• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2017.tde-05122017-200608
Document
Auteur
Nom complet
Vinícius Morelli Cortes
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2017
Directeur
Jury
Galego, Eloi Medina (Président)
Batista, Leandro Candido
Kaufmann, Pedro Levit
Silva, Antonio Roberto da
Vieira, Daniela Mariz Silva
Titre en portugais
Aspectos geométricos dos espaços Co(K,X)
Mots-clés en portugais
Constante de James
Cópias complementadas
Espaços Co(K,X)
Espaços co(T)
Generalização do Teorema de Banach-Stone
Módulo de convexidade de um espaço de Banach e de seu dual
Resumé en portugais
Este trabalho tem dois objetivos principais. Primeiramente, estudamos as cópias complementadas de co(T) em espaços de Banach, onde T é um cardinal infinito. Estendemos ao caso não-enumerável um resultado clássico obtido por T. Schlumprecht que caracteriza as cópias complementadas de co em um espaço de Banach X. Usamos esta nova caracterização para estender resultados de G. Emmanuele, F. Bombal, D. Leung e F. Räbiger envolvendo as cópias complementadas de co nos espaços de Banach clássicos `p(I,X), onde p T[1, ∞ ] e I é um conjunto não-vazio. Nós também provamos um novo resultado sobre as cópias complementadas de co(T) nos espaços Co(K,X), onde K é um espaço de Hausdor localmente compacto. Em seguida, estudamos uma extensão vetorial do clássico Teorema de Banach-Stone obtida por K. Jarosz. Estudando várias constantes introduzidas por R. James, J. Schäer, M. Baronti, E. Casini e P. Pappini, nós provamos uma nova relação entre os módulos de convexidade dos espaços Xe X*, que possui interesse independente. Esta relação é usada para provar uma nova reneralização vetorial do Teorema de Banach-Stone que simultaneamente estende o Teorema de Jarosz e também mostra que este último resultado é, de fato, uma consequência de um teorema obtido recentemente por F. Cidral, E. Galego e M. RincónVillamizar.
Titre en anglais
Geometrical aspects of Co(K,X) spaces
Mots-clés en anglais
Co(K,X) spaces
co(T) spaces
Complemented copies
Generalization of the Banach-Stone theorem
James constant
Moduli of convexity of a Banach space and its dual
Resumé en anglais
The goal of this work is two-fold. First, we study the complemented copies of co(T) in Banach spaces, where T is an innite cardinal. We extend to the uncountable case a classical result by T. Schulmprecht that characterizes the complemented copies of co in a Banach space X. We use this new characterization to extend results by G. Emmanuele, F. Bombal, D. Leung and F. Räbiger concerning the complemented copies of co in the classical Banach spaces `p(I,X), where p T[1, ∞ ] and I is a non-empty set. We also obtain a new result involving the complemented copies of co(T) in Co(K,X) spaces, where Kis a locally compact Hausdor space. Next, we turn our attention to a vector-valued extension of the classical Banach-Stone theorem obtained by K. Jarosz. Studying several constants introduced by R. James, J. Schäffer, M. Baronti, E. Casini and P. Pappini, we obtain a new relationship between the moduli of convexity of Xand X*, which has independent interest. We then apply this relationship to prove a new X-valued generalization of the Banach-Stone theorem that simultaneously extends the aforementioned result by Jarosz and also shows that this result is, in fact, a consequence of a theorem obtained recently by F. Cidral, E. Galego and M. Rincón-Villamizar.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-12-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.