• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Clayton Suguio Hida
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Brech, Christina (Presidente)
Aurichi, Leandro Fiorini
Batista, Leandro Candido
Bianconi, Ricardo
Royer, Danilo
Título en inglés
Uncountable irredundant sets in nonseparable scattered C*-algebras
Palabras clave en inglés
Forcing
Irredundant sets
Scattered C*-algebras
Resumen en inglés
Given a C*-algebra $\A$, an irredundant set in $\A$ is a subset $\mathcal$ of $\A$ such that no $a\in \mathcal$ belongs to the C*-subalgebra generated by $\mathcal\setminus\{a\}$. Every separable C*-algebra has only countable irredundant sets and we ask if every nonseparable C*-algebra has an uncountable irredundant set. For commutative C*-algebras, if $K$ is the Kunen line then $C(K)$ is a consistent example of a nonseparable commutative C*-algebra without uncountable irredundant sets. On the other hand, a result due to S. Todorcevic establishes that it is consistent with ZFC that every nonseparable C*-algebra of the form $C(K)$, for a compact 0-dimensional space $K$, has an uncountable irredundant set. By the method of forcing, we construct a nonseparable and noncommutative scattered C*-algebra $\A$ without uncountable irredundant sets and with no nonseparable abelian subalgebras. On the other hand, we prove that it is consistent that every C*-subalgebra of $\B(\ell_2)$ of density continuum has an irredundant set of size continuum.
Título en inglés
Uncountable irredundant sets in nonseparable scattered C*-algebras
Palabras clave en inglés
Forcing
Irredundant sets
Scattered C*-algebras
Resumen en inglés
Given a C*-algebra $\A$, an irredundant set in $\A$ is a subset $\mathcal$ of $\A$ such that no $a\in \mathcal$ belongs to the C*-subalgebra generated by $\mathcal\setminus\{a\}$. Every separable C*-algebra has only countable irredundant sets and we ask if every nonseparable C*-algebra has an uncountable irredundant set. For commutative C*-algebras, if $K$ is the Kunen line then $C(K)$ is a consistent example of a nonseparable commutative C*-algebra without uncountable irredundant sets. On the other hand, a result due to S. Todorcevic establishes that it is consistent with ZFC that every nonseparable C*-algebra of the form $C(K)$, for a compact 0-dimensional space $K$, has an uncountable irredundant set. By the method of forcing, we construct a nonseparable and noncommutative scattered C*-algebra $\A$ without uncountable irredundant sets and with no nonseparable abelian subalgebras. On the other hand, we prove that it is consistent that every C*-subalgebra of $\B(\ell_2)$ of density continuum has an irredundant set of size continuum.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese.pdf (764.82 Kbytes)
Fecha de Publicación
2019-08-08
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.