• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2016.tde-05102015-161321
Document
Auteur
Nom complet
Gilson Reis dos Santos Filho
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Murakami, Lucia Satie Ikemoto (Président)
Chestakov, Ivan
Kochloukov, Plamen Emilov
Titre en portugais
O radical de Jacobson de anéis de polinômios diferenciais
Mots-clés en portugais
Anéis de polinômios diferenciais
Anéis PI
Radical de Jacobson
Resumé en portugais
O objetivo desta dissertação é estudar o radical de Jacobson de anéis de polinômios diferenciais. Mostramos um resultado de M. Ferrero, K. Kishimoro, K. Motose, que mostra que no caso geral, o radical de um anel de polinômios diferenciais é um anel de polinômios diferenciais sobre algum ideal do anel dos coeficientes. Assumindo que o anel dos coeficientes satisfaça uma identidade polinomial, mostramos seguindo B. Madill que este ideal é um ideal nil. Se o anel dos coeficientes é adicionalmente localmente nilpotente, seguindo J. Bell, B. Madill, F. Shinko, mostramos que o anel de polinômios diferenciais será localmente nilpotente. Ainda seguindo J. Bell et al, se o anel dos coeficientes é uma álgebra sobre um corpo de característica zero e tal álgebra satisfaz uma identidade polinomial, mostramos que o ideal nil é o radical de Köthe. Para tais demonstrações, cobriremos os tópicos preliminares necessários para entender os enunciados: radical nil, radical de Levitzki, radical de Baer, radical de Jacobson e propriedades, anéis PI, polinômios centrais, teorema de Kaplansky.
Titre en anglais
The Jacobson radical of differential polynomial rings
Mots-clés en anglais
Differential polynomial rings
Jacobson radical
PI-rings
Resumé en anglais
The aim of this work is to study the Jacobson radical of differential polynomial rings. We show a result of M. Ferrero, K. Kishimoto, K. Motose, which shows that in general, the radical of a differential polynomial ring is a differential polynomial ring over some ideal of the ring of coefficients. Assuming that the ring of coefficients satisfies a polynomial identity, we show following B. Madill that this ideal is nil. If the ring of coefficients is additionally locally nilpotent, following J. Bell, B. Madill, F. Shinko, we show that the differential polynomial ring is locally nilpotent. Still following J. Bell et al, if the ring of coefficients is an algebra over a field of zero characteristic and this algebra satisfies a polynomial identity, we show that the nil ideal is the Köthe radical. For the proofs, we cover the preliminary topics necessary for understanding the statements: nil radical, Levitzki radical, Baer radical, Jacobson radical and its properties, PI-rings, central polynomials, Kaplanskys theorem.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
completo.pdf (869.26 Kbytes)
Date de Publication
2016-03-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.