• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2017.tde-05122017-101547
Document
Auteur
Nom complet
Victor dos Santos Ronchim
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2017
Directeur
Jury
Vieira, Daniela Mariz Silva (Président)
Botelho, Geraldo Márcio de Azevedo
Fávaro, Vinícius Vieira
Titre en portugais
Extensões de polinômios e de funções analíticas em espaços de Banach
Mots-clés en portugais
Aplicações multilineares
Extensões
Funções holomorfas
Polinômios homogêneos
Resumé en portugais
Este trabalho tem como principal objetivo estudar extensões de aplicações multilineares, de polinômios homogêneos e de funções analíticas entre espaços de Banach. Desta maneira, nos baseamos em importantes trabalhos sobre o assunto. Inicialmente apresentamos o produto de Arens para álgebras de Banach, extensões de Aron-Berner e de Davie-Gamelin para aplicações multilineares e provamos que todas estas extensões coincidem. A partir destes resultados, apresentamos a extensão de polinômios homogêneos e o Teorema de Davie-Gamelin que afirma que, assim como no caso de aplicações multilineares, as extensões de polinômios preservam a norma e, como consequência deste teorema, apresentamos uma generalização do Teorema de Goldstine. Em seguida estudamos espaços de Banach regulares e simetricamente regulares, que são propriedades relacionadas com a unicidade de extensão e são definidas a partir do ideal de operadores lineares fracamente compactos K^w(E, F) . Finalmente apresentamos a extensão de uma função de H_b(E) para H_b(E'') e o resultado, de Ignacio Zalduendo, que caracteriza esta extensão em termos da continuidade fraca-estrela do operador diferencial de primeira ordem.
Titre en anglais
Extensions of polynomials and analytic functions on Banach spaces
Mots-clés en anglais
Extensions
Holomorphic functions
Homogeneous polynomials
Multilinear mappings
Resumé en anglais
The main purpose of this work is to study extensions of multilinear mappings, homogeneous polynomials and analytic functions between Banach Spaces. In this way, we rely on important works on the subject. Firstly we present the Arens-product for Banach algebras, the Aron-Berner and Davie-Gamelin extensions for multilinear mappings and we prove that all these extensions are the same. From these results, we present an extension for homogeneous polynomials and the Davie-Gamelin theorem which asserts that, as in the case of multilinear mappings, the polynomial extension is norm-preserving and, as a consequence of this theorem, we present a generalization of the Goldstine theorem. After that we study regular and symmetrically regular Banach spaces which are properties related to the uniqueness of the extension and are defined in the setting of weakly compact linear operators K^w(E, F) . Lastly, we present the extension of a function of H_b(E) to one in H_b(E'') and the result, according to Ignacio Zalduendo, which characterizes this extension in terms of weak-star continuity of the first order differential operator.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-12-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.