• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2020.tde-03112020-120351
Document
Auteur
Nom complet
Felipe Rodolpho Sanches dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Chaves, Rosa Maria dos Santos Barreiro (Président)
Silva, Márcio Fabiano da
Sousa Junior, Luiz Amancio Machado de
Titre en portugais
A curvatura de Gauss-Kronecker de hipersuperfícies mínimas em espaços forma quadridimensionais
Mots-clés en portugais
Curvatura de Gauss-Kronecker
Espaços forma quadridimensionais
Hipersuperfícies mínimas
Resumé en portugais
Nesse trabalho, estudamos os resultados obtidos por Asperti et al. [1] e Hasanis et al. [17] envolvendo a curvatura de Gauss-Kronecker de hipersuperfícies mínimas em espaços forma quadridimensionais. Apresentamos conceitos relativos ao estudo de variedades Riemannianas, assim como a técnica do referencial ortonormal móvel utilizada pelos dois artigos. Entre os resultados de [1], destaca-se para os casos Euclideano e hiperbólico uma versão local do resultado obtido por Cheng [4]. No caso esférico, obtemos uma isometria entre a imagem de uma imersão mínima de uma hipersuperfície completa com curvatura de Gauss-Kronecker constante não nula e o toro de Clifford. Apresentamos também dois teoremas referentes à classificação de hipersuperfícies mínimas completas em espaços forma quadridimensionais além de desenvolver os resultados presentes em [17].
Titre en anglais
The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms
Mots-clés en anglais
Four-dimensional space forms
Gauss-Kronecker curvature
Minimal hypersurfaces
Resumé en anglais
In this work, we study the results obtained by Asperti et al. [1] and Hasanis et al. [17] involving the Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms. We present concepts related to the study of Riemannian manifolds, as well as the orthonormal frame field technique used by both articles. Among the results of [1], a local version of the result obtained by Cheng [4] stands out for the Euclidean and hyperbolic cases. In the spherical case, we obtain an isometry between the image of a minimal immersion of a complete hypersurface with non-zero constant Gauss-Kronecker curvature and the Clifford torus. We also present two theorems referring to the classification of complete minimal hypersurfaces in four-dimensional space forms, in addition to developing the results found in [17].
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-01-20
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.