• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2017.tde-05122017-105106
Documento
Autor
Nombre completo
German Alonso Benitez Monsalve
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Futorny, Vyacheslav (Presidente)
Bekkert, Viktor
Calixto, Lucas Henrique
Gonzalez, Cristian Andres Ortiz
Jardim, Marcos Benevenuto
Título en portugués
Variedades de Gelfand-Tsetlin
Palabras clave en portugués
Dimensão
Equidimensionalidade
Gelfand-Tsetlin
Kostant-Wallach
Variedades algébricas
Yangians
Resumen en portugués
Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como "Teorema de Ovsienko" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado.
Título en inglés
Gelfand-Tsetlin varieties
Palabras clave en inglés
Algebraic varieties
Dimension
Equidimensionality
Gelfand-Tsetlin
Kostant-Wallach
Yangians
Resumen en inglés
Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as "Ovsienko's Theorem" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko's Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Tese.pdf (742.42 Kbytes)
Fecha de Publicación
2017-12-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.