Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2013.tde-01102013-114836
Document
Author
Full name
Danilo Dias da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Coelho, Flavio Ulhoa (President)
Bekkert, Viktor
Marcos, Eduardo do Nascimento
Trepode, Sonia Elizabeth
Wagner, Heily
Title in Portuguese
Relações entre graus de morfismos irredutÃveis e partição pós-projetiva
Keywords in Portuguese
álgebra quasi-hereditária
morfismos irredutÃveis
partição pós-projetiva
Abstract in Portuguese
Nesta tese estudamos o conceito de grau de um morfismo irredutÃvel em ${m mod}A$ relacionado ao conceito de teoria de partições pós-projetiva e pré-injetiva de uma álgebra de artin $A$. Introduzimos o conceito de grau de um morfismo irredutÃvel em relação a uma categoria ${\mathfrak D}$ de ${m ind}A$ e estudamos o caso em que ${\mathfrak D}$ é um elemento da partição ${\bf P_0}, \cdots, {\bf P_{\infty}}$. Dentro do contexto de grau de um irredutÃvel em relação a uma subcategoria resolvemos um problema proposto por Chaio, Le meur e Trepode em \cite. Utilizando as partições pós-projetiva e pré-injetiva obtemos outra demonstração para a caracterização de álgebras de tipo finito obtida em \cite e obtemos uma caracterização semelhante para subcategorias de módulos $\Delta$-bons de tipo finito de ${m mod}A$ tal que $A$ é uma álgebra quasi-hereditária. Também utilizamos a teoria de partições para provar que, dada uma álgebra quasi-hereditária $A$ e ${\cal F}(\Delta) \subseteq {m mod}A$, se $({m rad}_{\Delta}^{\infty})^2=0$ então ${\cal F}(\Delta)$ é de tipo finito.
Title in English
Connections between the degree of irreducible morphisms and the postprojective partition
Keywords in English
Degree of irreducible morphisms
Postprojective partition
Quasi-hereditary algebra
Abstract in English
In this thesis we analyse the concept of the degree of an irreducible morphism associated to the theory of postprojective and preinjective partitions. We introduce the idea of the degree of an irreducible morphism with respect to a subcategory ${\mathfrak D}$ and we study the case in which ${\mathfrak D}$ is an element of the postprojective partition ${\bf P_0}, \cdots, {\bf P_{\infty}}$. By using the concept of the degree of an irreducible morphism with respect to a subcategory ${\mathfrak D}$ we present a solution to a problem recently proposed by Chaio, Le Meur and Trepode in \cite. We also use the theory of postprojective and preprojective partitions to give another proof to the characterization of finite type algebras obtained by Chaio and Liu in \cite and we apply similar techniques to obtain a characterization of finite type ${\cal F}(\Delta)$ subcategories where ${\cal F}(\Delta)$ is the subcategory of $\Delta$-good modules of the category of finitely generated modules over a quasi-hereditary algebra. We also prove that given a quasi-hereditary algebra $A$ and ${\cal F}(\Delta) \subseteq {m mod}A$, if $({m rad}_{\Delta}^{\infty})^2=0$ then ${\cal F}(\Delta)$ is of finite type.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tesefinal.pdf (427.89 Kbytes)
Publishing Date
2013-10-04