• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2016.tde-05102015-104320
Document
Auteur
Nom complet
Maikel Antonio Samuays
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Chaves, Rosa Maria dos Santos Barreiro (Président)
Anciaux, Henri Nicolas Guillaume
Brito, Fabiano Gustavo Braga
Camargo, Fernanda Ester Camillo
Sousa Junior, Luiz Amancio Machado de
Titre en portugais
Subvariedades lagrangeanas mínimas e autossimilares no espaço paracomplexo
Mots-clés en portugais
Espaço paracomplexo
Subvariedades autossimilares
Subvariedades lagrangeanas
Resumé en portugais
Neste trabalho estudamos as subvariedades lagrangeanas mínimas e autossimilares do espaço paracomplexo Dn. Começamos definindo o conceito de variedade para-Kähler e, como exemplo, descrevemos o espaço projetivo paracomplexo. Em seguida, estudamos as subvariedades paracomplexas e lagrangeanas. Após mostrarmos que toda subvariedade paracomplexa não-degenerada é mínima, dedicamos a atenção ao estudo das subvariedades lagrangeanas, restringindo-nos ao ambiente Dn. Em particular, estudamos as lagrangeanas que são invariantes sob a ação canônica do grupo SO(n), e as superfícies de Castro-Chen. Em ambos os casos, analisamos a minimalidade e a autossimilaridade das mesmas.
Titre en anglais
Minimal and self-similar Lagrangian submanifolds in the para-complex space
Mots-clés en anglais
Lagrangian submanifolds
Para-complex space
Self-similar submanifolds.
Resumé en anglais
In this work, we study minimal and self-similar Lagrangian submanifolds in the para-complex space Dn. Firstly, we define the concept of para-Kähler manifold and, to exemplify, we describe the para-complex projective space.Then, we study para-complex submanifolds and Lagrangian submanifolds. After proving that every non-degenerate para-complex submanifold is minimal, we pay attention to Lagrangian submanifolds, restricting us to the case of Dn. In particular, we study Lagrangian submanifolds which are invariant by the canonical SO(n)-action of Dn, and Castro-Chen's surfaces. In both cases, we analyse the minimality and self-similarity.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Principal.pdf (1.19 Mbytes)
Date de Publication
2016-03-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.