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Abstract 

This study aimed to investigate the impact of crustal assimilation on the SiO2-

undersaturated Cretaceous alkaline rocks emplaced in the Mantiqueira mountain range in the 

northern sector of the Serra do Mar alkaline Province, southeastern Brazil. The focus was the 

most contaminated intrusions of the Ponte Nova alkaline massif, PNAM, the cumulate 

western intrusion (WI) and the porphyritic southern satellite intrusion (SSA), as well as the 

nearby basic/intermediate dikes and plugs. The study of disequilibrium textures, mineral 

chemistry and Sr isotope ratio in plagioclase and alkali feldspar crystals were employed to 

infer the processes occurred in different stages of magma evolution of PNAM in shallow 

crustal depths. The mineral isotope analyses were carried out using 

polytetrafluoroethylene filter and holder device to combine Laser Ablation (LA) as the 

sampling technique with Thermal Ionization Mass Spectrometry (TIMS). The chemical 

patterns observed in crystals were interpreted as the effect of AFC in the main stage of the 

evolution and the competition between AFC and magma recharge in the following stage. The 

sharp transition between core and rim of feldspar crystals and the disequilibrium textures of 

the respective cores reinforce mainly the abrupt chemical change of the system during their 

crystallization. SSA (represented by nepheline-bearing monzogabbros and nepheline-

bearing melamonzonites) may represent a magma recharge that came after the SSA-nph-mz 

(nepheline-bearing monzonites) emplacement, however the intrusion did not achieve the 

complete homogeneity as the petrographic and chemical data indicate. Assimilation of partial 

melt of crustal xenoliths and from the wall rock were pointed out as two mechanisms 

responsible for the PNAM contamination in agreement with previous studies. According to 

the results of modeling by Magma Chamber Simulator (MCS), the presence of Ba-rich 

minerals in the PNAM, especially Ba-rich feldspars, may be resultant of extensive fractional 

crystallization of enriched primitive melts and increase of SiO2 activity by crustal assimilation. 

The patterns of Ba and Sr composition observed in plagioclase corresponds to those 

simulated using logDBa or Sr
pl/melt

 as a function of 1/T rather than constant coefficient values. The 

degree of scattering of trace element data in the analyzed crystals may be related to the 

disequilibrium crystallization and chemical heterogeneities in the magma chamber.  

The studied basic/intermediate dikes and plugs varies from phonotephrite to 

tephriphonolite or trachyandesite to trachyte. The interaction of them with the acid wall rock 

in shallow depth of the crust is observed by their sinuous contacts and the presence of 

rounded crustal xenolith hosted in the alkaline rocks. The dikes and plugs are emplaced 

mainly in Precambrian batholith of Serra da Água Limpa and subordinately in the PNAM or in 

the medium-grained hololeucogranite which age (579.5 Ma) was obtained with U-Pb dating 

of zircon crystals. The occurrence of (open or closed) monomineralic or polymineralic 



glomerocrysts in dikes and plugs suggests that magmas were stored in a magma chamber 

environment before ascending. Major- and trace-element contents of whole rock show that 

the magmas passed by extensive fractional crystallization of mafic minerals before reaching 

the shallower depth of the crust. The data fall in the field limited by magma mixing curves 

(basanite x silicic melts) constructed with ratios of highly incompatible elements (e.g., Nb/Pb, 

Th/Pb x Rb/Sr) or isotopes ((87Sr/86Sr)i x (143Nd/144Nd)i). AFC modeled by thermodynamic 

software (MCS) starting with a basanite magma supports that the crustal contamination has 

taken place mainly in upper crust (granitoid) where the partial melting could be greater under 

specific circumstances (e.g., earlier crustal heating, steep geotherm) rather than in lower crust 

(granulite). Likewise, part of data for major element oxides lies on the field formed with AFC 

and FC/magma mixing curves obtained by MCS. On other hand, AFC curves constructed 

using trace-element ratios (e.g., Nb/Pb, Th/Pb) do not reach most sample data likely due to 

the effect of mineral crystallization on the ratios used and the model uncertainties added in 

the selection of starting composition of the subsystems (main magma and wall rock) and 

trace-element partition coefficients. This study proposes that the crustal assimilation of dikes 

and plugs may have occurred during the magma ascent and possibly in a magma chamber 

in the upper crust. Among the factors that may have caused the lower level of crustal 

contamination of dikes and plugs compared to that found in WI and SSA/SSA-mz, it is cited 

the laminar regime of magma flow, the presence of chilled margin and the lower time of 

contact between magma and wall rock.  

 

Key Words: Crustal assimilation, Sr isotope analyses, Alkaline magmas, Thermodynamic 

model



Resumo 

 Este estudo investigou o impacto da contaminação crustal em rochas cretáceas 

alcalinas e subsaturadas em sílica intrudidas na Serra da Mantiqueira no setor norte da 

Província alcalina da Serra do Mar, no sudeste do Brasil. A investigação abordou as 

intrusões mais contaminadas do maciço alcalino Ponte Nova, PNAM, a intrusão 

cumulática do oeste (WI) e a área satélite porfirítica do sul (SSA), como também os diques 

a plugs básicos a intermediários intrudidos na região. O estudo textural, de química 

mineral e da razão isotópica de Sr em cristais de plagioclásio e feldspato alcalino foram 

empregados para inferir os processos ocorridos em diferentes estágios da evolução 

magmática de PNAM, alojado em uma região rasa da crosta. O método aplicado para as 

análises isotópicas dos minerais consistiu em armazenar o material amostrado por laser 

ablation (LA) em um filtro de politetrafluoretileno dentro de um suporte e analisar o material 

digerido por espectrometria de massa por ionização térmica (TIMS). Os padrões químicos 

observados em cristais foram interpretados como efeitos de AFC no principal estágio de 

evolução magmática das duas intrusões estudadas de PNAM e uma competição entre 

AFC e a recarga de magma no estágio seguinte. A transição abrupta entre o núcleo e a 

borda dos cristais de feldspato alcalino e a textura de desequilíbrio desses núcleos 

reforçam, principalmente, a mudança química repentina ocorrida nos sistemas estudados 

entre a cristalização das duas zonas. SSA, representado por monzogabros com nefelina 

a melamonzonitos com nefelina, consiste em uma recarga de magma máfico que sucedeu 

a colocação do SSA-nph-mz (monzonitos com nefelina), entretanto, não houve a mistura 

completa entre os dois eventos intrusivos de acordo com a interpretação realizada por 

meio da petrografia e dos dados químicos dos minerais. A assimilação da fusão parcial 

de xenólitos crustais e da parede da encaixante são apontados como os dois mecanismos 

responsáveis pela contaminação crustal no PNAM, corroborando com estudos prévios.  

De acordo com os resultados da simulação realizada com o software Magma Chamber 

Simulator (MCS), a presença de minerais ricos em Ba no PNAM pode ser resultante da 

elevada cristalização fracionada do magma primitivo e do aumento da atividade de SiO2 

pela assimilação crustal. Os padrões da variação composicional de Ba e Sr observados 

nos cristais de plagioclásio correspondem aos respectivos padrões simulados pelo uso da 

relação de logDBa or Sr
pl/fundido

 em função d 1/T em vez de valores constantes de coeficiente de 

partição. O grau de dispersão nos dados de elementos-traço nos cristais analisados deve 

estar relacionado à cristalização fora da condição de equilíbrio e à heterogeneidade da 

câmara magmática.    



 Os diques e os plugs variam entre fonotefrito e tefrifonolito ou entre traquiandesito 

e traquito. A interação deles com a encaixante ácida em profundidade rasa da crosta é 

observada pelos contatos sinuosos e a presença de xenólitos crustais arredondados 

hospedados nas rochas alcalinas estudadas. Os diques e plugs intrudem, principalmente, 

o batólito Pré-Cambriano da Serra da Água Limpa e, subordinadamente, no PNAM ou no 

granito com granulação média do qual a idade (579.5 Ma) foi obtida pela datação U-Pb 

em grãos de zircão. A ocorrência de glomerocristais monominerálicos ou poliminerálicos 

(fechados ou abertos) sugere que os magmas estudados foram estocados em um 

reservatório de magma antes da sua ascensão na crosta até a colocação. Conteúdos de 

elementos maiores e traços na rocha total mostram que os magmas passaram por um 

elevado fracionamento cristalino de minerais máficos antes de alcançar uma profundidade 

mais rasa da crosta. Os dados se inserem no limite do campo formado pelas curvas de 

mistura de magmas (basanítico x magma ácido) construídas com razões de elementos 

altamente incompatíveis (e.g., Nb/Pb, Th/Pb x Rb/Sr) ou de isótopos ((87Sr/86Sr)i x 

(143Nd/144Nd)i). O AFC modelado por um software termodinâmico (MCS) a partir do magma 

basanítico indica que a contaminação crustal ocorreu, principalmente, na crosta superior 

(granitoide) onde a fusão parcial é maior do que na crosta inferior (granulito) sob 

circunstâncias específicas como processos prévios de aquecimento da crosta. O campo 

composicional formado pelas curvas de AFC e FC/ mistura de magma obtidas por meio 

do software MCS se sobrepõe aos dados em óxidos de elementos maiores. Por outro 

lado, as curvas de AFC construídas usando razões de elementos-traço (e.g., Nb/Pb, 

Th/Pb) não atingem a maioria dos dados das amostras, possivelmente, devido ao efeito 

dos minerais cristalizados nas razões utilizadas e às incertezas do modelo aplicado 

relacionadas à seleção da composição inicial dos subsistemas (magma principal e 

encaixante) e do coeficiente de partição de elementos-traço. Este estudo sugere que a 

assimilação crustal dos diques e plugs deve ter ocorrida durante a ascensão do magma 

e, provavelmente, em uma câmara magmática na crosta superior. Entre os fatores que 

podem ter causado o nível mais baixo de assimilação crustal nos diques e plugs 

comparado àquele observado em WI e SSA/SSA-mz, podem ser citados o predomínio de 

um fluxo laminar de magma, a presença de margem resfriada no contato e o menor tempo 

de interação entre o magma e a encaixante. 

 

Palavras-chave: Assimilação crustal, Análises isotópicas de Sr, Magmas alcalinos, 

Modelo termodinâmico 
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1. Introduction 

 

1.1  Justifications and goals 

 

Alkaline rocks attract attention of researchers by their mineralogical diversity 

(Marks et al., 2011) and potential economical source (e.g., Biondi, 2005; Dostal, 2017; 

Mitchell, 2020). Another three significant aspects of alkaline rocks are their wide 

petrography and compositional variety, enrichment of incompatible elements (e.g., 

Morbidelli et al., 1995) and the low volume relative to the total crustal volume (Fitton and 

Upton, 1987). The petrogenesis of alkaline magmas has been intensively debated and it 

is highlighted two lines of researches that treat the alkaline magma generation or 

evolution. The first one has been focusing on their origin in the mantle. Assumptions 

based on the mantle xenoliths (e.g., Ackerman et al., 2013; Smart et al., 2019) and 

experimental studies (e.g., Pilet et al., 2008) have been supporting the models of melting 

of metasomatized lithospheric mantle to explain the alkaline melt origin. The low melting 

degree of garnet peridotite (Walter, 1998), the reaction between amphibole-rich veins and 

lherzolite (Pilet et al., 2018) are two of the experiences that seek to explain the origin of 

basic to ultrabasic alkaline melts in the mantle. The second line of research is the 

investigation of processes responsible for the variety of rocks and alkaline magma 

compositions from ultramafic cumulate to more evolved rocks such syenites and 

phonolites, related to massif, suite or complex formations. The mentioned processes 

encompass fractional crystallization (e.g., Beccaluva et al., 1992; Gomes et al., 2017), 

magma mixing (e.g., Dowes, 1989; Araña et al.,1994) and crustal assimilation (Piochi et 

al., 2006; Melluso et al., 2018).  

The central to southern part of the South America platform hosts more than 200 

alkaline or alkaline-carbonatite massifs and complexes, with ages mainly from Early to 

Late Cretaceous and lasting to the Paleocene, and emplaced (Fig. 1) mainly along the 

margins of Paraná, Bauru, Santos and Pelotas basins, at rift system of Asunción, Cabo 

Frio lineament and Amazon craton (Gomes and Comin-Chiaramonti, 2005; Ricommini et 

al., 2005). The region encompasses Brazil, Paraguay, Bolivia and Uruguay. The 

complexes are divided into 15 Provinces according to the tectonic settings and the 

Brazilian ones are related to the Early and Later Cretaceous and Paleocene (Ricommini 

et al., 2005). The most abundant types are intrusive SiO2-undersaturrated to saturated 

syenites  (Ulbrich  et al., 2005;  Gomes et al.,  2017; Rosa  and  Ruberti,  2018). The basic 

to ultrabasic types  are  emplaced chiefly  as dikes, pipes and plugs  (e.g.,  Brotzu  et  al.   
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Figure 1: Alkaline provinces of the central-southeastern region of the Brazilian 
Platform. 1) Late Ordovician to Early Cretaceous Paraná Basin; 2) Early 
Cretaceous tholeiitic lava flows; 3) Late Cretaceous Bauru Basin; 4) Offshore 
marginal basins; 5) alkaline provinces; 6) age of alkaline rocks (diamonds, 
Permian-Triassic; squares, Early Cretaceous; triangles, Late Cretaceous; 
circles, Paleogene); 7) Axes of main archs (AX, Alto Xingu; SV, São Vicente; 
BJ, Bom Jardim de Goiás; PG, Ponta Grossa; RG, Rio Grande; PP, Ponta 
Porã); 8) Torres Syncline; 9) Major fracture zones, in part deep lithospheric 
faults (Rifts: MR, Mercedes; RM, Rio das Mortes; MG, Moirão; SR, Santa 
Rosa; AR, Asunción; Lineaments: TB, Transbrasiliano; AP, Alto Paranaíba; MJ, 
Moji-Guaçu; CF, Cabo Frio; RT, Rio Tietê; SL, São Carlos-Leme; PR, 
Paranapanema; PI, Piedade; GP, Guapiara; JC, São Jerônimo-Curiúva; RA, 
Rio Alonzo; PQ, Rio Piquiri; AM, Santa Lucía-Aiguá-Merin). Mapa from 
Riccomini et al. (2005).
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2005). The cumulate  rocks  are  usually associated with carbonatite rocks (Beccaluva et 

al., 1992; Beccaluva et al., 2017; Chmyz et al., 2017). 

The effect of magma source in the mantle on alkaline/carbonatite bodies of 

Brazilian platform has been frequently discussed (e.g., Morbidelli et al., 1995; Gibson et 

al., 1995a, b; Traversa et al., 2001; Ruberti et al., 2012). Thompson et al. (1998) and 

Gibson et al. (1999) have suggested that the appearance of studied sodic and potassic 

melts with spatial and temporal association in Brazilian platform may be resultant of four 

variables as follow: 1) the composition of the mantle (e.g., the metasomatized vein 

composition, stabilization of phlogopite by low F/H2O); 2) temperature; 3) the melting rate 

of mantle; 4) the depth of melting in the mantle that contributes to the stability of minerals 

such phlogopite and ilmenite that host K and Ti, respectively. However, the study of 

impact of crustal contamination on the magmatic evolution still deserves more 

investigation and even more in terms of the assimilation mechanisms. Among the 

published investigations or detection of open-system processes in alkaline/carbonatite 

magmas within the Brazilian territory, it is mentioned the studies on the Lages suite 

(Traversa et al., 1996), the Itatiaia alkaline complex (Brotzu et al., 1997), the dikes of 

Serra do Mar alkaline Province (Thompson et al., 1998; Azzone et al., 2018), the 

Cananéia massif (Spinelli and Gomes, 2009), the Ponte Nova ultramafic-mafic alkaline 

massif (Azzone et al., 2016; Azzone et al., 2020), the Jacupiranga alkaline complex 

(Roden et al., 1985; Chmyz et al., 2017), the José Fernandes suite (Almeida et al., 2019) 

and the Indaiá-II Kimberlite (Lima et al., 2020).   

This study focused on understanding the mechanism of crustal contamination on 

the most contaminated intrusions of the Ponte Nova alkaline massif (PNAM; Azzone et. 

al., 2009a) and basic/intermediate dikes and plugs located at the Mantiqueira mountain 

range at the northern sector of Serra do Mar alkaline Province, SE, Brazil. This sector 

comprises the alkaline complexes of coastline of northern São Paulo State and those 

emplaced in the Mantiqueira mountain range located in the limit among São Paulo, Minas 

Gerais and Rio de Janeiro states in the southeast of Brazilian platform (Fig. 2A). The 

structure and petrography of the PNAM were well-characterized in Azzone et al. (2009a). 

The massif consists of two areas where the largest one (~5.5 Km2) is formed mainly by 

cumulate gabbroic intrusions and the smallest one (~1 Km2), a southern satellite area 

(SSA), has porphyritic nepheline-bearing monzogabbros as the dominant rock and 

nepheline-bearing melamonzonites to monzonites (SSA-nph-mz) as subordinate rocks. 

The PNAM was formed in shallow depth of the crust by multiple pulses of crystal-laden  

potassic basanitic  magmas  (Azzone et al.,  2009a  and  2016).  The   PNAM  was  chiefly 



Figure 2:  A) The map of the Serra do Mar Alkaline Province at southern region 
of Brazil (modified from Thompson et al., 1998). B) Map with localization of the 
Ponte Nova alkaline massif (PNMA) and dikes and plugs investigated (in light 
green symbols) in this study. Map modified from Azzone et al. (2016, 2018); 
Crystalline basement modified from Nunes et al. (2020).
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emplaced in the Precambrian Serra  da  Água  Limpa batholith  (Vinagre et al., 2014a, b). 

It  is  possible to distinguish seven intrusions in the largest area of the massif (Fig. 2B). 

The Western Intrusion (WI) and Central Intrusion (CI) are divided into lower (LS) and 

upper (US) sequences. The LS comprises mafic- ultramafic, meso- to orthocumulate 

coarse-grained rocks (clinopyroxenites and melagabbros), whereas the US consists of 

fine- to medium-grained porphyritic and inequigranular nepheline-bearing monzogabbros. 

The Northern Intrusion (NI) exhibits coarse-grained cumulate melagabbros and the 

Eastern Intrusion (EI) is formed by fine to medium-grained porphyritic nepheline-bearing 

monzogabbros to mozondiorites. Other three subordinate intrusions of the main region 

consist of CP (a small plug of porphyritic to equigranular micrograbbros), ICp (ilmenite 

clinopyroxenites and magnetitites) and Brc (magmatic breccia). 

Azzone et al. (2016) have highlighted the importance of the crustal contamination 

plus fractional crystallization (AFC) on the magmatic evolution mainly in WI, SSA, EI by 

petrographic, geochemical, isotopic evidences and thermodynamic model (MELTS 

package - Ghiorso and Sack, 1995). Azzone et al. (2016) by observations of mineral 

textures and wide range of Sr isotope ratios in plagioclase and apatite of CI-LS, WI-LS, 

EI, NI and SSA have shown that the magma hybridization (partial melt of crustal rocks 

interacting with basanite magmas) took place in a shallow magma chamber environment. 

The thesis aimed to further comprehend the assimilation process of the most 

contaminated intrusions (WI-LS, WI-US, SSA/SSA-nph-mz) of the PNAM adopting three 

lines of investigation: 1) to track the Sr isotope ratio of magmatic evolution of each 

intrusion through analysis of plagioclase, core and rim of alkali feldspar crystals, i.e., the 

sequence of crystallization; 2) to relate the mineral textures with additional chemical 

mineral data plus thermodynamic models to construct a model  of magmatic evolution of  

WI-LS / WI-US and SSA-nph-mz / SSA; 3) to extend the discussion initiated in Azzone et 

al. (2016) about the contribution of partial melting of crustal xenolith and wall rock to the 

contamination of the targeted intrusions. In addition, alkali feldspar and biotite crystals 

with up to 9.2 and 7.3 mass % content of BaO, respectively, are mainly hosted in the most 

contaminated intrusions of the PNAM (WI, SSA/SSA-nph-mz). Similar high-Ba content 

has not been found in such crystals of other intrusions of the Serra do Mar alkaline 

Province. This unusual mineral composition has been related to the origin of PNAM 

magmas in enriched mantle (Azzone et al., 2009b). This thesis extended the debate of 

the origin of Ba-high content of the PNAM melts by the examination of the Sr isotope data 

of Ba- rich alkali feldspar and major- and trace-element modeling. 
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 The dikes and plugs of northern sector of Serra do Mar alkaline Province emplaced 

in the Precambrian Ribeira mobile belt or crosscut alkaline intrusions. They range from 

centimeters to some meters in width. According to Brotzu et al. (2005), the dikes are 

classified in strongly SiO2- undersaturated suite (foidite-phonolite) or weakly SiO2-

undersaturated suite (alkali basalts-trachyte). Azzone et al. (2018) grouped the dikes 

hosted in Mantiqueira mountain range in three alkaline series based on the normative 

nepheline (ne) content, (the weakly SiO2-undersaturated series: normative ne < 7; 

potassic intermediate series:  7 < normative ne < 13; sodic, strongly SiO2-undersaturated 

series: normative ne > 13). The wide compositional variety of more primitive dikes of the 

Serra do Mar alkaline Province has been related to the mantle heterogeneity (Azzone et 

al., 2018). On other hand, Menezes et al. (2015), Ambrosio and Azzone (2018) and Lopes 

et al. (2020) have recognized the presence of xenocrysts and/or antecrysts and the 

impact of them on the bulk composition of basic porphyritic alkaline dikes of the studied 

region. Lopes et al. (2020) have associated the presence of mantle xenocrysts and 

complex zoned antecrysts in alkaline dikes of Mantiqueira mountain range with open-

system processes such as assimilation and magma mixing in previous magmatic stages 

in depth. Crustal contamination is also recognized by variation of Sr and Nd isotope ratios 

in picrites (Thompson et al., 1998) and more evolved compositions or weakly SiO2-

undersaturated series (Azzone et al., 2018). The contribution of the second part of this 

study is dedicated to the measurement of crustal assimilation on basic/intermediate dikes 

and plugs of Mantiqueira range and the investigation of assimilation mechanisms based 

on field evidence, mineral textures, bulk composition and mass-balance and 

thermodynamic modeling. The selected dikes and plugs (Fig. 2B) are included in both 

suites designated by Brotzu et al. (2005), whereas most of them are included in the 

potassic weakly silica-undersaturated series or in the potassic intermediate series of 

Azzone et al. (2018).  

 

1.2 Strategies  

 

 Firstly, this study investigated the level of contamination experienced by the two 

most contaminated intrusions of the massif (WI and SSA/SSA-nph-mz) using mineral 

chemistry (major and trace elements) and Sr isotope ratio in plagioclase and alkali 

feldspar. The textural analysis and chemical data from plagioclase crystals, cores and 

rims of alkali feldspar and biotite crystals were employed to infer the possible processes 

occurred in different stages of the magma evolution. Also supported by the textural 
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analysis and chemical data of partial melted/digested crustal xenoliths and of minerals 

crystallized from highly hybridized melt, it was evaluated the role of the known 

mechanisms of crustal contamination on the magmatic evolution of the PNAM. The effect 

of AFC on the liquid line of descent of the main magma was estimated with 

thermodynamic package (Magma Chamber Simulator – MCS - Bohrson et al., 2014; 

2020). The origin of high content of Ba in the massif, expressed in alkali feldspar and 

biotite crystals enriched in Ba, was debated taking into account the trace-element 

modeling performed with MCS.  

 The interpretation of whole-rock composition and the mass-balance and 

thermodynamic models were the main adopted strategies to evaluate the impact of crustal 

contamination on the magmatic evolution of basic/intermediate dikes and plugs. 

Fractional crystallization (FC), assimilation plus fractional crystallization (AFC), magma 

mixing and FC + magma mixing were modeled and the obtained trends were compared 

with the trends of major and trace elements and Sr, Nd isotope signatures of the dikes 

and plugs. The textural study of macrocrysts hosted in the rocks allowed to infer some 

magmatic processes that took place during magma trajectory within the crust. 

Furthermore, the field aspect of the contacts between dikes or plugs and country rock 

contributed to understand the assimilation mechanism at emplacement stage. The 

radiometric dating of zircon grains of the granitic country rock of two of the studied dikes 

aided to verify whether the granitic emplacement was recent enough to increase the local 

thermal gradient and produce the field observations. Additionally, the use of MCS was 

important to analyze the melting potential of the crust under different depths, the effect of 

thermal gradient of the crust on the melting rate.  

 This research project entitled The crustal assimilation in alkaline basic magmas: 

The Ponte Nova mafic-ultramafic massif (SP-MG) was developed by Mariana Robertti 

Ambrosio under doctor Rogério Guitarrari Azzone’s supervision at the Institute of 

Geoscience (IGc) of University of São Paulo (USP). The IGc provided laboratory support 

services such as sample treatment laboratory, microscopy imaging laboratory (polarized 

light microscopy, scanning electron microscopy), chemical analysis laboratory (whole-

rock analysis: X-ray fluorescence spectrometry, multi collector inductively coupled plasma 

mass spectrometry; mineral analysis: electron microprobe, laser ablation inductively 

coupled plasma mass spectrometry). In addition to the laboratory facilities cited above, 

the electron microprobe laboratory of UNESP of Rio Claro, chemical analysis laboratory 

(whole-rock analysis: inductively coupled plasma mass spectrometry), radiometric dating 

laboratory (laser ablation multi collector inductively coupled plasma mass spectrometry) 
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of UNICAMP were used. The doctoral student was supported by Coordination for the 

Improvement of Higher Education Personnel (CAPES) in Brazil and the national and 

international chemical analyses by São Paulo Research Foundation (FAPESP, process 

number: 2012/06082-6; 2017/03768-8). For this study purpose, the doctoral student 

developed the research project entitled Sr and Pb in-situ isotopic analyses in minerals 

from the Ponte Nova mafic-ultramafic alkaline massif (SP-MG): the study of mechanisms 

of crustal contamination in shallow-level magma chambers at College of Earth, Ocean, 

Atmospheric Sciences of Oregon State University (OSU). The project was supervised by 

doctor Frank J. Tepley III of OSU and doctor Rogério G. Azzone of USP with the 

participation of doctor Frank Ramos (New Mexico State University, NMSU). The Inter-

university Exchange Doctoral Scholarship was funded by National Council for Scientific 

and Technological Development (CNPq, process number: 205705/2018-9, duration: 5-1-

2019 to 4-31-2020). The sampling procedure of crystals and crystalline zones was carried 

out at laboratory facility of College of Earth, Ocean and Atmospheric Sciences at Oregon 

State University. The sample digestion/chromatography step and analyses by Thermal 

Ionization Mass Spectrometry (TIMS) were performed at Geological Sciences 

Department at NMSU. Doctor Frank J. Tepley III and doctor Frank Ramos guided the 

Mariana’s activities in the laboratory. It is worth mentioning that this study was the first 

work to employ the filter and holder device to combine LA as the sampling technique with 

the analytical technique TIMS in isotope ratio analyses of mineral. Marie Katherine 

Takach, doctor Wendy Bohrson’s former student and current PhD candidate of OSU, 

contributed to the discussion of MCS software use in this study.    

 To report the obtained data and respective discussions, beside the current chapter 

(Introduction), the thesis was segmented in four additional chapters. The Methods 

encompasses the analytical procedure of sample analyses, the procedure adopted to the 

data treatment and the descriptions of mass-balance and thermodynamic models. The 

third and fourth chapters correspond to the study of magmatic processes of the PNAM 

(The elemental and Sr isotope fingerprints in minerals to study the impact of open-system 

processes on a shallow magma chamber, the Ponte Nova alkaline massif, SE, Brazil) and 

basic/intermediate dikes and plugs (The contribution of different Neoproterozoic country 

rocks on the evolution of Cretaceous alkaline dikes from the Mantiqueira range), 

respectively. Both chapters (3 and 4) were written in scientific journal style. The fifth 

chapter (Integrated Discussion and final remarks) summarizes the results achieved in this 

thesis and points the challenges, advantages and drawbacks of the analytical and 

modeling methods employed in this study. Finally, the Supplementary Material section 
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hosts the data tables, output files of MCS and supporting materials for further variable 

calculations and data used in models.   
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2. Materials and methods  

 

This chapter presents the analytical methods employed to analyze whole-rock 

samples and minerals for major-, minor- and trace-element composition and isotope 

ratios. The data treatment procedure adopted is also detailed. This text consists of an 

extended version of the brief method descriptions presented in Chapters 3 and 4. 

Moreover, it describes the mass-balance and thermodynamic models and their variables 

used in this study.   

 

2.1 Sample, sample preparation and analytical methods 

 

 Samples of the PNAM and nearby dikes/plugs (Mantiqueira Range) were collected 

in previous research projects (FAPESP – Process numbers: 03/00626-5 and 2010/20425-

8). For the development of this study, samples were selected mainly from SSA/SSA- nph-

mz and low to high topographic level of WI (WI-LS and WI-US) and from EI, trying to find 

the most contaminated samples and minerals from the massif and dealing with crustal 

xenoliths in thin sections. Also, dikes and plugs nearby PNMA were systematically 

sampled to obtain representative samples of their zones. The localization and sample 

number are indicated in Chapters 3 and 4. From 16 samples of dikes/plugs and country 

rocks, 18 thin sections and 2 polished thin sections were produced and 19 whole-rock 

analyses were carried out taking into account the number of replicates of two samples.  

About 28 samples from diverse intrusions of the PNAM (CI, WI, EI, SSA, SSA-nph-mz, 

NI, CP) were handled to produce 31 thin sections plus their respective polished thin 

sections. 

 

2.1.1 Whole-rock analyses 

 

 The samples of dikes and plugs were sawed to remove weathering parts. The thick 

slices of fresh samples were directed to the preparation of polished thin sections or the 

sample treatment for chemical analyses. The milling process of samples followed Sertek 

et al. (2015). It was used hydraulic press with stainless steel plates and agate ring mill to 

pulverize 0.5 – 1 kg samples. The quartering method was employed in the resulting 

powder. After measuring of loss on ignition, fused glass disc was prepared using 1 g of 

sample and 9 g of lithium metaborate:lithium tetraborate commercial flux (2:1) to 

determinate major and minor elements by X-ray fluorescence spectrometer, 
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XRF(PANalytical, AXIOS MAX Advanced) at NAP GeoAnalítica-USP Core Facility (see 

Mori et al. (1999) for further details on disc preparation and analysis). The JB 1a and JG 

1a were used as reference material for the quality control of analyses.  

 Trace-element determination was carried out at Geochemistry Laboratory of DPCT-

UNICAMP Facility. For the analysis, 40 mg of powdered sample were digested in 

analytical-grade acid solution (HNO3 + HF) with microwave acid digestion bomb and 

analyzed by inductively coupled plasma mass spectrometry - ICP-MS - XSeriesII 

(Thermo) equipped with CCT (Collision Cell Technology). The operating conditions used 

were nebulizer Ar flow (0.81 – 0.85 L/min), plasma Ar flow (13 L/min), and ICP RF power 

(1400 W). H2 (7 %) in He was used in collision cell to remove isobaric interference on 

45Sc, 51V, 52Cr, 59Co, 60Ni, 66Zn. The instrument calibration took place with multi-element 

solutions prepared with single calibration standards (SCP Science) by gravimetric 

method. The polyatomic interferences were corrected mathematically. The quality control 

was made with BRP-1 reference material. The method adopted was based on Navarro et 

al. (2008).  

 The Sr and Nd isotope ratios were obtained by Thermal Ionization Mass 

Spectrometry - TIMS (Thermo Scientific TRITON) - with average of 100 cycles of analyses 

per sample at CPGeo – USP facility. The powdered sample (50 mg) was digested in acid 

solution (HNO3 + HF + HCl) in a hotplate and the resulting solution were purified by 

chromatography step according to Magdaleno et al. (2017). Sr was first separated using 

Spec resin (Eichrom®) and Nd was separated using Ln resin (Eichrom®) from the 

discarded solution of previous chromatography step. The chemical treatment took place 

in a class 10,000 cleanroom. The resulting solutions were loaded on the single Ta filament 

and double Re filaments for Sr and Nd isotope analyses, respectively. The instrumental 

mass discrimination was corrected with exponential law using 86Sr/88Sr = 0.1194 (Nier, 

1938) and 146Nd/144Nd = 0.7219 (DePaolo, 1981a). The blank analysis yielded 87 pg of 

Sr and 64 pg of Nd. The age correction on the obtained 87Sr/86Sr and 143Nd/144Nd values 

was made with t (time) value of 85.4 Ma (Azzone et al., 2018). The main values of 

reference material obtained from April/2019 to March/2020 were 0.710268 ± 0.000015 

(NIST SRM 987 = 0.710252 ± 0.000013; Weis et al., 2006) for 87Sr/86Sr and 0.512107 ± 

0.000003 (JNdi-1 = 0.512115 ± 0.000007; Tanaka et at., 2000) for 143Nd/144Nd. The blank 

and solutions used for trace-element or isotope ratio determination were prepared with 

low-resistivity deionized water (18.2 MΩ.cm at 25 °C) produced in the Milli-Q® Plus 

system. The analysis results of samples and reference materials as the limit of detection 

values are reported in the Supplementary material (Tables 1S-3S).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/inductively-coupled-plasma-mass-spectrometry
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2.1.2 U-Pb dating of zircons 

 

  The zircon crystals of MRGA-1 (granite) were extracted from rock matrix by standard 

mineral separation techniques following the procedure described in Sato et al. (2014) at 

CPGeo – USP facility and fixed in an epoxy resin mount at NAP GeoAnalítica-USP Core 

Facility. It was used jaw crusher, disc mill, sieving, Wilffley table, isodynamic Frantz 

separator and heavy liquids. Polished crystals in the mount were analyzed for U-Pb 

isotope dating with  laser ablation sector field inductively coupled plasma mass 

spectrometry (Thermo Scientific, Element XR) at Isotope Geology Laboratory – 

UNICAMP. For this purpose, 42 inclusion-free rims and the intermediate zones of crystals 

were selected for analyses. The laser ablation system consisted of Photon Machine 

(Excite 193) in two volume cell HelEX. Its ablation settings were laser beam of 25µm, 

fluency of 9 J.cm-2, repetition rate of 10 Hz, ablation duration of 40 secs, He carrier gas 

(100%) of 0.6 L.min-1 in MFC 1 and 0.7 L.min-1 in MFC 2. The masses measured were 

202, 204, 206, 207, 208, 235 and 238 in 4 ms each one. The gas blank influence was 

discounted by subtracting the result of 20-sec on-peak zero analysis. The calibration was 

made with 91500 zircon (Wiedenbeck et al., 1995) and the quality control with zircon of 

Tocantins (Brazil) (in preparation) and Plešovice zircon (Sláma et al., 2008). The laser-

induced elemental fractionation corrected by normalization to reference material, the 

correction of  instrumental mass discrimination and the isobaric interference were made 

by Iolite™ software. The data are presented in Supplementary material (Tables 4S, 5S, 

Fig. 1S) and additional information about the age calculation and quality of analyses are 

found in Section 2.2. 

 

2.1.3  Major- and minor- element analyses in minerals  

 

Petrographic study was carried out in 100-µm polished thin sections of samples 

from WI, SSA/SSA-nph-mz, EI, CI nad NI and MRGA area (see Chapters 3 and 4 for 

sample localization). Optical and scanning electron microscope (SEM) were used to 

identify chemical zoning, resorption features and mineral inclusion in target phases 

(plagioclase, alkali feldspar, biotite, clinopyroxene). The use of SEM took place at 

Technological Characterization laboratory of Polytechnic Institute – USP and at the SEM 

laboratory of Geosciences Institute – USP. After performing the petrographic study, the 

polished thin sections were cleaned with distilled water in an ultrasound bath, dried and 

coated with a thin layer of carbon. The minerals were analyzed by electron microprobe 
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(EMP) (JEOL, JXA-FE-8530) at the GeoAnalítica-USP Core Facility equipped with a 

Schottky field emission (FE) electron gun, five wavelength-dispersive X-ray 

spectrometers (WDS), one energy-dispersive X-ray spectrometer (ED), ten analyzer 

crystals and luminescence sensor (LS). Part of analyses was also performed using EMP 

(JEOL, JXA-8230) at EMP laboratory of Geosciences Institute – UNESP equipped with 

five WDS, one EDS, ten analyzer crystals and LS. The equipment was set up with 5-15µm 

electron beam, current of 20 nA and accelerating voltage of 15 kV. The matrix effect was 

corrected by the PZR Armstrong algorithm using PROZA software (Bastin and Heijligers, 

1990). The reference materials used in calibration of the EMP and the diameter size of 

electron beam are presented in Table 6S. The major- and minor- (Ba, Sr) element 

determination in feldspars of MRGA-2b dike were made at laboratory facility of College of 

Earth, Ocean and Atmospheric Sciences at Oregon State University. The minerals were 

analyzed by Cameca SX-100 Electron Microprobe equipped with 5 WDS and one EDS 

with thin window for light element detection. The instrument was set up with electron beam 

diameter of 5 μm, current of 30 nA and accelerating voltage of 15 kV. The compositional 

tables for major elements in oxide (mass %) in minerals are shown in Supplementary 

material (Tables 7S-11S). 

 

2.1.4  Trace-element analysis in minerals 

 

Trace elements in plagioclase, alkali feldspar and biotite from samples of WI, 

SSA/SSA-nph-mz and EI were determined by inductively coupled plasma mass 

spectrometer, ICP-MS (Thermo Scientific, ICAP Q), with a laser ablation system (UP-

231/AF, New Wave) attached. The Nd:YAG laser (Tempest, Eolite) with a 213 nm 

wavelength was operated in Q-switched mode. The carrier gas was a mixture of Ar (0.58 

L.min-1) and He (0.60 L.min-1). The operating conditions of the laser ablation system are 

presented in Table 1 for each mineral phase. The mass spectrometer is equipped with a 

single quadrupole and a collision/reaction cell. Some of operating conditions were 

nebulizer gas flow (1.01  L.min-1), auxiliary gas flow (1 L.min-1), plasma gas flow (16 L.min-

1), lens voltage (7 V) and ICP RF power (1100 W). Areas already analyzed with the EMP 

or equivalent regions were targeted by laser ablation. The reference material for 

instrument calibration was analyzed twice before starting the analysis of a type of mineral 

and after the last analysis of the same mineral of the respective polished thin section. 

After performing six consecutive mineral analyses, the reference material analysis was 

also repeated for calibration purpose. Another reference material was used to check the 
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analytical routine performance for each mineral phase analyzed in each polished thin 

section. The reference material used for instrument calibration and quality control of 

method employed are presented in Table 1. The blank and the analysis were obtained 

within 40 and 60s, respectively. The data acquisition was processed within Thermo 

Scientific™ Qtegra™ Intelligent Scientific Data Solution™ (ISDS) software and the data 

reduction was carried out with the software Glitter®, developed by GEMOC (Access 

MacQuarie Ltd). The Ca and Si content obtained in EMP analysis were used as an internal 

standard for clinopyroxene and further minerals, respectively. The mean value of the limit 

of quantification and the result of reference material analyses are shown in Tables 12S 

and 13S, respectively.    

 

Table 1: Operating conditions of the laser system, reference materials (RM) used for spectrometer 
calibration and quality control of the routine used for mineral analyses by ICP-MS. Abbreviations: 
Plagioclase (Pl), Alkali feldspar (Afs), Biotite (Bt), Clinopyroxene (Cpx).  

 Pl Afs Bt Cpx 

Laser repeat rate/Hz 15 15 15 12 

Laser power/ % 80 80 75 80 

Diameter/μm 80 (spot) 80 (spot) 40 (raster) 55(spot) 

Speed/μm.s-1 - - 2 - 

RM (calibration) Nist 612 Nist 612 Nist 610 BHVO-2G 

RM (control) BHVO-2G BHVO-2G BHVO-2G Nist 612 

 

2.1.5  Sr isotope analysis in plagioclase, alkali feldspar and clinopyroxene 

 

The plagioclase crystals, alkali feldspar zones and augite crystals were sampling 

using Analyte G2 excimer equipped with a HelEx II cell (Teledyne CETAC Technologies, 

USA) at laboratory facility of the College of Earth, Ocean and Atmospheric Sciences at 

Oregon State University. The 93-nm laser beam was used with diameter of 120 μm, 

repetition rate of 15 Hz, energy fluence of 6.35 J.cm-2 and 75% of the power. The laser 

was employed in the raster mode with rate of 5 µm.s-1 from 3 to 9 min. The ablated 

material was transported from the laser device cell by He carrier gas (0.85 L.min-1) to a 

polytetrafluoroethylene (Teflon) filter (0.45 μm pore size, Pall) confined in a holder. The 

filter with the ablated sample was kept in a Teflon beaker. The schematic diagram of the 

experimental set-up is shown in Fig. 3.   

The sample preparation and microanalyses were made at Geological Sciences 

Department at New Mexico State University based on Wolff et al. (1999). The acid 

digestion of the samples and chromatography were made at a clean room. The filter with 
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the mineral powder was immersed into 1.5 ml of concentrated HF-HNO3 mixture (2:1)  

V.V-1 and heated on a hotplate for two days in sealed Teflon digestion vessel. The filter 

was removed and the solution was dried. The material obtained was dissolved with 6 N 

HCl and dried again on the hot plate. In order to load on the chromatographic column, the 

dried material was re-dissolved with 50 μL of 2.5 N HCl. The cation exchange 

chromatography to separate Sr from Rb was carried out using glass column filled with 

AG® 50W-X8 of 200-400 mesh (Bio Rad). The sequence of solvent added to the column 

and eluted solution is shown in the Table 2. Each eluate was dried on the hotplate and 

the residue was re-dissolved with 50 μL of 2.5 N HCl during one day under heating to be 

loaded onto a single rhenium filament. The same procedure employed in the samples 

were made with blank and standard. Deionized water was used to make acid solution and 

to aid chromatographic columns filling. Teflon beakers, chromatographic resin and 

column were cleaned with 6.0N HCl solution before the procedure. The acids were of high 

purity and/or doubly distilled before the use.    

 

Table 2: Chromatographic steps to separate Rb and Sr from solution of digested microsample. 

Step Prepare 
Column 

Load Wash Wash Wash Collect Wash Collect Clean 
column 

Eluent 2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

2.5N 
HCl 

6.0N 
HCl 

Volume 
/ μL 

2000 50 50 50 100 700 350 700  

Eluate      Rb  Sr  

 
 

The Sr isotope ratios were obtained by TIMS, Thermal Ionization Mass 

Spectrometry (VG Sector 54, UK). The equipment has seven Faradays cups and one ion-

counting Daly photomultiplier. The single rhenium filament was degassing under high 

temperature and vacuum conditions. A slurry of Ta2O5 made with 2% TaCl5, 1% H3PO4, 

1% HF, 12% HNO3 by weight in water (Birck, 1986) used as activator was deposited onto 

the filament and dried prior to the sample load. The filament with the sample load was 

dried before being inserted into the equipment. The ratio determinations were made in 

peak-hopping mode and the pressure of equipment varied between 10-6 and 10-7 bar. The 

isotope analysis results are in Chapter 3 and the calculation of Sr ratio is described in 

section 2.2.  



19 
 

 

Figure 3: Schematic diagram of  analytical method employed to determine Sr isotope ratios in 
crystals or crystalline zones of plagioclase or alkali feldspar from samples of WI and SSA/SSA-
nph-mz from the PNAM. The crystal is sampled using laser ablation system and the material is 
transported to a PTFE filter by He gas carrier. The filter plus sampled material is immersed in a 
mix of concentrated acids under heating to dissolve the sample. The digested sample is purified 
by chromatography to obtain Sr purified solution, i.e., sample-matrix-free solution. The purified 
solution is analyzed by TIMS to determine 87Sr/86Sr and 84Sr/86Sr. Sample treatment and isotope 
analyses were based on Wolff et al. (1999).    

 

2.2  Data treatment and quality control of analyses 

 

For all chemical results, only mass fraction (mass % or ppm) above the limit of 

quantification (~3.3 x limit of detection - Potts, 1987) was considered (Tables 1S, 2S, 6S, 

12S). Mineral inclusions sampled by ablation process in trace element analyses were 

removed from the whole time-resolved analysis using Glitter software. Only trace element 

analyses with ablation time above 30 s were accepted. Most of the results obtained from 

analyses of reference materials to control the quality of the method employed overlap the 

known value interval (Table 1S, 2S, 13S, 3.5.5 and Fig.25). It was also reported the 

relative deviation standard (RSD) for trace element analyses according to the expression 

(2σ x 100)/a where σ is the internal precision of the analysis and a is the content of the 

trace element. Trace elements in lower concentration have higher RSD, thus it was 

needed to evaluate the σ values mainly when these lower concentrated elements were 

used to develop the study.     

During the isotope analyses of the microsamples, the current of the filament was 

controlled to make longer the ion emission. In addition, the absent signal of Rb was also 

checked during the initial heating of sample-loaded filament in TIMS to certify the quality 
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of chromatography separation. The signal intensity of 88Sr achieved around 3V and this 

value was kept for more than 100 readings during the analyses of zones ablated for more 

than 7 min. The internal error on the 87Sr/86Sr ratio ranged between 0.002 and 0.01 % (2σ 

SE). The mass fractionation was corrected using the exponential law with the value of 

0.1194 for 86Sr/88Sr according to the equation (1), where M is the isotope mass (Pearson 

et al., 2008).  

 

(
Sr87

Sr86 )
true or corrected

= (
Sr87

Sr86 )
measured

x (
M

Sr87

M
Sr86

)

β

 (1) 

 

Where β =

ln

[
 
 
 
 

0.1194

(
Sr86

Sr88 )

measured]
 
 
 
 

ln(

M
Sr86

M
Sr88

)

 

 

To obtain the initial ratio of 87Sr/86Sr, the fundamental equation of geochronology 

was employed (2).  

 

(
𝑆𝑟87

𝑆𝑟86 )
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

= (
𝑆𝑟87

𝑆𝑟86 )
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

− (
𝑅𝑏87

𝑆𝑟86 )
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(𝑒𝜆𝑡 − 1)   (2) 

 

Where λ (decay constant) = 1.42 x 10-11 / years (Faure and Mensing, 2005) and t = 87.6 

x 106 years (Azzone et al., 2016). For simplicity, the 
𝑅𝑏87

𝑆𝑟86  ratio is approximated to 

Rb x Rb 87 abundance x atomic mass of Sr

Sr x Sr86  abundance  x atomic mass  of Rb
 ratio with 

Rb  

Sr 
 obtained by LA-ICP-MS analysis.  

 The accuracy or performance of the analytical technique for isotope analysis in 

plagioclase and alkali feldspar was checked out by the analysis of reference material 

(NIST, SRM 987), the analytical blank (see Chapter 3) and the 
𝑆𝑟84

𝑆𝑟86  value of each analysis. 

The measured  
Sr84

Sr86   ratios agree with the accepted value of 0.0565 (Thirwall, 1991) for 

most data (Fig. 4). The 
𝑆𝑟84

𝑆𝑟86  values from analyses by TIMS are less spread and more 

accurate than those obtained by LA-MC-ICP-MS, but that was just as expected once the 

isobaric interferences such as 87Rb on 87Sr are eliminated by chromatographic separation. 
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In addition, analyses by TIMS do not generate molecular interference such as Ca argides 

(e.g., 48Ca36Ar, 46Ca38Ar, 44Ca40Ar) detected in analyses of Ca-rich samples by LA-MC-

ICP-MS (Vroon et al., 2008), for example. As the range of (
𝑆𝑟87

𝑆𝑟86 )
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

  ratios from Azzone 

et al. (2016) overlaps the values obtained in this study, data from Azzone et al. (2016) 

were also used in the development of the discussion (Chapter 3).  

 

 

Figure 4: Evaluation of the analytical accuracy using 84Sr/88Sr ratios of plagioclase and alkali 
feldspar analyses by TIMS (this study) and 84Sr/88Sr ratios in plagioclase by LA-MC-ICP-MS from 
Azzone et al.(2016). The obtained results are compared with the accepted value of Thirwall 
(1991). 
 

 The age estimative of zircon crystallization were carried out with the U-Pb 

concordia plot (Wetherill’s concordia - Wetherill, 1956). The Wetherill’s concordia consists 

of a graphical procedure constructed using the equations (3) in Y-axis and (4) in X-axis.  

 

Pb∗206

U238   = e
λ1 t

− 1    (3) 

 

Pb∗207

U235   = e
λ2 t

− 1    (4) 

 

 Where λ1 (=1.55 x 10-10 / years) and λ2 (9.8 x 10-10 / years) correspond to the decay 

constant of 238U and 235U, respectively, and Pb* is the radiogenic Pb (Faure and Mensing, 
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2005). The isochron age, t (time), and the error was calculated using IsoplotR software 

(Vermeesch, 2018). It was considered results that have concordance between 97 and 

103% for the calculation age.   

 

2.3  Mass-balance and thermodynamic modeling 

 

 The investigation of magmatic differentiation can be conducted by two approaches 

– the direct and the inverse method (Allègre and Minster, 1978). By the direct method, 

different models are calculated from a starting point (physical and chemical conditions) 

and their variables are varied. Then, the obtained results are compared with the data and 

the best model for the geological problem is selected. The inverse-method approach 

consists of identifying the model variables fitting a model to the data varying an 

independent variable of the equation (e.g., Ginibre and Davidson, 2014). Sometimes it is 

not easy to establish some input variables of the models from the studied intrusion 

because, for example, part of the body may have already been weathered and volume 

information is missed. In this case, some of the possible variables are tested. The best fit 

provides quantitative and qualitative information to build the model of the magmatic 

differentiation of the studied system. This investigation used the first approach chiefly 

where different models were employed and variables were varied. Variables such as the 

starting compositions and fO2 were assumed or estimated but many others as the initial 

wall rock temperature, initial wall rock mass and magma recharge mass were varied.   

 

2.3.1 Rayleigh fractionation 

 

 In Rayleigh fractionation or fractionation crystallization, the crystallized minerals 

are separated from the residual melt and the former crystals do not remain in equilibrium 

with the melt (Ersoy and Helvaci, 2010). This is a closed-system process that is expressed 

by the Rayleigh Law (5), where Cm
i  and Cp

i  are the mass fractions of a trace element, i, in 

the residual magma and in the parental magma, respectively, F is the fraction of melt, 𝐷̅𝑖 

is the bulk partition coefficient.  

 

Cm
i = Cp

i F
(𝐷̅𝑖−1)

   (5)
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2.3.2   Binary mixing 

 

Mixing consists of putting together two or more different magmas, or endmembers, 

to form hybrid magmas or a bulk mixing (Langmuir et al., 1978; Albarède, 1995). In this 

process the mechanic mixing of phases, such minerals, occurs but components of fluid 

do not preserve previous physical identity after formation of the bulk mixing or hybrid 

magma (Albarède, 1995). For mixing of two endmembers (α, β), the composition of the 

bulk mixing, Cmix
i , related to specie i is expressed by (6).  

 

Cmix
i = (1 − fβ)Cα

i + fβCβ
i    (6) 

 

with fβ = 
Mβ

M0
  and fβ + fα = 1 

                                                                                                                                                                      

Where Mβ  is the mass of the endmember  β , M0  is the total mass and Cβ
i  is the 

concentration of i in the endmember β. If the equation (6) is rearranged and divided by 

the equation (7) for element y, then it is obtained the equation (8), which relates the 

element i with y according to a linear correlation.  

 

Cmix
𝑦

− Cα
y

= fβ(Cβ
y
− Cα

y
)   (7) 

 

Cmix
𝑖 − Cα

i = 
(Cβ

𝑖 − Cα
i )

(C
β
y
− Cα

y
)
(Cmix

y
− Cα

y
)  (8)  

 

For ratio-ratio plot (
Sr87

Sr86    x  
Nd143

Nd144 ) considering the ultrabasic and acid endmembers, 

the magma mixing expression is given by (9) and (10) forming a hyperbolic array. The 

Sr87
α  and Sr87

β can be replaced by Sr86
α (

Sr87
α

Sr86
α
) and Sr86

β (
Sr87

β

Sr86
β
), respectively, where 

86Sr ~ 0.0987 x Srtotal is obtained by means of whole-rock composition.   

 

(
Sr87

Sr86 )
mix

=  
(1− fβ) Sr87

α+ fβ Sr87
β

(1− fβ) Sr86
α+ fβ Sr86

β
 (9) 

 

(
Nd143

Nd144 )
mix

=  
(1− fβ) Nd143

α+ fβ Nd143
β

(1− fβ) Nd144
α+ fβ Nd144

β
       (10) 
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2.3.3  Assimilation – Fractional crystallization (AFC) 

 

This model encompasses two concomitant processes, the fractional crystallization 

and continuous crustal assimilation in a magma chamber. The AFC model of DePaolo 

(1981b) assumes that the system incorporates contaminant melt at constant rate and 

fractionates crystals in a homogeneous magma. The model follows the equation (11).    

 

Cm

Cm
0 = F−Z + (

r

r−1
)

Ca

zCm
0

(1 − F−z)   (11) 

 

with  z =  
r+𝐷𝑖̅̅ ̅−1

r−1
 , F =  

Mm

Mm
0   and r =  

ṀA

ṀC
 

 

where variables are: Cm, Cm
0 , Ca (mass fraction of element i in the magma at time t, in the 

intrusive magma at initial time t0 and in the assimilated melt, respectively), Di̅  (bulk 

partition coefficient of i), ṀA (rate of wall rock assimilation by the main magma body), ṀC 

(rate at which the crystallizing material is separated from the magma), Mm (mass magma) 

and Mm
0  (initial mass magma). Although the model assumes r and Di̅  as constant 

variables, DePaolo (1981b) has recognized that both may vary as F decreases in real 

situations. For higher r values, the model tends to behavior as a magma mixing, but r 

decreases when an ascent magma reaches a cooler wall rock in the crust (ignoring the 

effect of change of wall rock composition and pressure on partial meting during the 

trajectory). 

 In contrast to the mixing process, where the mass fraction of i tends to be similar 

to that of crustal melt with increasing mixing, the same pattern is not always achieved in 

AFC process. For example, Cm may increase in the main magma when  Ca >Cm
0  and Di̅ <

1  and even more with higher r values, whereas Cm  may decrease if  Di̅ > 2  when 

0.1<Ca /Cm
0 <10 (DePaolo, 1981b - Fig. 2).  

For isotopic ratios, the AFC equation is established according to (12) (DePaolo, 

1981b).  

 

ϵm−ϵm
0

ϵa−ϵm
0 = 1 − (

Cm
0

Cm
)F−Z (12) 

 

where ϵm and ϵm
0  is isotopic ratios of main magma at time t0 and t, respectively, and ϵa is 

elemental or isotopic ratio of the crustal melt. The effect of AFC on the elemental or 
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isotope variation (e.g., 87Sr/86Sr x Sr) in residual melt depends on the set of model 

variables. When ṀA = ṀC , Sr content increases relatively more than the 87Sr/86Sr ratio 

with DSr
̅̅ ̅̅̅ = 0.01  than with DSr

̅̅ ̅̅̅ > 0.25 (DePaolo, 1981b – Fig. 3b).   

 Binary mixing (Langmuir et al., 1978; Albarède, 1995) and AFC (DePaolo, 1981b) 

are mass-balance models. On other hand, MELTS software package (Ghiorso and Sack, 

1995; Asimow and Ghiorso, 1998), a thermodynamic modeling tool, simulates AFC 

through equilibrium phase relations. Reiners et al. (1995) have calculated the contaminant 

mass by the simplified energy-balance equation (13) taking into account 5ºC temperature 

decrease per step. The heat capacities and crystallized mass (equation 13) from the main 

magma, the compositional evolution of the system were estimated using MELTS software 

at each temperature decreasing step. The r and the minerals to be crystallized are not 

constant at this more sophisticate approach. At first moment, the crustal melt precludes 

part of the fractional crystallization due to the composition change of the basic magma 

promoted by the assimilation process. Thus, the r value tends to be higher (r>1) in the 

beginning of the assimilation in the studied conditions. At a later stage, the melt can reach 

the saturation condition of further minerals and from this point, the r (≤1) starts decreasing 

in their study. The isenthalpic (or enthalpy balance) AFC model employed by Reiners et 

al. (1995) has shown that the contamination of basalts by crustal rocks at the first stage 

allows low magma differentiation for major elements because of the low crystallization 

rate whereas the high assimilation rate may modify the isotope and trace element 

contents of the magma. 

 

Ma =
MmCp

m∆Tm+∆Hf
cMc

Cp
a∆Ta + ∆Hf

a   (13) 

 

where Mm and Mc  are the magma and crystal masses, Cp
m and Cp

a are the heat capacities 

of magma and crustal contaminant, ∆Hf
c  and ∆Hf

a  is the latent heats of fusion of the 

crystals and crustal contaminant which were considered constant for the crystallizing 

phases.  

 

2.3.4 Magma Chamber Simulator (MCS) 

 

 The MCS is a thermodynamic software to model magmatic processes (Bohrson et 

al., 2014; Bohrson et al., 2020; Heinonen et al., 2020) such AFC, magma recharge (RnFC, 

RnAFC, where n is the number of repetition of the magmatic process) in a resident magma 
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body. The MCS associates the equilibrium phase relations obtained by MELTS software 

(Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) with species, mass and enthalpy 

balance equations (Spera and Bohrson, 2001, 2002; Bohrson and Spera 2001, 2003). 

The software measures the effect of concurrent processes such as crystallization, crustal 

simulation and magma recharge on the composition and enthalpy of the system. This 

model considers the system divided into four subsystems: main magma, cumulate, wall 

rock and magma recharge (Fig. 5). The main magma releases sensible and latent heat 

toward the wall rock which is heated from its initial temperature through a diabatic 

borderline. The wall rock starts partially melting if the energy transferred makes the wall 

rock temperature increases above its solidus temperature. By a semi permeable 

boundary, the partial melt of wall rock is added in the main magma according to the 

Fmzero variable that stablishes the melt mass fraction accumulated in the wall rock before 

the anatectic melt to be released into the magma chamber. The Fmzero is an attempt to 

simulate the partial melt migration from the site of formation after the development of 

interconnection channels in the wall rock (Bohrson et al., 2020). However, the wall rock 

is isolated regarding the remaining country rock. In its turn, the basic magma recharge 

adds enthalpy to the main magma and may aid the wall-rock temperature to increase 

above its solidus temperature. The minerals from the main magma are fractionated with 

fluid on the bottom of the magma chamber and keep in thermal equilibrium with the main 

magma which is thermodynamically in equilibrium with the most recent crystallized 

minerals. The MCS simulates the magma recharge plus AFC (RnAFC), assimilation of 

wall-rock stop blocks plus AFC (SnAFC) or magma recharge, assimilation of wall-rock 

stoped blocks plus AFC (RnSnAFC) through the same computing process. The software 

mixes the bulk composition of wall-rock stop blocks or magma recharge with the main 

magma at defined temperatures and, as a result, fluid and crystals may precipitate. After 

each assimilation or mixing step, the existent phases in the main magma reach the 

chemical equilibrium state. The programing or run is terminated when the thermal 

equilibrium among the subsystems is achieved. The discussion of mass and thermal-

balance equations can be accessed mainly in Spera and Bohrson (2001) and Bohrson et 

al. (2020).  

Although the MCS is a more complex modeling tool for magmatic process 

simulation than those cited above, the MCS was structured based on some simplification 

of magma chamber representation (Borhson et al., 2020) once some processes are not 

easily predicted or identified in overall systems. For exemplification, this section mentions 

two of them. Other simplifications are debated in the chapters below. The model does not 
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predict  the  chemical  heterogeneity of the  magma  chamber  (e.g., Ginibre  et  al., 2002;  

Kuritani et al., 2005) and the temperature heterogeneity within wall rock (Annen, 2017 

and references therein) as observed in some systems. Kuritani et al. (2005) have 

described the mechanism that involves three endmembers in AFC, which the first one is 

the wall-rock melt, the second one is the interstitial melt of the mush and the last one is 

the melt of central region of the magma chamber. Part of the initial melt is cooled on the 

chamber wall and forms the mush zone. The crustal melt percolates the wall-rock 

fractures and mixes with the melt of the mush zone where there is a continuous fractional 

crystallization. After this step, the residual melt is transported to the main magma. On the 

contrary, the MCS model accumulates crystals apart, isolates them chemically from the 

magma and does not consider mush formation on the wall rock. 

 The MCS software operates through interface written in Microsoft’s Visual Basic 

programming language (Bohrson et al., 2014; 2020). The input consists of spreadsheet 

which is filled out and attached to the MCS software (MCS-PhaseEQ - calculator for major 

and minor elements and phase equilibria). The input variables for major- and minor- 

element modeling are presented in Table 3. The output comprises the MELTS results 

released as an Excel workbook which presents the evolution of bulk composition, phase 

equilibria and abundance of phases of the subsystems as the whole system evolves 

toward thermal equilibrium. The output also exhibits charts with the calculated data. The 

thermal data of each phase are released in TBL file format in the respective subsystem 

file. The Excel workbook output for major and minor elements is attached to the trace-

element and isotope calculator (MCS-Traces) and the trace-element variables (Table 4) 

are filled out in the calculator. The output consists of a workbook with trace-element and 

isotope composition of melt, fluid and crystalline phases following the magma evolution 

result obtained by calculator for major and minor elements.     
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Table 3: In addition to the starting composition (SiO2, TiO2, Al2O3, Fe2O3, Cr2O3, FeO, MnO, MgO, 
NiO, CoO, CaO, Na2O, K2O, P2O5, H2O, CO2) of the subsystems (main magma, magma recharge, 
wall rock and wall-rock stoped blocks), the input parameters are listed below. For the further detail 
of how to vary or select these parameters, consult Bohrson et al. (2020). The correspondent 
symbols are used in the Chapters 3 and 4 as follow.      

 

T0
MM 

Initial temperature of the 
main magma 

 (°C) 

 

M0
MM = 100 

Initial mass of the main 
magma 
(m.u.) 

 

TD
MM 

Temperature decrement  
(°C / step) 

  

TS
MM or  MS

MM 

Hard stop of running according 
to a minimum temperature (°C) 

or melt mass (m.u.) 

 

T0
WR 

Initial temperature of the 
wall rock 

(°C) 

 

M0
WR 

Initial mass of  
the wall rock 

(m.u.) 

 

Ti
WR and Te

WR 

Temperature interval 
(initial, I, and end, e) to 
find solidus temperature 

(°C) 

 

TD
WR 

Temperature decrement  
to find  

the solidus temperature 
(°C/step) 

 

TR or S 

Temperature of recharge 
magma 

(°C) 

 

MR or S 

Mass of recharge magma 
(m.u.)  

 
 
 

TbyDeltal
R or S  

Recharge trigger mode 
(temperature when the 

recharge magma is 
added): temperature 

decrement from liquidus 
temperature of the main 

magma  

 
 

TbyTemp
Rpr S

 or 

TbyTempSerial
R or S  

Recharge trigger mode: 
temperature of the main 

magma or  
the following (N+1) recharge 
magma is added when the N 

recharge magma is completed  

 
 

Fmzero 

Partial melt fraction in the 
wall rock to be reached 

before the  crustal 
assimilation in each 
contamination step 

 
 

P 
 

 
 

Pressure in bar (constant) 

           Ph Excluded phases in all 
subsystems (when it is 

necessary)  

fo2 Oxygen fugacity (none, fmq, 
coh, nno, iw, hm) 
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Table 4: The input parameters used for trace element and isotope ratio modeling by MCS. The 
subscript i represents the trace element(s) (e.g., Sr, Ba, Cr, Pb in ppm) and y/Y is the isotope 
ratio(s) (e.g., 87Sr/86Sr, 207Pb/204Pb) selected to model. The types and the abundances of 
crystalline, melt and fluid phases in m.u. are based on the MCS output file attached in the 
workbook for trace-element and isotope ratio modeling.   

Xi
MM, Xy Y⁄

MM Initial composition of 
the MM 

Xi
WR, Xy Y⁄

WR Initial composition of 
the WR 

 
 

       Xi
R or S, Xy Y⁄

R or S 

 
 

Initial composition of 
the R or S 

Di
phase/(melt or fluid)  

 

or 

logDi
phase/(melt  or fluid)

= 
1

T
 

 
in MM 

Partition coefficient of 
trace element i 

between phases and 
melt in MM (constant 
value or in function of 

T-1)* 

Di
phase/(melt or fluid)  

 

or 

logDi
phase/(melt  or fluid)

= 
1

T
 

 
in WR 

 
Partition coefficient of 

trace element i 
between phases and 

melt in WR* 

Di
phase/(melt or fluid)  

 

or 

logDi
phase/(melt  or fluid)

=  
1

T
 

 
in R or S 

 
Partition coefficient of 

trace element i 
between phases and 

melt in R or S* 

*The user provides two pairs (T,Di
phase/(melt or fluid)  

) and the software calculates the linear function. 
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