• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.44.2022.tde-21112022-135617
Document
Author
Full name
Victor Brugnera Camassari de Gonzaga
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2022
Supervisor
Committee
Janasi, Valdecir de Assis (President)
Andrade, Sandra
Silva Filho, Adejardo Francisco da
Title in English
Crystallization conditions and magmatic evolution of the Pedra Branca syenite based on the chemistry of accessory minerals
Keywords in English
Apatite
Magmatic crystallization conditions
Syenite
Titanite
Zircon
Abstract in English
The Pedra Branca Syenite, located in the southern portion of the Guaxupé Domain, is a Neoproterozoic pluton (594±6 Ma) comprised of four main syenitic units, each with distinct mineralogical characteristics, but similar chemical compositions. To better understand the origin of the mineralogical variation, a detailed study was proposed regarding the crystallization conditions, specifically temperature and oxygen fugacity (fO2), which controlled the development of each unit. As the accessory phases are abundant in all units of the Pedra Branca pluton, and they record the main stages of crystallization (early-, main- and late-stage), it was decided to carry out the characterization of both the crystallization temperatures and the oxygen fugacity based on the chemistry of accessory minerals, namely, apatite, titanite and zircon. To characterize the crystallization temperatures, two different geothermometers were used; Ti in zircon (Ferry & Watson, 2007) and Zr in titanite (Hayden et al 2008). Zircon crystallization temperatures between 750ºC and 800ºC were obtained for the silica-saturated laminated syenites (LSS unit) and 870ºC to 950ºC for the silica-supersaturated syenite units. In contrast, titanite crystallization temperatures are higher (820-860ºC) in the LSS unit, and lower (720-780ºC) in supersaturated syenites, where this mineral is interstitial, occurring as an overgrowth of Fe-Ti oxides. For the characterization of oxygen fugacity, the Ce in zircon geobarometer (Smythe and Brenan, 2016) and the lattice strain model, were adopted. Based on the results obtained it was possible to determine that the Pedra Branca pluton records increasingly more oxidizing conditions towards the border of the pluton, with values around the NNO+1 and NNO+2, whereas the oversaturated units present around the core of the pluton record values around the NNO buffer. From the results obtained it was possible to determine that the different units of the Pedra Branca pluton record different crystallization conditions, which can explain the mineralogical differences observed in the pluton.
Title in Portuguese
Condições de cristalização e evolução magmática do Sienito Pedra Branca baseada na química de minerais acessórios
Keywords in Portuguese
Apatita
Condições de cristalização magmática
Sienito
Titanita
Zircão
Abstract in Portuguese
O Sienito Pedra Branca, localizado na porção sul do Domínio Guaxupé, é um plúton neoproterozoico (594±6 Ma), composto por quatro unidades sieníticas principais, cada qual apresentando características mineralógicas distintas, porém composições químicas muito semelhantes. Com o objetivo de melhor entender a origem da variação mineralógica, foi proposto um estudo de detalhe a respeito das condições de cristalização, especificamente temperatura e fugacidade de oxigênio, que controlaram o desenvolvimento de cada unidade do plúton. Como as fases acessórias são abundantes em todas as unidades do Pedra Branca, e registram as principais fases de cristalização (precoce, principal e tardia), decidiu-se realizar a caracterização, tanto das temperaturas de cristalização quanto da fugacidade de oxigênio, com base na química de apatita, titanita e zircão, que são as fases acessórias mais abundantes ao lado dos óxidos de Fe-Ti (ferri-ilmenita e magnetita). Para a caracterização das temperaturas de cristalização foram adotados dois geotermômetros distintos; Ti em zircão (Ferry & Watson, 2007) e Zr em titanita (Hayden et al 2008). Obteve-se temperaturas de cristalização de zircão entre 750ºC e 800ºC, para os sienitos laminados saturados em sílica (unidade LSS) e 870 a 950ºC, para as unidades de sienitos supersaturados em sílica. Contrariamente, as temperaturas de titanita são mais altas (820 860ºC) na unidade LSS, e mais baixas (720 780ºC) nos sienitos supersaturados, onde este mineral é intersticial, sobrecrescendo os óxidos de Fe-Ti. Para a caracterização da fugacidade de oxigênio foi adotado o método de Ce em zircão (Smythe & Brenan, 2016), em conjunto com o modelo de lattice strain, e foram obtidas condições de fO2 distintas para cada unidade; as mais reduzidas registrando cristalização em torno do buffer NNO e as mais oxidadas entre NNO+1.0 e NNO+2.0 A partir dos resultados dos métodos aplicados é possível concluir que as diferentes unidades do plúton Pedra Branca registram condições de cristalização distintas, possivelmente sendo um dos fatores que explicam a variação mineralógica, característica do plúton.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-11-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.