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Resumo

Herrera-Carmona, J. S. O morfismo de Chern-Weil-Lecomte para L∞-algebras. 2022. Tese
(Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.
Nesta tese, estendemos o morfismo de Chern-Weil-Lecomte para o contexto de extensões de ál-
gebras L∞ junto com uma representação a menos de homotopia. Este morfismo toma valores na
cohomologia de uma álgebra L∞ com coeficentes em um espaço vetorial graduado. Provamos que
esta construção é natural e que a cohomologia é invariante por quasi-isomorfismos equivariantes
de álgebras L∞. Como aplicação obtemos um morfismo de Chern-Weil-Lecomte para 2-fibrados
principais sobre grupoides de Lie que admitem uma 2-conexão.

Palavras-chave: grupoides de Lie, 2-grupos de Lie, 2-fibrados principais, álgebras L∞, extensões
de álgebras L∞, homomorfismo de Chern-Weil.
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Abstract

Herrera-Carmona, J. S. Chern-Weil-Lecomte morphism for L∞-algebras. 2022. Thesis (PhD)
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.
In this thesis we extend the Chern-Weil-Lecomte morphism to the setting of extensions of L∞-
algebras together with a representation up to homotopy. This morphism takes values in the L∞-
algebra cohomology with coefficients in a graded vector space. We prove that this construction is
natural and that the L∞-algebra cohomology is invariant by equivariant L∞-quasi-isomorphisms.
As an application we obtain a Chern-Weil-Lecomte morphism for principal 2-bundles over a Lie
groupoid that admit a 2-connection form.

Keywords: Lie groupoids, Lie 2-groups, principal 2-bundles, L∞-algebras, extensions of L∞-
algebras, Chern-Weil homomorphism.
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Introduction

Lie groupoids were introduced by Charles Ehresmann in [Ehr59] and have played a central
role in differential geometry as unifying objects. Examples of Lie groupoids include manifolds, Lie
groups, manifolds with symmetries, fibrations, regular foliations, among others. Also, Lie groupoids
have strong connections with several areas of mathematics and mathematical physics, including
Lie theory [Mac05, CF03], Poisson geometry [Wei87, Wei88, BCWZ04], index theory [DS19] and
noncommutative geometry [Con90, Haw08], among others

Another important fact of Lie groupoids is that they serve as smooth models for the study of
singular spaces e.g. orbifolds. These are topological spaces whose local model is a quotient of an
open set of Rn by the action of a finite linear group. Orbifolds can be viewed as Morita equivalence
classes of proper and étale groupoids [MP97]. In general, a Lie groupoid can be seen as a generalized
atlas for a virtual structure on an orbit space [Pra04]. This approach to the study of singular spaces
was originally introduced in the framework of algebraic geometry [Gro62] with the Deligne-Mumford
stacks [DM69] and it arises also in genuine problems of differential geometry under the name of
differentiable stacks. Concretely, a differentiable stack is represented by a Morita equivalence class
of a Lie groupoid [Blo08, BX11].

In recent years many attention has been paid to geometric structures on Lie groupoids having
as main goal extending classical differential geometry to the realm of differentiable stacks. For in-
stance, vector fields on differentiable stacks were introduced in [Hep09], the Lie 2-algebra structure
on the space of the vector fields on a differentiable stack studied in [BL20, OW19], Lie algebroids
over a differentiable stack developed in [Wal15], vector bundles over differentiable stacks introduced
in [dHO20], Riemannian metrics on differentiable stacks as defined in [dHF19], equivariant coho-
mology for differentiable stacks studied in [BTN21], and principal actions of stacky Lie groupoids
over stacks in [BNZ20], among others.

We are interested in the study of principal 2-bundles over Lie groupoids as models for principal
bundles over differentiable stacks. In particular, these can be seen as (strict) principal actions of
Lie 2-groups considered as stacky Lie groupoids over a point, in the sense of [BNZ20]. In order to
determine invariants of isomorphism classes of these principal bundles over differentiable stacks, we
are led to study techniques associated with Chern-Weil theory compatible with Morita equivalence
of Lie groupoids.

Chern-Weil theory was developed by Shiin-Shen Chern and André Weil in [Che51]. Initially, it
was motivated by the study of topological invariants of isomorphim classes of fiber bundles. Then,

ix



x INTRODUCTION

it became relevant due to the fact that it offers an alternative construction of the characteristic
homomorphism of a principal bundle relying on purely differential geometry techniques. More con-
cretely, for a principal G-bundle (P, π,M,G) the Chern-Weil homomorphism is a map that goes
from the space of Ad-invariant polynomials on the Lie algebra g of G to the de Rham cohomology
of a manifold M ,

cw : S(g∗)G → HdR(M).

It allows us to construct representatives of de Rham cohomology classes which classify isomorphism
classes of principal bundles over M . Those classes are usually called characteristic classes and
have a variety of applications in differential geometry, usually arising as obstructions to the exis-
tence of geometric structures.

Due to the naturality of the Chern-Weil theory, several authors have generalized its techniques to
more algebraic contexts with the aim of constructing invariants of associated geometric structures.
For instance, Lecomte extended the Chern-Weil homomorphism to the framework of Lie algebras
and differential graded Lie algebras in [Lec82, Lec94], Kamber and Tondeur did it for semisimpli-
cial Weil algebras in [KT75], Connes extended it to noncommutative geometry in [Con90], Alekseev
and Meinrenken to non-commutative graded algebras in [AM05], Laurent-Gengoux, Tu and Xu to
G-differential simplicial algebras in [LTX07], among others.

In particular, the Lecomte approach is central in this thesis. This construction of the Chern-Weil
homomorphism takes as initial data an extension of Lie algebras,

0 n ĝ g 0,ι π

together with a representation of Lie algebras ρ : g→ gl(V ). The outcome is a more general Chern-
Weil homomorphism defined on the space of symmetric ĝ-invariant maps on n with values in V into
the Chevalley-Eilenberg cohomology of g with values in V

cw : Sym(n;V )ĝ → HCE(g;V ).

The main objective of this thesis is to generalize the Chern-Weil homomorphism via the Lecomte
approach to the context of extensions of L∞-algebras together with a representation up to homotopy.
Our main result states the following.

Theorem 0.0.1. Let us consider an extension of L∞-algebras

0 n ĝ g 0ι π

and ρ a representation up to homotopy of g on a dg-vector space V. There is a natural map

cw : Hom•(∧kn[1],V)ĝ → Hk+•
CE (g;V); cw(f) = [fh]

that is independent of the chosen linear section h of π.

We stress that the cohomology involved in the previous theorem is the cohomology of an L∞-
algebra with values in a dg-vector space, which has been studied before in [Pen95, Kje01, Rei19]. It
turns out that this cohomology is well-behaved with respect to equivariant L∞ quasi-isomorphisms.
This is the content of our second main result
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Theorem 0.0.2. Let ρ and ρ′ be two representations up to homotopy of g and h on the dg-vector
spaces V and W, respectively. If (F, f) : g→ h is a (ρ, ρ′)-equivariant L∞-quasi-isomorphism along
to f : W→ V, then the induced map

F ∗ : HCE(h;W)→ HCE(g;V)

is an isomorphism.

As an application of this result, we introduce a Chern-Weil homomorphism for principal 2-
bundles over Lie groupoids that admit a 2-connection form. For that, we extend the classical Atiyah
sequence of principal bundles to a short exact sequence of LA-groupoids. Then, based on the fact
that the category of multiplicative sections of an LA-groupoid has a structure of 2-term L∞-algebra
[OW19], we obtain a natural sequence of L∞-algebras for a principal 2-bundle over a Lie groupoid.

Part of the data in Lecomte’s approach is given by a representation up to homotopy. In our case,
for a given Lie groupoid we consider a canonical representation up to homotopy of the Lie 2-algebra
of multiplicative vector fields on the 2-term complex of multiplicative functions. It is roughly given
by the action of multiplicative vector fields by derivations of multiplicative functions. Putting all
this pieces together gives rise to a Chern-Weil-Lecomte homomorphism for principal 2-bundles.

Theorem 0.0.3. Let (P, π,X,G) be a principal 2-bundle over a Lie groupoid that admits a 2-
connection form. Then, for each k ≥ 1 there exists a natural morphism

cw : Hom•(∧kX•mult(Ad(P))[1], C∞(X))→ Hk+•
CE,ψX(X•mult(X); C∞(X)),

that is independent of the 2-connection form.

This thesis is composed of nine chapters, in the following we will give a brief description of these.
Chapter 1 is about the basic material that will be used throughout this thesis, including principal
bundles, the classical construction of the Chern-Weil homomorphism for principal bundles given by
Chern in [Che51], as well as the Lecomte approach to the Chern-Weil homomorphism for extensions
of Lie algebras together with a linear representation [Lec82]. Also, with the aim of fixing notation
we review the basics on Lie groupoids and their cohomology.

Chapter 2 is about Lie 2-groups, Lie 2-algebras and their relation with both crossed modules of
Lie groups and Lie algebras, respectively. The main result of this chapter is Theorem 2.1.1 which
states a one-to-one correspondence between Morita morphism of Lie 2-groups and elementary equiv-
alences of crossed modules of Lie groups.

In chapter 3 we study the notion of principal 2-bundle over a Lie groupoid. For that, we follow
closely [HOV]. Briefly, a principal 2-bundle is a categorification of the notion of principal bundle in
the sense that both the base space and the fibers are categorified from a manifold to a Lie groupoid,
with the suitable requirement that all the fibers will be isomorphic to a Lie 2-group. The main result
in this chapter is Theorem 3.2.1 gives conditions for a morphism between principal 2-bundles over
a Lie groupoid to be a Morita map.
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In Chapter 4 we introduce the Atiyah sequence of a principal 2-bundle over a Lie groupoid, this
is a short exact sequence of LA-groupoids that extends the classical Atiyah sequence of a principal
bundle. As main results in this chapter we have Proposition 4.1.5 and Proposition 4.2.3.

In Chapter 5 we start with the study of 2-connection forms on principal 2-bundles over Lie
groupoids. These results are part of [HOV]. Here we present some examples of 2-connection forms,
we show their correspondence with multiplicative splittings of the Atiyah sequence of principal 2-
bundles. Also, we focus in the study of its curvature and finally, we introduce the notion of a flat
up to homotopy 2-connection form. As main result of this chapter we have Theorem 5.3.1, in which
we prove that the Maurer-Cartan elements in the DGLA of multiplicative forms on the total space
with values in the Lie 2-algebra of the structural 2-group induce 2-connection forms that are flat
up to homotopy.

In Chapter 6 we proceed to study L∞-algebras. For that, we review some basic algebraic con-
cepts, we introduce both the graded-symmetric and skew-symmetric algebras, and study coderiva-
tions of the symmetric algebra. Finally, we recall the notion of L∞-algebra and present some ex-
amples.

In Chapter 7 we introduce the L∞-cohomology of a L∞-algebra with values in a graded vector
space, already studied in [Pen95, Kje01, Rei19]. For that, we study representations up to homotopy
of L∞-algebras, we present some examples that make these notions more natural. We define the
notion of equivariant L∞-morphism with the objective of inducing a morphism at level of cohomol-
ogy. Then, we study representations up to homotopy in terms of the Maurer-Cartan elements of
a certain DGLA. Finally, we study the canonical spectral sequence of this cohomology and show
the main result of this chapter, namely Theorem 7.6.1. Which states that the L∞-cohomology with
coefficients is invariant under equivariant quasi-isomorphisms.

In Chapter 8 we present the main theorem of this thesis, that is Theorem 8.2.1 which gives an
L∞ version of the Chern-Weil-Lecomte homomorphism. For that, we start by studying extensions
of L∞-algebras, then we state and prove Theorem 8.2.1. Furthermore, we show some results about
naturality of the Chern-Weil-Lecomte morphism. Finally, we compute the Chern-Weil-Lecomte mor-
phism for the particular case of extensions of (strict) Lie 2-algebras together with a representation
up to homotopy on a 2-term vector space.

In Chapter 9 we show applications of the previous chapters. On the one hand, for a Lie groupoid
we have that the category of multiplicative vector fields has structure of Lie 2-algebra [OW19, BL20].
This is the same thing that a 2-term L∞-algebra. On the other hand, in Theorem 9.1.2 we have show
a canonical representation up to homotopy of the Lie 2-algebra of multiplicative vector fields on the
2-term vector space of multiplicative functions on the Lie groupoid. Therefore, for a Lie groupoid
we can associate a cohomology in the sense of Chapter 7. We refer to this cohomology as the L∞-
cohomology of multiplicative vector fields on a Lie groupoid. As a consequence we state Theorem
9.1.3 in which we show that two Morita equivalent Lie groupoids have the same L∞-cohomology. We
interpret this result as that this cohomology is an invariant of the differentiable stack represented
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by the Lie groupoid. Now, when we consider a principal 2-bundle over a Lie groupoid that admits a
2-connection form, we have an extension of 2-term L∞-algebras associated to its Atiyah sequence.
Thus, this extension of L∞-algebras together with the representation up to homotopy in Theorem
9.1.2 allows us to apply Theorem 8.2.1 giving rise to a Chern-Weil-Lecomte morphism for principal
2-bundles over a Lie groupoid that admit a 2-connection form.
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Chapter 1

Preliminaries

In this chapter we present the basic material that will be used throughout the thesis. Our
purpose is to present some basic concepts of principal bundles, the construction of the Chern-Weil
homomorphism, both the classic construction that can be found in [Che51] or in [KN69], and the
construction via Lecomte’s approach as in [Lec82]. We also recall the basics on Lie groupoids.

1.1 Principal bundles

Definition 1.1.1. Let P and M be smooth manifolds and G be a Lie group. A principal G-
bundle (P, π,M,G) is a quadruple composed of a surjective submersion π : P → M and a right
action of G on P satisfying the following conditions

i. π(pg) = π(p), for all g ∈ G, p ∈ P ;

ii. the action is transitive on the fibers, i.e., the orbits of the action are the fibers of π : P →M ,

Op = π−1(π(p)), for all p ∈ P ;

iii. the action is free, that is, if pg = p for p ∈ P, g ∈ G then g = e the identity of G.

Example 1.1.1. Let G be a Lie group and M a manifold. The trivial G-bundle over M is given
by the canonical projection pr1 : M ×G→M together with the right action (x, g)h := (x, gh).

Example 1.1.2. Given a principal G-bundle (P, π,M,G) and an embedded submanifold N of M ,
the fiber bundle

π|π−1(N) : π−1(N)→ N

is a principal G-bundle called the restricted G-bundle to N and denoted by π|N : P |N → N .

Example 1.1.3. For a principal G-bundle (P, π,M,G) together with f : N → M a smooth map
the pullback bundle

π′ : f∗P → N, π′(x, p) = x,

is principal G-bundle with the right action given by (x, p)g := (x, pg).

Definition 1.1.2. A morphism between the principal bundles (P, πP ,M,G) and (Q, πQ, N,H)
consists of a triple (F, f, φ) composed of a bundle map F : P → Q covering the map f : M → N ,
and a Lie group homomorphism φ : G→ H such that

F (pg) = F (p)φ(g), for all p ∈ P, g ∈ G.

In these terms, we say that the map F : P → Q is a bundle morphism along φ : G → H
covering the map f : M → N ,

1



2 PRELIMINARIES 1.1

P Q, x (G H).

M N

πP

F

πQ

φ

f

Principal bundles with morphisms between them constitute a category that we denote PB.

Remark 1.1.1. It is easy to prove that if a principal G-bundle (P, π,M,G) admits a section
s : M → P, π ◦ s = IdM , then it is isomorphic to the trivial G-bundle. Therefore, as π : P →M is a
surjective submersion, the local form of a submersion implies the existence of smooth local sections
of π. In other words, a principal G-bundle is locally trivial. That is, for every x ∈ M there is an
open U ⊆M such that P |U is isomorphic to U ×G,

P |U U ×G

U.

'

π|U
pr1

Remark 1.1.2. Given a principal bundle (P, π,M,G) one observes that the right action of G on
P is proper. Indeed,

ϕ : P ×G→ P ×M P, (p, g) 7→ (pg, p)

is a diffeomorphism. Conversely, by the slice theorem (see for example [Mic08]) given a free and
proper action of G on M , the orbit space M/G admits a unique smooth structure such that M →
M/G is a principal G-bundle.

For a principal bundle (P, π,M,G) we shall denote the right action of g ∈ G on P by Rg : P → P

and the fundamental vector field associated to vector X ∈ g by X̃. Also the adjoint representation
of a Lie group G over its Lie algebra g by Ad.

Definition 1.1.3. Let (P, π,M,G) be a principal G-bundle and g be the Lie algebra of the Lie
group G. A connection 1-form is a g-valued 1-form θ ∈ Ω1(P ; g) with the properties

i. θp(X̃p) = X, for all X ∈ g, p ∈ P ;

ii. R∗gθp = θpg ◦Rg∗,p = Adg−1 ◦ θp = Adg−1 · θp for all g ∈ G.

Let (P, πP ,M,G) and (Q, πQ, N,H) be two principal bundles and F : P → Q a morphism along
the Lie group homomorphism φ : G → H covering the map f : M → N . We write φ∗ : g → h
for the morphism induced on the Lie algebras. Note that given a connection 1-form θP on P and a
connection 1-form θQ on Q, both the form F ∗θQ and the form φ∗ · θP are h-valued 1-forms on P ,

F ∗θQ ∈ Ω1(P ; h), φ∗ · θP ∈ Ω1(P ; h).

We introduce the category PBC of principal bundles with connection the category with ob-
jects (P, π,M,G, θ) where (P, π,M,G) is a principal bundle and θ a connection 1-form on P . A
morphism between two principal bundles with connection (P, πP ,M,G, θP ) and (Q, πQ, N,H, θQ) is
a morphism (F, f, φ) : (P, πP ,M,G)→ (Q, πQ, N,H) such that F ∗θQ = φ∗ · θP . In these terms, we
say that F : P → Q is abundle morphism along φ : G→ H covering f : M → N preserving
the connections.

F ∗θQ = φ∗ · θP , P Q, x G H.

M N

πP

F

πQ

φ

f



1.1 PRINCIPAL BUNDLES 3

Recall that every principal bundle admits a connection, which can be shown by using a partition
of unity argument (see for example [KN63, Bor12]).

A connection 1-form θ on a principal bundle P determines an G-invariant splitting of the tangent
bundle TP = V ⊕H, where

V = kerπ∗, H = ker θ.

This splitting allows us to define the horizontal lift of any vector field X ∈ X(M) to a vector field
Xh ∈ X(P ) in such a way that Xh

p ∈ Hp and π∗,pXh
p = Xπ(p). The horizontal lift is G-invariant,

that is, Rg∗X
h = Xh for all g ∈ G. In this sense, having a connection on a principal bundle is

equivalent to the choice of an G-invariant horizontal distribution H ⊆ TP , where by horizontal we
mean transverse to the fibers.

Let h : TP → H be the projection onto the horizontal distribution given by the splitting
determinate by θ. If V is a vector space, we consider the application induced in V -valued forms

h∗ : Ωk(P ;V )→ Ωk(P ;V ), (h∗ϕ)(X1, . . . , Xk) = ϕ(h(X1), . . . , h(Xk)),

this is the projection onto the space of horizontal differential forms

Ωhor(P ;V ) :=
{
ϕ ∈ Ω(P ;V ) | ι

X̃
ϕ = 0, for all X ∈ g

}
.

We define the exterior covariant derivative induced by θ as Dθ : Ω(P ;V )→ Ωhor(P ;V ), Dθ =
h∗ ◦ d.

Definition 1.1.4. Let (P, π,M, θ) be a principal bundle with connection. The curvature 2-form
of θ is the g-valued 2-form Ω ∈ Ω2(P ; g) defined by

Ω := Dθθ.

This is a tensorial form of type (G,Ad), that alternatively could be defined by the structure
equation

Ω = dθ +
1

2
[θ, θ] . (1.1)

For more details about it see [KN63, Mic08].

Remark 1.1.3. Let (P, πP ,M,G, θP ) and (Q, πQ, N,H, θQ) be two principal bundles with connec-
tion and F : P → Q be a bundle morphism along φ : G → H covering f : M → N that preserves
the connections. Then we have that F also preserves the curvatures

F ∗ΩQ =F ∗(dθQ +
1

2
[θQ, θQ])

=d(F ∗θQ) +
1

2
[F ∗θQ, F

∗θQ]

=d(φ∗ · θP ) +
1

2
[φ∗ · θP , φ∗ · θP ]

=φ∗ · (dθP +
1

2
[θP , θP ])

=φ∗ · ΩP .

Associated to a principal G-bundle (P, π,M,G) we have a canonical short exact sequence of vector
bundles,
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0 ker(dπ) TP π∗(TM) 0

P.

dπ

Due to the action of G on P is free and proper we have that the tangent lifting action of G on TP
is a linear action that is free and proper as well. Moreover, we can induce a natural right linear
action of G on π∗(TM) in a such a way that it is a free and proper action and the projection map
dπ is G-equivariant. In other words, it is a short exact sequence of G-equivariant vector bundles.
We get that the induced sequence of quotient spaces is a short exact sequence of vector bundles
over M . This sequence is known as the Atiyah sequence and we denote it by

0 Ad(P ) At(P ) TM 0

M,

d̃π

(1.2)

where At(P ) := TP/G is called the Atiyah bundle and Ad(P ) := P ×G g is the associated vector
bundle to P and the adjoint representation of G on g. The vector bundle Ad(P ) is called the adjoint
bundle. For more detail about the Atiyah sequence see [Ati57].

1.2 Classical Chern-Weil theory

Let (P, π,M,G, θ) be a principal bundle with connection. Let us consider the following con-
struction: for each covector α ∈ g∗ we can construct a 1-form on P in the following way

TP
θ−→ g

α−→ R, Xp 7→ α(θp(Xp)).

This procedure defines the morphism:

cθ : g∗ → Ω1(P ), α 7→ α ◦ θ,

and induces a morphism between the graded commutative algebras

cθ : ∧(g∗)→ ΩdR(P ).

Consider the Chevalley-Eilenberg dga (∧g∗, dCE) where the differential is defined by

∧n(g∗) −→ ∧n+1(g∗), α 7→ dCEα.

For Xi ∈ g, i = 0, . . . , n we have

dCEα(X0, . . . , Xn) =
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn).

In general cθ is not a differential graded homomorphism. Indeed, for each α ∈ g∗ the following holds

ddR ◦ cθ(α)− cθ ◦ dCE(α) = α ◦ Ω.

Applying the last procedure to the curvature 2-form we get a map,

cΩ : g∗ → Ω2
dR(P ), α 7→ α ◦ Ω,

that can be extended to a homomorphism of graded algebras

cΩ : S(g∗)→ ΩdR(P ),
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where S(g∗) denotes the symmetric algebra of g∗ with even grading S2k(g∗) = Symk(g∗) and
S2k+1(g∗) = 0 for all 0 ≤ k. Note that a homogeneous element of degree 2k in S(g∗) is actually a
homogeneous polynomial on g of degree k, and it is mapped by cΩ into a differential form of degree
2k. Thus cΩ preserves the grading. Moreover, the following equation holds,

ddR ◦ cθ − cθ ◦ dCE = cΩ,

yielding the next definition.

Definition 1.2.1. The Weil algebra of g is the dga

W (g) := ∧(g∗)⊗ S(g∗),

with differential given by d = dCE + d, where

• d is the derivation of degree 1 generated by d(x⊗ 1) = 1⊗ x,d(1⊗ x) = 0, and

• dCE is extended uniquely on generators such that dCE ◦ d = −d ◦ dCE .

We extend the morphisms cθ and cΩ to morphisms from W (g) and define the map

wθ := cθ ⊗ cΩ : ∧(g∗)⊗ S(g∗) −→ ΩdR(P ).

The following relation hold:

wθ ◦ d =cΩ ◦ d,
ddR ◦ cθ − cθ ◦ dCE =cΩ ◦ d,

ddR ◦ wθ =wθ ◦ (dCE + d).

The map wθ : W (g) → ΩdR(P ) is a dga-homomorphism. Recall that for a principal bundle P the
right action of the structure group G induces a left action on the de Rham complex ΩdR(P ) given
by pullback R∗gg′ = (Rg′ ◦ Rg)∗ = R∗g ◦ R∗g′ . Infinitesimally, it generates a linear action of the Lie
algebra g on ΩdR(P ) by derivations of degree 0. That means, for each X ∈ g and α, β ∈ ΩdR(P ) we
have

L
X̃
α =

d

dt

∣∣∣∣
t=0

R∗exp(tX)α,

which satisfies
L
X̃

(α ∧ β) = (L
X̃
α) ∧ β + α ∧ (L

X̃
β).

Moreover, the interior product with respect to X̃ induces an action by derivations of degree -1 on
ΩdR(P ), and these two actions interact by mean of Cartan’s relations

L
X̃
◦ L

Ỹ
− L

Ỹ
◦ L

X̃
=L

[̃X,Y ]
,

d ◦ ι
X̃

+ ι
X̃
◦ d =L

X̃
,

L
X̃
◦ ι

Ỹ
− ι

Ỹ
◦ L

X̃
=ι

[̃X,Y ]
,

ι
X̃
◦ ι

Ỹ
+ ι

Ỹ
◦ ι

X̃
=0.

We introduce the concept of G-dga which is relevant in this work.

Definition 1.2.2. Let G be a Lie group and g its Lie algebra. A G-differential graded algebra
is a triple (X, ρ, ι) that consists of a dga (X, ·, d) together with a left action of G by graded
automorphisms ρ : G→ Aut(X), and a linear action of g by derivations of degree -1 ι : g→ Der(X)
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such that they satisfy the Cartan calculus equations

LX ◦ LY − LY ◦ LX =L[X,Y ],

d ◦ ιX + ιX ◦ d =LX ,

LX ◦ ιY − ιY ◦ LX =ι[X,Y ],

ιX ◦ ιY + ιY ◦ ιX =0.

where LXa = d
dt

∣∣
t=0

ρ(exp(tX)) · a, for X ∈ g, a ∈ X.

For more details about this concept see [AL10, GS99]. The model example of a G-dga is the de
Rham complex ΩdR(P ) of a principal G-bundle P , so that, for analogy we call the derivation ιA as
the interior product with respect A.

Definition 1.2.3. A dga-morphism f : (X, ·, d) → (Y, ·, d) between the two G-dga’s X and Y is
a G-dga-morphism if it commutes with both actions, namely, the action by automorphism of G
and the linear action by derivations of g.

Example 1.2.1. The Weil algebra W (g) is a G-dga with grading given by

W (g) =
⊕
0≤n

Wn(g), Wn(g) =
⊕

2p+ q = n,
0 ≤ p, q

∧q(g∗)� Symp(g∗).

The coadjoint action of G on g∗ induces an action by automorphisms on W (g) and the morphism
wθ commutes with the actions by G due to the fact that R∗gθ = Adg−1 ·θ and R∗gΩ = Adg−1 ·Ω. The
interior product ιX over W (g) is completely determined by the commutativity with the map wθ.
Essentially, it is constructed by dualizing the equations ι

X̃
θ = X, ι

X̃
Ω = 0. The Cartan calculus

equations are deduced from the Lie algebra structure of g. Therefore, the Weil algebra W (g) is a
G-dga and the dga-morphism

wθ : W (g)→ ΩdR(P )

is a G-dga morphism.

Given a principal G-bundle (P, π,M,G) is well-known that the map π∗ : ΩdR(M)→ ΩdR(P ) is
an injection. The image im(π∗) is better known as the space of basic forms on P . These forms are
completely characterized for the properties of being horizontal to the fibers and invariant by the
action of G. Therefore, it can be described as

Ωbasic(P ) =
{
ϕ ∈ ΩdR(P ) |R∗gϕ = ϕ, ι

X̃
ϕ = 0, for all g ∈ G, X ∈ g

}
.

This description motives the study of differential forms on quotient spaces as the space of basic
forms.

Definition 1.2.4. Let X be a G-dga. The space of basic elements of X is

Xbasic = {a ∈ X | ρ(g) · a = a, ιXa = 0, for all g ∈ G,X ∈ g} .

Remark 1.2.1. Note that the Cartan calculus implies that the space of basic elements of a G-dga
is a dga, and if f : X→ Y is a morphism of G-dgca, then f |Xbasic

: Xbasic → Ybasic is a well-defined
dga morphism. Therefore, the G-dga morphisms are precisely these type of morphisms of G-dga
that descend to the quotient space.

Example 1.2.2. For the Weil algebra W (g) we have that the dga of basic elements is

W (g)basic = (S(g∗)G, d = 0),
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In other words, the basic elements of the Weil algebra is the commutative algebra of Ad-invariant
polynomials on g. We want to recall that all homogeneous elements have even grading.

Theorem 1.2.1. Let (P, π,M,G) be a principal bundle. For a connection 1-form θ the homomor-
phism of G-dga

wθ : W (g)→ ΩdR(P )

restricts to a dga-morphism
wθ : S(g∗)G → ΩdR(M)

that induces a morphism in cohomology that is independent of the connection 1-form

cw : S(g∗)G → HdR(M). (1.3)

The morphism cw is called the Chern-Weil homomorphism.

Proof. The proof of this fact can be found in [KN69, pag. 295].

More concretely, the Chern-Weil construction says that for a given basis {X1, . . . , Xn} of the
Lie algebra g we have

[Xi, Xj ] =
n∑
k=1

CkijXk,

where Ckij ∈ R for 1 ≤ i, j ≤ n are the structure constants relative to this basis. If we consider the
dual basis {α1, . . . , αn} and a copy of it {u1, . . . , un} one has that the Weil algebra is given by

W (g) = ∧(α1, . . . , αn)� R[u1, . . . , un].

Actually, it is the free graded commutative algebra generated by elements αi of degree 1 and the
elements ui of degree 2. Also, the connection 1-form θ and its curvature 2-form Ω can be expressed
in this basis as

θ =
n∑
i=1

θiXi, Ω =
n∑
i=1

ΩiXi,

where θi ∈ Ω1
dR(P ) and Ωi ∈ Ω2

dR(P ). The properties defining a connection 1-form 1.1.3 imply that
these differential forms satisfy the following conditions

• θi(X̃j) = δji (Kronecker delta: δji = 1 or 0 if i = j or i 6= j);

• ι
X̃j

Ωi = 0 ;

• for 1 ≤ i ≤ n

R∗gθi =

n∑
j=1

Adg−1
i
j
· θj , R∗gΩi =

n∑
j=1

Adg−1
i
j
· Ωj .

• The structure equation (1.1) can be written as

dθk = Ωk −
∑
i<j

Ckijθi ∧ θj .

• Bianchi’s identity can be written as

dΩk = −
∑
i,j

Ckijθi ∧ Ωj .

The G-dga morphism wθ : W (g)→ ΩdR(P ) is defined on generators by

wθ(αi) = θi, wθ(ui) = Ωi.



8 PRELIMINARIES 1.2

The G-dga structure in W (g) is defined on generators for the automorphism action of G as

g · αi := αi ◦Adg−1 , g · ui := ui ◦Adg−1 ,

and for the linear action by derivations of g on generators by

iXiαj = δji , iXiuj = 0.

Thus a homogeneous elements of degree 2p+ q

g · (αi1 ∧ · · · ∧ αip � uj1 � · · · � ujq) = (g · αi1) ∧ · · · ∧ (g · αip)� (g · uj1)� · · · � (g · ujq)

and

ιXk(αi1 ∧ · · · ∧ αip � uj1 � · · · � ujq) =

p∑
s=1

(−1)(−1)|αis |αi1 ∧ · · · ∧ ιAkαis ∧ · · · ∧ αip � uj1 � · · · � ujq + 0

=

p∑
s=1

αi1 ∧ · · · ∧ δ
is
k ∧ · · · ∧ αip � uj1 � · · · � ujq

The differential of W (g) on generators is

dαk = uk −
∑
i<j

Ckijαi ∧ αj , duk = −
∑
i,j

Ckijαi � uj .

An Ad-invariant homogeneous polynomial f on g of degree 2k has the form

f =

r∑
i1,...,ik

ai1,...,ikui1 � · · · � uik

where ai1,...,ik is symmetric in i1, . . . , ik and for all g ∈ G holds that g · f = f . Therefore, the
Chern-Weil homomorphism is the map cθ : S(g∗)G → ΩdR(M) that takes Ad-invariant polynomials
of degree 2k on g and maps them to the 2k-differential forms

fΩ =

r∑
i1,...,ik

ai1,...,ikΩi1 ∧ · · · ∧ Ωik .

Remark 1.2.2 (Relation with the classifying space). It is well-known that for a topological group
G, in particular for a Lie group, there is a universal principal G-bundle, that is, a topological
principalG-bundle (EG, π,BG,G) such that EG is contractible and BG is a paracompact Hausdorff
space homotopy equivalent to a CW-complex, which is universal in the sense that for any principal
G-bundle (P, πP ,M,G) there is a map f : M → BG such that P ' f∗EG,

P ' f∗(EG) EG

M BG.

πP π

f

The space BG is called the classifying space of G and the map f : M → BG the classifying map.
These names are justified because isomorphism classes of principal G-bundles over M are in one-
to-one correspondence with homotopy classes of maps from M to BG. Therefore, the isomorphism
class of (P, π,M,G) determines the homotopy class of its classifying map f : M → BG, and this
in turn determines a unique morphism

f∗ : H∗sing(BG;R)→ H∗sing(M ;R).
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The Chern-Weil Theory offers a differential geometric method to compute f∗ through the Chern-
Weil homomorphism. It is well-known too that in the case where G is a compact Lie group one
has H∗sing(BG;R) ' S(g∗)G, and that the Chern-Weil construction agree with the topological
construction. For more information about this topological perspective see for example [Tu20].

1.3 Lecomte’s approach

There is an algebraic approach to the Chern-Weil homomorphism due to P. B. Lecomte [Lec82].
Let us consider an extension of Lie algebras,

0 n ĝ g 0,ι π

together with a representation (V, ρ) of the Lie algebra g on a vector space V . We denote by
Symk(n, V )ĝ the space of linear k-symmetric and ĝ-invariant maps on n with values in V . That
means, if f ∈ Symk(n, V )ĝ, then f is a k-linear map f : n× · · · × n→ V that is symmetric and for
all X ∈ ĝ and Y1, . . . , Yk ∈ n the following holds

ρ(π(X))f(Y1, . . . , Yk) =

k∑
i=1

f(Y1, . . . , [X,Yi], . . . , Yk).

Given a linear section h : g→ ĝ, i.e. π ◦ h = Idg, its curvature is defined as

Kh : g× g→ n, Kh(X,Y ) := [hX, hY ]− h[X,Y ].

Every element f ∈ Symk(n, V )ĝ determines a 2k-cocycle fh ∈ ∧2kg∗ ⊗ V defined by

fh(X1, X2, . . . , X2k−1, X2k) :=
∑

σ(2i−1)<σ(2i)

sgn(σ)f(Kh(Xσ(1), Xσ(2)), . . . ,Kh(Xσ(2k−1), Xσ(2k))).

The Chern-Weil-Lecomte homomorphism is the map

cw : Sym•(n;V )ĝ → H2•
CE(g;V ), cw(f) = [fh],

where H2•
CE(g;V ) denotes the even part of the Chevalley-Eilenberg cohomology of g with values in

V .

Remark 1.3.1. In the particular case of a principal G-bundle (P, π,M,G) we have that its Atiyah
sequence (1.2) induces a sequence of space sections. In fact, it is a short exact sequence of Lie
algebras,

0 Γ(Ad(P )) X(P )G X(M) 0.ι π∗

Thus, on one side, we have the following equivalences

i.
Connection 1-form θ ∈ Ω1

dR(P ) � h : X(M)→ X(P )G, π∗ ◦ h = IdX(M).

where h denotes the horizontal lift of vector fields. It is worth noticing that h preserves the
C∞(M)-module structure, that means, h is a C∞(M)-linear splitting.

ii.
Curvature 2-form Ω ∈ Ω2

dR(P ) � Kh ∈ Ω2
dR(M,Ad(P ))

where
Kh : ∧2

C∞(M)X(M)→ Γ(Ad(P )), Kh(X ∧ Y ) = [Xh, Y h]− [X,Y ]h.
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On the other side, for G connected it holds

Sk(g∗)G ' Symk(Γ(Ad(P )), C∞(M))Γ(At(P )).

For f ∈ Sk(g∗)G, we can induce a map

f : Γ(Ad(P ))× · · · × Γ(Ad(P ))→ C∞(M),

such that

LX(f(ξ1, . . . , ξk)) =

k∑
i=1

f(ξ1, . . . , [X
h, ξi], . . . , ξk),

for all X ∈ X(M) and ξi ∈ Γ(Ad(P )). Therefore, the Chern-Weil-Lecomte morphism is well-defined
and takes values in the Lie algebra cohomology of the vector fields with values in the space of
smooth functions. Given that the horizontal lift preserves the C∞(M)-module structure it yields
differential forms, that is, the Chern-Weil-Lecomte takes values in the de Rham cohomology of M ,

S(g∗)G HCE,L(X(M);C∞(M))

HdR(M).

cw

cw

(1.4)

Therefore, the Chern-Weil-Lecomte associated to a principal G-bundle agrees with the classical
Chern-Weil homomorphism (1.3).

1.4 Lie groupoids

A groupoid is a small category in which all arrows are invertible. Concretely, a groupoid consists
of two sets X1 and X0 that we call the set of arrows and the set of objects, respectively, together
with the structural maps,

X1s×tX1 X1 X0 X1 X1,
m s

t

u ι

satisfying the axioms of a category. We denote an arrow g ∈ X1 as g : y ← x where s(g) = x and
t(g) = y, and its inverse arrow as ι(g) = g−1 : x← y. For an object x ∈M we denote the unit at x
as u(x) = 1x, and for a pair of composable arrows (g′, g) ∈ X1s×tX1 we denote the composition
arrow m(g′, g) as the concatenation g′g. In general, we write a groupoid by X1 ⇒ X0 or X when
the context does not demand to specify the base.

Definition 1.4.1. A Lie groupoid is a groupoid X1 ⇒ X0 in which X1 and X0 are smooth
manifolds, and the source and the target maps s, t : X1 → X0 are surjective submersions, and all
the other structural maps are smooth.

Remark 1.4.1. The composition map m is a smooth map from the set of composable arrows
X2 := X1s×tX1 with the smooth structure of embedded submanifold of X1×X1. We have that the
inversion map ι is a diffeomorphism of X1 and the unit map u is a smooth bisection of the source
and the target.

Let us see some examples of Lie groupoids.

Example 1.4.1 (Manifolds). We can see a smooth manifoldM as a Lie groupoid with only identity
arrows M ⇒M

4(M) = M Id×IdM M M M M
pr Id

Id

Id Id
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This Lie groupoid is called unit groupoid.

Example 1.4.2 (Lie group). A Lie group G can be seen as a Lie groupoid with only one object
G⇒ ∗

G×G G ∗ G G.m e (−)−1

Example 1.4.3 (Manifolds with symmetries). If a Lie group G acts on a smooth manifold M ,
then the product M ×G inherits a structure of Lie groupoid over M . We call this Lie groupoid the
transformation groupoid and denote it by GnM ,

(GnM)s×t(GnM) GnM M GnM GnM,m s

t

i2 ι

its structural maps are given by

s(g, x) = x, t(g, x) = g · x, m((h, g · x), (g, x)) = ((hg) · x, x)

for all (g, x) ∈ G×M .

Other important examples of Lie groupoids include: the fundamental groupoid of a manifold,
the holonomy groupoid of a foliation, the gauge groupoid of a principal bundle, among others. For
more details about Lie groupoids see [MM03, Mac05].

Definition 1.4.2. A Lie groupoid morphism (F, f) from X1 ⇒ X0 to Y1 ⇒ Y0 is a pair of
smooth maps F : X1 → Y1 and f : X0 → Y0 such that the following diagram commutes

X1s×tX1 X1 X0 X1 X1

Y1s×tY1 Y1 Y0 Y1 Y1

F×F

m

F

s

t

f

u

F

ι

F

m s

t

u ι

In this case we say that F : X1 → Y1 is a Lie groupoid morphism covering the map f : X0 → Y0.

Remark 1.4.2. It is common to find in the literature an alternative definition of a morphism of
Lie groupoids as a functor Φ : X→ Y composed by smooth maps in arrows and objects spaces.

Example 1.4.4 (Pullback groupoid). Let X = (X1 ⇒ X0) be a Lie groupoid and f : Y0 → X0

be a smooth map. Assume that t ◦ pr2 : Y0f×sX1 → X0 is surjective submersion then f !X :=
(Y0f×tX1s×fY0 ⇒ Y0) is a Lie groupoid where the structural maps are

s!(x, g, y) = y, t!(x, g, y) = x, u!
y = (y, uf(y), y) ι(x, g, y) = (y, g−1, x)

m!((z, g, y), (y, g′, x)) =(z, gg′, x)).

We call this Lie groupoid the pullback groupoid of X along f .

Definition 1.4.3. Let X1 ⇒ X0 be a Lie groupoid. A VB-groupoid over X1 ⇒ X0 is a Lie
groupoid V ⇒ E, where both qV : V → X1 and qE : E → X0 are vector bundles compatible with
the groupoid structure of V in the sense that all the structural maps are vector bundle maps over
the corresponding structural maps of X1 ⇒ X0. We denote the structural maps of V by s̃, t̃, m̃, ι̃, 1̃.
In diagram as

V E

X1 X0.

qV

s̃

t̃
qE

s

t
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Observe that since s̃ is a vector bundle map of maximal rank, then ker(s̃)→ X1 is a vector bundle.
We call the vector bundle C := ker(s̃)|X0

→ X0 by the core bundle and the vector bundle E → X0

by the side bundle of the VB-groupoid V.

The following notion is relevant in the forthcoming work

Definition 1.4.4. A morphism of Lie groupoids Φ : X1 → Y1 covering φ : X0 → Y0 is a Morita
morphism if it satisfies the following conditions

i. (Fully faithfull) the following diagram

X1 Y1

X0 ×X0 Y0 × Y0

Φ

p
(sX ,tX) (sY ,tY )

φ×φ

is a pullback diagram,

ii. (Essentially surjective) the map

tY ◦ pr2 : X0φ×sY Y1 → Y0

is a surjective submersion.

Definition 1.4.5. Two Lie groupoids X and Y are Morita equivalent if there exists a third Lie
groupoid W together with Morita morphisms Ψ : W→ X and Φ : W→ Y.

Intuitively, we may think that the Lie groupoid W determines a notion of isomorphism Φ
Ψ : X→

Y between the Lie groupoids X and Y. Formally, what we are doing is localizing the category of Lie
groupoids along the Morita morphisms. Thus, two Lie groupoids are Morita equivalents if and only
if they are isomorphic in the localized Lie groupoid category. Morphisms in the localized category
are called generalized morphisms between Lie groupoids [MM03, del13].

Remark 1.4.3. It is common to find in the literature the notion of Morita equivalence between
Lie groupoids under the name of weak equivalence of Lie groupoid, see for example [MM03, §5.4].
Another interesting approach to the notion of Morita equivalence of Lie groupoids is in terms of
bi-bundles or anafunctors, for more details about this perspective see for instance [del13, §4.6] and
[Wal18, §2.3] and references therein.

1.5 The de Rham cohomology of a Lie groupoid

Given a Lie groupoid X := (X1 ⇒ X0) one has a simplicial manifold associated to it called the
nerve of the Lie groupoid X• := {Xn}0≤n, whose n-simplices Xn is the manifold of strings of
composable arrows of length n

Xn = {(g1, . . . , gn) | s(gi) = t(gi+1), 1 ≤ i ≤ n− 1} ,

the face maps are for n = 1 the source and the target maps, and for n > 1:

di(g1, . . . , gn) =


(g2, . . . , gn), if i = 0;

(g1, . . . , gigi+1, . . . , gn), if 1 < i < n;
(g1, . . . , gn−1), if i = n.

(1.5)

and the degeneracy maps are for n = 0 the unit map and for n ≥ 1:

si(g1, . . . , gn) = (g1, . . . , gi, us(gi), gi+1, . . . , gn)
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for 0 ≤ i ≤ n.
Associated to this simplicial manifold X• there is many information about the geometry of the
Lie groupoid. On the one hand, we have the classifying space of a Lie groupoid, denoted by
BX, that is the geometric realization of the nerve of the Lie groupoid. The name comes from the
fact the classifying space of the Lie group mentioned in Remark 1.2.2 coincides with the classifying
space of the Lie group seen as Lie groupoid as in Example 1.4.2. On the other hand, we have the
Bott-Shulman-Stasheff Complex which computes the de Rham cohomology of X. The Bott-
Shulman-Stasheff complex is the double complex

· · · · · · · · · · · ·

Ω3
dR(X0) Ω3

dR(X1) Ω3
dR(X2) Ω3

dR(X3) · · ·

Ω2
dR(X0) Ω2

dR(X1) Ω2
dR(X2) Ω2

dR(X3) · · ·

Ω1
dR(X0) Ω1

dR(X1) Ω1
dR(X2) Ω1

dR(X3) · · ·

Ω0
dR(X0) Ω0

dR(X1) Ω0
dR(X2) Ω0

dR(X3) · · ·

∂

d d

∂

d

∂

d

∂

∂

d d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

where the vertical differential is given by the usual de Rham differentials, dkp : Ωk(Xp) 7→ Ωk+1(Xp),
and the horizontal differential is given by the simplicial structure. It is defined as the alternating
sum of the pull-back by the face maps of X•

∂q : Ωk(Xq) 7→ Ωk(Xq+1), ∂q =

q∑
i=0

(−1)id∗i .

The Bott-Shulman-Stasheff complex is denoted by ΩBSS(X). The cohomology of the total complex
of this double complex is called de Rham cohomology of X,

H∗dR(X) = H∗
(

Ωtot(X), dtot|ΩpdR(Xq)
= ∂p + (−1)pdqp

)
.

An important property of the de Rham cohomology of a Lie groupoid is that it is Morita invariant.
The following result is a well-known fact [BSS76, Cra03, BX11], we present a proof in order to
clarify the discussion in the following remark.

Theorem 1.5.1. Let X and Y be two morita equivalent Lie groupoids, then

HdR(X) ' HdR(Y)

Proof. Following the tom Dieck Theorem in [BSS76, pag.53] if X and Y are morita equivalents then
their classifying spaces BX and BY are homotopy equivalents, and by a multiple application of the
Simplicial de Rham Theorem [BSS76, pag.51] we have

HdR(X) ' Hsing(BX;R) ' Hsing(BY;R) ' HdR(Y).

Remark 1.5.1. It is worth noticing that the previous theorem does not say anything about the
multiplicative structure on cochains so that it does not say anything about the ring structure of
the cohomology. It only provides information about the homotopy type of the isomorphic classes
of the differentiable stack represented by them. Some authors call this cohomology as the de Rham
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cohomology of the differentiable stack represented by X. The reader is recommended to visit the
references [Beh04] and [Gin13] as well as the references therein. They provided a panoramic point
of view about the relationship between Lie groupoids and differentiable stacks which we find useful.



Chapter 2

Crossed modules

In this chapter we will recall the notions of Lie 2-groups and Lie 2-algebras and their corre-
spondence with crossed modules of both Lie groups and Lie algebras, respectively. We study that
correspondence and show that elementary equivalences of crossed modules of Lie groups are in
one-to-one correspondence with Morita maps of Lie 2-groups. In the second section we apply the
Lie functor to a crossed module of Lie groups yielding a crossed module of Lie algebras. We also
define the Lie 2-algebra of a Lie 2-group.

2.1 Lie 2-groups and crossed modules of Lie groups

Definition 2.1.1. A Lie 2-group is a groupoid internal to the category of Lie groups.

For a Lie 2-group G1 ⇒ G0 we have that both the space of arrows and the space of objects are
Lie groups, and the structural maps are homomorphisms of Lie groups. In particular, the source
and target maps are surjective submersions which are at the same time homomorphisms of Lie
groups. Thus, the space of composable arrows G2 is an embedded submanifold of G1 ×G1 as well
as a subgroup of the direct product. The Lie structure of the direct product restricts to it, therefore
G2 is a Lie subgroup of G1 ×G1. In general, we shall denote a Lie 2-group by G1 ⇒ G0 or G when
the context does not demand to specify the base.

Remark 2.1.1. Given that on the space of arrows G1 there are two different products, for com-
posable pairs (g, g′) ∈ G2 we denote by g ∗ g′ its composition and by gg′ its product with respect
to the Lie group multiplication of G1. These two product interact in the following way:

(g ∗ g′)(h ∗ h′) =m(g, g′)m(h, h′)

=m((g, g′)(h, h′))

=m(gh, g′h′)

=(gh) ∗ (g′h′),

for two composable pairs (g, g′), (h, h′) ∈ G2. The equation (g ∗ g′)(h ∗ h′) = (gh) ∗ (g′h′) is known
as the exchange law.

Definition 2.1.2. A morphism of Lie 2-groups Φ : G→ H is a Lie groupoid morphism internal
to the category of Lie groups.

In other words, a morphisms of Lie 2-groups Φ : G→ H is a Lie groupoid morphism which is a
Lie group homomorphism on objects and arrows.

Definition 2.1.3. A crossed module of Lie groups is a couple of homomorphisms of Lie groups
ρ : H → G and α : G→ Aut(H) satisfying the following conditions

i. (G-equivariance)
ρ(αg(h)) = gρ(h)g−1 = cg(ρ(h));

15
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ii. (Peiffer identity)
αρ(h)(h

′) = hh′h−1 = ch(h′).

for all g, g′ ∈ G and h, h′ ∈ H. We denote a crossed module of Lie groups by [H
ρ−→ G

α−→ Aut(H)].

Remark 2.1.2. There is a one-to-one correspondence between crossed modules of Lie groups and
Lie 2-groups. For a crossed module [H

ρ−→ G
α−→ Aut(H)] we associate the Lie 2-group given by

the transformation groupoid corresponding to the action of H on G through ρ

H nG⇒ G

where the Lie group structure in the space of arrows is the semi-direct product HoαG. Conversely,
for a Lie 2-group G1 ⇒ G0 we associate the crossed module of Lie groups given by H = ker(s :
G1 → G0), G = G0, ρ = t|H : H → G and αg(h) = 1gh1−1

g = c1g(h), for all g ∈ G, h ∈ H. For
more about this correspondence see for instance [BL04, §8.4].

Remark 2.1.3. Due to this correspondence, for practicality, we will abuse the notation and denote
G = [H

ρ−→ G
α−→ Aut(H)] when is more convenient to see a Lie 2-group as its associated crossed

module.

Example 2.1.1 (Linear representations). Let G → Aut(V ) be a linear representation of G on
the vector space V . Consider V as abelian Lie group with the addition of vectors and ρ : V → G
with ρ(v) = e for all v ∈ V . Then for all g ∈ G and v ∈ V we have

• ρ(αg(v)) = e = cg(e) = cg(ρ(v));

• αρ(v)(v
′) = αe(v

′) = v′ = cv(v
′).

Hence a linear representation of G on V can be seen as a crossed module of Lie groups whose
associated Lie 2-group is the transformation groupoid V nG⇒ G. In fact, this Lie 2-group is the
vector bundle π : V oG → G seen as groupoid with s = π and t = π where composable pairs are
vectors in a same fiber and the composition is their addition in the fiber. In particular, for a Lie
group G the tangent and cotangent bundles TG and T ∗G can be seen as a Lie 2-groups associated
to the adjoint and coadjoint representations of G, respectively.

Example 2.1.2. A central extension of Lie group that splits

1 K H G 1i ρ

σ

can be seen as a crossed module of Lie groups with

α : G→ Aut(H), αg(h) = σ(g)hσ(g)−1.

To see this, note that H ρ−→ G is a principal K-bundle, then for h ∈ H there is a unique k ∈ K
such that σ(ρ(h)) = hk. Therefore

αρ(h)(h
′) =σ(ρ(h))h′σ(ρ(h))−1

=(hk)h′(k−1h−1)

=h(kh′k−1)h−1, K is central in H

=hh′h−1.

Example 2.1.3. Let G be a Lie group and H be a normal Lie subgroup of G. Then we have a
natural crossed module of Lie groups

[H
i
↪→ G

c−→ Aut(H)]
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where the map i is the inclusion and the representation c is the conjugation. In particular, there
are interesting sub examples that appear when we consider extreme cases, the first one is given by
taking H = {e}, it allows us to see every Lie group G as a Lie 2-group G ⇒ G. In this case the
transformation groupoid is in fact the unit groupoid of G. The second one is given for H = G, then
the associated Lie 2-group is the transformation groupoid G n G ⇒ G of the left action of G on
itself, and its Lie group structure in the space of arrows is Goc G.

Proposition 2.1.1. Let [H
ρ−→ G

α−→ Aut(H)] be a crossed module of Lie groups, then

i. ker(ρ) is a central Lie subgroup of H;

ii. im(ρ) is a normal subgroup of G;

iii. ker(ρ) is G-invariant.

Proof. To see (i), let k ∈ ker(ρ), then for every h ∈ H,

khk−1 = ck(h) = αρ(k)(h) = αe(h) = h

thus hk = kh for all h ∈ H, hence ker(ρ) is central. To see (ii) let h ∈ H and g ∈ G,

gρ(h)g−1 = cg(ρ(h)) = ρ(αg(h)) ∈ im(ρ)

then im(ρ) is normal subgroup of G. To see (iii), let k ∈ ker(ρ) and g ∈ G, then

ρ(αg(k)) = cg(ρ(k)) = cg(e) = e,

hence αg(ker(ρ)) ⊆ ker(ρ).

Definition 2.1.4. A morphism (F, f) from the crossed module [H
ρ−→ G

α−→ Aut(H)] to the

crossed module [H ′
ρ′−→ G′

α′−→ Aut(H ′)] is a couple of homomorphism of Lie groups F : H → H ′

and f : G→ G′ such that the following diagram commutes

H H ′

G G′

ρ

F

ρ′

f

and the map F is (G f−→ G′)-equivariant. That is,

F (αg(h)) = α′f(g)F (h) for all g ∈ G and h ∈ H.

Remark 2.1.4. We point out that the quotient G/im(ρ) is not necessarily a Lie group, since im(ρ)
is normal but not closed normal in general. Therefore, the map f̄ : G/im(ρ)→ G′/im(ρ′) is only a
group homomorphism.

Definition 2.1.5. A morphism of crossed modules

(F, f) : [H
ρ−→ G

α−→ Aut(H)]→ [H ′
ρ′−→ G′

α′−→ Aut(H ′)],

is said to be an elementary equivalence if it has the following properties

i. F̃ : ker(ρ)
'−→ ker(ρ′) is an isomorphism of Lie groups;

ii. f̃ : G/im(ρ)
'−→ G′/im(ρ′) is an isomorphism of groups, and

iii. the maps f and ρ′ are transversal.



18 CROSSED MODULES 2.1

Remark 2.1.5. Observe that the existence of an elementary equivalence as above implies that

dim(G)− dim(H) = dim(G′)− dim(H ′).

We say that two crossed modules are elementary equivalent if they are equivalent in the
equivalence relation generated by elementary equivalence of morphisms of crossed modules. One
sees that two crossed modules of Lie groups are equivalent if there exists a zig-zag of elementary
equivalences going from one to the other (which are not necessarily going all in the same direction).

Remark 2.1.6. It is worth pointing out that there is a classification of crossed modules of groups
up to elementary equivalence in terms of degree 3 cohomology classes of its cokernel group with
values in its kernel group [Wei94, §6.6 Thm 13].

In the same spirit of the correspondence between crossed modules of Lie groups and Lie 2-
groups as in Remark 2.1.2 we have the next proposition which upgrades the correspondence to level
of morphisms, yielding an isomorphism of categories.

Proposition 2.1.2. There is a one-to-one correspondence between morphisms of crossed modules
of Lie group and morphisms of Lie 2-groups.

Proof. It follows by Theorem 43 in [BL04].

Proposition 2.1.3. Let [H
ρ−→ G

α−→ Aut(H)] be a crossed module of Lie groups. If im(ρ) is
closed in G, then

[ker(ρ)
e−→ G/im(ρ)

ᾱ−→ Aut(ker(ρ))]

is a crossed module of Lie groups. We denote by e : ker(ρ)→ G/im(ρ) the constant map that sends
all elements to the identity [e].

Proof. Since im(ρ) is closed in G by [Bou98, §3.8, Prop.3.8] and Proposition 2.1.1 item (ii) we have
im(ρ) is a normal Lie subgroup of G, hence by [Bou98, §1.6, Prop.11] implies that G/im(ρ) has a
canonical Lie group structure such that the projection map π : G → G/im(ρ) is a homomorphism
of Lie groups. To see the crossed module axioms note that the map

ᾱ : G/im(ρ)→ Aut(ker(ρ)), ᾱ[g] := αg,

is well-defined. For that, let g, g′ ∈ G and h ∈ H such that g = g′ρ(h) then

αg(k) =αg′(αρ(h)(k)) = αg′(ch(k))

=αg′(k), by Prop. 2.1.1 item (i),

for all k ∈ ker(ρ), and Proposition 2.1.1 item (iii) implies that ᾱ[g] ∈ Aut(ker(ρ)). Now

i. (G/im(ρ)-equivariance) for k ∈ ker(ρ) and [g] ∈ G/im(ρ)

e(ᾱ[g](k)) = [e] = c[g]([e]) = c[g](e(k)).

ii. (Peiffer Identity) by Proposition 2.1.1 item (i)

ᾱe(k)(k
′) = αe(k

′) = k′ = ck(k
′).

The next result is motivated by a well-known fact about 2-vector spaces, namely, a 2-vector
space is quasi-isomorphism to its cohomology.
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Proposition 2.1.4. Let [H
ρ−→ G

α−→ Aut(H)] be a crossed module of Lie groups such that im(ρ)
is closed in G. If there exists a homomorphism of Lie groups σ which is a section of the map
π : G→ G/im(ρ), then

(ι, σ) : [ker(ρ)
e−→ G/im(ρ)

ᾱ−→ Aut(ker(ρ))]→ [H
ρ−→ G

α−→ Aut(H)]

is an elementary equivalence.

Proof. Let [g] ∈ G/im(ρ) and k ∈ ker(ρ) then

ι(ᾱ[g](k)) = ασ([g])(k) = ασ([g])(ι(k)).

It is clear that the other axioms in Definition 2.1.5 are satisfied.

Example 2.1.4. Let [H
ρ−→ G

α−→ Aut(H)] be a crossed module with ρ a surjective submersion,
then we have [ker(ρ)

e−→ 1
ι−→ Aut(ker(ρ))] has a unique structure crossed module and it is

elementary equivalent to [H
ρ−→ G

α−→ Aut(H)].

Proposition 2.1.5. Let [H
ρ−→ G

α−→ Aut(G)] be a crossed module of Lie groups and f : G′ → G
be a homomorphism of Lie groups such that

i. π ◦ f : G′ → G/im(ρ) is a surjective homomorphism of groups, and

ii. f and ρ are transversal,

then
[G′ ×G H

p1−→ G′
ᾱ−→ Aut(G′ ×G H)]

has a unique structure of crossed module of Lie groups. Moreover, the natural induced morphism of
crossed modules is an elementary equivalence. We call this crossed module the pullback crossed
module of [H

ρ−→ G
α−→ Aut(G)] by f and denote it by f∗([H ρ−→ G

α−→ Aut(G)]).

Proof. Consider the following diagram

1 ker(ρ) H G G/im(ρ) 1

1 ker(p1) G′ ×G H G′ G′/im(p1) 1.

ρ π

p̃2 p2

p1

f

π′

f̃

The item (ii) supports the Lie group structure in G′ ×G H. It is easy to check that

p̃2 : ker(p1) = {e} ×G H
'−→ ker(ρ)

is an isomorphism and
f̃ : G′/im(p1)→ G/im(ρ)

is injective. Thus the item (i) implies that f̃ is an isomorphism. The crossed module structure in
[G′ ×G H

p1−→ G′
ᾱ−→ Aut(G′ ×G H)] is defined as follows: for some g ∈ G′, the map α̃g is defined

by
α̃g : G′ ×G H → G′ ×G H, α̃g(g

′, h) := (gg′g−1, αf(g)(h)).

It is well-defined, because for g ∈ G and h ∈ H hold that

f(gg′g−1) = f(g)f(g′)f(g)−1 = f(g)ρ(h)f(g)−1 = ρ(αf(g)(h)).

Thus α̃g(g′, h) ∈ G′ ×G H. Now let us see the crossed module axioms

i. (G-equivariance)

p1(α̃g(g
′, h)) = p1(gg′g−1, αf(g)(h)) = gg′g−1 = cg(g

′) = cg(p1(g′, h)).
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ii. (Peiffer identity)

α̃p1(g,h)(g
′, h′) = α̃g(g

′, h′) = (gg′g−1, αf(g)(h
′))

= (gg′g−1, αρ(h)(h
′)) = (gg′g−1, hh′h−1)

= (g, h)(g′, h′)(g−1, h−1) = c(g,h)(g
′, h′).

Corollary 2.1.1. If a morphism of crossed modules (F, f) : [H
ρ−→ G

α−→ Aut(H)] → [H ′
ρ′−→

G′
α′−→ Aut(H ′)] is an elementary equivalence, then

f∗
(

[H ′
ρ′−→ G′

α′−→ Aut(H ′)]

)
= [H

ρ−→ G
α−→ Aut(H)].

Proof. It is a straightforward computation.

Theorem 2.1.1. There is a one-to-one correspondence between Morita morphisms of Lie 2-groups
and elementary equivalences of crossed modules.

Proof. Let (F, f) : [H
ρ−→ G

α−→ Aut(G)] → [H ′
ρ′−→ G′

α′−→ Aut(H ′)] be an elementary equiva-
lence, then one has that f and ρ′ are transversal and the map π′ ◦ f : G→ G′/im(ρ′) is surjective.
Let us see that the associated groupoid morphism Φ : (H n G ⇒ G) → (H ′ n G′ ⇒ G′) satisfies
the axioms of a Morita morphism, these are:

i. the following diagram is a pullback, and

H nG H ′ nG′

G×G G′ ×G′

Φ

p
(s,t) (s’,t’)

f×f

ii. ψ : G×G′ (H ′ nG′)→ G′, (g, h, f(g)) 7→ ρ′(h)f(g), is a surjective submersion.

For the pullback diagram note that

(G×G)f×f×(s′,t′)(H
′ nG′) =

{
(g, g′, h, f(g))

∣∣ f(g′) = ρ′(h)f(g)
}
,

If (g, g′, h, f(g)) ∈ (G × G)f×f×(s′,t′)(H
′ n G′) then f(g′g−1) = ρ′(h) implies that (g′g−1, h) ∈

Gf×ρH ′, since Gf×ρH ′ ' H, there exists a unique h̃ ∈ H with ρ(h̃) = g′g−1 and F (h̃) = h, hence
(h̃, g) ∈ H nG is such that

(g, ρ(h̃)g, F (h̃), f(g)) = (g, g′, h, f(g)).

Therefore H n G ' (G × G)f×f×(s′,t′)(H
′ × G′). Now to see that ψ is surjective note that for

g′ ∈ G′, since π′ ◦ f : G→ G′/im(ρ′) is surjective, there is g ∈ G with (π′ ◦ f)(g) = π′(g′), so that,
g′f(g)−1 ∈ im(ρ′). Thus there is h′ ∈ H ′ with ρ′(h′) = g′f(g)−1, then

(g, h′, f(g)) ∈ G×G′ (H ′ nG′) and ψ(g, h′, f(g)) = ρ′(h′)f(g) = g′.

Finally to see that ψ : G×G′(H ′nG′)→ G′ is indeed a submersion, we shall note that it is a Lie group
homomorphism such that ψ∗,e is surjective, therefore ψ submersion. Let (g, h, f(g)), (g′, h′, f(g′)) ∈
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G×G′ (H ′ nG′), then

ψ((g, h, f(g))(g′, h′, f(g′))) = ψ(gg′, hαf(g)(h
′), f(g)f(g′))

= ρ′(hαf(g)(h
′))f(gg′) = ρ′(h)ρ′(αf(g)(h

′))f(g)f(g′)

= ρ′(h)f(g)ρ′(h′)f(g)−1f(g)f(g′) = ρ′(h)f(g)ρ′(h′)f(g′)

= ψ(g, h, f(g))ψ(g′, h′, f(g′)).

Therefore, ψ is a homomorphism of Lie groups. For X ∈ TeG, Y ∈ TeH ′ we have

ψ∗,e(X + Y + f∗,eX) = ρ′∗,eY + f∗,eX (2.1)

as ρ′ and f are transversal,

im(ψ∗,e) = im(ρ′∗,e) + im(f∗,e) = TeG
′.

Hence ψ∗,e is surjective. For the converse implication is known that a Morita morphism induces
isomorphisms in the isotropy groups and a homeomorphism between the orbit space [del13]. In our
case, for a Lie 2-group H nG⇒ G all isotropy groups are isomorphic to ker(ρ) and the orbit space
is G/im(ρ), then item (i) and (ii) are satisfied in Definition 2.1.5. Finally the essential surjectivity
and Equation (2.1) implies that f and ρ are transversal.

Corollary 2.1.2. Let G be a Lie 2-group with associated crossed module of Lie groups [H
ρ−→

G
α−→ Aut(G)]. If f : G′ → G is a homomorphism of Lie groups transversal to ρ, then the pullback

groupoid f !G is a Lie 2-group and its associated crossed module of Lie groups is the pullback crossed
module f∗([H ρ−→ G

α−→ Aut(G)]).

Proof. It is a straightforward computation.

2.2 Lie 2-algebras and crossed modules of Lie algebras

In this section we introduce the infinitesimal counterparts of Lie 2-groups.

Definition 2.2.1. A Lie 2-algebra is a groupoid internal to the category of Lie algebras.

It is worth observing that for a Lie 2-algebra g1 ⇒ g0 the space of composable arrows has a Lie
algebra structure given by the fiber product of Lie algebra homomorphisms. That is, the restricted
Lie algebra structure of the direct product of g1⊕g1. We shall denote a Lie 2-algebra by g1 ⇒ g0 or
by g• when the context does not demand to specify the base space. As in the case of Lie 2-groups,
we have a one-to-one correspondence between Lie 2-algebras and crossed modules of Lie algebras.

Definition 2.2.2. A crossed module of Lie algebras is a couple of Lie algebra homomorphisms
∂ : h→ g and L : g→ Der(h) such that satisfy the next conditions

i. (g-equivariance)
∂(LXY ) = [X, ∂(Y )] = adX(∂(Y )); (2.2)

ii. (Peiffer identity)
L∂(X)Y = [X,Y ] = adX(Y ). (2.3)

We denote a crossed module of Lie algebras by [h
∂−→ g

L−→ Der(h)].

Remark 2.2.1. The one-to-one correspondence between Lie 2-algebras and crossed modules of
Lie algebras is given as follows. On the one hand, for a Lie 2-algebra g1 ⇒ g0 we consider the
crossed module of Lie algebras given by h := ker(s : g1 → g0), g := g0 and the homomorphisms
∂ := t|h : h → g, L : g → Der(h),Lx := adu(x). On the other hand, for a crossed module of Lie
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algebras [h
∂−→ g

L−→ Der(h)] we consider the Lie 2-algebra whose underlying groupoid structure is
the transformation groupoid associated to the action of h on g through ∂. Thus

(hn g)s×t(hn g) hn g g hn g hn g,m s

t

u ι

with structural maps given by

s(x, y) = y, t(x, y) = ∂(x) + y, u(y) = (0, y) ι(x, y) = (−x, y + ∂(x)) (2.4)
m((x′, y + ∂(x)), (x, y)) = (x+ x′, y).

The Lie algebra structure on the space of arrows is given by the semi-direct product of g and h
through L : g→ Der(h).

Remark 2.2.2. Due to this correspondence, for practicality we denote g• = [h
∂−→ g

L−→ Der(h)]
when is more convenient to see a Lie 2-algebra as its associated crossed module of Lie algebras.

The application to the Lie functor to any Lie 2-group gives rise to a Lie 2-algebra: Let G =
[H

ρ−→ G
α−→ Aut(H)] be a Lie 2-group as in Remark 2.1.2. Then applying the Lie functor to its

crossed module of Lie groups we get a crossed modules of Lie algebras with g = Lie(G), h = Lie(H)
and ∂ = ρ∗,e,L = µ∗,e, in which µ : G → Aut(h), g 7→ (αg)∗,e. The Lie 2-algebra associated to this
crossed module of Lie algebras is said to be the Lie 2-algebra of G,

Lie(G) = Lie([H ρ−→ G
α−→ Aut(H)]) = [h

∂−→ g
L−→ Der(h)].

For the next example we need to introduce some terminology about LA-groupoids. Let V be
a VB-groupoid over the Lie groupoid X1 ⇒ X0 as in Definition 1.4.3. The category of mul-
tiplicative sections of V is the subcategory Sec(X,V) of HomLieGpd(X,V) whose objects are
the multiplicative sections (ξ, v) : X → V of qV , and morphisms are the natural transformations
τ : (ξ, v) ⇒ (η, w) such that 1qV • τ = 1IdX , where • denotes the horizontal composition of natural
transformations.

Definition 2.2.3. An LA-groupoid is a VB-groupoid V ⇒ E over the Lie groupoid X1 ⇒ X0

where both vertical arrows qV : V → X1 and qE : E → X0 are Lie algebroids and all the structural
maps are Lie algebroid morphisms.

Example 2.2.1. It was shown in [OW19] that the category of multiplicative sections of an LA-
groupoid has a canonical structure of Lie 2-algebra. If V ⇒ E is an LA-groupoid over X1 ⇒ X0

with core bundle C → X0, then the structure of Lie 2-algebra on category of multiplicative sections
is given by the crossed module of Lie algebras[

Γ(C)
δ−→ Xmult(V)

D−→ Der(Γ(C)),
]

where δ(c) = cr − cl and DX(c) = [X, cr]|X0
, for all c ∈ Γ(C) and X ∈ Xmult(V).

Example 2.2.2. For every Lie groupoid X := (X1 ⇒ X0) we have that the tangent groupoid
TX1 ⇒ TX0 is an LA-groupoid over X1 ⇒ X0 with core bundle given by its Lie algebroid A→ X0.
The structure of Lie 2-algebra on the category of multiplicative sections is referred as the Lie 2-
algebra of multiplicative vector fields and is given by[

Γ(A)
δ−→ Xmult(X)

L−→ Der(Γ(A))
]
,

where δ(a) = ar − al and L(ξ,v)a := [ξ, ar]
∣∣
X0

, for all a ∈ Γ(A) and (ξ, v) ∈ Xmult(X).



Chapter 3

Principal 2-bundles over Lie groupoids

In this chapter we discuss the notion of principal 2-bundle over a Lie groupoid, we follow
closely [HOV]. In a few words, it is a categorification of the notion of principal bundle in which both
the base and the fibers are categorified with the requirement that all the fibers are isomorphic.

3.1 Principal 2-bundles over a Lie groupoid

We start by introducing some terminology that shall be used throughout the whole chapter. Let
G = (G1 ⇒ G0) be a Lie 2-group and X = (X1 ⇒ X0) be a Lie groupoid.

Definition 3.1.1. Let G be a Lie 2-group and X be a Lie groupoid. A right 2-action of G on X
is a Lie groupoid morphism

X1 ×G1 X1

X0 ×G0 X0,

a1

a0

where X1×G1 ⇒ X0×G0 is the direct product Lie groupoid and both the arrows map a1 and the
objects map a0 are usual actions of Lie groups. The left actions are defined in a similar manner.

In the forthcoming, we shall simply denote the 2-action by concatenation.

Remark 3.1.1. Given a right 2-action of G on X, the structural maps of X are equivariant with
respect to the structural maps of G. That is, for all g ∈ G1, g0 ∈ G0 and x ∈ X1, x0 ∈ X0 it holds

sX(xg) = sX(x)sG(g), tX(xg) = tX(x)tG(g), uX(x0g0) = uX(x0)uG(g0)

and for all (x, y) ∈ X2 and (g, g′) ∈ G2 the following interchange law is fulfilled

(x ∗ y)(g ∗ h) = (xg) ∗ (yh) (3.1)

where we are denoting mX(x, y) = x ∗ y and mG(g, h) = g ∗ h.

Let us consider the following natural examples of actions of Lie 2-groups.

Example 3.1.1. A usual action of a Lie group G on a manifold X can be seen as a 2-action of the
Lie 2-group G⇒ G on the unit groupoid X ⇒ X.

Example 3.1.2. Every Lie 2-group G has a right 2-action on itself by right translations. More
generally, for a Lie 2-subgruop H of G, we have a right action of H on G by right translations.

Example 3.1.3. Any Lie 2-group G acts on itself on the left by conjugation at both the level of
arrows and the level of objects. This 2-action induces an adjoint 2-action of G on its Lie 2-algebra
g1 ⇒ g0.

23
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Example 3.1.4. Given a right 2-action of G on X, there is an induced right 2-action of G on the
tangent groupoid TX = (TX1 ⇒ TX0) given by the tangent lift of the action of Gi on Xi, for
i = 0, 1.

Definition 3.1.2. Let X = (X1 ⇒ X0) and E = (E1 ⇒ E0) be two Lie groupoids. A Lie groupoid
morphism π : E→ X is said to be a fibration if it satisfies the following conditions

i. the base map π0 : E0 → X0 is a surjective submersion, and

ii. the map π̃ : E1 → X1s×π0E0, e 7→ (π1(e), sE(e)) is a surjective submersion.

If π : E→ X is a groupoid fibration, then the fiber over a point x0 ∈ X0 is defined by

Ex := (π−1
1 (1x)⇒ π−1

0 (x)) ⊆ E.

Definition 3.1.3. Let π : P → X be a groupoid fibration together with a right 2-action of a Lie
2-group G on P. We say that the action is principal along π if the groupoid morphism

P1 ×G1 P1 ×X1 P1 Φ(p1, g1) = (p1, p1g1)

P0 ×G0 P0 ×X0 P0 φ(p0, g0) = (p0, p0g0),

Φ

φ

is a Lie groupoid isomorphism.

Definition 3.1.4. Let P and X be Lie groupoids and G be a Lie 2-group. A principal 2-bundle
is a quadruple (P, π,X,G) composed of a fibration π : P→ X and a principal 2-action of G along π.

As in the case of principal bundles, the fibers of a principal 2-bundle are isomorphic to the Lie
2-group G. For a principal 2-bundle (P, π,X,G) we call P the total space, X the base space and
G the structural 2-group.

Example 3.1.5. A classical principal bundle (P, π,M,G) can be seen as a principal 2-bundle
regarding manifolds as unit groupoids.

Example 3.1.6. A principal 2-bundle over a manifold is a principal 2-bundle (P, π,X,G)
where the base space is the unit groupoid of a manifold X. This is a family of isomorphic groupoids
that are parametrized by X. If one thinks of the structural 2-group G in terms of its associated
crossed module of Lie groups

[
H

ρ−→ G
α−→ Aut(H)

]
, then one can check that the total space is

isomorphic to the groupoid P0 ×H ⇒ P0 whose structural maps are given by

s(p, h) = p, t(p, h) = pρ(h), 1p = (p, e) ι(p, h) = (pρ(h), h−1)

m((pρ(h2), h1), (p, h2)) = (p, h2h1),

for all (p, h) ∈ P ×H, and (h, g) ∈ H oα G. The right action of H oα G on P ×H is given by

(p, h′)(h, g) := (pg, αg−1(h′h)).

Note that s : P1 → P0 is a principal H-bundle with a section 1 : P0 → P1.

P1 P1 H

P0 P0

X.

π1

s

x

π0

1
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Example 3.1.7. Let (P, π,X,G) be a principal 2-bundle and f : Y → X be a Lie groupoid
morphism, then the pullback by f is a principal 2-bundle with structural 2-group G and base Y. In
particular, the trivial principal 2-bundle with structural 2-group G over X is the pullback
of G→ {∗} by the morphism X→ {∗}.

Example 3.1.8. Let π : P → X0 be a principal G-bundle with a left action of a Lie groupoid
X = (X1 ⇒ X0) along π which commutes with the right action of G. The transformation groupoid
P = X1 n P ⇒ P is a principal 2-bundle over X with structural 2-group G seen as the unit
groupoid of G. These kind of principal bundles are better known as principal G-bundle over a
Lie groupoid X1 ⇒ X0 and have been extensively studied in [LTX07].

Remark 3.1.2 (PB-groupoid). We find useful looking at a principal 2-bundle (P, π,X,G) as a
diagram

P1 P0 x (G1 G0)

X1 X0.

π1

tP

sP

π0

sG

tG

sX

tX

(3.2)

The principal 2-action of G is principal on both objects and arrows, that is both (P1, π1, X1, G1) and
(P0, π0, X0, G0) are principal bundles and the structural maps sP , tP are morphisms of principal
bundles along of sG, tG covering the maps sX , tX . Therefore by Theorem A.1.3, the space P2 =
P1s×tP1 is a principal G2 = G1sG×tGG1-bundle over X2 = X1sX×tXX1 for which m : P2 → P1 is
a morphism of principal bundles along mG : G2 → G1 covering mX : X2 → X1. Thus a principal
2-bundle is indeed a groupoid internal to PB the category of principal bundles.

Example 3.1.9. Let G be a Lie 2-group and H be a Lie 2-subgroup such that Hi ⊆ Gi is a closed
subgruop for i = 0, 1. Then G is a principal 2-bundle over the Lie groupoid, G1/H1 ⇒ G0/H0 with
structural 2-group H.

We introduce now the notion of morphism between principal 2-bundles.

Definition 3.1.5. Let (P, πP ,X,G) and (Q, πQ,Y,H) be two principal 2-bundles. A 2-bundle
morphism (F, f,Φ) from (P, πP ,X,G) to (Q, πQ,Y,H) is a triple consisting of a Lie groupoid
morphism F : P → Q covering the morphism f : X → Y, and a Lie 2-group morphism Φ : G → H
such that Fi : Pi → Qi is a bundle map along Φi : Gi → Hi covering fi : Xi → Yi, for each i = 0, 1.

P1 Q1

P0 Q0 Pi Qi x (Gi Hi)

X1 Y1 Xi Yi

X0 Y0

F1

F0 Fi Φi

f1 fi

f0

Proposition 3.1.1. Let (P, πP ,X,G) and (Q, πQ,X,G) be two principal 2-bundles. If (F, IdX, IdG) :
(P, πP ,X,G) → (Q, πQ,X,G) is a 2-bundle morphism then the Lie groupoid morphism F : P → Q
is an isomorphism.

Proof. The Lie groupoid morphism F consists of bundle morphisms that cover the identity and are
equivariant with respect to the identity, then by Theorem A.1.2 F is a Lie groupoid isomorphism.



26 PRINCIPAL 2-BUNDLES OVER LIE GROUPOIDS 3.2

3.2 Morita morphisms

In this section we will study the some conditions under which 2-bundle morphisms become
Morita maps internal to the category of principal bundles.

Theorem 3.2.1. Let (P, πP ,X,G) and (Q, πQ,Y,H) be two principal 2-bundles and (F, f,Φ) :
(P, πP ,X,G)→ (Q, πQ,Y,H) be a 2-bundle morphism. If both f and Φ are Morita morphisms then
F is a Morita morphism.

Proof. Following Definition 1.4.4 the groupoid morphism F is fully-faithful if the following diagram
is a pullback

P1 Q1

P0 × P0 Q0 ×Q0,

F

(sP ,tP ) (sQ,tQ)

F0×F0

meaning that the map

F : P1 → (P0 × P0)F0×F0×(sQ,tQ)Q1, F (x) = (sP (x), tP (x), F (x)),

is a diffeomorphism. Observe that F , is indeed, a bundle morphism along

Φ : G1 → (G0 ×G0)φ×φ×(sH ,tH)H1, Φ(g) = (sG(g), tG(g),Φ(g))

covering the map f . That is

P1 (P0 × P0)F0×F0×(sQ,tQ)Q1, x (G1 (G0 ×G0)φ×φ×(sH ,tH)H1)

X1 (X0 ×X0)f0×f0×(sX ,tX)X1.

πP1

F

(πP0×πP0 )×πQ1

Φ

f

Thus, as Φ is a Lie group isomorphism and f is a diffeomorphism, then the commutativity of the
previus diagram and the Rank Theorem imply that F is a diffeomorphism. Therefore, F is fully
faithful. To see that F is essentially surjective note that (P0F0×sQQ1, πP0×πQ1 , X0f0×sY Y1, G0×H0

H1) is a principal bundle and the map tQ ◦ pr2 : P0F0×sQQ1 → Q0 is a bundle map along the
homomorphism of Lie groups

tH ◦ pr2 : G0φ×sHH1 → H0,

covering the map tX ◦ pr2. That is

P0 ×Q0 Q1 Q0, x (G0 ×H0 H1 H0)

X0 ×Y0 Y1 Y0.

πP0×πQ1

tQ◦pr2

πQ0

tH◦pr2

tX◦pr2

Thus, as the maps tX ◦pr2 and tH ◦pr2 are surjective then the map tQ ◦pr2 is surjective. Moreover,
we get that

rank(tQ ◦ pr2) ≥rank(tX ◦ pr2) + rank(tH ◦ pr2)

=dim(Y0) + dim(H0) = dim(Q0)

therefore, the rank of tQ ◦ pr2 is maximal, then it is a submersion.

The next example shows that the converse of the previous theorem is not true in general.

Example 3.2.1. Let us consider the trivial principal bundles (R2×(R,+), pr1,R2, (R,+)) and (R×



3.2 MORITA MORPHISMS 27

(R2,+), pr1,R, (R2,+)), and the bundle morphism (Ψ, ψ, ι) where Ψ(x, y; z) = (x; y, z), ψ(x, y) =
x, ι(z) = (0, z)

R2 × (R,+) R× (R2,+), (R,+) (R2,+)

R2 R.

pr1

Ψ

pr1

ι

ψ

When we regard these principal bundles as principal 2-bundles as in Example 3.1.5 we get that
(Ψ, ψ, ι) is a morphism of principal 2-bundles in which Ψ is a Morita map but ψ and ι are not
Morita maps.

Proposition 3.2.1. Let (P, πP ,X,G) be a principal 2-bundle and Q→ X0 be a principal H-bundle.
If f : Q→ P0 is a bundle morphism along the homomorphism φ : H → G0 covering the identity in
X0,

P1

X1 G1

Q P0 H G0

X0

πQ

f

πP0

φ

such that the pullback groupoid f !P is defined, then it is a principal 2-bundle over X with structural
2-group φ!G.

Proof. To see that f !P is well-defined it suffices to assume that f × f and (sP , tP ) are transversal.
And by Theorem A.1.4, this is equivalent to saying that φ × φ and (sG, tG) are transversal. Note
that if the crossed module associated to G is [H

ρ−→ G
α−→ Aut(H)] then φ and ρ are transversal,

and implying that φ × φ and (sG, tG) are transversal. Let us suppose that any of these conditions
are satisfied, then by Theorem A.1.3 the space of arrows of f !P

Qf×tPP1sP×fQ = (Q×Q)f×f×(sP ,tP )P1

is a principal Hφ×tGG1sG×φH-bundle over X1. One can check that f !P is a principal φ!G-bundle
over X and f ! : f !P→ P is a 2-bundle morphism along φ! : φ!G→ G covering the identity of X.
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Chapter 4

The Atiyah sequence of a principal
2-bundle over a Lie groupoid

In this chapter we introduce the Atiyah sequence of a principal 2-bundle. Just as a usual principal
bundle has an associated exact sequence of Lie algebroids, its Atiyah sequence (1.2), principal 2-
bundles have an Atiyah sequence wich is exact in the category of LA-groupoids.

4.1 The adjoint 2-bundle

In the same way that a principal bundle has an adjoint bundle, that is, a vector bundle associated
to the principal bundle through the adjoin action of the structural group on its Lie algebra, for a
principal 2-bundle P we have an adjoint 2-bundle Ad(P). This 2-bundle is an LA-groupoid over
X defined as follows. Initially, given that the vertical arrows of P are principal bundles, we can take
their respective adjoint bundles,

P1 ×G1 g1 P0 ×G0 g0

X1 X0.

Since the structural maps of the principal 2-bundle are equivariant maps between the vertical
principal bundles, then these induce well-defined maps between the associated bundles. Observe
that the outcome of this process is a VB-groupoid. Moreover, these two vertical vector bundles
inherit the structure of Lie algebroid with null anchor, then each one is a bundle of Lie algebras,
actually it is an LA-groupoid. We denote

Ad(P) := (P1 ×G1 g1 ⇒ P0 ×G0 g0) . (4.1)

Definition 4.1.1. The adjoint 2-bundle of a principal 2-bundle (P, π,X,G) is the LA-groupoid
(Ad(P), π̃,X) defined in (4.1).

It was shown in [OW19] that the category of multiplicative sections of an LA-groupoid has a
canonical structure of Lie 2-algebra, see Example 2.2.1. Then with the aim of making explicit this
structure for the adjoint 2-bundle we shall compute its core bundle and its space of multiplicative
sections.

Proposition 4.1.1. The core bundle of the adjoint 2-bundle Ad(P) is the Lie algebra bundle
(P1|X0

×G1 h, π̃0, X0) with the core anchor map given by

∂ : P |X1
×G1 h→ P0 ×G0 g0, ∂([q, v]) = [tP (q), ∂(v)] .

29
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Moreover, the core of Ad(P) is isomorphic to the Lie algebra bundle

P0 ×G0 h

X0,

the associated bundle of (P0, π0, X0, G0) through the action of G0 on h given by α∗ : G0 →
Aut(h), α∗g := (αg)∗,e.

Proof. Initially we compute directly the core bundle of Ad(P)

1∗(ker(s̃)) =
{

[q, v] ∈ P1 ×G1 g | sG∗(v) = 0, π̃1([q, v]) = 1Xx , for somex ∈ X0

}
= P1|X0

×G0 h

and the core anchor map

∂([q, v]) = t̃ [q, v] = [tP (q), tG∗(v)] = [tP (q), ∂(v)] .

To see the isomorphism P1|X0
×G0 h ' P0 ×G0 h, observe that for [q, v] ∈ P1|X0

×G0 h there exists
x ∈ X0 with 1Xx = π1(q), then if we consider the point 1P tP (q) ∈ P1 we have that 1PtP (q) and q are
in the same fiber,

π1(1P tP (q)) =1Xπ0(tP (q)) = 1XtXπ1(q)

=1XtX(1Xx ) = 1Xx

=π1(q).

Thus, there exists a unique h ∈ G1 such that q = 1P tP (q)h. Note that if we take the target map it
holds that

tP (q) = tP (1P tP (q))tG(h) = tP (q)tG(h)

so tG(h) = e, then h ∈ ker(tG). Thus, on the one side if we consider G1 = H oαG then h ∈ ker(tG)
is equivalent to h = (z, ρ(z−1)) for some z ∈ H. Then one has that for all a ∈ H

c(z,ρ(z−1))(a, e) = (a, e),

hence ch|H = IdH then for all v ∈ h holds that

Adh(v) = v.

Therefore, for all [q, v] in P1|X1
×G0 h we have

[q, v] =
[
1P tP (q), v

]
.

On the other side, for g1 ∈ G1 one has that there exists k ∈ ker(tG) such that g1 = k1G(tG(g1)),
indeed g1 = (h, g) = (h, ρ(h−1))(e, ρ(h)g), then[

qg1,Adg−1
1
v
]

=
[
1P tP (q)1G(tG(g1)),Adg−1

1
(v)
]

=
[
1P tP (q)1G(tG(g1)),AdtG(g1)−1Adk−1(v)

]
=
[
1P tP (q)1G(tG(g1)),AdtG(g1)−1(v)

]
.

In conclusion, the map
P1|X0

×G1 h→ P0 ×G0 h, [q, v] 7→ [tP (q), v]

induces an isomorphism of vector bundles.
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A Lie groupoid morphism f : P→ g• is Ad-equivariant if it is compose of both at arrows level,
and at objects level by Ad-equivariant maps in the classical sense, that is, the maps f1 : P1 → g1

and f0 : P0 → g0 the next identities hold

f1(qg) = AdG1

g−1f1(q), f0(pg) = AdG0

g−1f0(p).

Proposition 4.1.2. The set of multiplicative sections of Ad(P) is in one-to-one correspondence
with the set of Ad-equivariant Lie groupoid morphism from P to the Lie 2-algebra g•,

Xmult(Ad(P)) 'C∞mult(P, g•)G.

Proof. To see this statement it suffices to recall that for a principal bundle (P, π,M,G) it holds
that Γ(Ad(P )) ' C∞(P ; g)G. Thus, for s ∈ Γ(Ad(P)) we have a Lie groupoid morphism composed
by sections of adjoint bundles

X1 P1 ×G1 g1, π̃1 ◦ s1 = IdX1 ,

X0 P0 ×G0 g0, π̃ ◦ s0 = IdX0 .

s1

s0

Then there are equivariant maps f1 ∈ C∞(P1, g1)G1 and f0 ∈ C∞(P0, g0)G0 such that

s1(x) = [q, f1(q)] , s0(x′) = [p, f0(p)]

for q ∈ P1, p ∈ P0 with π̃1(q) = x, π̃0(p) = x′. Finally, it is straightforward to see that the section s
is a Lie groupoid morphism if and only if the map f : P→ g• is a Lie groupoid morphism.

Proposition 4.1.3. For f ∈ C∞(P0; h)G0, the following hold:

i. the map
f r : P1 → g1, f

r(q) := f(tP (q))

is an Ad-equivariant map which induces a right-invariant section on Ad(P), and

ii. the map
f l : P1 → g1, f

l(q) := ιG∗f(sG(q))

is an Ad-equivariant map that induces a left-invariant section on Ad(P). These correspon-
dences are one-to-one.

Proof. For item (i) note that for g ∈ G1 one has that g−11G(tG(g)) ∈ ker(tG) and Ad1G(tG(g))f
r(q) ∈

h, then

Adg−1(f r(q)) =Adg−11G(tG(g))

(
Ad1G(tG(g−1))f

r(q)
)

=Ad1G(tG(g−1))f
r(q) = Ad1G(tG(g−1))f(tP (q))

=f(tP (q)tG(g)) = f(tP (qg))

=f r(qg).

Thus, f r is an Ad-equivariant map. Let us consider the associated section sfr ∈ Γ(P1×G0 g1), then
for x ∈ X1 and q ∈ P1 with π1(q) = x

sfr(1
X
tX(x))0̃x = [1P (tP (q)), f r(1P (tP (q)))] [q, 0e]

= [1P (tP (q)) ∗ q,mG∗(f(tP (q)), 0e)]

= [q, f(tP (q))] = [q, f r(q)]

=sfr(x).
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Now for item (ii) one has that

f l(qg) =ιG∗f(sP (q)sG(g))

=ιG∗Ad1G(sG(g−1))f(sP (q))

=Ad1G(sG(g−1))ιG∗f(sP (q))

=Ad1G(sG(g−1))f
l(q)

=Adg−11G(sG(g))

(
Ad1G(sG(g−1))f

l(q)
)

=Adg−1f l(q).

Therefore, f l is an Ad-equivariant map. Now let us see that the associated section sf l is left-invariant

0̃xsf l(1
X
sX(x)) = [q, 0e]

[
1P sP (q), f

l(1P sP (q))
]

= [q, 0e]
[
1P sP (q), ιG∗f(sP (q))

]
=
[
q ∗ 1P sP (q),mG∗(0e, ιG∗f(sP (q)))

]
= [q, ιG∗f(sP (q))]

=
[
q, f l(q)

]
=sf l(x).

Proposition 4.1.4. For a map f ∈ C∞(P0; h)G0 we have (f r + f l, ∂f) ∈ C∞mult(P, g•)G.

Proof. Let us show that

P1 g1

P0 g0

fr+f l

∂f

is a Lie groupoid morphism. Indeed,

sG∗(f
r + f l) =sG∗f

r + sG∗f
l

=0 + sG∗ιG∗fsP

=tG∗(f ◦ sP )

=(∂f) ◦ sP ,

and

tG∗(f
r + f l) =tG∗ftP + tG∗ιG∗fsP

=(∂f) ◦ tP + sG∗fsP

=(∂f) ◦ tP + 0

=(∂f) ◦ tP .

Finally for (q, p) ∈ P2 we have

(f r + f l)(q ∗ p) =f(tP (q ∗ p)) + ιG∗f(sP (q ∗ p))
=f(tP (q)) + ιG∗f(sP (p))

=f r(q) + f l(p)

=mG∗(f
r(q) + f l(q), f r(p) + f l(p)).
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The last equality follows from the identity mG∗((X, 0), (−Y, ∂Y )) = (X − Y, ∂Y ).

Remark 4.1.1. Observe that by Equations (2.4) we obtain an explicit expression for f r + f l.
Namely it is given by t∗f − s∗f + ∂ ◦ f ◦ s.

Proposition 4.1.5. The category of multiplicative sections of the adjoint 2-bundle (Ad(P), π̃,X)
has structure of Lie 2-algebra given by

[Γ(P0 ×G0 h)
δ−→ Xmult(Ad(P))

D−→ Der(Γ(P0 ×G0 h))]

where δ(f) := (t∗f − s∗f, ∂ ◦ f ◦ s) and DF (f) := [F, f r] for all F ∈ Xmult(Ad(P)), and for all
f ∈ Γ(P0 ×G0 h).

Proof. It follows from the fact that Ad(P) is an LA-groupoid and then applying the Theorem 7.1
in [OW19].

4.2 The Atiyah 2-bundle

From the Lie groupoid viewpoint each principal bundle (P, π,X,G) has an associated gauge
groupoid G(P ) = (Pair(P )/G ⇒ X). Actually, this assignment is a functor that sends principal
bundles to Lie groupoids, and bundle morphisms to groupoid morphisms. It is well-known that the
Lie algebroid of the gauge groupoid is the Atiyah algebroid At(P ) = (TP/G, [·, ·]R , π̃), and clearly,
this assignment is again a functor, the Lie functor. Then the composition of these functors maps
principal bundles into Lie algebroids, and bundle morphisms to algeborid morphisms. Thus, for a
principal 2-bundle (P, π,X,G) we have that the next arrangement is an LA-groupoid,

At(P1) At(P0)

X1 X0.

(4.2)

It is worth to note that At(P1) ⇒ At(P0) is the quotient groupoid of the tangent groupoid of
P by the tangent lifting of the 2-action of G, as in Example 3.1.4. We denote the Lie groupoid
At(P1)⇒ At(P0) by At(P).

Definition 4.2.1. The Atiyah 2-bundle of a principal 2-bundle (P, π,X,G) is the LA-groupoid
(At(P), π̃,X) as in (4.2).

As in the case of the adjoint 2-bundle we shall determine the core algebroid associated to the
Atiyah 2-bundle and its space of multiplicative sections.

Proposition 4.2.1. Let AP be the Lie algebroid of the total space P. Then the core algebroid of the
Atiyah 2-bundle At(P) is isomorphic to the Lie algebroid with underlying vector bundle

AP/G0

X0,

The Lie algebra of sections is isomorphic to XR(P)G1, and the anchor map is ρ := ˜dπ0 ◦ d̃t, where
˜dtP is the core anchor map given by the quotient map of the anchor of the Lie algebroid AP by the

natural action of the Lie group G0, and d̃π is the anchor map of the algebroid At(P0).
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AP/G0 TX0 AP TP0

X0 P0

At(P0) TX0 AP/G0 TP0/G0

X0 P0/G0

ρ

q̃ πX0

dtP

d̃π ˜dtP

Proof. First, note that for At(P1)⇒ At(P0) one has that ker(s̃) = ker(dsP )/G1. Since

AP = 1∗Pker(dsP ) = {(p0, v) ∈ P0 × ker(dsP ) | 1P (p0) = q1(v)} .

The group G0 acts naturally on AP via

AP ×G0 → AP, (p0, v) · g = (p0g,R1G(g)∗v).

To see that indeed this action is well-defined note that for p0 ∈ P0, v ∈ ker(dsP ) ⊆ TP1 and g ∈ G0

with 1P (p0) = q1(v) we have

R1G(g)∗ : Tq1(v)P1 → Tq1(v)1G(g)P1,

then q1(R1G(g)∗v) = q1(v)1G(g) = 1P (p0)1G(g) = 1P (p0g). It is easy to check the action axioms.
Consider now the next diagram

AP = 1∗Pker(dsP ) ker(dsP )

P0 P1

1∗X (ker(dsP )/G1) ker(dsP )/G1

X0 X1

q!1
ϕq1

1P

π1

q̃0

ψ

q̃1
1X

The top face is the pullback diagram of the maps 1P and q1 conforming the underlying vector
bundle of the Lie algebroid AP. The face at the right hand side is given by the quotient of the
G1-equivariant vector bundle ker(dsP )

q1−→ P1, recall that the action of G1 on ker(dsP ) is the
tangent lifting action on the right action of G1 on P1. As G1 acts free and proper over P1 then
its tangent lifting also is free and proper, so it is a good quotient. We denote the quotient map by
ϕ : ker(dsP )→ ker(dsP )/G0. The bottom face is the pullback diagram of the maps 1X and q̃1 that
conform the underlying vector bundle of the core of At(P). Let us now prove that the map

ψ : AP → 1∗X (ker(dsP )/G0) , ψ(p0, v) = (π0(p0), ϕ(v))

descends to the quotient to an isomorphism of vector bundles. For (p0, v) ∈ AP and g ∈ G0 one has
that

ψ((p0, v)g) =ψ(p0g,R1G(g)∗v) = (π0(p0g), ϕ(R1G(g)∗v))

=(π0(p0), ϕ(v)) = ψ(p0, v)

then ψ descends to AP/G0. To see that ψ̃ : AP/G0 → 1∗X (ker(dsP )/G0) is a surjective map, let
(x0, ϕ(v)) ∈ 1∗X (ker(dsP )/G0) then take some point p0 ∈ P0 such that π0(p0) = x0 and note that
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1P (p0) and q1(v) are in the same fiber, because

π1(1P (p0)) =1Xπ0(p0) = 1X(x0)

=q̃1(ϕ(v)) = π1(q1(v)).

Thus, there exists a unique h ∈ G1 such that 1P (p0) = q1(v)h. Then the point (p0, Rh∗v) ∈ AP, to
check this 1P (p0) = q1(v)h = q1(Rh∗v) and

ψ(p0, Rh∗v) =(π0(p0), ϕ(Rh∗v))

=(x0, ϕ(v)).

To see the injectivity, let [p0, v] , [q0, u] ∈ AP/G0 such that

ψ̃([p0, v]) = (π0(p0), ϕ(v)) = (π0(q0), ϕ(u)) = ψ̃([q0, u])

then π0(p0) = π0(q0) and ϕ(v) = ϕ(u), thus there exists a unique g′ ∈ G1 and g ∈ G0 with q0 = p0g
and u = Rg′∗v, moreover 1P (p0) = q1(v) and 1P (q0) = q1(u), therefore

1P (q0) = 1P (p0g) = 1P (p0)1G(g) = q1(v)1G(g) = q1(u),

so q1(u) = q1(v)1G(g) and qq(u) = q1(Rg′∗v) = q(v)g′, then 1G(g) = g′. Hence, there exists a unique
g ∈ G0 such that

(p0, v)g = (p0g,R1G(g)∗v) = (q0, u).

In conclusion ψ is an isomorphism

AP/G0 = (1∗Pker(dsP )) /G0 ' 1∗X (ker(dsP )/G1) = Core(At(P)).

Now to see the isomorphism of Lie algebras at level of section spaces, observe that it is well-
known that Γ(At(P1)) ' X(P1)G1 and Γ(AP) ' XR(P), then it is straightforward to see that
Γ(At(P))R ' XR(P)G1 . Therefore

XR(P)G1 =
{
X ∈ X(P1) |Rq∗Xp = Xp∗q, Rg∗Xp = Xpg, ∀p, q ∈ P, g ∈ G1

}
.

Now we will exhibit that correspondence between Γ(AP/G0) and XR(P)G1 . For a section X ∈ Γ(AP)
the pullback diagram implies that there is a map X ! : P0 → ker(dsP ) such that q1 ◦X ! = 1P and
Xp0 = (p0, X

!
p0) for all p0 ∈ P0,

AP ker(dsP )

P0 P1.

q!1

1!P

q1X X!

1P

Thus, X ∈ Γ(AP)G0 if for all g0 ∈ G0

Xpg0 = Rg0∗Xp = (pg0, R1G(g0)∗X
!
p).

Recall X ∈ Γ(AP) induces XR ∈ XR(P) where for all q ∈ P1

XR
q = Rq∗X

!
tP (q).

Therefore, if X ∈ Γ(AP)G0 then XR ∈ XR(P)G1 , because for all q ∈ P1 and g ∈ G1

XR
qg =Rqg∗X

!
tP (q)tG(g) = Rqg∗R1G(tG(g))∗X

!
tP (q)
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and since the 2-action is multiplicative one has that for an arbitrary p ∈ P1

Rqg ◦R1G(tG(g))(p) =Rqg(p1G(tG(g))

=(p1G(tG(g))) ∗ qg
=(p ∗ q)(1G(tG(g)) ∗ g)

=(p ∗ q)g
=Rg(p ∗ q) = Rg ◦Rq(p).

Then Rqg ◦R1G(tG(g)) = Rg ◦Rq and

XR
qg =(Rqg ◦R1G(tG(g)))∗X

!
tP (q)

=(Rg ◦Rq)∗(X
!
tP (q))

=Rg∗X
R
q .

Now we are ready to describe multiplicative sections of At(P).

Proposition 4.2.2. The set of multiplicative sections of At(P) is in one-to-one correspondence with
the set of multiplicative vector fields on P that are right invariant by the action of the structural
2-group G

Xmult(At(P)) 'Xmult(P)G

=
{

(X, e) ∈ X(P1)G1 × X(P0)G0 | (X, e) : P→ TP Lie groupoid morphism
}
.

Proof. To see this correspondence let us recall that for a principalG-bundle (P, π,M,G) one has that
Γ(At(P )) ' X(P )G, then if we take (X, e) ∈ Xmult(P)G there exists (X̃, ẽ) ∈ Γ(At(P1))×Γ(At(P0))
such that X̃ ◦ π = π̃ ◦X, where π̃ is the quotient map of the tangent lift action of the structural
2-group G on TP. Therefore, to check that (X̃, ẽ) is a multiplicative section, let (x, y) ∈ X2 and
(p, q) ∈ P2 such that π1(p) = x and π1(q) = y, then

X̃x∗y = π̃1(Xp∗q) = π̃(Xp ∗Xq) = π̃1(Xp) ∗ π̃1(Xq) = X̃x ∗ X̃y.

Note that this definition is independent of the fiber since the action is multiplicative, that means,
if (p, q), (p′, q′) ∈ P2 such that π1(p) = π1(p′) = x and π1(q) = π1(q′) = y we have that there exists
g, h ∈ G1 such that p = p′g and q = q′h, hence, p ∗ q = (p′g) ∗ (q′h) = (p′ ∗ q′)(g ∗ h), thus

π̃1(Xp∗q) = π̃1(X(p′∗q′)(g∗h)) = π̃1

(
Rg∗h∗,p′∗q′Xp′∗q′

)
= π̃1(Xp′∗q′).

Therefore, (X̃, ẽ) ∈ Xmult(At(P)). Now for (V, e) ∈ Xmult(At(P)) we have that there exists (V̄ , ē) ∈
X(P1)G1 × X(P0)G0 such that π̃ ◦ V = V̄ ◦ π, then one has that

π̃(V̄p∗q) = Vπ(p∗q) = Vπ(p)∗π(q) = Vπ(p) ∗ Vπ(q) = π̃(V̄p ∗ V̄q),

so that there is a unique g ∈ G1 such that

Rg∗,p∗qVp∗q = Vp ∗ Vq.

Hence, p ∗ q = (p ∗ q)g, thus g = e. In conclusion, (V̄ , ē) ∈ Xmult(P)G.

Proposition 4.2.3. The category of multiplicative section of the Atiyah 2-bundle (At(P), π̃,X) has
structure of Lie 2-algebra given by

[Γ(AP/G0)
δ−→ Xmult(At(P))

D−→ Der(Γ(AP/G0))]
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where δ(α) = αr − αl and DX(α) := [X,αr] for all α ∈ Γ(AP/G0) and (X, e) ∈ Xmult(At(P)).

Proof. Combining the previous results with Theorem 7.1 in [OW19] we obtain the following de-
scription of the crossed module of multiplicative section of At(P).

4.3 Atiyah sequence of a principal 2-bundle over a Lie groupoid

Associated to a principal 2-bundle over a Lie groupoid there is a short exact sequence of LA-
groupoids that generalizes the Atiyah sequence for classical principal bundles. For the construction
of this short exact sequence let us consider a principal 2-bundle as in the next diagram

P1 P0 x G1 G0

X1 X0.

π1 π0

Recall that each vertical arrow has the structure of a classical principal bundle, these are (P1, π,X1, G1)
and (P0, π0, X0, G0). Then we have two Atiyah sequences corresponding to the vertical arrows, and
as seen in the previous sections the structural maps of P induce LA-groupoids that fit in the next
arrangement

0 P1 ×G1 g1 TP1/G1 TX1 0

X1

0 P0 ×G0 g0 TP0/G0 TX0 0

X0.

This is a short exact sequence of LA-groupoids.

Definition 4.3.1. For a principal 2-bundle over a Lie groupoid (P, π,X,G) the short exact sequence
of LA-groupoid above, denoted by

0 Ad(P) At(P) TX 0

X,

is called the Atiyah sequence of the principal 2-bundle (P, π,X,G).

Now by Ortiz and Waldron in [OW19], the category of multiplicative sections of an LA-groupoid
has structure of 2-term L∞-algebra (algebraic object to be defined in section 6.3). Thus, the Atiyah
sequence of a principal 2-bundle induces a sequence 2-term L∞-algebras given by its complex of
multiplicative sections as follows
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0 0

Γ(P0 ×G0 h) Xmult(Ad(P))

Γ(AP/G0) Xmult(At(P))

Γ(AX) Xmult(TX)

0

δ

δ

δ

(4.3)



Chapter 5

2-connection form

In this chapter we introduce the notion of 2-connection form on a principal 2-bundle over a Lie
groupoid, for this we follow closely [HOV]. It is a notion that extends the concept of connection 1-
form on principal bundles and formalizes the idea of a horizontal distribution invariant by the action
of the structural group that is compatible with the groupoid structure. In Section 1 we introduce
2-connection forms and present some natural examples, and we introduce a criterion which ensures
the existence of 2-connections. In section 2 we study the curvature of a 2-connection and in Section
3 we introduce the notion of flat up to homotopy 2-connection, which is a kind of 2-connection that
is not flat in general, but when viewed it in cohomology it is flat.

5.1 2-connection form

Definition 5.1.1. Let (P, π,X,G) be a principal 2-bundle. A 2-connection form on P is a VB-
map θ• from the tangent groupoid TP to the product groupoid P × g• covering the identity on P,
where g• is the Lie 2-algebra of the structural 2-group G,

TP1 P1 × g1

TP0 P0 × g0.

θ1

θ0

and θ1 ∈ Ω1
dR(P1; g) and θ0 ∈ Ω1

dR(P0; g0) are usual connection 1-forms.

Looking at 2-connection θ• in terms of the associated crossed module of Lie algebras, we have
that as θ• is a VB-map the following diagram is commutative

TP2 TP1 TP0 TP1 TP1

P2 × g2 P1 × g1 P0 × g0 P1 × g1 P1 × g1.

θ1×P0θ1

dm

θ1

ds

dt
θ0

du

θ1

dι

θ1

m×m s×s

t×t
u×u ι×ι

Spelling out the commutativity of the diagram for g• = (hn g⇒ g) we get the following equations

θ1 = ω ⊕ ω1 ∈ Ω1
dR(P1, h⊕L g), θ0 ∈ Ω1

dR(P0, g0).

i. The first square give us that for ω ∈ Ω1
dR(P1; h)

pr∗1ω −m∗ω + pr∗2ω = 0, (5.1)

hence ω is a multiplicative 1-form on P with values in h;

39
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ii. the second square tells us that

ω1 = s∗θ0, and t∗θ0 − s∗θ0 = ∂ · ω. (5.2)

Recall that ∂ · ω(X) := ∂(ω(X)) for all X ∈ TP1;

iii. the third square provides us that
u∗ω = 0; (5.3)

iv. the fourth square gives us
ι∗ω = −ω. (5.4)

Remark 5.1.1. The equivariance of θ1 implies that for (h, e), (e, g) ∈ H oα G one has that

R∗(h,e)θ1 = Ad(h−1,e) · θ1, and R∗(e,g)θ1 = Ad(e,g−1) · θ1

then
R∗(h,e)ω = Adh−1 · ω + (α̃h−1)∗,e · s∗θ0, and R∗(e,g)ω = (αg−1)∗,e · ω. (5.5)

Moreover, for X = X1 +X2 ∈ h⊕L g with X1 ∈ h and X2 ∈ g one has that

i
X̃
θ1 = ω(X̃) + s∗θ0(X̃) = X1 +X2,

implies that i
X̃
ω = X1 and i

X̃
s∗(θ) = X2, then

i
X̃1
ω = X1, X1 ∈ h, i

X̃2
ω = 0, X2 ∈ g. (5.6)

Remark 5.1.2 (PBC-groupoid). Note that having a principal 2-bundle (P, π,X,G) together with a
2-connection θ• is the same thing that connection 1-forms on the principal bundles (P0, π0, X0, G0),
(P1, π1, X1, G1) and (P2, π2, X2, G2), see also Remark 3.1.2. Indeed, for θ0, θ1 and θ1×P θ1, we have
that the structural maps preserve these,

i. m∗θ1 = mG∗ · θ1 ×P0 θ1 by Equation (5.1);

ii. s∗θ0 = sG∗ · θ1, and t∗θ0 = tG∗ · θ1 by Equation (5.2);

iii. 1∗θ0 = 1G∗ · θ0 by Equation (5.3);

iv. ι∗θ1 = ιG∗ · θ1 by Equation (5.4).

Therefore, the couple given by a principal 2-bundle together with a 2-connection is a groupoid
internal to the category PBC of principal bundles with connection.

Now let us see some examples of principal 2-bundles that admit 2-connections and an example that
does not admit a 2-connection.

Example 5.1.1. If we consider a classical principal bundle as a principal 2-bundle as in Example
3.1.5, then any classical connection 1-form can be seen as a 2-connection form on it.

Example 5.1.2. Consider a Lie 2-group G as a principal 2-bundle over a point and with itself
acting on the right. Then one has that its Maurer-Cartan 1-form defines a 2-connection on G.
Explicitly, for

G = H oα G G

{∗} {∗}
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one has
θ1 = θHoαG

MC = ω + s∗θ0 ∈ Ω1
dR(H oα G; h⊕L g).

where
ω = (αpr−1

2
)∗(pr∗1θ

H
MC) ∈ Ω1

dR(H oα G; h), θ0 = θGMC ∈ Ω1
dR(G; g).

Example 5.1.3. Consider a principal 2-bundle over a manifold as in Example 3.1.6

P0 ×H H oα G

P0 G

X

π1

x

x

π0

For a connection 1-form θ0 in P0, we can determine the differential form ω, in this case the Equations
(5.5), (5.3), and (5.6)) imply that

ω = (α̃pr−1
2

)∗,e · s∗θ0 + pr∗2θ
H
MC ,

for θHMC the Maurer-Cartan form of H and pr2 : P0×H → H. We point out that this example also
appears in [Wal18, Ex.5.1.11].

Example 5.1.4. Let G be a Lie group. Consider G → {∗} as a principal G-bundle over the Lie
groupoid G⇒ {∗} as in Example 3.1.8, where the groupoid G⇒ {∗} acts on G by left translation.
That is,

G G

GnG G

G {∗}

	 	

with crossed module associated to the structural 2-group given by [∗ → G], and the structural maps
of GnG⇒ G given by

s(g1, g2) = g2, t(g1, g2) = g1g2, 1(g) = (e, g)

m((g2, g1g), (g1, g)) = (g2g1, g).

Then we have ω ∈ Ω1
dR(G n G; 0) implies ω = 0 and for all connection 1-form θ0 ∈ Ω1

dR(G; g)
Equation (5.2) holds only when G is a discrete Lie group. Therefore this example shows that in
general there not exists a 2-connection on a principal 2-bundle. This example appeared
[LTX07, ex. 2.3].

Definition 5.1.2. Let us consider a principal 2-bundle (P, π,X,G) and its Atiyah sequence as in
Section 4.3,

0 Ad(P) At(P) TX 0

X

ι d̃π

.

Then a multiplicative horizontal lift of At(P) is a VB-map h : TX→ At(P) such that splits the
Atiyah sequence, i.e. d̃π ◦ h = IdTX.

Remark 5.1.3. Observe that to have a 2-connection form θ• on P is equivalent to having a VB-map
θ : At(P)→ Ad(P) that covers the identity on X such that θ ◦ ι = IdAd(P).
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Proposition 5.1.1. Let (P, π,X,G) be a principal 2-bundle. There is a one-to-one correspondence
between 2-connections on P and multiplicative horizontal lifts of At(P).

Proof. Given h a multiplicative horizontal lift, we define the 2-connection as θ := IdAt(P) − h ◦ d̃π.
Let us see that θ : At(P)→ Ad(P) is a VB-map. By the definition it suffices to verify that θ(u∗v) =
θ(u) ∗ θ(v) for all (u, v) ∈ At(P)2. For that let us recall the interchange law for VB-groupoids, see
e.g. [GM17, §3]. If (γ1, γ3) ∈ At(P)2 and (γ2, γ4) ∈ At(P)2 with π̃(γ1) = π̃(γ2) and π̃(γ3) = π̃(γ4)
then (γ1 + γ2) ∗ (γ3 + γ4) = γ1 ∗ γ3 + γ2 ∗ γ4. Thus

θ(u) ∗ θ(v) =(u− hd̃π(u)) ∗ (v − hd̃π(v))

=u ∗ v + (−hd̃π(u)) ∗ (−hd̃π(v)).

Given that the zero section of At(P) is multiplicative, 0x ∗ 0y = 0x∗y for all (x, y) ∈ X2, then
(−γ1) ∗ (−γ3) = −(γ1 ∗ γ3) for all (γ1, γ3) ∈ At(P). Hence

θ(u) ∗ θ(v) =u ∗ v + (−hd̃π(u)) ∗ (−hd̃π(v))

=u ∗ v − (hd̃π(u) ∗ hd̃π(v))

=θ(u ∗ v).

Now given θ on P a 2-connection we define the horizontal lift as follows

h : TX→ At(P), h(v) = v − ι(θ(v))

for some v ∈ At(P) such that d̃π(v) = x. Consider u, v ∈ At(P) with d̃π(u) = d̃π(v) = x, then one
has that u− v ∈ ker(d̃π), thus ι(θ(u− v)) = u− v, and

v − ι(θv) =u+ (v − u)− ι(θ(u− (v − u)))

=u− ι(θ(u)) + (v − u)− (ι(θ(v − u)))

=u− ι(θ(u)).

Showing that h is well-defined, it is smooth because the horizontal distribution is smooth as well.
Now let us check that h preserves products. Let (x, y) ∈ TX2 and (u, v) ∈ At(P)2 such that
d̃π2(u, v) = (x, y). Then h(x) = u− ι(θ(u)) and h(y) = v − ι(θ(v)). Hence

h(x ∗ y) =u ∗ v − ι(θ(u ∗ v))

=u ∗ v − (ι(θ(u)) ∗ ι(θ(v))

=u ∗ v + (−ι(θ(u))) ∗ (−ι(θ(v)))

=h(x) ∗ h(y),

proving that h is multiplicative.

5.2 The curvature of a 2-connection

Let (P, π,X,G) be a principal 2-bundle with 2-connection form (θ0, θ1). Then for θ1 = ω⊕s∗θ0 ∈
Ω1(P1, h⊕L g) the curvature 2-form is given by

Ω1 = dθ1 +
1

2
[θ1, θ1] = Ω̂1 + s∗Ω0, (5.7)

where
Ω̂1 = dω +

1

2
[ω, ω] + [s∗θ0, ω]. (5.8)
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Proposition 5.2.1. The 2-form Ω̂1 ∈ Ω2(P1, h) as in (5.8) satisfies

Ω̂1 = Dθ1ω, Dθ1Ω̂1 = 0.

Proof. Given that s : P1 → P0 is a map of principal bundles with connection, for X a horizontal
vector on P1, one has that s∗(X) is a horizontal vector on P0. It implies that for any differential
form α on P0,

Dθ1(s∗α) =(ds∗α)(h1) = (s∗dα)(h1)

=dα(s∗h1) = dα(h0s∗)

=s∗((dα)h0) = s∗(Dθ0α).

Therefore Dθ1 ◦ s∗ = s∗ ◦Dθ0 . On the one hand

Ω1 =Dθ1θ1 = Dθ1(ω + s∗θ0)

=Dθ1ω +Dθ1s
∗θ0

=Dθ1ω + s∗Dθ0θ0

=Dθ1ω + s∗Ω0

thus Ω̂1 = Dθ1ω. On the other hand, we get

Dθ1Ω1 = 0 =Dθ1(Ω̂1 + s∗Ω0)

=Dθ1Ω̂1 + s∗Dθ0Ω0

=Dθ1Ω̂1 + s∗0

=Dθ1Ω̂1,

hence Dθ1Ω̂1 = 0.

Proposition 5.2.2. The following equation holds:

t∗Ω0 − s∗Ω0 = ∂ · Ω̂1. (5.9)

Proof. Before checking the identity above we are going to prove two auxiliar statements that shall
simplify our computations, ∂ · [s∗θ0, ω] = [s∗θ0, ∂ · ω] and ∂ · ([ω, ω] + 2[s∗θ0, ω]) = (t∗ − s∗)[θ0, θ0].
For the first one let ξ1, ξ2 be arbitrary tangent vectors at some point of P1 then

(∂ · [s∗θ0, ω])(ξ1, ξ2) =∂([s∗θ0, ω](ξ1, ξ2)) = ∂([s∗θ0(ξ1), ω(ξ2)]− [s∗θ0(ξ2), ω(ξ1)])

=∂
(
Ls∗θ0(ξ1)(ω(ξ2))

)
− ∂(Ls∗θ0(ξ2)(ω(ξ1)))

=[s∗θ0(ξ1), ∂(ω(ξ2))]− [s∗θ0(ξ2), ∂(ω(ξ1))] (by Equation (2.2))
=[s∗θ0, ∂ · ω](ξ1, ξ2).

For the second one note that

∂ · ([ω, ω] + 2[s∗θ0, ω]) =[∂ · ω, ∂ · ω] + 2[s∗θ0, ∂ · ω] (previous statement),
=[(t∗ − s∗)θ0, (t

∗ − s∗)θ0] + 2[s∗θ0, (t
∗ − s∗)θ0]

=[t∗θ0, t
∗θ0]− [s∗θ0, s

∗θ0] = t∗ ([θ0, θ0])− s∗ ([θ0, θ0])

=(t∗ − s∗)[θ0, θ0].
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Now we have

∂ · Ω̂1 =∂ ·
(
dω +

1

2
[ω, ω] + [s∗θ0, ω]

)
=d(∂ · ω) +

1

2
∂ · ([ω, ω] + 2[s∗θ0, ω])

=d((t∗ − s∗)θ0) +
1

2
(t∗ − s∗)[θ0, θ0]

=(t∗ − s∗)(dθ0 +
1

2
[θ0, θ0])

=(t∗ − s∗)Ω0.

Proposition 5.2.3. Ω̂1 ∈ Ω2(P1; h) is a multiplicative 1-form.

pr∗1Ω̂1 −m∗Ω̂1 + pr∗2Ω̂1 = 0. (5.10)

Proof. For this statement first we are going to prove two auxiliary equations,

(pr∗1 −m∗ + pr∗2)[ω, ω] = −2[pr∗1ω, pr
∗
2ω] (5.11)

and
(pr∗1 −m∗ + pr∗2)[s∗θ0, ω] = [pr∗1ω, pr

∗
2ω]. (5.12)

For Equation (5.11)

(pr∗1 −m∗ + pr∗2)([ω, ω]) =[pr∗1ω, pr
∗
1ω]− [m∗ω,m∗ω] + [pr∗2ω, pr

∗
2ω], by (5.1)

=[pr∗1ω, pr
∗
1ω]− [(pr∗1 + pr∗2)ω, (pr∗1 + pr∗2)ω] + [pr∗2ω, pr

∗
2ω]

=− 2[pr∗1ω, pr
∗
2ω].

For Equation (5.12), recall that s ◦m = s ◦ pr2, s ◦ pr1 = t ◦ pr2 and Equation (5.1), then

(pr∗1 −m∗ + pr∗2)([s∗θ0, ω]) =[pr∗1s
∗θ0, pr∗1ω]− [m∗s∗θ0,m

∗ω] + [pr∗2s
∗θ0, pr∗2ω]

=[pr∗1s
∗θ0, pr∗1ω]− [pr∗2s

∗θ0, pr∗1ω]− [pr∗2s
∗θ0, pr∗2ω]

+[pr∗2s
∗θ0, pr∗2ω]

=[pr∗1s
∗θ0 − pr∗2θ0, pr∗1ω]

=[pr∗2t
∗θ0 − pr∗2s

∗θ0, pr∗1ω] = [pr∗2(t∗ − s∗)θ0, pr∗1ω]

=[pr∗2(∂ · ω), pr∗1ω] = [∂ · pr∗2ω, pr∗1ω].

Take ξ1, ξ2 tangent vectors at some point of P1, by Equation (2.3)

[∂ · pr∗2ω, pr∗1ω](ξ1, ξ2) =[∂(pr∗2ω(ξ1)), pr∗1ω(ξ2)]− [∂(pr∗2ω(ξ2)), pr∗1ω(ξ1)]

=L∂(pr∗2ω(ξ1))(pr∗1ω(ξ2))− L∂(pr∗2ω(ξ2))(pr∗1ω(ξ1)), by (2.2)

=[pr∗2ω(ξ1), pr∗1ω(ξ2)]− [pr∗2ω(ξ2), pr∗1ω(ξ1)]

=[pr∗2ω, pr
∗
1ω](ξ1, ξ2).

Therefore
(pr∗2 −m∗ + pr∗2)([s∗θ0, ω]) = [pr∗2ω, pr

∗
1ω],
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and thus

(pr∗1 −m∗ + pr∗2)Ω̂1 =(pr∗1 −m∗ + pr∗2)(dω +
1

2
([ω, ω] + 2[s∗θ0, ω]))

=d(pr∗1 −m∗ + pr∗2)ω)

+
1

2
((pr∗1 −m∗ + pr∗2)[ω, ω] + 2(pr∗1 −m∗ + pr∗2)[s∗θ0, ω])

=0 +
1

2
(−2[pr∗1ω, pr

∗
2ω] + 2[pr∗1ω, pr

∗
2ω])

=0.

5.3 Flat up to homotopy 2-connections

Let us consider briefly the notion of Lie 2-algebra valued differential forms on a Lie groupoid
introduced in [Wal18, §4]. Let P = (P1 ⇒ P0) be a Lie groupoid and a Lie 2-algebra g• =[
h

∂−→ g
L−→ Der(h)

]
as in Section 2.2. Here we denote the simplicial differential, see Section 1.5,

induced on differential forms of P by δ

δ : Ω•dR(Pn)→ Ω•dR(Pn+1), δ =
n∑
i=0

(−1)nd∗i .

Definition 5.3.1. A p-form Ψ ∈ Ωp(P, g•) is a triple Ψ = (Ψa,Ψb,Ψc) composed of differential
forms

Ψa ∈ Ωp
dR(P0, g), Ψb ∈ Ωp

dR(P1, h), and Ψc ∈ Ωp+1
dR (P0; h)

such that δΨa = ∂ · Ψb and δΨb = 0. The differential of a p-form Ψ is a (p + 1)-form DΨ whose
components are given by

DΨa = dΨa − (−1)p∂ ·Ψc, DΨb = dΨb − (−1)pδΨc, DΨc = dΨc.

By [Wal18, Lemma 4.1.2] it follows that (Ω(P; g•),D, [· ∧ ·]) is a dgla.

Remark 5.3.1. In these terms, for a principal 2-bundle (P, π,X,G) in which g• denotes the Lie
2-algebra of G, any 2-connection (θ1, θ0) can be seen as a differential form on P taking values in the
Lie 2-algebra g•,

θ• = (θ0, ω, 0) ∈ Ω1(P; g•).

Note that by Equations (5.2) and (5.1)

δ(θ0) = (t∗ − s∗)θ0 = ∂ · ω, and δ(ω) = (pr∗1 −m∗ + pr∗2)ω = 0.

Let us consider a principal 2-bundle (P, π,X,G) and its Atiyah sequence

0 Ad(P) At(P) TX 0

X

ι d̃π

Then a multiplicative horizontal lift h induces a lift of multiplicative vector fields

hm : Xm(X)→ Xm(At(P)), hm(ξ, u) := (h ◦ ξ, h0 ◦ u).

It induces a linear splitting of the sequence of Lie 2-algebras of multiplicative sections of the Atiyah
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sequence as follows

0 Γ(P0 ×G0 h) Γ(AP/G0) Γ(AX) 0

0 Xm(Ad(P)) Xm(At(P)) Xm(X) 0

ιc πc

hc

ιm πm

hm (5.13)

where the map hc is the core map induced by the VB-map h.

Definition 5.3.2. Let (P, π,X,G) be a principal 2-bundle and h : TX → At(P) be a multiplica-
tive horizontal lift. Then we say that h flat up to homotopy if its linear splitting induced on
multiplicative sections is a weak morphism of Lie 2-algebras. In other words, there exists a 2-form
Ωm : ∧2Xm(X)→ Γ(P0 ×G0 h) satisfying the following conditions

i. δ ◦ hc = hm ◦ δ;

ii. hm[ξ, η]− [hm(ξ), hm(η)] = δΩm(ξ, η);

iii. hc(Dξα)−Dhm(ξ)(hc(α)) = Ωm(ξ, δ(α));

iv.
∑

	ξ,η,γ Ωm([ξ, η], γ)−
∑

	ξ,η,γ Dhm(ξ)(Ωm(η, γ)) = 0.

Γ(AX) Γ(AP/G0) Γ(P0 ×G0 h).

Xm(X) Xm(At(P)), ∧2Xm(X)

δ

hc

δ

hm

Ωm

Remark 5.3.2. A multiplicative horizontal lift is said to be flat up to homotopy because it induces
a map that is flat in cohomology. To see this, note that on bi-invariant sections of the Lie algebroid
of X the map hc preserves brackets. Let α, β ∈ Γ(AX) such that δ(α) = 0, δ(β) = 0 then by the
properties above and the Peiffer identity for differential crossed modules it follows that

hc([β, α])− [hc(β), hc(α)] =hc(Dδβα)−Dδ(hc(β))(hc(α))

=hc(Dδβα)−Dhm(δβ)(hc(α))

=Ωm(δ(β), δ(α))

=Ωm(0, 0) = 0.

Observe that hm preserves the brackets up to an exact element determined by Ωm.

Theorem 5.3.1. Let θ• be a 2-connection form on P and Ωc ∈ Ω2
dR(P0; h) an equivariant 2-form,

R∗gΩc = (αg−1)∗ · Ωc for all g ∈ G, such that the 1-form Ψ = (θ0, ω,Ωc) ∈ Ω1(P, g•) is a Maurer-
Cartan element in the dgla (Ω(P, g•),D, [· ∧ ·]), that is

DΨ +
1

2
[Ψ ∧Ψ] = 0.

Then the multiplicative horizontal lift induced by the 2-connection θ• is flat up to homotopy.

Proof. Let us consider the linear 2-form Ωm :
∧2 Xm(X)→ Γ(P0 ×G h) defined by

Ωm(ξ, η) := (−Ωc)(uh, vh),

where uh and vh are the horizontal lifts of the vector fields that cover the multiplicative vector
fields ξ and η. Then we will see that Equations (ii) and (iv) of Definition 5.3.2 hold. Thus, on the
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one hand, by Theorem 4.1.5, we have that the Lie 2-algebra of multiplicative sections of the adjoint
2-bundle is given by

[Γ(P0 ×G h)
δ−→ Xm(Ad(P))

D−→ Der(Γ(Po ×G h))],

where δ(f) = (t∗f − s∗f, ∂ ◦ f ◦ s) ∈ Xm(Ad(P)), for all f ∈ Γ(P0 ×G h). On the other hand, in our
notation, the Maurer-Cartan equation DΨ + 1

2 [Ψ ∧Ψ] = 0 is equivalent to the equations

dθ0 +
1

2
[θ0, θ0] + ∂ · Ωc =0; (5.14)

(t∗ − s∗)Ωc + dω +
1

2
[ω, ω] + [s∗θ0, ω] =0; (5.15)

dΩc + [θ0,Ω
c] =0. (5.16)

Hence, considering the curvature 2-form of the connection θ1 ∈ Ω1
dR(P1; h⊕L g) one has that

Ω1(ξh, ηh) =(dθ1 +
1

2
[θ1, θ1])(ξh, ηh) = ξhθ1(ηh)− ηhθ1(ξh)− θ1([ξh, ηh])

=− θ1([ξh, ηh])

=− ([ξh, ηh]− [ξ, η]h)

=hm[ξ, η]− [hmξ, hmη].

Besides for the decomposition θ1 = ω + s∗θ0 it holds that

Ω1 = (dω +
1

2
[ω, ω] + [s∗θ0, ω]) + s∗Ω0

where Ω0 = dθ0 + 1
2 [θ0, θ0] is the curvature 2-form of θ0 ∈ Ω1

dR(P0, g); see Section 5.2. Therefore,
by Equations (5.14) and (5.15) it follows

hm[ξ, η]− [hmξ, hmη] =Ω1(ξh, ηh)

=(dω +
1

2
[ω, ω] + [s∗θ0, ω])(ξh, ηh) + s∗Ω0(ξh, ηh)

=(t∗ − s∗)(−Ωc)(ξh, ηh) + s∗(∂ · (−Ωc))(ξh, ηh)

=(−Ωc)(uh, vh) ◦ t− (−Ωc)(uh, vh) ◦ s+ ∂(−Ωc(uh, vh)) ◦ s
=t∗(Ωm(ξ, η))− s∗(Ωm(ξ, η)) + ∂(Ωm(ξ, η)) ◦ s
=δ(Ωm(ξ, η)).

So Equation (ii) in Definition 5.3.2 holds. For seeing Equation (iii), let us consider α ∈ Γ(AX) and
ξ ∈ Xm(X) and note that

hc(Dξα)−Dhm(ξ)(hc(α)) =h ◦ [ξ, αr] ◦ u− [ξh, hc(α)r] ◦ u
=([ξ, αr]h − [ξh, hc(α)r]) ◦ u
=− θ1(ξh, hc(α)r) ◦ u
=Ω1(ξh, hc(α)r) ◦ u

=(dω +
1

2
[ω, ω] + [s∗θ0, ω])(ξh, hc(α)r) ◦ u+ s∗Ω0(ξh, hc(α)r) ◦ u

=(t∗ − s∗)(−Ωc)(ξh, hc(α)r) ◦ u+ Ω0(uh, 0) ◦ u
=(−Ωc)(uh, ρ(hc(α))) ◦ t ◦ u
=(−Ωc)(uh, ρ(hc(α))).



48 2-CONNECTION FORM 5.3

Observe that by Equation (i) in Definition 5.3.2 we have hm(δ(α)) = δ(hc(α)) and it covers the
vector field ρ(hc(α)), hence

hc(Dξα)−Dhmξhc(α) = Ωm(ξ, δ(α)).

Finally, to see Equation (iv), recall that for a horizontal right invariant vector field ξh ∈ X(P1)G1

and a vertical vector field ιc(f) ∈ Xv(P1) we have [ξh, ιc(f)] = ιc(ξ
h(f)). Thus, from Equation

(5.16) and (ξ, u), (η, v), (γ,w) ∈ Xm(X) one has that

0 =dΩc + [θ0,Ω
c](uh, vu, wh)

=
∑

	uh,vh,wh

uh(Ωc(vh, wh))−
∑

	uh,vh,wh

Ωc([uh, vh], wh) + L(θ0 ∧ Ωc)(uh, vh, wh)

=
∑

	uh,vh,wh

(−Ωc)([uh, vh], wh)−
∑

	uh,vh,wh

ξh(Ωm(η, γ)) ◦ u+ 0

=
∑

	ξ,η,γ

Ωm([ξ, η], γ)−
∑

	ξ,η,γ

[ξh,Ωm(η, γ)] ◦ u

=
∑

	ξ,η,γ

Ωm([ξ, η], γ)−
∑

	ξ,η,γ

Dξh(Ωm(η, γ)).

Hence, Equation (iv) in Definition 5.3.2 holds, and therefore the morphism (hc, hm,Ωm) is a weak
morphism of Lie 2-algebras.



Chapter 6

L∞-algebras

In this chapter we will establish some algebraic features relevant for the last chapters of the the-
sis. In section 1, we review some concepts about graded vector spaces, in particular, we discuss the
construction of the graded-symmetric algebra and the exterior algebra of a graded vector space. In
section 2 we study coderivations of the coalgebra structure of the graded-symmetric algebra. In sec-
tion 3, we introduce the notion of L∞-algebra. The L∞-algebras are extensions of the notions of Lie
algebras and differential graded Lie algebras that have became relevant by their strong connection
with mathematical physics and string theory [LS93, BC04]. Recently, they have appeared in several
novel approaches to problems in higher differential geometry as in [BC04, Rog09, Zam12, OW19]
among others. One of the main features that makes L∞-algebras remarkable is that they are a kind
of algebraic structure that can be preserved by homotopic transformations.

6.1 Basic concepts

A graded vector space V is a real vector space equipped with a Z-grading, V =
⊕

n∈Z Vn. An
element x ∈ Vn is said to be homogeneous of degree n and we denote its degree by |x|. For two
graded vector spaces V and W the set of linear maps from V to W is denoted by Hom(V,W). We
say that a linear map f : V → W has degree p, denoted by |f | = p, if for all k ∈ Z we have
f(Vk) ⊆ Wk+p. The space of homogeneous linear maps of degree p is denoted by Homp(V,W). A
map of degree zero is called a linear degree-preserving map. The tensor product V⊗W is a graded
vector space with grading given by

(V⊗W)n :=
⊕
i+j=n

Vi ⊗Wj ,

for all n ∈ Z. Given linear maps f ∈ Homp(V,W) and g ∈ Homq(V′,W′) their tensor product
belongs to Homp+q(V⊗ V′,W⊗W′) and for homogeneous elements x ∈ V and y ∈ V′ it is defined
by

(f ⊗ g)(x⊗ y) := (−1)|g||x|f(x)⊗ g(y).

The tensor product of composable linear maps is composable, that is, for f1, g1 and f2, g2 two
couples of composable homogeneous linear maps, one has the following composition rule

(f1 ⊗ f2) ◦ (g1 ⊗ g2) = (−1)|f2||g1|(f1 ◦ g1)⊗ (f2 ◦ g2).

It is well-known that the group Sn of permutations of n-elements induces two linear right
actions on the vector space V⊗n. The first action, defined on the set of generators, is given by the
translations σi = (i, i+ 1) for 1 ≤ i ≤ n− 1 as

ε̂(σi) := 1⊗i−1 ⊗ T ⊗ 1⊗n−i−1 : V⊗n → V⊗n,

49
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where T is the twisting map. The twisting map T : V⊗2 → V⊗2 is a degree-preserving linear
map defined on homogeneous elements x, y ∈ V by T (x⊗ y) = (−1)|x||y|y ⊗ x. Thus, explicitly for
homogeneous elements xi ∈ V with 1 ≤ i ≤ n,

ε̂(σi)(x1 ⊗ · · · ⊗ xn) = (−1)|xi||xi+1|x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xn.

For an arbitrary permutation σ ∈ Sn, one has that

ε̂(σ)(x1 ⊗ · · · ⊗ xn) = ε(σ;x1, . . . , xn)xσ(1) ⊗ · · · ⊗ xσ(n),

where ε(σ;x1, . . . , xn) = ±1. This last symbol is known as the Koszul sign. We denote the set of
invariant elements by this action by (V⊗n)Snε . The other linear action of Sn on V⊗n is defined on
the same set of generators as

χ̂(σi) := −ε̂(σi).

Thus for an arbitrary permutation σ ∈ Sn

χ̂(σ)(x1 ⊗ · · · ⊗ xn) = χ(σ;x1, . . . , xn)xσ(1) ⊗ · · · ⊗ xσ(n),

where χ(σ;x1, . . . , xn) = sgn(σ)ε(σ;x1, . . . , xn). Here sgn(g) denotes the sign of the permutation
σ. We denote the set of invariant elements by this action by (V⊗n)Snχ .The graded-symmetric
algebra Sym(V) is the free unital graded-commutative algebra on V given by

Sym(V) =
⊕
0≤n

Symn(V) :=
⊕
0≤n

(V⊗n)Snε ,

We denote the multiplication map on Sym(V) by µs. A homogeneous element in Symn(V) is denoted
by x = x1 ∨ · · · ∨ xn, and its weight is defined to be the integer n. The degree of x is defined as
|x| = |x1| + · · · + |xn|. In the same way, as we have defined the symmetric algebra, we define the
exterior algebra of V by

∧V =
⊕
0≤n
∧n(V) :=

⊕
0≤n

(V⊗n)Snχ .

It is well-known that for an n-linear map f : Vn →W one has a linear one from the tensor product
of V denoted by the same letter f : V⊗n →W. We say that the linear map f is symmetric if for
all σ ∈ Sn the following equation holds

f ◦ ε̂(σ) = f.

Explicitly, taking xi ∈ V homogeneous for 1 ≤ i ≤ n,

ε(σ;x1, . . . , xn)f(xσ(1) ⊗ · · · ⊗ xσ(n)) = f(x1 ⊗ · · · ⊗ xn).

The set of n-linear maps from V to W that are symmetric is denoted by Symn(V;W). Analogously,
we say that a linear map f is skew-symmetric if for all σ ∈ Sn hold the equation f ◦ χ̂(σ) = f .
The set of n-linear skew-symmetric maps from V to W is denoted by Skewn(V;W). We point out
that Symn(V;W) ' Hom(Symn(V);W) and Skewn(V;W) ' Hom(Skewn(V);W).
From now on we will extensively use the coalgebra structure of the graded-symmetric algebra. So,
we briefly introduce the main tools that will be necessary. We say that a permutation σ ∈ Sn is a
(k, n − k)-unshuffle, 1 ≤ k ≤ n, if it satisfies σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n). The
set of (k, n− k)-unshuffles is denoted by Sh−1

k,n−k.
The symmetric algebra of a graded vector space V is a coaugmentated coalgebra,

Sym(V) = R1⊕ Sym(V) := R1⊕
⊕
1≤k

Symk(V),
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where its coproduct is given by ∆s = 1⊗ Id + ∆̄s + Id⊗ 1, and its reduced coproduct is

∆̄s(x1 ∨ · · · ∨ xn) =
n−1∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)(xσ(1) ∨ · · · ∨ xσ(k))⊗ (xσ(k+1) ∨ · · · ∨ xσ(n)). (6.1)

In particular, this coproduct is coassociative and cocommutative

(∆s ⊗ Ids) ◦∆s = (Ids ⊗∆s) ◦∆s, T ◦∆s = ∆s,

where T is the twisting map.

6.2 Coderivation on Sym(V)

Definition 6.2.1. (Coderivation) Let F and G be two coalgebra morphisms F,G : (C,∆) →
(C ′,∆). An (F,G)-coderivation is a linear map D : C → D′ which satisfies the coleibniz identity
with respect to F and G, that is

∆s ◦D = (F ⊗D +D ⊗G) ◦∆s.

From a simple computation we obtain the following lemma.

Lemma 6.2.1. The following equation holds

∆n
s ◦D =

∑
i+j=n

(F⊗i ⊗D ⊗G⊗j) ◦∆n
s .

Furthermore

Proposition 6.2.1. There is a one-to-one correspondence between coderivations D : Sym(V) →
Sym(V) with D(1) = 0 and linear maps D : Sym(V)→ V, D 7→ D1 = pr1

Sym(V) ◦D.

Proof. Consider the next identity

prSymn(V) = πn ◦ pr⊗nV ◦∆n−1
s , (6.2)

where πn : Tn(V)→ Symn(V) is given by πn(v1 ⊗ · · · ⊗ vn) = 1
n!v1 ∨ · · · ∨ vn. This identity can be

found in [Rei19, pag.8]. Let D be a coderivation, and decompose it as D =
∑

n>0Dn, with D0 = 0
and Dn := prSymn(V) ◦D. By both the identity (6.2), and the Lemma 6.2.1 one has that

Dn =prSymn(V) ◦D
=πn ◦ pr⊗nV ◦∆n−1

s ◦D

=πn ◦ pr⊗nV ◦

 ∑
i+j=n−1

(F⊗i ⊗D ⊗G⊗j) ◦∆n−1
s


=πn

 ∑
i+j=n−1

(prV ◦ F )⊗i ⊗ (prV ◦D)⊗ (prV ◦G)⊗j ◦∆n−1
s


=πn

 ∑
i+j=n−1

F⊗i1 ⊗D1 ⊗G⊗j1 ◦∆n−1
s


=

1

n!

∑
i+j=n−1

F∨i1 ∨D1 ∨G∨j1 ◦∆n−1
s .
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Thus
D =

∑
n>0

1

n!

∑
i+j=n−1

F∨i1 ∨D1 ∨G∨j1 ◦∆n−1
s .

6.3 L∞-algebras

In this section we will introduce L∞-algebras and their morphisms. We will exhibit three dif-
ferent, but equivalent formulations of the notion of L∞-algebra. We warn that, for practicality, we
will choose to work with a particular formulation depending on which of them is more suitable in
each situation. For more details see [LS93, LM95, Man04].

Definition 6.3.1. Let g be a Z≤0-graded vector space. An L∞-structure on g is a collection of
maps [·] = {[·]k}1≤k called higher brackets which satisfy the next conditions

i. for all 1 ≤ k <∞
[·]k : ∧kg→ g,

is a linear map of degree | [·]k | = 2 − k. In other words, the k-th higher bracket [·]k comes
from a linear map of degree 2− k

[·]k : g⊗k → g,

such that for all σ ∈ Sn
[·]k ◦ χ̂(σ) = [·]k .

For homogeneous elements xi ∈ g with 1 ≤ i ≤ k

[xi ⊗ · · · ⊗ xk]k = χ(σ;x1, . . . , xk)
[
xσ(1) ⊗ · · · ⊗ xσ(k)

]k
;

ii. for all 1 ≤ n the equation below holds∑
i+ j = n+ 1,

1 ≤ i

∑
σ∈Sh−1

i,n−i

(−1)i(j−1)χ(σ)
[[
xσ(1) ∧ · · · ∧ xσ(i)

]i ∧ xσ(i+1) ∧ · · · ∧ xσ(n)

]j
= 0.

(6.3)
This is called the generalized Jacobi identity.

Now we define the notion of L∞-algebra.

Definition 6.3.2. An L∞-algebra is a pair (g, [·]) consisting of a Z≤0-graded vector space g =⊕
n≤0 gn and an L∞-structure [·] = {[·]k}1≤k.

Let us consider the following examples of L∞-algebras.

Example 6.3.1. Let us consider an L∞-algebra in which the unique non-zero bracket is the first
one. That is, the collection of brackets [·] =

{
[·]k
}

1≤k
is given by

[·]k : g⊗k → g =

{
[·]1 := ∂ k = 1;

[·]k := 0, 2 ≤ k.

Note that | [·]1 | = |∂| = 2− 1 = 1. In this case, we have that the generalized Jacobi identity (6.3)
is equivalent to ∂2 = 0. Thus we can conclude that the L∞-algebras in which the only non-zero
bracket is [·]1 are nothing but chain complexes.
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Example 6.3.2. Let us consider an L∞-algebra concentrated in degree zero. That is, g =
⊕

0≤k gk

where gk = 0 for all k 6= 0. Notice that for degree reasons the only non-zero bracket is [·]2. The
generalized Jacobi identity 6.3 in this case is the classical Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

We conclude that a Lie algebra is the same thing that an L∞-algebra concentrated in degree zero.

Example 6.3.3. Let us consider an L∞-algebra (g, [·]) in which the unique non-zero brackets are
the first two brackets. That is,

[·]k =


[·]1 = ∂;

[·]2 = [·, ·] ;

[·]k = 0, 3 ≤ k.

The generalized Jacobi identity 6.3 is equivalent the next identities

i. ∂2 = 0;

ii. ∂([x, y]) = [∂x, y] + (−1)|x|[x, ∂y];

iii. [[u, v], w] + (−1)|u|(|v|+|w|)[[v, w], u] + (−1)|v|(|u|+|w|)[[w, u], v] = 0.

In other words, the L∞-algebra (g, [·]) is the same thing that a differential graded Lie algebra.

Example 6.3.4. Let us consider an L∞-algebra (g, [·]) whose non-zero elements are in the first two
grades. That is, g = g−1 ⊕ g0 and gk = 0 for all k ≤ −2. Observe that the unique non-necessary
zero brackets are

[·]k : (g−1 ⊕ g0)⊗k → g−1 ⊕ g0 =


[·]1 : g−1 → g0, | [·]1 | = 1;

[·]2 : g−1 ⊗ g0 → g−1, and [·]2 : g⊗2
0 → g0, | [·]2 | = 0;

[·]3 : g⊗3
0 → g−1, | [·]3 | = −1;

[·]k = 0, 3 ≤ k.

The set of identities that compose the generalized Jacobi identity can be found in [BC04, §4.3,
Lemma 33]. A well-known fact is that a differential crossed module of Lie algebras, as in section
2.2, can be seen as a particular example of a 2-term L∞-algebra in which [·]3 = 0. Moreover, in
[BC04] it was shown that the 2-category of semistrict Lie 2-algebras is equivalent to the 2-category
of 2-term L∞-algebras.

Now let us comment two equivalent formulations of the notion of L∞-algebra. The first formu-
lation says that we can see an L∞-algebra g as a pair (g [1] , λ) where the brackets are the same
that a map

λ =
∑
1≤k

λk ∈ Hom1(Sym(g [1]), g [1])

such that

i. for each 1 ≤ k the map
λk : Symk(g [1])→ g [1] ,

is a linear map of degree 1, i.e. the map λk comes from a linear map of degree 1

λk : g [1]⊗k → g [1] ,

such that for every σ ∈ Sk
λk ◦ ε̂(σ) = λk.
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For homogeneous elements xi ∈ g with 1 ≤ i ≤ k

λk(x1 ⊗ · · · ⊗ xk) = ε(σ;x1, . . . , xk)λk(xσ(1) ⊗ · · · ⊗ xσ(k)).

ii. for all n ≥ 1 the generalized Jacobi identity holds

n∑
i=1

∑
σ∈Sh−1

i,n−i

ε(σ)λn−i+1(λi(xσ(1) ∨ · · · ∨ xσ(i)) ∨ xσ(i+1) ∨ · · · ∨ xσ(n)) = 0.

The second formulation says that the collection of degree 1 maps

{λn : Symn(g [1])→ g [1]}1≤n ,

defines a degree 1 coderivation dλ := µs ◦ (λ ⊗ Ids) ◦ ∆s of (Sym(g [1]),∆s) and the generalized
Jacobi identity is encoded in the property d2

λ = 0. So an L∞-algebra is the same thing that the
pair (Sym(g [1]), d) where d is a degree 1 coderivation of square zero. For more details about these
equivalences see for example [Deh11].

Example 6.3.5. Let g be an L∞-algebra concentrated in degree zero, as in Example 6.3.2. Observe
that in this particular case the symmetric algebra on g [1] is the free commutative algebra generated
by elements of degree -1,

Sym(g[1]) =
∧

g.

The coderivation induced by the L∞-structure is given on homogeneous elements xi ∈ g, 1 ≤ i ≤ n
by

d(x1 ∧ · · · ∧ xn) =
∑

1≤i<j≤n
(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

In fact, the chain complex (∧g, d) determines the Lie algebra homology of g with trivial coefficients.
The bracket satisfies the Jacobi identity if and only if the derivation d squares to zero.

Remark 6.3.1. In the forthcoming, for the cases where is not strictly necessary to specify the
L∞-structure we shall denote an L∞-algebra simply by g. For the cases in which is necessary to
specify the L∞-structure we denote it by (g, [·]), (g [1] , λ) or (Sym(g [1]), d).

Definition 6.3.3. Let g and h be two L∞-algebras. An L∞-morphism F : g → h is a coal-
gebra morphism F : Sym(g [1]) → Sym(h [1]) that intertwines the differentials induced by the
L∞-structures. That is, F is a linear degree-preserving map that satisfy the next identities

F ⊗ F ◦∆s = ∆s ◦ F, F ◦ dλg = dλh ◦ F.

Remark 6.3.2. A coalgebra morphism F : Sym(g [1])→ Sym(h [1]) is determined by its projection
onto h [1] and it is the same that a collection of linear maps of degree 0{

F 1
n : Symn(g [1])→ h [1]

}
1≤n .

In the particular case of 2-term L∞-algebras, the set of constraint equations that should satisfy a
coalgebras morphism for being an L∞-morphism are presented in [BC04, §4.3, Def.34].

A strict L∞-morphism is an L∞-morphism F in which F 1
n = 0 for 2 ≤ n, that is, F = S(F 1

1 )
where for xi ∈ g [1], with 1 ≤ i ≤ n the map S(F 1

1 ) is given by

S(F 1
1 )(x1 ∨ · · · ∨ xn) = F 1

1 (x1) ∨ · · · ∨ F 1
1 (xn),

and the map F 1
1 : g [1] → h [1] has degree zero and preserves the higher brackets. For all k ≥ 1 we

have
F 1

1 ◦ λ
g
k = λhk ◦ F

1
1
⊗k
.
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An L∞ quasi-isomorphism is an L∞-morphism F for which the map H(F 1
1 ) : H(g, [·]1) →

H(h, [·]1) is an isomorphism of vector spaces. Now with the aim of presenting a non-strict L∞-
morphism let us see the next example.

Example 6.3.6. Let us consider an extension of Lie algebras

0 n ĝ g 0,

and σ a linear section of π : ĝ→ g, π ◦ σ = Idg. Denote by Kσ : ∧2g→ n its curvature Kσ(x, y) =
[σ(x), σ(y)]−σ([x, y]). Now consider the Lie 2-algebra of derivations of n. This is a 2-term L∞-algebra
as in Example 6.3.4. It is defined by the crossed module of Lie algebras

[
n

ad−→ Der(n)
Id−→ Der(n)

]
.

Then the following collection of maps {F 1
1 , F

1
2 } determines an L∞-morphism between the Lie algebra

g and the Lie 2-algebra of derivations.

F 1
1 : 0→ n, F 1

1 := 0, F 1
1 : g→ Der(n), F 1

1 (x) := adσ(x), F 1
2 : ∧2g→ n, F 1

2 := Kσ.

We summarize all this information in the following diagram

0 n n.

g Der(n) ∧2g

F 1
1

0 ad

F 1
1

F 1
2

We do not check here the constraint equations that defines an L∞-morphism, but we point out that
these are obtained from Bianchi’s identity of Kσ. This construction appears in [MZ12, §6, Ex.6.4]
and [BZ21, §5,Prop.5.3] as examples of L∞-action in the context of Lie algebras and Lie algebroids.

Another interesting example of non-strict L∞-morphism arises when we study the minimal
model of a Lie 2-algebra.

Example 6.3.7. Let
[
h

∂−→ g
L−→ Der(h)

]
be a Lie 2-algebra. For the construction of the example

let us consider the associated Lie algebra cohomology class to it. For that consider the next diagram
and the next steps

0

0 ker(∂) h Im(∂) 0

g

coker(∂)

0.

ι ∂

∂

σ

π
h

i. By Proposition 2.1.1 we have ker(∂) is an abelian subalgebra of h and im(∂) is an ideal of g.

ii. Let h : coker(∂) → g be a linear section of π, and Kh : ∧2coker(∂) → im(∂) its curvature
Kh(X,Y ) = h([X,Y ]) − [h(X), h(Y )] , then for S := adh|im(∂) : coker(∂) → Der(im(∂)) one
has dSKh = 0 by Bianchi’s identity.

iii. Let σ : im(∂) → h be a linear section of ∂. Then ωh := σ ◦ Kh : ∧2coker(∂) → h and
L := L ◦ h : coker(∂)→ Der(h) and the equivariance of ∂ implies (S,L)-equivariance.
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iv. For the covariant derivative dL one has that dLωh : ∧3coker(∂) → h is such that ∂(dLωh) =
dS(∂ωh) = dSKh = 0. Thus

dLωh : ∧3coker(∂)→ ker(∂),

and the map L′ := L|ker(∂) : coker(∂) → Der(ker(∂)) is a representation of Lie algebras such
that

dL′(dLωh) = 0.

Therefore, we have a cohomology class [dLωh] ∈ H3(coker(∂); im(∂)). This cohomology class is
better known as the characteristic class of the crossed module of Lie algebras. See [Nee06,
Wag06] for further discussion. We claim that(

ker(∂)⊕ coker(∂), [·] = {[·]1 := 0, [·]2 := L′, [·]3 := dLωh}
)
,

is a 2-term L∞-algebra (semi-strict Lie 2-algebra) and that the collection of maps F 1 := {F 1
1 , F

1
2 }

defined by

F 1
1 : ker(∂)→ h, F 1

1 := ι F 1
1 : coker(∂)→ g, F 1

1 := h F 1
2 : ∧2coker(∂)→ h, F 1

2 := ωh,

determines an L∞-morphism quasi-isomorphism.

ker(∂) h h.

coker(∂) g ∧2coker(∂)

ι

0 ∂

h

ωh

Remark 6.3.3. According to the homotopy classification of L∞-algebras due to Kontsevich in
[Kon03, Chap.4.5.1], every L∞-algebra is isomorphic to the direct sum of a minimal and of a linear
contractible L∞-algebra. The minimal L∞-algebra involved in the decomposition of an L∞-algebra
is quasi-isomorphic to this and unique up to L∞-isomorphism. This minimal algebra is called the
minimal model of the L∞-algebra.



Chapter 7

L∞-algebra cohomology with values in a
graded vector space

In this chapter we treat the cohomology of an L∞-algebra with values in a graded vector space.
Such a cohomology has been studied in [Pen95, Kje01, Rei19] extending the Chevalley-Eilenberg
cohomology of a Lie algebra. Accordingly, representations up to homotopy are considered instead
of strict representations. In Section 1 we deal with representations up to homotopy and define the
L∞-algebra cohomology with values in a graded vector space, as well as equivariant morphisms. In
Sections 2 and 3 we focus on the tensor product of two representations up to homotopy and on
the wedge product of cochains of L∞-algebra cohomology. In Sections 4 we start with the study of
representations up to homotopy in terms of Maurer-Cartan elements of a particular dgla. Finally, in
Sections 5 and 6 we study the associated canonical spectral sequence to the L∞-algebra cohomology.
As a main result, we show that the L∞-algebra cohomology is invariant with respect to equivariant
L∞-quasi-isomorphisms.

7.1 Representations up to homotopy

Definition 7.1.1. Let g be an L∞-algebra and V be a graded vector space. A representation up
to homotopy of g on V is a linear map

ρ : Sym(g [1])⊗ V→ V,

of degree 1 which satisfies the equation

ρ ◦ (d⊗ Idv) + ρ ◦ (Ids ⊗ ρ) ◦ (∆s ⊗ Idv) = 0 (7.1)

where d is the coderivation induced by the L∞-structure on g.

Let us see some examples.

Example 7.1.1. Let (g [1] , λ) be an L∞-algebra. There exists a natural representation given by
the higher brackets

ad : Sym(g [1])⊗ g [1]→ g [1] , ad(x⊗ y) := λ(x ∨ y).

This representation is referred to the adjoint representation of g.

Example 7.1.2. Let g be an L∞-algebra and V be a graded vector space both concentrated at
degree zero. Let ρ be a representation up to homotopy of g on V. Note that since |ρ| = 1, by degree
reasons the unique non-zero component of ρ is

ρ : g[1]⊗ V0 → V0.

57
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By Example 6.3.5, the Equation 7.1 says that for all x, y ∈ g and v ∈ V0 one has that

ρ([x, y]⊗ v)− ρ(x⊗ ρ(y ⊗ v)) + ρ(y ⊗ ρ(x⊗ v)) = 0.

Therefore, a representation up to homotopy of a Lie algebra on a vector space is the same thing
that a usual linear representation.

The particular case of representations up to homotopy of 2-term L∞-algebras over 2-term graded
vector spaces has been studied before by several authors, for instance [SZ12, BSZ13, LSZ14]. In
order to introduce this case, let us consider a 2-term L∞-algebra g = (g−1 ⊕ g0, [·]) and a 2-term
graded vector space V = V0 ⊕ V1, and consider a linear map ρ : Sym(g [1])⊗ V→ V of degree 1 as
in Definition 7.1.1. Observe that the unique non-zero components of ρ are

ρ =


ρ1 : Sym0(g [1])⊗ V0 → V1, ρ1 : V0 → V1;

ρ2 : Sym1(g [1])⊗ V→ V,


ρ2

1 : g−1 ⊗ V1 → V0

ρ2
0,1 : g0 ⊗ V1 → V1

ρ2
0,0 : g0 ⊗ V0 → V0;

ρ3 : Sym2(g [1])⊗ V→ V, ρ3 : ∧2g0 ⊗ V0 → V0.

The map ρ is a representation up to homotopy if it satisfies the constraint Equation in 7.1.1. We
present an interpretation of this equation in terms of L∞-morphisms. This is a particular case of
[LM95, Thm 5.4] and can be found in [SZ12, BSZ13]. For that, let us introduce the Lie 2-algebra
of endomorphisms of a 2-term dg vector space. Let V = V0

∂−→ V1 be a 2-term dg-vector space and
End(V) be its dgla of endomorphisms

End(V) : Hom(V1, V0)︸ ︷︷ ︸
−1

End(V0)⊕ End(V1)︸ ︷︷ ︸
0

Hom(V0, V1)︸ ︷︷ ︸
1

.
δ−1 δ0

Consider the truncated 2-term subcomplex defined by

Hom(V1, V0)︸ ︷︷ ︸
−1

ker(δ0)︸ ︷︷ ︸
0

.
δ−1

This is a 2-term dgla, given that End0(V) is a Lie algebra and δ a derivation. The following crossed
module of Lie algebras determines the Lie 2-algebra of truncated endomorphisms[

End−1
∂ (V)

∂end−→ End0
∂(V)

Lend−→ Der(End−1
∂ (V))

]
,

where End−1
∂ (V) = Hom(V1, V0), End0

∂(V) = {(S, T ) ∈ End(V0)× End(V1) |T ◦ ∂ = ∂ ◦ S} , and

Lend(S,T )(D) = D ◦ T − S ◦D, ∂endD = (D ◦ ∂, ∂ ◦D).

We denote the above crossed module of Lie algebras by End∂(V). For more details see [SZ12]. Now
we state the next definition that sum up the previous discussion.

Definition 7.1.2. (2-term representation up to homotopy) A representation up to homotopy of a
2-term L∞-algebra g = (g−1 ⊕ g0, [·] = {dg, [·, ·]g , l3}) on a 2-term dg-vector space V : V0

∂−→ V1 is
an L∞-morphisms ρ : g→ End∂(V). That means, ρ = (ρ−1, ρ0, ρ2)

g−1 End−1
∂ (V) End−1

∂ (V)

g0 End0
∂(V), ∧2g0

dg

ρ−1

∂end

ρ0

ρ2
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where are satisfied the next identities

i. ρ0 ◦ dg = ∂end ◦ ρ−1;

ii. ρ0([x, y])− [ρ0(x), ρ0(y)] = ∂endρ2(x, y);

iii. ρ−1(Lgxa)− Lendρ0(x)ρ−1(a) = ρ2(x, dga);

iv. ∑
	x,y,z

Lendρ0(x)ρ2(y, z)−
∑

	x,y,z

ρ2(x, [y, z]) = ρ−1(l3(x, y, z)).

Example 7.1.3. Let h and g be two Lie algebras and ∂ : h→ g be a homomorphism of Lie algebras.
For a linear map ∇ : g→ End(h) we have a representation up to homotopy of the Lie algebra h on
the 2-term dg vector space V = h

∂−→ g given by

0 End−1
∂ (V) End−1

∂ (V)

h End0
∂(V), ∧2hρ0

ρ2

where

ρ1
0 : h→ End(h), ρ1

0,α(β) := ∇∂βα+ [α, β] ;

ρ2
0 : h→ End(g), ρ2

0,α(X) = ∂(∇Xα) + [∂α,X] ;

ρ2 : ∧2h→ Hom(g, h), ρ2(α, β)(X) = ∇X [α, β]− [∇Xα, β]− [α,∇Xβ]−∇ρ20,βXα+∇ρ20,αXβ.

More details can be found in [AC12, Prop.2.11].

Now we will define the notion of L∞-algebra cohomology with values in a graded vector space
V.

Definition 7.1.3. Let g be an L∞-algebra, and ρ be a representation up to homotopy of g on the
graded vector spce V. The L∞-algebra cohomology of g with values in V is defined as the
cohomology of the cochain complex

Cρ(g,V) := (Hom(Sym(g [1]),V), Dρ) ,

where the boundary operator Dρ is given for a homogeneous element α : Sym(g [1])→ V of degree
p, by

Dρα := ρ ◦ (Ids ⊗ α) ◦∆s − (−1)pα ◦ d. (7.2)

We denote the L∞-cohomology of g with values in V by HCE,ρ(g;V). For more details about
this cohomology see [Deh11] and [Rei19]. For illustrate the nature of the formula in Equation (7.2)
consider the next example.

Example 7.1.4. Let g be a Lie algebra and ρ : g → gl(V ) be a linear representation. For α ∈
Homn(∧g, V ) and xi ∈ g for i = 1, . . . , n+ 1, we will computate

Dρα(x1 ∧ · · · ∧ xn+1) = (ρ ◦ (Ids ⊗ α) ◦∆s − (−1)nα ◦ d)(x1 ∧ · · · ∧ xn+1) = A
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using the Example 6.3.5 and the explicit expression for the coproduct in 6.1 we get

A =ρ ◦ (Ids ⊗ α)

 n∑
k=1

∑
σ∈Sh−1

k,n+1−k

ε(σ)(xσ(1) ∧ · · · ∧ xσ(k))⊗ (xσ(k+1) ∧ · · · ∧ xσ(n+1))


− (−1)nα

 ∑
1≤i<j≤n+1

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn+1


=ρ

(
n∑
k=1

(−1)k+nxk ⊗ α(x1 ∧ · · · ∧ x̂k ∧ · · · ∧ xn+1)

)
−

∑
1≤i<j≤n+1

(−1)i+j+nα([xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn+1)

=(−1)n

(
n∑
k=1

(−1)kρxk(α(x1 ∧ · · · ∧ x̂k ∧ . . . xn+1))

−
∑

1≤i<j≤n+1

(−1)i+jα([xi, xj ] ∧ x1 ∧ . . . x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn+1)


Observe that Dρ is (up to a sign) the Chevalley-Eilenberg coboundary operator. In particular, we
have that HCE,ρ(g;V ) is the Lie algebra cohomology with values in V .

Definition 7.1.4. Let ρ and ρ′ be two representations up to homotopy of g on V and h on W,
respectively. A (ρ, ρ′)-equivariant map from g to h is a couple of maps (F, f) where F : g→ h is
an L∞-morphism and f : W→ V is a degree-preserving map satisfying

f ◦ ρ′ ◦ (F ⊗ Idv) = ρ ◦ (Ids ⊗ f). (7.3)

In the particular case that g = h and F = Id we simply say that the map f : W → V is (ρ, ρ′)-
equivariant. A (ρ, ρ′)-equivariant map (F, f) : g→ h is said to be a (ρ, ρ′)-equivariant L∞-quasi-
isomorphism along to f : W→ V, if F is an L∞-quasi-isomorphism and f is a quasi-isomorphism
of graded vector spaces.

One can compose equivariant maps yielding a new equivariant map. This is the content of the
next proposition.

Proposition 7.1.1. Let ρ, ρ′ and ρ′′ be three representations up to homotopy of g on V, g′ on U
and h on W, respectively. Then for (F, f) : g→ g′ a (ρ, ρ′)-equivariant map and (F ′, f ′) : g′ → h a
(ρ′, ρ′′)-equivariant map we have

(F ′ ◦ F, f ◦ f ′) : g→ h,

is a (ρ, ρ′′)-equivariant map.

Proof. To see that in fact it is a (ρ, ρ′′)-equivariant map we shall check the equation (7.3). Indeed,

(f ◦ f ′) ◦ ρ′′ ◦ ((F ′ ◦ F )⊗ Idw) =f ◦ (f ′ ◦ ρ′′ ◦ (F ′ ⊗ Idw)) ◦ (F ⊗ Idw)

=f ◦ (ρ′ ◦ (Ids ⊗ f ′)) ◦ (F ⊗ Idw)

=(f ◦ ρ′ ◦ (F ⊗ Idu)) ◦ (Ids ⊗ f ′)
=ρ ◦ (Ids ⊗ f) ◦ (Ids ⊗ f ′)
=ρ ◦ (Ids ⊗ (f ◦ f ′)).
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Therefore, for (F, f) a (ρ, ρ′)-equivariant map and (F ′, f ′) a (ρ′, ρ′′)-equivariant map as in Propo-
sition 7.1.1 we define their composition as the (ρ, ρ′′)-equivariant map

(F, f) ◦ (F ′, f ′) := (F ′ ◦ F, f ◦ f ′).

Remark 7.1.1. Given F : g → h an L∞-morphism and ρ′ a representation up to homotopy of h
on V, we can induce a representation of g on V called the pullback representation and is defined
by

F ∗ρ′ : Sym(g [1])⊗ V F⊗Idv−→ Sym(h [1])⊗ V ρ′−→ V, F ∗ρ′ := ρ′ ◦ (F ⊗ Idv).

The map (F, Idv) : g → h is (F ∗ρ′, ρ′)-equivariant and it is clear that Idv ◦ ρ′ ◦ (F ⊗ Idv) =
F ∗ρ′ ◦ (Ids ⊗ Idv) holds. Actually, a general (ρ, ρ′)-equivariant map (F, f) : g → h, can always be
factored it in a canonical way as the composition of (ρ, F ∗ρ′), (F ∗ρ′, ρ′)-equivariant maps. Indeed,
the map (Ids, f) is (ρ, F ∗ρ′)-equivariant, since

f ◦ F ∗ρ′ ◦ (Ids ⊗ Idv) = ρ ◦ (Ids ⊗ f),

holds by equation (7.3), and (F, f) = (Ids, f) ◦ (F, Idv).

Proposition 7.1.2. Let ρ and ρ′ be two representations up to homotopy of g on V and h on W,
respectively. A (ρ, ρ′)-equivariant morphism from g to h induces a morphism of cochain complexes
given by

F ∗ : Cρ′(h,W)→ Cρ(g,V), F ∗α := f ◦ α ◦ F.

Proof. It is clear that the morphism F ∗ is well-defined. Let us see that F ∗Dρ′ = DρF
∗. For this let

α be a homogeneous element of degree p in Cρ′(h,W), then

F ∗(Dρ′α) =fρ′(Ids ⊗ α)∆sF − (−1)pfαdF

=fρ′(Ids ⊗ α)(F ⊗ F )∆s − (−1)pfαFd

=fρ′(F ⊗ Idv)(Ids ⊗ α)(Ids ⊗ F )∆s − (−1)p(F ∗α)d

=ρ(Ids ⊗ f)(Ids ⊗ α)(Ids ⊗ F )∆s − (−1)p(F ∗α)d, by equation (7.3)

=ρ(Ids ⊗ (F ∗α))∆s − (−1)p(F ∗α)d

=Dρ(F
∗α).

7.2 Tensor product of representations up to homotopy

In this section we define the notion of tensor product of representations up to homotopy.

Proposition 7.2.1. Let g be an L∞-algebra and ρ1 : Sym(g [1])⊗V→ V and ρ2 : Sym(g [1])⊗W→
W two representations up to homotopy. The following defines a representation up to homotopy of g
on the graded vector space V⊗W

ρ : Sym(g [1])⊗ (V⊗W)→ V⊗W, ρ := ρ1 ⊗ Idw + (Idv ⊗ ρ2) ◦ (T ⊗ Idw)

where T : Sym(g [1])⊗V→ V⊗Sym(g [1]) is the twisting map. Explicitly, for homogeneous elements
x ∈ Sym(g [1]), v ∈ V and w ∈W one has that

ρ(x⊗ v ⊗ w) = ρ1(x⊗ v)⊗ w + (−1)(|x|+1)|v|v ⊗ ρ2(x⊗ w).

This representation is said to be the tensor product representation of ρ1 and ρ2, and it is denoted
by ρ := ρ1 ⊗ ρ2.
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Proof. To see that ρ is a representation up to homotopy we shall verify that the next equation holds

ρ ◦ (d⊗ Idv⊗w) + ρ ◦ (Ids ⊗ ρ) ◦ (∆s ⊗ Idv⊗w) = 0.

We will analyse this equation by parts. First consider the expression

ρ ◦ (Ids ◦ ρ) =(ρ1 ⊗ Idw + (Idv ⊗ ρ2) ◦ (T ⊗ Idw))(Ids ⊗ ρ1 ⊗ Idw + Ids ⊗ ((Idw ⊗ ρ2) ◦ (T ⊗ Idw)))

=ρ1 ◦ (Ids ⊗ ρ1)⊗ Idw + (ρ1 ⊗ Idw) ◦ Ids ⊗ ((Idv ⊗ ρ2) ◦ (T ⊗ Idw))︸ ︷︷ ︸
A

+

+ (Idv ⊗ ρ2) ◦ (T ⊗ Idw) ◦ Ids ⊗ ρ1 ⊗ Idw︸ ︷︷ ︸
B

+(Idv ⊗ ρ2) ◦ (T ⊗ Idw) ◦ Ids ⊗ ((Idv ⊗ ρ2) ◦ (T ⊗ Idw))︸ ︷︷ ︸
C

.

Let us check that: B ◦ (T ⊗ Idv ⊗ Idw) = −A. To see this we take homogeneous elements x, y ∈
Sym(g [1]), v ∈ V, w ∈W, and check this equality.

A(x⊗ y ⊗ v ⊗ w) =(ρ1 ⊗ Idw) ◦ Ids ⊗ ((Idv ⊗ ρ2) ◦ (T ⊗ Idw))(x⊗ y ⊗ v ⊗ w)

=ρ1 ⊗ Idw((−1)|x|x⊗ (Idv ⊗ ρ2) ◦ (T ⊗ Idw)(y ⊗ v ⊗ w))

=ρ1 ⊗ Idw((−1)|x|x⊗ (Idv ⊗ ρ2)(−1)|y||v|v ⊗ y ⊗ w)

=(−1)|x|+|y||v|ρ1 ⊗ Idw(x⊗ (−1)|v|v ⊗ ρ2(y ⊗ w))

=(−1)|x|+|y||v|+|v|ρ1 ⊗ Idw(x⊗ v ⊗ ρ2(y ⊗ w))

=(−1)|x|+|y||v|+|v|ρ1(x⊗ v)⊗ ρ2(y ⊗ w).

B(x⊗ y ⊗ v ⊗ w) =(Idv ⊗ ρ2) ◦ (T ⊗ Idw) ◦ (Ids ⊗ ρ1 ⊗ Idw)(x⊗ y ⊗ v ⊗ w)

=(Idw ⊗ ρ2) ◦ (T ⊗ Idw)((−1)|x|x⊗ (ρ1 ⊗ Idw)(y ⊗ v ⊗ w))

=(−1)|x|(Idv ⊗ ρ2) ◦ (T ⊗ Idw)(x⊗ ρ1(y ⊗ v)⊗ w)

=(−1)|x|(Idv ⊗ ρ2)((−1)(|y|+|v|+1)|x|ρ1(y ⊗ v)⊗ x⊗ w)

=(−1)|y||x|+|v||x|+|x|+|x|(−1)|y|+|v|+1ρ1(y ⊗ v)⊗ ρ2(x⊗ w)

=(−1)|y||x|+|v||x|+|y|+|v|+1ρ1(y ⊗ v)⊗ ρ2(x⊗ w),

then

B ◦ (T ⊗ Idv ⊗ Idw)(x⊗ y ⊗ v ⊗ w) =B((−1)|x||y|y ⊗ x⊗ v ⊗ w)

=(−1)|x||y|+|y||x|+|v||y|+|x|+|v|+1ρ1(x⊗ v)⊗ ρ2(y ⊗ w)

=−A(x⊗ y ⊗ v ⊗ w).

Let us check that: C = (Idv ⊗ Ids ⊗ ρ2) ◦ (T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw).

C(x⊗ y ⊗ v ⊗ w) =(T ⊗ Idw) ◦ (Ids ⊗ ((Idv ⊗ ρ2) ◦ (T ⊗ Idv⊗w)))(x⊗ y ⊗ v ⊗ w)

=(T ⊗ Idw)((−1)|x|x⊗ ((Idv ⊗ ρ2) ◦ (T ⊗ Idw))(y ⊗ v ⊗ w))

=(−1)|x|(T ⊗ Idw)(x⊗ (Idv ⊗ ρ2)((−1)|y||v|v ⊗ y ⊗ w))

=(−1)|x|+|y||v|(T ⊗ Idw)(x⊗ (−1)|v|v ⊗ ρ2(y ⊗ w))

=(−1)|x|+|y||v|+|v|(−1)|x||v|v ⊗ x⊗ ρ2(y ⊗ w)

=(−1)|y||v|+|x||v|+|x|+|v|v ⊗ x⊗ ρ2(y ⊗ w),
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(Idv ⊗ Ids ⊗ ρ2)◦(T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw)(x⊗ y ⊗ v ⊗ w) =

=(Idv ⊗ Ids ⊗ ρ2) ◦ (T ⊗ Idv⊗w)(x⊗ (T ⊗ Idw)(y ⊗ v ⊗ w))

=(Idv ⊗ Ids ⊗ ρ2) ◦ (T ⊗ Idv⊗w)(x⊗ (−1)|y||v|(v ⊗ y ⊗ w))

=(−1)|y||v|(Idv ⊗ Ids ⊗ ρ2)((−1)|x||v|v ⊗ x⊗ y ⊗ w)

=(−1)|y||v|+|x||v|(−1)|v|v ⊗ (Ids ⊗ ρ2)(x⊗ y ⊗ w)

=(−1)|y||v|+|x||v|+|v|v ⊗ (−1)|x|x⊗ ρ2(y ⊗ w)

=(−1)|y||v|+|x||v|+|v|+|x|v ⊗ x⊗ ρ2(y ⊗ w)

=C(x⊗ y ⊗ v ⊗ w).

and let us check that:

(T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw) ◦ (∆s ⊗ Idv⊗w) = (Idv ⊗∆s ⊗ Idw) ◦ (T ⊗ Idw).

Let v ∈ V, w ∈W, xi ∈ Sym(g [1]), i = 1, . . . , n. On the one side

(T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw) ◦ (∆s ⊗ Idv⊗w)(x1 ∨ · · · ∨ xn ⊗ v ⊗ w)

=(T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw)

n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)xσ(1) ∨ · · · ∨ xσ(k) ⊗ xσ(k+1) ∨ · · ·

· · · ∨ xσ(n) ⊗ v ⊗ w

=(T ⊗ Idv⊗w)
n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)xσ(1) ∨ · · · ∨ xσ(k) ⊗ (−1)(
∑
k≤i |xσ(i)|)|v|v ⊗ xσ(k+1) ∨ · · ·

· · · ∨ xσ(n) ⊗ w

=
n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)(−1)(
∑
i≤k |xσ(i)|)|v|+(

∑
k≤i |xσ(i)|)|v|v ⊗ xσ(1) ∨ · · · ∨ xσ(k) ⊗ xσ(k+1) ∨ · · ·

· · · ∨ xσ(n) ⊗ w

=(−1)|v|(
∑
|xi|)

n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)v ⊗ xσ(1) ∨ · · · ∨ xσ(k) ⊗ xσ(k+1) ∨ · · · ∨ xσ(n) ⊗ w.

On the other side

(Ids ⊗∆s ⊗ Idw) ◦ (T ⊗ Idw)(x1 ∨ · · · ∨ xn ⊗ v ⊗ w)

=(Ids ⊗∆s ⊗ Idw)(−1)(
∑
|xi|)|v|v ⊗ x1 ∨ · · · ∨ xn ⊗ w

=(−1)(
∑
|xi|)|v|v ⊗

n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)xσ(1) ∨ · · · ∨ xσ(k) ⊗ xσ(k+1) ∨ · · · ∨ xσ(n) ⊗ w

=(−1)|v|(
∑
|xi|)

n∑
k=1

∑
σ∈Sh−1

k,n−k

ε(σ)v ⊗ xσ(1) ∨ · · · ∨ xσ(k) ⊗ xσ(k+1) ∨ · · · ∨ xσ(n) ⊗ w.

Then, (T ⊗ Idv⊗w) ◦ (Ids⊗T ⊗ Idw) ◦ (∆s⊗ Idv⊗w) = (Idv⊗∆s⊗ Idw) ◦ (T ⊗ Idw). Finally, consider
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the main equation

ρ ◦ (d⊗ Idv⊗w) + ρ ◦ (Ids ⊗ ρ) ◦ (∆s ⊗ Idv⊗w) =

(ρ1 ⊗ Idw)(d⊗ Idv⊗w) + (Idv ⊗ ρ2) ◦ (T ⊗ Idw)(d⊗ Idv⊗w)︸ ︷︷ ︸
=(Idv⊗d⊗Idw)◦(T⊗Idw)

+((ρ1 ◦ (Ids ⊗ ρ1))⊗

⊗ Idw) ◦ (∆s ⊗ Idv⊗w) +A ◦ (∆s ⊗ Idv⊗w) +B ◦ (∆s ⊗ Idv⊗w) + (Idv ⊗ ρ2) ◦ C ◦ (∆s ⊗ Idv⊗w)

=ρ1 ◦ (d⊗ Idv)⊗ Idw + (Idv ⊗ ρ2) ◦ (Idv ⊗ d⊗ Idw) ◦ (T ⊗ Idw) + (ρ1 ◦ (Ids ⊗ ρ1))◦
◦ (∆s ⊗ Idv)⊗ Idw +A ◦ (∆s ⊗ Idv⊗w) +B ◦ (T ⊗ Idv⊗w)︸ ︷︷ ︸

=−A

◦(∆s ⊗ Idv⊗w)+

+(Idv ⊗ ρ2) ◦ (Idv ⊗ Ids ⊗ ρ2) ◦ (T ⊗ Idv⊗w) ◦ (Ids ⊗ T ⊗ Idw) ◦ (∆s ⊗ Idv⊗w)︸ ︷︷ ︸
=(Idv⊗∆s⊗Idw)◦(T⊗Idw)

= (ρ1 ◦ (d⊗ Idv) + ρ1 ◦ (Ids ⊗ ρ1) ◦ (∆s ⊗ Idv))︸ ︷︷ ︸
=0, ρ1 representation

⊗Idw + Idv ⊗ (ρ2 ◦ (d⊗ Idw)) ◦ (T ⊗ Idw)

A ◦ (∆s ⊗ Idv⊗w)−A ◦ (∆s ⊗ Idv⊗w) + Idv ⊗ (ρ2 ◦ (Ids ⊗ ρ2)) ◦ (Idv ⊗∆s ⊗ Idw) ◦ (T ⊗ Idw)

=0⊗ Idv + Idw ⊗ (ρ2 ◦ (d⊗ Idw) + Idv ⊗ (ρ2 ◦ (Ids ⊗ ρ2) ◦ (∆s ⊗ Idw))) ◦ (T ⊗ Idw)

=Idw ◦ (ρ2 ◦ (d⊗ Idw) + ρ2 ◦ (Ids ⊗ ρ2) ◦ (∆s ⊗ Idw))︸ ︷︷ ︸
=0, ρ2 representation

◦(T ⊗ Idw) = 0.

Therefore ρ is a representation up to homotopy of g on V⊗W.

Let us consider the right shift of the first element on V. That is, the degree-preserving map
T k : V⊗n → V⊗n for k ≥ 2,

T k(v1 ⊗ · · · ⊗ vn) = (−1)|v1|(
∑k
j=2 |vj |)v2 ⊗ · · · ⊗ vk ⊗ v1 ⊗ vk−1 ⊗ · · · ⊗ vn,

for vi ∈ V, i = 1, . . . , n. It is interesting to note that it can be introduced in the following way. The
k-shift at right is defined by

T k := (Id⊗k−2 ⊗ T ⊗ Id⊗n−k) ◦ T k−1,

where T : V⊗ V→ V⊗ V is the twisting map.
Now consider a representation of an L∞-algebra g on the vector space V

ρ : Sym(g [1])⊗ V→ V.

The nth tensor product representation up to homotopy ρ⊗n of g on V⊗n is defined by

ρ⊗n := ρ⊗ Id⊗n−1 +
n∑
k=2

(Id⊗k−1 ⊗ ρ⊗ Id⊗n−k) ◦ T k.

Explicitly, for x ∈ Sym(g [1]) and vk ∈ V, k = 1, . . . , n we have

ρ⊗n(x⊗ v1⊗ · · · ⊗ vn) = ρ(x⊗ v1)⊗ v2 ⊗ · · · ⊗ vn+

+

n∑
k=2

(−1)(|x|+1)(
∑k−1
j=1 |vj |)v1 ⊗ · · · vk−1 ⊗ ρ(x⊗ vk)⊗ vk+1 ⊗ · · · ⊗ vn.
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7.3 Cochain products

Let g be an L∞-algebra, m : V1 ⊗ V2 → V3 be a linear degree-preserving map and

ρi : Sym(g [1])⊗ Vi → Vi,

be a representation up to homotopy for i = 1, 2, 3. Suppose that m is (ρ1⊗ ρ2, ρ3)-equivariant, that
is, the following diagram is commutative

Sym(g [1])⊗ V1 ⊗ V2 V1 ⊗ V2

Sym(g [1])⊗ V3 V3.

Ids⊗m

ρ1⊗ρ2

m

ρ3

Definition 7.3.1. Let α ∈ Homp(Sym(g [1]),V1) and β ∈ Homq(Sym(g [1]),V2). The cochain
product between α and β along m is defined as

α ∧m β := m ◦ α⊗ β ◦∆s ∈ Homp+q(Sym(g [1]),V3).

The product between cochains descends to a well-defined product in cohomology. In order to
see this, we first exhibit some expected properties that the product of cochains should have. We
say that m is symmetric if m = m ◦ T , and that m is skew-symmetric if m = −m ◦ T .

Proposition 7.3.1. Let g be an L∞-algebra and m : V1 ⊗V2 → V3 as above. Then for α, α1, α2 ∈
Hom•(Sym(g [1]),V1) and β, β1, β2 ∈ Hom•(Sym(g [1]),V2),

i. The product ∧m is R-bilinear.

(α1 + α2) ∧m (β1 + β2) = α1 ∧m β1 + α1 ∧m β2 + α2 ∧m β1 + α2 ∧m β2.

ii. If m is symmetric, then
α ∧m β = (−1)|α||β|β ∧m α,

and if m is skew-symmetric, then

α ∧m β = −(−1)|α||β|β ∧m α.

iii. (Leibniz rule)
Dρ3(α ∧m β) = (Dρ1α) ∧m β + (−1)|α|α ∧ (Dρ2β).

Proof. Item (i) follows directly from the linearity of the tensor product. To see item (ii), note that
T ◦ α⊗ β ◦ T = (−1)|α||β|β ⊗ α holds. Thus if x, y ∈ Sym(g [1]) are homogeneous elements, then

(T ◦ α⊗ β ◦ T )(x⊗ y) =(−1)|x||y|(T ◦ α⊗ β)(y ⊗ x)

=(−1)|x||y|+|β||y|T (α(y)⊗ β(x))

=(−1)|y|(|x|+|β|)(−1)(|y|+|α|)(|x|+|β|)β(x)⊗ α(y)

=(−1)|α|(|x|+|β|)β(x)⊗ α(y)

=(−1)|α||β|(−1)|α||x|β(x)⊗ α(y)

=(−1)|α||β|(β ⊗ α)(x⊗ y).

Hence,
T ◦ α⊗ β ◦ T = (−1)|α||β|β ⊗ α.
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Suppose now that the map m is symmetric, then we have

α ∧m β =m ◦ α⊗ β ◦∆s

=m ◦ T ◦ α⊗ β ◦ T ◦∆s

=(−1)|α||β|m ◦ β ⊗ α ◦∆s

=(−1)|α||β|β ∧m α.

It is worth noticing that in the third equality it is used that the coproduct ∆s is cocommutative,
i.e. T ◦∆s = ∆s. The skew symmetric case is analogous. Finally to see item (iii) we are going to
check the Leibniz rule by a direct computation

Dρ3(α ∧m β) =ρ3 ◦ (Ids ⊗ α ∧m β) ◦∆s − (−1)|α|+|β|α ∧m β ◦ d
=ρ3 ◦ (Ids ⊗ (m ◦ α⊗ β ◦∆s)) ◦∆s − (−1)|α|+|β|m ◦ α⊗ β ◦∆s ◦ d
=ρ3 ◦ (Ids ⊗m) ◦ (Ids ⊗ α⊗ β) ◦ (Ids ⊗∆s) ◦∆s−

(−1)|α|+|β|m ◦ α⊗ β ◦ (Ids ⊗ d+ d⊗ Ids) ◦∆s

=m ◦ ρ1 ⊗ ρ2 ◦ (Ids ⊗ α⊗ β) ◦∆2
s − (−1)|α|+|β|m ◦ (α⊗ (β ◦ d)) ◦∆s+

− (−1)|α|+|β|m ◦ (−1)|β|((α ◦ d)⊗ β) ◦∆s)

=m ◦ ((ρ1 ◦ (Ids ⊗ α))⊗ β + (Ids ⊗ ρ2) ◦ (T ⊗ Ids) ◦ (Ids ⊗ α⊗ β)) ◦∆2
s︸ ︷︷ ︸

A

+

−(−1)|α|+|β|m ◦ (α⊗ (β ◦ d)) ◦∆s − (−1)|α|m ◦ ((α ◦ d)⊗ β) ◦∆s).︸ ︷︷ ︸
B

On the one side, since the coproduct is coassociative and cocommutative ∆2
s = (∆s ⊗ Ids) ◦∆s =

(Ids ⊗∆s) ◦∆s and (T ⊗ Ids) ◦∆2
s = ∆2

s, one gets

A =m ◦ ((ρ1 ◦ (Ids ⊗ α))⊗ β ◦∆2
s + (Ids ⊗ ρ2) ◦ (T ⊗ Ids) ◦ (Ids ⊗ α⊗ β) ◦ (T ⊗ Ids) ◦∆2

s)

=m ◦ ((ρ1 ◦ (Ids ⊗ α))⊗ β ◦ (∆s ⊗ Ids) ◦∆s + (Ids ⊗ ρ2) ◦ (α⊗ Ids ⊗ β) ◦ (Ids ⊗∆s) ◦∆s)

=m ◦ (((ρ1 ◦ (Ids ⊗ α) ◦∆s)⊗ β) ◦∆s + (−1)|α|(α⊗ (ρ2 ◦ (Ids ⊗ β) ◦∆s)) ◦∆s)

=m ◦ (((ρ1 ◦ (Ids ⊗ α) ◦∆s)⊗ β) + (−1)|α|(α⊗ (ρ2 ◦ (Ids ⊗ β) ◦∆s))) ◦∆s.

On the other side, one has that

B =m ◦ (−(−1)|α|+|β|α⊗ (β ◦ d)− (−1)|α|(α ◦ d)⊗ β) ◦∆s.

Therefore, combining the expressions A and B yields

Dρ3(α ∧m β) =m ◦ (((ρ1 ◦ (Ids ⊗ α) ◦∆s)⊗ β) + (−1)|α|(α⊗ (ρ2 ◦ (Ids ⊗ β) ◦∆s))) ◦∆s

+m ◦ (−(−1)|α|+|β|α⊗ (β ◦ d)− (−1)|α|(α ◦ d)⊗ β) ◦∆s

=m ◦ ((ρ1 ◦ (Ids ⊗ α) ◦∆s − (−1)|α|(α ◦ d))⊗ β) ◦∆s

+(−1)|α|m ◦ (α⊗ (ρ2 ◦ (Ids ⊗ β) ◦∆s − (−1)|β|(β ◦ d)) ◦∆s

=m ◦ (Dρ1α⊗ β) ◦∆s + (−1)|α|m ◦ (α⊗Dρ2β) ◦∆s

=Dρ1α ∧m β + (−1)|α|α ∧m Dρ2β.

In conclusion, the Leibniz rule holds

Dρ3(α ∧m β) = Dρ1α ∧m β + (−1)|α|α ∧m Dρ2β.
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Remark 7.3.1. We point out the equivariance hypothesis on m only is required in the proof of
item (iii). Moreover, the Leibniz rule is totally independent if the map m is symmetric or skew-
symmetric.

Corollary 7.3.1. Let g be a L∞-algebra, and ρi : Sym(g [1]) ⊗ Vi → Vi be representations up to
homotopy, for i = 1, 2, 3, and m : V1⊗V2 → V3 be a (ρ1⊗ ρ2, ρ3)-equivariant map as in Definition
7.1.4. Then the cochain product ∧m is well-defined on cohomology. That is,

HCE,ρ1(g;V1)⊗HCE,ρ2(g;V2)→ HCE,ρ3(g;V3), [α]⊗ [β] 7→ [α ∧m β].

Proof. It suffices to verify that if α and β are cocycles, then α∧m β is so, and if α is a cocycle and
β is a coboundary then α ∧m β is a coboundary. These implications follow from item (i) and (iii)
stated in Proposition 7.3.1.

Example 7.3.1. Let ρ : Sym(g [1]) ⊗ V → V be a representation up to homotopy of g on V, as
IdV⊗V : V⊗V→ V⊗V is clearly (ρ⊗ρ, ρ⊗ρ)-equivariant, it defines a canonical product of cochains.
For α, β ∈ Hom(Sym(g [1]),V) we denote their product as

α ∧IdV⊗V β := α ∧⊗ β ∈ Hom(Sym(g [1]),V⊗ V).

Here is relevant to observe that this product is not symmetric neither skew-symmetric.

Let us recall the definition of a graded Lie algebra, gla for short. A graded Lie algebra is
a pair (L, [·, ·]) consisting of a graded vector space L =

⊕
n∈Z Ln and a skew-symmetric linear map

[·, ·] : L⊗ L→ L of degree zero which satisfies the Jacobi identity:

[·, ·] ◦ (Id⊗ [·, ·]) = [·, ·] ◦ ([·, ·]⊗ Id) + [·, ·] ◦ (Id⊗ [·, ·]) ◦ (T ⊗ Id). (7.4)

Spelling out the previous definition yields:

• linearity: x ∈ Lr, y ∈ Ls implies [x, y] ∈ Lr+s;

• skew-symmetric: [x, y] = −(−1)rs [y, x];

• Jacobi identity: [x, [y, z]] = [y, [x, z]] + (−1)rs [y, [x, z]] .

A differential graded Lie algebra is a gla (L, [·, ·]) together with a degree +1 map d which
is a derivation of the bracket and d2 = 0. That is,

d ◦ [·, ·] = [·, ·] ◦ (d ◦ Id + Id⊗ d), d2 = 0, (7.5)

For x, y ∈ L homogeneous, one has

d([x, y]) = [dx, y] + (−1)|x| [x, dy] .

Corollary 7.3.2. Let g be an L∞-algebra and (L, [·, ·]) be a graded Lie algebra, then

(Hom(Sym(g [1]), L),∧[·,·]),

is a graded Lie algebra with the cochain product ∧[·,·]. Moreover, if (L, [·, ·] , d) is a differential graded
Lie algebra, then Hom(Sym(g [1] , L),∧[·,·],d) is differential graded Lie algebra with differential given
by

d(α) := d ◦ α− (−1)|α|α ◦ dλ,

for every α ∈ Hom(Sym(g [1]), L) homogeneous.
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Proof. Let us consider homogeneous elements α, β, γ ∈ Hom(Sym(g [1]), L), then by Theorem
(7.3.1) we have that the product ∧[·,·] is a skew-symmetric product. Let us see that it satisfies
the Jacobi identity.

α ∧[·,·] (β ∧[·,·] γ) = [·, ·] ◦ (α⊗ β ∧[·,·] γ) ◦∆s = [·, ·] ◦ (α⊗ ([·, ·] ◦ β ⊗ γ ◦∆s)) ◦∆s

= [·, ·] ◦ (Id⊗ [·, ·]) ◦ α⊗ β ⊗ γ ◦ (Id⊗∆s) ◦∆s, by Equation (7.4)

= [·, ·] ◦ ([·, ·]⊗ Id) ◦ α⊗ β ⊗ γ ◦∆2
s + [·, ·] ◦ (Id⊗ [·, ·]) ◦ (T ⊗ Id) ◦ α⊗ β ⊗ γ ◦∆2

s

=(α ∧[·,·] β) ∧[·,·] γ + (−1)|α||β|β ∧[·,·] (α ∧[·,·] γ).

Now we assume that (L, [·, ·] , d) is dgla and let us see that the map d is derivation of ∧[·,·] with
d2 = 0. Verifying that d2 = 0 is straightforward and equivalent to d2 = 0 and d2

λ = 0. To see that
d is a derivation let us compute it directly

d(α ∧[·,·] β) =d ◦ α ∧[·,·] β − (−1)|α|+|β|α ∧[·,·] β ◦ dλ
=d ◦ [·, ·] ◦ α⊗ β ◦∆s − (−1)|α|+|β| [·, ·] ◦ α⊗ β ◦∆s ◦ dλ
= [·, ·] ◦ (d⊗ Id + Id⊗ d) ◦ α⊗ β ◦∆s − (−1)|α|+|β| [·, ·] ◦ α⊗ β ◦ (dλ ⊗ Id + Id⊗ dλ) ◦∆s

= [·, ·] ◦ (d ◦ α)⊗ β ◦∆s + [·, ·] ◦ (−1)|α|α⊗ (d ◦ β) ◦∆s − (−1)|α| [·, ·] ◦ (α ◦ dλ)⊗ β ◦∆s

− (−1)|α|+|β| [·, ·] ◦ α⊗ (β ◦ dλ) ◦∆s

= [·, ·] ◦ (d ◦ α− (−1)|α|α ◦ dλ)⊗ β ◦∆s + (−1)|α| [·, ·] ◦ α⊗ (d ◦ β − (−1)|β|β ◦ dλ) ◦∆s

=dα ∧[·,·] β + (−1)|α|α ∧[·,·] dβ.

Let us consider the action of the symmetric group Sn+1 on the vector space Sym(g [1])⊗(n+1).
One observes that since the coproduct ∆s is cocommutative and coassociative, for a translation
σi ∈ Sn+1 the following holds

ε̂(σi) ◦∆n
s =(1⊗i−1 ⊗ T ⊗ 1⊗n−i) ◦ (1⊗i−1 ⊗∆s ⊗ 1⊗n−i) ◦∆n−1

s

=(1⊗i−1 ⊗ (T ◦∆s)⊗ 1⊗n−i) ◦∆n−1
s

=(1⊗i−1 ⊗∆s ⊗ 1⊗n−i) ◦∆n−1
s = ∆n

s .

Therefore, as this action is generated by translations, for every permutation σ ∈ Sn+1 we have

ε̂(σ) ◦∆n
s = ∆n

s . (7.6)

Proposition 7.3.2. Let ρ be a representation up to homotopy of g on V and αi ∈ Hom|αi|(Sym(g [1]),V),
for 1 ≤ i ≤ k. Given a k-linear map f ∈ Hom(V⊗k,W), consider

fα1,...,αk := f ◦ α1 ⊗ · · · ⊗ αk ◦∆k−1
s : Sym(g [1])→W.

Then for every σ ∈ Sk the following hold:

i. if f ∈ Symk(V,W), then

fα1,...,αk = ε(σ;α1, . . . , αk)fασ(1),...,ασ(k) ;

ii. if f ∈ Skewk(V,W), then

fα1,...,αk = χ(σ;α1, . . . , αk)fασ(1),...,ασ(k) .
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Proof. Note that for any σ ∈ Sn one has

ε̂(σ) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σ−1) = ε(σ;α1, . . . , αn)ασ(1) ⊗ · · · ⊗ ασ(n). (7.7)

In order to check (7.7) it suffices to show it for generators σi = (i, i+ 1) ∈ Sn, 1 ≤ i ≤ n− 1. Thus
for homogeneous elements xi ∈ V, 1 ≤ i ≤ n,

ε̂(σi) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σi)(x1 ⊗ · · · ⊗ xn) = (−1)|xi||xi+1|(ε̂(σi) ◦ α1 ⊗ · · ·
· · · ⊗ αn)(x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xn)

=(−1)|xi||xi+1|ε̂(σ)((−1)
∑n
k=1,k 6=i,i+1 |xk|(

∑n
j=k+1 |αj |)+|xi+1|(

∑n
j=i+1 |αj |)+|xi|(

∑n
j=i+2 |αj |)

ε̂(σi)α1(x1)⊗ · · · ⊗ αi(xi+1)⊗ αi+1(xi)⊗ · · · ⊗ αn(xn)

=(−1)|xi||xi+1|+
∑n
k=1,k 6=i,i+1 |xk|(

∑n
j=k+1 |αj |)+|xi+1|(

∑n
j=i+2 |αj |)+(|αi|+|xi+1|)(|αi+1|+|xi|)

α1(x1)⊗ · · · · · · ⊗ αi+1(xi)⊗ αi(xi+1)⊗ · · · ⊗ αn(xn)

=(−1)|xi||xi+1|+
∑n
k=1,k 6=i,i+1 |xk|(

∑n
j=k+1 |αj |)+|xi+1|(

∑n
j=i+1 |αj |)+|xi|(

∑n
j=i+2 |αj |)

(−1)|αi||αi+1|+|xi+1||αi+1|+|xi+1||xi|(−1)
∑n
k=1,k 6=i,i+1 |xk|(

∑n
j=k+1 |αj |)+|xi|(

∑n
j=i |αj |−|αi+1|)

(−1)|xi+1|(
∑n
j=i+2 |αj |)(α1 ⊗ · · · ⊗ αi+1 ⊗ αi ⊗ · · · ⊗ αn)(x1 ⊗ · · · ⊗ xn)

=(−1)|αi||αi+1|(α1 ⊗ · · · ⊗ αi+1 ⊗ αi ⊗ · · ·αn)(x1 ⊗ · · · ⊗ xn).

Hence
ε̂(σi) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σi) = (−1)|αi||αi+1|α1 ⊗ · · · ⊗ αi+1 ⊗ αi ⊗ · · · ⊗ αn.

To see item (i), let f ∈ Symk(V,W), then

fα1,...,αn =f ◦ α1 ⊗ · · · ⊗ αn ◦∆n−1
s

=f ◦ ε̂(σ) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σ−1) ◦∆n−1
s︸ ︷︷ ︸

=∆n−1
s , by equation (7.6)

=f ◦ ε(σ;α1, . . . , αn)ασ(1) ⊗ · · · ⊗ ασ(n) ◦∆n−1
s

=ε(σ;α1, . . . , αn)fασ(1),...,ασ(n) .

Regarding item (ii) let f ∈ Skewk(V,W), then

fα1,...,αn =f ◦ α1 ⊗ · · · ⊗ αn ◦∆n−1
s

=f ◦ χ̂(σ) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σ−1) ◦∆n−1
s

=f ◦ sgn(σ)ε̂(σ) ◦ α1 ⊗ · · · ⊗ αn ◦ ε̂(σ−1) ◦∆n−1
s

=sgn(σ)f ◦ ε(σ;α1, . . . , αn)ασ(1) ⊗ · · · ⊗ ασ(n) ◦∆n−1
s

=sgn(σ)ε(σ;α1, . . . , αn)fασ(1),...,ασ(n)

=χ(σ;α1, . . . , αn)fασ(1),...,ασ(n) .

7.4 Representations up to homotopy in terms of Maurer-Cartan
elements

Let us recall the relation between L∞-modules and Maurer-Cartan elements in a suitable dgla.
For that we follow [LM95]. Let us consider a differential (non-negative) graded vector space (dg-
vector space for short) V =

⊕
0≤k Vk, with a differential ∂ ∈ Hom1(V,V), ∂2 = 0,

V : · · · 0 V0 V1 V2 · · · Vn · · · .∂ ∂ ∂ ∂ ∂ ∂
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The space of endomorphisms End(V) =
⊕

k∈Z Homk(V,V) is a graded associative algebra with
product given by the composition of morphisms. In particular, it inherits a graded Lie algebra with
the commutator bracket. That is,

[S, T ] = S ◦ T − (−1)|S||T |T ◦ S.

for S, T ∈ End(V) homogeneous elements. Moreover, the differential operator ∂ of V induces a
degree 1 derivation δ of (End(V), [·, ·]) defined as follows, for T ∈ End(V)

δ(T ) := [∂, T ] = ∂ ◦ T − (−1)|T |T ◦ ∂.

Thus (End(V), [·, ·] , δ) is dgla which we denote by gl(V). The notion of representations up to
homotopy was originally introduced in [LM95] with the name of L∞-modules, and in this same
work, was shown that an L∞-module of an L∞-algebra (g, [·]) over the dg-vector space (V, ∂) is
equivalent to an L∞-morphism ρ from g to gl(V), where gl(V) is considered as an L∞-algebra, see
[LM95, Thm 5.4]. In [Rei19, Lem. 46] was proved that the map ρ is a L∞-morphism if and only if
the degree 1 map ρ̄ : Sym(g [1])→ gl(V) satisfies the equation

[∂,−] ◦ ρ̄+ ρ̄ ◦ dλ +
1

2
[·, ·] ◦ ρ̄⊗ ρ̄ ◦ ∆̄s = 0. (7.8)

Therefore, Corollary (7.3.2) implies that (Hom(Sym(g [1]), gl(V)),∧[·,·],d) is a dgla and the Equa-
tion (7.8) allows us to interpret a representation up to homotopy as a Maurer-Cartan element in this
dgla. By this we mean, the map ρ̄ is a degree 1 element in Hom(Sym(g [1]), gl(V)) which satisfies
the equation

dρ̄+
1

2
ρ̄ ∧[·,·] ρ̄ = 0.

We denote the set of Maurer-Cartan elements (or representations up to homotopy) of the dgla
(Hom(Sym(g [1]), gl(V)),∧[·,·],d) by Rep∞g (V, ∂).

Theorem 7.4.1. Let g and h be two L∞-algebras. An L∞-morphism F : g → h induces a dgla-
morphism

F ∗ : Hom(Sym(h [1]), gl(V))→ Hom(Sym(g [1]), gl(V)), F ∗α := α ◦ F.

Moreover, if F is an L∞-quasi-isomorphism then F ∗ is a quasi-isomorphism of dgla’s.

Proof. Let α, β ∈ Hom(Sym(h [1]), gl(V)) be two homogeneous elements, then

F ∗(α ∧[·,·] β) = [·, ·] ◦ α⊗ β ◦∆s ◦ F
= [·, ·] ◦ α⊗ β ◦ F ⊗ F ◦∆s

= [·, ·] ◦ (α ◦ F )⊗ (β ◦ F ) ◦∆s

=F ∗α ∧[·,·] F
∗β,

and

F ∗(dα) =([∂, ·] ◦ α− (−1)|α|α ◦ dλh) ◦ F
= [∂, ·] ◦ (α ◦ F )− (−1)|α|(α ◦ F ) ◦ dλg

= [∂, ·] ◦ F ∗α− (−1)|α|F ∗α ◦ dλg
=d(F ∗α).

Hence, F ∗ is a dgla-morphism. Now, let us suppose that F is an L∞-quasi-isomorphism then it is
well-known that there exists an inverse L∞-quasi-isomorphism G : h→ g, see for example [Kon03,
Mar04, ADM02, Mar06]. Furthermore, there exists linear maps H ∈ Hom−1(Sym(g [1]),Sym(g [1]))
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and H ′ ∈ Hom−1(Sym(h [1]), Sym(h [1])) such that

G ◦ F − Idg = dλg ◦H +H ◦ dλg , and F ◦G− Idh = dλh ◦H ′ +H ′ ◦ dλh .

One proof for this fact can be found in [Kaj07, Thm 7.5]. Thus, for some ω ∈ Hom(Sym(h [1]), gl(V))
homogeneous element we have

(G∗ ◦ F ∗ − Id)(ω) =G∗(ω ◦ F )− ω
=ω ◦ F ◦G− ω = ω ◦ (F ◦G− Idh)

=ω ◦ (H ′ ◦ dλh + dλh ◦H ′)
=− (−1)|ω| [∂, ·] ◦ ω ◦H ′ + ω ◦ dλh ◦H ′ + (−1)|ω| [∂, ·] ◦ ω ◦H ′ + ω ◦H ′ ◦ dλh
=− (−1)|ω|H ′∗(dω) + (−1)|ω|([∂, ·] ◦H ′∗ω − (−1)|ω|−1H ′∗ω ◦ dλh)

=(−1)|ω|(d(H ′∗ω)−H ′∗(dω)),

then
(G∗ ◦ F ∗ − Id)(ω) = (−1)|ω|(d(H ′∗ω)−H ′∗(dω)).

Therefore in cohomology one has that G∗ is left inverse of F ∗, and analogously we can see that
in cohomology G is right inverse. Therefore F ∗ is an isomorphism in cohomology, and so, a quasi-
isomorphism of dgla’s.

The next theorem allows us to give an interpretation of the word up to homotopy in the sense
that a representation up to homotopy of g on a dg-vector space V, actually, represents g in the
homological homotopy class of (V, ∂).

Theorem 7.4.2. Let ρ be a representation up to homotopy of the L∞-algebra g on the dg-vector
space V. Then there is an induced representation up to homotopy on the dg-vector space H(V, ∂).

Proof. First observe that H(V, ∂), or simple H(V), is a dg-vector space with null-differential and
it is well-known that the dg-vector space V is a deformation retract of H(V), that means, there are
linear maps

(V, ∂) (H(V, ∂), 0)H
π

ι

such that π ◦ ι = IdH(V) and IdV − ι ◦ π = ∂ ◦H +H ◦ ∂. This deformation allows us to construct
a strict L∞-quasi-isomorphism between the dgla’s,

(·)∗ : gl(H(V))→ gl(V), f∗ := ι ◦ f ◦ π.

This assignment is a linear dg-associative algebras homomorphism, for f and g in gl(H(V)) one has
that

(f ◦ g)∗ = ι ◦ (f ◦ g) ◦ π = (ι ◦ f ◦ π) ◦ (ι ◦ g ◦ π) = f∗ ◦ g∗.

Moreover, if F ∈ gl(V) is a class representative for a homogeneous element in H(gl(V), δ), then we
have ∂ ◦ F = (−1)|F |F ◦ ∂, so that for H(F ) ∈ gl(H(V)) the contraction above implies that

F − F ◦ ι ◦ π =F ◦ ∂ ◦H + F ◦H ◦ ∂
=(−1)|F |∂ ◦ (FH) + (FH) ◦ ∂
=∂ ◦ ((−1)|F |FH)− (−1)|F |−1((−1)|F |FH) ◦ ∂.

Hence F −F ◦ ι◦π =
[
∂, (−1)|F |FH

]
and F ◦ ι◦π = H(F )∗. Therefore [F ] = [H(F )∗] and so (·)∗ is

an L∞-quasi-isomorphism. Now according to [Kon03] there exists an inverse L∞-quasi-isomorphism
P : gl(V)→ gl(H(V)). Therefore the representation induced on H(V) is given by

ρ′ : g
ρ−→ gl(V)

P−→ gl(H(V)), ρ′ := P ◦ ρ.
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7.5 The reduced cohomology

Throughout this section let g be an L∞-algebra and ρ be a representation up to homotopy of
the L∞-algebra g on the dg-vector space V.

Proposition 7.5.1. Let α : Sym(g [1])→ V be a homogeneous linear map with α(1) = 0, then Dρα
satisfies Dρα(1) = 0 and

Dρα = ρ ∧ev α+ ∂ ◦ α− (−1)|α|α ◦ dλ.

Proof. Note that

Dρα(1) =ρ ◦ (Ids ⊗ α) ◦∆s(1)− (−1)|α|α ◦ d(1)

=ρ ◦ (Ids ⊗ α)(1⊗ 1)− 0

=ρ(1⊗ α(1)) = ∂(α(1)),

thus α(1) = 0 implies Dρα(1) = 0. Now for x ∈ Sym(g [1]) we have

Dρα(x) =ρ(Ids ⊗ α)(∆(x) + 1⊗ x+ x⊗ 1)− (−1)|α|α(d(x))

=ρ(Ids ⊗ α)∆(x) + ρ(Ids ⊗ α)(1⊗ x) + ρ(Ids ⊗ α)(x⊗ 1)− (−1)|α|α(d(x))

=ρ(Ids ⊗ α)∆(x) + ∂(α(x)) + (−1)|α||x|ρx(α(1))− (−1)|α|α(d(x)),

and since ρ(1⊗ α)∆ = ρ ∧ev α, then

Dρα = ρ ∧ev α+ ∂ ◦ α− (−1)|α|α ◦ d.

The above proposition allows us to reduce the coboundary operator Dρ to the subcomplex

Hom(Sym(g [1]),V) ⊆ Hom(Sym(g [1]),V),

that is

Dρ : Hom•(Sym(g [1]),V)→ Hom•+1(Sym(g [1]),V), Dρα = ρ ∧ev α+ ∂ ◦ α− (−1)|α|α ◦ d.

The next formula tells us that the operator Dρ̄ is a coboundary operator if and only if ρ̄ is a
representation up to homotopy as in Equation (7.8).

Proposition 7.5.2. The next formula holds

D2
ρ(·) =

(
1

2
ρ ∧[·,·] ρ+ ρ ◦ d+ [∂, ·] ◦ ρ

)
∧ev ·

Proof. Let us explicitly check the above formula in an arbitrary homogeneous linear map α :
Sym(g [1])→ V

Dρ(Dρα) =ρ ∧ev (Dρα) + ∂(Dρα)− (−1)|α|+1Dρα ◦ d
=ρ ∧ev (ρ ∧ev α) + ρ ∧ev (∂ ◦ α) + ρ ∧ev (−(−1)|α|α ◦ d) + ∂ ◦ ρ ∧ev α+ ∂ ◦ ∂ ◦ α+

− (−1)|α|∂ ◦ α ◦ d− (−1)|α|+1ρ ∧ev α ◦ d− (−1)|α|+1∂ ◦ α ◦ d− (−1)|α|+1((−1)|α|+1α ◦ d ◦ d)

= ρ ∧ev (ρ ∧ev α)︸ ︷︷ ︸
A

+ ρ ∧ev (∂ ◦ α) + ∂ ◦ (ρ ∧ev α)︸ ︷︷ ︸
B

−(−1)|α| ρ ∧ev (α ◦ d) + (−1)|α|(ρ ∧ev α) ◦ d︸ ︷︷ ︸
C

.
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Then let us analyse expressions A,B and C, separately

A = (ρ ∧ev α) ◦ d =ev ◦ ρ⊗ α ◦∆s ◦ d
=ev ◦ ρ⊗ α ◦ (Ids ⊗ d+ d⊗ Ids) ◦∆s

=ρ ∧ev (α ◦ d) + (−1)|α|(ρ ◦ d) ∧ev α.
B = ρ ∧ev (ρ ∧ev α) =ev ◦ ρ⊗ (ev ◦ ρ⊗ α ◦∆s) ◦∆s

=ev ◦ (Ids ⊗ ev) ◦ (ρ⊗ ρ⊗ α) ◦ (Id⊗∆s) ◦∆s

=(C ⊗ ev) ◦ (ρ⊗ ρ⊗ α) ◦∆2
s

=(ρ ∧C ρ) ∧ev α

=
1

2
(ρ ∧[·,·] ρ) ∧ev α.

Regarding expression C, let x be in Sym(g [1]) then

([∂, ·] ◦ ρ) ∧ev α(x) =(ev ◦ ([∂, ·] ◦ ρ)⊗ α)
(∑

x(1) ⊗ x(2)

)
=
∑

(−1)|x(1)||α|[∂, ρx(1) ](α(x(2))

=
∑

(−1)|x(1)||α|
(
∂ρx(1)(α(x(2)))− (−1)|x(1)|+1ρx(1)∂(α(x(2)))

)
=
∑

(−1)|x(1)||α|∂ρx(1)(α(x(2))) + (−1)(|x(1)|+1)|α|ρx(1)∂(α(x(2)))

=∂ ◦ (ρ ∧ev α)(x) + ρ ∧ev (∂α)(x).

Putting all these observations together gives rise to

D2
ρα =(

1

2
ρ ∧[·,·] ρ) ∧ev α+ ([∂, ·] ◦ ρ) ∧ev α+ (ρ ◦ d) ∧ev α

=

(
1

2
ρ ∧[·,·] ρ+ [∂, ·] ◦ ρ+ ρ ◦ d

)
∧ev α.

Definition 7.5.1. Let g be an L∞-algebra, and ρ be a representation up to homotopy of g on the
dg-vector space (V, ∂). The cohomology of the subcomplex(

Hom(Sym(g [1]),V), Dρ

)
is said to be the L∞ reduced cohomology of g with values in V. We denote this complex by
Cred(g,V).

7.6 The canonical spectral sequence

In this section we study the canonical spectral sequence associated to the L∞-algebra cohomol-
ogy with values in a dg-vector space. In particular, as the main result we show that this cohomology
is invariant by equivariant quasi-isomorphisms.

Let g be an L∞ algebra and ρ be a representation up to homotopy of g on (V, ∂). Let us consider
the primitive filtration of the coalgebra (Sym(g [1]),∆s, ε, η). That is,

Sym[0](g [1]) = 0, Sym[1](g [1]) = R, Sym[p](g [1]) =
⊕
n<p

Symn(g [1]).

Abstractly Sym[p](g [1]) = R⊕ ker(∆̄
(p)
s ), for all p > 1. It is well-known that the primitive filtration
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is an ascending filtration that is exhaustive, Hausdorff, and bounded below.

∞⋃
n=0

Sym[n](g [1]) = Sym(g [1]),

∞⋂
n=0

Sym[n](g [1]) = 0, and Sym[−1](g [1]) = 0.

Moreover, the coderivation d induced by the L∞ structure preserves the filtration because of Lemma
(6.2.1). The primitive filtration on Sym(g [1]) induces a descending filtration on the cochain complex
Cρ(g,V). For all p integer it is given by

F pCρ(g,V) :=
{
α : Sym(g [1])→ V |α(Sym[p](g [1])) = 0

}
.

Observe that F 0Cρ(g,V) = Cρ(g,V) and F 1Cρ(g,V) = Cred(g,V) then

· · ·F p+1Cρ(g,V) ⊆ F pCρ(g,V) ⊆ · · · ⊆ Cred(g,V) ⊆ Cρ(g,V).

This filtration is clearly exhaustive,
⋃∞
n=0 F

nCρ(g,V) = Cρ(g,V), and complete, since it is straight-
forward to see that

Cρ(g,V)/FnCρ(g,V) ' Hom(Sym[n](g [1]),V).

Then one has that

lim
←−

Hom(Sym[n](g [1]),V) ' Hom(Sym(g [1]),V) = Cρ(g,V).

Moreover, we have
Dρ(F

pC•ρ(g,V)) ⊆ F pC•+1
ρ (g,V).

Since α ∈ Cρ(g,V) satisfies α(Sym[p](g [1])) = 0, the following hold

• ∂α(Sym[p](g [1])) ⊆ ∂0 = 0;

• αd(Sym[p](g [1])) ⊆ α(Sym[p](g [1])) = 0;

• ρ̄ ∧ev α(Sym[p](g [1])) ⊆ (ev ◦ (ρ̄⊗ α)) (Sym[p](g [1])⊗2) ⊆ ev(gl(V)⊗ 0) = 0.

Then Dρα(Sym[p](g [1])) = 0. As a result we have the following proposition.

Proposition 7.6.1. The associated spectral sequence to the filtration above weakly converges

Ep,q1 (g;V)⇒ Hp+q
CE,ρ(g;V).

Proof. The descending filtration above is exhaustive and complete then the spectral sequence weakly
converges by Theorem 10 Section 5.5 in [Wei94].

The associated spectral sequence to the filtration of the complex C(g;V) starts with

Ep,q0 = F pCp+q(g,V)/F p+1Cp+q(g,V) ' Homp+q(Symp(g [1]),V)

and d0 : Ep,q0 → Ep,q+1
0 is given by D̄ρ. For α ∈ Homp+q(Symp(g [1]),V) we have

d0α = ∂α− (−1)p+qαd1
1
⊗
, (7.9)

where d1
1
⊗ is the coderivation induced by λ1. Explicitly for xi ∈ g [1] , 1 ≤ i ≤ p it holds that

d0α(x1 ∨ · · · ∨ xp) =∂(α(x1 ∨ · · · ∨ xp))−
∑

σ∈Sh−1
1,p−1

(−1)p+qε(σ)α(λ1(xσ(1)) ∨ xσ(2) · · · ∨ xσ(p)).

We are ready to state the main result of this chapter which establishes that the L∞-cohomology is
invariant by L∞-quasi-isomorphisms
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Theorem 7.6.1. Let ρ and ρ′ be two representations up to homotopy of g and h on the dg-vector
spaces V and W, respectively. If (F, f) : g→ h is a (ρ, ρ′)-equivariant L∞-quasi-isomorphism along
to f : W→ V, then the induced map

F ∗ : HCE,ρ′(h;W)→ HCE,ρ(g;V),

is an isomorphism.

Proof. Initially we observe that as F is a coalgebra morphism it preserves the primitive filtration
on Sym(g [1]) and Sym(h [1]) then F ∗ preserves the filtration on the cochain complexes Cρ′(h,W)
and Cρ(g,V). Thus, F ∗ induces a morphism between spectral sequences. Now we shall see that

F ∗1 : Ep,q1 (h;W)→ Ep,q1 (g;V),

is an isomorphism. For this we take an L∞-homotopy inverse T for F , it exists by [Kaj07, Thm.7.5].
Note that by Equation (6.2.1) a coderivation preserves the primitive filtration, then in particular
for a homotopy coderivation H of Sym(h [1]) the equation

F ◦ T − Id = Hd+ dH,

holds on Symp(h [1]) for all 1 ≤ p. On the other hand, one has that for some p, q > 0 the map
F ∗0 : Ep,q0 (h;W) → Ep,q0 (g;V) depends only on F 1

1 and f , indeed, for xi ∈ g [1] , 1 ≤ i ≤ p and
α ∈ Ep,q0 (h;W)

F ∗0α(x1 ∨ · · · ∨ xp) = fα(F 1
1 (x1) ∨ F 1

1 (x2) ∨ · · · ∨ F 1
1 (xp)).

Then if t is a homotopy inverse for f , then the maps (T, t) : h → g, although they are not a
(ρ′, ρ)-equivariant map, they determine a well-defined map on

T ∗0 : Ep,q0 (g;V)→ Ep,q0 (h;W),

for all p, q > 0. Now it is straightforward to verify that T ∗0 is a homotopy left inverse for F ∗0 ,

T ∗0F
∗
0α =(Id + h∂ + ∂h)α(Id +Hd1

1
⊗

+ d1
1
⊗
H)

=α+ d0

(
hα+ hαHd1

1
⊗

+ (−1)|α|(αH + h∂αH)
)
.

In a similar way we can see that T ∗0 is a homotopy right inverse of F ∗0 . Hence, F ∗1 is an isomorphism,
and therefore by the Eilenberg-Moore Comparison Theorem [Wei94, Thm 5.5.11] we have

H(F ∗) : HCE,ρ′(h;W)→ HCE,ρ(g;V),

is an isomorphism.

In some sense, the next result tells us that the L∞-cohomology depends strongly on the homo-
topy type of both the L∞-algebra and the coefficient space.

Theorem 7.6.2.
Ep,q1 (g;V) ' Homp+q(Symp(H(g) [1]), H(V)).

Proof. Let us consider the minimal model of g, that is, an L∞-structure on H(g) := H(g, [·]1)
together with an L∞-quasi-isomorphism q : H(g)→ g. Then ρ∗ := q∗ρ determines a representation
up to homotopy of H(g) on V such that

(q, Id) : H(g)→ g,

is a (ρ∗, ρ)-equivariant map, thus by Theorem 7.6.1 one has

Ep,q1 (g;V) ' Ep,q1 (H(g);V),
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and as
Ep,q1 (H(g);V) = H(Ep,q0 (H(g);V), d0)

where d0 is induced by ∂, by Equation (7.9). Hence,

H(Ep,q0 (H(g);V), d0) 'H(Homp+q(Symp(H(g) [1]),V), d0)

'Homp+q(Symp(H(g) [1]), H(V)).



Chapter 8

The Chern-Weil-Lecomte morphism

This is the main chapter of this thesis. We present the extension of the Chern-Weil-Lecomte
homomorphism to the of extensions of L∞-algebras together with representations up to homotopy.
This construction extends the algebraic approach to the Chern-Weil homomorphism made by P. B.
Lecomte in [Lec82, Lec94]. For that, in Section 1 we study extensions of L∞-algebras and present
some useful results about splittings, in particular we get a Bianchi identity in this context. In Section
2 we state and prove the main result of this work, namely, Theorem 8.2.1, which is a L∞-version
of the Chern-Weil-Lecomte morphism. In Section 3 we will see some results about the naturality of
this construction, and finally in Section 4 we study the particular case of extensions of (strict) Lie
2-algebras together with a 2-term representation up to homotopy.

8.1 Extensions of L∞-algebras

We start by reviewing extensions of L∞-algebras. For a broader discussion see [MZ12, Chap.6],
[CL13, Chap.3.1], and [Rei19, Chap. 5.3].

Definition 8.1.1. An extension of L∞-algebras is a short exact sequence of L∞-algebras

0 n ĝ g 0,ι π

in which the L∞-morphism π and ι are strict L∞-morphisms. In that case we say that ĝ it is an
extension of g by n.

Remark 8.1.1. As π is a strict L∞-morphism it is determined by π1
1, π = S(π1

1). Then a linear
section h1

1 : g [1]→ ĝ [1] of π1
1 induces a coalgebra morphism h = S(h1

1) which is a linear section of
π,

π ◦ h = S(π1
1) ◦ S(h1

1) = S(π1
1 ◦ h1

1) = S(Id) = Id.

Therefore, in the sequel we shall denote a linear section of π1
1 simply by h and say that it is a linear

section of π.

Proposition 8.1.1. Let

0 n ĝ g 0,ι π

h

be an extension of L∞-algebras and h a linear section of π. Then for each k ≥ 1 the linear map

Kk
h := λ̂k ◦ h⊗k − h ◦ λk : g [1]⊗k → ĝ [1] ,

has the following properties:

i. Kk
h is a linear symmetric map of degree 1, and

77
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ii. im(Kk
h) ⊆ n [1].

In particular, there is a well-defined linear map Kk
h : Symk(g [1])→ n [1], for all k ∈ N and it defines

a linear map
Kh :=

∑
k≥1

Kk
h : Sym(g [1])→ n [1] ,

of degree one referred to as the curvature of h.

Proof. For item (i) if xi ∈ g for 1 ≤ i ≤ k, then

λ̂k ◦ h⊗k(x1 ⊗ · · · ⊗ xk) =λ̂k(h(x1)⊗ · · · ⊗ h(xk))

=ε(σ;h(x1), . . . , h(xn))λ̂k(h(xσ(1)),⊗ · · · ⊗ h(xσ(k)))

=ε(σ;x1, . . . , xn)(λ̂k ◦ h⊗k)(xσ(1) ⊗ · · · ⊗ xσ(k)),

since, h is degree-preserving map ε(σ;h(x1), . . . , h(xn)) = ε(σ;x1, . . . , xn). So,

Kk
h(x1 ⊗ · · · ⊗ xn) =ε(σ;x1, . . . , xn)(λ̂k ◦ h⊗k)(xσ(1) ⊗ · · · ⊗ xσ(k))

− h(ε(σ;x1, . . . , xn)λk(xσ(1) ⊗ · · · ⊗ xσ(k)))

=ε(σ;x1, . . . , xn)(λ̂k ◦ h⊗k − h ◦ λk)(xσ(1) ⊗ · · · ⊗ xσ(k)).

Therefore, Kk
h(x1 ⊗ · · · ⊗ xn) = ε(σ;x1, . . . , xk)K

k
h(xσ(1) ⊗ · · · ⊗ xσ(k)) is symmetric, moreover as

the degree of λk, λ̂k is 1 and the degree of h is 0, then Kk
h has degree 1. For item (ii) note that

π : ĝ→ g is a strict morphism between L∞-algebras, then one has that π1
1 ◦ λ̂k = λk ◦ (π1

1)⊗k. Thus

π1
1(Kk

h) =π1
1 ◦ λ̂k ◦ h⊗k − π1

1 ◦ h ◦ λk
=λk ◦ (π1

1)⊗k ◦ h⊗k − π1
1 ◦ h ◦ λk

=λk ◦ (π1
1 ◦ h)⊗k − (π1

1 ◦ h) ◦ λk
=λk − λk
=0.

Then, by exactness of the sequence, one has that

Im(Kk
h) ⊆ ker(π1

1) = Im(ι) = n [1] .

Remark 8.1.2. We can interpret the curvature Kh as the failure of h being an L∞-morphism.
Indeed,

Kh = λ̂ ◦ S(h)− h ◦ λ = Prg[1] ◦ (d̂ ◦ S(h)− S(h) ◦ d).

Definition 8.1.2. Let (g [1] , λ) be an L∞-algebra. A graded subspace n [1] is an ideal if for every
x ∈ n [1] and y ∈ Sym(g [1]) we have λ(x ∨ y) ∈ n [1].

Example 8.1.1. For an extension of L∞-algebras as in (8.1.1) the space ker(π1
1) = n [1] is an ideal

of ĝ [1], since for x ∈ n [1] and y ∈ Sym(ĝ [1]) we have

π1
1(λ̂(x ∨ y)) =λ(π1

1(x) ∨ π(y))

=λ(0 ∨ π(y))

=0,

hence, λ̂(x ∨ y) ∈ n [1].
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Remark 8.1.3. For an extension of L∞-algebras, we can restrict the adjoint representation, see
Example 7.1.1, to the ideal n [1]. That is,

adn : Sym(ĝ [1])⊗ n [1]→ n [1] , adn(x⊗ y) := λ̂(x ∨ y).

This is a representation up to homotopy of ĝ on n [1]. Consider the linear map

S : Sym(g [1])⊗ n [1]→ n [1] , S(x⊗ y) := λ̂(S(h)(x) ∨ y).

Equivalently,
S = λ̂ ◦ µ̂ ◦ (S(h)⊗ Idn),

with µ̂ being the multiplication map on the algebra Sym(ĝ [1]). A priori, if the map h is not an
L∞ morphism, there is no reason for S being a representation of g. Now for a homogeneous map
f ∈ Hom(Sym(g [1]), n [1]) of degree p we define the map

dSf := S ◦ (Ids ⊗ f) ◦∆s − (−1)pf ◦ d ∈ Homp+1(Sym(g [1]), n [1]).

Theorem 8.1.1 (Bianchi’s Identity). Let Kh ∈ Hom1(Sym(g [1]), n [1]) be the curvature of a split-
ting h of π. Then

dSKh = 0.

Proof. This follows from a direct computation. Indeed,

dSKh =S ◦ (Ids ⊗Kh) ◦∆s − (−1)1Kh ◦ d
=S ◦ (Ids ⊗ (λ̂ ◦ S(h)) ◦∆s − S ◦ (Ids ⊗ h ◦ λ) ◦∆s

+ (λ̂ ◦ S(h)) ◦ d− (h ◦ λ) ◦ d︸ ︷︷ ︸
λ◦d=0

=S ◦ (Ids ⊗ (λ̂ ◦ S(h))) ◦∆s︸ ︷︷ ︸
A

−S ◦ (Ids ⊗ (h ◦ λ)) ◦∆s︸ ︷︷ ︸
B

+ λ̂ ◦ S(h) ◦ d︸ ︷︷ ︸
C

Computing the term A:

A =λ̂ ◦ µ̂ ◦ (S(h)⊗ Idn) ◦ (Ids ⊗ (λ̂ ◦ S(h))) ◦∆s

=λ̂ ◦ µ̂ ◦ (S(h)⊗ (λ̂ ◦ S(h)) ◦∆s

=λ̂ ◦ µ̂︸︷︷︸
=µ̂◦T

◦(Ids ⊗ λ̂) ◦ (S(h)⊗ S(h)) ◦∆s︸ ︷︷ ︸
=∆s◦S(h), T◦∆s=∆s

=λ̂ ◦ µ̂ ◦ T ◦ (Ids ⊗ λ̂) ◦ T︸ ︷︷ ︸
=λ̂⊗Ids

◦∆s ⊗ S(h)

=λ̂ ◦ µ̂ ◦ (λ̂⊗ Ids) ◦∆s︸ ︷︷ ︸
=d

◦S(h)

= λ̂ ◦ d̂︸︷︷︸
=0

◦S(h)

=0.

Computing the term B:

B =− λ̂ ◦ µ̂ ◦ (S(h)⊗ Idn) ◦ (Ids ⊗ (h ◦ λ)) ◦∆s

=− λ̂ ◦ µ̂ ◦ (S(h)⊗ (h ◦ λ)) ◦∆s.
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Computing the term C:

C =λ̂ ◦ S(h) ◦ µ︸ ︷︷ ︸
=µ̂◦(S(h)⊗S(h))

◦(λ⊗ Ids) ◦∆s

=λ̂ ◦ µ̂ ◦ (S(h)⊗ S(h)) ◦ (λ⊗ Ids) ◦∆s

=λ̂ ◦ µ̂︸︷︷︸
=µ̂◦T

◦((S(h) ◦ λ)⊗ S(h)) ◦ ∆s︸︷︷︸
=T◦∆s

=λ̂ ◦ µ̂ ◦ T ◦ ((h ◦ λ)⊗ S(h)) ◦ T︸ ︷︷ ︸
=S(h)⊗(h◦λ)

◦∆s

=λ̂ ◦ µ̂ ◦ (S(h)⊗ (h ◦ λ)) ◦∆s.

Hence,

dSKh =A+B + C

=0.

8.2 The Chern-Weil-Lecomte morphism

In [Lec82, Lec94] P.B. Lecomte gave a construction of the Chern-Weil map for an extension of
Lie algebras together with a representation of Lie algebras. See section 1.3 and also [Nee10] for more
details. In this section we extend the Lecomte’s construction to the setting of extensions of L∞-
algebras and representations up to homotopy. For that, let us consider an extension of L∞-algebras

0 n ĝ g 0,ι π

and ρ a representation up to homotopy of g on the dg-vector space V. A space of great interest for
us is the set of k-linear skew-symmetric maps between n [1] and V which are ĝ-equivariant, that is,

Hom•(∧kn [1] ,V)ĝ =
{
f ∈ Hom•(∧kn [1] ,V) | f (π∗ρ, ad⊗kn )-equivariant

}
.

Note that given a linear section h : g [1] → ĝ [1] of π, one has that Kh ∈ Hom1(Sym(g [1]), n [1]),
then

K
∧⊗k
h := Kh ∧⊗ · · · ∧⊗︸ ︷︷ ︸

k−times

Kh ∈ Homk(Sym(g [1]), n [1]⊗k),

so that, for each f ∈ Hom•(∧kn [1] ,V) we define

fh := f ◦K∧⊗kh ∈ Homk+•(Sym(g [1]),V).

Theorem 8.2.1. There is a natural map

cw : Hom•(∧kn [1] ,V)ĝ → Hk+•
CE (g;V); f 7→ [fh] (8.1)

that is independent of the chosen linear section h of π.

The map cw in (8.1) is called the L∞- Chern-Weil-Lecomte morphism. Before providing a
proof of this theorem we shall present some auxiliary propositions.

Proposition 8.2.1. If for all k ≥ 1 the map f : n [1]⊗k → V is (π∗ρ, ad⊗kn )-equivariant and
h : g [1]→ ĝ [1] is a section of π, then f is (ρ, ad⊗kn ◦ (S(h)⊗ Idv))-equivariant.

Proof. We shall see the equivariance statement. Let us denote by S⊗k = ad⊗kn ◦ (S(h)⊗ Idv)
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Sym(ĝ [1])⊗ n [1]⊗k n [1]⊗k Sym(g [1])⊗ n [1]⊗k n [1]⊗k

Sym(ĝ [1])⊗ V V, Sym(g [1])⊗ V V.

Idŝ⊗f

ad⊗kn

f Ids⊗f

S⊗k

f

π∗ρ ρ

Then

f ◦ S⊗k =f ◦ ad⊗kn ◦ (S(h)⊗ Idv)

=ρ̂ ◦ (Idŝ ⊗ f) ◦ (S(h)⊗ Idv)

=ρ ◦ (S(π)⊗ Idv) ◦ (S(h)⊗ Idv) ◦ (Ids ⊗ f)

=ρ ◦ ((S(π) ◦ S(h)︸ ︷︷ ︸
=S(π◦h)

)⊗ Idv) ◦ (Ids ⊗ f)

=ρ ◦ (Ids ⊗ Idv) ◦ (Ids ⊗ f)

=ρ ◦ (Ids ⊗ f).

Proposition 8.2.2. Let h0, h1 : g [1]→ ĝ [1] be two sections of π and consider

ht := h0 + t(h1 − h0) = h0 + tᾱ, 0 ≤ t ≤ 1

with ᾱ = h1 − h0 : g [1]→ n [1]. For α = ᾱ ◦ Prg[1] : Sym(g [1])→ n [1] one has that

d

dt
Kht = dStα,

where St := λ̂ ◦ µ̂ ◦ (S(ht)⊗ Ids) : Sym(g [1])⊗ ĝ [1]→ ĝ [1].

Proof. On the one hand we have

Kht+t0
=λ̂ ◦ S(ht+t0)− ht+t0 ◦ λ

=λ̂ ◦ S(ht + t0ᾱ)− (ht + t0ᾱ) ◦ λ
=λ̂ ◦ (S(ht) + S(t0ᾱ) +Kht,t0ᾱ)− ht ◦ λ− t0ᾱ ◦ λ.

For Kht,t0ᾱ := S(ht + t0ᾱ)− (S(ht) + S(t0ᾱ)),

Kht+t0
=(λ̂ ◦ S(ht)− ht ◦ λ) + (λ̂ ◦ S(t0ᾱ)− t0ᾱ ◦ λ) + λ̂ ◦Kht,t0ᾱ.

So that,

d

dt
Kht =

d

dt

∣∣∣∣
t0=0

Kht+t0
=

d

dt

∣∣∣∣
t0=0

Kht +
d

dt

∣∣∣∣
t0=0

Kt0ᾱ +
d

dt

∣∣∣∣
t0=0

λ̂ ◦Kht,t0ᾱ.

Then, d
dt

∣∣
t0=0

Kht = 0, since it is independent of t0,

d

dt

∣∣∣∣
t0=0

Kt0ᾱ =
d

dt

∣∣∣∣
t0=0

(λ̂ ◦ S(t0ᾱ)− t0ᾱ ◦ λ)

=
∑
k

d

dt

∣∣∣∣
t0=0

λ̂k ◦ tk0Sk(ᾱ)− d

dt

∣∣∣∣
t0=0

t0ᾱ ◦ λ

=λ̂1 ◦ S1(ᾱ) ◦ Prg[1] − ᾱ ◦ λ,
d

dt

∣∣∣∣
t0=0

Kt0α =λ̂1 ◦ α− ᾱ ◦ λ,
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and

d

dt

∣∣∣∣
t0=0

λ̂ ◦Kht,t0ᾱ =
∑
k

λ̂k

(
d

dt

∣∣∣∣
t0=0

Kk
ht,t0ᾱ

)
.

On the other hand,

d

dt

∣∣∣∣
t0=0

Kk
ht,t0ᾱ =

d

dt

∣∣∣∣
t0=0

(Sk(ht + t0ᾱ)− Sk(ht)︸ ︷︷ ︸
=0

−Sk(t0ᾱ))

=
d

dt

∣∣∣∣
t0=0

Sk(ht + t0ᾱ)−
{
S1(ᾱ), k = 1,

0, k 6= 1,

and for xi ∈ g [1] , 1 ≤ i ≤ k

d

dt

∣∣∣∣
t0=0

Sk(ht + t0ᾱ)(x1 ∨ · · · ∨ xk) =
d

dt

∣∣∣∣
t0=0

(ht + t0ᾱ)x1 ∨ · · · ∨ (ht + t0ᾱ)xk

=
k∑
i=1

ht(x1) ∨ · · · ∨ ht(xi−1) ∨ ᾱ(xi) ∨ ht(xi+1) ∨ · · · ∨ ht(xk),

hence
d

dt

∣∣∣∣
t0=0

Sk(ht + t0ᾱ) =
k∑
i=1

ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht.

Then,

d

dt

∣∣∣∣
t0=0

λ̂ ◦Kht,t0ᾱ =
∑
k

λ̂k

(
k∑
i=1

ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht

)
− λ̂1 ◦ ᾱ ◦ Prg[1].

Therefore,

d

dt

∣∣∣∣
t0=0

Kht+t0α =λ̂1 ◦ α− ᾱ ◦ λ+
∑
k

λ̂k

(
k∑
i=1

ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht

)
− λ̂1 ◦ ᾱ ◦ Prg[1]

=
∑
k

(
k∑
i=1

λ̂k(ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht)

)
− α ◦ λ,

and observe that

∑
k

(
k∑
i=1

λ̂k(ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht)

)
= λ̂ ◦ µ̂ ◦ (S(ht)⊗ Ids) ◦ (Ids ⊗ α) ◦∆s.
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To check this last expression let us do the direct computation. For this recall that α = ᾱ ◦ Prg[1]

λ̂ ◦ µ̂◦(S(ht)⊗ Ids) ◦ (Ids ⊗ α) ◦∆s(x1 ∨ · · · ∨ xk) = λ̂ ◦ µ̂ ◦ (S(ht)⊗ Ids)

◦

 ∑
σ∈Sh−1

k−1,1

ε(σ)xσ(1) ∨ · · · ∨ xσ(k−1) ⊗ ᾱ(xσ(k))


=λ̂ ◦ µ̂

 ∑
σ∈Sh−1

k−1,1

ε(σ)ht(xσ(1)) ∨ · · · ∨ ht(xσ(k−1))⊗ ᾱ(xσ(k))


=λ̂k

 ∑
σ∈Sh−1

k−1,1

ε(σ)ht(xσ(1)) ∨ · · · ∨ ht(xσ(k−1)) ∨ ᾱ(xσ(k))

 .

Note that
|Sh−1

k−1,1| = | {σ ∈ Sk |σ(1) < σ(2) < · · · < σ(k − 1)} | = k,

then

λ̂ ◦ µ̂◦(S(ht)⊗ Ids) ◦ (Ids ⊗ α) ◦∆s(x1 ∨ · · · ∨ xk) =

=λ̂k

(
k∑
i=1

ε(σ)ht(x1) ∨ · · · ∨ ᾱ(xi) ∨ · · ·ht(xk)

)

=λ̂k

(
k∑
i=1

ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht

)
(x1 ∨ · · · ∨ xk).

Hence,

d

dt

∣∣∣∣
t0=0

Kht+t0
=
∑
k

(
k∑
i=1

λ̂k(ht ∨ · · · ∨ ᾱ ∨ · · · ∨ ht)

)
− ᾱ ◦ λ

=St ◦ (Ids ⊗ α) ◦∆s − (−1)|α|α ◦ d
=dStα.

Now we shall prove Theorem 8.2.1.

Proof. Let h : g [1]→ ĝ [1] be a linear section of π, thenKh ∈ Hom1(Sym(g [1]), n [1]) by Proposition
8.1.1. Thus, for f ∈ Hom•(∧kn [1] ,V)ĝ we have

fh = f ◦K∧⊗kh ∈ Homk+•(Sym(g [1]),V).

Now we shall see that fh is a cocycle and that its cohomology class is independent of the chosen
linear section h of π. Let us see that fh is a cocycle.
Indeed:
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Dρfh =Dρ(f ◦Kh ∧⊗ · · · ∧⊗ Kh)

=f ◦ dS⊗k(Kh ∧⊗ · · · ∧⊗ Kh), (by Proposition 7.1.2)

=f ◦

(
k∑
i=1

(−1)i−1Kh ∧⊗ · · · ∧⊗ dSKh ∧⊗ · · · ∧⊗ Kh

)
, (by Leibniz Rule)

=f ◦

(
k∑
i=1

(−1)i−1Kh ∧⊗ · · · ∧⊗ 0 ∧⊗ · · · ∧⊗ Kh

)
, (by Bianchi’s Identity)

=f ◦ 0

=0.

Let us check now that [fh] does not depend on h. Let h0, h1 be two linear degree-preserving sections
of π. Now consider α = (h1 − h0) ◦ Prg[1] : Sym(g [1]) → n [1], and ht := h0 + t(h1 − h0) a
one-parameter family of sections of π, for 0 ≤ t ≤ 1, then

fα,Kht := f ◦ α ∧⊗ K∧⊗k−1
ht

∈ Homk−1+•(Sym(g [1]),V),

and note that

Dρfα,Kht =Dρ(f ◦ α ∧⊗ K∧⊗k−1
ht

)

=f ◦ dS⊗kt (α ∧⊗ K∧⊗k−1
ht

) (by Propositions 8.2.1 and 7.1.2)

=f ◦ (dStα ∧⊗ K
∧⊗k−1
ht

+ α ∧⊗ (dS⊗k−1
t

K
∧⊗k−1
ht

)) (Leibniz rule)

=f ◦ (dStα ∧⊗ K
∧⊗k−1
ht

)

so that,
Dρfα,Kht = f ◦ (dStα ∧⊗ K

∧⊗k−1
ht

) := fdStα,Kht .

On the other hand, for fht we have

d

dt
fht =

d

dt

∣∣∣∣
t0=0

fht+t0

=f ◦

(
d

dt

∣∣∣∣
t0=0

K
∧⊗k
ht

)
(Linearity)

=f ◦

(
k∑
i=1

Kht+0 ∧⊗ · · · ∧⊗
d

dt

∣∣∣∣
t0=0

Kht+t0
∧⊗ · · · ∧⊗ Kht+0

)
, (Theorem 7.3.1)

=f ◦

(
k∑
i=1

Kht ∧⊗ · · · ∧⊗ dStα ∧⊗ · · · ∧⊗ Kht

)
. (Proposition 8.2.2)

As f is skew-symmetric, by Proposition (7.3.2) we have

f ◦Kht ∧⊗ · · · ∧⊗ dStα ∧⊗ · · · ∧⊗ Kht =

= χ(σ;Kht , . . . ,Kht , dStα,Kht , . . . ,Kht)f ◦ dStα ∧⊗ Kht ∧⊗ · · · ∧⊗ Kht

for σ the permutation given by σ(i) = 1, σ(1) = i, σ(j) = j, j 6= 1, i, i.e., σ = (1, i). Since |Kht | = 1,
and |dStα| = 1, then

χ(σ;Kht , . . . ,Kht , dStα,Kht , · · · ,Kht) = sgn(σ)sgn(σ) = 1.
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Therefore,

f ◦Kht ∧⊗ · · · ∧⊗ dStα ∧⊗ · · · ∧⊗ Kht = f ◦ dStα ∧⊗ Kht ∧⊗ · · · ∧⊗ Kht ,

so that,

d

dt
fht =

k∑
i=1

f ◦ (dStα ∧⊗ Kht ∧⊗ · · · ∧⊗ Kht)

=kf ◦ dStα ∧⊗ K
∧⊗k−1
ht

=kfdStα,Kht
=kDρfα,Kht .

Thus,

fh1 − fh0 =

∫ 1

0

d

dt
fhtdt

=

∫ 1

0
kDρfα,Khtdt

=Dρ

(
k

∫ 1

0
fα,Khtdt

)
∈ Homk+•(Sym(g [1]),V)

That is, fh0 and fh1 are cohomologous.

8.3 Naturality

In this section we shall see the naturality of the L∞-Chern-Weil-Lecomte morphism and conse-
quently, the induced characteristic classes. Let us consider an extension of L∞-algebras

0 n ĝ g 0,ι π

and T : h→ g be an L∞-morphism. Since π is an L∞-epimorphism and the category of L∞-algebras
has pullbacks, see [Rog20, Thm 5.9] and [Val20, Thm 2.1], the pullback of T and π give rise to an
extension of L∞-algebras of h by n such that the next diagram of L∞-algebras is commutative

0 0

n n

ĥ ĝ

h g

0 0.

Id

ι• ι

T•

π• π

T

Now if we consider a linear section h : g [1]→ ĝ [1] of π and the induced coalgebra morphism S(h) :
Sym(g [1]) → Sym(ĝ [1]), the pullback property in the category of coalgebras implies the existence
of a coalgebra morphism h : Sym(h [1])→ Sym(ĥ [1]) such that π• ◦ h = Id and T• ◦ h = S(h) ◦ T .
We point out that due to fact that π• is a strict L∞-morphism it preserves the weight degree, thus
h has to preserve the weight degree as well. Hence, h is a strict coalgebra morphism and therefore
it is determined by h1

1 : h [1]→ ĥ [1] as h = S(h
1
1). We have the following result.



86 THE CHERN-WEIL-LECOMTE MORPHISM 8.3

Proposition 8.3.1. Let
0 n ĝ g 0,ι π

be an extension of L∞-algebras and ρ and ρ′ be representations up to homotopy of h on W and g
on V, respectively. Suppose that (T, t) : h→ g is a (ρ, ρ′)-equivariant map and consider the pullback
extension of h by n through T . Then the next diagram is commutative

Hom•(∧nn [1] ,V)ĝ Hn+•
CE,ρ′(g;V)

Hom•(∧nn [1] ,W)ĥ Hn+•
CE,ρ(h;W),

cw

t] T ]

cw

(8.2)

where the map t] : Hom•(∧nn [1] ,V)ĝ → Hom•(∧nn [1] ,W)ĥ is define by t](f) := t ◦ f .

Proof. First we shall see that the map t] is well-defined. Since T• is an L∞-morphism and T•|n[1] = Id
then (T•, Idn[1]) is a (adĥ,n, adĝ,n)-equivariant map and it is straightforward to see that (T•, Idn[1]⊗k)

is a (ad⊗k
ĥ,n
, ad⊗kĝ,n)-equivariant, hence we have T ∗• ad⊗kĝ,n = ad⊗k

ĥ,n
for all 1 ≤ k. On the other hand, as

(T, t) is a (ρ, ρ′)-equivariant then (T•, t) is (π∗•ρ, π
∗ρ′)-equivariant map, thus for f ∈ Hom•(∧nn [1] ,V)

a (π∗ρ′, ad⊗kĝ,n)-equivariant map we have

(T•, t) ◦ (Idĝ, f) = (Idĝ ◦ T•, t ◦ f)

is (π∗•ρ, ad⊗kĝ,n)-equivariant. By the decomposition seen in the Remark 7.1.1

(T•, t ◦ f) = (Idĥ, t ◦ f) ◦ (T•, Idn[1]⊗k)

where the map (Idĥ, t ◦ f) is (π∗•ρ, T
∗
• ad⊗kĝ,n)-equivariant, therefore t](f) = t ◦ f ∈ Hom•(∧nn [1] ,W)

is (π∗•ρ, ad⊗k
ĥ,n

)-equivariant. So t] is well-defined. Now to see that Diagram (8.2) is commutative let

us consider h : g [1]→ ĝ [1] a linear section of π, and its curvature Kh = Prg[1](d̂ ◦S(h)−S(h) ◦ d) :

Sym(g [1])→ n [1]. As we discussed above there is a linear section h : h [1]→ ĥ [1] of π• induced by
the pullback diagram such that T• ◦ S(h) = S(h) ◦ T , then one has that

T ∗Kh =Kh ◦ T = Prg[1] ◦ (d̂ ◦ S(h)− S(h) ◦ d) ◦ T

=Prg[1] ◦ (d̂ ◦ S(h) ◦ T − S(h) ◦ T ◦ d)

=Prg[1] ◦ (d̂ ◦ T• ◦ S(h)− T• ◦ S(h) ◦ d), (by T• ◦ S(h) = S(h) ◦ T )

=Prg[1] ◦ T• ◦ (d̂ ◦ S(h)− S(h) ◦ d), (by T•|n[1] = Idn[1])

=Prh[1] ◦ (d̂ ◦ S(h)− S(h) ◦ d)

=Kh,

and for f ∈ Hom•(∧nn [1] ,V)ĝ,

T ∗fh =f ◦K∧⊗kh ◦ T
=f ◦Kh ⊗ · · · ⊗Kh ◦∆k−1 ◦ T
=f ◦Kh ⊗ · · · ⊗Kh ◦ T⊗k ◦∆k−1, (by T being coalgebra morphism)

=f ◦ (Kh ◦ T )⊗ · · · (Kh ◦ T ) ◦∆k−1

=f ◦ (T ∗Kh)∧⊗k

=f ◦K∧⊗k
h

, (by T ∗Kh = Kh)

=fh.
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Therefore, (
(T, t)] ◦ cw

)
(f) = [(T, t)∗(fh)] = [t ◦ fh ◦ T ]

= [t ◦ T ∗fh] =
[
t ◦ fh

]
=
[
t ◦ f ◦K∧⊗k

h

]
=
[
t](f) ◦K∧⊗k

h

]
= cw(t](f))

=(cw ◦ t])(f).

Proposition 8.3.2. Let us consider two extensions of L∞-algebras and two L∞-isomorphisms as
in the following commutative arrangement of L∞-morphisms

0 0

n n′

ĝ ĝ′

g

0

ψ

'

π

ϕ

'

π′

(8.3)

and a representation up to homotopy of g on the dg-vector space V. Then the following diagram is
commutative

Hom•(∧nn [1] ,V)ĝ Hn+•
CE (g;V)

Hom•(∧nn′ [1] ,V)ĝ
′

cw

ψ∗
cw

(8.4)

where the map ψ∗ : Hom•(∧nn [1] ,V)ĝ → Hom•(∧nn [1] ,V)ĝ
′ is define by ψ∗f := f ◦

(
ψ1

1
−1
)⊗k

.

Proof. We have to observe that the commutativity of Diagram (8.3) implies that the maps ϕ and ψ
preserve the weight degree, then these are strict L∞-isomorphisms. Now to see that Diagram (8.4)
is commutative let us take a linear section h : g [1]→ ĝ [1] of π, then ϕ∗h := ϕ1

1 ◦ h : g [1]→ ĝ′ [1] is
a linear section of π′,

π′ ◦ S(ϕ∗h) = π′ ◦ ϕ ◦ S(h) = π ◦ S(h) = Idg[1].

Note that as π(d′ ◦ S(h)− S(h) ◦ d) = 0 and ϕ|ker(π) = ψ one has that

Kϕ∗h =Prg[1] ◦ (d′ ◦ S(ϕ1
1 ◦ h)− S(ϕ1

1 ◦ h) ◦ d) = Prg[1] ◦ (d′ ◦ ϕ ◦ S(h)− ϕ ◦ S(h) ◦ d)

=Prg[1] ◦ (ϕ ◦ (d′ ◦ S(h)− S(h) ◦ d)) = Prg[1] ◦ (ψ ◦ (d′ ◦ S(h)− S(h) ◦ d))

=ψ1
1 ◦ Prg[1] ◦ (d′ ◦ S(h)− S(h) ◦ d) = ψ1

1 ◦Kh.
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Thus Kϕ∗h = ψ1
1 ◦Kh, and therefore

Kϕ∗h ∧⊗ · · · ∧⊗︸ ︷︷ ︸
k−times

Kϕ∗h =(ψ1
1 ◦Kh) ∧⊗ · · · ∧⊗ (ψ1

1 ◦Kh)

=(ψ1
1 ◦Kh)⊗ · · · ⊗ (ψ1

1 ◦Kh) ◦∆k−1
s

=(ψ1
1
⊗k ◦Kh ⊗ · · · ⊗Kh) ◦∆k−1

s

=ψ1
1
⊗k ◦Kh ∧⊗ · · · ∧⊗ Kh,

so for all 1 ≤ k
K
∧⊗k
ϕ∗h

= ψ1
1
⊗k ◦K∧⊗kh .

On the other hand, by the commutativity of Diagram (8.3) we have (ϕ, (ψ1
1)−1) is (adn, adn′)-

equivariant then (ϕ, ((ψ1
1)−1)⊗k) is (ad⊗kn , ad⊗kn′ )-equivariant. Now if we take a linear map f ∈

Hom•(∧nn [1] ,V)ĝ then

(Idn, f) ◦ (ϕ, (ψ1
1)−1⊗k) = (Idn ◦ ϕ, f ◦ (ψ1

1)−1⊗k)

is a (π∗ρ, ad⊗kn′ )-equivariant map and the decomposition of the Remark (7.1.1) implies that (Idn, f ◦
(ψ1

1)−1⊗k) is (π∗ρ, ϕ∗ad⊗kn′ )-equivariant map. The equation π = ϕ◦π′ imply that (Idn, f ◦(ψ1
1)−1⊗k)

is (ϕ∗π′∗ρ, ϕ∗ad⊗kn′ )-equivariant map, and given that the map ϕ is L∞-isomorphisms we have (Idn, f◦
(ψ1

1)−1⊗k) is (π′∗ρ, ad⊗kn′ )-equivariant map. Therefore ψ∗f := f ◦ (ψ1
1
−1

)⊗k ∈ Hom•(∧nn′ [1] ,V)ĝ is
well-defined. Finally, observe that

(ψ∗f)ϕ∗h = ψ∗f ◦K∧⊗kϕ∗h = (f ◦ (ψ1
1)−1⊗k) ◦ (ψ1

1
⊗k ◦K∧⊗kh ) = fh.

Thus by the independence of the connection in Chern-Weil-Lecomte morphism Theorem (8.2.1)
one has that

cw(f) = [fh] = [(ψ∗f)ϕ∗h] = cw(ψ∗f) = (cw ◦ ψ∗)(f).

That is, the diagram (8.4) is commutative.

Remark 8.3.1. Observe that the particular case in which n [1] = n′ [1] and the map ψ = Idn[1],
then

Hom(∧nn [1] ,V)ĝ = Hom(∧nn [1] ,V)ĝ
′
,

and equivalent extensions of g [1] by n [1] have the same Chern-Weil-Lecomte morphism.

8.4 The Chern-Weil-Lecomte morphism for Lie 2-algebras

Let us consider an extension of Lie 2-algebras,

0 n ĝ g 0,ι π

together with a representation up to homotopy ρ of g on the 2-term vector space V = V0 → V1.
Now, to construct the Chern-Weil morphism, let us choose a linear section h : g→ ĝ of π. Since its
curvature is a degree 1 linear map, Kh : Sym(g [1])→ n [1], and

Sym(g [1]) =
⊕
−n,0≤n

⊕
2p+q=n

p⊙
g−1 �

q∧
g0,

the components of Kh that are possible non-zero are given by

K−3
h : (g−1 � g0)⊕ ∧3g0 → n−1, K−2

h : g−1 ⊕ ∧2g0 → n0,



8.4 THE CHERN-WEIL-LECOMTE MORPHISM FOR LIE 2-ALGEBRAS 89

in our case these are

i. Kh : g−1 � g0 → n−1, Kh(x, a) := h−1(Lxa)− L̂h0xh−1a;

ii. Kh : ∧3g0 → n−1, Kh(x, y, z) := 0;

iii. Kh : g−1 → n0, Kh(a) := h0(d(a))− d̂(h−1a);

iv. Kh : ∧2g0 → n0, Kh(x, y) := h0 [x, y]− [h0x, h0y] .

Remark 8.4.1. Note that in fact the curvature measure when the section h preserves the L∞-
structure

0 0

n−1 n0

ĝ−1 ĝ0

g−1 g0

0 0.

h−1 h0

The item (i) measure the lack of equivariance of h, item (ii) is zero given that the Lie 2-algebras
are strict. The item (iii) measure when h makes the diagram commutes, and item (iv) when h0 is
a Lie algebras morphism. That means, Kh contain the lack of h to being a Lie 2-algebra morphism.

Now let us compute the set of invariants Hom(∧nn [1] ,V)ĝ. Initially, note that

∧nn [1] =
n⊕
k=0

k∧
n−1 ∧

n−k⊙
n0,

so the degrees of homogeneous elements in ∧nn [1] are between −2n and −n, indeed

deg

(
k∧
n−1 ∧

n−k⊙
n0

)
= −k − n.

Then the degrees in Hom(∧nn [1] ,V) with non-zero elements are between n and 2n + 1. Thus for
0 < p < n+ 1

Homn+p(∧nn [1] ,V) = Hom

(
p∧
n−1 ∧

n−p⊙
n0, V0

)⊕
Hom

(
p−1∧

n−1 ∧
n−p+1⊙

n0, V1

)
,

and for p = 0

Homn(∧nn [1] ,V) = Hom

(
n⊙

n0, V0

)
,

and for p = n+ 1

Hom2n+1(∧nn [1] ,V) = Hom

(
n∧
n−1, V1

)
.

We will denote a map in Hom(
∧p n−1 ∧

⊙n−p n0, Vi) by fp,n−pi . Then

fn+p = fp,n−p0 + fp−1,n−p+1
1 ∈ Homn+p(∧nn [1] ,V)ĝ,
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is such that for all a ∈ ĝ−1 and x ∈ ĝ0, the next equations hold

fn+p ◦ ad⊗na = ρπ−1(a) ◦ fn+p, fn+p ◦ ad⊗nx = ρπ0(x) ◦ fn+p.

These are equivalent to

• fp,n−p0 ◦ ad⊗na = ρπ−1(a) ◦ f
p−1,n−p+1
1 ;

• fp,n−p0 ◦ ad⊗nx = ρπ0(x) ◦ f
p,n−p
0 ;

• fp−1,n−p+1
1 ◦ ad⊗nx = ρπ0(x) ◦ f

p−1,n−p+1
1 .

Finally, to make explicit the above equations we will compute

ad⊗na : ∧nn [1]→ ∧nn [1] , ad⊗nx : ∧nn [1]→ ∧nn [1] .

So let xi ∈ g0 and aj ∈ g−1 for 1 ≤ i ≤ p and 1 ≤ j ≤ q, then

ad⊗nx (a1 ∧ · · · ∧ ap ∧ x1 · · ·xq) =

p∑
k=1

a1 ∧ · · · ∧ (−1)(|x|+1)(
∑k−1
i=1 |ai|)L̂xak ∧ · · · ∧ ap ∧ x1 · · ·xq+

+

q∑
k=1

a1 ∧ · · · ∧ ap ∧ x1 · · · (−1)(|x|+1)(
∑k−1
i=1 |xi|) [x, xi] · · ·xq,

then

ad⊗nx (a1 ∧ · · · ∧ ap ∧ x1 · · ·xq) =

p∑
k=1

(−1)k−1L̂xak ∧ a1 ∧ · · · ∧ âk ∧ · · · ∧ ap ∧ x1 · · ·xq (8.5)

+

q∑
k=1

a1 ∧ · · · ∧ ap ∧ [x, xk]x1 · · · x̂k · · ·xq,

and

ad⊗na (a1 ∧ · · · ∧ ap ∧ x1 · · ·xq) =

p∑
k=1

a1 ∧ · · · ∧ (−1)(|a|+1)(
∑k−1
i=1 |ai|) [a, ak] ∧ · · · ∧ ap ∧ x1 · · ·xq

+

q∑
k=1

a1 ∧ · · · ∧ ap ∧ x1 · · · ∧ (−1)(|a|+1)(
∑k−1
i=1 |ai|)+1L̂xka ∧ · · ·xq.

hence as [a, ak] = 0

ad⊗na (a1 ∧ · · · ∧ ap ∧ x1 · · ·xq) = −
q∑

k=1

a1 ∧ · · · ∧ ap ∧ L̂xka ∧ x1 · · · x̂k · · ·xq.

Therefore for 0 ≤ n we have

Homn (Sym(g [1]),V) = Hom

 ⊕
2p+q=n

p⊙
g−1 �

q∧
g0, V0

⊕Hom

( ⊕
2r+s=n−1

r⊙
g−1 �

s∧
g0, V1

)
.

and the Chern-Weil-Lecomte morphism is given by

Homn+p (∧nn [1] ,V)ĝ → H2n+p
CE (g;V),

fn+p = fp,n−p0 + fp−1,n−p+1
1 7→

[
fp,n−p0 ,h + fp−1,n−p+1

1 ,h

]
.



Chapter 9

An application

In this chapter we introduce the L∞-cohomology of multiplicative vector fields of a Lie groupoid
and extend the Chern-Weil homomorphism to the context of principal 2-bundle over a Lie groupoid
that admit a 2-connection form. In section 1 we define the L∞-cohomology of multiplicative vector
fields, this is the L∞-cohomology of the 2-term L∞-algebra of multiplicative vector fields of a
Lie groupoid with values in its 2-vector space of multiplicative functions. The main result in this
section establishes that the L∞-cohomology of multiplicative vector fields is invariant up to Morita
equivalences of Lie groupoids. In Section 2 we present a Lecomte’s approach that gives us a morphism
that takes values in the L∞-cohomology of multiplicative vector fields of a Lie groupoid. In Section
3 we present a simplicial approach that gives us a morphism with values in the de Rham cohomology
of a Lie groupoid.

9.1 The L∞-cohomology of multiplicative vector fields over a Lie
groupoid.

Let X := (X1 ⇒ X0) be a Lie groupoid and A → X0 its Lie algebroid. Given that the tangent
groupoid of X is an LA-groupoid the category of multiplicative vector fields has a natural structure
of 2-term L∞-algebra, see Example 2.2.1. This L∞-structure is actually a Lie 2-algebra structure
and it is given by the next crossed module of Lie algebras[

XR(X)
δ−→ Xmult(X)

L−→ Der(XR(X))
]
.

We denote by XR(X) the space of right invariant vector fields on X and by Xmult(X) the space of
multiplicative vector fields on X. For any X,Z ∈ XR(X) and (ξ, v) ∈ Xmult(X)

δ(X) = (X + ι∗X, t∗X), L(ξ,v)Z = [ξ, Z] .

We write this L∞-algebra by X•mult(X). It is worth noting that its symmetric algebra is given by

Sym(X•mult(X) [1]) =
⊕
−n,0≤n

⊕
2k+l=n

Sk(XR(X))� ∧lXmult(X),
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its degree 1 coderivation induced by the L∞-structure is

d(X1 · · ·Xk � ξ1 ∧ · · · ∧ ξl) =
k∑
i=1

δ(Xi)�X1 · · · X̂i · · ·Xk � ξ1 ∧ · · · ∧ ξl

+
∑

1 ≤ i ≤ k
1 ≤ j ≤ l

(−1)j
(
LξjXi

)
·X1 · · · X̂i · · ·Xk � ξ1 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξl

−
∑

1≤i<j≤k
(−1)i+j [ξi, ξj ]�X1 · · ·Xk � ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξk,

where Xi ∈ XR(X), ξj ∈ Xmult(X) for 1 ≤ i ≤ k, 1 ≤ j ≤ l.
Theorem 9.1.1. Let X and Y be two Morita equivalent Lie groupoids, then

H(Sym(X•mult(X) [1]), d) ' H(Sym(X•mult(Y) [1]), d).

Proof. By Theorem 7.6 in [OW19] the L∞-algebras X•mult(X) and X•mult(Y) are L∞ quasi-isomorphic.
Therefore using a spectral sequence argument similar to the one used in Theorem 7.6.1 the result
follows.

Remark 9.1.1. Since the cohomology H(Sym(X•mult(X)[1]), d) is invariant by Morita equivalences
of the Lie groupoid X, it is an object associated to the differentiable stack represented by X.

Now let us consider the line VB-groupoid over X,

X× R M × {∗}

X M.

Again, by [OW19] one has that the category of multiplicative sections of this VB-groupoid has
structure of 2-vector space. Actually, it is the 2-vector space of multiplicative functions

C∞(X) : C∞R (X)︸ ︷︷ ︸
degree 0

∂−→ C∞mult(X)︸ ︷︷ ︸
degree 1

, ∂(ψ) = ψ − ι∗ψ,

where C∞R (X) denotes the space of right invariant functions

C∞R (X) = {f ∈ C∞(X1) | f ◦Rg = f, ∀g ∈ X1} ,

and C∞mult(X) denotes the space of multiplicative functions

C∞mult(X) = {f ∈ C∞(X1) | f(gh) = f(g) + f(h),∀g, h ∈ X1} .

The next theorem generalizes the classical result about smooth manifolds, that says that the Lie
algebra of vector fields acts by derivations in the space of smooth functions. A detailed study of
multiplicative vector fields and derivations will appear in [HOW].

Theorem 9.1.2. Let X be a Lie groupoid. There exists a natural representation up to homotopy
ψX of the 2-term L∞-algebra of multiplicative vector fields X•mult(X) on its 2-vector space of multi-
plicative functions C∞(X). It is given by

XR(X) End−1
∂ (C∞(X))

Xmult(X) End0
∂(C∞(X)),

ψX
−1

δ ∂end

ψX
0

(9.1)
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where for all X ∈ XR(X)

ψX
−1(X) : C∞mult(X)→ C∞R (X), ψX

−1(X)(f) := X(f),

and for all (ξ, v) ∈ Xmult(X)
ψX

0 (ξ, v) := (ξ, t∗ ◦ v ◦ 1∗).

Proof. We will see that ψX is well-defined and satisfies the identities in Definition 7.1.2 in which
we have ρ = (ψX

−1, ψ
X
0 , 0). Note that if X ∈ XR(X) and f ∈ C∞mult(X) then X(f) is a right invariant

function. In order to see that ψX
0 is well-defined it is enough verifying that the next equation holds

ξ ◦ (Id∗ − ι∗) = (Id∗ − ι∗) ◦ (t∗ ◦ v ◦ 1∗).

Observe that if f ∈ C∞R (X) then f = f ◦ (1 ◦ t) and if X = (ξ, v) : X → TX is multiplicative
then dt ◦ ξ = v ◦ t and ds ◦ ξ = v ◦ s. Now these two properties imply that ξ(f ◦ t) = v(f) ◦ t and
ξ(f ◦ s) = v(f) ◦ s. Thus, on the one hand, we get

ξ ◦ (Id∗ − ι∗)(f) =ξ(f)− ξ(f ◦ ι)
=ξ(f ◦ (1 ◦ t))− ξ(f ◦ (1 ◦ t) ◦ ι)
=ξ((f ◦ 1) ◦ t)− ξ((f ◦ 1) ◦ s), by s = t ◦ ι
=v(f ◦ 1) ◦ t− v(f ◦ 1) ◦ s,

and on the other hand, one has that

(Id∗ − ι∗) ◦ (t∗ ◦ v ◦ 1∗)(f) = v(f ◦ 1) ◦ t− v(f ◦ 1) ◦ s.

Hence,
ξ ◦ (Id∗ − ι∗) = (Id∗ − ι∗) ◦ (t∗ ◦ v ◦ 1∗).

Now to check that the diagram (9.1) is commutative, let X ∈ XR(X), then

(∂end ◦ ψX
−1)(X) = (∂ ◦X,X ◦ ∂), (ψX

0 ◦ δ)(X) = (X + ι∗X, t
∗ ◦ t∗X ◦ 1∗).

On the one side, if f ∈ C∞mult(X) and x ∈ X1 then we have

0 = f(xι(x)) = f(x) + ι∗f(x).

Hence, ι∗f = −f , and

(ι∗X)(f)(x) =ι∗,ι(x)(Xι(x))(f) = Xι(x)(f ◦ ι) = −Xι(x)(f)

=−X(f)(ι(x)).

That is, ι∗X(f) = −ι∗(X(f)). Now

(∂ ◦X)(f) =∂(X(f)) = X(f)− ι∗(X(f))

=X(f) + ι∗X(f)

=(X + ι∗X)(f).

On the other side, for f ∈ C∞R (X) one has f = f ◦ (1 ◦ t), then

(X ◦ ∂)(f) = X(f − ι∗f) = X(f)−X(ι∗f),
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and for all x ∈ X1, given that s∗,xXx = 0 it follows

X(ι∗f)(x) =Xx(f ◦ ι) = Xx(f ◦ (1 ◦ t) ◦ ι) = Xx((f ◦ 1) ◦ (t ◦ ι))
=Xx((f ◦ 1) ◦ s) = s∗,xXx(f ◦ 1) = 0.

Thus, X(i∗f) = 0, then (X ◦ ∂)(f) = X(f), and

(t∗ ◦ t∗X ◦ 1∗)(f) = t∗ ◦ (t∗X(f ◦ 1)).

Now for all x0 ∈ X0 one has

t∗X(f ◦ 1)(x0) =(t∗X)x0(f ◦ 1) = (t∗,1x0X1x0
)(f ◦ 1)

=X1x0
((f ◦ 1) ◦ t) = X1x0

(f), by f ◦ (1 ◦ t) = f,

=X(f)(1x0) = X(f) ◦ 1x0 ,

hence, as X(f) ∈ XR(X)

t∗ ◦ (t∗X(f) ◦ 1)) = X(f) ◦ (1 ◦ t) = X(f).

Thus, X ◦ ∂ = t∗ ◦ t∗X ◦ 1∗, and the diagram is commutative. Now for checking that

ψX
0 ([(ξ, v), (η, w)]) =

[
ψX

0 (ξ, v), ψX
0 (η, w)

]
for all (ξ, v), (η, w) ∈ Xmult(X), consider the following expression

ψX
0 ([(ξ, v), (η, w)]) = ψX

0 ([ξ, η] , [v, w])

=([ξ, η] , t∗ ◦ [v, w] ◦ 1∗)

=([ξ, η] , t∗ ◦ (v ◦ w − w ◦ v) ◦ 1∗)

=([ξ, η] , (t∗ ◦ v ◦ 1∗) ◦ (t∗︸ ︷︷ ︸
Id∗

◦w ◦ 1∗)− (t∗ ◦ w ◦ 1∗) ◦ (t∗︸ ︷︷ ︸
Id∗

◦v ◦ 1∗))

=([ξ, η] , [t∗ ◦ v ◦ 1∗, t∗ ◦ w ◦ 1∗])

=
[
ψX

0 (ξ, v), ψX
0 (η, w)

]
.

Finally, to see that
ψX
−1(LX(ξ,v)Z) = Lend

ψX
0 (ξ,v)

ψX
−1(Z),

let us consider f ∈ C∞mult(X) and Z ∈ XR(X). Note that Z(f) ∈ C∞R (X) so Z(f) = Z(f) ◦ (1 ◦ t)
and therefore

ψX
−1(LX(ξ,v)Z)(f) =ψX

−1([ξ, Z])(f)

= [ξ, Z] (f)

=ξ(Z(f))− Z(ξ(f))

=ξ(Z(f) ◦ (1 ◦ t))− Z(ξ(f))

=v(1∗(Z(f))) ◦ t− Z(ξ(f))

=(t∗ ◦ v ◦ 1∗)(Z(f))− Z(ξ(f))

=((t∗ ◦ v ◦ 1∗) ◦ Z − Z ◦ ξ)(f)

=(Lend
ψX
0 (ξ,v)

ψX
−1(Z))(f).

In order to investigate the behavior of this natural representation up to homotopy with respect
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to Morita morphisms of Lie groupoids, let us consider two Lie groupoids X and Y together with a
Morita morphism Φ : X→ Y that is surjective on objects. On the one hand, by Theorem 7.3 [OW19],
the elements involved in the next diagram are 2-term L∞-algebras and L∞-quasi-isomorphisms

X•mult(X)Φ

X•mult(X) X•mult(Y),

ι Φ∗

where X•mult(X)Φ is the subcomplex of projectable vector fields of X•mult(X). The subcomplex
Xmult(X)Φ is defined as follows

Γ(AX)Φ δ−→ Xmult(X)Φ,

where
Γ(AX)Φ =

{
a ∈ Γ(AX) | ∃a′∈Γ(AY)Lie(Φ) ◦ a = a′ ◦ φ

}
and

Xmult(X)Φ =
{

(ξ, v) ∈ Xmult(X) | ∃(η,w)∈Xmult(Y)dΦ ◦ ξ = η ◦ Φ
}
.

If we consider the pullback representation of X•mult(X)Φ by ι

X•mult(X) End(C∞(X))

X•mult(X)Φ,

ψX

ι
ι∗ψX

then we have that (ι, Id) is a (ι∗ψX, ψX)-equivariant L∞ quasi-isomorphism. Hence by Theorem
7.6.1

HCE,ψX(X•mult(X); C∞(X)) ' HCE,ι∗ψX(X•mult(X)Φ; C∞(X)).

On the other hand, one has that the canonical pullback of smooth functions

Φ∗ : C∞(Y)→ C∞(X),

is a morphism of dg-vector spaces. We need the following lemma.

Lemma 9.1.1. For the representations up to homotopy ι∗ψX of X•mult(X)Φ on C∞(X) and ψY of
X•mult(Y) on C∞(Y), the map

(Φ∗,Φ
∗) : X•mult(X)Φ → X•mult(Y)

is a (ι∗ψX, ψY)-equivariant L∞-quasi-isomorphism along Φ∗.

Proof. To see the (ι∗ψX, ψY)-equivariance we have to check that the next equation holds

Φ∗ ◦ ψY ◦ (Φ∗ ⊗ Id) = ψX ◦ (Id⊗ Φ∗). (9.2)

For this it suffices to verify Equation (9.2) for X ∈ X(X)Φ and f ∈ C∞(Y). This equation follows
from the X is Ψ-projectable:

X(f ◦ Φ) = Φ∗(X)(f) ◦ Φ.

Finally, by Theorem 7.3 in [OW19] we have that Φ∗ is an L∞ quasi-isomorphism and Φ∗ is
a dg-vector space quasi-isomorphism, therefore (Φ∗,Φ

∗) is a (ι∗ψX, ψY)-equivariant L∞ quasi-
isomorphism map along Φ∗.

As a consequence, we have the next result which establishes the Morita invariance of L∞-
cohomology of X•mult(X) with values in C∞(X).
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Theorem 9.1.3. Let X and Y be two Lie groupoids. If X and Y are Morita equivalent then

HCE,ψX(X•mult(X); C∞(X)) ' HCE,ψY(X•mult(Y); C∞(Y)).

Proof. By Proposition 7.3 in [OW19] there exists a Lie groupoid W and Morita maps Ψ : W → X
and Φ : W→ Y that are surjective in objects, hence there are L∞ quasi-isomorphisms as follows

X•mult(W)Ψ X•mult(W)Φ

X•mult(X) X•mult(W) X•mult(Y),

Ψ∗ Φ∗

and by Lemma 9.1.1 it holds that

HCE,ψX(X•mult(X); C∞(X)) ' HCE,ψW(X•mult(W); C∞(W)) ' HCE,ψY(X•mult(Y); C∞(Y)).

The above Theorem motivates the next definition.

Definition 9.1.1. Let X be a Lie groupoid. The L∞-cohomology of the 2-term L∞-algebra X•mult(X)
with values in the 2-vector space C∞(X) with respect to the representation up to homotopy ψX,

HCE,ψX(X•mult(X); C∞(X)),

is called the L∞-cohomology of multiplicative vector fields over X.

9.2 Chern-Weil-Lecomte morphism for principal 2-bundles with a
2-connection form

Let us consider a principal 2-bundle over a Lie groupoid (P, π,X,G) equipped with a 2-connection
form. Note that by Proposition 5.1.1 a 2-connection form θ• = (θ1, θ0) is the same thing that having
a multiplicative horizontal lift, that is, a VB-map h : TX→ At(P) such that d̃π ◦ h = IdTX,

0 Ad(P) At(P) TX 0

X.

ι d̃π

h

A multiplicative horizontal lift allows us to lift multiplicative vector fields on X to multiplicative
vector fields on P. In particular, when we look at the sequence of 2-term L∞-algebras induced by
the Atiyah sequence, see Definition 4.3.1, we get that the existence of a multiplicative horizontal
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lift implies that it is an extension of 2-term L∞-algebras,

0 0 0

X•mult(Ad(P)) : Γ(P0 ×G0 h) Xmult(Ad(P))

X•mult(At(P)) : Γ(AP/G0) Xmult(At(P))

X•mult(X) : Γ(AX) Xmult(X)

0 : 0 0.

δ

δ

h hc

δ

hm

(9.3)

It is worth noting that this multiplicative horizontal lift induces a vector bundle morphism hc :
AX → AP/G0 at level of core bundles such that dπ ◦ hc = IdAX . Moreover, Theorem 9.1.2 says that
for the base groupoid there exists a representation up to homotopy of X•mult(X) on the 2-vector
space C∞(X). Thus, for a principal 2-bundle over a Lie groupoid that admits a 2-connection form
we have naturally an extension of L∞-algebras together with a representation up to homotopy.
Then Theorem 8.2.1 allows us to construct a Chern-Weil-Lecomte morphism that takes values in
the L∞-cohomology of multiplicative vector fields over the base groupoid. This is the content of the
main result of this section

Theorem 9.2.1. Let (P, π,X,G) be a principal 2-bundle over a Lie groupoid equipped with a 2-
connection form. Then, for each k ≥ 0 there exists a natural morphism

cw : Hom•(∧kX•mult(Ad(P))[1], C∞(X))→ Hk+•
CE,ψX(X•mult(X); C∞(X)),

that is independent of the 2-connection form.

9.2.1 Simplicial approach

The main objective of this section is to present Theorem 9.2.4. It gives us a simplicial approach to
the construction of the Chern-Weil homomorphism for principal 2-bundles with 2-connection form.
The main feature of this approach is that it takes values in the de Rham cohomology of the base
Lie groupoid, see Section 1.5. In particular, this construction motives two open questions. The first
one, if it is possible to compare the de Rham cohomology of a Lie groupoid and the L∞-cohomology
of multiplicative vector field presented in Section 9.1, and the second one, if there exists a similar
diagram, as in the classical case (1.4), that allows us to compare the Lecomte’s approach and the
simplicial approach to the extensions of the Chern-Weil homomorphism for principal 2-bundles with
2-connection form.

Let (P, π,X,G) be a principal 2-bundle with a 2-connection (θ1, θ0). The Lie groupoid morphism
π : P→ X induces a morphism between simplicial manifolds {πn : Pn → Xn}n≥0. By Theorem A.1.3
for each n ≥ 0 one has that (Pn, πn, Xn, Gn) is a principal bundle,

G• : G2 G1 G0

P• : P2 P1 P0

X• : X2 X1 X0.

	 	 	 	

π π2 π1 π0
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Moreover, by the Theorem A.2.1 the principal bundle (Pn, πn, Xn, Gn) has a connection 1-form given
by θn := θ1 ×P0 · · · ×P0 θ1 ∈ Ω1

dR(Pn; gn). Indeed, the Lie groupoid morphism θ : TP1 → P1 × g1

induces a morphism on simplicial manifolds

{θn : TPn → Pn × gn}n≥0 .

Observe that T (Pn) = T (P1 ×P0 · · · ×P0 P1) = TP1 ×TP0 · · · ×TP0 TP1 = (TP )n and gn = g1 ⊕g0

· · · ⊕g0 g1 is the Lie algebra of the Lie group Gn. Since θ• : TP• → P• × g• is simplicial map, the
maps θn : TPn → Pn × gn commute with the face maps di and the degeneracy maps si for all
i = 0, . . . , n, and n ≥ 0 :

TPn Pn × gn TPn Pn × gn

TPn−1 Pn−1 × gn−1 TPn−1 Pn−1 × gn−1.

di∗

θn

di×dGi∗

θn

θn−1

si∗

θn−1

si×sGi∗

Therefore, the face maps di : Pn → Pn−1 are bundle morphisms along dGn
i : Gn → Gn−1 covering

the maps dXi : Xn → Xn−1 that preserve the connection forms. Analogously, the degeneracy maps
are bundle morphisms preserving the connection forms. Thus by Theorem A.2.2 both face and
degeneracy maps induce morphisms of dga

W (gn) ΩdR(Pn) W (gn) ΩdR(Pn)

W (gn−1) ΩdR(Pn−1) W (gn−1) ΩdR(Pn−1).

wθn wθn

siG
∗ s∗idiGn

∗

wθn−1

di
∗

wθn−1

Then, dualizing and extending the simplicial structure on g•, we have a cosimplicial dga W (g•) =
{W (gn)}n≥0 such that for each n ≥ 0 the algebra W (gn) is a Gn-dga. Moreover, the simplicial
morphism θ• induces a morphism of cosimplicial differential graded commutative algebras

{wθn : W (gn)→ ΩdR(Pn)}n≥0 .

The cosimplicial structure inW (g•) together with the dga structure determine the following double
complex

· · · · · · · · · · · ·

W 3(g0) W 3(g1) W 3(g2) W 3(g3) · · ·

W 2(g0) W 2(g1) W 2(g2) W 2(g3) · · ·

W 1(g0) W 1(g1) W 1(g2) W 1(g3) · · ·

W 0(g0) W 0(g1) W 0(g2) W 0(g3) · · ·

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

where the horizontal differential at level q is the alternating sum of the face maps

∂q :=

q∑
i=0

(−1)idiGq
∗

: W (gq)→W (gq+1),

and the vertical differential at level p is the differential of

dp : W (gp)→W (gp), dqp : W q(gp)→W q+1(gp).



9.2
CHERN-WEIL-LECOMTE MORPHISM FOR PRINCIPAL 2-BUNDLES WITH A 2-CONNECTION FORM

99

for p ≥ 0 and q ≥ 0. We write the total complex of this complex by

Wtot(g•) :=
⊕
n≥0

Wn(g•), Wn(g•) :=
⊕
p+q=n

W q(gp),

where the total differential is given by

dtot|W p(gp) = ∂p + (−1)pdqp.

In a diagram:

W q+1(gp)

dtot : W q(gp) W q(gp+1).

(−1)pdqp

∂p

Theorem 9.2.2. The cosimplicial morphism

{wθn : W (gn)→ ΩdR(Pn)}n≥0 ,

induces a morphism on the Bott-Shulman-Stasheff complex ΩdR(P )

wθ• : Wtot(g•)→ Ωtot(P•).

Proof. It follows from the previous comments about the cosimplicial structure induced by the
simplicial morphism θ•.

The following proposition suggests that the total complex Wtot(g•) could be thought of as a candi-
date for a model of the de Rham complex of the universal principal 2-bundle E(G) with structural
2-group G.

Theorem 9.2.3. The total complex Wtot(g•) is acyclic, i.e., it has the same cohomology of the
point

Hk(Wtot(g•)) =

{
0, if k > 0,
R, if k = 0.

Proof. It is well-known that the Weil algebra is acyclic, therefore the columns of the double complex
of W (g•) are exact, then as this double complex is a first quadrant double complex, it is a bounded
double complex with exact columns, then its total complex is acyclic [Wei94, pag.9].

Now Theorem A.2.2 also implies that restricting level by level the cosimplicial structure inW (g•)
to its basic elements we get a cosimplicial dga S(g∗•)

G• :=
{
S(g∗n)Gn

}
n≥0

that, just as W (g•), it
induces a double complex
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· · · · · · · · · · · · · · ·

S2(g∗0)G0 S2(g∗1)G1 S2(g∗2)G2 S2(g∗3)G3 · · ·

0 0 0 0 · · ·

S1(g∗0)G0 S1(g∗1)G1 S1(g∗2)G2 S1(g∗3)G3 · · ·

0 0 0 0 · · ·

S0(g∗0)G0 S0(g∗1)G1 S0(g∗2)G2 S0(g∗3)G3 · · ·

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

d

∂

The morphism
{wθn : W (gn)→ ΩdR(Pn)}n≥0 ,

restricts level by level to basic elements as a dga cosimplicial morphism{
wθn : S(g∗n)Gn → ΩdR(Xn)

}
n≥0

,

that induces a morphism on their respective double complexes

wθ• : Stot(g
∗
•)
G• → Ωtot(X•).

Therefore, a simplicial candidate for Chern-Weil homomorphism for a principal 2-bundle with a
2-connection is the previous morphism seen in cohomology. In order to strengthen our statement
we are going to prove that w• is independent of the 2-connection.

Theorem 9.2.4. The morphism induced in cohomology by

wθ• : Stot(g
∗
•)
G• → Ωtot(X•)

is independent of the 2-connection.

Proof. Initially let us note that as the double complex S(g•)
G• has all odd rows being zero, then

for x ∈ Sntot(g∗•)G• one has that

x =
∑

2q+p=n

f2q,p, f2q,p ∈ Sq(g∗q)Gp ,

dtotx =dtot

 ∑
2q+p=n

f2q,p

 =
∑

2q+p=n

dtot(f2q,p)

=
∑

2q+p=n

∂p · f2q,p + (−1)pd2q
p (f2q,p)

=
∑

2q+p=n

∂p · f2q,p,

thus, dtotx = 0 if and only if ∂p · f2q,p = 0 for all p ≥ 0, q ≥ 0 with 2q + p = n.
Now let us consider a pair of 2-connections (θ1, θ0) and (θ′1, θ

′
0) on the principal 2-bundle (P, π,X,G),

and consider for f2q,p ∈ Sq(g∗p)
Gp with ∂p · f2q,p = 0. Since θp = θ1 ×P0 × · · · ×P0 θ1 and θ′p =

θ′1×P0× · · ·×P0θ
′
1 determine connection 1-forms on Pn, and it is well-known that for f2q,p ∈ Sq(g∗p)Gp
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there is a transgression form [KN69, pag. 297]

T (f2q,p) = q

∫ 1

0
f2q,p(α,Ωt, . . . ,Ωt)dt ∈ Ω2q−1

dR (Pp),

for α = θp − θ′p, and Ωt the curvature form of the connection θt = θ′p + t(θp − θ′p), 0 ≤ t ≤ 1 such
that

d2q−1
p (T (f2q,p)) = f

Ωp
2q,p − f

Ω′p
2q,p.

Moreover, we have that the transgression form satisfies that

∂p(T (f2q,p)) =

(
p∑
i=0

(−1)id∗i

)
(q

∫ 1

0
f2q,p(α,Ωt, . . . ,Ωt)dt)

=

p∑
i=0

(−1)iq

∫ 1

0
f2q,p(d

∗
iα, d

∗
iΩt, . . . , d

∗
iΩt)dt

=

p∑
i=0

(−1)iq

∫ 1

0
f2q,p(d

i
Gp∗ · α, d

i
Gp∗ · Ωt, . . . , d

i
Gp∗ · Ωt)dt

=

p∑
i=0

(−1)iq

∫ 1

0

(
diGp

∗
f2q,p

)
(α,Ωt, . . . ,Ωt)dt

=

∫ 1

0
q

(
p∑
i=0

(−1)idiGp
∗
f2q,p

)
(α,Ωt, . . . ,Ωt)dt

=

∫ 1

0
q (∂p · f2q,p) (α,Ωt, . . . ,Ωt)dt

=

∫ 1

0
0dt = 0.

Thus, let x =
∑

2q+p=n f2q,p ∈ Sntot(g•)G• with dtotx = 0, then one has that

wθ•(x) =wθ•

 ∑
2q+p=n

f2q,p

 =
∑

2+p=n

wθp(f2q,p)

=
∑

2q+p=n

f
Ωp
2q,p ∈ Ωn

tot(P•), f
Ωq
2q,p ∈ Ω2q

dR(Pp),

Therefore for
y =

∑
2q+p=n

(−1)pT (f2q,p) ∈ Ωn−1
tot (P•), T (f2q,p) ∈ Ω2q−1

dR (Pp),
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one has

dtoty =dtot

 ∑
2q+p=n

(−1)pT (f2q,p)


=

∑
2q+p=n

dtot((−1)pT (f2q,p))

=
∑

2q+p=n

(−1)p∂pT (f2q,p) + (−1)2pd2q−1
p (T (f2q,p)))

=
∑

2q+p=n

(−1)p0 + (f
Ωp
2q,p − f

Ω′p
2q,p))

=
∑

2q+p=n

f
Ωp
2q,p − f

Ω′p
2q,p

=
∑

2q+p=n

f
Ωp
2q,p −

∑
2q+p=n

f
Ω′p
2q,p

=wθ•(x)− wθ′•(x).

In conclusion, for every cocycle x ∈ Stot(g•)G• the two images wθ•(x) and wθ′•(x) are cohomologous,
hence these two maps are equal in cohomology.



Appendix A

Constructions in PB

A.1 Constructions in PB
In this chapter we shall introduce some supporting constructions and some propositions that we

find useful for a better understanding of the material included in the previous chapters involving
the category PB.

Theorem A.1.1. Let (P, πP , X,G) and (Q, πQ, Y,H) be two principal bundles and F : P → Q be
a bundle morphism along ϕ : G→ H covering the map f : X → Y ,

P Q x (G H)

X Y

F

πP πQ

ϕ

f

then
rank(ϕ) + rank(f) ≤ rank(F ).

Proof. Consider a local representation of F , let U ⊂ X and V ⊂ Y be trivializing open sets such
that

F : U ×G→ V ×H, (x, g) 7→ (f(x), γ(x)ϕ(g)),

for γ : U → H, the local representation has this form because F is G ϕ−→ H-equivariant. Then it is
clear that the horizontal rank is equal to rank(f) and the vertical rank is a mix between rank(ϕ)
and rank(γ), therefore

rank(f) + rank(ϕ) ≤ rank(F ).

The next example shows that it is possible to have the strict inequality.

Example A.1.1. Let us consider the trivial principal bundles (R2×(R,+), pr1,R2, (R,+)) and (R×
(R2,+), pr1,R, (R2,+)), and the bundle morphism (Ψ, ψ, ι) where Ψ(x, y; z) = (x; y, z), ψ(x, y) =
x, ι(z) = (0, z)

R2 × (R,+) R× (R2,+), (R,+) (R2,+)

R2 R.

pr1

Ψ

pr1

ι

ψ

Then we have that (Ψ, ψ, ι) is a morphism of principal bundles in which rank(Ψ) = 3, rank(ψ) = 1
and rank(ι) = 1, therefore

rank(ψ) + rank(ι) < rank(Ψ).

103
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Theorem A.1.2. Let (P, πP , X,G) and (Q, πQ, Y,H) be two principal bundles and F : P → Q be
a bundle morphism along ϕ : G→ H covering the map f : X → Y

P Q x (G H).

X Y

πP

F

πQ

ϕ

f

then (F, f, φ) : (P, πP , X,G) → (Q, πQ, Y,H) is a bundle isomorphism if and only if ϕ is an
isomorphism of Lie groups and f is a diffeomorphism.

Proof. Initially let us suppose that F is a bundle isomorphism then there is a bundle morphism
F−1 : Q → P along ψ : H → G covering the map g : Y → X such that F ◦ F−1 = IdQ and
F−1 ◦ F = IdP . Thus for z ∈ P and g ∈ G we have that

zg = (F−1 ◦ F )(zg) = F−1(F (z)ϕ(g)) = zψ(ϕ(g)),

and given that the action is free g = ψ(ϕ(g)) for all g ∈ G, it implies that ψ ◦ϕ = IdG, analogously
ϕ ◦ ψ = IdH . Now since πP is surjective for x ∈ X there is a z ∈ P with πP (z) = x, then

g(f(x)) = gfπP (z) = gπQF (z) = πPF
−1F (z) = πP (z) = x.

Thus g(f(x)) = x for all x ∈ X, then g ◦ f = IdX , analogously f ◦ g = IdY . Conversely, let us
suppose that ϕ is an isomorphism of Lie groups and f is a diffeomorphism, then we will show that
F is a smooth bijection with maximal rank, then it is a diffeomorphism and finally we see that its
inverse F−1 determines a bundle morphism (F−1, f−1, φ−1). To see that F is bijective, let x, y ∈ P
and suppose that F (x) = F (y), then one has that πQF (x) = fπP (x) and πQF (y) = fπP (y), thus
f(πP (x)) = f(πP (y)) and since f is injective πP (x) = πP (y). Hence there exists a unique g ∈ G
with xg = y, but F (x) = F (y) = F (xg) = F (x)ϕ(g) then it implies that ϕ(g) = e, and since ϕ is
injective e = g, therefore x = y, and F is injective. To see that F is surjective, let q ∈ Q and take
some z ∈ π−1

P (f−1(πQ(q))), then note that

πQF (z) = fπP (z) = ff−1πQ(q) = πQ(q).

Hence F (z) and q are in the same fiber then there exists a unique h ∈ H with F (z)h = q,
since ϕ is surjective there is some g ∈ G with ϕ(g) = h, therefore taking zg ∈ P one has that
F (zg) = F (z)ϕ(g) = F (z)h = q. Thus F is a smooth bijective map, therefore by the Theorem
A.1.1 we have that

rank(F ) ≥ rank(ϕ) + rank(f) = dim(H) + dim(Y ) = dim(Q).

Then F has maximal rank, hence a diffeomorphism. Finally to see that F−1 is equivariant note
that for some q ∈ Q and h ∈ H it holds that F (F−1(qh)) = qh and F (F−1(q)ϕ−1(h)) =
F (F−1(q))ϕ(ϕ−1(h)) = qh, then F (F−1(qh)) = F (F−1(q)ϕ−1(h)) and by the injectivity of F
one has that F−1(qh) = F−1(q)ϕ−1(h).

Theorem A.1.3. Let (P, πP , X,G), (Q, πQ, Y,H) and (R, πR, Z,N) be principal bundles, F : P →
R be a bundle morphism along ψ : G→ N covering the map f : X → Z, and T : Q→ R a bundle
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morphism along ϕ : H → N covering the map t : Y → Z,

P ×R Q Q G×N H H

P R G N

X ×Z Y Y

X Z

T

πQ

ϕ

F

πP

ψ

t

f

πR

Then if F and T are transversal, then

πP ×πR πQ : P ×R Q→ X ×Z Y,

is a principal G×N H-bundle.

Proof. We shall see that
(πP ×πR πQ) : P ×R Q→ X ×Z Y,

is a surjective submersion and that G×N H acts freely and transitively on the fibers, thus P ×R Q
is a principal G×N H-bundle. By Theorem A.1.4 it follows that P ×R Q and X ×Z Y are smooth
manifolds, and πP ×πR πQ is a smooth map, in the same way G×NH is a Lie group. Now one easily
sees that for all (p, r) ∈ P ×R Q with (πP ×πR πQ)(p, r) = (x, y) we have

im
(
(πP ×πR πQ)∗,(p,r)

)
= im((πP )∗,p)f∗,x×t∗,y im((πQ)∗,r)

= TxY f∗,x×t∗,yTyZ
= T(x,y)Y ×X Z.

Hence πP ×πR πQ is a submersion. On the other hand, if (x, y), (z, w) ∈ P ×R Q with (πP ×πR
πQ)(x, y) = (πP ×πR πQ)(z, w) one has that πP (x) = πP (z) then there is a unique g ∈ G with
x = zg, and πR(y) = πR(w), then there is a unique h ∈ H with y = xh, moreover

F (x) = F (zg) = F (z)ψ(g), T (y) = T (xh) = T (x)ϕ(h),

so F (x) = T (y), F (z) = T (w) implies F (z)ψ(g) = T (w)ϕ(h), and then ψ(g) = ϕ(h). Therefore
there is a unique (g, h) ∈ G ×N H such that (x, y) = (z, w)(g, h), thus G ×N H acts freely and
transitive in the fibers.

Theorem A.1.4. With the same hypothesis of the last theorem, the maps f , t are transversal and
ψ,ϕ are transversal if and only if F , T are transversal.

Proof. Given that it is a local question, it suffices to take a local representation for F and T in
trivializing open sets. Let U ⊆ X,V ⊆ Y,W ⊆ Z be such that

F : U ×G→W ×N, (x, g) 7→ (f(x), γ(x)ϕ(g))

and
T : V ×H →W ×N, (y, h) 7→ (t(y), δ(y)ψ(h)),

for some smooth maps γ : U → N and δ : V → N , this is because F is (G
ϕ−→ N)-equivariant and

T is (H
ψ−→ N)-equivariant. For all (x, g) ∈ U ×G, (y, h) ∈ V ×H with F (x, g) = T (y, h) one has

that f(x) = t(y) and γ(x)ϕ(g) = δ(y)ψ(h). Moreover

im(F∗,(x,g)) = im(f∗,x)⊕ ĩm(ϕ)γ(x)ϕ(g),
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where
ĩm(ϕ)γ(x)ϕ(g) =

{
ϕ̃∗(A)γ(x)ϕ(g) |A ∈ Lie(G)

}
.

We denote the fundamental vector field in R associated to the vector X ∈ Lie(N) by X̃. Then one
easily checks that

im(F∗,(x,g)) + im(T∗,(y,h)) = (im(f∗,x) + im(t∗,y))⊕
(

ĩm(ϕ)γ(x)ϕ(g) + ĩm(ψ)δ(y)ψ(h)

)
.

Thus
im(F∗,(x,g)) + im(T∗,(y,h)) = Tf(x)M ⊕ Tγ(x)ϕ(g)H,

if and only if

Tf(x)M = im(f∗,x) + im(t∗,y), Tγ(x)ϕ(g)H = ĩm(ϕ)γ(x)ϕ(g) + ĩm(ψ)δ(y)ψ(h).

Therefore F and T are transversal if and only if f and t are transversal, and ϕ and ψ are transversal.

Remark A.1.1. Note that if ψ : G→ N and ϕ : H → N are transversal Lie group homomorphisms
then G ×N H is an embedded submanifold of G × H, so that the product Lie group structure in
G×H restricts to G×N H. Thus G×N H is a Lie subgroup of G×H.

A.2 Constructions in PBC
Recall that the category of principal bundles with connection, denoted by PBC, is the cate-

gory whose objects are (P, π,M,G, θ) where (P, π,M,G) is a principal bundle and θ is a connection
1-form on P . A morphism between two principal bundles with connection (P, πP ,M,G, θP ) and
(Q, πQ, N,H, θQ) is a morphism (F, f, φ) : (P, πP ,M,G)→ (Q, πQ, N,H) such that F ∗θQ = φ∗ ·θP .

Theorem A.2.1. Let (P, πP , X,G, θP ), (Q, πQ, Y,H, θQ) and (R, πR, Z,N, θR) be a principal bun-
dles with connection and F : P → R be a bundle morphism along φ : G → N covering f : X → Z
preserving the connections and T : Q → R a bundle morphism along ϕ : H → N covering to
t : Y → Z preserving the connections.

P ×R Q Q G×N H H

P R G N

X ×Z Y Y T ∗θR = ϕ∗ · θQ,

X Z F ∗θR = φ∗ · θP .

pr1

pr2

T

πQ

τ2

τ1
ϕ

F

πP

φ

t

f

πR

Then if F, T are transversal, then the pullback principal bundle (P×RQ, πP×πRπQ, X×ZY,G×NH)
admits a connection 1-form θP ×R θQ such that

pr∗1θP = τ1∗ · θP ×R θQ, pr∗2θQ = τ2∗ · θP ×R θQ.

Proof. By Theorem A.1.3 the pullback principal bundle is well-defined. We write by g ⊕n h the
Lie algebra of the Lie group G ×N H. Now let us see that in fact, θP ×R θQ := pr∗1θP + pr∗2θQ ∈
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Ω1
dR(P ×R Q; g⊕n h) is a connection 1-form. For this let A+B ∈ g⊕n h, then

i
Ã+B̃

θP ×R θQ =i
Ã+B̃

pr∗1θP + i
Ã+B̃

pr∗2θQ
=i

Ã
θP + i

B̃
θQ

=A+B.

For (g, h) ∈ G×N H note that one has Ad(g,h) = Adg ⊕Adh : g⊕n h→ g⊕n h. Then

R∗(g,h)(θP ×R θQ) =R∗(g,h)(pr
∗
1θP + pr∗2θQ)

=R∗(g,h)pr
∗
1θP +R∗(g,h)pr

∗
2θQ

=pr∗1(R∗gθP ) + pr∗2(R∗hθQ)

=pr∗1(Adg−1 · θP ) + pr∗2(Adh−1 · θQ)

=Adg−1 · pr∗1θP + Adh−1 · pr∗2θQ
=(Adg−1 ⊕Adh−1) · (pr∗1θP + pr∗2θQ)

=Ad(g,h)−1 · θP ×R θQ.

Therefore θP×RθQ is a connection 1-form on P×RQ. Moreover, it is clear that pr∗1θP = τ1∗·θP×RθQ
and pr∗2θQ = τ2∗ · θP ×R θQ from the definition.

The following theorem relates the theory of principal bundles with connection and the theory
of differential graded algebras with symmetries.

Theorem A.2.2. Let (P, πP ,M,G, θP ) and (Q, πQ, N,H, θQ) be two principal bundles with con-
nection and F : P → Q be a bundle morphism along φ : G → H covering f : M → N preserving
the connections, then the following diagram of dga is commutative

W (g) ΩdR(P )

W (h) ΩdR(Q),

wθP

wθQ

φ∗ F ∗

and it induces a commutative diagram in the respective basic dga’s

S(g∗)G ΩdR(M)

S(h∗)H ΩdR(N)

wθP

wθQ

φ∗ f∗

Proof. To see that the first diagram is commutative it is sufficient to show this in generators. Indeed,
consider a basis X1, . . . , Xn for g with dual basis α1, . . . , αn and with a copy dual basis u1, . . . , un
and a basis Y1, . . . , Yk for h with dual basis β1, . . . , βk and with a copy dual basis v1, . . . , vk then

W (g) = ∧(α1, . . . , αn)⊗ R [u1, . . . , un] , W (h) = ∧(β1, . . . , βk)⊗ R [v1, . . . , vk] .

Now extend the transpose application φ∗ : h∗ → g∗ to a differential graded map φ∗ : W (h)→W (g).
Note that for φ∗ : g→ h, φ∗(Xj) =

∑k
i=1 φ

i
jYi, we have that the transpose application φ∗ : h∗ → g∗

is given by φ∗βj =
∑n

i=1 φ
j
iα

i. Note that F ∗θQ = φ∗ · θp implies that

F ∗θQ = F ∗

(
k∑
i=1

θiQYi

)
=

k∑
i=1

F ∗θiQYi,

and
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φ∗ · θP =φ∗ ·

 n∑
j=1

θjPXj

 =
n∑
j=1

θjP (φ∗ ·Xj)

=
n∑
j=1

θjP

k∑
i=1

φijYi =
k∑
i=1

 n∑
j=1

φijθ
j
P

Yi,

hence

F ∗θiQ =
n∑
j=1

φijθ
j
P , i = 1, . . . , k.

Thus

F ∗ ◦ wθQ(βi) =F ∗(θiQ) =
n∑
j=1

φijθ
j
P =

n∑
j=1

φijwθP (αj)

=wθP

 n∑
j=1

φijα
j

 = wθP (φ∗(βi)) = wθP ◦ φ
∗(βi).

Now recall that Equation (1.1.3) gives us that F ∗ΩQ = φ∗ · ΩP , and since φ∗ : W (h) → W (g) is a
dga morphism, then

φ∗(vj) =φ∗(d(βj)) = φ∗(dβj − dCEβj) = dφ∗βj − dCEφ∗βj

=d

(
n∑
i=1

φjiα
i

)
− dCE

(
n∑
i=1

φjiα
i

)

=
n∑
i=1

φji (dα
i − dCEαi) =

n∑
i=1

φjidα
i =

n∑
i=1

φjiui.

Hence

φ∗(vj) =
n∑
i=1

φjiui, j = 1, . . . , k.

From this, it is straightforward to conclude that F ∗ ◦ wθQ(vj) = wθP ◦ φ∗(vj). Thus the diagram is
commutative. The diagram in basic elements is commutative, because the following conditions are
satisfied for Xi ∈ g with j = 1, . . . , n

i
X̃j
◦ F ∗ = F ∗ ◦ i

φ̃∗Xj
, iXj ◦ φ∗ = φ∗ ◦ iφ∗(Xj),

and for all g ∈ G,
R∗g ◦ F ∗ = F ∗ ◦R∗φ(g), Ad∗g ◦ φ∗ = φ∗ ◦Ad∗φ(g).



Appendix B

The adjoint representation of a
semi-direct product of Lie groups

B.1 The adjoint representation of semi-direct product of Lie groups

Let G and H be two Lie groups, and α : G → Aut(H) be a homomorphism of Lie groups. Let
us consider its semi-direct product H oα G. For two elements (h, g), (x, y) ∈ H oα G their product
is given by

(h, g)(x, y) = (hαg(x), gy).

The conjugation by (h, g) is given by

c(h,g)(x, y) = (h, g)(x, y)(h, g)−1

= (hαg(x), gy)(αg−1(h−1), g−1), by (h, g)−1 := (αg−1(h−1), g−1),

= (hαg(x)αgyg−1(h−1), gyg−1)

= ((ch ◦ αg) (x)(α̃h ◦ cg)(y), cg(y)) , (B.1)

where for all h ∈ H the morphism α̃h : G → H, g 7→ hαg(h
−1). Infinitesimally, for X ∈ TeG and

Y ∈ TeH the adjoint at (h, g) is

Ad(h,g)(X + Y ) = (Adh((αg)∗,e(X)) + (α̃h)∗,e(AdgY ),AdgY ).

In particular, for (h, e) ∈ H oα G

Ad(h,e)(X + Y ) = (Adh(X) + (α̃h)∗,e(Y ), Y ),

and for (e, g) ∈ H oα G
Ad(e,g)(X + Y ) = ((αg)∗,e(X),Adg(Y )).

The left invariant Maurer-Cartan 1-form of the semi-direct Lie group H oα G is

θHoαG
MC = (αpr−1

2
)∗(pr∗1θ

H
MC) + pr∗2θ

G
MC ,

where θGMC , and θ
H
MC are the left invariant Maurer-Cartan 1-forms of G and H, respectively.
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