
[𝑦, 𝑧

−1
, 𝑥]

𝑧
[𝑧, 𝑥

−1
, 𝑦]

𝑥
= 1

Proof. First, note that [𝑎, 𝑏]−1 = [𝑏, 𝑎]. Therefore,

[𝑥, 𝑦
−1
, 𝑧]

𝑦
= 𝑦

−1
[𝑦

−1
, 𝑥]𝑧

−1
[𝑥, 𝑦

−1
]𝑧𝑦

= 𝑥
−1
𝑦
−1
𝑥𝑧

−1
𝑥
−1
𝑦𝑥𝑦

−1
𝑧𝑦

Similarly, the same process yields

[𝑦, 𝑧
−1
, 𝑥]

𝑧
= 𝑦

−1
𝑧
−1
𝑦𝑥

−1
𝑦
−1
𝑧𝑦𝑧

−1
𝑥𝑧

[𝑧, 𝑥
−1
, 𝑦]

𝑥
= 𝑧

−1
𝑥
−1
𝑧𝑦

−1
𝑧
−1
𝑥𝑧𝑥

−1
𝑦𝑥

Thus, we obtain
[𝑥, 𝑦

−1
, 𝑧]

𝑦
[𝑦, 𝑧

−1
, 𝑥]

𝑧
= 𝑥

−1
𝑦
−1
𝑥𝑧

−1
𝑥
−1
𝑧𝑦𝑧

−1
𝑥𝑧

and, finally,
[𝑥, 𝑦

−1
, 𝑧]

𝑦
[𝑦, 𝑧

−1
, 𝑥]

𝑧
[𝑧, 𝑥

−1
, 𝑦]

𝑥
= 1

■

Proposition 1.3.9 (Three subgroup lemma). Let 𝐺 be a group, 𝑁 ⊴ 𝐺 and 𝑋, 𝑌 , 𝑍 be
subgroups of 𝐺. If [𝑋, 𝑌 , 𝑍 ] ⊂ 𝑁 and [𝑌 , 𝑍 , 𝑋 ] ⊂ 𝑁 , then [𝑍, 𝑋 , 𝑌 ] ⊂ 𝑁 .

Proof. Let 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 . Since [𝑋, 𝑌 , 𝑍 ] ⊂ 𝑁 , with 𝑁 normal in 𝐺, [𝑥, 𝑦−1
, 𝑧]

𝑦
∈

𝑁 . Similarly, [𝑦, 𝑧−1, 𝑥]𝑧 ∈ 𝑁 . Due to the Witt-Hall identity, we get [𝑧, 𝑥−1, 𝑦]𝑥 ∈ 𝑁 , and
thus [𝑧, 𝑥

−1
, 𝑦] ∈ 𝑁 , again using normality. But it’s clear that these elements generate

[𝑍, 𝑋 , 𝑌 ]. Since 𝑥, 𝑦, 𝑧 were arbitrary, we get the result. ■

We may now use the preceding lemma to show a beautiful property of the lower
central series, allowing us to descend it multiple steps at once by taking appropriate
commutators.

Proposition 1.3.10. Let 𝐺 be a group and 𝛾𝑛(𝐺), 𝑛 ∈ ℕ
† be the terms of its lower central

series. Then:
[𝛾𝑚(𝐺), 𝛾𝑛(𝐺)] ≤ 𝛾𝑚+𝑛(𝐺)

Proof. We use induction on 𝑛. If 𝑛 = 1, [𝛾𝑚(𝐺), 𝛾1(𝐺)] = [𝛾𝑚(𝐺), 𝐺] = 𝛾𝑚+1(𝐺) by definition.
Suppose, then, that [𝛾𝑚(𝐺), 𝛾𝑛(𝐺)] ≤ 𝛾𝑚+𝑛(𝐺), ∀𝑚 ∈ ℕ

†. In particular, [𝛾𝑚(𝐺), 𝐺, 𝛾𝑛(𝐺)] =
[𝛾𝑚+1(𝐺), 𝛾𝑛(𝐺)] ≤ 𝛾𝑚+𝑛+1(𝐺) and [𝛾𝑛(𝐺), 𝛾𝑚(𝐺), 𝐺] ≤ [𝛾𝑚+𝑛(𝐺), 𝐺] = 𝛾𝑚+𝑛+1(𝐺). By
Proposition 1.3.9, this forces [𝐺, 𝛾𝑛(𝐺), 𝛾𝑚(𝐺)] ≤ 𝛾𝑚+𝑛+1(𝐺). But [𝐺, 𝛾𝑛(𝐺), 𝛾𝑚(𝐺)] =

[𝛾𝑛+1(𝐺), 𝛾𝑚(𝐺)] = [𝛾𝑚(𝐺), 𝛾𝑛+1(𝐺)]. This establishes the result. ■

4 Notice how this is a group-theoretic analogue of the Jacobi identity of Lie algebras. In fact, [Rot99] refers to
this proposition as the Jacobi identity.
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Proposition 1.3.11. Let 𝐺 be a group and let 𝑎 ∈ 𝛾𝑚(𝐺), 𝑏 ∈ 𝛾𝑛(𝐺), 𝑐 ∈ 𝛾𝑝(𝐺). Then, the
following are true:

a) [𝑎𝑏, 𝑐] ≡ [𝑎, 𝑐][𝑏, 𝑐] (mod 𝛾𝑚+𝑛+𝑝(𝐺));

b) [𝑎, 𝑏𝑐] ≡ [𝑎, 𝑏][𝑎, 𝑐] (mod 𝛾𝑚+𝑛+𝑝(𝐺));

Proof. a) [𝑎𝑏, 𝑐] = 𝑏
−1
𝑎
−1
𝑐
−1
𝑎𝑏𝑐 = [𝑎, 𝑐]

𝑏
[𝑏, 𝑐] = [𝑎, 𝑐][𝑎, 𝑐]

−1
[𝑎, 𝑐]

𝑏
[𝑏, 𝑐] =

[𝑎, 𝑐][𝑎, 𝑐, 𝑏][𝑏, 𝑐]. By Proposition 1.3.10, [𝑎, 𝑐, 𝑏] ∈ 𝛾𝑚+𝑛+𝑝(𝐺), whence the identity.

b) [𝑎, 𝑏𝑐] = 𝑎
−1
𝑐
−1
𝑏
−1
𝑎𝑏𝑐 = [𝑎, 𝑐][𝑎, 𝑏]

𝑐
= [𝑎, 𝑐][𝑎, 𝑏][𝑎, 𝑏]

−1
[𝑎, 𝑏]

𝑐
= [𝑎, 𝑐][𝑎, 𝑏][𝑎, 𝑏, 𝑐] =

[𝑎, 𝑏][𝑎, 𝑐][[𝑎, 𝑐], [𝑎, 𝑏]][𝑎, 𝑏, 𝑐]. But notice that, repeatedly using Proposition 1.3.10,
[𝑎, 𝑐] ∈ 𝛾𝑚+𝑝(𝐺), [𝑎, 𝑏] ∈ 𝛾𝑚+𝑛(𝐺) and [[𝑎, 𝑐], [𝑎, 𝑏]] ∈ 𝛾2𝑚+𝑛+𝑝(𝐺) ≤ 𝛾𝑚+𝑛+𝑝(𝐺). This
shows the identity.

■

One particular consequence of this proposition is that it shows nilpotent groups of
class 2 possess a very special property.

Corollary 1.3.11.1. If 𝐺 is a nilpotent group of class 2 and 𝑥 ∈ 𝐺, then the mappings
[⋅, 𝑥] ∶ 𝐺 → 𝐺 and [𝑥, ⋅] ∶ 𝐺 → 𝐺 defined by 𝑦 ↦ [𝑦, 𝑥] and 𝑦 ↦ [𝑥, 𝑦], respectively, are
both homomorphisms.

Proposition 1.3.12. Let 𝐺 be a group, 𝑘 ≥ 1, 𝑔1, ..., 𝑔𝑘 ∈ 𝛾𝑚(𝐺), 𝑔 ∈ 𝛾𝑛(𝐺) and 𝜖𝑖 ∈ {1, −1}.
Then:

a) [∏
𝑘

𝑖=1
𝑔
𝜖𝑖

𝑖
, 𝑔] ≡ ∏

𝑘

𝑖=1
[𝑔𝑖 , 𝑔]

𝜖𝑖
(mod 𝛾2𝑚+𝑛(𝐺));

b) [𝑔,∏
𝑘

𝑖=1
𝑔
𝜖𝑖

𝑖 ] ≡ ∏
𝑘

𝑖=1
[𝑔, 𝑔𝑖]

𝜖𝑖
(mod 𝛾2𝑚+𝑛(𝐺));

Proof. a) We will proceed by induction on 𝑘. If 𝑘 = 1, there are two possibilities: 𝜖1 = 1,
so that the identity is trivial, or 𝜖1 = −1, and so, by Proposition 1.3.11, [𝑔−1

1
, 𝑔][𝑔1, 𝑔] ≡

[𝑔
−1

1
𝑔1, 𝑔] = 1 (mod 𝛾2𝑚+𝑛(𝐺)), meaning [𝑔

−1

1
, 𝑔] ≡ [𝑔1, 𝑔]

−1
(mod 𝛾2𝑚+𝑛(𝐺)).

Now, for the inductive step, suppose the result is true for 𝑘 − 1. Using Proposi-
tion 1.3.11, we obtain the following:

[

𝑘

∏

𝑖=1

𝑔
𝜖𝑖

𝑖
, 𝑔

]

=

[

𝑘−1

∏

𝑖=1

𝑔
𝜖𝑖

𝑖
𝑔
𝜖𝑘

𝑘
, 𝑔

]

≡

[

𝑘−1

∏

𝑖=1

𝑔
𝜖𝑖

𝑖
, 𝑔

]
[𝑔

𝜖𝑘

𝑘
, 𝑔] (mod 𝛾2𝑚+𝑛(𝐺))

Now, using both the inductive hypothesis and the base case, the congruence becomes:

[

𝑘

∏

𝑖=1

𝑔
𝜖𝑖

𝑖
, 𝑔

]

≡

𝑘−1

∏

𝑖=1

[𝑔𝑖 , 𝑔]
𝜖𝑖
[𝑔𝑘 , 𝑔]

𝜖𝑘
=

𝑘

∏

𝑖=1

[𝑔𝑖 , 𝑔]
𝜖𝑖

(mod 𝛾2𝑚+𝑛(𝐺))

finishing the proof.

b) The proof of this item is the same as that of the first one, now using the second item
of Proposition 1.3.11 instead of the first.



16

1 | GROUP-THEORETIC PRELIMINARIES

■

Having established all these commutator identities and related properties, we can now
obtain a set of generators for the factor groups of the lower central series, 𝛾𝑛/𝛾𝑛+1. These
results will become important later on.

Proposition 1.3.13. Let 𝐺 be a group generated by a set 𝑋 ⊂ 𝐺. Then, 𝛾𝑛(𝐺)/𝛾𝑛+1(𝐺) is
generated by the cosets of the commutators of weight 𝑛 in the generators 𝐺. In particular, if
𝐺 is finitely generated, then the quotient is finitely generated for all 𝑛 ∈ ℕ

†.

Proof. We’ll proceed by induction on 𝑛. The base case is trivial; indeed, the set of commu-
tators of weight 1 in 𝑋 is 𝑋 itself, and of course the cosets of elements of 𝑋 generate the
quotient group 𝐺/𝐺′. Thus, all that is left is to consider the inductive case.

Suppose the result to be true for 𝛾𝑛(𝐺)/𝛾𝑛+1(𝐺). As 𝛾𝑛+1(𝐺) = [𝛾𝑛(𝐺), 𝐺], 𝛾𝑛+1(𝐺) is
generated by the commutators of the form [ℎ, 𝑔], with ℎ ∈ 𝛾𝑛(𝐺). Since ℎ ∈ 𝛾𝑛(𝐺), then, by
the inductive hypothesis, ℎ = ∏

𝑖
ℎ
𝜖𝑖

𝑖
⋅ ℎ

′, where each ℎ𝑖 is a commutator of weight 𝑛 in 𝑋 ,
𝜖𝑖 ∈ {1, −1} and ℎ′ ∈ 𝛾𝑛+1(𝐺) ⊂ 𝛾𝑛(𝐺). But then

[ℎ, 𝑔] =

[

∏

𝑖

ℎ
𝜖𝑖

𝑖
⋅ ℎ

′
, 𝑔

]

≡ ∏

𝑖

[ℎ𝑖 , 𝑔]
𝜖𝑖
⋅ [ℎ

′
, 𝑔] (mod 𝛾2𝑛+1(𝐺))

by Proposition 1.3.11 and Proposition 1.3.12. And ℎ′ ∈ 𝛾𝑛+1, so that [ℎ′, 𝑔] ∈ 𝛾𝑛+2. We now
obtain

[ℎ, 𝑔] ≡ ∏

𝑖

[ℎ𝑖 , 𝑔]
𝜖𝑖

(mod 𝛾𝑛+2(𝐺))

since 𝛾2𝑛+1 ⊂ 𝛾𝑛+2.

If 𝑋 generates 𝐺, then 𝑔 = ∏
𝑗
𝑎
𝜂𝑗

𝑗
, where 𝑎𝑗 ∈ 𝑋 and 𝜂𝑗 ∈ {1, −1} for all 𝑗. Thus:

[ℎ𝑖 , 𝑔] =

[

ℎ𝑖 ,∏

𝑗

𝑎
𝜂𝑗

𝑗

]

≡ ∏

𝑗

[ℎ𝑖 , 𝑎𝑗]
𝜂𝑗

(mod 𝛾𝑛+2(𝐺))

again using Proposition 1.3.12.

Putting both of the congruences together:

[ℎ, 𝑔] ≡ ∏

𝑖
(

∏

𝑗

[ℎ𝑖 , 𝑎𝑗]
𝜂𝑗

)

𝜖𝑖

(mod 𝛾𝑛+2(𝐺)),

which is a product of commutators of weight 𝑛 + 1 in the generators of 𝐺. This establishes
the result. ■

It’s well-known that, if both 𝑁 ⊴ 𝐺 and 𝐺/𝑁 are finitely generated, then the same
is true of 𝐺 (indeed, if {𝑔1, ..., 𝑔𝑛} generate 𝑁 and {ℎ1𝑁 , ..., ℎ𝑚𝑁} generates 𝐺/𝑁 , then
{𝑔𝑖ℎ𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} generates 𝐺). Putting this fact together with the previous
proposition, we get the following corollary:



1.3 | NILPOTENT GROUPS

17

Corollary 1.3.13.1. Let 𝐺 be a finitely generated nilpotent group. Then, the terms of its
lower central series are finitely generated.

For what follows, we must briefly digress to discuss torsion. An element 1 ≠ 𝑥 in a
group 𝐺 is said to be torsion or a torsion element if it has finite order in 𝐺. Otherwise,
we call it torsion-free. The group 𝐺 itself is said to be torsion if every non-identity
element of 𝐺 is a torsion element. Otherwise, 𝐺 is said to be torsion-free.

Of course, any finite group is a torsion group. Later on, when we discuss group algebras,
torsion is going to be a major issue in embedding it in a division ring. For now, though, we
study how it relates to the central series of a nilpotent group, starting with the following
property of the lower central series.

Proposition 1.3.14. Let 𝐺 be a group generated by torsion elements. Then, 𝛾𝑛(𝐺)/𝛾𝑛+1(𝐺) is
a torsion group for all 𝑛 ∈ ℕ

†.

Proof. We proceed by induction on 𝑛. If 𝑛 = 1, 𝛾1(𝐺)/𝛾2(𝐺) = 𝐺/𝐺′. Since all the cosets of
the generators are torsion elements and 𝐺/𝐺′ is abelian, 𝐺/𝐺′ is torsion.

Now suppose 𝛾𝑛(𝐺)/𝛾𝑛+1(𝐺) is torsion. The abelian group 𝛾𝑛+1(𝐺)/𝛾𝑛+2(𝐺) is generated
by the cosets of the commutators of weight 𝑛 + 1 on the commutators of 𝐺, due to
Proposition 1.3.13. As such, all we have to do is show that these cosets are torsion elements.

Let [𝑥1, ..., 𝑥𝑛+1] be one such commutator. We have [𝑥1, ..., 𝑥𝑛+1] = [[𝑥1, ..., 𝑥𝑛], 𝑥𝑛+1]. As
[𝑥1, ..., 𝑥𝑛] ∈ 𝛾𝑛(𝐺), by the inductive hypothesis, there exists 𝑘 ∈ ℕ

† such that [𝑥1, ..., 𝑥𝑛]𝑘 ∈
𝛾𝑛+1. Ergo, [[𝑥1, ..., 𝑥𝑛]𝑘 , 𝑥𝑛+1] ∈ 𝛾𝑛+2(𝐺). But, using Proposition 1.3.12, we get:

[[𝑥1, ..., 𝑥𝑛]
𝑘
, 𝑥𝑛+1] ≡ [𝑥1, ..., 𝑥𝑛, 𝑥𝑛+1]

𝑘
(mod 𝛾2𝑛+1(𝐺))

Furthermore, 𝛾2𝑛+1(𝐺) ⊂ 𝛾𝑛+2(𝐺), since 𝑛 ≥ 1. We now have [𝑥1, ..., 𝑥𝑛, 𝑥𝑛+1]
𝑘
∈ 𝛾𝑛+2(𝐺),

finishing the proof. ■

We now study the relationship between torsion and the upper central series.

Proposition 1.3.15. Let 𝐺 be a group whose center is torsion-free, and let 1 = 𝑍0 ⊴ 𝑍1 ⊴ ...

be its upper central series. Then, 𝑍𝑛+1/𝑍𝑛 is torsion-free abelian for all 𝑛 ∈ ℕ.

Proof. We use induction on 𝑛. The base case is trivial, by hypothesis. If 𝑛 = 1, let 𝑥 ∈ 𝑍2

and suppose 𝑥 𝑟 ∈ 𝑍1 = 𝑍 (𝐺). By Proposition 1.3.1, given 𝑦 ∈ 𝐺, [𝑥, 𝑦] ∈ 𝑍1. Therefore,
[𝑥, 𝑦]

𝑟
= [𝑥

𝑟
, 𝑦], as can be seen from the proof of Proposition 1.3.11, so that [𝑥, 𝑦]𝑟 = 1. This,

in turn, means [𝑥, 𝑦] = 1, implying 𝑥 ∈ 𝑍1. Ergo, it’s also true that 𝑍2/𝑍1 is torsion-free.

For the inductive step, suppose 𝑍𝑛+1/𝑍𝑛 is torsion-free. Let 𝐺 = 𝐺/𝑍𝑛. Its center is
𝑍𝑛+1/𝑍𝑛, which is torsion-free by hypothesis. Using the case 𝑛 = 1, 𝑍2(𝐺)/𝑍1(𝐺) is torsion-
free. But

𝑍2(𝐺)

𝑍1(𝐺)

= 𝑍
(

𝐺

𝑍1(𝐺)
)

= 𝑍
(

𝐺/𝑍𝑛

𝑍𝑛+1/𝑍𝑛
)

≅ 𝑍
(

𝐺

𝑍𝑛+1
)

=

𝑍𝑛+2

𝑍𝑛+1

Therefore, 𝑍𝑛+2/𝑍𝑛+1 is torsion-free, which completes the proof. ■
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Corollary 1.3.15.1. If 𝐺 is a nilpotent group whose center is torsion-free, then 𝐺/𝑍𝑛 is
torsion-free for all 𝑛 ∈ ℕ. In particular, 𝐺 is torsion-free.

Proof. Let 𝑐 be the nilpotency class of 𝐺. For 𝑛 = 𝑐, 𝑐 − 1, the result follows immediately
from Proposition 1.3.15. Otherwise, let 𝑥 ∈ 𝐺 and suppose 𝑥 𝑟 ∈ 𝑍𝑛. Since 𝑍𝑛 ⊂ 𝑍𝑐−2 ⊂ 𝑍𝑐−1,
𝑥
𝑟
∈ 𝑍𝑐−1. Thus, by Proposition 1.3.15, 𝑥 ∈ 𝑍𝑐−1. Now, all we have to do is apply the same

proposition inductively (indeed, 𝑥 𝑟 ∈ 𝑍𝑐−2 and 𝑥 ∈ 𝑍𝑐−1 means 𝑥 ∈ 𝑍𝑐−2, and so on). After a
finite number of steps, 𝑥 ∈ 𝑍𝑛. ■

Proposition 1.3.16. Let 𝐺 be a nilpotent group and let tor(𝐺) be the subset of torsion
elements of 𝐺. Then, tor(𝐺) ⊴ 𝐺.

Proof. It’s evident that 1 ∈ tor(𝐺), 𝑥−1 tor(𝐺)𝑥 ⊂ tor(𝐺) and that 𝑥 ∈ tor(𝐺) implies
𝑥
−1
∈ tor(𝐺). Thus, we only need to verify that 𝑥, 𝑦 ∈ tor(𝐺) implies 𝑥𝑦 ∈ tor(𝐺). For this,

we’ll induct on the nilpotency class 𝑐 of ⟨𝑥, 𝑦⟩ ≤ 𝐺. If 𝑐 = 1, this subgroup is abelian and
the result is clear. All that’s left is the inductive step.

We have 1 = 𝛾𝑐+1 ⊲ 𝛾𝑐 ⊲ ... ⊲ 𝛾1 = ⟨𝑥, 𝑦⟩ and, by Proposition 1.3.7, 𝛾𝑐(⟨𝑥, 𝑦⟩/𝛾𝑐) = 1.
Therefore, ⟨𝑥, 𝑦⟩/𝛾𝑐 has nilpotency class less than 𝑐. Using the inductive hypothesis, as
𝑥, 𝑦 ∈ tor(⟨𝑥, 𝑦⟩/𝛾𝑐), the same happens to 𝑥𝑦 . Then, there exists 𝑚 ∈ ℕ

† such that (𝑥𝑦)𝑚 ∈

𝛾𝑐 . But, using Proposition 1.3.14, 𝛾𝑐 is torsion, meaning 𝑥𝑦 ∈ tor(⟨𝑥, 𝑦⟩) ⊂ tor(𝐺). ■

We can then conclude the following corollary, which allows us to obtain torsion-free
nilpotent groups from torsion ones:

Corollary 1.3.16.1. Let 𝐺 be a nilpotent group. Then, 𝐺/ tor(𝐺) is torsion-free nilpotent.

Proposition 1.3.17. Let 𝐺 be a nilpotent group and let 𝑥, 𝑦 ∈ 𝐺 be such that there exist
𝑟 , 𝑠 ∈ ℕ

† with [𝑥
𝑟
, 𝑦

𝑠
] = 1. Then, [𝑥, 𝑦] ∈ tor(𝐺).

Proof. We can divide the proof in two cases:

• Case 1: 𝐺 is torsion-free.

Let 𝐻𝑥 = ⟨𝑥, 𝑦
𝑠
⟩. By hypothesis, 𝑥 𝑟 ∈ 𝑍 (𝐻𝑥 ). By Corollary 1.3.15.1, 𝐻𝑥/𝑍 (𝐻𝑥 ) is

torsion-free, meaning 𝑥 ∈ 𝑍 (𝐻𝑥 ). Thus, [𝑥, 𝑦𝑠] = 1. Similarly, if 𝐾𝑦 = ⟨𝑥, 𝑦⟩, we see
that 𝑦 ∈ 𝑍 (𝐾𝑦). Ergo, [𝑥, 𝑦] = 1 ∈ tor(𝐺).

• General case:

By the previous corollary, 𝐺/ tor(𝐺) is torsion-free nilpotent. So, using Case 1, since
[𝑥

𝑟
, 𝑦

𝑠
] = 1, we get [𝑥, 𝑦] = [𝑥, 𝑦] = 1, meaning [𝑥, 𝑦] ∈ tor(𝐺).

■

1.4 Residual properties
Definition. Let P be a group property. A group 𝐺 is said to be residually P if, for all
1 ≠ 𝑔 ∈ 𝐺, there exists a normal subgroup 𝑁𝑔 ⊴ 𝐺 such that 𝑔 ∉ 𝑁𝑔 and 𝐺/𝑁𝑔 is P .
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Even though we have given quite a general definition, for the purposes of this work,
we’ll only deal with residually (torsion-free nilpotent) groups (we’ll omit the parenthe-
ses from now on). In order to characterize these groups, it will be important to introduce
some notation.

Let 𝐺 be an arbitrary group. By Proposition 1.3.7, 𝐺 = 𝐺/𝛾𝑛 is a nilpotent group (of
nilpotency class less than or equal to 𝑛 − 1). And, by Proposition 1.3.16, tor(𝐺) is a normal
subgroup of 𝐺. By the Correspondence Theorem, there exists a unique normal subgroup 𝐻
of𝐺, containing 𝛾𝑛, such that 𝜋 (𝐻 ) = tor(𝐺), where 𝜋 ∶ 𝐺 → 𝐺 is the canonical projection.
Thus, from the same theorem:

𝐻 = {𝑔 ∈ 𝐺 ∣ 𝜋 (𝑔) ∈ tor(𝐺)}

= {𝑔 ∈ 𝐺 ∣ ∃𝑚 ∈ ℕ
† such that 𝜋 (𝑔)𝑚 = 1}

= {𝑔 ∈ 𝐺 ∣ ∃𝑚 ∈ ℕ
† such that 𝑔𝑚 ∈ 𝛾𝑛}

The normal subgroup 𝐻 defined above will be denoted by
√

𝛾𝑛(𝐺) or simply √
𝛾𝑛 when

the group 𝐺 is clear from context (notice the clear analogy with the radical of an ideal of a
commutative ring). It’s trivial to check that, in a similar vein to what happened with the
terms of the lower central series, we have:

𝐺 =

√

𝛾1 ⊵

√

𝛾2 ⊵ ... and also 𝛾𝑛 ⊂
√

𝛾𝑛, ∀𝑛 ∈ ℕ
†

We may characterize residually torsion-free nilpotent using these “radicals” of the
lower central series. We do this in what follows (many of these ideas were adapted from
[GFS19]).

Proposition 1.4.1. For a group 𝐺, the following are equivalent:

1. 𝐺 is residually torsion-free nilpotent;

2. ⋂
∞

𝑛=1

√

𝛾𝑛(𝐺) = 1;

3. There exists a (possibly infinite) sequence 𝐺 = 𝑁1 ⊃ 𝑁2 ⊃ ... such that 𝑁𝑖 ⊴ 𝐺, ∀𝑖,
⋂

𝑖
𝑁𝑖 = 1 and 𝐺/𝑁𝑖 is torsion-free nilpotent for all 𝑖;

Proof. (1) ⟹ (2): Let 1 ≠ 𝑔 ∈ 𝐺 and consider 𝑁𝑔 such that 𝐺/𝑁𝑔 is torsion-free
nilpotent, 𝑔 ∉ 𝑁𝑔 . By Proposition 1.3.7, there is some 𝑐𝑔 with 𝛾𝑐𝑔 ⊂ 𝑁𝑔 .

Let 𝑥 ∈
√
𝛾𝑐𝑔

be arbitrary. By definition, 𝑥𝑚 ∈ 𝛾𝑐𝑔
⊂ 𝑁𝑔 for some 𝑚 ∈ ℕ

†. Since 𝐺/𝑁𝑔

is torsion-free, 𝑥 ∈ 𝑁𝑔 . Thus, we conclude that √𝛾𝑐𝑔 ⊂ 𝑁𝑔 . As 𝑔 is arbitrary, we get

∞

⋂

𝑖=1

√

𝛾𝑖 ⊂ ⋂

𝑔∈𝐺

√

𝛾𝑐𝑔
⊂ ⋂

𝑔∈𝐺

𝑁𝑔 = 1

(2) ⟹ (3): The group 𝐺
√
𝛾𝑛

is nilpotent (since 𝛾𝑛 ⊂
√
𝛾𝑛), torsion-free, by construc-

tion, and, by hypothesis, their intersection is trivial.
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(3) ⟹ (1): Let 1 ≠ 𝑔 be an arbitrary element of 𝐺. As ⋂
𝑖
𝑁𝑖 = 1, there is some 𝑁𝑖0

such that 𝑔 ∉ 𝑁𝑖0
. Furthermore 𝐺/𝑁𝑖0

is torsion-free nilpotent, by hypothesis. Thus,
𝐺 is residually torsion-free nilpotent.

■

We may also prove a version of Proposition 1.3.10 to the “radicals” of the lower central
series, as we do below.

Proposition 1.4.2. Let 𝐺 be a group. The following are true:

1. [
√
𝛾𝑖 ,

√
𝛾𝑗] ⊂

√
𝛾𝑖+𝑗 ;

2. √
𝛾𝑛/

√
𝛾𝑛+1 is torsion-free abelian for all 𝑛 ∈ ℕ

†;

Proof. 1. If 𝑥 ∈
√
𝛾𝑖 and 𝑦 ∈

√
𝛾𝑗 , then there exist 𝑟 , 𝑠 ∈ ℕ

† such that 𝑥 𝑟 ∈ 𝛾𝑖 and
𝑦
𝑠
∈ 𝛾𝑗 . Thus, by Proposition 1.3.10, [𝑥 𝑟 , 𝑦𝑠] ∈ 𝛾𝑖+𝑗 . Now using Proposition 1.3.17,

𝜋 ([𝑥, 𝑦]) ∈ tor(𝐺/𝛾𝑖+𝑗), which means [𝑥, 𝑦] ∈ √
𝛾𝑖+𝑗 , by definition.

2. The quotient is torsion-free, by construction. Furthermore, by the previous item,
[
√
𝛾𝑖 ,

√
𝛾𝑖] ⊂ 𝛾2𝑖 ⊂ 𝛾𝑖+1, since 𝑖 ≥ 1. Thus, it’s also abelian.

■

1.5 Polycyclic groups
Having dealt with nilpotent groups, there exists a chain condition, similar to solubility,

which will also be important for some arguments to be employed further on, in order to
find free groups within certain types of division rings. We mostly follow [Rot99], with
occasional references to [Rob96].

Definition. A group 𝐺 is said to be polycyclic if there exists a subnormal series 1 =

𝐺0 ⊴ 𝐺1 ⊴ ... ⊴ 𝐺𝑛 = 𝐺 such that 𝐺𝑖+1/𝐺𝑖 is cyclic for all 𝑖. This is called a polycyclic series
for 𝐺.

It’s trivial, from the definition, that every polycyclic group is solvable. And, continuing
this analogy with solubility, we present the following result, whose proof is identical to
that of the solvable case:

Proposition 1.5.1. Let 𝐺 be a group. If 𝐺 is polycyclic, then, all subgroups and quotients of
𝐺 are polycyclic. And, if 𝑁 ⊴ 𝐺 and 𝐺/𝑁 are both polycyclic, then 𝐺 is itself polycyclic.

Proof. Suppose, first, that 𝐺 is polycyclic and let 1 = 𝐺0 ⊴ ... ⊴ 𝐺𝑛 = 𝐺 be a polycyclic series
for 𝐺 (i.e., the subsequent quotients are cyclic). Let 𝐻 be a subgroup of 𝐺 and consider
1 = 𝐻0 ⊴ ... ⊴𝐻𝑛 = 𝐻 , where 𝐻𝑘 = 𝐺𝑘 ∩𝐻 (each is normal in the next by a simple argument).
We have

𝐻𝑘+1

𝐻𝑘

=

𝐻 ∩ 𝐺𝑘+1

𝐻 ∩ 𝐺𝑘

=

𝐻 ∩ 𝐺𝑘+1

𝐻 ∩ 𝐺𝑘+1 ∩ 𝐺𝑘

≅

(𝐻 ∩ 𝐺𝑘+1)𝐺𝑘

𝐺𝑘

≤

𝐺𝑘+1

𝐺𝑘

by the Second Isomorphism Theorem and the fact that (𝐻 ∩ 𝐺𝑘+1)𝐺𝑘 ≤ 𝐺𝑘+1. Hence, this
quotient is a subgroup of a cyclic group, meaning it’s itself cyclic.
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Now take 𝑁 ⊴ 𝐺 and consider 𝑁 = 𝑁0 ⊴ ... ⊴ 𝑁𝑛 = 𝐺, where 𝑁𝑘 = 𝑁𝐺𝑘 (again, since 𝑁
is normal, each of these is normal in the next by a simple argument). We have:

𝑁𝑘+1

𝑁𝑘

=

𝑁𝐺𝑘+1

𝑁𝐺𝑘

=

𝑁𝐺𝑘𝐺𝑘+1

𝑁𝐺𝑘

≅

𝐺𝑘+1

(𝑁𝐺𝑘) ∩ 𝐺𝑘

≅

𝐺𝑘+1/𝐺𝑘

((𝑁𝐺𝑘) ∩ 𝐺𝑘)/𝐺𝑘

by the Second and Third Isomorphism Theorems and the fact that 𝐺𝑘 ⊴ (𝑁𝐺𝑘) ∩𝐺𝑘 . Hence,
this quotient is a quotient of a cyclic group, meaning it’s itself cyclic. By the Correspondence
Theorem, this yields a polycyclic series for the quotient group 𝐺/𝑁 .

For the converse, if 𝑁 ⊴ 𝐺 and 𝐺/𝑁 are both polycyclic, we get a polycyclic series
for 𝐺 by “gluing” the two series together. More precisely, if 1 = 𝑁0 ⊴ ... ⊴ 𝑁𝑚 = 𝑁 is a
polycyclic series for 𝑁 and 1 = 𝐻0 ⊴ ... ⊴𝐻𝑛 = 𝐺 = 𝐺/𝑁 is one for 𝐺/𝑁 , the following series
is polycyclic:

1 = 𝑁0 ⊴ ... ⊴ 𝑁𝑚 = 𝑁 = 𝐻0 ⊴ ... ⊴ 𝐻𝑛 = 𝐺

where we used the Correspondence Theorem to lift the subgroups 𝐻𝑘 to subgroups of 𝐺
containing 𝑁 . ■

What is interesting for our purposes is that f.g. nilpotent groups are polycyclic. We
break the proof down into two propositions:

Proposition 1.5.2. Let 𝐺 be a finitely generated abelian group. Then, 𝐺 is polycyclic.

Proof. By the Fundamental Theorem of Finitely Generated Abelian Groups (see, for in-
stance, [Rot99, Theorem 10.20]), 𝐺 ≅ ℤ

𝑘
×ℤ

𝑝
𝑛
1

1

× ... ×ℤ
𝑝
𝑛
𝑙

𝑙

, where 𝑘 ∈ ℕ, 𝑛𝑖 ∈ ℕ for all 𝑖 and
each 𝑝𝑖 is a prime (we allow 𝑝𝑖 = 𝑝𝑗 even when 𝑖 ≠ 𝑗). This allows us to construct the series

1 ⊲ ℤ ⊲ ... ⊲ ℤ
𝑘
⊲ ℤ

𝑘
× ℤ

𝑝
𝑛
1

1

⊲ ... ⊲ 𝐺

whose quotients are all cyclic by construction. ■

Proposition 1.5.3. Let 𝐺 be a finitely generated nilpotent group. Then, 𝐺 is polycyclic.

Proof. We induct on the nilpotency class 𝑐 of the group 𝐺. The base case 𝑐 = 1 is Proposi-
tion 1.5.2. By Proposition 1.3.10, 𝐺′

= 𝛾2 has nilpotency class less than or equal to 𝑐 − 1.
Furthermore, Corollary 1.3.13.1 tells us that 𝐺′ is finitely generated. Using the inductive
hypothesis, 𝐺′ is polycyclic. But 𝐺/𝐺′ is finitely generated abelian by Proposition 1.3.13.
Thus, by Proposition 1.5.2, it’s polycyclic and, by Proposition 1.5.1, the same is true of
𝐺. ■

Therefore, the study of polycyclic groups gives us tools to further study f.g. nilpotent
groups. This sheds even more light on the importance of studying polycyclic series and
their properties. We’ll soon see they give us a helpful invariant of the group. For now, we
define the following:

Definition. Let 𝑆1 ∶ 1 = 𝐺0 ⊴ 𝐺1 ⊴ ... ⊴ 𝐺𝑛 = 𝐺 and 𝑆2 ∶ 1 = 𝐻0 ⊴ 𝐻1 ⊴ ... ⊴ 𝐻𝑚 = 𝐺 be
two subnormal series for the same group 𝐺. The series 𝑆2 is said to be a refinement of
𝑆1 if, for all 𝑖 ∈ {1, ..., 𝑛}, there exists a 𝑗 ∈ {1, ..., 𝑚} such that 𝐻𝑗 = 𝐺𝑖 . The refinement is
deemed proper if there exists 𝑗0 such that 𝐻𝑗0

≠ 𝐺𝑖 , ∀𝑖.
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Definition. Two subnormal series 1 = 𝐺0 ⊴𝐺1 ⊴ ... ⊴ 𝐺𝑛 = 𝐺 and 1 = 𝐻0 ⊴𝐻1 ⊴ ... ⊴ 𝐻𝑚 = 𝐺

are deemed equivalent if 𝑚 = 𝑛 and there exists 𝜎 ∈ 𝑆𝑛 such that 𝐺𝑖+1/𝐺𝑖 ≅ 𝐻𝜎 (𝑖)+1/𝐻𝜎 (𝑖),
for all 𝑖.

A relatively surprising fact is that any two subnormal series of a group may be refined
down to equivalent series. In order to prove this result due to O. Schreier, we first establish
a lemma, one that is known for its pictorial representation. The results below are all from
[Rot99].

Proposition 1.5.4 (Butterfly/Zassenhaus’ Lemma). Let 𝐴 ⊴ 𝐺 and 𝐵 ⊴ 𝐻 , where 𝐺,𝐻 are
subgroups of a given group 𝐾 . Then, the following are true:

• 𝐴(𝐺 ∩ 𝐵) ⊴ 𝐴(𝐺 ∩ 𝐻 );

• 𝐵(𝐻 ∩ 𝐴) ⊴ 𝐵(𝐺 ∩ 𝐻 );

•
𝐴(𝐺 ∩ 𝐻 )

𝐴(𝐺 ∩ 𝐵)

≅

𝐵(𝐺 ∩ 𝐻 )

𝐵(𝐻 ∩ 𝐴)

;

Proof. Since 𝐴 ⊴ 𝐺, by the Second Isomorphism Theorem, 𝐴 ∩ 𝐻 = (𝐴 ∩ 𝐺) ∩ 𝐻 = 𝐴 ∩ (𝐺 ∩

𝐻 ) ⊴ 𝐺 ∩ 𝐻 . Doing the same to 𝐵 ⊴ 𝐺, we get 𝐵 ∩ 𝐺 ⊴ 𝐺 ∩ 𝐻 . Therefore:

𝑀 = (𝐴 ∩ 𝐻 )(𝐵 ∩ 𝐺) ⊴ (𝐺 ∩ 𝐻 )

Now consider 𝜑 ∶ 𝐴(𝐺 ∩ 𝐻 ) → (𝐺 ∩ 𝐻 )/𝑀 given by 𝜑(𝑔ℎ) = ℎ𝑀 . It’s straightforward
to check that 𝜑 is a surjective homomorphism with ker(𝜑) = 𝐴(𝐺 ∩ 𝐵). This now yields the
following isomorphism:

𝐴(𝐺 ∩ 𝐻 )

𝐴(𝐺 ∩ 𝐵)

≅

𝐺 ∩ 𝐻

𝑀

The same argument may now be repeated, by considering 𝜓 ∶ 𝐵(𝐺 ∩𝐻 ) → (𝐺 ∩𝐻 )/𝑀

instead, whence the result.

𝐺 𝐻

𝐴(𝐺 ∩ 𝐻 ) 𝐵(𝐺 ∩ 𝐻 )

𝐺 ∩ 𝐻

𝐴(𝐺 ∩ 𝐵) 𝐵(𝐻 ∩ 𝐴)

𝐴 (𝐴 ∩ 𝐻 )(𝐵 ∩ 𝐺) 𝐵

𝐴 ∩ 𝐻 𝐵 ∩ 𝐺
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Above, we present the diagram representation of the subgroups considered, where
moving up a line signals inclusion. ■

Theorem 1.5.5 (Schreier’s Refinement Theorem). Let𝐺 be a group and let 1 = 𝐺0⊴...⊴𝐺𝑛 =

𝐺 and 1 = 𝐻0⊴ ...⊴𝐻𝑚 = 𝐺 be two subnormal series. Then, both admit equivalent refinements.

Proof. Define 𝐺𝑖,𝑗 = 𝐺𝑖−1(𝐺𝑖 ∩ 𝐻𝑗) and 𝐻𝑖,𝑗 = 𝐻𝑖−1(𝐻𝑖 ∩ 𝐺𝑗). It’s easy to see that 𝐺𝑖,0 = 𝐺𝑖−1,
𝐺𝑖,𝑚 = 𝐺𝑖 , 𝐻𝑖,0 = 𝐻𝑖−1 and 𝐻𝑖,𝑛 = 𝐻𝑖 . Furthermore, 𝐺𝑖,𝑗−1 ≤ 𝐺𝑖,𝑗 . Defining 𝐺 = 𝐺𝑖 , 𝐻 = 𝐻𝑗 , 𝐴 =

𝐺𝑖−1, 𝐵 = 𝐻𝑗−1, as in Proposition 1.5.4, we get

1 = 𝐺1,0 ⊴ 𝐺1,1 ⊴ ... ⊴ 𝐺1,𝑚 = 𝐺1 = 𝐺2,0 ⊴ ... ⊴ 𝐺𝑖,𝑗−1 ⊴ 𝐺𝑖,𝑗 ⊴ ... ⊴ 𝐺𝑛,𝑚 = 𝐺

Doing the same to 𝐻 , we also get

1 = 𝐻1,0 ⊴ 𝐻1,1 ⊴ ... ⊴ 𝐻1,𝑛 = 𝐻1 = 𝐻2,0 ⊴ ... ⊴ 𝐻𝑖,𝑗−1 ⊴ 𝐻𝑖,𝑗 ⊴ ... ⊴ 𝐻𝑚,𝑛 = 𝐺

Both series have 𝑛𝑚 + 1 terms. Moreover, it also follows from Proposition 1.5.4 that

𝐺𝑖,𝑗

𝐺𝑖,𝑗−1

=

𝐺𝑖−1(𝐺𝑖 ∩ 𝐻𝑗)

𝐺𝑖−1(𝐺𝑖 ∩ 𝐻𝑗−1)

≅

𝐻𝑗−1(𝐻𝑗 ∩ 𝐺𝑖)

𝐻𝑗−1(𝐻𝑗 ∩ 𝐺𝑖−1)

=

𝐻𝑗,𝑖

𝐻𝑗,𝑖−1

Thus, both of the refinements are equivalent. ■

Even though this result won’t be used for this work, it’s worth noting the following
straightforward consequence of the preceding theorem, which is a very famous result and
a huge motivator to many developments in the theory of finite groups: the Jordan-Hölder
Theorem.

In order to do this, we establish another bit of terminology. A subnormal series for a
group 𝐺 is said to be a composition series if it doesn’t admit any proper refinements.
It’s relatively simple to see that a subnormal series is a composition series if and only if
all factor groups (that is, the quotient groups of successive terms) are either simple or
trivial.5

All finite groups admit a composition series, by an induction argument, but the same
needn’t be true for infinite groups. As an example, the infinite cyclic group doesn’t have
a composition series, since, if 0 = 𝑚0ℤ ⊲ ... ⊲ 𝑚𝑘ℤ = ℤ is a composition series, then
𝑚𝑖+1ℤ/𝑚𝑖ℤ is isomorphic to 𝐶𝑝 for some prime 𝑝. In particular, 𝑚1ℤ should be finite,
meaning 𝑚1 = 0, a contradiction, since we assumed strict inclusions.

Theorem (Jordan-Hölder). Let 𝐺 be a group admitting a composition series. Then, any two
such series are equivalent.

Another consequence of the Schreier Refinement Theorem is that the number of
infinite-cyclic factors in a polycyclic series for a polycyclic group 𝐺 is an invariant of the
group, meaning it doesn’t depend on the chosen series. We prove this next, following the
ideas from [Rob96].

5 We may instead require that all inclusions are proper for a series to be a composition series, in which case
the factor groups can’t be trivial.
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Proposition 1.5.6. Let𝐺 be a polycyclic group and let 1 = 𝐺0⊴𝐺1⊴...⊴𝐺𝑛 = 𝐺 be a polycyclic
series for 𝐺. Then, the number of infinite cyclic factors (𝐺𝑖+1/𝐺𝑖) is refinement-invariant.

Proof. Evidently, we need only consider proper refinements. Thus, we only have to analyze
a refinement 𝐺𝑖 = 𝑁0 ⊲ ... ⊲ 𝑁𝑘 = 𝐺𝑖+1. There are two possible cases:

• Case 1: 𝐺𝑖+1/𝐺𝑖 is finite. Then, since

𝑁𝑗+1

𝑁𝑗

≅

𝑁𝑗+1/𝐺𝑖

𝑁𝑗/𝐺𝑖

≤

𝐺𝑖+1/𝐺𝑖

𝑁𝑗/𝐺𝑖

it’s clear that every one of the introduced factors is finite.

• Case 2: 𝐺𝑖+1/𝐺𝑖 is infinite. In this case, 𝑁𝑗/𝐺𝑖 is infinite cyclic for all 𝑗 ≠ 0, since they
are all isomorphic to proper subgroups of an infinite cyclic group. In particular,
𝑁1/𝐺𝑖 is infinite cyclic. But, from the preceding argument, if 𝑗 ≠ 0, we get:

𝑁𝑗+1

𝑁𝑗

≅

𝑁𝑗+1/𝐺𝑖

𝑁𝑗/𝐺𝑖

≤

𝐺𝑖+1/𝐺𝑖

𝑁𝑗/𝐺𝑖

and this last term is a non-trivial quotient of an infinite cyclic group. Thus, it’s finite.
Therefore, if 𝑗 ≠ 0, 𝑁𝑗+1/𝑁𝑗 is finite, whence the number of infinite cyclic factors
remains constant.

■

Proposition 1.5.7. Let 𝐺 be a polycyclic group. Then, the number of infinite cyclic factors
of a polycyclic series for 𝐺 is independent of the series.

Proof. Let 𝑆1 and 𝑆2 be two polycyclic series for 𝐺. By Theorem 1.5.5, both admit equivalent
refinements (that is, with isomorphic factors up to permutation). Since, by Proposition 1.5.6,
the number of infinite cyclic factors is refinement-invariant, the result follows. ■

The invariant thus defined merits a special name.

Definition. Let 𝐺 be a polycyclic group. Its Hirsch number, denoted ℎ(𝐺), is the number
of infinite cyclic factors of a polycyclic series for 𝐺.

The following additive property of Hirsch numbers follows from the proof of Proposi-
tion 1.5.1:

Proposition 1.5.8. Let 𝐺 be a polycyclic group and let 𝑁 ⊴ 𝐺. Then:

ℎ(𝐺) = ℎ(𝑁 ) + ℎ(𝐺/𝑁 )

We’ll return to the Hirsch number of a polycyclic group in Chapter 3, where it will be
used in an inductive argument.
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1.6 Ordered groups
We end the chapter on group theory with the class of groups which admit a total

ordering compatible with the group structure. They’ll be a key component to constructing
the so-called “Malcev-Neumann Series Rings”, which will be done further on. Right now,
it’s of our interest to prove a technical lemma (which will, in fact, be the crucial piece for
the aforementioned construction) and the fact that residually torsion-free nilpotent groups
are ordered. For this, we’ll mostly follow [Fuc63] and [Lam01].

Definition. Let 𝐺 be a group and assume that 𝐺 admits (as a set) total ordering. Then, 𝐺
is said to be an ordered group if, for all 𝑎, 𝑏, 𝑐 ∈ 𝐺

𝑎 < 𝑏 ⟹ 𝑐𝑎 < 𝑐𝑏 and 𝑎𝑐 < 𝑏𝑐

If 𝐺 is an ordered group, there is a subset of 𝐺, which merits particular attention,
due to the fact that it completely determines the ordering. It will be quite clear from the
terminology that it is analogous to the positive numbers in the canonical ordering of the
real numbers.

Definition. Let 𝐺 be an ordered group. The subset 𝑃 = {𝑥 ∈ 𝐺 ∣ 𝑥 > 1} is called the
positive cone of 𝐺.

The following proposition highlights some of the main properties of the positive cone
of an ordered group, which are fairly simple to verify:

Proposition 1.6.1. Let 𝐺 be an ordered group and let 𝑃 be its positive cone. Then:

• 𝑥, 𝑦 ∈ 𝑃 ⟹ 𝑥𝑦 ∈ 𝑃 ;

• 𝐺 = 𝑃 ⊔ {1} ⊔ 𝑃
−1;

• 𝑥−1𝑃𝑥 = 𝑃 ;

• 𝑥 < 𝑦 ⟺ 𝑦𝑥
−1
∈ 𝑃 ;

It’s less immediately apparent, however, that a subset with the properties above actually
completely determines an ordered group structure, as we see below:

Proposition 1.6.2. Let 𝐺 be a group and let 𝑃 be a subset of 𝐺 with the following three
properties:

1. 𝑥, 𝑦 ∈ 𝑃 ⟹ 𝑥𝑦 ∈ 𝑃 ;

2. 𝐺 = 𝑃 ⊔ {1} ⊔ 𝑃
−1;

3. 𝑥−1𝑃𝑥 = 𝑃 ;

Then, the relation 𝑥 < 𝑦 ⟺ 𝑦𝑥
−1
∈ 𝑃 induces an ordered group structure in 𝐺.

Proof. From item 2., 𝑥 < 𝑥 is false, since 1 ∉ 𝑃 . If 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑏𝑎
−1
, 𝑐𝑏

−1
∈ 𝑃 ,

which implies, using item 1., 𝑐𝑏−1𝑏𝑎−1 = 𝑐𝑎−1 ∈ 𝑃 , which, in turn, is equivalent to saying
𝑎 < 𝑐. Also, if 𝑥 < 𝑦, then 𝑦𝑥

−1
∈ 𝑃 . Thus, 𝑥𝑦−1

∈ 𝑃
−1, meaning 𝑥𝑦−1

∉ 𝑃 , by item 1., and
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𝑦 < 𝑥 is false. Finally, 𝑥 ≠ 𝑦 implies 𝑦𝑥−1 ∈ 𝑃 or 𝑦𝑥−1 ∈ 𝑃−1, from item 2., meaning either
𝑥 < 𝑦 or 𝑦 < 𝑥 . It is, therefore, a total order relation in 𝐺.

Furthermore, from item 3., we have, assuming 𝑎 < 𝑏, that 𝑏𝑎−1 ∈ 𝑃 and, therefore, both
𝑐𝑏𝑎

−1
𝑐
−1
∈ 𝑃 , which is equivalent to saying 𝑐𝑎 < 𝑐𝑏 and 𝑏𝑐𝑐−1𝑎−1 ∈ 𝑃 , which is equivalent

to 𝑎𝑐 < 𝑏𝑐. Thus, 𝐺 has an ordered group structure induced by 𝑃 . ■

This characterization of ordered groups makes it much easier to prove that a given
group is ordered. Indeed, instead of searching for relations compatible with the group
structure, all we have to do is find a subset of 𝐺 with the preceding properties. In particular,
as will become clear, this makes it easier to construct ordered groups from other ordered
groups.

We illustrate this approach by proving that torsion-free abelian groups are ordered.
We first note that every ordered group has to be torsion-free. Indeed, if 𝑥 ≠ 1 is a torsion
element, either 𝑥 or 𝑥−1 is greater than 1. Without loss of generality, suppose 𝑥 > 1. Then,
we’d have 1 < 𝑥 < 𝑥

2
< ⋯ < 𝑥

𝑛
= 1, which is absurd.

Proposition 1.6.3. Let 𝐺 be an abelian group. Then, 𝐺 is ordered if, and only if, 𝐺 is
torsion-free.

Proof. From the preceding comment, we only have to check the “if” part. We follow the
argument presented in [Fuc63]. Let S = {𝑆 ⊂ 𝐺 ∣ 𝑆 is multiplicatively closed and 1 ∉ 𝑆}.
This set is non-empty if 𝐺 is torsion-free, as, given 𝑥 ≠ 1, 𝑆 = {𝑥

𝑛
∣ 𝑛 ∈ ℕ

†
} ∈ S . Let

{𝑆𝑖} be a chain in S (ordered by inclusion) and take 𝑆 = ⋃
𝑖
𝑆𝑖 . Since 1 ∉ 𝑆𝑖 , ∀𝑖, then 1 ∉ 𝑆.

At the same time, if 𝑥, 𝑦 ∈ 𝑆, there is some 𝑛 such that 𝑥, 𝑦 ∈ 𝑆𝑛. Therefore, 𝑥𝑦 ∈ 𝑆𝑛 ⊂ 𝑆,
which is to say 𝑆 ∈ S is an upper bound for the chain.

Using Zorn’s Lemma, take some maximal element P ∈ S . By construction, it’s
multiplicatively closed. Let 1 ≠ 𝑥 ∈ 𝐺, and suppose that 𝑥 ∉ P,P−1. Then, the set
𝑇𝑥 = P ∪ {𝑠𝑥

𝑛
∣ 𝑠 ∈ P, 𝑛 ∈ ℕ

†
} ∪ {𝑥

𝑛
∣ 𝑛 ∈ ℕ

†
} properly contains P. Moreover, it’s

easy to check, using the fact that 𝐺 is abelian, that it’s multiplicatively closed. Using the
maximality of P, this implies 1 ∈ 𝑇 . Since 𝑥 is torsion-free and 1 ∉ P, then 1 = 𝑠𝑥

𝑛, for
some 𝑛, and 𝑠 ∈ P. Therefore, 𝑥−𝑛 ∈ P.

We can repeat the preceding paragraph using 𝑥−1 ∉ P instead of 𝑥 , and we’d obtain
some𝑚 ∈ ℕ

† such that 𝑥𝑚 ∈ P. This implies 1 = (𝑥
−𝑛
)
𝑚
(𝑥

𝑚
)
𝑛
∈ P, which is a contradiction.

Ergo, if 𝑥 ≠ 1, then either 𝑥 ∈ P, or 𝑥 ∈ P−1, and they’re easily seen to be pairwise disjoint.
Finally, 𝐺 is abelian, so that 𝑥−1P𝑥 = P. Using Proposition 1.6.2, 𝐺 is ordered. ■

Proposition 1.6.4. Let 𝐺 be a group and let 𝑁 ⊴ 𝐺 be central in 𝐺. If 𝑁 and 𝐺/𝑁 are both
ordered, then so is 𝐺.

Proof. Let 𝑃𝑁 and 𝑃𝐺/𝑁 be the positive cones of 𝑁 and 𝐺/𝑁 , respectively, and consider the
set 𝑃 = {𝑥 ∈ 𝐺 ∣ 𝑥 ∈ 𝑃𝑁 or 𝑥𝑁 = 𝑥 ∈ 𝑃𝐺/𝑁}. All we have to do is show that 𝑃 satisfies the
properties of a positive cone.

If 𝑥, 𝑦 ∈ 𝑃 , then there are three possibilities: either 𝑥, 𝑦 ∈ 𝑃𝑁 , in which case 𝑥𝑦 ∈ 𝑃𝑁

and, therefore, 𝑥𝑦 ∈ 𝑃 ; or 𝑥, 𝑦 ∈ 𝑃𝐺/𝑁 , meaning 𝑥𝑦 ∈ 𝑃𝐺/𝑁 and, here too, 𝑥𝑦 ∈ 𝑃 ;



1.6 | ORDERED GROUPS

27

finally, without loss of generality, 𝑥 ∈ 𝑃𝑁 and 𝑦 ∈ 𝑃𝐺/𝑁 . Since 𝑃𝑁 ⊂ 𝑁 , we get 𝑥 = 1,
meaning 𝑥𝑦 = 𝑦 ∈ 𝑃𝐺/𝑁 . Thus, in any case, 𝑥𝑦 ∈ 𝑃 ;

First, suppose 𝑥 ∈ 𝑁 . If 𝑥 ∉ 𝑃 , then 𝑥 ∉ 𝑃𝑁 . So either 𝑥 = 1 or 𝑥 ∈ 𝑃
−1

𝑁
. But it’s

easy to check that 𝑃−1
= {𝑥 ∈ 𝐺 ∣ 𝑥 ∈ 𝑃

−1

𝑁
or 𝑥 ∈ 𝑃

−1

𝐺/𝑁
}. We thus obtain that

𝑁 = (𝑃 ∪ {1} ∪ 𝑃
−1
) ∩ 𝑁 . Furthermore, their union is disjoint, as can also be easily

seen. Now suppose 𝑥 ∉ 𝑁 . If 𝑥 ∉ 𝑃 , then 𝑥 ∈ 𝑃
−1

𝐺/𝑁
, so that 𝑥 ∈ 𝑃

−1. Therefore,
𝐺 ⧵ 𝑁 = (𝑃 ∪ {1} ∪ 𝑃

−1
) ∩ (𝐺 ⧵ 𝑁 ). Putting both of the results together, we prove the

statement;

If 𝑥 ∈ 𝑃 , then either 𝑥 ∈ 𝑃𝑁 or 𝑥 ∈ 𝑃𝐺/𝑁 . In the first case, 𝑡−1𝑥𝑡 = 𝑥 ∈ 𝑃𝑁 ⊂ 𝑃 , since 𝑁
is central. In the second case, 𝑡−1𝑥𝑡 = 𝑡−1𝑥𝑡 ∈ 𝑃𝐺/𝑁 . Thus, in any case, 𝑡−1𝑥𝑡 ∈ 𝑃 , for
all 𝑡 ∈ 𝐺.

■

Proposition 1.6.5. Let 𝐺 be a residually torsion-free nilpotent group. Then, 𝐺 is an ordered
group.

Proof. By Proposition 1.4.2, √𝛾𝑛/
√
𝛾𝑛+1 is a torsion-free abelian group for all 𝑛. Thus, by

Proposition 1.6.3, it’s an ordered group, and we can consider its positive cone 𝑃𝑛.

Consider the set 𝑃 = {𝑥 ∈ 𝐺 ⧵ {1} ∣ 𝑥 ∈
√
𝛾𝑛 ⧵

√
𝛾𝑛+1 ⟹ 𝑥

√
𝛾𝑛+1 ∈ 𝑃𝑛}. Since 𝐺

is residually torsion-free nilpotent, given 𝑥 ∈ 𝐺 ⧵ {1}, there exists some 𝑛𝑥 ∈ ℕ
† such

that 𝑥 ∈
√
𝛾𝑛𝑥

⧵
√
𝛾𝑛𝑥+1

. Let, then, 𝑥, 𝑦 ∈ 𝑃 and 𝑖, 𝑗 ∈ ℕ
† be such that 𝑥 ∈

√
𝛾𝑖 ⧵

√
𝛾𝑖+1 and

𝑦 ∈
√
𝛾𝑗 ⧵

√
𝛾𝑗+1. Without loss of generality, we can assume 𝑖 ≤ 𝑗.

If 𝑖 = 𝑗, then 𝑥√𝛾𝑖+1, 𝑦
√
𝛾𝑖+1 ∈ 𝑃𝑖 , meaning 𝑥𝑦√𝛾𝑖+1 ∈ 𝑃𝑖 , and it’s then trivial that 𝑥𝑦 ∈ 𝑃 .

Now, if 𝑖 < 𝑗, then 𝑦 ∈
√
𝛾𝑖+1, so that 𝑥𝑦√𝛾𝑖+1 = 𝑥

√
𝛾𝑖+1 ∈ 𝑃𝑖 . So, in any case, we have

𝑥𝑦 ∈ 𝑃 , meaning 𝑃 is multiplicatively closed.

By definition, 1 ∉ 𝑃 . If 𝑔 ≠ 1 isn’t in 𝑃 , assume 𝑔 ∈
√
𝛾𝑖 ⧵

√
𝛾𝑖+1, so that 𝑔√𝛾𝑖+1 ∉ 𝑃𝑖 . Since

𝑔 ∉
√
𝛾𝑖+1, then 𝑔

√
𝛾𝑖+1 ≠ 1. Therefore, by hypothesis, 𝑔√𝛾𝑖+1 ∈ 𝑃−1

𝑖
; that is, 𝑔−1√𝛾𝑖+1 ∈ 𝑃𝑖 .

It’s trivial then that 𝑔−1 ∈ √
𝛾𝑖 ⧵

√
𝛾𝑖+1, and thus, 𝑔−1 ∈ 𝑃 . This means 𝐺 = 𝑃 ∪ {1} ∪ 𝑃

−1. We
can easily see that the unions are pairwise disjoint.

Finally, if 𝑔 ∈ 𝑃 with 𝑔 ∈
√
𝛾𝑖 ⧵

√
𝛾𝑖+1 and 𝑥 ∈ 𝐺, then 𝑥

−1
𝑔𝑥 = 𝑔[𝑔, 𝑥]. By Proposi-

tion 1.4.2, [𝑔, 𝑥] ∈ √
𝛾𝑖+1. Thus, 𝑥−1𝑔𝑥√𝛾𝑖+1 = 𝑔

√
𝛾𝑖+1 ∈ 𝑃𝑖 and 𝑥−1𝑃𝑥 ⊂ 𝑃 , concluding the

proof. ■

In order to construct the Malcev-Neumann series rings, it will be necessary to establish
the concept of a well-ordered set. Similarly to what is done for the natural numbers, we
have the following definition:

Definition. Let 𝐺 be an ordered group. A non-empty subset 𝑆 ⊂ 𝐺 is said to be well-
ordered if every non-empty 𝐴 ⊂ 𝑆 contains a minimum element (i.e., an element 𝑦 such
that 𝑦 ≤ 𝑥, ∀𝑥 ∈ 𝐴).

Of course, 𝐺 doesn’t have to be a group for well-ordered subsets to be defined, or even
to prove the ensuing couple of propositions. That said, our main interest is to use the
group structure to construct some specific well-ordered subsets of 𝐺.
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We first state the following important characterization, which will be freely used
throughout the rest of the section.

Proposition 1.6.6. Let 𝐺 be an ordered group and let 𝑆 ⊂ 𝐺 be non-empty. The following
are equivalent:

1. 𝑆 is well-ordered;

2. Every decreasing sequence in 𝑆 is eventually constant;

3. Every sequence in 𝑆 has an increasing subsequence;

Proof. (1) ⟹ (2): Let (𝑠𝑛) be a decreasing sequence in 𝑆 and consider 𝐴 = {𝑠𝑛 ∣ 𝑛 ∈

ℕ} (𝐴 is the set of values attained by the sequence). Since 𝑆 is well-ordered, there
exists 𝜇 = min𝐴. Let 𝑛0 be the smallest natural number such that 𝑠𝑛0 = 𝜇. Then, since
the sequence is decreasing, 𝑠𝑛0 ≥ 𝑠𝑛, for all 𝑛 ≥ 𝑛0. On the other hand, the minimality
of 𝜇 yields 𝑠𝑛0 = 𝜇 ≤ 𝑠𝑛 for all 𝑛 ∈ ℕ. Thus, 𝑠𝑛0 = 𝑠𝑛 for all 𝑛 ≥ 𝑛0.

(2) ⟹ (3): Let (𝑠𝑛) be an arbitrary sequence in 𝑆 and suppose it doesn’t have an
increasing subsequence. Thus, for any given 𝑛0 ∈ ℕ, there are only finitely many
terms such that 𝑠𝑛0 ≤ 𝑠𝑛; in particular, there are infinitely many terms such that
𝑠𝑛0

> 𝑠𝑛. So we can construct a strictly decreasing subsequence by taking the smallest
𝑛1 such that 𝑠1 > 𝑠𝑛1 and, given 𝑛𝑘 , we take 𝑛𝑘+1 to be the smallest number such that
𝑠𝑛𝑘

> 𝑠𝑛𝑘+1
.

(3) ⟹ (1): Let 𝐴 ⊂ 𝑆 be non-empty. If there’s no minimum element in 𝐴, given
𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐴 such that 𝑏 < 𝑎. So, choosing an arbitrary 𝑠0 ∈ 𝐴 to start
with, we can construct a strictly decreasing sequence (𝑠𝑛) of elements of 𝐴. Consider
an increasing subsequence (𝑠𝑛𝑘 ). On the one hand, 𝑠𝑛0 ≤ 𝑠𝑛𝑘 for all 𝑘 ∈ ℕ, and 𝑛𝑘 ≥ 𝑛0
(with equality only if 𝑘 = 0). On the other hand, 𝑠𝑛0 > 𝑠𝑛, for all 𝑛 > 𝑛0. By combining
both inequalities, 𝑠𝑛0 ≤ 𝑠𝑛1 and 𝑠𝑛0 > 𝑠𝑛1 , a contradiction.

■

We now relate the group structure of 𝐺 to its ordering and, most importantly, to its
well-ordered subsets.

Proposition 1.6.7. Let 𝐺 be an ordered group and let 𝑆, 𝑇 ⊂ 𝐺 be well-ordered subsets. Then,
both 𝑆 ∪ 𝑇 and 𝑆𝑇 are well-ordered. Furthermore, given 𝑢 ∈ 𝑆𝑇 , there exist a finite number of
pairs (𝑠, 𝑡) ∈ 𝑆 × 𝑇 such that 𝑢 = 𝑠𝑡 .

Proof. First, let 𝐴 ⊂ 𝑆 ∪ 𝑇 be non-empty. We can write 𝐴 = (𝐴 ∩ 𝑆) ∪ (𝐴 ∩ 𝑇 ). If either
of these is empty, then 𝐴 is contained in either 𝑆 or 𝑇 , in which case the result follows
from hypothesis. Otherwise, both 𝐴 ∩ 𝑆 and 𝐴 ∩ 𝑇 contain minimum elements 𝑥 and 𝑦
respectively. Without losing generality, we may assume 𝑥 ≤ 𝑦. Let 𝑧 ∈ 𝐴. If 𝑧 ∈ 𝑆, 𝑥 ≤ 𝑧.
And, if 𝑧 ∈ 𝑇 , 𝑥 ≤ 𝑦 ≤ 𝑧. In any case, 𝑥 ≤ 𝑧, meaning 𝑥 is a minimum element for 𝐴.

For the second statement, let (𝑠𝑖𝑡𝑖) be a sequence in 𝑆𝑇 . Since 𝑆 is well-ordered, there is
an increasing subsequence (𝑠𝑛𝑖 ) of (𝑠𝑖); that is, 𝑠𝑛𝑖 ≤ 𝑠𝑛𝑖+1 for all 𝑖. Since 𝑇 is well-ordered, we
may find an increasing subsequence (𝑡𝑛𝑗

𝑖

) of (𝑡𝑛𝑖 ). Thus, (𝑠𝑛𝑗
𝑖

𝑡𝑛𝑗
𝑖

) is an increasing subsequence
of (𝑠𝑖𝑡𝑖), meaning 𝑆𝑇 is well-ordered.
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Now suppose there exists 𝑢 ∈ 𝑆𝑇 such that 𝑢 = 𝑠𝑖𝑡𝑖 , 𝑠𝑖 ≠ 𝑠𝑗 if 𝑖 ≠ 𝑗 (i.e., that there are
(countably) infinitely many elements 𝑠 ∈ 𝑆 such that 𝑢 = 𝑠𝑡 for some 𝑡 in 𝑇 ). Then, there
exists a strictly increasing subsequence (𝑠𝑛𝑖 ) of (𝑠𝑖), using the fact that the original sequence
is injective.

If 𝑡𝑛𝑖 < 𝑡𝑛𝑖+1
, then 𝑢 = 𝑠𝑛𝑖

𝑡𝑛𝑖
< 𝑠𝑛𝑖+1

𝑡𝑛𝑖+1
= 𝑢, which is absurd. Hence, 𝑡𝑛𝑖 ≥ 𝑡𝑛𝑖+1

for all 𝑖.
As 𝑇 is also well-ordered, there exists some 𝑗 such that 𝑡𝑛𝑖 = 𝑡𝑛𝑗

for all 𝑖 ≥ 𝑗. This means
𝑢 = 𝑠𝑛𝑗

𝑡𝑛𝑗
= 𝑠𝑛𝑗

𝑡𝑛𝑖
< 𝑠𝑛𝑖

𝑡𝑛𝑖
= 𝑢, which is also a contradiction. Ergo, the set of 𝑠 ∈ 𝑆 such

that 𝑢 = 𝑠𝑡 for some 𝑡 ∈ 𝑇 must be finite. The same argument applied to 𝑇 finishes the
proof. ■

The following is the most important proposition in this section, and will be the crucial
piece in proving that Malcev-Neumann series rings are division rings. Its proof is quite
technical, as will soon become apparent, but there is a way around it, using the ideas of
[Hig52].

The biggest issue with this alternative approach (which is why we’ve opted against it)
is that it requires a lot of background knowledge, meaning we could either develop the
relevant material here, detracting from our goal with a relatively small pay-off, or simply
refer to [Hig52] for all the needed material, making the exposition very “top-down” and
unclear.

That said, the reader who possesses the relevant background in universal algebra and
on quasi-orderings will surely find the alternative proof a lot simpler.

Proposition 1.6.8. Let 𝐺 be an ordered group, 𝑃 its positive cone and 𝑆 ⊂ 𝑃 a well-ordered
subset of 𝑃 . Let 𝑆∞ = ⋃

∞

𝑛=1
𝑆
𝑛. Then:

1. 𝑆∞ is well-ordered;

2. If 𝑢 ∈ 𝑆
∞, then 𝑢 belongs to a finite number of 𝑆𝑛;

In order to prove this proposition, it’ll be important to define an equivalence relation
on 𝑃 , the positive cone of 𝐺, and an order relation on the quotient set 𝑃 = 𝑃/∼. We begin
with the first one:

Definition. Let 𝐺 be an ordered group and let 𝑃 be its positive cone. The elements 𝑥, 𝑦 ∈ 𝑃

are said to be relatively archimedian (notation: 𝑥 ∼ 𝑦) if there exist 𝑚, 𝑛 ∈ ℕ such that
𝑥 ≤ 𝑦

𝑚 and 𝑦 ≤ 𝑥
𝑛.

Proposition 1.6.9. Let 𝐺 be an ordered group and let 𝑃 be its positive cone. Then, the relation
𝑥 ∼ 𝑦 is an equivalence relation and 𝑥1⋯ 𝑥𝑛 = max{𝑥1, ..., 𝑥𝑛}. Moreover, in the quotient set
𝑃 , 𝑥 < 𝑦 ⟺ 𝑥

𝑛
< 𝑦, ∀𝑛 ∈ ℕ defines a total order relation such that 𝑥 ≤ 𝑦 implies 𝑥 ≤ 𝑦 .

Proof. See [Lam01, Chapter 14]. ■

Proof of Proposition 1.6.8. Part (1): We’ll proceed by contradiction. Suppose 𝑆∞ isn’t well
ordered. Then, there exists a strictly decreasing sequence 𝑢1 > 𝑢2 > ... in 𝑆

∞, such that
𝑢𝑖 ∈ 𝑆

𝑛𝑖 . In particular, in 𝑃 , 𝑢1 ≥ 𝑢2 ≥ ... and, by Proposition 1.6.9, 𝑢𝑖 = 𝑠𝑖 for some 𝑠𝑖 ∈ 𝑆.
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Let S = {𝑠𝑖} ⊂ 𝑆. Since 𝑆 is well-ordered, S has a minimum element 𝑠𝑘 . Therefore, as
𝑢𝑘 = 𝑠𝑘 , then 𝑢𝑘 ≤ 𝑢𝑖 for all 𝑖, so that 𝑢𝑘 is a minimum element in the decreasing sequence
in 𝑃 .

Statement 1: There exists some strictly decreasing sequence in 𝑆
∞ whose minimal

element in the sequence of equivalence classes in 𝑃 is less than or equal to that of every
other strictly decreasing sequence in 𝑆.

□ Proof of Statement 1: Let (𝑢𝑛)𝜆, 𝜆 ∈ Λ be some strictly decreasing sequence in 𝑆
∞.

Here, Λ denotes an indexing set of strictly decreasing sequences in 𝑆∞. From the preceding
argument, there is some 𝑠𝜆 ∈ 𝑆 such that 𝑠𝜆 = min{𝑢𝑛}. Consider the set {𝑠𝜆 ∣ 𝜆 ∈ Λ} ⊂ 𝑆.
Since 𝑆 is well-ordered, there exists a minimum element 𝑠𝜆0 relative to this set. As 𝑠𝜆0 ≤ 𝑠𝜆,
then 𝑠𝜆0 ≤ 𝑠𝜆, for all 𝜆 ∈ Λ. This finishes the proof of this statement. □

For the remainder of the proof, we’ll denote the minimal equivalence class given
by Statement 1 (that is, minimal relative to all the minimal classes of all the decreasing
sequences of 𝑆∞) by 𝜇. We know that {𝑠 ∈ 𝑆 ∣ 𝑠 = 𝜇} is non-empty. By the well-ordering
of 𝑆, there is some minimal element, 𝑠𝜇 , in this set. By definition, for each 𝑢 ∈ 𝑆

∞ with
𝑢 = 𝑠𝜇 = 𝜇, there’s some 𝑚𝑢 ∈ ℕ such that 𝑢 ≤ 𝑠

𝑚𝑢

𝜇
.

Statement 2: There’s a strictly decreasing sequence (𝑢𝑛) in 𝑆
∞, whose induced se-

quence of equivalence classes is constant and equal to 𝜇, such that the smallest 𝑚 ∈ ℕ with
𝑢1 ≤ 𝑠

𝑚

𝜇
is smaller than that of all other strictly decreasing sequences in 𝑆 with constant

class sequence 𝜇.

□ Proof of Statement 2: Let (𝑢𝑛)𝜆, 𝜆 ∈ Λ be a strictly decreasing sequence in 𝑆
∞ with

minimal class 𝜇 and 𝑢1 = 𝜇.

For those sequences, 𝑢1 = 𝑠𝜇 , meaning there is 𝑚𝜆 ∈ ℕ such that 𝑢1 ≤ 𝑠𝑚𝜆

𝜇
. Consider the

set {𝑚𝜆 ∣ 𝜆 ∈ Λ} ⊂ ℕ. The well-ordering of the natural numbers gives us some minimum
element 𝑚 = 𝑚𝜆0

. The sequence (𝑢𝑛)
𝜆0 satisfies the hypotheses of Statement 2. □

For the remainder of the proof, we fix a strictly decreasing sequence (𝑢𝑛) in 𝑆
∞ such

that 𝑢1 = 𝑢2 = ... = 𝜇 and such that the value 𝑚 so 𝑢1 ≤ 𝑠𝑚𝜇 is as small as possible. This can
be done by Statement 2. Notice that, since 𝑆 is well-ordered and (𝑢𝑛) is strictly decreasing,
it can’t contain a subsequence in 𝑆. Thus, save for a finite number of terms, we have:

𝑢𝑛 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑣𝑛𝑠𝑛 𝑣𝑛 ∈ 𝑆
∞
, 𝑠𝑛 ∈ 𝑆

𝑠𝑛𝑤𝑛 𝑤𝑛 ∈ 𝑆
∞
, 𝑠𝑛 ∈ 𝑆

𝑣𝑛𝑠𝑛𝑤𝑛 𝑣𝑛, 𝑤𝑛 ∈ 𝑆
∞
, 𝑠𝑛 ∈ 𝑆

where, if 𝑢𝑛 = 𝑠1 ⋯ 𝑠𝑖𝑛
, we define 𝑠𝑛 = max{𝑠1, ..., 𝑠𝑖𝑛

} (i.e, we have decomposed the word
defining 𝑢𝑛 into its maximum letter and (potentially empty) sub-words on each side. In
particular, 𝜇 = 𝑢𝑛 = 𝑠𝑛). At least one of the above three cases must occur an infinite number
of times. Without loss of generality, we’ll assume its the third one (the others follow similar
lines).

Consider a subsequence (𝑢𝑛𝑖
) of (𝑢𝑛) such that 𝑢𝑛𝑖 = 𝑣𝑛𝑖

𝑠𝑛𝑖
𝑤𝑛𝑖

for all 𝑖 ∈ ℕ
†. For

convenience, we’ll denote 𝑣𝑛𝑖 = 𝑣𝑖 and the same for the other two sub-words. Let 𝐵 = {𝑣𝑖 ∣

𝑖 ∈ ℕ
†
}, 𝐶 = {𝑤𝑖 ∣ 𝑖 ∈ ℕ

†
}, 𝐷 = {𝑠𝑖 ∣ 𝑖 ∈ ℕ

†
}. Since every term of (𝑢𝑛𝑖 ) belongs to 𝐵𝐷𝐶 ,
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this can’t be well-ordered (since the sequence is strictly decreasing). Given that 𝐷 ⊂ 𝑆, it
has to be well-ordered, meaning either 𝐵 or 𝐶 isn’t. Let’s assume its 𝐵 (again, the other
case is identical).

Let, then, 𝑣𝑘1 > 𝑣𝑘2 > ... be a strictly decreasing subsequence in 𝐵. As 𝑆∞ ⊂ 𝑃 , 𝑣𝑘𝑖 < 𝑢𝑛𝑘
𝑖

for all 𝑖. In particular, 𝑣𝑘𝑖 = 𝜇 for all 𝑖, by the minimality of 𝜇. By the minimality of 𝑠𝜇 , we
have 𝑣𝑘𝑖𝑠𝜇 ≤ 𝑣𝑘𝑖𝑠𝑘𝑖 and, therefore, 𝑣𝑘1𝑠𝜇 < 𝑢𝑘1 ≤ 𝑠

𝑚

𝜇
. Thus, 𝑣𝑘1 < 𝑠

𝑚−1

𝜇
, which contradicts the

minimality of 𝑚, given that the sequence (𝑣𝑘𝑖 ) satisfies the hypotheses of Statement 2. This
concludes the first part of the proof.

Part 2: Suppose 𝑢 ∈ 𝑆
∞ belongs to an infinite number of 𝑆𝑛. By the first part, 𝑆∞ is

well-ordered, meaning there exists a smallest 𝑢 with this property. Then, we can write
𝑢 = 𝑠𝑖1𝑠𝑖2 ⋯ 𝑠𝑖𝑛𝑖

, where 2 ≤ 𝑛1 < 𝑛2 < ....

By Proposition 1.6.7, 𝑢 can only be written as a product of elements of 𝑆 and 𝑆∞ in a
finite number of ways. Thus, some of the 𝑠𝑖1 repeats infinitely many times. But, then, we’d
get some 𝑖 such that (𝑠𝑖2...𝑠𝑖𝑛𝑖 ) belongs to infinitely many 𝑆𝑛 (we only have to consider the
smallest 𝑖 such that 𝑠𝑖1 appears infinitely many times). And, since 𝑆 ⊂ 𝑃 , this element is
smaller than 𝑢, contradicting its minimality. ■
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Chapter 2

Some classes of rings

With most of the group theoretic results out of the way, we now turn our attention to
the construction of some classes of rings, focusing on those that will give rise to important
division ring constructions further on.

2.1 Ore rings
Constructing fields from integral domains is a relatively simple task - indeed, we

can associate every integral domain to its field of fractions, which is, in some sense, the
smallest field containing it. Unfortunately, when it comes to noncommutative rings, the
same construction can’t always be replicated. The rings for which we can construct a
sort of “noncommutative field of fractions” which behaves in a similar manner to their
commutative counterparts deserve special attention, and will be the focus of our efforts
for this section, which roughly follows [Lam99] and [Coh03].

Definition. Let 𝑅 be a ring and let 𝑆 ⊂ 𝑅† be a multiplicative submonoid (i.e., a subset of
𝑅
† which is closed for multiplication and contains 1). A ring 𝑅′ is called a right ring of

fractions (relative to 𝑆) for 𝑅 if there exists a homomorphism 𝜑 ∶ 𝑅 → 𝑅
′ such that:

• 𝜑(𝑆) ⊂ U (𝑅
′
);

• Every element of 𝑅′ can be written as 𝜑(𝑟)𝜑(𝑠)−1, for 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆;

• ker(𝜑) = {𝑟 ∈ 𝑅 ∣ ∃𝑠 ∈ 𝑆 such that 𝑟𝑠 = 0};

Definition. A right denominator set for a ring 𝑅 is a multiplicative submonoid 𝑆

satisfying:

• For all 𝑎 ∈ 𝑅 and 𝑠 ∈ 𝑆, 𝑎𝑆 ∩ 𝑠𝑅 ≠ ∅;

• If 𝑎 ∈ 𝑅 and 𝑠 ∈ 𝑆 are such that 𝑠𝑎 = 0, then ∃𝑠
′
∈ 𝑆 such that 𝑎𝑠′ = 0;

A set satisfying the first of the two conditions above is called right permutable and a
set satisfying the second one is called right reversible. It turns out, as can be inferred by
the name, that those are exactly the two conditions required of 𝑆 for a right ring of fractions
to exist, essentially copying the proof of the existence of commutative localization.
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Proposition 2.1.1. A ring 𝑅 admits a right ring of fractions relative to the submonoid 𝑆 ⊂ 𝑅
if, and only if, 𝑆 is a right denominator set for 𝑅.

Proof. Let 𝑆 be a right denominator set for a ring 𝑅. Define, on the set 𝑅 × 𝑆, the following
relation:

(𝑎, 𝑠) ∼ (𝑏, 𝑡) ⟺ there exist 𝑢1, 𝑢2 ∈ 𝑅 such that 𝑠𝑢1 = 𝑡𝑢2 ∈ 𝑆 and 𝑎𝑢1 = 𝑏𝑢2

It’s trivial that the relation defined thus is both reflexive and symmetric. As for tran-
sitivity, suppose that (𝑎, 𝑠) ∼ (𝑏, 𝑡) and that (𝑏, 𝑡) ∼ (𝑐, 𝑟). Then, there are 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑅
such that 𝑠𝑢1 = 𝑡𝑢2 ∈ 𝑆, 𝑡𝑣1 = 𝑟𝑣2 ∈ 𝑆, 𝑎𝑢1 = 𝑏𝑢2, and 𝑏𝑣1 = 𝑐𝑣2, .

Since 𝑆 is right permutable, (𝑡𝑢2)𝑆 ∩ (𝑡𝑣1)𝑅 ≠ ∅. Thus, there exist 𝑤 ∈ 𝑆 and 𝑑 ∈ 𝑅 such
that 𝑡𝑢2𝑤 = 𝑡𝑣1𝑑 ; that is, 𝑡(𝑢2𝑤 − 𝑣1𝑑) = 0. Now, 𝑆 is right reversible and 𝑡 ∈ 𝑆, meaning
there exists 𝑡 ′ ∈ 𝑆 such that (𝑢2𝑤 − 𝑣1𝑑)𝑡

′
= 0. From the preceding equalities, this then

implies:
𝑠𝑢1𝑤 = 𝑡𝑢2𝑤 = 𝑡𝑣1𝑑 = 𝑟𝑣2𝑑

and, in turn, we get

𝑠(𝑢1𝑤𝑡
′
) = 𝑟(𝑣2𝑑𝑡

′
), with 𝑢1𝑤𝑡 ′ = 𝑣2𝑑𝑡 ′ ∈ 𝑆

At the same time, the previous equalities also yield

𝑎(𝑢1𝑤𝑡
′
) = 𝑏𝑢2𝑤𝑡

′
= 𝑏𝑣1𝑑𝑡

′
= 𝑐(𝑣2𝑑𝑡

′
)

This finishes the proof of transitivity. We can now consider the quotient set 𝑅𝑆−1 ∶=
(𝑅 × 𝑆)/∼, where we’ll denote the class of the element (𝑎, 𝑠) by either 𝑎/𝑠 or 𝑎𝑠−1. We now
need to show that this set is indeed a right ring of fractions for 𝑅 relative to 𝑆.

We define the operations in 𝑅𝑆−1 as follows:

• Addition: If 𝑎1/𝑠1, 𝑎2/𝑠2 ∈ 𝑅𝑆−1, since 𝑆 is right permutable, 𝑠1𝑆 ∩ 𝑠2𝑅 ≠ ∅. Thus, there
exist 𝑡 ∈ 𝑆, 𝑏 ∈ 𝑅 such that 𝑠1𝑡 = 𝑠2𝑏 ∈ 𝑆. We now define the sum of 𝑎1/𝑠1 and 𝑎2/𝑠2
as follows:

𝑎1

𝑠1

+

𝑎2

𝑠2

∶=

𝑎1𝑡 + 𝑎2𝑏

𝑠2𝑏

• Multiplication: If 𝑎1/𝑠1, 𝑎2/𝑠2 ∈ 𝑅𝑆
−1, since 𝑆 is right permutable, 𝑎2𝑆 ∩ 𝑠1𝑅 ≠ ∅.

Therefore, there exist 𝑡 ∈ 𝑆, 𝑏 ∈ 𝑅 such that 𝑎2𝑡 = 𝑠1𝑏. We now define the product of
𝑎1/𝑠1 and 𝑎2/𝑠2 as follows:

𝑎1

𝑠1

⋅

𝑎2

𝑠2

∶=

𝑎1𝑏

𝑠2𝑡

Verifying that both are well-defined is tedious, but straightforward. It’s also worth
emphasizing that the definition of the product of two elements was the first time thus far
in which we used right permutability where one of the elements wasn’t necessarily in 𝑆.

Checking that the operations defined above indeed endow 𝑅𝑆
−1 with the structure of a

ring is very tedious, and will be omitted. The most important is to highlight that 0/1 is
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its zero element and that 1/1 is its unity. All that’s left is to check that it’s a right ring of
fractions for 𝑅 relative to 𝑆.

• Let 𝜑 ∶ 𝑅 → 𝑅𝑆
−1 be the function defined by 𝜑(𝑎) = 𝑎/1. Since 1 ∈ 𝑆, we can take

𝑡 = 𝑏 = 1 in the definition of the sum of two fractions. We then have that, if 𝑎1, 𝑎2 ∈ 𝑅,
𝜑(𝑎1 + 𝑎2) = (𝑎1 + 𝑎2)/1 = 𝑎1/1 + 𝑎2/1 = 𝜑(𝑎1) + 𝜑(𝑎2).

Furthermore, now taking 𝑡 = 1 and 𝑏 = 𝑎1, then 𝜑(𝑎1𝑎2) = (𝑎1𝑎2)/1 = 𝑎1/1 ⋅ 𝑎2/1 =

𝜑(𝑎1)𝜑(𝑎2). Thus, the function 𝜑 is a ring homomorphism. Moreover, if 𝑠 ∈ 𝑆, 𝜑(𝑠) =
𝑠/1, and 𝑠/1 ⋅ 1/𝑠 = 𝑠/𝑠 = 1/1, by taking 𝑡 = 𝑠 and 𝑏 = 1. This means 𝜑(𝑆) ⊂ U (𝑅𝑆

−1

).

• This item is immediate by a simple computation: if 𝑠 ∈ 𝑆, then (𝑠/1)
−1
= 1/𝑠, meaning

𝑎/𝑠 = 𝑎/1 ⋅ (𝑠/1)
−1
= 𝜑(𝑎)𝜑(𝑠)

−1, performing the computations as before.

• Notice that 𝑎/1 = 0/1 if and only if there exists 𝑠 ∈ 𝑆 such that 𝑎𝑠 = 0. Thus, the
kernel of 𝜑 is the set {𝑎 ∈ 𝑅 ∣ ∃𝑠 ∈ 𝑆 such that 𝑎𝑠 = 0}, as was desired.

Therefore, 𝑅𝑆−1 is a right ring of fractions for 𝑅 relative to 𝑆.

For the converse, suppose 𝑅′ is a right ring of fractions for 𝑅 relative to 𝑆 and let
𝜑 ∶ 𝑅 → 𝑅

′ be the associated ring homomorphism. Then:

• Given 𝑎 ∈ 𝑅 and 𝑠 ∈ 𝑆, there exist 𝑟 ∈ 𝑅 and 𝑠′ ∈ 𝑆 such that 𝜑(𝑠)−1𝜑(𝑎) = 𝜑(𝑟)𝜑(𝑠′)−1

(by the first two properties of a right ring of fractions). We now get that 𝜑(𝑎𝑠′) = 𝜑(𝑠𝑟),
meaning 𝑎𝑠

′
− 𝑠𝑟 ∈ ker(𝜑). By the third property, there exists some 𝑠′′ ∈ 𝑆 with

(𝑎𝑠
′
− 𝑠𝑟)𝑠

′′
= 0, meaning 𝑎𝑠′𝑠′′ = 𝑠𝑟𝑠′′ ∈ 𝑎𝑆 ∩ 𝑠𝑅.

• Finally, if 𝑠𝑎 = 0, for 𝑎 ∈ 𝑅, 𝑠 ∈ 𝑆, then 𝜑(𝑠𝑎) = 0, meaning 𝜑(𝑎) = 0, since 𝜑(𝑠) ∈ U (𝑅
′
).

Ergo, there exists 𝑠′ ∈ 𝑆 such that 𝑎𝑠′ = 0.

■

Corollary 2.1.1.1. Let 𝑅 be a ring and let 𝑅𝑆−1 be a right ring of fractions of 𝑅 relative
to 𝑆. Consider 𝜑 ∶ 𝑅 → 𝑅𝑆

−1 the homomorphism 𝑎 ↦ 𝑎/1. Then, for all rings 𝑇 and for
all homomorphisms 𝑓 ∶ 𝑅 → 𝑇 with 𝑓 (𝑆) ⊂ U (𝑇 ), there’s a unique ring homomorphism
Φ ∶ 𝑅𝑆

−1
→ 𝑇 such that Φ ◦ 𝜑 = 𝑓 . In particular, any two right rings of fractions of 𝑅 relative

to 𝑆 are isomorphic.

Proof. Let Φ ∶ 𝑅𝑆
−1

→ 𝑇 be given by Φ(𝑎/𝑠) = 𝑓 (𝑎)𝑓 (𝑠)
−1. This mapping is well-defined,

since 𝑎/𝑠 = 𝑏/𝑡 if and only if there exist 𝑢, 𝑣 ∈ 𝑅 such that 𝑎𝑢 = 𝑏𝑣 and 𝑠𝑢 = 𝑡𝑣 ∈ 𝑆. Then,
𝑓 (𝑠), 𝑓 (𝑠𝑢) ∈ U (𝑇 ), meaning 𝑓 (𝑢) ∈ U (𝑇 ). Thus:

Φ(𝑎/𝑠) = 𝑓 (𝑎)(𝑓 (𝑢)𝑓 (𝑢)
−1
)𝑓 (𝑠)

−1
= 𝑓 (𝑎𝑢)𝑓 (𝑠𝑢)

−1
= 𝑓 (𝑏𝑣)𝑓 (𝑡𝑣)

−1
= Φ(𝑏/𝑡)

It’s straightforward to verify that Φ is a ring homomorphism. Moreover, Φ(𝑎/1) =

𝑓 (𝑎)𝑓 (1)
−1
= 𝑓 (𝑎), meaning Φ ◦ 𝜑 = 𝑓 . And it’s unique, as can be easily seen. ■

Evidently, there are leftward analogues for the constructions we have described above,
whose result would be a left ring of fractions 𝑆−1𝑅, for which 𝑡𝑎/𝑡𝑠 = 𝑎/𝑠 for all 𝑡 ∈ 𝑆.
Should both exist (that is, should 𝑆 be both a left and right denominator set), then the
left/right distinction becomes irrelevant, as we see below.
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Corollary 2.1.1.2. Let 𝑆 be both a left and right denominator set for a ring 𝑅. Then, 𝑆−1𝑅 ≅

𝑅𝑆
−1.

Corollary 2.1.1.3. Let 𝑅 be a domain and let 𝑆 = 𝑅
†. Then, there exists a right ring of

fractions of 𝑅 relative to 𝑆 if and only if 𝑎𝑅 ∩ 𝑏𝑅 ≠ {0}, for all 𝑎, 𝑏 ∈ 𝑆.

Proof. Evidently, 𝑆 is always right (and left) reversible, since 𝑅 doesn’t contain any zero-
divisors. Thus, first suppose that 𝑆 is right permutable and let 𝑟 , 𝑠 ∈ 𝑆. Then, 𝑟𝑡 = 𝑠𝑎 for
some 𝑎 ∈ 𝑅, 𝑡 ∈ 𝑆. And, since 𝑅 is a domain, 𝑟𝑡 ≠ 0. This means 𝑟𝑅 ∩ 𝑠𝑅 ≠ {0}.

On the other hand, if 𝑠𝑅 ∩ 𝑡𝑅 ≠ {0}, where 𝑠, 𝑡 ∈ 𝑆, let 𝑎 ∈ 𝑅. If 𝑎 = 0, 𝑎𝑆 ∩ 𝑠𝑅 = {0} ≠ ∅.
And, if 𝑎 ≠ 0, then 𝑎 ∈ 𝑆. Thus, by hypothesis, there exist 𝑏, 𝑡 such that 𝑎𝑏 = 𝑠𝑡 ≠ 0. As
𝑎𝑏 ≠ 0, 𝑏 ≠ 0. Ergo, 𝑏 ∈ 𝑆 and, as such, 𝑎𝑆 ∩ 𝑠𝑅 ≠ ∅. ■

Recall that an element of a ring is said to be regular if it’s not a zero divisor.

Definition. A ring 𝑅 is said to be a right Ore ring if the set of all regular elements of 𝑅
is a right denominator set for 𝑅 (that is, if this set is right permutable, since reversibility is
automatic in this case).

The condition described in Corollary 2.1.1.3 is known as the right Ore condition.
Thus, the corollary may be rephrased as “a domain is right Ore if and only if it satisfies the
right Ore condition”. Moreover, in this case, its right ring of fractions relative to 𝑆 = 𝑅

† is
a division ring, called its total classical field of fractions. Corollary 2.1.1.3 also allows
us to prove the following:

Corollary 2.1.1.4. Let 𝑅 be a domain. Then, 𝑅 is either right Ore, or it contains a right ideal
which is a free right 𝑅-module of infinite rank. In particular, every right Noetherian domain
is right Ore.

Proof. Suppose 𝑅 isn’t right Ore and let 𝑎, 𝑏 ∈ 𝑅
† be such that 𝑎𝑅 ∩ 𝑏𝑅 = {0}. We shall

show that {𝑎𝑗𝑏 ∣ 𝑗 ∈ ℕ} is 𝑅-linearly independent. Suppose ∑ 𝑎
𝑗
𝑏𝑟𝑗 = 0. Then, 𝑏𝑟0 +

𝑎(∑
𝑗≥1
𝑎
𝑗−1
𝑏𝑟𝑗) = 0. By hypothesis, since 𝑏𝑟0 = −𝑎(∑

𝑗≥1
𝑎
𝑗−1
𝑏𝑟𝑗), 𝑏𝑟0 = 0 and, therefore,

𝑟0 = 0.

But, then, 𝑎(∑
𝑗≥1
𝑎
𝑗−1
𝑏𝑟𝑗) = 0. Since 𝑅 is a domain and 𝑎 ≠ 0, ∑

𝑗≥1
𝑎
𝑗−1
𝑏𝑟𝑗 = 0. We can

now use an inductive argument to obtain that 𝑟𝑗 = 0 for all 𝑗. Thus, 𝑅 contains the right
ideal ⨁

𝑗≥0
𝑎
𝑗
𝑏𝑅, which is a free 𝑅-module of infinite rank. ■

2.2 Skew polynomial rings
A pretty general construction which allows us to obtain many different division rings

through Ore localization is that of the so-called “skew polynomial rings” (see [Lam01] and
[Coh03]). In order to define them, we first need the following concept:

Definition. Let 𝑅 be a ring and let 𝛼 ∶ 𝑅 → 𝑅 be a ring homomorphism. A (left) 𝛼-
derivation is an additive function 𝛿 ∶ 𝑅 → 𝑅 such that 𝛿(𝑎𝑏) = 𝛿(𝑎)𝑏 + 𝛼(𝑎)𝛿(𝑏). If
𝛼 = id𝑅 , then 𝛿 is simply called a derivation.
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Definition. Let 𝑅 be a ring, let 𝛼 ∶ 𝑅 → 𝑅 be a ring homomorphism and let 𝛿 ∶ 𝑅 → 𝑅

be an 𝛼-derivation. A skew polynomial ring defined by 𝛼 and 𝛿 over 𝑅, 𝑆 = 𝑅[𝑥 ; 𝛼, 𝛿], is
a ring such that:

1. 𝑅 is a subring of 𝑆;

2. There exists 𝑥 ∈ 𝑆 such that 𝑆 is a free left 𝑅-module, with basis {1, 𝑥, 𝑥2, ...};

3. 𝑥𝑟 = 𝛼(𝑟)𝑥 + 𝛿(𝑟), for all 𝑟 ∈ 𝑅;

As usual, it is important for us to verify that skew polynomial rings actually exist. This
could be done “from the ground up”, by explicitly defining operations on a set and verifying
the ring axioms (this is done in [Lam01], albeit without the tedious computations), but
checking associativity is far from easy. Alternatively, we can look at known rings and find
a subring which agrees with the definition we’ve laid out. This is done, for instance, in
[Coh03], and is the approach we follow here.

Proposition 2.2.1. Let 𝑅 be a ring, let 𝛼∶𝑅 → 𝑅 be a ring homomorphism and let 𝛿∶𝑅 → 𝑅

be an 𝛼-derivation. Then, there exists a skew polynomial ring defined by 𝛼 and 𝛿 over 𝑅.

Proof. Let 𝐸 = Endℤ 𝑅[𝑡] be the ring of endomorphisms of the (standard) polynomial ring
𝑅[𝑡] as an abelian group. We can define a faithful representation of 𝑅 via:

𝜆 ∶ 𝑅 → 𝐸

𝑟 ↦ 𝜆𝑟 ∶ 𝑅[𝑡] → 𝑅[𝑡]

𝑝(𝑡) ↦ 𝑟𝑝(𝑡)

Since 𝛼 and 𝛿 are both additive, we define 𝑥 ∈ 𝐸 such that:

𝑥

(

∑

𝑗

𝑟𝑗𝑡
𝑗

)

= ∑

𝑗

𝛼(𝑟𝑗)𝑡
𝑗+1

+ 𝛿(𝑟𝑗)𝑡
𝑗

Let, then, 𝑆 be the subring of 𝐸 generated by 𝜆(𝑅) and 𝑥 . From now on, we’ll identify 𝑎
and 𝜆𝑎. If 𝑎 ∈ 𝑅 and 𝑝(𝑡) = ∑

𝑗
𝑟𝑗𝑡

𝑗 , we get:

(𝑥𝑎)(𝑝(𝑡)) = ∑

𝑗

𝛼(𝑎𝑟𝑗)𝑡
𝑗+1

+ 𝛿(𝑎𝑟𝑗)𝑡
𝑗

= 𝛼(𝑎)

(

∑

𝑗

𝛼(𝑟𝑗)𝑡
𝑗+1

+ 𝛿(𝑟𝑗)𝑡
𝑗

)

+∑

𝑗

𝛿(𝑎)𝑟𝑗𝑡
𝑗

= 𝛼(𝑎)(𝑥(𝑝(𝑡))) + 𝛿(𝑎)(𝑝(𝑡))

= (𝛼(𝑎)𝑥 + 𝛿(𝑎))(𝑝(𝑡))

In other words, 𝑥𝑎 = 𝛼(𝑎)𝑥 + 𝛿(𝑎) for all 𝑎 ∈ 𝑅. In particular, 𝑥𝑅 ⊂ 𝑅𝑥 + 𝑅. Using induction,
we can easily check that 𝑥 𝑗𝑅 ⊂ 𝑅𝑥 𝑗 + 𝑅𝑥 𝑗−1 +⋯ + 𝑅. This implies

(

∑

𝑖

𝑅𝑥
𝑖

)(

∑

𝑗

𝑅𝑥
𝑗

)

= ∑

𝑖,𝑗

𝑅𝑥
𝑖
𝑅𝑥

𝑗
⊂ ∑

𝑖,𝑗

(𝑅𝑥
𝑖+𝑗

+⋯ + 𝑅𝑥
𝑗

) ⊂ ∑

𝑖

𝑅𝑥
𝑖
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and, in particular, ∑
𝑖
𝑅𝑥

𝑖 is a subring of 𝐸 containing 𝑆 (as it contains 𝑅 and 𝑥). At the
same time, it’s also clear that 𝑆 contains every element of ∑

𝑖
𝑅𝑥

𝑖 , meaning the inclusion
is, in fact, an equality. Thus, 𝑆 is a 𝑅-submodule of 𝐸 generated by {1, 𝑥, 𝑥

2
, ...}. All that’s

left is to check that these elements are 𝑅-LI.

From the definition of 𝑥 , 𝑥(𝑡 𝑖) = 𝑡
𝑖+1 for all 𝑖 ∈ ℕ. In particular, 𝑥 𝑗(1) = 𝑡

𝑗 . Ergo, if
∑ 𝑎𝑖𝑥

𝑖
= 0, where 𝑎𝑖 ∈ 𝑅, then:

0 =

(

∑

𝑖

𝑎𝑖𝑥
𝑖

)

(1) = ∑

𝑖

𝑎𝑖𝑡
𝑖
⟹ 𝑎𝑖 = 0, ∀𝑖

which concludes the proof. ■

Similarly to what happens to the standard polynomial rings over a ring 𝑅, their skew
analogues also satisfy a universal property.

Proposition 2.2.2. Let 𝑅 be a ring, 𝛼 ∶ 𝑅 → 𝑅 be a ring homomorphism and let 𝛿 ∶ 𝑅 → 𝑅

be an 𝛼-derivation. Let 𝑇 be a ring and let 𝜙 ∶ 𝑅 → 𝑇 be a ring homomorphism such that
𝑦𝜙(𝑎) = 𝜙(𝛼(𝑎))𝑦 + 𝜙(𝛿(𝑎)) for some 𝑦 ∈ 𝑇 . Then, there exists a unique ring homomorphism
𝜓 ∶ 𝑅[𝑥 ; 𝛼, 𝛿] → 𝑇 such that 𝜓 |𝑅 = 𝜙 and 𝜓 (𝑥) = 𝑦 .

Proof. Let 𝜓 (∑𝑖
𝑟𝑖𝑥

𝑖

) = ∑
𝑖
𝜙(𝑟𝑖)𝑦

𝑖 . It’s trivial to check that 𝜓 is well-defined, additive and
that 𝜓 (1) = 1. Let 𝑞(𝑥) = ∑ 𝑏𝑗𝑥

𝑗 . We get:

𝜓 (𝑥𝑞(𝑥)) = 𝜓

(

∑

𝑗

𝛼(𝑏𝑗)𝑥
𝑗+1

+ 𝛿(𝑏𝑗)𝑥
𝑗

)

= ∑

𝑗

𝜙(𝛼(𝑏𝑗))𝑦
𝑗+1

+ 𝜙(𝛿(𝑏𝑗))𝑦
𝑗

= 𝑦

(

∑

𝑗

𝜙(𝑏𝑗)𝑦
𝑗

)

= 𝜓 (𝑥)𝜓 (𝑞(𝑥))

Using induction, we can extend the result to 𝜓 (𝑥
𝑖
)𝜓 (𝑞(𝑥)) = 𝜓 (𝑥

𝑖
𝑞(𝑥)). Thus, it’s

immediate that, for all 𝑝(𝑥) ∈ 𝑅[𝑥 ; 𝛼, 𝛿], 𝜓 (𝑝(𝑥)𝑞(𝑥)) = 𝜓 (𝑝(𝑥))𝜓 (𝑞(𝑥)). The uniqueness of
𝜓 is clear. ■

If the underlying ring of a skew polynomial ring happens to be a division ring, we have
a noncommutative analogue of the Euclidean algorithm for standard polynomials.

Proposition 2.2.3. Let 𝐷 be a division ring, let 𝛼 ∶ 𝐷 → 𝐷 be a ring homomorphism and
let 𝛿 ∶ 𝐷 → 𝐷 be an 𝛼-derivation. Then, given 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐷[𝑥 ; 𝛼, 𝛿], 𝑞(𝑥) ≠ 0, there exist
unique 𝑑(𝑥), 𝑟(𝑥) ∈ 𝐷[𝑥 ; 𝛼, 𝛿], with either 𝑟(𝑥) = 0 or 𝜕𝑟(𝑥) < 𝜕𝑞(𝑥), such that 𝑝 = 𝑑𝑞 + 𝑟 .
Furthermore, if 𝛼 is surjective, then there exist unique 𝑑 ′

(𝑥), 𝑟
′
(𝑥) ∈ 𝐷[𝑥 ; 𝛼, 𝛿] such that

𝑝 = 𝑞𝑑
′
+ 𝑟

′ and either 𝑟 ′(𝑥) = 0 or 𝜕𝑟 ′(𝑥) < 𝜕𝑞(𝑥).
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Proof. Let 𝑝(𝑥) = ∑
𝑛

𝑖=0
𝑎𝑖𝑥

𝑖 and 𝑞(𝑥) = ∑
𝑚

𝑗=0
𝑏𝑗𝑥

𝑗 , with 𝑏𝑚 ≠ 0. If 𝑛 < 𝑚, we need
only take 𝑟 = 𝑝 and 𝑑 = 0. Otherwise, a straightforward computation yields 𝑎𝑛𝑥𝑛 =

𝑎𝑛𝛼
𝑛−𝑚

(𝑏
−1

𝑚
)𝑥

𝑛−𝑚
𝑏𝑚𝑥

𝑚
+ 𝑘(𝑥), in which 𝑘(𝑥) is either 0 or has degree strictly less than 𝑛.

Thus, if 𝑓 (𝑥) = 𝑝(𝑥) − 𝑎𝑛𝛼
𝑛−𝑚

(𝑏
−1

𝑚
)𝑥

𝑛−𝑚
𝑞(𝑥), then either 𝑓 = 0 or 𝜕𝑓 (𝑥) < 𝑛. Applying an

inductive argument, we obtain the desired 𝑑, 𝑟 .

If 𝑝 = 𝑑𝑞 + 𝑟 = 𝑑
′
𝑞 + 𝑟

′, then (𝑑 − 𝑑
′
)𝑞 + (𝑟 − 𝑟

′
) = 0. As 𝐷 is a domain and 𝛼 is injective,

the degree of the first term (if it’s nonzero) is at least that of 𝑞, while the second term (also,
if it’s nonzero) has degree strictly less than that of 𝑞 This forces 𝑑 = 𝑑

′ and 𝑟 = 𝑟 ′.

If 𝛼 is surjective, then so is 𝛼 𝑗 , for all 𝑗. In particular, there exists some 𝑐 ∈ 𝐷 such that
𝛼
𝑚
(𝑐) = 𝑏

−1

𝑚
𝑎𝑛. We then get 𝑎𝑛𝑥𝑛 = 𝑏𝑚𝑥𝑚𝑐𝑥𝑛−𝑚 + 𝑘(𝑥), where 𝑘(𝑥) is either 0 or has degree

strictly less than 𝑛. Again, using induction and the previous uniqueness argument, we get
the result. ■

Corollary 2.2.3.1. In the conditions of Proposition 2.2.3, every left ideal of 𝐷[𝑥 ; 𝛼, 𝛿] is
principal. If 𝛼 is surjective, then every right ideal of 𝐷[𝑥 ; 𝛼, 𝛿] is also principal. In particular,
𝐷[𝑥 ; 𝛼, 𝛿] is left Noetherian (and right Noetherian if 𝛼 is surjective).

Even though 𝑅[𝑥 ; 𝛼, 𝛿] isn’t generally a principal left ideal ring, the last part of Corol-
lary 2.2.3.1 is still valid if 𝑅 is left Noetherian (or right Noetherian, depending on the case)
and the endomorphism 𝛼 is bijective. These are the contents of the following result:

Theorem 2.2.4 (Hilbert’s Basis Theorem for skew polynomial rings). Let 𝑅 be a ring,
let 𝛼 ∶ 𝑅 → 𝑅 be an automorphism and let 𝛿 ∶ 𝑅 → 𝑅 be an 𝛼-derivation. If 𝑅 is right
(respectively, left) Noetherian, then so is 𝑅[𝑥 ; 𝛼, 𝛿].

Proof. First, we note that it’s sufficient to prove only the right Noetherian case (for the
left analogue, we only have to use the fact that 𝑅[𝑥 ; 𝛼, 𝛿]𝑜𝑝 = 𝑅

𝑜𝑝
[𝑥 ; 𝛼

−1
, −𝛿𝛼

−1
] and the

result becomes an immediate corollary). Let 𝐼 be a right ideal of 𝑅[𝑥 ; 𝛼, 𝛿] and define
𝐽 = {𝑟 ∈ 𝑅 ∣ 𝑟𝑥

𝑑
+⋯ + 𝑟0 ∈ 𝐼 for some 𝑑 and 𝑟𝑑−1, ..., 𝑑0 ∈ 𝑅} (i.e., 𝐽 is the set of the leading

coefficients of the polynomials in 𝐼 ).

Since 𝐼 is a right ideal of 𝑅[𝑥 ; 𝛼, 𝛿], if 𝑟𝑥𝑑 +⋯ + 𝑟0 ∈ 𝐼 , then 𝑟𝑥𝑑+𝑘 +⋯ + 𝑟0𝑥
𝑘
∈ 𝐼 . Thus,

it’s easy to see that 𝐽 is an additive subgroup of 𝑅. Furthermore, as 𝛼 is an automorphism,
given 𝑎 ∈ 𝑅, 𝑟𝑥𝑑𝛼−𝑑

(𝑎) +⋯ + 𝑟0𝛼
−𝑑
(𝑎) ∈ 𝐼 . The leading term of this polynomial, when we

shift the coefficients from right to left, is 𝑟𝑎𝑥𝑑 , meaning that 𝑟𝑎 ∈ 𝐽 for all 𝑟 ∈ 𝐽 , 𝑎 ∈ 𝑅.
Therefore, 𝐽 is a right ideal of 𝑅.

As 𝑅 is right Noetherian, 𝐽 is finitely generated. This means we can write 𝐽 = 𝑟1𝑅+⋯+𝑟𝑘𝑅

for some 𝑟𝑖 ∈ 𝑅. Let 𝑝𝑖(𝑥) ∈ 𝐼 be polynomials with leading coefficients 𝑟𝑖 (which exist, from
the definition of 𝐽 ). Consider 𝑛 = max{𝜕𝑝𝑖}. Thus, 𝑞𝑖(𝑥) = 𝑝𝑖(𝑥)𝑥𝑛−𝜕𝑝𝑖 are elements of 𝐼 of
degree 𝑛 and leading coefficient 𝑟𝑖 .

In the proof of Proposition 2.2.1, we saw that ∑𝑛−1

𝑖=0
𝑅𝑥

𝑖
= ∑

𝑛−1

𝑖=0
𝑥
𝑖
𝑅 (indeed, we only

saw one inclusion, but the other one follows from the fact that 𝛼 is bijective). Thus, if we
define 𝑁 = ∑

𝑛−1

𝑖=0
𝑅𝑥

𝑖 , then 𝑁 is a right 𝑅-module and, therefore, as 𝑅 is right Noetherian,
so is 𝑁 . This means 𝑁 ∩ 𝐼 is a finitely generated right 𝑅-module. Suppose, then, that it’s
generated by 𝑓1, ..., 𝑓𝑡 .
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Let 𝐼0 = ∑
𝑘

𝑖=1
𝑞𝑘𝑅 +∑

𝑡

𝑗=1
𝑓𝑡𝑅. If 𝑝 ∈ 𝐼 has degree less then 𝑛, then 𝑝 ∈ 𝑁 ∩ 𝐼 , meaning

𝑝 ∈ 𝐼0. And if 𝑝 has degree 𝑚 ≥ 𝑛, we can assume, inductively, that every polynomial in 𝐼
with degree less then 𝑚 is in 𝐼0. Using the definition of 𝐽 , we write:

𝑝(𝑥) = 𝑟𝑥
𝑚
+⋯ + 𝑎0, where 𝑟 = 𝑟1𝑏1 +⋯ + 𝑟𝑘𝑏𝑘 , for some𝑏1, ..., 𝑏𝑘 ∈ 𝑅

As 𝑞𝑖 has leading coefficient 𝑟𝑖 , it’s easy to see that 𝑞𝑖𝛼−𝑛
(𝑏𝑖) has leading coefficient

𝑟𝑖𝑏𝑖 . Now defining 𝑞(𝑥) = ∑
𝑖
𝑞𝑖(𝑥)𝛼

−𝑛
(𝑏𝑖)𝑥

𝑚−𝑛, we obtain 𝜕(𝑝 − 𝑞) < 𝑚 and 𝑝 − 𝑞 ∈ 𝐼 . By
hypothesis, then, 𝑝 − 𝑞 ∈ 𝐼0. But 𝑞 ∈ 𝐼0 by construction, implying 𝑝 ∈ 𝐼0. This yields 𝐼 = 𝐼0,
which is finitely generated, finishing the proof. ■

Corollary 2.2.4.1. If 𝑅 is a right (resp. left) Noetherian domain, 𝛼 ∶ 𝑅 → 𝑅 is an au-
tomorphism and 𝛿 ∶ 𝑅 → 𝑅 is an 𝛼-derivation, then 𝑅[𝑥 ; 𝛼, 𝛿] is a right (resp. left) Ore
domain.

Proof. All that’s left is to prove that 𝑅[𝑥 ; 𝛼, 𝛿] is a domain, due to Theorem 2.2.4 and
Corollary 2.1.1.4. But, if 𝑝(𝑥) = 𝑎𝑚𝑥𝑚 +⋯ + 𝑎0 and 𝑞(𝑥) = 𝑏𝑛𝑥𝑛 +⋯ + 𝑏0 are two nonzero
polynomials, we get 𝑝(𝑥)𝑞(𝑥) = 𝑎𝑚𝛼𝑚(𝑏𝑚)𝑥𝑚+𝑛

+ 𝑘(𝑥), where 𝑘(𝑥) is either 0 or has degree
strictly less than 𝑚 + 𝑛. Since 𝛼 is injective and 𝑅 is a domain, we get the result. ■

Actually, the Corollary 2.2.4.1 is still valid under the hypothesis that 𝑅 is a right Ore
domain. That said, for the purposes of this work, the version we have presented will be
sufficient. Another important corollary is the following result taken from [Pas14]:

Corollary 2.2.4.2. Let 𝑆 be a ring, let 𝑅 be a right Noetherian subring of 𝑆 and let 𝑥 ∈ 𝑆 be
invertible. Suppose 𝑥−1𝑅𝑥 = 𝑅 and 𝑆 = 𝑅[𝑥, 𝑥

−1
]. Then, 𝑆 is right Noetherian.

Proof. It’s trivial to check, using 𝑥
−1
𝑅𝑥 = 𝑅 and the logic of Proposition 2.2.1, that 𝑆 =

{

∑
𝑛

𝑖=−𝑚
𝑟𝑖𝑥

𝑖
∣ 𝑚, 𝑛 ∈ ℕ

}

. Let 𝑆+ be the subring of 𝑆 generated by 𝑅 and 𝑥 . If 𝑟 ∈ 𝑅, then
𝑥𝑟 = (𝑥𝑟𝑥

−1
)𝑥 . And of course 𝜎 ∶ 𝑅 → 𝑅 defined by 𝜎 (𝑟) = 𝑥𝑟𝑥−1 is an automorphism of

𝑅. Ergo, 𝑆+ = 𝑅[𝑡 ; 𝜎]/𝐽 , where 𝐽 is some ideal, using the universal property of the skew
polynomial ring1. In particular, 𝑆+ is right Noetherian.

If 𝐼 is a right ideal of 𝑆, 𝐼 + = 𝐼 ∩𝑆+ is a right ideal of 𝑆+ and, therefore, 𝐼 + = 𝑠1𝑆++⋯+𝑠𝑘𝑆
+.

If 𝑠 ∈ 𝑆, there’s some 𝑚 ∈ ℕ such that 𝑠𝑥𝑚 ∈ 𝑆
+. In particular, the same is true if 𝑠 ∈ 𝐼 ,

so that 𝑠𝑥𝑚 = ∑
𝑖
𝑠𝑖𝑏𝑖 for some 𝑏𝑖 ∈ 𝑆+. This yields 𝑠 = ∑

𝑖
𝑠𝑖(𝑏𝑖𝑥

−𝑚
) ∈ 𝑠1𝑆 + ⋯ + 𝑠𝑘𝑆. Thus,

𝐼 = 𝑠1𝑆 +⋯ + 𝑠𝑘𝑆 is finitely generated, concluding the proof. ■

2.3 Group rings
Roughly speaking, a group ring over a ring 𝑅 is a free 𝑅-module that admits a group as

a basis, hence inducing a multiplication and ring structure in the underlying module. Even
though they’re subjected to intense study in their own right, we’ll focus on the group
rings which may be embedded in division rings, mostly following the ideas laid out in
[Pas14], [Lam01] and [MS02].

1 Here, we took the derivation to be the “zero derivation”; the function 𝛿(𝑎) = 0 for all 𝑎.
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Before giving a more precise definition of group rings, we establish a bit of notation. If
𝐺 and 𝐻 are abelian groups (written additively) and 𝑓 ∶ 𝐺 → 𝐻 is a function, the support
of 𝑓 , denoted supp(𝑓 ), is the set supp(𝑓 ) = {𝑥 ∈ 𝐺 ∣ 𝑓 (𝑥) ≠ 0}.

Definition. Let 𝑅 be a ring and let 𝐺 be a group. The group ring2 of 𝐺 over 𝑅 is the
set 𝑅𝐺 = {𝛼 ∶ 𝐺 → 𝑅 ∣ supp(𝛼) is finite}, where we denote an element 𝛼 ∈ 𝑅𝐺 by
𝛼 = ∑ 𝛼(𝑔)𝑔 = ∑ 𝛼𝑔𝑔, together with the operations

∑

𝑔∈𝐺

𝛼𝑔𝑔 +∑

𝑔∈𝐺

𝛽𝑔𝑔 = ∑

𝑔∈𝐺

(𝛼𝑔 + 𝛽𝑔)𝑔

(

∑

𝑔∈𝐺

𝛼𝑔𝑔

)(

∑

ℎ∈𝐺

𝛽ℎℎ

)

= ∑

𝑔,ℎ∈𝐺

𝛼𝑔𝛽ℎ𝑔ℎ = ∑

𝑘∈𝐺

𝛾𝑘𝑘, where 𝛾𝑘 = ∑

𝑔ℎ=𝑘

𝛼𝑔𝛽ℎ = ∑

𝑔∈𝐺

𝛼𝑔𝛽𝑔−1𝑘

We remark that, in the definition of the product of two elements of 𝑅𝐺 we’ve written
a few equalities. It’s straightforward to check that ∑

𝑔,ℎ∈𝐺
𝛼𝑔𝛽ℎ𝑔ℎ = ∑

𝑘∈𝐺
𝛾𝑘𝑘 (for the 𝛾𝑘 as

in the definition), meaning either one can be taken as the definition.

Notice that the mapping 𝜄 ∶ 𝑅 → 𝑅𝐺 such that 𝜄(𝑥) = 𝑥1 is an injective ring homo-
morphism and the mapping 𝑗 ∶ 𝐺 → U (𝑅𝐺) such that 𝑗(𝑔) = 1𝑔 is an injective group
homomorphism. So, we can view 𝑅 as a subring of 𝑅𝐺 and 𝐺, as a subgroup of U (𝑅𝐺).
Using these identifications, group rings satisfy the following universal property:

Proposition 2.3.1. Let 𝑅 be a ring and 𝐺 be a group. Then, given a ring 𝑆, a ring homomor-
phism 𝜑 ∶ 𝑅 → 𝑆 and a group homomorphism 𝜓 ∶ 𝐺 → U (𝑆), there exists a unique ring
homomorphism Ψ ∶ 𝑅𝐺 → 𝑆 such that Ψ∣

𝑅
= 𝜑 and Ψ∣

𝐺
= 𝜓 .

Proof. Suppose Ψ ∶ 𝑅𝐺 → 𝑆 satisfies the conditions outlined in the statement of the
proposition. Then, we get

Ψ

(

∑

𝑔∈𝐺

𝛼𝑔𝑔

)

= ∑

𝑔∈𝐺

Ψ(𝛼𝑔𝑔) = ∑

𝑔∈𝐺

Ψ(𝛼𝑔1)Ψ(1𝑔) = ∑

𝑔∈𝐺

𝜑(𝛼𝑔)𝜓 (𝑔)

showing that, if such a homomorphism exists, it is unique.

Now take that to be the definition of a function Ψ ∶ 𝑅𝐺 → 𝑆. It is well-defined, as
each element of 𝑅𝐺 can be expressed uniquely in the form ∑

𝑔∈𝐺
𝛼𝑔𝑔 (this follows from the

usual definition of equality of functions). Furthermore, it is clear that Ψ(1) = 1 and that Ψ
restricts to 𝜑 on 𝑅 and to 𝜓 on 𝐺. Finally

Ψ

(

∑

𝑔∈𝐺

𝛼𝑔𝑔 +∑

𝑔∈𝐺

𝛽𝑔𝑔

)

= ∑

𝑔∈𝐺

𝜑(𝛼𝑔 + 𝛽𝑔)𝜓 (𝑔)

= ∑

𝑔∈𝐺

𝜑(𝛼𝑔)𝜓 (𝑔) + 𝜑(𝛽𝑔)𝜓 (𝑔) = Ψ

(

∑

𝑔∈𝐺

𝛼𝑔𝑔

)

+ Ψ

(

∑

𝑔∈𝐺

𝛽𝑔𝑔

)

2 Whenever 𝑅 is commutative, we may use the terms “group ring” and “group algebra” interchangeably.
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and

Ψ

((

∑

𝑔∈𝐺

𝛼𝑔𝑔

)(

∑

ℎ∈𝐺

𝛽ℎℎ

))

= ∑

𝑘∈𝐺

𝜑(𝛾𝑘)𝜓 (𝑘)

= ∑

𝑘∈𝐺

𝜑

(

∑

𝑔ℎ=𝑘

𝛼𝑔𝛽ℎ
)

𝜓 (𝑘)

= ∑

𝑘∈𝐺

∑

𝑔ℎ=𝑘

𝜑(𝛼𝑔)𝜑(𝛽ℎ)𝜓 (𝑘)

=

(

∑

𝑔∈𝐺

𝜑(𝛼𝑔)𝜓 (𝑔)

)(

∑

ℎ∈𝐺

𝜑(𝛽ℎ)𝜓 (ℎ)

)

= Ψ

(

∑

𝑔∈𝐺

𝛼𝑔𝑔

)

Ψ

(

∑

ℎ∈𝐺

𝛽ℎℎ

)

meaning Ψ is a well-defined ring homomorphism, finishing the proof. ■

It will be important to relate the group ring 𝑅𝐺 with 𝑅[𝐺/𝑁 ], where 𝑁 is a normal
subgroup of 𝐺. The main tool in this relationship is a special ideal of 𝑅𝐺, which we define
next.

Definition. Let 𝐺 be a group, let 𝑅 be a ring and let 𝑁 ⊴ 𝐺. The augmentation ideal
𝚫(𝐆,𝐍) of 𝐆 relative to 𝐍 is the kernel of the homomorphism:

𝜔𝑁 ∶ 𝑅𝐺 → 𝑅[𝐺/𝑁 ]

∑ 𝛼𝑔𝑔 ↦ ∑ 𝛼𝑔𝑔

where 𝑔 denotes the natural projection of 𝑔 in the quotient group. If 𝑁 = 𝐺, we write
Δ(𝐺, 𝐺) = Δ(𝐺) and identify 𝑅[𝐺/𝐺] and 𝑅. This last one is simply called the augmentation
ideal of 𝑅𝐺.

We can actually obtain a set of generators for Δ(𝐺, 𝑁 ), which make practical applica-
tions a lot simpler.

Proposition 2.3.2. Let 𝑅 be a ring, let 𝐺 be a group and let 𝑁 ⊴ 𝐺. We have:

Δ(𝐺, 𝑁 ) =

{

∑

ℎ∈𝑁

𝑋ℎ(ℎ − 1) ∣ 𝑋ℎ ∈ 𝑅𝐺, where ∑

ℎ∈𝑁

𝑋ℎ(ℎ − 1) is finite

}

Proof. Let 𝑋 be a transversal for 𝑁 in 𝐺 (that is, 𝑋 is a complete set of representatives of
the cosets of 𝑁 in 𝐺). If 𝑔 ∈ 𝐺, then 𝑔 ∈ 𝑥𝑔𝑁 for some 𝑥𝑔 ∈ 𝑋 , meaning 𝑔 = 𝑥𝑔𝑛𝑔 , with
𝑛𝑔 ∈ 𝑁 . Thus, given an arbitrary element 𝛼 ∈ 𝑅𝐺, we can write:

𝛼 = ∑

𝑔∈𝐺

𝛼𝑔𝑔 = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔𝑛𝑔



2.3 | GROUP RINGS

43

In particular, with the notation above, we have:

𝜔𝑁 (𝛼) = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔 = ∑

𝑥∈𝑋
(

∑

𝑔∈𝑥𝑁

𝛼𝑔
)

𝑥

Therefore, 𝜔𝑁 (𝛼) = 0 if and only if ∑
𝑔∈𝑥𝑁

𝛼𝑔 = 0 for all 𝑥 ∈ 𝑋 . On the one hand, if
∑

𝑔∈𝑥𝑁
𝛼𝑔 = 0, then

𝛼 = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔𝑛𝑔 = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔𝑛𝑔 −∑

𝑥∈𝑋
(

∑

𝑔∈𝑥𝑁

𝛼𝑔
)

𝑥 = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔𝑛𝑔 −∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔 = ∑

𝑔∈𝐺

𝛼𝑔𝑥𝑔(𝑛𝑔 − 1)

since we’ve only subtracted 0. This gives us one inclusion. The other one is trivial: indeed,
if 𝛼 = ∑

ℎ∈𝑁
𝑋ℎ(ℎ − 1), then

𝜔𝑁 (𝛼) = ∑

ℎ∈𝑁

𝜔𝑁 (𝑋ℎ)(1 − 1) = 0

■

There are two very well-know problems in the theory of group-rings which are relevant
to our goals. The first, known as the “zero-divisor problem”, asks when a group ring is a
domain. The second asks when a group ring is Noetherian. Both are still open to this day,
but certain results are known. We present a few of these results in what follows, starting
with those on the latter problem.

Theorem 2.3.3 (P. Hall). Let 𝑅 be a right Noetherian ring and 𝐺 be a polycyclic-by-finite
group (that is, there exists some polycyclic 𝑁 ⊴ 𝐺 such that 𝐺/𝑁 is finite). Then, 𝑅𝐺 is right
Noetherian.

Proof. Let 1 = 𝑁0 ⊲ 𝑁1 ⊲ ... ⊲ 𝑁𝑘 = 𝑁 be a polycyclic series for 𝑁 ⊴ 𝐺 with [𝐺 ∶ 𝑁 ] finite.
This yields a subnormal series for 𝐺, 𝑁0 ⊲ 𝑁1 ⊲ ... ⊲ 𝑁 ⊴ 𝐺. Let’s define 𝑆𝑖 = 𝑅𝑁𝑖 . Then,
𝑆0 = 𝑅 is right Noetherian, by hypothesis. Suppose, as an inductive hypothesis, that 𝑆𝑖 is
right Noetherian.

If 𝑖 ≠ 𝑘, then 𝑁𝑖+1/𝑁𝑖 is cyclic, by hypothesis, and therefore, there exists 𝑥 ∈ 𝑁𝑖+1 such
that, if 𝑔 ∈ 𝑁𝑖+1, then 𝑔 = 𝑥

𝑘
ℎ for some ℎ ∈ 𝑁𝑖 . In particular, 𝑁𝑖+1 = ⟨𝑁𝑖 , 𝑥⟩ and thus,

𝑆𝑖+1 = 𝑆𝑖[𝑥, 𝑥
−1
]. By Corollary 2.2.4.2, 𝑆𝑖+1 is right Noetherian. Thus, by induction, 𝑅𝑁 is

right Noetherian.

Let 𝑋 = {𝑥1, ..., 𝑥𝑡} be a transversal for 𝑁 in 𝐺. Thus, if 𝑔 ∈ 𝐺, 𝑔 = 𝑥𝑖ℎ, for some 𝑖 and
for some ℎ ∈ 𝑁 . This shows us 𝑅𝐺 ⊂ 𝑥1𝑅𝑁 +⋯ + 𝑥𝑡𝑅𝑁 , from which we get the equality
𝑅𝐺 = 𝑥1𝑅𝑁 + ⋯ + 𝑥𝑡𝑅𝑁 . That is to say, 𝑅𝐺 is a f.g. right 𝑅𝑁 -module. By the preceding
case, 𝑅𝑁 is right Noetherian and, therefore, 𝑅𝐺 is a right Noetherian 𝑅𝑁 -module. In
particular, it’s a right Noetherian 𝑅𝐺-module (since every 𝑅𝐺-submodule of 𝑅𝐺 is also a
𝑅𝑁 -submodule), which finishes the proof. ■

Corollary 2.3.3.1. Let 𝐺 be a finitely generated nilpotent group and let 𝐾 be a field. Then,
𝐾𝐺 is right Noetherian.
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Proof. This is a direct corollary of Proposition 1.5.3 and the preceding theorem. ■

We now present a result relative to the zero-divisor problem. We’ll actually do a bit
more, and show that, for certain classes of groups and rings, their group ring can be
embedded in a division ring.

Definition. Let 𝑅 be a ring and let 𝐺 be an ordered group. The Malcev-Neumann series
ring of 𝑅 and 𝐺 is the set 𝑅((𝐺)) = {𝛼 ∶ 𝐺 → 𝑅 ∣ supp(𝛼) is well-ordered}, with the
operations:

∑

𝑔∈𝐺

𝛼𝑔𝑔 +∑

𝑔∈𝐺

𝛽𝑔𝑔 = ∑

𝑔∈𝐺

(𝛼𝑔 + 𝛽𝑔)𝑔

(

∑

𝑔∈𝐺

𝛼𝑔𝑔

)(

∑

ℎ∈𝐺

𝛽ℎℎ

)

= ∑

𝑔,ℎ∈𝐺

𝛼𝑔𝛽ℎ𝑔ℎ = ∑

𝑘∈𝐺

𝛾𝑘𝑘, where 𝛾𝑘 = ∑

𝑔ℎ=𝑘

𝛼𝑔𝛽ℎ = ∑

𝑔∈𝐺

𝛼𝑔𝛽𝑔−1𝑘

Proposition 2.3.4. The preceding operations are well-defined and with them, 𝑅((𝐺)) is a
ring.

Proof. First, note that supp(𝛼 + 𝛽) ⊂ supp(𝛼) ∪ supp(𝛽). Indeed, if 𝑔 ∉ supp(𝛼) ∪ supp(𝛽),
then 𝛼𝑔 = 𝛽𝑔 = 0, in which case (𝛼𝑔 + 𝛽𝑔) = 0. By Proposition 1.6.7, therefore, addition is
well-defined.

For multiplication, suppose 𝑔 ∈ supp(𝛼𝛽). Then, 𝛾𝑔 ≠ 0, where 𝛾𝑔 = ∑
ℎ∈𝐺

𝛼ℎ𝛽ℎ−1𝑔 . This
means at least one term 𝛼ℎ𝛽ℎ−1𝑘 is nonzero, meaning there exists some ℎ ∈ 𝐺 for which both
𝛼ℎ ≠ 0 and 𝛽ℎ−1𝑔 ≠ 0. Thus, ℎ ∈ supp(𝛼) and ℎ−1𝑔 ∈ supp(𝛽), implying 𝑔 ∈ supp(𝛼) supp(𝛽).
Therefore, we have proved supp(𝛼𝛽) ⊂ supp(𝛼) supp(𝛽). By Proposition 1.6.7, multiplica-
tion is also well-defined (since said proposition also ensures the sum appearing in 𝛾𝑔 is
finite).

All that’s left is to verify that these operations satisfy the axioms defining a ring. For
the reader’s sake, we omit this relatively straightforward verification. ■

Proposition 2.3.5. Let𝐺 be an ordered group with positive element cone 𝑃 , and let 𝛼 ∈ 𝑅((𝐺))

with 𝑆 ∶= supp(𝛼) ⊂ 𝑃 . Then, for all 𝑎𝑛 ∈ 𝑅, the sum ∑
𝑛∈ℕ

𝛼
𝑛 is well-defined in 𝑅((𝐺)).

Proof. Let 𝛽 = ∑
𝑛∈ℕ

𝛼
𝑛. We know, from the previous verification that 𝑅((𝐺)) is a ring, that

supp(𝜁 𝜉 ) ⊂ supp(𝜁 ) supp(𝜉 ), for 𝜁 , 𝜉 ∈ 𝑅((𝐺)). In particular, supp(𝛼2
) ⊂ 𝑆

2. Inductively, we
can extend this result to show that supp(𝛼𝑛) ⊂ 𝑆𝑛. In particular, supp(𝛽) ⊂ {1} ∪ 𝑆

∞. By
Proposition 1.6.8, this set is well-ordered. Moreover, each 𝑔 belongs to a finite number
of 𝑆𝑛, meaning the sums that determine their coefficients in 𝛽 are finite. Hence, 𝛽 is a
well-defined element of 𝑅((𝐺)). ■

Proposition 2.3.6. Let 𝑅 be a division ring and let 𝐺 be an ordered group. Then, 𝑅((𝐺)) is a
division ring.
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Proof. Let 𝛽 ≠ 0 in 𝑅((𝐺)) and take 𝑔0 = min supp(𝛽). We have:

𝛽
−1

𝑔0
𝛽𝑔

−1

0
= 𝛽

−1

𝑔0

(

∑

𝑔∈𝐺

𝛽𝑔𝑔

)

𝑔
−1

0
= 𝛽

−1

𝑔0

(

∑

𝑔∈𝐺

𝛽𝑔𝑔0
𝑔

)

= 1 + ∑

𝑔∈𝐺⧵{1}

𝛽𝑔𝑔0
𝑔

Let’s define 𝛼 = −∑
𝑔∈𝐺⧵{1}

𝛽𝑔𝑔0
𝑔. If 𝑔 ∈ supp(𝛼), then 𝑔𝑔0 ∈ supp(𝛽). From the definition

of 𝑔0, this then implies 𝑔𝑔0 ≥ 𝑔0; in particular, 𝑔 ≥ 1 and, as 𝑔 ≠ 1, 𝑔 > 1. Hence, supp(𝛼) ⊂ 𝑃 .
From Proposition 2.3.5:

(𝛽
−1

𝑔0
𝛽𝑔

−1

0
)

(

∑

𝑛∈ℕ

𝛼
𝑛

)

= (1 − 𝛼)

(

∑

𝑛∈ℕ

𝛼
𝑛

)

= 1 =

(

∑

𝑛∈ℕ

𝛼
𝑛

)

(𝛽
−1

𝑔0
𝛽𝑔

−1

0
)

Thus

(𝛽𝑔
−1

0
)

(

∑

𝑛∈ℕ

𝛼
𝑛

)

= 𝛽𝑔0
⟹ 𝛽

(

𝑔
−1

0
∑

𝑛∈ℕ

𝛼
𝑛
𝛽
−1

𝑔0

)

= 1 =

(

𝑔
−1

0
∑

𝑛∈ℕ

𝛼
𝑛
𝛽
−1

𝑔0

)

𝛽

This means 𝛽 is invertible, and since it was an arbitrary element of 𝑅((𝐺)), this finishes
the proof. ■

Corollary 2.3.6.1. If 𝑅 is a division ring and 𝐺 is an ordered group, then 𝑅𝐺 is a domain.

Proof. Just note that finite subsets of an ordered group are well-ordered, meaning 𝑅𝐺

naturally embeds in 𝑅((𝐺)). ■

Corollary 2.3.6.2. If 𝑅 is a division ring and 𝐺 is a residually torsion-free nilpotent group,
then 𝑅𝐺 is a domain which can be embedded in a division ring.

Proof. It’s a consequence of Proposition 1.6.5. ■
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Chapter 3

Free groups in division rings

With all these constructions and properties out of the way, we are now able to establish
results about free groups in the multiplicative groups of division rings. In fact, in some
cases, we’re also able to find free groups in groups of units of algebras which are not
necessarily division algebras. Most of what is done here (except for the first section) will
come from the main paper upon which the dissertation is based; namely, [GMS99].

Moreover, we want to find free pairs explicitly. By this, we mean one of two things:
firstly, some division rings (and other algebras) naturally come with a basis. In this case,
we want to express the free pairs in that basis. Secondly, if there isn’t a “special” basis, we
want to find conditions for a couple of elements to generate a free group. This second case
will become more clear as we obtain some results.

In order to achieve our goal, it will sometimes be convenient to restrict our attention
to a special kind of pair of elements, defined as follows:

Definition. Let 𝐺 be a group and let 𝐻 ⊴ 𝐺. Then, the pair 𝑔1, 𝑔2 is said to be semi-free
modulo H if it satisfies the following conditions:

• In 𝐺/𝐻 , ⟨𝑔1, 𝑔2⟩ ≅ ⟨𝑔1⟩ ∗ ⟨𝑔2⟩;

• 𝑔1 has order greater than or equal to 3 and 𝑔2 has order 2;

If 𝐻 = 𝑍 (𝐺), we say the pair is semi-free modulo center and, if 𝐻 = 1, the pair is said to
be semi-free, for short.

Similar to what happens to free pairs, we can lift semi-free pairs modulo 𝐻 via homo-
morphisms, as shows the following proposition.

Proposition 3.0.1. Let 𝐾 ⊴ 𝐺 and suppose a pair {𝜋 (𝑥), 𝜋 (𝑦)} is semi-free modulo some
normal subgroup 𝐻 = 𝐻 /𝐾 in 𝐺 = 𝐺/𝐾 , where 𝜋 ∶ 𝐺 → 𝐺/𝐾 is the canonical projection.
Then, {𝑥, 𝑦} is semi-free modulo 𝐻 in 𝐺.

Proof. We know, from the First and Third Isomorphism Theorems that the function

Φ ∶ 𝐺/𝐻 →

𝐺/𝐾

𝐻 /𝐾

such that Φ(𝑧𝐻 ) = 𝜋 (𝑦)𝐻 /𝐾 is a group isomorphism. Since the pair

{𝜋 (𝑥), 𝜋 (𝑦)} is semi-free modulo 𝐻 /𝐾 , we know 𝜋 (𝑦) has order 2 and 𝜋 (𝑥) has order at
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least 3 in the quotient, which is the image of Φ. As isomorphisms preserve order, the same
is true in the domain, which is 𝐺/𝐻 .

At the same time, any non-trivial reduced work in {𝑥𝐻 , 𝑦𝐻} in 𝐺/𝐻 would translate
(via Φ) into a non-trivial reduced word in {𝜋 (𝑥)𝐻 /𝐾, 𝜋 (𝑦)𝐻 /𝐾} in the image of Φ, which
can’t happen, by hypothesis. Hence, the pair {𝑥, 𝑦} is semi-free modulo 𝐻 , finishing the
proof. ■

Corollary 3.0.1.1. Let 𝜑 ∶ 𝐺 → 𝐻 be a group homomorphism and suppose {𝜑(𝑥), 𝜑(𝑦)} is
semi-free modulo 𝑁 ⊴ 𝐻 . Then, {𝑥, 𝑦} is semi-free modulo 𝜑−1

(𝑁 ∩ 𝜑(𝐺)) in 𝐺.

Proof. Of course, {𝜑(𝑥), 𝜑(𝑦)} is semi-free modulo 𝑁 in 𝜑(𝐺)𝑁 ≤ 𝐻 . Since 𝜑(𝐺)𝑁 /𝑁 ≅

𝜑(𝐺)/(𝑁 ∩ 𝜑(𝐺)), by the Second Isomorphism Theorem, {𝜑(𝑥), 𝜑(𝑦)} is semi-free modulo
𝑁 ∩ 𝜑(𝐺) in 𝜑(𝐺). We can now use Proposition 3.0.1 to obtain the result, using the First
Isomorphism Theorem and the Correspondence Theorem. ■

While one might think semi-free pairs modulo some normal subgroup 𝐻 might be too
restrictive, the following proposition shows us how to recover free pairs from semi-free
pairs modulo 𝐻 :

Proposition 3.0.2. Let 𝐺 be a group, let 𝐻 ⊴ 𝐺 and let {𝑔1, 𝑔2} be a semi-free pair modulo
𝐻 . Then, the following pairs are free in 𝐺:

• {𝑔1𝑔2, 𝑔
2

1
𝑔2};

• {𝑔1, 𝑔2𝑔1𝑔2}, if 𝑔1 has infinite order in 𝐺/𝐻 ;

Proof. For the sake of simplicity, we’ll only prove the second item; the first one follows
from a similar argument.

Let 𝑤 be a non-trivial reduced word in 𝐺/𝐻 in {𝑥1, 𝑥2}, where 𝑥1 = 𝑔1 and 𝑥2 = 𝑔2𝑔1𝑔2.
Write 𝑤 = 𝑥

𝜖1

𝑖1
⋯ 𝑥

𝜖𝑘

𝑖𝑘
, where 𝑖𝑗 ∈ {1, 2} and 𝜖𝑗 ∈ {−1, 1}. We will show, using induction on 𝑘,

that if 𝑖𝑘 = 1, then 𝑤 ends in 𝑔1
𝑙𝜖𝑘 when reduced in {𝑔1, 𝑔2}, for some 𝑙 ∈ ℕ, and, if 𝑖𝑘 = 2,

it ends in 𝑔2𝑔1𝑙𝜖𝑘𝑔2 when reduced, for some 𝑙 ∈ ℕ.

If 𝑘 = 1, there’s nothing to prove (in this case, 𝑙 = 1). Now write 𝑤 = 𝑤
′
𝑥
𝜖𝑘

𝑖𝑘
. Suppose,

first, 𝑖𝑘−1 = 1. When reduced in {𝑔1, 𝑔2}, then,𝑤′
= 𝑤

′′
𝑔1

𝑙𝜖𝑘−1 by induction hypothesis, where
𝑤

′′ is reduced in {𝑔1, 𝑔2} and so is 𝑤′. If 𝑖𝑘 = 1, we get 𝑤 = 𝑤
′′
𝑔1

(𝑙+1)𝜖𝑘 , since 𝜖𝑘−1 can’t be
different from 𝜖𝑘 (since𝑤 was reduced in {𝑥1, 𝑥2}). And, if 𝑖𝑘 = 2, then𝑤 = 𝑤

′′
𝑔1

𝑙𝜖𝑘−1
𝑔2𝑔1

𝜖𝑘
𝑔2,

which is reduced in {𝑔1, 𝑔2}.

Now, suppose 𝑖𝑘−1 = 2. Then, the roles are reversed: 𝑤′
= 𝑤

′′
𝑔2𝑔1

𝑙𝜖𝑘−1
𝑔2 for some 𝑙 ∈ ℕ

as a reduced word in {𝑔1, 𝑔2}. If 𝑖𝑘 = 1, 𝑤 ends in 𝑔1 as a reduced word in {𝑔1, 𝑔2} and, if
𝑖𝑘 = 2, it ends in 𝑔2𝑔1(𝑙+1)𝜖𝑘𝑔2, since it was reduced in {𝑥1, 𝑥2} to begin with.

Thus, the result is established and, since 𝑔1 has infinite order, both 𝑔1
𝑙𝜖𝑘
𝑔2 and 𝑔1

𝑙𝜖𝑘

are non-trivial. In particular, 𝑤 itself is non-trivial when reduced in 𝑔1, 𝑔2. Then, 𝑤 ≠ 1,
meaning the pair {𝑥1, 𝑥2} is free, by Proposition 1.2.3. By Proposition 1.1.3, the required
pair is also free in 𝐺, lifting via the canonical projection. ■
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This means that, when we determine a pair of elements in a group 𝐺 which are semi-
free modulo some normal subgroup 𝐻 , we can use them to explicitly obtain a free pair in
𝐺.

3.1 Valuations
In order to obtain free pairs in division rings, we’ll usually need to construct suitable

sets to apply the Ping-Pong Lemma (Theorem 1.2.4). This will mostly be done through
valuations (more specifically, non-archimedean valuations), and so we take the time to
define them and briefly study some of their properties, mostly following [Jan96] and
[Rib99]. As usual, we begin with a definition.

Definition. Let 𝑅 be a ring and let 𝐺 be an ordered abelian group (written with additive
notation). Consider an element ∞ such that 𝑥 + ∞ = ∞ = ∞ + ∞ and 𝑥 < ∞ for all 𝑥 ∈ 𝐺,
by definition. A non-archimedean valuation is a function 𝑣 ∶ 𝑅 → 𝐺 ⊔ {∞} such that:

• 𝑣(𝑥) = ∞ ⟺ 𝑥 = 0;

• 𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦);

• 𝑣(𝑥 + 𝑦) ≥ min{𝑣(𝑥), 𝑣(𝑦)};

The valuation is called a discrete valuation if 𝐺 = ℤ. Given two discrete valuations
𝑣 ∶ 𝑅 → ℤ and 𝑤 ∶ 𝑅 → ℤ, they are said to be equivalent if there exists some 𝑎 ∈ ℕ

such that 𝑣(𝑥) = 𝑎𝑤(𝑥) for all 𝑥 ∈ 𝑅.

We will mostly restrict ourselves to valuations defined over fields, but valuations
defined over noncommutative rings will appear in some instances (usually, over division
rings).

While this fact won’t actually be used, it’s interesting to note that valuations are
intrinsically related to metric spaces. Indeed, suppose we have a discrete valuation 𝑣 on a
field 𝐾 and let 𝑐 > 1 in ℝ. Define ||𝑥 || = 𝑐

−𝑣(𝑥), with the convention that ||0|| = 0. Then, the
following properties hold:

• ||𝑥 || ≥ 0, with equality if and only if 𝑥 = 0;

• ||𝑥𝑦 || = ||𝑥 || ⋅ ||𝑦 ||;

• ||𝑥 + 𝑦 || ≤ max{||𝑥 ||, ||𝑦 ||} and, in particular, ||𝑥 + 𝑦 || ≤ ||𝑥 || + ||𝑦 ||;

Any function || ⋅ || ∶ 𝐾 → ℝ satisfying these properties is called an absolute value. If it
satisfies (like our case here) ||𝑥 + 𝑦 || ≤ max{||𝑥 ||, ||𝑦 ||}, it’s called non-archimedean. It’s
easy to see that an absolute value endows 𝐾 with a metric 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦 ||, meaning one
can then use topological arguments for the study of 𝐾 (some things are done to this end
in [McC76], [Rib99] and [Jan96]).

Returning to valuations themselves, we begin with a few basic properties that will be
freely used from now on.

Proposition 3.1.1. Let 𝑅 be a ring and let 𝑣 ∶ 𝑅 → 𝐺 ⊔ {∞} be a valuation. Then, the
following are true:



50

3 | FREE GROUPS IN DIVISION RINGS

• 𝑣(1) = 0;

• 𝑣(𝑥−1) = −𝑣(𝑥), for all 𝑥 ∈ U (𝑅);

• 𝑣(−𝑥) = 𝑣(𝑥) for all 𝑥 ∈ 𝑅;

• If 𝑣(𝑥) ≠ 𝑣(𝑦), then 𝑣(𝑥 + 𝑦) = min{𝑣(𝑥), 𝑣(𝑦)};

Proof. • 𝑣(1) = 𝑣(1 ⋅ 1) = 𝑣(1) + 𝑣(1), from which the statement follows.

• 0 = 𝑣(1) = 𝑣(𝑥𝑥
−1
) = 𝑣(𝑥) + 𝑣(𝑥

−1
), by the preceding item.

• −1 = (−1)
−1, from which 𝑣(−1) = 0, using the preceding two statements. Now,

𝑣(−𝑥) = 𝑣((−1)𝑥) = 𝑣(−1) + 𝑣(𝑥) = 𝑣(𝑥).

• Suppose, without losing generality, that 𝑣(𝑥) < 𝑣(𝑦). Then, 𝑣(𝑥 + 𝑦) ≥ 𝑣(𝑥). At the
same time, 𝑣(𝑥) = 𝑣((𝑥 + 𝑦) − 𝑦) ≥ min{𝑣(𝑥 + 𝑦), 𝑣(−𝑦)}. Since 𝑣(𝑥) < 𝑣(𝑦), this
minimum has to be 𝑣(𝑥 + 𝑦), from which 𝑣(𝑥) ≥ 𝑣(𝑥 + 𝑦). Combining with the
previous inequality, the result follows.

■

When considering a valuation 𝑣 over a field 𝐾 , a special subring of 𝐾 merits attention -
the so called valuation ring associated with the valuation, defined as 𝑅 = {𝑥 ∈ 𝐾 ∣ 𝑣(𝑥) ≥

0}; it’s called a discrete valuation ring if the valuation 𝑣 is discrete. We study below
some of the main properties of these rings:

Proposition 3.1.2. Let 𝐾 be a field and let 𝑣 ∶ 𝐾 → 𝐺 ⊔ {∞} be a valuation on 𝐾 . Let
𝑅 = {𝑥 ∈ 𝐾 ∣ 𝑣(𝑥) ≥ 0} be the valuation ring associated with 𝑣. Then:

• If 𝑥 ∈ 𝐾 , then either 𝑥 ∈ 𝑅 or 𝑥−1 ∈ 𝑅. In particular, 𝐾 is the field of fractions of 𝑅;

• U (𝑅) = {𝑥 ∈ 𝑅 ∣ 𝑣(𝑥) = 0};

• 𝑅 is a local ring with maximal ideal p = {𝑥 ∈ 𝑅 ∣ 𝑣(𝑥) > 0};

• If 𝑅 is a discrete valuation ring, then it’s a PID;

Proof. • Since 𝐺 is an ordered group, either 𝑣(𝑥) ≥ 0, in which case 𝑥 ∈ 𝑅, or 𝑣(𝑥) < 0,
in which case 𝑣(𝑥−1) = −𝑣(𝑥) > 0 and 𝑥−1 ∈ 𝑅.

• An element 𝑥 of 𝑅 is invertible if and only if 𝑥−1 ∈ 𝑅, which means 𝑣(𝑥−1) = −𝑣(𝑥) ≥ 0.
But since 𝑥 ∈ 𝑅, 𝑣(𝑥) ≥ 0. Combining both yields the result.

• If 𝑥, 𝑦 ∉ U (𝑅), then 𝑣(𝑥), 𝑣(𝑦) > 0. Thus, 𝑣(𝑥 + 𝑦) ≥ min{𝑣(𝑥), 𝑣(𝑦)} > 0 and 𝑥 + 𝑦

isn’t invertible. This means 𝑅 is local (it’s one of many characterizations of local
rings) and its maximal ideal is p = 𝑅 ⧵ U (𝑅) = {𝑥 ∈ 𝑅 ∣ 𝑣(𝑥) > 0}.

• Let 𝜋 ∈ 𝑅 be some element such that 𝑣(𝜋 ) = 𝑛, 𝑛 ∈ ℕ and consider the ideal 𝑅𝜋 . If
𝑥 ∈ 𝑅 is such that 𝑣(𝑥) ≥ 𝑛, then 𝑥 = (𝑥𝜋

−1
)𝜋 in the field 𝐾 . Moreover, 𝑣(𝑥𝜋−1

) ≥ 0,
meaning this is an element of 𝑅. Thus, 𝑥 ∈ 𝑅𝜋 , and therefore 𝑅𝜋 = {𝑥 ∈ 𝑅 ∣ 𝑣(𝑥) ≥ 𝑛}.

Now let 𝐼 be a nonzero ideal of 𝑅 and take 𝛼 ∈ 𝐼 such that 𝑣(𝛼) = min{𝑣(𝑥) ∣ 𝑥 ∈ 𝐼}.
Then, 𝐼 contains the ideal 𝑅𝛼 = {𝑥 ∈ 𝑅 ∣ 𝑣(𝑥) ≥ 𝑣(𝛼)}. At the same time, by our
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choice of 𝛼 , 𝐼 is contained in this set. Hence, 𝐼 = 𝑅𝛼 , meaning every ideal of 𝑅 is
principal.

■

We now work towards constructing what is perhaps the most important example of a
valuation: the so-called p-adic valuations. In order to do so, there’s yet another class of
rings which has to be defined.

Definition. Let 𝑅 be an integral domain. Then, 𝑅 is said to be a Dedekind domain if it’s
integrally closed1, Noetherian and every one of its prime ideals is maximal.

While this definition may seem out of the blue at first, there is another characterization
of Dedekind domains which quickly relates them to what has been done so far.

Theorem 3.1.3. Let 𝑅 be an integral domain. Then, the following are equivalent:

• 𝑅 is a Dedekind domain;

• 𝑅 is Noetherian and the localization2 of 𝑅 at any nonzero prime ideal p, 𝑅p, is a discrete
valuation ring;

Proof. Since the proof is rather long and delves deep into commutative algebra, we refer
the reader to [Jan96, Theorem 3.16] to avoid developing all the details here. ■

This allows us to prove the following basic fact:

Proposition 3.1.4. Let 𝑅 be a Dedekind domain and let 𝑆 ⊂ 𝑅 be a multiplicative submonoid
not containing 0. Then the localization 𝑅𝑆 is also a Dedekind domain.

Proof. It is well-known that the ideals of 𝑅𝑆 are of the form 𝐼𝑆 , where 𝐼 is an ideal of 𝑅,
and that the prime ideals of 𝑅𝑆 are of the form p𝑆 , where p is a prime ideal of 𝑅 such that
p ∩ 𝑆 = ∅ (for a proof, see [AM94], for instance). Thus, it’s straightforward that 𝑅𝑆 is
Noetherian and that

𝑅p = (𝑅𝑆)p𝑆

when viewed as subsets of the field of fractions 𝐾 of 𝑅. From this, (𝑅𝑆)p𝑆 is a discrete
valuation ring. As every prime ideal of 𝑅𝑆 is of this form, the localization at any prime
ideal is a discrete valuation ring, meaning 𝑅𝑆 is a Dedekind domain, by Theorem 3.1.3. ■

Perhaps the most important property of Dedekind domains is that they satisfy a version
of the Fundamental Theorem of Arithmetic. In order to state the precise result, we first
define another concept.

Definition. Let 𝑅 be an integral domain with field of fractions 𝐾 . A fractional ideal of
𝑅 is a nonzero f.g. 𝑅-submodule of 𝐾 .

1 For a basic reference on commutative algebra, see [Sam08].
2 Again, we refer to [Jan96] and [Sam08] for concepts in commutative algebra.
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Note that, if M is a fractional ideal of 𝑅, then we can write M =
𝑝1

𝑞1

𝑅 +⋯ +
𝑝𝑘

𝑞𝑘

𝑅, where
𝑝𝑖 , 𝑞𝑖 ∈ 𝑅 and 𝑞𝑖 ≠ 0 for all 𝑖. Taking some common multiple 𝑑 of 𝑞1, ..., 𝑞𝑘 , we then get
𝑑M ⊂ 𝑅. We call the set M−1

= {𝑥 ∈ 𝐾 ∣ 𝑥M ⊂ 𝑅} the inverse of the fractional ideal
M.

If 𝑅 is a Noetherian integral domain and N is a nonzero 𝑅-submodule of 𝐾 such
that there exists 𝑑 ∈ 𝑅 ⧵ {0} with 𝑑N ⊂ 𝑅, then 𝑑N is a f.g. submodule of 𝑅, meaning
𝑑N = 𝑝1𝑅 +⋯ + 𝑝𝑘𝑅. Then, N is a f.g. submodule of 𝐾 (multiplying by the inverse of 𝑑).
Thus, in this case, this property characterizes fractional ideals.

Let M and N be fractional ideals of an integral domain 𝑅. Their product MN is defined
by MN = {∑𝑚𝑖𝑛𝑗 ∣ 𝑚𝑖 ∈ M, 𝑛𝑗 ∈ N}, where the sums are finite and the product is in the
field of fractions 𝐾 of 𝑅.

Proposition 3.1.5. Let 𝑅 be a Dedekind domain with field of fractions 𝐾 and let M,N be
fractional ideals of 𝑅. Then, both M−1 and MN are fractional ideals. Moreover:

• 𝑅M = M;

• (𝑦𝑅)
−1
= 𝑦

−1
𝑅 for all 0 ≠ 𝑦 ∈ 𝐾 ;

• If 𝐼 is an ideal of 𝑅, then, viewing it as a fractional ideal, 𝐼 𝐼 −1 = 𝑅;

Proof. Consider {𝑥𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} and {𝑦𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑛} generating sets for M and N,
respectively. It’s easy to see that {𝑥𝑖𝑦𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} is a generating set for MN,
meaning it’s also a fractional ideal.

For the inverse, it is simple to verify that M is a submodule of 𝐾 . Moreover, let
0 ≠ 𝑚 ∈ M. By definition, M−1

𝑚 ⊂ 𝑅, meaning M−1
⊂ 𝑅𝑚

−1. This is, of course, finitely
generated and, since 𝑅 is Noetherian, the same is true of M−1. It is also nonzero, by our
previous characterization of fractional ideals (which implies the existence of some 𝑑 ≠ 0

such that 𝑑M ⊂ 𝑅).

We now prove the three remaining bullet points.

• Trivial (since rings contain 1);

• Let 𝑑 ∈ 𝐾 be such that 𝑑𝑦𝑅 ⊂ 𝑅. Then, 𝑑𝑅 ⊂ 𝑦
−1
𝑅, meaning 𝑑 ∈ 𝑦

−1
𝑅. For the

converse inclusion, if 𝑟 ∈ 𝑅, then 𝑦−1
𝑟(𝑦𝑅) = 𝑟𝑅 ⊂ 𝑅;

• We’ll freely use many facts regarding localization. Consider the ideal 𝐽 = 𝐼 𝐼
−1 of

𝑅 and let q be a maximal ideal of 𝑅. Then, 𝐼q is a principal ideal of 𝑅q (since it’s a
discrete valuation ring), meaning 𝐼q = 𝑦𝑅q for some 𝑦 ∈ 𝑅q. Thus

𝐽q = (𝐼 𝐼
−1
)q = 𝐼q𝐼

−1

q = 𝑦𝑅q𝑦
−1
𝑅q = 𝑅q

meaning 𝐽 = 𝑅, since the maximal ideal was arbitrary.3

■

3 In the sequence of equalities, we used some properties of localization and the fact that localization and
inversion in the sense previously defined commute. See [Jan96, Exercise I.4.1].
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We may now state the main result we need for our goals - the “Fundamental Theorem
of Arithmetic” for Dedekind domains.

Theorem 3.1.6. Let 𝑅 be a Dedekind domain with field of fractions 𝐾 .

• If 𝐼 is a nonzero ideal of 𝑅, then there exist distinct prime ideals p1, ..., p𝑘 uniquely
determined by 𝐼 such that 𝐼 = p𝑎1

1
⋯ p𝑎𝑘

𝑘
, for some 𝑎𝑖 ∈ ℕ. Moreover, these are the only

prime ideals containing 𝐼 .

• If M is a fractional ideal of 𝑅, then there exist distinct prime ideals p1, ..., p𝑘 uniquely
determined by M such that M = p𝑎1

1
⋯ p𝑎𝑘

𝑘
, for some 𝑎𝑖 ∈ ℤ.

Proof. Just as Theorem 3.1.3, the proof is very long and would detract a lot from our goals
at this point. Thus, we refer to [Jan96, Theorems 3.14 and 4.2]. ■

Remark. With the theorem above, using the fact that prime ideals are invertible (in
the sense that pp−1 = 𝑅), one can prove that every fractional ideal is invertible, meaning
MM−1

= 𝑅. Thus, the set of fractional ideals of 𝑅 forms a group (called the ideal group of
𝑅). Also note that we define p−𝑎 = (p−1)𝑎, where 𝑎 ∈ ℕ.

An easy consequence we will need later is the following:

Proposition 3.1.7. Let 𝑅 be a Dedekind domain with a finite number of prime ideals. Then,
𝑅 is a PID.

Proof. Let p1, ..., p𝑘 be the pairwise distinct nonzero prime ideals of 𝑅. Since all of them
are maximal, the ideals p2

1
, ..., p𝑘 are also pairwise coprime (meaning the sum of any two

of them is equal to 𝑅) - notice that p2
1

can’t be contained in any of the other due to their
primality.

By the Chinese Remainder Theorem, there exists a surjective ring homomorphism 𝜑

from 𝑅 to the direct sum 𝑅/p2
1
⊕ ⋯ ⊕ 𝑅/p𝑘 . Also, 𝑅p1 is local, with maximal ideal p1p

1

. By
Nakayama’s Lemma (see [Jan96]), 0 ≠ (p1p

1

)
2
≠ p1p

1

. This implies p2
1
≠ p1. Taking some

element 𝑦 ∈ p1 ⧵ p
2

1
, there exists 𝑥 ∈ 𝑅 such that 𝑥 maps to (𝑦, 1, ..., 1) via 𝜑. This means 𝑥𝑅

is contained in p1, but not in any of the other prime ideals or p2
1
. Using Theorem 3.1.6, the

only possible factorization for 𝑥𝑅 is thus 𝑥𝑅 = p1. Doing the same to all the others means
all prime ideals are principal. Theorem 3.1.6 yields the result. ■

Now we can construct the p-adic valuations. So, for the remainder of this section, 𝑅
will denote a Dedekind domain, p, one of its prime ideals and 𝐾 , its field of fractions.

Let 𝑥 ∈ 𝐾 be an arbitrary nonzero element. Since 𝑅 is a Dedekind domain, so is 𝑅p.
Thus, 𝑥𝑅p can be uniquely written as a product of prime ideals of 𝑅p and their inverses. But
this is a local ring such that every prime ideal is maximal, meaning its only prime ideal is
pp (recall that these are the fractions such that the numerator is in p and the denominator
is not in p). This means

𝑥𝑅p = p
𝑣p(𝑥)

p

where 𝑣p(𝑥) ∈ ℤ is a well-defined integer. We can now use the fact that 𝑅p is a discrete
valuation ring to write pp = 𝜋𝑅p, for some 𝜋 ∈ 𝑅p. Then, p𝑣p(𝑥)p = 𝜋

𝑣p(𝑥)
𝑅p, by Proposi-
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tion 3.1.5. Thus, 𝑥 = 𝜋
𝑣p(𝑥)

𝑢, for some 𝑢 ∈ 𝑅p. Also, 𝜋𝑣p(𝑥) = 𝑥𝑢
′, meaning 𝑢𝑢′ = 1. This

means 𝑢 ∈ U (𝑅p).

We may then consider the function 𝑣p ∶ 𝐾 → ℤ ⊔ {∞}, with the convention that
𝑣p(0) = ∞. We will prove that this is a valuation of the field 𝐾 . Indeed, let 𝑦 ∈ 𝐾 be another
nonzero element. From the preceding paragraph, we can write 𝑥 = 𝑢𝜋

𝑣p(𝑥) and 𝑦 = 𝑢
′
𝜋
𝑣p(𝑦),

where 𝑢, 𝑢′ are invertible elements of the ring 𝑅p. Assuming, without losing generality,
that 𝑣p(𝑥) ≤ 𝑣p(𝑦), we get

𝑥 + 𝑦 = 𝜋
𝑣p(𝑥)

(𝑢 + 𝑢
′
𝜋
𝑣p(𝑦)−𝑣p(𝑥)

)

where the term in parenthesis is an element of 𝑅p, as 𝜋 ∈ 𝑅p. Thus, it follows that 𝑣p(𝑥+𝑦) ≥
min{𝑣p(𝑥), 𝑣p(𝑦)}. Also

𝑥𝑦 = 𝑢𝑢
′
𝜋
𝑣p(𝑥)+𝑣p(𝑦)

meaning 𝑣p(𝑥𝑦) = 𝑣p(𝑥) + 𝑣p(𝑦), since 𝑢𝑢′ ∈ U (𝑅p).

Definition. The valuation 𝑣p constructed above is called the p-adic valuation of 𝐾 .

Notice, from the construction, that the valuation ring associated with 𝑣p is 𝑅p, that it’s
discrete, and that its maximal ideal is pp. These valuations are very good to work with, as
we will soon see, because they can easily be computed.

We will now deal with the problem of extending valuations. Suppose 𝐾 is a field, 𝑣 is a
valuation of 𝐾 and 𝐿 ∶ 𝐾 is a field extension. We want to construct a valuation of 𝐿 which
restricts to 𝑣 when considered as a valuation of 𝐾 . A very general result in this direction
is the following:

Theorem 3.1.8. Let 𝑅 be a subring of a field 𝐾 and let P be a prime ideal of 𝑅. Then, there
exists a valuation ring 𝐴 ⊂ 𝐾 such that 𝑅 ⊂ 𝐴 and, denoting the maximal ideal of 𝐴 by A,
P = A ∩ 𝑅.

Proof. See [End72, Corollary 9.7]. ■

For some applications, however, it will be convenient to have an explicit construction
for the extension. In order to do that, we need a general result, which will also be left
without proof, since it’s also quite long.

Proposition 3.1.9. Let 𝑅 be a Dedekind domain with field of fractions 𝐾 and let 𝐿 be a finite
field extension4 of 𝐾 . Consider the integral closure 𝑆 of 𝑅 in 𝐿 of the extension - i.e., 𝑆 is the
set of elements of 𝐿 which are roots of monic polynomials with coefficients in 𝑅. Then, 𝑆 is
also a Dedekind domain.

Proof. See [Jan96, Theorem 6.1]. ■

Now we can deal with the extensions in the particular case of p-adic valuations extended
to finite dimensional extension fields. Let 𝑅 be a Dedekind domain, 𝐾 its field of fractions,

4 We will use the term “finite field extension” of a field 𝐾 to denote a field 𝐿 containing 𝐾 which is a finite
dimensional vector space over 𝐾 .
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p a prime ideal of 𝑅, and consider the p-adic valuation 𝑣p of 𝐾 . Let 𝐿 ∶ 𝐾 be a finite
dimensional extension field and let 𝑆 be the integral closure in 𝐿 of 𝑅p.

By Proposition 3.1.9, we can decompose the ideal pp𝑆 as a product of nonzero prime
ideals of 𝑆. Thus, we write:

pp𝑆 = P𝑎1

1
⋯P𝑎𝑘

𝑘

In fact, these are all the nonzero prime ideals of 𝑆. To see this, note that any prime ideal
P of 𝑆 intersects with 𝑅p at a prime ideal, meaning it’s either at pp or at 0. If P ∩ 𝑅p = 0,
then take some 𝑥 ∈ P and write 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯ + 𝑎0 = 0, with minimal 𝑛, where 𝑎𝑖 ∈ 𝑅p.
Thus, 𝑥(𝑥𝑛−1 + 𝑎𝑛1𝑥

𝑛−2
+⋯ 𝑎1) = −𝑎0 ∈ P ∩ 𝑅p. This means 𝑎0 = 0 and, since we are working

on a domain, the minimality of 𝑛 implies 𝑥 = 0.

We’ve thus established that 𝑆 is a Dedekind domain with a finite number of prime
ideals, meaning, by Proposition 3.1.7, it’s a PID. So we can consider P𝑖 = 𝜏𝑖𝑆 for each 𝑖. Let
𝑣P𝑖

be the P𝑖-adic valuation on 𝑆. We know, from our construction of these valuations,
that 𝑣P𝑖

(𝜏𝑖) = 1 and that its valuation ring is 𝑆P𝑖
. If 𝜋 is a generator of pp, we have

𝜋𝑆P𝑖
= pp𝑆P𝑖

= P𝑖

𝑎𝑖

P𝑖

meaning 𝜋 = 𝜏
𝑎𝑖

𝑖
𝑤, where 𝑤 is some unit of 𝑆P𝑖

. Then, 𝑣P𝑖
(𝜋 ) = 𝑎𝑖 = 𝑎𝑖𝑣p(𝜋 ). One easily

sees that this relation extends to 𝑣P𝑖
(𝑥) = 𝑎𝑖 = 𝑎𝑖𝑣p(𝑥) for all 𝑥 ∈ 𝐾 (since every element

of 𝐾 could be expressed as a product of a power of 𝜋 and an element of valuation 0). This
means 𝑣P𝑖

is equivalent to 𝑣p as valuations of 𝐾 . In particular, if 𝑎𝑖 = 1, they are equal on
𝐾 .

This discussion proves the part we will need of the following, more general, result.

Theorem 3.1.10. Let 𝑅 be a discrete valuation ring with maximal ideal p and quotient field
𝐾 , and let 𝑆 be its integral closure in a finite separable extension 𝐿 ∶ 𝐾 . Suppose

p𝑆 = P𝑎1

1
⋯P𝑎𝑘

𝑘

in 𝑆. Then, the P𝑖-adic valuations of 𝐿 are equivalent to the p-adic valuation on 𝐾 , with the
relation 𝑣P𝑖

(𝑥) = 𝑎𝑖𝑣p(𝑥) for 𝑥 ∈ 𝐾 . Moreover, these are pairwise nonequivalent and are the
only valuations (up to equivalence) which restrict to a valuation equivalent to 𝑣p on 𝐾 .

Proof. For the remainder of the proof (i.e., the bits that weren’t shown in our previous
discussion), see [Jan96, Theorem II.3.1]. ■

Finally, we briefly mention extensions of valuations to transcendental extension fields,
as in the following result, whose proof will be omitted due to its simplicity.

Proposition 3.1.11. Let 𝐾 be a field and let 𝑣 be a valuation on 𝐾 . Let 𝐾 (𝑥) be a simple
transcendental extension of 𝐾 . Then, the function defined by

𝑉

(

∑

𝑖

𝑎𝑖𝑥
𝑖

)

= min{𝑣(𝑎𝑖)}
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is a valuation on 𝐾 (𝑥).

3.2 Quaternion algebras

In 1843, Irish mathematician Sir William Rowan Hamilton discovered the so-called
hamiltonian quaternions, the only noncommutative division algebra algebraic over the
real numbers (as evidenced by a theorem of Frobenius; see [Her75, Theorem 7.3.1]).

In fact, the algebra constructed by Hamilton can easily be generalized to a whole
family of algebras over an arbitrary field of characteristic different from two. This is the
construction we will analyze next.

Definition. Let 𝐾 be a field of characteristic different from 2 and let 𝑎, 𝑏 ∈ 𝐾
†. The

quaternion algebra (
𝑎,𝑏

𝐾 ) is the 𝐾 -algebra defined by:

(

𝑎, 𝑏

𝐾 )
=

𝐾⟨𝐢, 𝐣⟩

⟨𝐢
2
− 𝑎, 𝐣

2
− 𝑏, 𝐣𝐢 + 𝐢𝐣⟩

One very important property of these algebras is as follows.

Proposition 3.2.1. Quaternion algebras are central-simple algebras of dimension 4 over the
base field.

Proof. Let 𝐹 be the algebraic closure of 𝐾 and let 𝛼, 𝛽 be elements of 𝐹 such that 𝛼2
=

−𝑎, 𝛽
2
= 𝑏. It’s trivial to verify, by definition, that there exists a 𝐾 -algebra homomorphism

defined as follows:

𝜓 ∶
(

𝑎, 𝑏

𝐾 )
→ 𝑀2(𝐹 )

𝐢 ↦
[

0 𝛼

−𝛼 0]

𝐣 ↦
[

0 𝛽

𝛽 0]

It’s also clear that the images of {1, 𝐢, 𝐣, 𝐢𝐣} are LI in 𝑀2(𝐹 ), meaning the original set is
also LI. In particular, since it’s a generator set, it forms a basis for the algebra (

𝑎,𝑏

𝐾 ).

Now, let 0 ≠ 𝐼 be an ideal of the quaternion algebra. Consider a nonzero element
𝑞 = 𝛼0 + 𝛼1𝐢 + 𝛼2𝐣+ 𝛼3𝐢𝐣 in 𝐼 . Then, 𝐢𝑞 = 𝑎𝛼1 + 𝛼0𝐢 + 𝑎𝛼3𝐣 + 𝛼2𝐢𝐣 and 𝑞𝐢 = 𝑎𝛼1 + 𝛼0𝐢 − 𝑎𝛼3𝐣 − 𝛼2𝐢𝐣,
whence:

𝐢𝑞 + 𝑞𝐢

2

= 𝑎𝛼1 + 𝛼0𝐢 and
𝐢𝑞 − 𝑞𝐢

2

= (𝑎𝛼3 + 𝛼2𝐢)𝐣

It’s clear that at least one of the two elements is nonzero. Furthermore, 𝐣 is an invertible
element, from which we conclude that 𝐼 contains a nonzero element of the form 𝑧 = 𝛼 + 𝛽𝐢.
Thus, 𝑧𝐣 = 𝛼𝐣 + 𝛽𝐢𝐣 and 𝐣𝑧 = 𝛼𝐣 − 𝛽𝐢𝐣.
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Repeating the same argument as before, we conclude that either 𝐼 contains a nonzero
element of the form 𝛼𝐣, or 𝐼 contains a nonzero element of the form 𝛽𝐢𝐣. In any case, since
both of the elements are invertible, we obtain 𝐼 = (

𝑎,𝑏

𝐾 ), meaning it is a simple algebra.
Moreover, the above calculations show that, if 𝑞 is central, then 𝑞 belongs to the base field
𝐾 , meaning it is also a central algebra. This concludes the proof. ■

It’s worth noting that these algebras may be categorized into two types: either ( 𝑎,𝑏𝐾 )

is a division ring, such as the case of the real hamiltonian quaternions, or ( 𝑎,𝑏𝐾 ) ≅ 𝑀2(𝐾 )

([Lam04, Chapter 2], for instance). In the latter case, we say the algebra is split. The
Hamiltonian quaternions ℍ = (

−1,−1

ℝ ) are an example of a quaternion algebra which is
not split.

In order to tell the two cases apart, we may analyze the norm function associated
to the quaternion algebra, 𝑁 (𝛼0 + 𝛼1𝐢 + 𝛼2𝐣 + 𝛼3𝐢𝐣) = 𝛼

2

0
− 𝛼

2

1
𝑎 − 𝛼

2

2
𝑏 + 𝛼

2

3
𝑎𝑏. A simple

computation shows that, if 𝑞 = 𝛼0 + 𝛼1𝐢 + 𝛼2𝐣 + 𝛼3𝐢𝐣 and we denote 𝑞 = 𝛼0 − 𝛼1𝐢 − 𝛼2𝐣 − 𝛼3𝐢𝐣,
then 𝑞𝑞 = 𝑁 (𝑞).

In particular, this shows that 𝑞 is invertible if and only if 𝑁 (𝑞) ≠ 0, since 𝑁 (𝑞) is an
element of the base field 𝐾 (this criterion will be relevant later). Moreover, the quaternion
algebra (

𝑎,𝑏

𝐾 ) is a division ring if and only if the associated norm form is anisotropic
(meaning 𝑁 (𝑞) is 0 if and only if 𝑞 is 0), since this is equivalent to saying every element is
a unit.

In order to construct free pairs in quaternion algebras, no matter the case, we first
need a couple of technical results (from now on, all the propositions in this section are
from [GMS99], except when explicitly stated otherwise).

Proposition 3.2.2. Let 𝑥, 𝑦, 𝛼, 𝛽 ∈ 𝐾 and 𝑚 ∈ ℤ, where 𝐾 is a field of characteristic different
from 2 and 𝛼 + 𝛽𝐢 is invertible in (

𝑎,𝑏

𝐾 ). Then, (𝑥 + 𝑦𝐣)(𝛼 + 𝛽𝐢)
𝑚
= 𝑥(𝛼 + 𝛽𝐢)

𝑚
+ 𝑦(𝛼 − 𝛽𝐢)

𝑚
𝐣.

Proof. We’ll first deal with the case where𝑚 ≥ 0, proceeding by induction on𝑚. If𝑚 = 0, 1,
the result is trivial (using the quaternion relations). For the inductive step, if the result is
valid for 𝑚 − 1, we get:

(𝑥 + 𝑦𝐣)(𝛼 + 𝛽𝐢)
𝑚
= (𝑥(𝛼 + 𝛽𝐢)

𝑚−1
+ 𝑦(𝛼 − 𝛽𝐢)

𝑚−1
𝐣)(𝛼 + 𝛽𝐢)

= 𝑥(𝛼 + 𝛽𝐢)
𝑚
+ 𝑦(𝛼 − 𝛽𝐢)

𝑚
𝐣

For the case where 𝑚 < 0, all we have to do is use the identities

(𝛼 + 𝛽𝐢)
−1
=

𝛼 − 𝛽𝐢

𝛼
2
− 𝛽

2
𝑎

and (𝛼 − 𝛽𝐢)
−1
=

𝛼 + 𝛽𝐢

𝛼
2
− 𝛽

2
𝑎

and the preceding case (note that these identities follow by computing the norm of the
quaternions involved). ■
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Proposition 3.2.3. Let 𝐾 be a field of characteristic different from 2, with 𝑎, 𝑏, 𝛽 ∈ 𝐾
†,

𝛽
2
≠ 𝑏

−1, and let 𝐹 = 𝐾 (

√

𝑎,

√

𝑏). Let’s define

𝜃 =

1 + 𝛽

√

𝑏

1 − 𝛽

√

𝑏

and 𝑟𝑛 =

1

√

𝑏 [

𝜃
𝑛
− 1

𝜃
𝑛
+ 1]

, 𝑛 ∈ ℤ

Then, in the quaternion algebra (
𝑎,𝑏

𝐹 )
, for all 𝑛 ∈ ℤ, there exists some 0 ≠ 𝑑𝑛 ∈ 𝐹 such that

(1 + 𝛽𝐣)
𝑛
= 𝑑𝑛(1 + 𝑟𝑛𝐣).

Proof. Just as in Proposition 3.2.2, we’ll proceed by induction on 𝑛, beginning with 𝑛 ≥ 0.
If 𝑛 = 0, just take 𝑑𝑛 = 1, since 𝑟0 = 0. Suppose, then, that 𝑛 ≥ 1 and that the result is valid
for 𝑛 − 1; that is, that there exists some 0 ≠ 𝑑𝑛−1 ∈ 𝐹 such that (1 + 𝛽𝐣)𝑛−1 = 𝑑𝑛−1(1 + 𝑟𝑛−1𝐣).
Hence:

(1 + 𝛽𝐣)
𝑛
= 𝑑𝑛−1(1 + 𝑟𝑛−1𝐣)(1 + 𝛽𝐣)

= 𝑑𝑛−1(1 + 𝑟𝑛−1𝛽𝑏 + (𝑟𝑛−1 + 𝛽)𝐣)

= (𝑑𝑛−1(1 + 𝑟𝑛−1𝛽𝑏))
(
1 +

(

𝑟𝑛−1 + 𝛽

1 + 𝑟𝑛−1𝛽𝑏
)
𝐣
)

Using the definition of 𝑟𝑛, one can directly compute that 𝑟𝑛 =
(

𝑟𝑛−1+𝛽

1+𝑟𝑛−1𝛽𝑏)
. Also, since

𝛽
2
≠ 𝑏

−1, the quaternion 1 + 𝛽𝐣 has nonzero norm, and is, therefore, invertible. In particular,
if we take 𝑑𝑛 = 𝑑𝑛−1(1 + 𝑟𝑛−1𝛽𝑏), 𝑑𝑛 is nonzero. By induction, the result follows.

Now, if 𝑛 < 0, we can use the fact that 𝑟−𝑛 = −𝑟𝑛 (which may also be verified directly),
and see, using the previous case, that

(1 + 𝛽𝐣)
−𝑛

= 𝑑−𝑛(1 − 𝑟𝑛𝐣)

This now means that

(1 + 𝛽𝐣)
𝑛
=

1

𝑑−𝑛(1 − 𝑟
2

𝑛
𝑏)

(1 + 𝑟𝑛𝐣)

since 1 + 𝛽𝐣 is invertible, meaning 𝑑−𝑛(1 − 𝑟2𝑛𝑏) ≠ 0.

Then, we can just take 𝑑𝑛 = (𝑑−𝑛(1 − 𝑟
2

𝑛
𝑏))

−1. ■

We may now use these results, together with non-archimedean valuations, to obtain
results on free pairs in quaternion algebras. The main difficulty in these theorems is
determining the sets we will use to apply the Ping-Pong Lemma, as will become clear.

Theorem 3.2.4. Let 𝑅 be an integral domain of characteristic distinct from 2 with field
of fractions (𝑅) = 𝑄, and let 𝑎, 𝑏, 𝛼, 𝛽 ∈ 𝑅

†, 𝛼2
≠ 𝑎

−1, 𝛽2 ≠ −𝑎𝑏
−1. Suppose there exists

some non-archimedian valuation 𝑣 over the field 𝑄(𝐢) such that 𝑣(𝑎) = 𝑣(𝑏) = 𝑣(𝛽) = 0 and
𝑣(1 + 𝛼 𝐢) ≠ 𝑣(1 − 𝛼 𝐢). Then, {1 + 𝛼 𝐢, 𝐢 + 𝛽𝐣} is semi-free modulo center in U

(

𝑎,𝑏

𝑄 )
.
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Proof. We can decompose
(

𝑎,𝑏

𝑄 )
as a free module of rank 2, with {1, 𝐣} as a basis, over the

field 𝑄(𝐢), essentially breaking this 4-dimensional space into two 2-dimensional “steps”.
This observation will be the key for finding the appropriate sets upon which the desired
pair of elements acts.

Let 𝐻 = U
(

𝑎,𝑏

𝑄 )
/𝑄

†. Notice that, if we take 𝑥 + 𝑦𝐣 ∈ 𝐻 , with 𝑥, 𝑦 ∈ 𝑄(𝐢), then any

element in the same class is of the form (𝑥 + 𝑦𝐣)𝑧, with 0 ≠ 𝑧 ∈ 𝑄. Thus, 𝑣(𝑥) = 𝑣(𝑦) if and
only if the same is true with any other representative of the same class.

Let’s define, then, 𝑋1 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈ 𝑄(𝐢), 𝑣(𝑥) = 𝑣(𝑦)} and 𝑋2 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈

𝑄(𝐢)𝑣(𝑥) ≠ 𝑣(𝑦)}. Then, 𝐻 acts on both by right multiplication. Consider 𝑥 + 𝑦𝐣 ∈ 𝑋1 and
let 0 ≠ 𝑛 ∈ ℤ. By Proposition 3.2.2, (𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)

𝑛
= 𝑥(1 + 𝛼 𝐢)

𝑛
+ 𝑦(1 − 𝛼 𝐢)

𝑛
𝐣. Then, we

compute the valuations of the terms, and obtain

𝑣(𝑥(1 + 𝛼 𝐢)
𝑛
) = 𝑣(𝑥) + 𝑛𝑣(1 + 𝛼 𝐢)

= 𝑣(𝑦) + 𝑛𝑣(1 + 𝛼 𝐢)

≠ 𝑣(𝑦) + 𝑛𝑣(1 − 𝛼 𝐢) = 𝑣(𝑦(1 − 𝛼 𝐢)
𝑛
)

meaning (𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)
𝑛
∈ 𝑋2.

Now let 𝑥 + 𝑦𝐣 ∈ 𝑋2. Then, (𝑥 + 𝑦𝐣)(𝐢 + 𝛽𝐣) = (𝑥𝐢 + 𝑦𝛽𝑏) + (𝑥𝛽 − 𝑦𝐢)𝐣. Since 𝑣(𝑎) = 0, it’s
also true that 𝑣(𝑖) = 0, as 2𝑣(𝐢) = 𝑣(𝑎) and the field doesn’t have characteristic 2. Thus,
𝑣(𝑥𝐢) = 𝑣(𝑥) and 𝑣(𝑦𝛽𝑏) = 𝑣(𝑦), by hypothesis. We conclude

𝑣(𝑥𝐢 + 𝑦𝛽𝑏) = min{𝑣(𝑥), 𝑣(𝑦)} = 𝑣(𝑥𝛽 − 𝑦𝐢)

using Proposition 3.1.1. This means (𝑥 + 𝑦𝐣)(𝐢 + 𝛽𝐣) ∈ 𝑋2.

Finally, (𝐢 + 𝛽𝐣)2 = 1 (as scalars are central) and 1 + 𝛼 𝐢 has order greater than 2 (since
its square still contains a 𝐢 term and quaternion algebras are central). Therefore, the pair
{1 + 𝛼 𝐢, 𝐢 + 𝛽𝐣} is semi-free modulo center, by Theorem 1.2.4. ■

As an example of an application of Theorem 3.2.4, the authors highlight, in [GMS99],
the following result.

Proposition 3.2.5. Suppose that 𝜁 = cos 𝜃 + sin 𝜃𝐢 is a primitive 𝑛-th root of unity, where
𝑛 ≠ 2 and 4 ∤ 𝑛. Then, the pair {𝜁 , 𝐢 + 𝐣} is semi-free modulo center.

The proof uses a bit more of commutative algebra and valuation theory than we have de-
veloped up to this point, but what’s interesting is that nothing is said regarding the cases in
which cos 𝜃 + sin 𝜃𝐢 has infinite order, and finding a valuation to use Theorem 3.2.4 directly
is particularly hard. We have partially answered this case in the following proposition
from [GSed].

Proposition 3.2.6. Let (𝑎, 𝑏, 𝑐) be a primitive Pythagorean triple (i.e., such that the three
integers are coprime) and let 0 < 𝜃 <

𝜋

2
be an angle such that cos 2𝜃 =

𝑏

𝑐
. Then, {cos 𝜃 +

sin 𝜃𝐢, 𝐢 + 𝐣} is semi-free modulo center in ℍ.

We may also use valuations to find free pairs directly.
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Theorem 3.2.7. Let 𝑅 be an integral domain of characteristic different from 2 and with
field of fractions 𝑄. Let 𝑎, 𝑏, 𝛼, 𝛽 ∈ 𝑅

†, 𝛼2
≠ 𝑎

−1
, 𝛽

2
≠ 𝑏

−1. Suppose there exists a non-
archimedian valuation 𝑣 on𝑄(

√

𝑏, 𝐢) such that 𝑣(𝑎) = 𝑣(𝑏) = 𝑣(𝛼) = 𝑣(𝛽) = 0 and 𝑣(1+𝛼 𝐢) ≠
𝑣(1 − 𝛼 𝐢), 𝑣(1 + 𝛽

√

𝑏) ≠ 𝑣(1 − 𝛽

√

𝑏). Then, {1 + 𝛼 𝐢, 1 + 𝛽𝐣} is a free pair in U
(

𝑎,𝑏

𝑄 )
.

Proof. We can essentially copy the proof of Theorem 3.2.4, but ignoring the “modulo center
restriction”. So we define 𝑋1 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈ 𝑄(𝐢), 𝑣(𝑥) = 𝑣(𝑦)} and 𝑋2 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈

𝑄(𝐢)𝑣(𝑥) ≠ 𝑣(𝑦)}. We have 𝑋1(1 + 𝛼 𝐢)
𝑛
⊂ 𝑋2 for all 𝑛 ≠ 0, by a computation similar to what

had been done. Now, by Proposition 3.2.3, we have (1 + 𝛽𝐣)
𝑚
= 𝑑𝑚(1 + 𝑟𝑚𝐣), where

𝜃 =

1 + 𝛽

√

𝑏

1 − 𝛽

√

𝑏

and 𝑟𝑛 =
1

√

𝑏 [

𝜃
𝑛
− 1

𝜃
𝑛
+ 1]

By hypothesis, 𝑣(𝜃) ≠ 0. Hence, if 𝑚 ≠ 0, then 𝑣(𝜃𝑚 + 1) = 𝑣(𝜃
𝑚
− 1) and, in particular,

𝑣(𝑟𝑚) = 0. Thus, from (𝑥 + 𝑦𝐣)(1 + 𝛽𝐣)
𝑚
= 𝑑𝑚((𝑥 + 𝑟𝑚𝑦𝑏) + (𝑥𝑟𝑚 + 𝑦)𝐣) and 𝑣(𝑥) ≠ 𝑣(𝑦), we

get 𝑋2(1 + 𝛽𝐣)
𝑚
⊂ 𝑋1. Also, both of these elements have infinite order. To see this, note that

the inverse of 1 + 𝛼 𝐢 is (1 − 𝛼 𝐢)(1 − 𝛼2
𝑎)

−1. If it had finite order, then there would be some
𝑚 ∈ ℕ such that (1 + 𝛼 𝐢)𝑚 = (1 − 𝛼 𝐢)(1 − 𝛼

2
𝑎)

−1. This would mean

𝑚𝑣(1 + 𝛼 𝐢) = 𝑣(1 − 𝛼 𝐢) − 𝑣(1 − 𝛼
2
𝑎)

Since 𝑣(1 − 𝛼2
𝑎) = 𝑣(1 + 𝛼 𝐢) + 𝑣(1 − 𝛼 𝐢), we can substitute to obtain 𝑣(1 + 𝛼 𝐢) = 0. There

would be some 𝑛 ∈ ℕ such that (1−𝛼 𝐢)𝑛 = (1+𝛼 𝐢)(1−𝛼
2
𝑎)

−1. The same reasoning as before
yields 𝑣(1 − 𝛼 𝐢) = 0, which is a contradiction. Of course, everything we have just done also
applies to 1 + 𝛽𝐢, meaning it also has infinite order. The Ping-Pong Lemma (Theorem 1.2.4)
yields the result. ■

There’s a limitation to these theorems in that finding the appropriate valuations may
be difficult, and thus checking whether a specific pair of elements is free or not can involve
quite a lot of work. In the case of the Hamiltonian quaternions ℍ, we can dodge valuations
altogether in many situations, as shown by this proposition from [GSed].

Proposition 3.2.8. Let 𝛼 be either a rational number other than 0 and ±1, or a transcendental
number. Then, the pair {1 + 𝛼 𝐢, 1 + 𝛼𝐣} is free in ℍ

†.

This result is actually more general (a will be seen in Theorem B.0.1). In order to get
such generality, we use the matricial representation of quaternions acting on the pure
quaternions (those of the form 𝛽𝐢 + 𝛾 𝐣 + 𝛿 𝐢𝐣) by conjugation, and obtain properties of the
matrices that appear. An example of this type of reasoning appears in Proposition 3.2.10
below.

For algebraic (and not rational) 𝛼 , we can’t get this level of generality, and there can
be a lot of variation on the specific 𝛼 . For example, 1 +

√

3𝐢 is twice a root of unity, which
immediately prevents it from being an element freely generating a free group. That said,
we were able to obtain a result by imposing some conditions on 𝛼 (see [GSed]).
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Proposition 3.2.9. Let 𝛼 be an algebraic number with minimal polynomial 𝑓 (𝑥). Consider
𝐾 = ℚ(𝛼) and let 𝑅 be the integral closure of ℤ in 𝐾 . Suppose that 𝑓 (𝑥) is irreducible modulo
2, and that Δ(𝛼) ∉ 2ℤ, where Δ(𝛼) denotes the discriminant of the extension5. Suppose further
that 1 + 𝛼2

∉ U (𝑅) and that 1+𝛼
2

2
∉ 𝑅. Then, ⟨1 + 𝛼 𝐢, 1 + 𝛼𝐣, 1 + 𝛼 𝐢𝐣⟩ ≅ ℤ ∗ ℤ ∗ ℤ in U (

−1,−1

𝐾 ).

One example of an 𝛼 that satisfies all the conditions of the previous proposition is a
root of the irreducible polynomial 𝑥3 − 3𝑥 + 1.

Another case of algebraic 𝛼 we were able to prove is the following, which didn’t appear
in [GSed].

Proposition 3.2.10. Let 𝛼 =

√

𝑎, where 𝑎 is an even, square-free natural number. Then,
⟨1 + 𝛼 𝐢, 1 + 𝛼𝐣, 1 + 𝛼 𝐢𝐣⟩ ≅ ℤ ∗ ℤ ∗ ℤ in U

(

−1,−1

ℚ(𝛼) )
.

Proof. First, notice that 𝑎 + 1 is not a unit in the integral closure 𝑅 of ℤ in the extension
ℚ(𝛼) - this is done computing its norm (see, for instance, [Jan96, Chapter I.5]), which is
(𝑎 + 1)

2. Since this isn’t invertible in ℤ, 𝑎 + 1 can’t be invertible in 𝑅.

Now notice that 𝑎 + 1 and 𝑎 − 1 are coprime integers. This is because, if 𝑎 + 1 ≡ 0

(mod 𝑝) and 𝑎 − 1 ≡ 0 (mod 𝑝), then 2 ≡ 0 (mod 𝑝), meaning 𝑝 = 2. Since 𝑎 is even,
however, this can’t be the case. Also, 𝑎 + 1 and 2𝑎 are coprime, since any prime factor
dividing 2𝑎 is either 2, which doesn’t divide 𝑎 + 1, or a prime factor of 𝑎, which also can’t
divide 𝑎 + 1.

Let 𝑚, 𝑛 ∈ ℤ be such that (1 + 𝑎)𝑚 + 2𝑎𝑛 = 1. Then, 2𝛼 ⋅ 𝑛𝛼 = 1 − (1 + 𝑎)𝑚. This means,
in the quotient ring 𝑅/(1 + 𝑎)𝑅, both 2𝛼 and 1 − 𝑎 are invertible. Also, 2(𝑛𝑎) = 1 − (1 + 𝑎)𝑚,
meaning 2 is also invertible in this quotient. As such, 2(1 − 𝑎) is invertible.

Denoting by 𝜌 the unit quaternions’ representation by conjugation on the set of pure

quaternions (i.e., 𝜌(𝑞)(𝐢) = 𝑞𝐢𝑞−1, for instance, where 𝑞 is a unit in
(

−1,−1

ℚ(𝛼) )
), we get

𝜌(1 + 𝛼 𝐢) =

1

1 + 𝑎

⎡

⎢

⎢

⎣

1 0 0

0 1 − 𝑎 −2𝛼

0 2𝛼 1 − 𝑎

⎤

⎥

⎥

⎦

;

𝜌(1 − 𝛼𝐣) =

1

1 + 𝑎

⎡

⎢

⎢

⎣

1 − 𝑎 0 −2𝛼

0 1 0

2𝛼 0 1 − 𝑎

⎤

⎥

⎥

⎦

;

𝜌(1 + 𝛼 𝐢𝐣) =

1

1 + 𝑎

⎡

⎢

⎢

⎣

1 − 𝑎 −2𝛼 0

2𝛼 1 − 𝑎 0

0 0 1

⎤

⎥

⎥

⎦

from which [GSed, Theorem 5] finishes the proof (since, if {𝑥, 𝑦, 𝑧} is a basis for a free
group, the same is trivially true for {𝑥, 𝑦−1

, 𝑧}). ■

The reason this previous result is singled out is that the discriminant of quadratic
extensions is always even, and so this is never in the conditions of our previous result on

5 If 𝑓 (𝑥) has degree 𝑚, Δ(𝛼) = Δ(1, 𝛼, ..., 𝛼
𝑚−1

) = det[𝑇 (𝛼
𝑖
𝛼
𝑗
)]𝑖,𝑗 , where 𝑇 (𝑥) = tr[𝑥] using the regular

representation (see [Jan96]).
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algebraic extensions.

We now move on to a different setting. If 𝐾 is a field of characteristic 2, quaternion
algebras have to be defined differently (indeed, the definition we’ve used thus far would
give us a commutative algebra). We do this next.

Definition. Let 𝐾 be a field of characteristic 2 and let 𝑎, 𝑏 ∈ 𝐾
†. The quaternion algebra

(
𝑎,𝑏

𝐾 ] is the 𝐾 -algebra defined by:

(

𝑎, 𝑏

𝐾 ]
=

𝐾⟨𝐢, 𝐣⟩

⟨𝐢
2
+ 𝐢 + 𝑎, 𝐣

2
+ 𝑏, 𝐣𝐢 + 𝐢𝐣 + 𝐣⟩

Proposition 3.2.11. ( 𝑎,𝑏𝐾 ] is a central simple 4 dimensional 𝐾 -algebra.

Proof. Let 𝐹 be the algebraic closure of 𝐾 and let 𝛼2
= 𝑎, 𝛽

2
= 𝑏 in 𝐹 . Consider the

homomorphism

𝜓 ∶
(

𝑎, 𝑏

𝐾 ]
→ 𝑀2(𝐹 )

𝐢 ↦
[

0 𝛼

𝛼 1]

𝐣 ↦
[

0 𝛽

𝛽 0]

It’s trivial to verify that the image of the set {1, 𝐢, 𝐣, 𝐢𝐣} is LI, meaning the original set is
also LI. This immediately implies it’s a basis for ( 𝑎,𝑏𝐾 ] as a 𝐾 -vector space.

We now check that it’s a central algebra. Let 𝑞 = 𝛼0 + 𝛼1𝐢 + 𝛼2𝐣 + 𝛼3𝐢𝐣 be central. Notice
that

𝐢𝑞 = 𝛼1𝑎 + (𝛼0 + 𝛼1)𝐢 + 𝛼3𝑎𝐣 + (𝛼2 + 𝛼3)𝐢𝐣

𝑞𝐢 = 𝛼1𝑎 + (𝛼0 + 𝛼1)𝐢 + (𝛼2 + 𝛼3𝑎)𝐣 + 𝛼2𝐢𝐣

meaning 𝛼2 = 𝛼3 = 0. We also have

𝐣𝑞 = (𝛼0 + 𝛼1)𝐣 + 𝛼1𝐢𝐣

𝑞𝐣 = 𝛼0𝐣 + 𝛼1𝐢𝐣

and, therefore, 𝛼1 = 0. Thus, 𝑞 = 𝛼0 ∈ 𝐾 , which finishes this part of the proof.

Finally, let 𝑞 = 𝛼0 + 𝛼1𝐢 + 𝛼2𝐣 + 𝛼3𝐢𝐣 be a nonzero element of an ideal 0 ≠ 𝐼 of ( 𝑎,𝑏𝐾 ]. From
the previous calculations, since 𝐢𝑞, 𝑞𝐢 ∈ 𝐼 , 𝛼2𝐣 + 𝛼3𝐢𝐣 ∈ 𝐼 . Moreover:

(𝛼2𝐣 + 𝛼3𝐢𝐣)𝐣 = 𝛼2𝑏 + 𝛼3𝑏𝐢

Thus, 𝐼 contains a nonzero element of the form 𝑝 = 𝛼 + 𝛽𝐢. Now:

𝑝𝐣 = 𝛼𝐣 + 𝛽𝐢𝐣
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and also
𝐣𝑝 = (𝛼 + 𝛽)𝐣 + 𝛽𝐢𝐣

In particular, 𝐼 contains a nonzero element of the form 𝛾 𝐣. But 𝐣 and 𝛾 ≠ 0 are invertible,
meaning 𝐼 = (

𝑎,𝑏

𝐾 ]. Since the ideal 𝐼 was arbitrary, this concludes the proof. ■

As before, we will need a more technical result.

Proposition 3.2.12. Let 𝑥, 𝑦, 𝛼 ∈ 𝐾 and 𝑚 ∈ ℤ, where 𝐾 is a field of characteristic 2 and
1 + 𝛼 𝐢 is invertible in (

𝑎,𝑏

𝐾 ]. Then, (𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)
𝑚
= 𝑥(1 + 𝛼 𝐢)

𝑚
+ 𝑦(1 + 𝛼 + 𝛼 𝐢)

𝑚
𝐣.

Proof. We’ll first deal with the case where𝑚 ≥ 0, proceeding by induction on𝑚. If𝑚 = 0, 1,
the result is trivial (using the quaternion relations). For the inductive step, if the result is
valid for 𝑚 − 1, we get:

(𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)
𝑚
= (𝑥(1 + 𝛼 𝐢)

𝑚−1
+ 𝑦(1 + 𝛼 + 𝛼 𝐢)

𝑚−1
𝐣)(1 + 𝛼 𝐢)

= 𝑥(1 + 𝛼 𝐢)
𝑚
+ 𝑦(1 + 𝛼 + 𝛼 𝐢)

𝑚
𝐣

For the case where 𝑚 < 0, we use the identities

(1 + 𝛼 𝐢)
−1
=

1 + 𝛼 + 𝛼 𝐢

1 + 𝛼 + 𝛼
2
𝑎

and (1 + 𝛼 + 𝛼 𝐢)
−1
=

1 + 𝛼 𝐢

1 + 𝛼 + 𝛼
2

to obtain

(𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)
−1
= (𝑥 + 𝑦𝐣)(1 + 𝛼 + 𝛼 𝐢)(1 + 𝛼 + 𝛼

2
)
−1

= (𝑥(1 + 𝛼 + 𝛼
2
𝐢) + 𝑦(1 + 𝛼 𝐢)𝐣)(1 + 𝛼 + 𝛼

2
)
−1

= 𝑥(1 + 𝛼 𝐢)
−1
+ 𝑦(1 + 𝛼 + 𝛼 𝐢)

−1
𝐣

The rest is done by induction as before. ■

About these algebras, our main result for obtaining free pairs is the following:

Theorem 3.2.13. Let 𝐾 be a field of characteristic 2 and let 𝑎, 𝑏, 𝛼 ∈ 𝐾
†
, 𝑏 ≠ 1. Suppose

there exists a valuation of 𝔽2(𝑎, 𝑏, 𝛼, 𝐢) ⊂ 𝐾 (𝐢) such that 𝑣(𝑏) = 0 and 𝑣(𝑎 + 𝛼−1
+ 𝛼

−2
) ≠ 0,∞.

Then, {1 + 𝛼 𝐢, 1 + 𝐣} is semi-free modulo center in U (
𝑎,𝑏

𝐹 ]
.

Proof. Using the same notations as in Theorem 3.2.4, let 𝑋1 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈ 𝐾 (𝐢), 𝑣(𝑥) =

𝑣(𝑦)} and 𝑋2 = {𝑥 + 𝑦𝐣 ∣ 𝑥, 𝑦 ∈ 𝐾 (𝐢)𝑣(𝑥) ≠ 𝑣(𝑦)}. We can do this since quaternion algebras
are also central in characteristic 2.

First, notice that (1 + 𝐣)
2
= 1 + 𝑏 ≠ 0, meaning it’s an invertible element of order 2

modulo center. Now let 𝑥 + 𝑦𝐣 ∈ 𝑋2. We have (𝑥 + 𝑦𝐣)(1 + 𝐣) = (𝑥 + 𝑏𝑦) + (𝑥 + 𝑦)𝐣. Since
𝑣(𝑏) = 0, 𝑣(𝑏𝑦) = 𝑣(𝑦), from which it follows that 𝑣(𝑥 + 𝑏𝑦) = 𝑣(𝑥 + 𝑦) (as 𝑣(𝑥) ≠ 𝑣(𝑦),
meaning 𝑣(𝑥 + 𝑦) = min{𝑣(𝑥), 𝑣(𝑦)}).

For the other inclusion, let’s define 𝑓 = (1 + 𝛼 𝐢)(1 + 𝛼(1 + 𝐢)). It’s easy to see that
𝑓 = 𝑎𝛼

2
+ 𝛼 + 1 ∈ 𝐾 . Ergo, 𝑣(𝑓 ) = 2𝑣(𝛼) + 𝑣(𝑎 + 𝛼

−1
+ 𝛼

−2
) and, since 𝛼 ≠ 0, we get by
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hypothesis that 𝑣(𝑓 ) ≠ ∞; in particular, 𝑓 is invertible and the same happens to 1 + 𝛼 𝐢,
1 + 𝛼(1 + 𝐢).

Let 𝑡 = 1+𝛼(1+𝐢)

1+𝛼 𝐢
. Simple computation gives 𝑡+𝑡−1 = 𝛼

2

𝑓
. Thus, 𝑣(𝑡+𝑡−1) = −𝑣(𝑎+𝛼

−1
+𝛼

−2
) ≠

0, meaning 𝑣(𝑡) ≠ 0. Equivalently, 𝑣(1 + 𝛼 𝐢) ≠ 𝑣(1 + 𝛼(1 + 𝐢)).

Now take 𝑥 + 𝑦𝐣 ∈ 𝑋1. By Proposition 3.2.12, (𝑥 + 𝑦𝐣)(1 + 𝛼 𝐢)
𝑚
= 𝑥(1 + 𝛼 𝐢)

𝑚
+ 𝑦(1 + 𝛼 + 𝛼 𝐢)

𝑚
𝐣

for all 𝑚 ∈ ℤ. Since 𝑣(𝑥) = 𝑣(𝑦), our previous computation shows

𝑣(𝑥) +𝑚𝑣(1 + 𝛼 𝐢) ≠ 𝑣(𝑦) +𝑚𝑣(1 + 𝛼(1 + 𝐢))

implying 𝑋1(1 + 𝛼 𝐢)
𝑚
⊂ 𝑋2 for all 𝑚 ∈ ℤ. Also, (1 + 𝛼 𝐢)2 = (1 + 𝛼

2
𝑎) + 𝛼

2
𝐢, meaning it’s not

in the center (again using the centrality of quaternion algebras in any characteristic). Thus,
Theorem 1.2.4 finishes the proof. ■

3.3 The first Weyl Algebra

Using the previous results on quaternions, we can obtain free pairs in other classes
of algebras. In order to do so, we begin with the construction of the first Weyl Algebra,
gathering some assorted results from [Lam01]. While this construction can be carried out
inductively, allowing us to get a whole family of Weyl algebras, we’ll focus our attention
on the first one, due to its greater simplicity.

Definition. The first Weyl algebra over a field 𝐾 is the 𝐾 -algebra given by generators
and relations as follows:

𝐴1(𝐾 ) =

𝐾⟨𝑠, 𝑡⟩

⟨𝑡𝑠 − 𝑠𝑡 − 1⟩

We identify, for simplicity, 𝑠 = 𝑠 + ⟨𝑡𝑠 − 𝑠𝑡 − 1⟩ with 𝑠 and 𝑡 = 𝑡 + ⟨𝑡𝑠 − 𝑠𝑡 − 1⟩ with 𝑡 .

Proposition 3.3.1. The set {𝑠𝑖𝑡 𝑗 ∣ 𝑖, 𝑗 ∈ ℕ} is a basis for 𝐴1(𝐾 ) over the field 𝐾 .

Proof. First, to prove this set generates 𝐴1(𝐾 ), let 𝑚 ∈ ℕ. We will show 𝑡
𝑚
𝑠 is a linear

combination of the terms of {𝑠𝑖𝑡 𝑗 ∣ 𝑖, 𝑗 ∈ ℕ}. If 𝑚 = 1, this is trivially true, as 𝑡𝑠 = 𝑠𝑡 + 1.
By induction, 𝑡𝑚𝑠 = 𝑡𝑚−1

(𝑡𝑠) = 𝑡
𝑚−1

(𝑠𝑡 + 1) = (∑ 𝜆𝑖,𝑗𝑠
𝑖
𝑡
𝑗
)𝑡 + 𝑡

𝑚−1, for some 𝜆𝑖,𝑗 ∈ 𝐾 almost all
zero, which is of the form we wanted.

Next, let 𝑤 be a word on 𝑠, 𝑡 . We’ll do induction on the length of 𝑤 to show it can be
written as a 𝐾 -linear combination of the elements of {𝑠𝑖𝑡 𝑗 ∣ 𝑖, 𝑗 ∈ ℕ}. If 𝑤 has length 1,
then there’s nothing to show, since either 𝑤 = 𝑠 or 𝑤 = 𝑡 .

Now, for the inductive step, write 𝑤 = 𝑤
′
𝑥𝑛, where 𝑥𝑛 ∈ {𝑠, 𝑡}. Since 𝑤′ has smaller

length, 𝑤′
= ∑ 𝛼𝑖,𝑗𝑠

𝑖
𝑡
𝑗 for some 𝛼𝑖,𝑗 ∈ 𝐾 , by the inductive hypothesis (where almost all

of the 𝛼𝑖,𝑗 are zero). If 𝑥𝑛 = 𝑡 , 𝑤 = ∑ 𝛼𝑖,𝑗𝑠
𝑖
𝑡
𝑗+1 and we are done. If 𝑥𝑛 = 𝑠, on the other

hand, then 𝑤 = ∑ 𝛼𝑖,𝑗𝑠
𝑖
𝑡
𝑗
𝑠. By the first paragraph, we can write 𝑡 𝑗𝑠 = ∑

𝑘,𝑙
𝛽𝑘,𝑙𝑠

𝑘
𝑡
𝑙 . Thus,

𝑤 = ∑
𝑖,𝑗,𝑘,𝑙

𝛼𝑖,𝑗𝛽𝑘,𝑙𝑠
𝑖+𝑘
𝑡
𝑙 , and once again, we are done.

For linear independence, consider the standard polynomial ring 𝐾 [𝑥, 𝑦]. We may
define unique linear operators 𝜑, 𝜓 ∶ 𝐾 [𝑥, 𝑦] → 𝐾 [𝑥, 𝑦] such that 𝜑(𝑥 𝑖𝑦 𝑗) = 𝑥

𝑖+1
𝑦
𝑗 and
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𝜓 (𝑥
𝑖
𝑦
𝑗
) = 𝑖𝑥

𝑖−1
𝑦
𝑗
+ 𝑥

𝑖
𝑦
𝑗+1 (if 𝑖 = 0, we interpret the first term as 0). Then, we have

(𝜓𝜑 − 𝜑𝜓 )(𝑥
𝑖
𝑦
𝑗
) = 𝜓 (𝑥

𝑖+1
𝑦
𝑗
) − 𝜑(𝑖𝑥

𝑖−1
𝑦
𝑗
+ 𝑥

𝑖
𝑦
𝑗+1
)

= (𝑖 + 1)𝑥
𝑖
𝑦
𝑗
+ 𝑥

𝑖+1
𝑦
𝑗+1

− 𝑖𝑥
𝑖
𝑦
𝑗
− 𝑥

𝑖+1
𝑦
𝑗+1

= 1

Therefore, there exists a 𝐾 -algebra homomorphism 𝜌 ∶ 𝐴1(𝐾 ) → L(𝐾 [𝑥, 𝑦]) such that
𝜌(𝑠) = 𝜑 and 𝜌(𝑡) = 𝜓 (here, L(𝐾 [𝑥, 𝑦]) denotes the ring of linear operators on 𝐾 [𝑥, 𝑦]), by
the universal property of the free 𝐾 -algebra and the First Isomorphism Theorem.

Suppose ∑
𝑖,𝑗
𝛼𝑖,𝑗𝑠

𝑖
𝑡
𝑗
= 0. Then, 𝜌 (∑𝑖,𝑗

𝛼𝑖,𝑗𝑠
𝑖
𝑡
𝑗

) = 0. In particular, computing the effect of
this element on 1, we get

(

∑

𝑖,𝑗

𝛼𝑖,𝑗𝜑
𝑖
𝜓
𝑗

)

(1) = 0

∑

𝑖,𝑗

𝛼𝑖,𝑗𝜑
𝑖
(𝑦

𝑗
) = 0

∑

𝑖,𝑗

𝛼𝑖,𝑗𝑥
𝑖
𝑦
𝑗
= 0

meaning 𝛼𝑖,𝑗 = 0 for all 𝑖, 𝑗. Thus, the set {𝑠𝑖𝑡 𝑗 ∣ 𝑖, 𝑗 ∈ ℕ} is linearly independent, finishing
the proof. ■

This means arbitrary elements of 𝐴1(𝐾 ) may be written as polynomials on 𝑠, 𝑡 . This
will be made even more precise soon. For a bit of historical context, the first Weyl algebra
has its origins in quantum mechanics, where it appears as the algebra generated by certain
operators. We’ll see a version of this interpretation in the following basic properties, where
it becomes clear that 𝑠, 𝑡 act as the standard derivative via commutators. When there’s no
ambiguity, we will use [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 for the additive commutators as well.

Proposition 3.3.2. In the 𝐾 -algebra 𝐴1(𝐾 ), the following identities hold for all 𝑛 ∈ ℕ and
all 𝑝(𝑠, 𝑡) ∈ 𝐴1(𝐾 ):

• [𝑡
𝑛
, 𝑠] =

𝜕

𝜕𝑡
(𝑡
𝑛
);

• [𝑡, 𝑠
𝑛
] =

𝜕

𝜕𝑠
(𝑠
𝑛
);

• [𝑝(𝑠, 𝑡), 𝑠] =
𝜕

𝜕𝑡
𝑝(𝑠, 𝑡);

• [𝑡, 𝑝(𝑠, 𝑡)] =
𝜕

𝜕𝑠
𝑝(𝑠, 𝑡);

Proof. Direct computation using induction and linearity. ■

Proposition 3.3.3. The first Weyl algebra over a field 𝐾 is simple.

Proof. Let 𝐼 ≠ 0 be an ideal of 𝐴1(𝐾 ) and let 𝑝(𝑠, 𝑡) ∈ 𝐼 be nonzero and of minimal degree6.
Since 𝐼 is an ideal, we know that [𝑡, 𝑝(𝑠, 𝑡)] ∈ 𝐼 and [𝑝(𝑠, 𝑡), 𝑠] ∈ 𝐼 . By Proposition 3.3.2, this

6 We define the degree as with polynomials in two variables
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implies 𝜕

𝜕𝑡
𝑝(𝑠, 𝑡),

𝜕

𝜕𝑠
𝑝(𝑠, 𝑡) ∈ 𝐼 . Due to the minimality of the degree of 𝑝(𝑠, 𝑡), this yields, in

turn, that 𝑝(𝑠, 𝑡) = 𝑘 ∈ 𝐾 , 𝑘 ≠ 0. Ergo, 𝐼 = 𝐴1(𝐾 ). ■

Proposition 3.3.4. 𝐴1(𝐾 ) ≅ 𝐾 [𝑥][𝑦;
𝑑

𝑑𝑥
].7

Proof. Let 𝜙 ∶ 𝐾⟨𝑠, 𝑡⟩ → 𝐾 [𝑥][𝑦;
𝑑

𝑑𝑥
] be the 𝐾 -algebra homomorphism given by 𝜙(𝑠) =

𝑥, 𝜙(𝑡) = 𝑦. Since 𝑦𝑥 = 𝑥𝑦 + 1, this induces a 𝐾 -algebra homomorphism 𝜓 ∶ 𝐴1(𝐾 ) →

𝐾 [𝑥][𝑦;
𝑑

𝑑𝑥
]. It is surjective, as 𝑥, 𝑦 generate the skew polynomial ring, and injective, by

Proposition 3.3.3, meaning it is a 𝐾 -algebra isomorphism. ■

In particular, the proposition above shows 𝐴1(𝐾 ) is an Ore domain, by Corollary 2.2.4.1,
meaning it admits a total field of fractions. In order to investigate the presence of free
pairs in the multiplicative group of that division ring, we’ll need some results on free
pairs in multiplicative groups of fields of fractions of skew polynomial rings, which can be
obtained using our previous results on quaternions. We begin with the following:

Proposition 3.3.5. Let 𝐾 (𝑥, 𝑦) be the field of fractions of the standard polynomial ring in 𝑥
and 𝑦 over the field 𝐾 of characteristic different than 2 (resp. characteristic 2). Then, given
𝛼, 𝛽 ∈ 𝐾

†, the pair {1+𝛼 𝐢, 1+ 𝛽𝐣} is free (resp. semi-free modulo center if 𝛽 = 1) in U
(

𝑥,𝑦

𝐾 (𝑥,𝑦))

(resp. in U
(

𝑥,𝑦

𝐾 (𝑥,𝑦)]
).

We will present two proofs of this results. The first will use valuations and the the-
orems on quaternions. The second will also do this to some extent, but will also be a
good demonstration of another technique for obtaining free pairs, using the so called
specializations, defined as follows.

Definition. Let 𝐷 and Δ be division rings. A specialization 𝛼 ∶ 𝐷 → Δ is a surjective
ring homomorphism 𝛼 ∶ 𝑅 ⊂ 𝐷 → Δ, where 𝑅 is a local subring of 𝐷, such that ker 𝛼 = m,
with m the maximal ideal of 𝑅 ([Coh08]).

There is a weaker variant of specializations that lifts the requirements of the subring
being local.

Definition. Let 𝐷 and Δ be division rings. A proto-specialization 𝛼 ∶ 𝐷 → Δ is a
ring homomorphism 𝛼 ∶ 𝑅 ⊂ 𝐷 → Δ, where 𝑅 is a subring of 𝐷, such that 𝛼(U (𝑅)) = Δ

†

([GP20]).

First proof of Proposition 3.3.5. Let p = ⟨1 − 𝛼
2
𝑥⟩ in the ring 𝐾 [𝑥]. It is easy to see that

this is a prime ideal (the quotient ring is isomorphic to 𝐾 , via the evaluation of 𝑥 at 𝛼−2).
Consider the p-adic valuation 𝑣p of 𝐾 (𝑥) and take 𝐿 = 𝐾 (

√

𝑥) and 𝑆 the integral closure of
𝐾 [𝑥]p in 𝐿. In 𝑆, 1−𝛼2

𝑥 = (1−𝛼

√

𝑥)(1+𝛼

√

𝑥), meaning (1−𝛼
2
𝑥)𝑆 = (1−𝛼

√

𝑥)𝑆 ⋅ (1+𝛼

√

𝑥)𝑆.

By [Jan96, Corollary 6.7], (1 − 𝛼2
𝑥)𝑆 can have at most two prime ideal factors, meaning

each of the ideals (1 − 𝛼

√

𝑥)𝑆 and (1 + 𝛼

√

𝑥)𝑆 is prime. They are also distinct, since
𝑆/(1 + 𝛼

√

𝑥)𝑆 is not of characteristic 2 (it contains an isomorphic copy of 𝐾 , which is
𝐾 [𝑥]/p; see [Jan96, Lemma 6.5]) and 1 − 𝛼

√

𝑥 = 2 in the quotient.

7 Here, the automorphism is the identity.
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Thus, we can extend 𝑣p to a valuation 𝑣 of 𝐾 (
√

𝑥) such that 𝑣(1 + 𝛼

√

𝑥) = 1 and
𝑣(1 − 𝛼

√

𝑥) = 0, by Theorem 3.1.10. Of course, the same exact process can be done to
construct a valuation 𝑤 of 𝐾 (√𝑦) such that 𝑤(1 + 𝛽√𝑦) = 1 and 𝑤(1 − 𝛽√𝑦) = 0.

Now consider the subring 𝐾 [

√

𝑥,
√
𝑦] of 𝐾 (

√

𝑥,
√
𝑦) and the ideal P = (1 +

𝛼

√

𝑥)𝐾 [

√

𝑥,
√
𝑦] + (1 + 𝛽

√
𝑦)𝐾 [

√

𝑥,
√
𝑦]. Since 𝐾 [

√

𝑥,
√
𝑦] is isomorphic to a polynomial

ring on two variables, it’s easy to see that P is a maximal ideal, since the quotient is
isomorphic to 𝐾 ; in particular, it’s a prime ideal.

Take a valuation 𝑉 associated to a valuation ring 𝐴 ⊂ 𝐾 (

√

𝑥,
√
𝑦) given by Theo-

rem 3.1.8. We know that P is the set of elements of 𝐾 [
√

𝑥,
√
𝑦] with positive valuation.

Thus, the set of elements of 𝐾 [
√

𝑥] with positive valuation is P∩𝐾 [

√

𝑥] = (1+𝛼

√

𝑥)𝐾 [

√

𝑥].
In particular, 𝑉 (1−𝛼

√

𝑥) = 0 and 𝑉 (1+𝛼
√

𝑥) > 0. The same can be done for the intersection
with 𝐾 [√𝑦], meaning 𝑉 satisfies all of the conditions of Theorem 3.2.7 (we may use 𝐢 and
√

𝑥 interchangeably), finishing the proof.

For the characteristic 2 case, we can simply consider the valuation of 𝐾 (𝑥) associated
to the prime ideal ⟨𝑥 + 𝛼−1

+ 𝛼
−2
⟩ and extend it, via the minimum valuation (see Section 1)

to the field 𝐾 (𝑥, 𝑦). ■

Second proof of Proposition 3.3.5. We now present a second proof using specializations.
First, we use the same arguments as in the first proof. Consider a valuation 𝑣 of 𝐾 (

√

𝑡)

such that 𝑣(1 + 𝛼
√

𝑡) = 1 and 𝑣(1 − 𝛼
√

𝑡) = 0 (we have constructed such a valuation in the
first proof). It shows that {1+𝛼 𝐢, 𝐢+ 𝐣} is semi-free modulo center in U

(

𝑡,𝑡

𝐾 (𝑡))
. If (1+𝛼 𝐢) had

finite order modulo center, there would exist some 𝑚 ∈ ℕ such that (1+𝛼 𝐢)𝑚 ∈ 𝐾 , meaning
𝑚𝑣(1 + 𝛼 𝐢) = 0, which is absurd. By Proposition 3.0.2, since (𝐢 + 𝐣)

−1
(1 + 𝛼 𝐢)(𝐢 + 𝐣) = 1 + 𝛼𝐣,

the pair {1 + 𝛼 𝐢, 1 + 𝛼𝐣} is free.

Consider the 𝐾 -algebra homomorphism 𝜓 ∶ 𝐾 [𝑥, 𝑦] → 𝐾 (𝑡) given by 𝜓 (𝑥) = 𝜓 (𝑦) = 𝑡 ,
constructed using the universal property of polynomial rings. Its kernel is a prime ideal
(as 𝐾 (𝑡) is a domain), and 𝐾 (𝑡) is a field, meaning 𝜓 inverts 𝐾 [𝑥, 𝑦] ⧵ ker𝜓 . Thus, by the
universal property of localization, there exists a unique extension ̃

𝜓 ∶ 𝐾 [𝑥, 𝑦]p → 𝐾 (𝑡),
where p = ker𝜓 . Furthermore, ̃

𝜓 is trivially surjective.

Take 𝑆 = {𝛾0 + 𝛾1𝐢+ 𝛾2𝐣+ 𝛾3𝐢𝐣 ∣ 𝛾𝑖 ∈ 𝐾 [𝑥, 𝑦]p, ∀𝑖}. As 𝑥, 𝑦 ∈ 𝐾 [𝑥, 𝑦]p, a simple calculation

proves that 𝑆 is a subring of
(

𝑥,𝑦

𝐾 (𝑥,𝑦))
, and we can define 𝛼 ∶ 𝑆 →

(

𝑡,𝑡

𝐾 (𝑡))
by

𝛼(𝛾0 + 𝛾1𝐢 + 𝛾2𝐣 + 𝛾3𝐢𝐣) =
̃
𝜓 (𝛾0) +

̃
𝜓 (𝛾1)𝐢 +

̃
𝜓 (𝛾2)𝐣 +

̃
𝜓 (𝛾3)𝐢𝐣

It’s straightforward to check that this 𝛼 is a surjective homomorphism, meaning it defines

a proto-specialization from
(

𝑥,𝑦

𝐾 (𝑥,𝑦))
to

(

𝑡,𝑡

𝐾 (𝑡))
. From the first paragraph, the pair {1+ 𝐢, 1+ 𝐣}

is free in
(

𝑥,𝑦

𝐾 (𝑥,𝑦))
.

Now define a 𝐾 -algebra homomorphism 𝜑 ∶ 𝐾⟨𝐢, 𝐣⟩ →
(

𝛼
2
𝑥,𝛽

2
𝑦

𝐾 (𝑥,𝑦) )
with 𝜑(𝐢) = 𝛼−1

�̃� and

𝜑(𝐣) = 𝛽
−1
�̃�, where the “∼” is used to differentiate between the elements of the domain and
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those of the image. Notice that

𝜑(𝐢)
2
= 𝑥, 𝜑(𝐣)

2
= 𝑦 and 𝜑(𝐣)𝜑(𝐢) = −𝜑(𝐢)𝜑(𝐣)

meaning 𝜑 uniquely extends to a 𝐾 algebra homomorphism Φ ∶
(

𝑥,𝑦

𝐾 (𝑥,𝑦))
→

(

𝛼
2
𝑥,𝛽

2
𝑦

𝐾 (𝑥,𝑦) )
,

which is evidently an isomorphism (using the simplicity of quaternion algebras and the
definition of Φ). Also, 𝛼2

𝑥 and 𝛽2𝑦 are two algebraically independent variables over 𝐾 (𝑥, 𝑦).

Thus, the pair {1 + 𝐢, 1 + 𝐣} is free in
(

𝛼
2
𝑥,𝛽

2
𝑦

𝐾 (𝑥,𝑦) )
, by the proto-specialization we had build,

and this pair lifts via Φ to {1 + 𝛼 𝐢, 1 + 𝛽𝐣} in
(

𝑥,𝑦

𝐾 (𝑥,𝑦))
, finishing the proof. The characteristic

2 case is done as before. ■

Proposition 3.3.6. Let 𝐾 be a field and let 𝑄 be the total classical field of fractions of the
skew polynomial ring 𝐾 (𝑥)[𝑦; 𝜎] (the derivation is the “zero” derivation). Then, the following
are true:

1. If 𝜎 (𝑥) = 𝑥 + 1 and 𝐾 is of characteristic 2, then {1 + 𝑥, 1 + 𝑦} is semi-free modulo
center in 𝑄;

2. If 𝜎 = 𝜆𝑥 , where 𝜆 is a primitive 2𝑛𝑡ℎ-root of unity, and 𝐾 is of characteristic not 2,
then {1 + 𝛼𝑥

𝑛
, 1 + 𝛽𝑦} is free in 𝑄, for all 𝛼, 𝛽 ∈ 𝐾

†;

Proof. We will contend ourselves to the proof of item 2.; the first one is analogous, using
the appropriate results over characteristic 2. Let 𝑢 = 𝑥

2𝑛 and 𝑣 = 𝑦
2. It’s trivial to check

that both are central in 𝑄, meaning 𝐾 (𝑢, 𝑣) ⊂ 𝑍 , where 𝑍 is the center of the division ring
𝑄.

Let’s consider 𝐻 =
(

𝑢,𝑣

𝐾 (𝑢,𝑣))
. By the definitions of 𝜆 and 𝜎 , 𝑦𝑥𝑛 = −𝑥

𝑛
𝑦 . Therefore, if 𝐹

is the subdivision ring of 𝑄 generated by {𝑥
𝑛
, 𝑦}, we will get a homomorphism 𝜙 ∶ 𝐻 → 𝐹

with 𝜙(𝐢) = 𝑥𝑛, 𝜙(𝐣) = 𝑦 . This is, in fact, an isomorphism, since 𝐻 is simple and 𝜙 surjective.
Thus, we just need to use Proposition 3.3.5. ■

In order to proceed, we will need the following important result due to Lichtman
([Lic78]), that translates known results in commutative rings to the noncommutative
case.

Proposition 3.3.7. Let 𝑅 be an integral domain with field of fractions 𝐹 and let 𝐴 be a prime
ideal of 𝑅. Suppose there exists a discrete valuation 𝑣 of 𝐹 such that 𝐴 = {𝑟 ∈ 𝑅 ∣ 𝑣(𝑟) > 0}.
Let 𝑎, 𝑏 ∈ 𝑅, with 𝑎 ∈ U (𝑅), and consider the automorphism 𝜃 ∶ 𝑅[𝑥] → 𝑅[𝑥], such that
𝜃(𝑥) = 𝑎𝑥 + 𝑏. Let 𝑆 = 𝑅[𝑥][𝑦; 𝜃], which is a right Ore domain. Under these conditions, the
following are true:

1. 𝐴𝑆 is a completely prime ideal of 𝑆;8

2. The complement 𝑀 of the prime ideal 𝐴𝑆 is a right denominator set for 𝑆;

8 A completely prime ideal of a noncommutative ring is an ideal 𝐼 such that 𝑎𝑏 ∈ 𝐼 implies either 𝑎 ∈ 𝐼 or
𝑏 ∈ 𝐼 .
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3. The ring of fractions 𝑆𝑀−1 of 𝑆 relative to 𝑀 is a local ring whose maximal ideal 𝐵
satisfies 𝐵 ∩ 𝑆 = 𝐴𝑆

Proof. 1. It is relatively simple to see that 𝐴𝑆 is the set consisting of the elements of
𝑆 with all of its coefficients in 𝐴. Suppose 𝑝𝑞 ∈ 𝐴𝑆, with 𝑝, 𝑞 ∉ 𝐴𝑆. Write, then,
𝑝 = 𝑝

′
+ 𝑟1 and 𝑞 = 𝑞

′
+ 𝑟2, where all the coefficients of the monomials in 𝑝′, 𝑞′ are in

𝐴, but those of 𝑟1, 𝑟2 are not, and no monomial in 𝑝′ appears in 𝑟1 (analogously with
𝑞
′ and 𝑟2). Take the leading coefficients 𝜔1𝑥

𝑘
𝑦
𝑙 and 𝜔2𝑥

𝑚
𝑦
𝑛 of 𝑟1 and 𝑟2, respectively.

Then, we get
𝜔1𝑥

𝑘
𝑦
𝑙
𝜔2𝑥

𝑚
𝑦
𝑛
= 𝜔1𝜔2𝑎

𝑚𝑙
𝑥
𝑘+𝑚

𝑦
𝑙+𝑛

+ 𝜖

where 𝜖 consists of terms of smaller degree. By hypothesis, 𝑝𝑞 ∈ 𝐴𝑆, meaning we
must have 𝜔1𝜔2𝑎

𝑚𝑙
∈ 𝐴. As 𝑎 is invertible in 𝑅, 𝑎 ∉ 𝐴, since it’s a prime ideal,

meaning 𝑎𝑚𝑙 ∉ 𝐴. But 𝐴 this implies either 𝜔1 or 𝜔2 is in 𝐴, a contradiction.

2. Let 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑆. Since 𝑆 is a right Ore domain, there exist 𝑚1, 𝑟1 ∈ 𝑆 such that
𝑚𝑟1 = 𝑟𝑚1 ≠ 0. Thus, all we need to show is that such a relation exists with 𝑚1 ∈ 𝑀 .

Suppose 𝑚1 ∉ 𝑀 , which is equivalent to 𝑚1 ∈ 𝐴𝑆. It’s therefore true that 𝑚1 =

∑ 𝑎𝑖𝑗𝑥
𝑖
𝑦
𝑗 , where 𝑎𝑖𝑗 ∈ 𝐴 for all 𝑖, 𝑗. Furthermore, 𝑚𝑟1 = 𝑟𝑚1 ∈ 𝐴𝑆 and, as 𝑚 ∉ 𝐴𝑆 and

the latter is a completely prime ideal, we get 𝑟1 ∈ 𝐴𝑆; in particular, 𝑟1 = ∑ 𝑏𝑖𝑗𝑥
𝑖
𝑦
𝑗 ,

where 𝑏𝑖𝑗 ∈ 𝐴 for all 𝑖, 𝑗.

Take 𝜋 ∈ 𝐴 such that 𝑣(𝜋 ) = 1 (i.e., a generator of the ideal). Since 𝑣(𝑎𝑖𝑗) > 0, ∀𝑖, 𝑗,
there exists some maximal 𝑛 ∈ ℕ such that 𝜋𝑛 ∣ 𝑎𝑖𝑗 for all 𝑖, 𝑗. Thus,𝑚1 = 𝜋

𝑛
𝑚

′, where
𝑚

′
∈ 𝑀 , using the maximality of the chosen 𝑛. As 𝜋 ∤ 𝑚, then 𝜋

𝑛
∣ 𝑟1. Canceling

both sides, we get the equality 𝑚𝑟 ′ = 𝑟𝑚′, 𝑚′
∈ 𝑀 .

3. Every element of 𝑆𝑀−1 is of the form 𝑠𝑚
−1. This element fails to be invertible if, and

only if, 𝑠 ∈ 𝐴𝑆. Thus, the set of non-units is a two-sided ideal, 𝐵 = 𝐴𝑆𝑀
−1, meaning

𝐴𝑀
−1 is a local ring. Moreover, 𝐴𝑆𝑀−1

∩ 𝑆 = 𝐴𝑆.

■

With this tool at hand, we can get a very interesting result regarding the field of
fractions of 𝐴1(ℚ) ([GMS99, Theorem 4]).

Theorem 3.3.8. The pair {1 + 𝑡𝑠, 1 + 𝑠} is semi-free modulo some normal subgroup of the
multiplicative group of the total field of fractions of 𝐴1(ℚ).

Proof. Let 𝜃 ∶ ℚ(𝑥) → ℚ(𝑥) be the ring automorphism given by 𝜃(𝑥) = 𝑥 + 1. It’s easy
to see that, defining 𝑠 ↦ 𝑦

−1
𝑥 and 𝑡 ↦ 𝑦, we get an isomorphism from the total field

of fractions of 𝐴1(ℚ) onto the division ring ℚ(𝑥)(𝑦; 𝜃). The latter is also the total field of
fractions of ℤ[𝑥][𝑦; 𝜃] (where we identify 𝜃 with its restriction).

Take, then, 𝑅 = ℤ, 𝐴 = 2ℤ, 𝑆 = ℤ[𝑥][𝑦; 𝜃] and 𝑣 the rational valuation associated to
the prime ideal 𝐴 of 𝑅. We’re now in the conditions of Proposition 3.3.7. Hence, defining
𝑀 = 𝑆 ⧵ 𝐴𝑆, this is a right denominator set for 𝑆, and 𝑆𝑀−1 is a local ring with maximal
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ideal 𝐴𝑆𝑀−1. It’s straightforward to see that

𝑆𝑀
−1

𝐴𝑆𝑀
−1

≅ ℤ2(𝑥)(𝑦; 𝜃)

through simple computation.

We now obtain, using Proposition 3.3.6, that the pair {1 + 𝑥, 1 + 𝑦} is semi-free modulo
center in ℤ2(𝑥)(𝑦; 𝜃)

†. We can now lift the required pairs using the following diagram and
Corollary 3.0.1.1

ℚ⟨𝑠, 𝑡⟩

𝐴1(ℚ) (𝐴1(ℚ)) ℚ(𝑥)(𝑦; 𝜃)

𝑆𝑀
−1

ℤ2(𝑥)(𝑦; 𝜃)

■

Using Proposition 3.0.2, the following corollary is immediate:

Corollary 3.3.8.1. There exists a free pair in the total classical field of fractions of 𝐴1(ℚ).

3.4 Malcev-Neumann series rings
The final class of division rings in which we’ll construct free pairs is that of the Malcev-

Neumann series rings, as constructed in Section 2.3. In order to do so, we’ll need the
following categorical construction:

Definition. Let 𝑅𝑛 be rings and let 𝜓𝑛 ∶ 𝑅𝑛+1 → 𝑅𝑛 be ring homomorphisms, 𝑛 ∈ ℕ. An
inverse limit of this system is a ring 𝑅 together with a sequence of homomorphisms
𝛼𝑛 ∶ 𝑅 → 𝑅𝑛 such that:

• 𝜓𝑛 ◦ 𝛼𝑛+1 = 𝛼𝑛;

• If 𝑅′ is another ring with another sequence of homomorphisms 𝛽𝑛 ∶ 𝑅′
→ 𝑅𝑛 such

that 𝜓𝑛 ◦ 𝛽𝑛+1 = 𝛽𝑛, then there exists a unique homomorphism Φ ∶ 𝑅
′
→ 𝑅 such that

the following commutes:

𝑅
′

𝑅

𝑅𝑛

𝑅𝑛+1

∃!Φ

𝛽𝑛

𝛽𝑛+1

𝛼𝑛

𝛼𝑛+1

𝜓𝑛
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Proposition 3.4.1. Given a sequence of rings 𝑅𝑛 and a sequence of homomorphisms 𝜓𝑛 ∶
𝑅𝑛+1 → 𝑅𝑛, there exists, up to isomorphism, a unique inverse limit of the system.

Proof. Uniqueness, as tends to be the case with universal property definitions, is rather
simple. Given two such inverse limits 𝑅 and 𝑅′, together with their homomorphisms 𝛼𝑛, 𝛽𝑛,
consider the diagram:

𝑅
′

𝑅 𝑅
′

𝑅

𝑅𝑛 𝑅𝑛 𝑅𝑛

𝑅𝑛+1 𝑅𝑛+1 𝑅𝑛+1

∃!Φ

𝛽𝑛

𝛽𝑛+1

𝛼𝑛

𝛼𝑛+1

∃!Ψ

𝛼𝑛

𝛼𝑛+1

𝛽𝑛

𝛽𝑛+1

∃!Φ

𝛽𝑛

𝛽𝑛+1

𝛼𝑛

𝛼𝑛+1

𝜓𝑛 𝜓𝑛 𝜓𝑛

From the uniqueness of the constructed homomorphisms, both compositions yield their
respective identities. In particular, 𝑅 ≅ 𝑅

′. Hence, all that’s left is to show existence.

Let, then, R = ∏
∞

𝑖=0
𝑅𝑖 and define 𝐿 = {(𝑚𝑖) ∈ R ∣ 𝑚𝑖 = 𝜓𝑖(𝑚𝑖+1)}. Since ring homomor-

phisms preserve both additive and multiplicative identities and 𝑎𝑖+𝑏𝑖 = 𝜓𝑖(𝑎𝑖+1+𝑏𝑖+1), 𝑎𝑖𝑏𝑖 =
𝜓𝑖(𝑎𝑖+1𝑏𝑖+1), we get that 𝐿 is a subring of R. Let’s define 𝛼𝑛 = 𝜋𝑛|𝐿, where 𝜋𝑛 ∶ R → 𝑅𝑛 is
the canonical projection. We’ll show that the pair (𝐿, {𝛼𝑛}) is an inverse limit to the given
system.

Let (𝑎𝑖) ∈ 𝐿. We get (𝜓𝑛 ◦ 𝛼𝑛+1)((𝑎𝑖)) = 𝜓𝑛(𝑎𝑛+1) = 𝑎𝑛 = 𝛼𝑛((𝑎𝑖)). Hence, 𝜓𝑛 ◦ 𝛼𝑛+1 = 𝛼𝑛.
Now let (𝑅′

, {𝛽𝑛}) be another ring with homomorphisms such that 𝜓𝑛 ◦ 𝛽𝑛+1 = 𝛽𝑛. Let
Φ ∶ 𝑅

′
→ 𝐿 be defined by 𝑥 ↦ (𝛽𝑖(𝑥)). As 𝜓𝑛 ◦ 𝛽𝑛+1 = 𝛽𝑛, this function is well-defined, and

is trivially a ring homomorphism.

Moreover, (𝛼𝑛 ◦ Φ)(𝑥) = 𝛽𝑛(𝑥) for all 𝑥 , meaning 𝛼𝑛 ◦ Φ = 𝛽𝑛. Finally, if 𝜃 ∶ 𝑅
′
→ 𝐿

is a homomorphism such that 𝛼𝑛 ◦ 𝜃 = 𝛽𝑛 for all 𝑛, then, writing 𝜃(𝑥) = (𝑚𝑖), we get
𝑚𝑛 = 𝛼𝑛(𝜃(𝑥)) = 𝛽𝑛(𝑥). Ergo, 𝜃 = Φ, finishing the proof. ■

In view of the preceding proposition, we may refer to “the” inverse limit, and will denote
it by lim

←−−
𝑅𝑛. As a consequence of our explicit construction, we have the following:

Corollary 3.4.1.1. If the functions 𝜓𝑛 ∶ 𝑅𝑛+1 → 𝑅𝑛 are surjective, then the same is true of
the mappings 𝛼𝑛 ∶ lim

←−−
𝑅𝑖 → 𝑅𝑛.

Proof. Let 𝑥 ∈ 𝑅𝑛. We need to find a sequence (𝑦𝑖) ∈ 𝐿 (returning to the notations of the
preceding proposition) such that 𝑦𝑛 = 𝑥 . Since all 𝜓𝑖 are surjective, there exists 𝑧𝑛+1 ∈ 𝑅𝑛+1
such that 𝜓𝑛(𝑧𝑛+1) = 𝑥 and, inductively, having obtained 𝑧𝑖 , 𝑖 > 𝑛, we may obtain 𝑧𝑖+1 ∈ 𝑅𝑖+1
such that 𝜓𝑖(𝑧𝑖+1) = 𝑧𝑖 . Thus, we may define the sequence:

𝑦𝑖 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

(𝜓𝑖 ◦ ⋯ ◦ 𝜓𝑛−1)(𝑥) if 0 ≤ 𝑖 < 𝑛;
𝑥 if 𝑖 = 𝑛;
𝑧𝑖 if 𝑖 > 𝑛;
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■

We may now prove some other, fairly technical results due to Lichtman (they are parts
of proofs from [Lic95]). We begin as follows:

Proposition 3.4.2. Let 𝑅 be a domain and let 𝑡 ∈ 𝑅 be central. Suppose ⋂∞

𝑖=0
𝑡
𝑖
𝑅 = (0) and

denote 𝑅𝑛 = 𝑅/𝑡𝑛𝑅, t𝑛 = 𝜋𝑛(𝑡), where 𝜋𝑛 ∶ 𝑅 → 𝑅𝑛 is the canonical projection. Then, if 𝑅1 is a
right Ore domain, 𝑅𝑛 ⧵ t𝑛𝑅𝑛 is a right denominator set for 𝑅𝑛.

Proof. Let’s denote 𝑆𝑛 = 𝑅𝑛⧵t𝑛𝑅𝑛. By hypothesis, we may define a function 𝑣 ∶ 𝑅 → ℤ⊔{∞}

as 𝑣(𝑥) = max{𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝑡
𝑛
𝑅}, 𝑥 ≠ 0 and 𝑣(0) = ∞. It is simple to check that it is a

valuation of 𝑅. Let 𝑥 ∈ 𝑅 be such that 𝜋𝑛(𝑥) = 𝑥 ∈ 𝑆𝑛. Of course, 𝑥 ∉ (𝑡); otherwise,
𝜋𝑛(𝑥) = t𝑛𝜋𝑛(𝑟) for some 𝑟 ∈ 𝑅, meaning, 𝑣(𝑥) = 0.9

Suppose 𝑥𝑟 = 0 for some 𝑟 ∈ 𝑅; i.e., 𝑥𝑟 ∈ (𝑡)
𝑛. Then 𝑛 ≤ 𝑣(𝑥𝑟) = 𝑣(𝑥) + 𝑣(𝑟) = 𝑣(𝑟), and

thus, 𝑟 = 0. The same argument also works for 𝑟𝑥 , meaning 𝑆𝑛 is a right reversible subset
of 𝑅𝑛. All that’s left is to check permutability.

By hypothesis, 𝑅1 is a right Ore domain, which is equivalent to saying that 𝑅†

1
= 𝑆1

is a right denominator set. Suppose, then, as an inductive hypothesis, that 𝑆𝑛−1 is right
permutable and let 𝑠 ∈ 𝑆𝑛, 𝑎 ∈ 𝑅𝑛. By hypothesis, (𝑠 + (𝑡)

𝑛−1
)𝑅𝑛−1 ∩ (𝑎 + (𝑡)

𝑛−1
)𝑆𝑛−1 ≠ ∅. It’s

clear that 𝜋𝑛((𝑡)) = 𝜋𝑛(𝑡𝑅) = t𝑛𝑅𝑛, meaning 𝜋𝑛(𝑅 ⧵ (𝑡)) = 𝑆𝑛. Hence, there are 𝑏 ∈ 𝑅, 𝑢 ∈ 𝑅 ⧵ (𝑡)

such that 𝑧 = 𝑠𝑏 − 𝑎𝑢 ∈ (𝑡)
𝑛−1.

If 𝑧 ∈ (𝑡)
𝑛, the result is immediate. We may then assume 𝑧 = 𝑧0𝑡𝑛−1, 𝑧0 ∈ 𝑅 ⧵ (𝑡). We get

𝑠𝑏 − 𝑎𝑢 − 𝑧0𝑡
𝑛−1

= 0. As 𝑅1 is a right Ore domain, there exist 𝑏1 ∈ 𝑅, 𝑢1 ∈ 𝑅 ⧵ (𝑡) such that
𝑠𝑏1 − 𝑧0𝑢1 ∈ (𝑡). Hence:

{

𝑠𝑏1𝑡
𝑛−1

− 𝑧0𝑢1𝑡
𝑛−1

∈ (𝑡)
𝑛

−𝑠𝑏𝑢1 + 𝑎𝑢𝑢1 + 𝑧0𝑢1𝑡
𝑛−1

∈ (𝑡)
𝑛

⟹ 𝑠(−𝑏1𝑡
𝑛−1

+ 𝑏𝑢1) + 𝑎(𝑢𝑢1) ∈ (𝑡)
𝑛

As 𝑅1 is a domain and 𝑢, 𝑢1 ∈ 𝑅 ⧵ (𝑡), then 𝑢𝑢1 ∈ 𝑅 ⧵ (𝑡), meaning 𝜋𝑛(𝑢𝑢1) ∈ 𝑆𝑛. Ergo, in
𝑅𝑛, we have 𝑠(𝑏𝑢1 − 𝑏1𝑡𝑛−1) = 𝑎(𝑢𝑢1) ∈ 𝑠𝑅𝑛 ∩ 𝑎𝑆𝑛. Therefore, 𝑆𝑛 is a right denominator set
for 𝑅𝑛, as we wished to show. ■

Proposition 3.4.3. Under the conditions of Proposition 3.4.2, denote by 𝑄𝑛 the ring of
fractions of 𝑅𝑛 with respect to 𝑆𝑛. Then, the following are true:

1. (t𝑛𝑄𝑛)
𝑛
= 0;

2. 𝑄𝑛/t𝑛𝑄𝑛 ≅ 𝑄1;

3. The surjective homomorphism 𝜙𝑛 ∶ 𝑅𝑛+1 → 𝑅𝑛 given by 𝑟 + (𝑡)
𝑛+1

↦ 𝑟 + (𝑡)
𝑛 can be

extended to a surjective homomorphism Φ𝑛 ∶ 𝑄𝑛+1 → 𝑄𝑛.

Proof. 1. Follows from the fact that t𝑛 is central in 𝑄𝑛 and t𝑛
𝑛
= 𝜋𝑛(𝑡

𝑛
) = 0;

9 We will use (𝑡) to denote the ideal generated by 𝑡 . In particular, (𝑡) = 𝑡𝑅, since 𝑡 is central. By convention,
(𝑡)

0
= 𝑅.
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2. Let 𝜆𝑖 ∶ 𝑅𝑖 → 𝑄𝑖 be the localization map 𝜆𝑖(𝑟) = 𝑟/1. We have an induced map
𝜓 ∶ 𝑅 → 𝑄1, 𝜓 = 𝜆1 ◦𝜋1. Since (𝑡)𝑛 ⊂ (𝑡), there exist homomorphisms 𝜓𝑛 ∶ 𝑅𝑛 → 𝑄1,
induced by the quotient. Furthermore, these are homomorphisms inverting 𝑆𝑛, as 𝑄1

is a division ring. Hence, Corollary 2.1.1.1 yields a homomorphism Ψ𝑛 ∶ 𝑄𝑛 → 𝑄1

extending 𝜓𝑛. It’s trivial to check that it’s surjective with kernel t𝑛𝑄𝑛.

3. The homomorphism 𝜑𝑛 = 𝜆𝑛 ◦ 𝜙𝑛 inverts 𝑆𝑛+1, meaning it induces a homomorphism
Φ𝑛 ∶ 𝑆𝑛+1 → 𝑆𝑛, which is surjective by definition.

■

Proposition 3.4.4. Under the conditions of Proposition 3.4.3, let 𝑄 = lim
←−−

𝑄𝑖 and t = (t𝑛)𝑛∈ℕ† .
Then, 𝑄 is a local domain with maximal ideal t𝑄. Furthermore, 𝑄/t𝑄 ≅ 𝑄1 and t𝑄 defines a
valuation 𝜌 ∶ 𝑄 → ℤ ⊔ {∞} in 𝑄 which extends the valuation 𝑣 of 𝑅.

Proof. By Corollary 3.4.1.1 and Proposition 3.4.3 item (3), the mappings 𝛼𝑛 associated to
the inverse limit 𝑄 are surjective, . Ergo for all 𝑛 ∈ ℕ

†, there exists an ideal 𝐼𝑛 of 𝑄 such
that 𝑄/𝐼𝑛 ≅ 𝑄𝑛. Moreover, as 𝑄𝑛/t𝑛𝑄𝑛 ≅ 𝑄1, there’s a unique ideal 𝐽𝑛 containing 𝐼𝑛 such that
𝑄/𝐽𝑛 ≅ 𝑄1. In particular, each 𝐽𝑛 is a maximal ideal.

Let 𝐽 = ⋂ 𝐽𝑛. If 𝑥 ∈ 𝑄 ⧵ 𝐽 , then 𝛼𝑛(𝑥) ∈ 𝑄𝑛 ⧵ t𝑛𝑄𝑛, from the definition of 𝐽𝑛. In particular,
𝛼𝑛(𝑥) is invertible. As this is true for all 𝑛, the definition of 𝑄 immediately yields that 𝑥 is
invertible in 𝑄, meaning it is a local ring. In particular, 𝐽𝑛 = 𝐽 , for all 𝑛.

Now suppose, 𝑥 ∈ 𝑄 ⧵ t𝑄. Writing 𝑥 = (𝑥𝑖), there’s some 𝑖 such that 𝑥𝑖 ∉ t𝑖𝑄𝑖 . This,
in turn, implies 𝑥𝑖 ∈ 𝑆𝑖 . Hence, there exists 𝑥 ∈ 𝑅 ⧵ (𝑡) such that 𝜋𝑖(𝑥) = 𝑥𝑖 . In particular,
𝜋𝑗(𝑥) ∈ 𝑆𝑗 for all 𝑗 < 𝑖. By the definition of the inverse limit, 𝑥𝑗 ∈ 𝑆𝑗 if 𝑗 > 𝑖 (since
Φ𝑘(t𝑘+1𝑄𝑘+1) ⊂ t𝑘𝑄𝑘). Therefore, 𝑥𝑖 ∈ 𝑆𝑖 for all 𝑖. In particular, 𝑥 is invertible in 𝑄. Thus,
𝐽 = t𝑄. Moreover

𝛼𝑖
(

∞

⋂

𝑛=1

(t𝑄)𝑛
)

⊂

∞

⋂

𝑛=1

(𝛼𝑖(t𝑄))
𝑛
=

∞

⋂

𝑛=1

(t𝑖𝑄𝑖)
𝑛
= (0)

using Proposition 3.4.3, item (1). It follows that ⋂
𝑛∈ℕ

†(t𝑄)𝑛 = (0).

Define 𝜌(𝑥) = max{𝑛 ∈ ℕ ∣ 𝑥 ∈ (t𝑄)𝑛}, 𝑥 ≠ 0. Suppose 𝑥, 𝑦 ∈ 𝑄 are nonzero, with
𝑥𝑦 = 0. Of course 𝑥, 𝑦 ∈ t𝑄. Ergo, 𝜌(𝑥) = 𝑛 ≥ 1, 𝜌(𝑦) = 𝑚 ≥ 1. This means 𝑥 = t𝑛𝑠1, 𝑦 = t𝑚𝑠2,
where 𝑠1, 𝑠2 are invertible. Then, t𝑚+𝑛

= 0. But this is absurd, as t𝑚+𝑛

𝑚+𝑛+1
≠ 0. Therefore, 𝑄 is

a domain.

Using the same reasoning as the preceding paragraph, we may show that 𝜌 is a valuation,
in a very similar fashion to what is done with 𝑣. Furthermore, 𝑅 is naturally embedded in 𝑄
via 𝑥 ↦ (𝑥 +(𝑡)

𝑖
), as ⋂(𝑡)

𝑖
= (0). If 𝜌(𝑥) = 𝑘, 𝑥 ∈ 𝑅

†, it’s easy to see that 𝛼𝑛(𝑥) ∈ t𝑘
𝑛
𝑅𝑛 ⧵ t

𝑘+1

𝑛
𝑅𝑛

if 𝑛 ≥ 𝑘 + 1 and, therefore, 𝑥 ∈ 𝑡
𝑘
𝑅 ⧵ 𝑡

𝑘+1
𝑅, which is equivalent to 𝑣(𝑥) = 𝑘. Thus, 𝜌 extends

𝑣, finishing the proof. ■

All of the preceding propositions may be summarized in the following theorem:
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Theorem 3.4.5. Let 𝑅 be a domain and let 𝑡 ∈ 𝑅 be central. Suppose ⋂(𝑡)
𝑖
= (0) and 𝑅/(𝑡) is

a right Ore domain. Then:

1. There exists a discrete valuation 𝑣 ∶ 𝑅 → ℤ ⊔ {∞} given by 𝑣(𝑥) = max{𝑛 ∈ ℕ ∣ 𝑥 ∈

(𝑡)
𝑛
} if 𝑥 ≠ 0 and 𝑣(0) = ∞;

2. 𝑅 may be embedded in a division ring 𝐷 and 𝑣 may be extended to 𝐷;

3. The set 𝑄 = {𝑥 ∈ 𝐷 ∣ 𝑣(𝑥) ≥ 0} is a local subring of 𝐷, with maximal ideal 𝑡𝑄
satisfying 𝑄/𝑡𝑄 ≅ Δ, where Δ is the total field of fractions of 𝑅/(𝑡);

Proof. The theorem follows from Proposition 3.4.4, after constructing the ring of fractions
of 𝑄 with respect to the (central) subset {t, t2, ...} and extending the function 𝜌 to the
resulting division ring, by 𝜌(𝑎𝑠−1) = 𝜌(𝑎) − 𝜌(𝑠). Notice that t may be identified with 𝑡 ∈ 𝑅,
via the embedding seen in the previous proof, and that 𝑄 consists entirely of the elements
𝑥 with 𝜌(𝑥) ≥ 0. ■

We may reinterpret the preceding theorem using the language of specializations. With
this interpretation, the third item in the preceding theorem may be rewritten by saying
there is a surjective specialization from 𝐷 to Δ, where Δ is the total classical field of
fractions of 𝑅/(𝑡). This is the actual result we will need for the last theorem we will prove.
The following proposition by Fuchs ([Rei95]) will also be very useful.

Proposition 3.4.6. Let 𝑅 be a right Noetherian domain and let 𝑡 ∈ 𝑅 be a central non-unit.
Then, ⋂∞

𝑖=0
(𝑡)

𝑖
= 0.

Proof. Evidently, we may assume 𝑡 ≠ 0. Suppose there exists 0 ≠ 𝑎 ∈ ⋂
∞

𝑖=1
𝑅𝑡

𝑖 . As 𝑎 ∈ 𝑅𝑡 ,
we get 𝑎 = 𝑎

′
𝑡 , implying 𝑎𝑅 ⊂ 𝑎′𝑅. If 𝑎′𝑅 ⊂ 𝑎𝑅, then 𝑎′ = 𝑎𝑏, for some 𝑏, meaning 𝑎𝑏𝑡 = 𝑎,

and so, 𝑎(𝑏𝑡 − 1) = 0. Since 𝑎 ≠ 0, we would get 𝑏𝑡 = 1. Since 𝑡 is central, 𝑡𝑏 = 1, implying
𝑡 is invertible, which goes against our hypothesis. Thus, 𝑎𝑅 ⫋ 𝑎

′
𝑅.

Now 𝑎 ∈ 𝑅𝑡
2, and therefore 𝑎 = 𝑎

′′
𝑡
2. Thus, 𝑎′𝑡 = 𝑎

′′
𝑡
2, meaning (𝑎

′
− 𝑎

′′
𝑡)𝑡 = 0. As

𝑡 ≠ 0, we have 𝑎′ = 𝑎′′𝑡 , and therefore, 𝑎′𝑅 ⊂ 𝑎′′𝑅. If 𝑎′′𝑅 ⊂ 𝑎′𝑅, then there exists 𝑏′ such
that 𝑎′′ = 𝑎′𝑏′ = 𝑎′′𝑡𝑏′. Thus, 𝑡𝑏′ = 1, and we arrive at the same contradiction as before.
Thus, 𝑎𝑅 ⫋ 𝑎

′
𝑅 ⫋ 𝑎

′′
𝑅.

Proceeding inductively, we’ll obtain an infinite ascending sequence of right ideals of 𝑅,
which goes against the hypothesis that 𝑅 is right Noetherian, a contradiction. ■

In the original paper which serves as the main reference for our work ([GMS99]), the
authors rely on the following result of Lichtman and Eizenbud ([LE87]):

Theorem. Let 𝐾 be a field, 𝐺 an ordered group and 𝑁 ⊴ 𝐺. Let 𝑋 be a transversal for 𝑁 in
𝐺 and define 𝑆 =

{

∑
𝑖∈𝐼
𝜆𝑖𝑥𝑖 ∣ 𝜆𝑖 ∈ 𝐾𝑁 , {𝑥𝑖 ∈ 𝑋 ∣ 𝑖 ∈ 𝐼} well-ordered

}

⊂ 𝐾 ((𝐺)). Then, 𝑆 is a
local ring, and the ideal Δ(𝐺, 𝑁 )𝑆 is such that:

𝑆

Δ(𝐺, 𝑁 )𝑆

≅ 𝐾 ((𝐺/𝑁 ))



3.4 | MALCEV-NEUMANN SERIES RINGS

75

In the language of specializations, we can translate the result by saying that there is a
specialization from 𝐾 ((𝐺)) to 𝐾 ((𝐺/𝑁 )). Unfortunately, this result is incorrect, at least in
the way it is stated above ([Lic00, Remark, p. 674]). It is, however, true that there exists
a proto-specialization from 𝐾 ((𝐺)) to 𝐾 ((𝐺/𝑁 )), as shown by the following result from J.
Sánchez ([Sán14]).

Proposition 3.4.7. Let 𝐾 be a field, 𝐺 an ordered group, 𝑁 ⊴ 𝐺 and suppose 𝐺/𝑁 is also an
ordered group. Let 𝑋 be a transversal for 𝑁 in 𝐺 and, given 𝛼 ∈ 𝐺/𝑁 , let �̂� be the unique
element 𝑥𝛼 of 𝑋 such that 𝑥𝛼𝑁 = 𝛼 . Write 𝐾 (𝐺) for the division subring of 𝐾 ((𝐺)) generated
by 𝐾𝐺. Then, there exist a subring 𝑆 of 𝐾 (𝐺) and a ring homomorphism Φ ∶ 𝑆 → 𝐾 ((𝐺/𝑁 ))

such that, given 0 ≠  = ∑
𝛼∈𝐺/𝑁

𝑟𝛼𝛼 ∈ 𝐾 ((𝐺/𝑁 )), the element ∑
𝛼∈𝐺/𝑁

𝑟𝛼 �̂� is a unit in 𝑆 and
maps to  via Φ.

Proof. As the construction of the subring requires many results on so-called “cross prod-
ucts”, we refer to [Sán14, Example 8 and Proposition 9] for the appropriate details. ■

Before presenting the main result in this section, we’ll need a final proposition.

Proposition 3.4.8. Let 𝐾 be a field of characteristic not 2 and let 𝜃 ∶ 𝐾 [𝑥] → 𝐾 [𝑥] be the
homomorphism given by 𝜃(𝑥) = 𝜆𝑥 , with 𝜆 ∈ 𝐾

† transcendental over the prime field 𝑃 of 𝐾 .
Then, ⟨1 + 𝛼𝑥, 1 + 𝛽𝑦⟩ is free in the multiplicative group of 𝐾 (𝑥)(𝑦; 𝜃), for all 𝛼, 𝛽 ∈ 𝐾

†.

Proof. Let 𝑅 = 𝑃[𝜆]. Since 𝜆 is transcendental over 𝑃 , the ideal p generated by (1 + 𝜆) is
prime. It thus induces a valuation in 𝑅, with valuation ring 𝑅p and maximal ideal 𝐴 = pp. By
Proposition 3.3.7, the set 𝑀 = 𝑆 ⧵𝐴𝑆 is a right denominator set for the ring 𝑆 = 𝑅p[𝑥][𝑦; 𝜃].

The maximal ideal of the local ring 𝑆𝑀−1 may be identified with 𝐴𝑆𝑀−1. In particular
it’s clear that 1 + 𝛼𝑥, 1 + 𝛽𝑦 ∉ 𝐴𝑆𝑀

−1 and are hence invertible in this localization. In the
quotient, 𝑦𝑥 + 𝐴𝑀−1

= 𝜆𝑥𝑦 + 𝐴𝑀
−1
= −𝑥𝑦 + 𝐴𝑀

−1. This is thus isomorphic to the division
ring 𝑃 (𝑥)(𝑦; 𝑥 ↦ −𝑥), using the same reasoning as in Theorem 3.3.8. This yields the result,
by Proposition 3.3.6. ■

With all these results out of the way, we conclude our work with what is perhaps the
biggest confluence of all the ideas presented in all three sections: the proof of Theorem 5
from [GMS99], which answers a question due to J. Lewin.

Theorem 3.4.9. Let 𝐾 be a field of characteristic not 2, 𝐺 a residually torsion-free nilpotent
group, 𝑎, 𝑏 ∈ 𝐾

† and 𝑥, 𝑦 ∈ 𝐺 two non-commuting elements of 𝐺. Then, ⟨1 + 𝑎𝑥, 1 + 𝑏𝑦⟩ is
free in the multiplicative group of the division subring 𝐾 (𝐺) of the Malcev-Neumann series
ring 𝐾 ((𝐺)) generated by 𝐾𝐺.

Proof. Let 𝑀 be the subgroup of 𝐺 generated by 𝑥, 𝑦. The proof can be divided in two
cases:

• Case 1 - 𝐺 is nilpotent

Suppose there exists some 𝐺 for which the result is false. We can thus take a counter-
example such that 𝑀 has minimal Hirsch number. Let’s first suppose 𝑀 nilpotent
of class 2. In this case, 𝑀 = ⟨𝑥, 𝑦 ∣ 𝜆 = [𝑥, 𝑦], [𝑥, 𝜆] = [𝑦, 𝜆] = 1⟩ is the so-called
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Heisenberg group. Indeed, 𝑀 has to satisfy the stated relations to be nilpotent of class
2.

Also, any other relation between 𝑥, 𝑦 could be expressed as 𝜆𝑘𝑥𝑚𝑦𝑛 = 1, meaning
𝑦
−𝑛

= 𝜆
𝑘
𝑥
𝑚. Then, 1 = [𝜆

𝑘
𝑥
𝑚
, 𝑦] = [𝑥

𝑚
, 𝑦], as commutators are central. Furthermore,

by Corollary 1.3.11.1, 1 = [𝑥
𝑚
, 𝑦] = [𝑥, 𝑦]

𝑚. Thus, 𝑚 = 0, since 𝑀 is torsion-free.
Then, 𝑦−𝑛 is a power of 𝜆, which is central, meaning 1 = [𝑥, 𝑦

−𝑛
] = [𝑥, 𝑦]

−𝑛, which
implies 𝑛 = 0. The relation now becomes 𝜆𝑘 = 1, which means 𝑘 = 0 and proves the
equality. In particular, if 𝜆𝑘1𝑥𝑚1

𝑦
𝑛1
= 𝜆

𝑘2
𝑥
𝑚2
𝑦
𝑛2 , then 𝜆

𝑘1−𝑘2
𝑥
𝑚1−𝑚2

𝑦
𝑛1−𝑛2

= 1. By the
above, 𝑘1 = 𝑘2, 𝑚1 = 𝑚2 and 𝑛1 = 𝑛2. Therefore, every element of 𝑀 can be uniquely
expressed in this way.

Then, writing 𝜆 = [𝑥, 𝑦] and 𝐿 = 𝐾 (𝜆), we can get a ring homomorphism from 𝐾𝑀

to 𝑄 = 𝐿(𝑥)(𝑦; 𝑥 ↦ 𝜆
−1
𝑥), by taking 𝜑 ∶ 𝐾 → 𝐿 to be the natural inclusion of 𝐾 in

𝐿 and 𝜓 ∶ 𝑀 → U (𝑄) such that 𝜓 (𝑥) = 𝑥 and 𝜓 (𝑦) = 𝑦. The presentation for 𝑀
means that this indeed gives a group homomorphism. By Proposition 2.3.1, these
combine to yield a ring homomorphism Ψ ∶ 𝐾𝑀 → 𝑄. We can write the evaluation
of an element through Ψ as

Ψ

(

∑

𝑔∈𝑀

𝛼𝑔𝑔

)

= ∑

𝑘,𝑚,𝑛∈ℤ

𝛼
𝜆
𝑘
𝑥
𝑚
𝑦
𝑛𝜆

𝑘
𝑥
𝑚
𝑦
𝑛

from which we easily see that Ψ is injective.

It thus induces a homomorphism from the field of fractions of 𝐾𝑀 to 𝑄 (recall
that 𝐾𝑀 is Noetherian by Corollary 2.3.3.1 and, in particular, right Ore rings by
Corollary 2.1.1.4). By Proposition 3.4.8, ⟨1 + 𝑎𝑥, 1 + 𝑏𝑦⟩ is free in U (𝑄) and, hence,
in U ((𝐾𝑀)) (which goes against the choice of 𝑀). Ergo, 𝑀 can’t be nilpotent of
class 2.

Let 𝑐 ∈ 𝑍 (𝑀) be non-trivial and let 𝑡 = 𝑐 − 1. Since 𝑀 is torsion-free, ⟨𝑐⟩ ≅ ℤ.
In particular, the Hirsch number of 𝑀 = 𝑀/⟨𝑐⟩ is strictly less than that of 𝑀 , by
Proposition 1.5.8. Using Proposition 2.3.2,

𝐾𝑀

(𝑡)

≅ 𝐾𝑀

Since 𝑀 and 𝑀 are both finitely generated and nilpotent, just like in the case where
𝑀 had nilpotent class 2, their respective group rings 𝐾𝑀 and 𝐾𝑀 are Noetherian
and, therefore, right Ore rings. Moreover, both are domains (Corollary 2.3.6.2). Let,
then, (𝐾𝑀) and (𝐾𝑀) be their respective total classical fields of fractions.

Since 𝑡 is non-invertible, central, and 𝐾𝑀 is Noetherian, Proposition 3.4.6 yields
⋂

𝑖∈ℕ
†(𝑡)

𝑖
= (0). By Theorem 3.4.5, there exists a surjective specialization from(𝐾𝑀)

to (𝐾𝑀). Since 𝑀 isn’t of class 2, the images of 𝑥, 𝑦 don’t commute in 𝑀 . The
minimality of 𝑀 gives us that ⟨1 + 𝑎𝑥, 1 + 𝑏𝑦⟩ is a free pair in (𝐾𝑀). This is a
contradiction, since the pair can then be lifted to (𝐾𝑀).
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• Case 2 - General case

By Proposition 1.4.1, there exists a sequence 𝐺 = 𝑁0 ⊃ 𝑁1 ⊃ 𝑁2 ⊃ ... of normal
subgroups of 𝐺 such that 𝐺𝑖 = 𝐺/𝑁𝑖 is torsion-free nilpotent for all 𝑖 and ⋂

𝑖∈ℕ
𝑁𝑖 =

1. Write 𝐷 and 𝐷𝑖 for the subdivision rings of the Malcev-Neumann series rings
generated by 𝐾𝐺 and 𝐾𝐺𝑖 . Choose some 𝑖 such that [𝑥, 𝑦] ∉ 𝑁𝑖 (i.e., such that the
images of 𝑥 and 𝑦 don’t commute in 𝐺𝑖). In particular, 𝑥, 𝑦 ∉ 𝑁𝑖 (if either were in 𝑁𝑖 ,
so would [𝑥, 𝑦]).

Also, 𝑥 and 𝑦 don’t lie on the same coset of 𝑁𝑖 . If that were the case, then both
𝑦
−1
𝑥 and 𝑥−1𝑦 are in 𝑁𝑖 , meaning [𝑥, 𝑦] = 𝑥

−1
(𝑦

−1
𝑥)𝑥(𝑥

−1
𝑦) ∈ 𝑁𝑖 , since it is a normal

subgroup. Thus, we can choose a transversal 𝑋 for 𝑁𝑖 in 𝐺 such that both 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝑋 .

Consider the elements 1 + 𝑎𝑥 and 1 + 𝑏𝑦 in 𝐷𝑖 . Since the group 𝐺/𝑁 is torsion-free
nilpotent, the first case shows that this pair is free. Now, by Proposition 3.4.7, there
exist a subring 𝑆 of 𝐾 (𝐺) = 𝐷 and a homomorphism Φ ∶ 𝑆 → 𝐾 ((𝐺/𝑁𝑖)) such that
1 + 𝑎𝑥 = 1 + 𝑎�̂� and 1 + 𝑏𝑦 = 1 + 𝑏�̂� are units in 𝑆 and map to 1 + 𝑎𝑥 and 1 + 𝑏𝑦

respectively. By Proposition 1.1.3, they are a free pair in 𝑆 and hence, in 𝐷, finishing
the proof.

■
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Appendix A

Division rings with involution

Even though this isn’t the goal of our work, it’s worth singling out a variant of
Lichtman’s Conjecture that was the focus of the other sections. Indeed, multiple families
of division rings come endowed with an involution; that is, an antimorphism of order
2.

There are two natural examples where this occurs. First of all, if𝐺 is a finitely generated
torsion-free nilpotent group and 𝐾 is a field, then ∑ 𝛼𝑔𝑔 ↦ ∑ 𝛼𝑔𝑔

−1 is an involution of 𝐾𝐺
which induces an involution in its total classical field of fractions. And second, when (

𝑎,𝑏

𝐾 )

is a division ring, it admits the symplectic involution 𝑎 + 𝑏𝐢 + 𝑐𝐣 + 𝑑𝐢𝐣 ↦ 𝑎 − 𝑏𝐢 − 𝑐𝐣 − 𝑑𝐢𝐣

and the orthogonal involution 𝑎 + 𝑏𝐢 + 𝑐𝐣 + 𝑑𝐢𝐣 ↦ 𝑎 + 𝑏𝐢 + 𝑐𝐣 − 𝑑𝐢𝐣.

If 𝐷 is a division ring with involution ∗, it’s natural to ask if there’s a free pair in the
multiplicative group 𝐷† which interacts nicely with the involution in some way. There
are two natural candidates: elements which are left fixed by the involution (i.e., such that
𝑥
∗
= 𝑥) and elements upon which the involution acts as the natural group antimorphism

−1 (i.e., such that 𝑥 ∗ = 𝑥−1). The former is the set of symmetric elements and the latter,
that of the unitary elements. The following conjecture then arose:

Conjecture 1. If 𝐷 is a division ring with an involution ∗, then 𝐷† contains free symmetric
and unitary pairs.

The way this is formulated, the conjecture is known to be false. Indeed, if 𝐾 is a field of
characteristic not 2 and 𝑎, 𝑏 ∈ 𝐾

†, then the symmetric elements of ( 𝑎,𝑏𝐾 ) with the symplectic
involution are central, and the unitary elements with the orthogonal involution form an
abelian group. Hence, in any case, they can’t contain free pairs (it’s worth noting that, in
the first case, the unitary elements contain a free pair and, in the second case, the same is
true of the symmetric elements). Adapting the conjecture results in:

Conjecture 2. Let 𝐷 be a division ring with involution ∗ and center 𝑍 , such that [𝐷 ∶ 𝑍 ] > 4.
Then, 𝐷† contains free symmetric and unitary pairs.

This conjecture has received quite a bit of attention in the last few years (see, for
instance, [GP20], [GFS19], [Gon17]) and is also still unanswered, in part due to the same
difficulties presented by Lichtman’s original conjecture, with the extra difficulty of restrict-
ing what are deemed “good” free pairs.
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Appendix B

Free groups of higher rank

Finally, as we’ve noted before, whenever a free pair is obtained in the multiplicative
group of a division ring, one can explicitly find free groups of arbitrary countable rank
(Proposition 1.1.4). However, some division rings contain a higher level of symmetry.

As an example, the quaternion algebras contain three analogous elements (namely
𝐢, 𝐣, 𝐢𝐣 = 𝐤) and we’ve seen that, under suitable conditions, 1 + 𝛼 𝐢, 1 + 𝛽𝐣 form a free pair.
Would it perhaps be true, under certain conditions, that 1 +𝛼 𝐢, 1 + 𝛽𝐣, 1 + 𝛾𝐤 freely generate
a free group of rank three?

Remarkably, the answer, at least over the rational numbers, is that, in a considerable
number of cases, the above triple indeed freely generates a free group, as we present in the
following theorem ([GSed]), which is the more general form of Proposition 3.2.8.

Theorem B.0.1. Let 0, ±1 ≠ 𝛼 ∈ ℚ and let 𝐻 =
(

−1,−1

ℚ )
. Then: ⟨1 + 𝛼 𝐢, 1 + 𝛼𝐣, 1 + 𝛼𝐤⟩ ≅ ℤ ∗

ℤ ∗ ℤ.

Other examples of results of this kind were already shown in Chapter 3, Section 1,
both in Proposition 3.2.9 and in Proposition 3.2.10.

The same question can be posed for group algebras over torsion-free nilpotent groups:
can we generalize Theorem 3.4.9 for three or more non-commuting elements? In general,
the answer doesn’t appear to be known, but, at least in the special case of a free nilpotent
group of class 2 and rank 3, the answer is affirmative:

Theorem B.0.2. Let Γ3 be the free nilpotent group of class 2 and rank 3, generated by
elements 𝑥1, 𝑥2, 𝑥3 and let 𝐷 be the total classical field of fractions of the group algebra ℚΓ3.
Then, for all 0, ±1 ≠ 𝛼 ∈ ℚ, ⟨1 + 𝛼𝑥1, 1 + 𝛼𝑥2, 1 + 𝛼𝑥3⟩ ≅ ℤ ∗ ℤ ∗ ℤ.

The list is far from exhaustive, and suggests taking advantage of natural symmetries
in division rings may provide hints towards explicitly obtaining “natural” free groups of
higher rank.
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