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ABSTRACT 
 

The subcontinental lithospheric mantle (SCLM) plays an essential role in tectonic 

and metallogenetic processes affecting the continental lithosphere. Kimberlitic, 

kamafugitic and alkaline-carbonatitic (KKAC) magmas are probes of the SCLM; they may 

carry mantle xenoliths, xenocrysts and ore-forming elements. Over 700 KKAC intrusions 

are currently identified on the south-western margin of the São Francisco Craton (SW-

SFC), within the NW-SE lineament of 125° Azimuth (AZ125). However, the ages of the 

KKAC rocks and the nature of the SCLM are not well established. Moreover, the diamond 

content in these rocks is very low, while large volumes and individual gems, commonly 

>100ct, occur in secondary sources. A re-evaluation of the history of the KKAC magmas 

combines geochronology with mineralogical/chemical characterization of 

geochronometers. A critical literature review and new ages demonstrate that inherited 

xenocrysts and primary minerals occur in the same pipes. The compositions of resistate 

minerals carry clues on their parental magmas, and microstructural/chemical/isotopic 

features distinguish maximum vs intrusion ages, refining the main KKAC magmatism at 

88-76 Ma. Geochemical data from garnet and spinel xenocrysts in the KKAC magmas 

reveal a SCLM with typical cratonic model geotherms (37.5-42.5 mW/m2) and a 

lithosphere 110-175 km thick; the mean depth for the Base of the Depleted Lithosphere 

(BDL) is ca 140 km. Ten unidimensional SCLM sections reveal that fertile lherzolites 

affected by varying degrees of melt-related metasomatism dominate the SCLM; a few 

depleted SCLM volumes remain both on- and off-craton. A newly recognized trace-

element pattern, the Tecton-lherzolite trend, reflects physical mixing between 

asthenospheric and lithospheric materials in extensional and/or compressional regimes. 

The perovskite-based oxygen fugacity of KKAC magmas shows relatively low values, 

where perovskites with ΔFMQ -2 or below probably represent shallow cumulates from 

deep-seated magmas. A new oxybarometer based on V/Sc in pyrope garnets (V/Scgnt) 

was calibrated and key trends of fO2 distribution in cratonic, reworked, and Tecton SCLM 

were defined. Below the SW-SFC, the V/Scgnt trend reflects a SCLM significantly more 

reduced than cratonic mantle. The chemical tomography is used for interpretation of 

seismic and MT data. Lithosphere-scale melt/fluid channels controlled the emplacement 

of magmas that sampled a relatively thin SCLM with large-scale short-range variability in 

degrees of depletion/fertility. Local differences in lithosphere thickness might explain the 

large variety of KKAC magmas in the area. The timing of KKAC magmatism in the AZ125, 



 
II 
 

and perhaps in the Lucapa corridor (Angola), may represent a far-field response to the 

South Atlantic opening. The Archean SCLM below the SW-SFC was progressively 

modified by several tectonothermal events linked to intense metasomatism and 

refertilisation, representing craton-margin lithospheric erosion and asthenosphere-SCLM 

mixing during continental collision and post-rifting continental magmatism. Types I, II and 

CLIPPIR diamonds found in secondary sources are survivors of those processes, 

sampled by numerous low-grade, but potentially high-value, KKAC pipes. These findings 

imply new exploratory paradigms for diamond exploration and perhaps exploration for 

magmatic ores in the SW-SFC. 
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RESUMO 
 

O manto litosférico subcontinental (MLSC) tem um papel fundamental em 

processos tectônicos e metalogenéticos da litosfera. Magmas kimberlíticos, 

kamafugíticos e alcalino-carbonatíticos (KKAC) podem carregar xenólitos e xenocristais 

do manto, e elementos formadores de depósitos. Mais de 700 intrusões KKAC foram 

identificadas na margem sudoeste do Craton São Francisco (SW-CSF), parte do 

lineamento NW-SE do Azimute 125° (AZ125). Entretanto, as idades das rochas KKAC e 

a natureza do MLSC não são bem estabelecidas. Além disso, o conteúdo de diamantes 

nessas rochas é muito baixo, enquanto grandes volumes e gemas individuais, 

comumente >100 ct, ocorrem em fontes secundárias. Uma reavaliação da história dos 

magmas KKAC combina geocronologia com caracterização mineralógica/química de 

geocronômetros. Revisão bibliográfica e novas idades demonstram que xenocristais 

herdados e minerais primários ocorrem em mesmos corpos.  A composição de minerais 

resistatos carrega pistas sobre seus magmas parentais, e feições 

microestruturais/químicas/isotópicas permitem a distinção entre idades máximas e de 

intrusão, refinando o intervalo do magmatismo KKAC para 88-76 Ma. Dados 

geoquímicos de xenocristais de granada e espinélio revelam um MLSC com geotermas 

modelo tipicamente cratônicas (37.5-42.5 mW/m2) e litosfera de 110-175 km; a 

espessura média da Base da Litosfera Depletada (BLD) é ca 140 km. Dez seções 

unidimensionais do MLSC revelam que lherzolitos férteis afetados por variáveis graus de 

metassomatismo relacionado à melts são predominantes; pequenos volumes de MLSC 

depletado são encontrados on- e off-craton. Um novo padrão de elementos-traço foi 

reconhecido, o trend Tecton-lhezorlítico, reflete mistura física entre materiais litosféricos 

e astenosféricos em regimes extensionais e/ou compressionais. A fugacidade do 

oxigênio (ƒO2) de magmas KKAC, baseada em perovskita, mostra valores relativamente 

baixos, onde ΔFMQ -2 ou abaixo representam acumulações de magmas profundos em 

porções mais rasas da litosfera. Um novo oxibarômetro de V/Sc em granadas piropo 

(V/Scgnd) foi calibrado e trends específicos de ƒO2 em MLSC cratônico, retrabalhado, e 

Tecton foram definidos. No SW-SFC, o trend de V/Scgnd reflete um MLSC 

significativamente mais reduzido do que o manto cratônico. A tomografia química é 

usada para interpretação de dados de tomografia sísmica e magnetotelúrico. Canais de 

melts/fluidos em escala litosférica controlaram o encaixe dos KKAC magmas que 
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amostraram um MLSC relativamente fino e com grande variabilidade espacial em larga 

escala, com relação à graus de depleção/fertilidade. Diferenças locais na BLD podem 

explicar a grande variedade de magmas KKAC na região. A cronologia e posicionamento 

do magmatismo KKAC no AZ125, e no corredor Lucapa (Angola), representam respostas 

intracontinentais distais relacionadas à abertura do Atlântico Sul. O MLSC Arqueano 

abaixo do SW-CSF foi progressivamente modificado por vários eventos tectonotermais 

ligados à intenso metassomatismo e refertilização, representando erosão litosférica na 

margem do cráton e mistura astenosfera-MLSC durante colisão e magmatismo 

continental pós-rifteamento. Diamantes tipos I, II e CLIPPIR encontrados em fontes 

secundárias sobreviveram à estes processos e foram amostrados por inúmeros corpos 

KKAC de baixo-grau, mas com potencial alto valor. Estas descobertas implicam em 

novos paradigmas exploratórios para diamantes e outros depósitos magmáticos no 

AZ125.   
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1.1. Why Study the SCLM? 
 

The subcontinental lithospheric mantle (SCLM) plays an essential role in tectonic, 

geodynamic and metallogenic processes affecting the continental crust. Acting as a non-

convective layer of the uppermost mantle, the SCLM preserves thermal, chemical and 

chronological information, and hosts potential ore-forming elements. Therefore, 

understanding the characteristics of the SCLM is important to investigations of the 

lithosphere, mineral deposits and the evolution of Earth cycles (biosphere, atmosphere 

and hydrosphere) from Earth formation to present times. Since the SCLM along the 

lineament of 125° Azimuth (AZ125) is not extensively mapped to date, the following 

scientific questions inspired the present study: 

 

A. What is the nature, composition and structure of the SCLM?: More than 70% 

by volume of the SCLM was likely generated between 3.5 and 3.0 Ga, as residues of a 

relatively short episode of massive high-degree partial melting (e.g. Griffin et al., 1999a, 

2014). Throughout its evolution, the SCLM has been subjected to tectonic and 

metasomatic processes which gradually made it geochemically more complex and 

heterogeneous. The major rock types composing the SCLM are peridotites, followed by 

pyroxenites and eclogites (e.g., O’Reilly and Griffin, 2013 and references therein). The 

SCLM is generally more depleted than the underlying convective mantle and thus is 

buoyant and dynamically more stable. However, major disturbances such as rifting and 

collisional events may disrupt the lithosphere causing discrepancies in the heat flow, 

density and thickness of terrains with distinct tectonothermal ages. Thus, the nature and 

degree of the processes affecting the SCLM control the geothermal gradient, rheology 

and the distribution of lithotypes and ore-forming elements laterally and vertically.  

B. What stories can the SCLM tell?: The generation of the Archean SCLM is 

chronologically coincident with the formation of more than 60% of continental crust before 

2.5 Ga (Belousova et al., 2010; Dhuime et al., 2011; Arndt, 2013; Griffin et al., 2014). The 

onset of a plate tectonics regime sometime after this period (e.g., Hawkesworth and 

Kemp, 2006; Griffin et al., 2014 and references therein) modified the SCLM structure and 

composition and led to uplift, magmatism and the generation of important mineral 

resources such as diamonds, Ni-Cu-(PGE) and Cu-Au (Griffin et al., 2013) in the 

continental crust. Mantle-derived magmatism, especially the emplacement of kimberlites, 

kamafugites and alkaline-carbonatite (KKAC) complexes, commonly transports SCLM 
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samples (mantle xenoliths and xenocrysts) to the surface, allowing investigation of the 

rock types in the deeper layers of the lithosphere. Robust sections of the SCLM over time 

in a diverse range of tectonic settings can be used to constrain geodynamic and tectonic 

models, geophysical interpretations and to open new mineral-exploration frontiers. The 

SCLM along the AZ125 was sampled by a significant number of KKAC magmas, bearing 

testimony to the breakup of Gondwana and the birth of numerous regions favourable to 

concentrate diamonds and other mineral deposits. An integrated picture of the lithosphere 

along this lineament could reveal the timing, mechanisms and composition – including 

potential resources – related to its evolutionary history.  

C. How to investigate the SCLM?: Several methods were developed to 

investigate the SCLM and in this context, mapping techniques using xenocryst phases 

(e.g., O'Reilly and Griffin, 1996) stand out. The availability of materials such as kimberlite 

heavy-mineral indicators (HMI), mostly from diamond exploration campaigns, could 

extend the study vertically and laterally beyond the limitations imposed by mantle 

xenoliths. The quantification of major- and trace-elements in mantle xenocrysts provides 

clues about their SCLM source rock types and major transformations (e.g., 

metasomatism; Griffin et al, 1999b, 2002b; O’Reilly and Griffin, 2013). The application of 

specific geothermobarometry techniques (e.g., Griffin et al., 1989a; Griffin et al., 1993b; 

Ryan et al., 1996) to the same xenocrysts allows the calculation of model paleogeotherms 

which can be used to construct individual SCLM sections (one dimension) and maps in 

several dimensions; 2D, 3D and 4D where there is sufficient temporal and geographic 

spread. The integration of this “chemical tomography” with other information such as 

ages, isotopes, petrology and geophysics, becomes a powerful tool to evaluate 

lithospheric domains (e.g., Begg et al., 2009), geological models and exploration targets.  

This work investigates the SCLM along the so called “lineament of 125° Azimuth”, 

specifically on the south-western margin of the São Francisco Craton (SW-SFC). The 

AZ125 has been previously characterized in a few studies (e.g., Bardet, 1977; Gonzaga 

and Tompkins, 1991; Moraes Rocha et al., 2014, 2015), with structural, geophysical and 

metallogenetic insights, but there has not been an integrated focus on the origin and 

composition of its SCLM. Single-point studies of mantle xenoliths and xenocrysts (e.g., 

Costa, 2008; Fernandes et al., 2021; Carvalho et al., 2022) and geophysical models (e.g., 

Bologna et al., 2006; Assumpção et al., 2017) in the SW-SFC have pointed out the 

complexity of the SCLM below the AZ125 and its non-obvious relationship with the 

available resources in the region. However, an integrated picture of the lithosphere 
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including a comprehensive understanding of the SCLM characteristics and 

metallogenetic potential remains to be developed. The present work is unique in its 

coverage (28 localities over an area of ca 500x150 km), number of samples (> 3000 

xenocrysts from 35 igneous bodies) and its combination of modern analytical techniques 

with interdisciplinary approaches (geochronology, geochemistry and geophysics). Its 

aims are to: 

• re-evaluate the history of KKAC magmatism through a multi-methodological 

approach; 

• provide petrological fingerprints of the KKAC magmas where fresh rocks are 

not available; 

• determine geothermal gradients and geochemical signatures of the SCLM; 

• image SCLM structure and composition; 

• interpret the nature and evolution of the SCLM; 

• analyse the SCLM oxygen fugacity with old and new methodologies; 

• integrate geochemical and geophysical datasets for a combined 

interpretation; 

• evaluate the economic aspects linked to the SCLM; 

• propose new insights on the geodynamic and metallogenetic evolution of the 

AZ125. 

 

1.2. Thesis Outline  
 

Chapter 1 – General introduction: an overview of the main concepts relevant to 

the research topic and contextualization of the source project which lead to this work. 

Chapter 2 – Geodynamics, geology and geophysics: a summary of the general 

geodynamic context, followed by the description of geological and geophysical domains 

in the study area. 

Chapter 3 – Sampling: information about sample selection and brief description 

of the KKAC rocks and their entrained SCLM materials. 

Chapter 4 – Methods: detailed summary of analytical techniques and 

methodologies applied in this work.   
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Chapter 5 – Geochronology of kimberlites and related rocks: mineralogical and 

chemical characterization of KKAC geochronometers, followed by a detailed evaluation 

of new and previous geochronology.    

 Chapter 6 – Lithosphere mapping: investigation of SCLM origin and composition, 

including geothermobarometry data, SCLM unidimensional sections, detailed appraisal 

of metasomatic signatures, and data integration. A close-up on the enigmatic origin of 

alluvial diamonds and SCLM is also given. 

Chapter 7 – Oxygen fugacity in the SCLM: results from investigations of minerals 

using perovskite oxybarometer and the introduction of a new potential methodology 

based on V/Sc variation in garnets. 

Chapter 8 – The big picture: Geodynamics and metallogenesis: extension of the 

lithosphere mapping to 2D visualization to provide insights on the lithosphere 

architecture. A new geodynamic and metallogenetic perspective is suggested for the 

AZ125 history. 

Chapter 9 – Summary and conclusions: synopsis of the main discoveries and 

conclusions of this work.  

 

1.3. Basic Concepts 
 

This section describes basic concepts focusing on specific approaches and 

working hypothesis which are relevant to the understanding of this thesis, without 

extending to a very comprehensive literature review. It starts with an introduction of the 

main characteristics of the subcontinental lithospheric mantle (SCLM), including the 

generation and development of the distinct compositional and structural features 

observed by lithosphere mapping studies. It provides an overview of how the SCLM linked 

to cratons and their margins participates in and responds to the processes affecting the 

lithosphere, preserving key evidence for all sorts of geological investigations. General 

information about the most relevant types of mineral resources linked to the SCLM is also 

provided.  
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1.3.1. Introducing the SCLM 
 

Origin and Evolution 

The SCLM is the non-convective portion of the upper mantle that is attached to 

the continental crust; chemically, thermally and mechanically it is distinct from the 

underlying asthenosphere (Griffin et al., 1999a; 2009). Its generation likely began in the 

Paleo-Archean (ca 3.5 Ga) with large melting events producing buoyant, highly depleted 

residues and/or cumulates which composed the first stable SCLM (Griffin et al., 2014). 

Re-Os data obtained for sulfides in mantle xenoliths (e.g., Griffin et al., 2014 and 

references therein) and results from the Global Lithosphere Architecture Mapping project 

(e.g., Begg et al., 2009, 2010) indicate that at least 70% of the SCLM was formed between 

3.3 and 2.7 Ga. This relatively short period is linked to a massive high-degree melting 

episode which probably occurred at sublithospheric depths, triggered by mantle overturns 

(e.g., Davies, 1995; Griffin et al., 1999a; Griffin et al., 2003), or super plumes (e.g., Stein 

and Hofmann, 1994; Wyman and Kerrich, 2002).  

The origin of the earliest SCLM is chronologically coincident with the formation of 

more than 60% of the continental crust (>2.5 Ga; Belousova et al., 2010; Dhuime et al., 

2011; Arndt, 2013; Griffin et al., 2014) and with the beginning of a modern pattern of plate 

tectonics probably near the end of the Archean (e.g., Hawkesworth and Kemp, 2006; 

Griffin et al., 2014). Secular cooling of the Earth (see Jaupart et al., 2015), coupled with 

a change in the tectonic regime impacted the nature of SCLM-forming processes, leading 

to gradual reworking and refertilisation of the depleted Archean SCLM (O’Reilly et al., 

2001, Griffin et al., 2003). In the Proterozoic, high-degree melt extraction caused by slab-

induced overturns at relatively shallower depths, produced a new SCLM of transitional 

nature (Griffin et al., 2003). Later in the Phanerozoic, distinct mechanisms involving 

whole-mantle convection led to a decrease in the degree of melt extraction at even 

shallower depths, producing the youngest SCLM domains (Griffin et al., 2009).  

The generation of post-Archean SCLM may have been mostly related to the 

accumulation of materials from rising plumes (e.g., in intraplate settings), while the 

accretion of subducted oceanic mantle was, if existing, probably secondary (Griffin et al., 

2009); at present, oceanic material is not accreting to the SCLM of young portions of the 

continents (Griffin et al., 1999a). This evolutionary history shows the variation in the 

composition and structure of the SCLM through time and emphasizes that the 
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mechanisms that formed Archean SCLM appear to be distinct from those forming younger 

SCLM (Griffin et al., 2003, 2007).  

 

Composition  

Most of the SCLM compositional evidence derives from mantle xenoliths and 

xenocrysts sampled by kimberlites and related deep-seated magmatic rocks, alkali 

basalts s.l., and from exposed massifs in orogenic belts. From all materials available, 

garnet xenocrysts, and to minor extent chromite xenocrysts, are the most widespread 

(laterally and vertically) and cost-effective probes of the SCLM, as they are frequently 

recovered during diamond exploration campaigns. Compositional studies, especially 

those based on xenocrystic garnets (e.g., Griffin et al., 1999b, 2002b) have confirmed 

that SCLM is dominated by ultramafic rocks (olivine-rich), with minor pyroxenites (frozen 

basaltic melts) and eclogites (clinopyroxene + garnet). The peridotite mantle wall-rocks 

vary from dunites (olivine) to harzburgites (olivine + orthopyroxene), wehrlites (olivine + 

clinopyroxene) and lherzolites (olivine + orthopyroxene + clinopyroxene), with more or 

less aluminous phases (garnet, spinel or plagioclase) depending on the pressure and 

temperature conditions involved (Griffin et al., 2009; O’Reilly and Griffin, 2013). The Cr 

content of garnets provides evidence about the degree of depletion of host SCLM rocks, 

while its correlation with Ca deliver clues about the source rock types (Griffin et al., 1999b; 

2002b). High concentrations of elements such as Zr, Y and Ti, in SCLM garnets indicate 

refertilisation processes (Griffin et al., 2002b) related to metasomatism.  

Mantle metasomatism is the compositional change resulting from the interaction 

between mantle wall-rocks and fluids, and can be divided in three types: modal 

metasomatism (Harte, 1983), when new minerals are added (e.g., phlogopite peridotites, 

MARID - Mica (phlogopite), Amphibole (K-richterite), Rutile, Ilmenite and Diopside rocks 

and pyroxenites; cryptic, when pre-existing minerals are compositionally modified, but no 

new phases are added; and stealth, when new mineral phases added are 

indistinguishable from possible major mantle phases (e.g., garnet and/or clinopyroxene). 

Metasomatic processes involve different types of fluids such as silicate and carbonatite 

melts, C-O-H (water, CH4 and CO2) fluids and dense brines, which move through the 

mantle via grain-boundary infiltration or crack propagation (O’Reilly and Griffin, 2013). A 

specific metasomatic process caused by the infiltration of asthenospheric melts 

contemporaneously with the intrusion of kimberlites and related rocks, is evidenced by 

the occurrence of high-T garnets in the SCLM (O’Reilly and Griffin, 2013). Similar garnets 
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are found in sheared peridotite xenoliths, which are fragments of strongly metasomatised 

lithospheric mantle (Smith et al., 1991; Smith and Boyd, 1992; Griffin et al., 1996), 

indicative of thermal perturbation near the base of the SCLM (“kinked” geotherms, see 

Chapter 4 of this work).  

Griffin et al. (1999b, 2002b) used major- and trace-element analyses of a large 

dataset of Cr-pyrope garnets to separate specific classes through multivariate statistics. 

Populations derived from the Cluster Analysis by Recursive Partitioning (CARP) 

technique were grouped into five major categories:  

(1) depleted harzburgites: identified by subcalcic garnets from host rocks that 

experienced strong melt depletion, strongly depleted in Y and HREE; 

(2) depleted lherzolites: identified by garnets that potentially equilibrated with 

clinopyroxene, depleted in Y, HREE and HFSE, with minor Zr enrichment;  

(3) depleted/metasomatised peridotites (±phlogopite): identified by garnets 

from harzburgites depleted in major elements, Ti and Ga, but enriched in Y and Zr, and 

garnets from the lherzolites depleted in Y and HREE, but enriched in Zr and LREE. Host 

rocks were depleted and subsequently refertilised; “Phlogopite-metasomatism” 

signatures are related to carbonatitic melts. 

(4) fertile lherzolites: identified by garnets representing significant refertilisation 

of depleted rocks, with abundant HREE and moderate HFSE contents; such garnets can 

also be derived from relatively undepleted parts of the asthenosphere. 

(5) melt-metasomatised peridotites: mostly identified by garnets from high-T 

sheared lherzolite xenoliths, enriched in Zr, Ti, Y and Ga; “Melt-metasomatism” 

signatures are related to silicate melts. 

Considering the secular evolution of the SCLM (e.g., Beyer et al., 2006), which 

can occur on a short time scale (see Griffin et al., 2003), groups of garnet xenoliths and 

xenocrysts from regions with different ages and tectonic settings exhibit a very close 

correlation between SCLM composition and tectonothermal age, or the age of the last 

major thermal perturbation in the overlying crust (Griffin et al., 1998a, 2003). Adapting 

Janse's (1994) classification of the tectonothermal age of crustal regions, the authors 

recognized three distinct SCLM suites: Archons (>2.5 Ga), Proton (2.5-1.0 Ga) and 

Tecton (< 1.0 Ga).   
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Figure 1. Secular evolution of the SCLM composition (CaO vs. Al2O3) over time: (a) based on garnet 

xenocrysts and mantle xenoliths classified according to their tectonothermal ages (see text for details; 

modified from O’Reilly and Griffin, 2006); and (b) calculated from garnet concentrates, average of xenolith 

suites and peridotite massifs, and garnet lherzolites from Tecton localities which are only slightly depleted 

compared to the primitive mantle (data from Griffin et al., 1999b; modified from Griffin et al., 2003). Gnt, 

garnet; Av., average.; PM, primitive mantle.  

 

The degree of depletion in SCLM rocks consistently decreases from Archon to 

Proton to Tecton regions, while the degree of refertilisation related to metasomatism 

increases (Figure 1; Griffin et al., 1999a). This is emphasized by the fact that relatively 

the high abundance of harzburgitic garnets (e.g, Boyd and Gurney, 1986; Schulze, 1995), 

especially low-Ca, high-Cr types, is a unique feature of Archon regions (Griffin et al., 

1998a; Griffin and O’Reilly, 2007). Archon SCLM is strongly depleted and the peridotites, 

commonly strongly stratified (e.g., Lac de Gras, cf. Griffin et al., 1999a), have higher 

Si/Mg (higher orthopyroxene/olivine) than highly depleted rocks in oceanic and arc-

related settings, with anomalously low Fe contents (relative to Mg#, at low Al contents) 

and lower Cr#, Ca/Al and Fe/Al at any Mg# (Figure 1; Boyd, 1989; Griffin and O’Reilly, 

2007); anomalously low Ni, Zn and Co contents are also characteristic (Griffin et al., 

1999b).  

Relative to Archons, garnets from calcic harzburgites are less abundant in Proton 

SCLM which is rich in fertile lherzolites, rarely refertilised, with the concentration of Al in 

peridotites decreasing at constant Fe and Cr contents (Griffin et al., 2003). Tecton SCLM 

is completely lacking in depleted garnets and dominated by fertile lherzolites 

compositionally similar to Primitive Mantle, which are very rare in Archon and Proton 

suites (Griffin and O’Reilly, 2007). 

(a) (b) 
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Structure 

It is widely accepted that the SCLM is thermally conductive and generally more 

depleted than the underlying mantle; hence more buoyant and tectonically stable. 

However, the typical variation in degrees of depletion/fertilisation in distinct 

tectonothermal domains (Archon, Proton and Tecton) and the heterogeneous 

composition of the SCLM reflect changes in the physical properties of the lithosphere 

(e.g., Djomani et al., 2001; O’Reilly and Griffin, 2006; Afonso et al., 2008). This was 

evidenced by constructing empirical thermal profiles with depth (paleogeotherms) using 

mantle xenoliths and xenocrysts (e.g., Ryan et al., 1996; Sand et al., 2009; Goncharov et 

al., 2012). In most areas, xenolith-based geotherms tend to follow modelled geotherms 

characteristic of conductive heat flow.  

The paleogeotherms attested that the thermal state of the SCLM and the 

thickness of the lithosphere registered by volcanic rocks at the time of their eruption is 

strongly correlated with their tectonothermal ages (Chapman and Pollack, 1977; O’Reilly 

and Griffin, 1996). They generally increase from Archon (35-45 mW/m2) to Proton (45–

50 mW/m2) to Tecton regions (50-55 mW/m2; Figure 2a). In areas sampled by alkali-

basaltic volcanism, such as South-East Australia and Eastern China they record even 

higher (strongly upward-convex) geotherms indicative of advective heat transport 

(O’Reilly and Griffin, 1985; O’Reilly et al.,1997, 2001). Archon regions where the highly 

depleted Archean SCLM is expected to have the lowest density (Figure 2), have the 

thickest lithosphere (>160 km), colder geotherms (30–45 mW/m2), and the highest 

buoyancy and stability (see O’Reilly and Griffin, 1996 and references therein), especially 

in well-preserved parts where the SCLM has remained extremely dehydrated and more 

viscous (Lenardic and Moresi, 1999; Griffin et al., 2003). Contrarily, Tecton regions with 

extremely fertile SCLM are expected to have denser, less buoyant lithosphere (Figure 

2b), and higher geothermal gradients (≥ 50 mW/m2) with higher chances of delamination 

(SCLM removal). Proton regions are likely to have lithosphere with physical properties 

intermediate between these extremes (see Griffin et al., 2003 for details).  
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Figure 2. SCLM structure for regions with different tectonothermal ages, where density is inversely 

correlated to cooling: (a) typical empirical xenolith-based geotherms expected for Archon, Proton and 

Tecton localities; SE Australia geotherm from O’Reilly and Griffin (1985) is commonly found in regions with 

young intraplate magmatism reflecting advective heat transport (modified from O’Reilly and Griffin, 2006); 

(b) SCLM density profiles by age, within the geothermal range showed in (a); stars represents the geotherm 

“kink” (see Chapter 4 for details) expected at the “lithosphere-asthenosphere boundary” or as preferred in 

this work, the base of the depleted lithosphere (BDL; modified from Djomani et al., 2001). 

 

Oxygen fugacity 

The oxidation state, measured in terms of oxygen fugacity (ƒO2) log units, is one 

of the most important parameters of the SCLM because, together with temperature, it 

controls most of the physical and chemical activity of oxygen between mantle reservoirs, 

and between mantle and crust (Frost, 1991). The ƒO2 influences key aspects of the SCLM 

such as melting, composition, speciation of volatiles (e.g., C, H, O) and multivalent 

elements (e.g., Fe, V, Cr), stability of C-bearing phases (diamond, graphite and 

carbonates), mineral/melt partitioning, degassing and metal fertility, as demonstrated by 

several studies (e.g., Mungall, 2002; McCammon and Kopylova, 2004; Frost and 

McCammon, 2008; Goncharov et al., 2012; Berry et a., 2013; Richards, 2015; Brounce 

et al., 2015; Yaxley et al., 2012, 2017; Woodland and Seitz, 2018; Griffin et al., 2018; 

Aulbach et al., 2019; Tassara et al., 2020; Moretti and Neuville, 2021 and references 

therein). Most of the information about the redox evolution of the SCLM, ƒO2 mechanisms 

and distribution comes from experiments (e.g., Ballhaus et al., 1991; Holycross and 

Cottrell, 2022), quantification via proxies/oxybarometers in mantle-derived rocks such as 

mid-ocean ridge basalts and peridotites (e.g., V/Sc, Li and Lee, 2004; Lee et al., 2005; 

garnet and spinel oxybarometers, Miller et al., 2016) and modelling of element-

(b) (a) 
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partitioning behaviour (e.g., Canil, 1997; Mallmann and O’Neill, 2009; Nicklas et al., 2018, 

2019). Estimates of ƒO2 recorded by minerals (e.g., perovskite; Bellis and Canil, 2007) 

frequently found in volatile-rich magmas such as kimberlites are also used. 

The present redox state of the SCLM has evolved from a complex combination 

of mechanisms and processes which are still being debated. According to Stagno and 

Aulbach (2021) the variation in oxidation patterns in the Earth’s interior was due to: (a) 

early accretion of variably oxidized blocks and meteoritic impact; (b) the formation of 

magma ocean(s), core segregation, and mantle crystallization; (c) establishment of 

mantle convection; and (d) recycling by subduction. Many studies argue that the redox 

state of the upper mantle has remained almost constant at the FMQ (fayalite-magnetite-

quartz) oxygen buffer since 3.5 Ga (e.g., Canil, 1997, 2002; Delano, 2001; Li and Lee 

2004; Hibbert et al., 2012). However, opposing results such as those from cratonic 

peridotites, eclogites, Archean picrites and basalts (e.g., Jacob and Foley, 1999; 

Woodland and Peltonen, 1999, Smart et al., 2009; Aulbach and Viljoen, 2015; Aulbach et 

al., 2017a) are consistent with a more reduced Archean upper mantle which may have 

been progressively oxidized through time (Foley, 2011, 2021). More recently, Nicklas et 

al. (2019) proposed that a secular oxidation of the mantle from 3.48 to 1.87 Ga, due to 

homogenization of primordial mantle redox heterogeneities, was followed by nearly 

constant oxygen fugacity to the present (Nicklas et al., 2018).   

Under modern conditions, indications are that the ƒO2 distribution in the SCLM is 

heterogeneous and oxidation state might decrease with depth (Wood et al., 1990; 

Woodland and Koch, 2003; Goncharov et al., 2012; Dymshits et al., 2020). The range of 

ƒO2 estimated for spinel peridotites, which represent SCLM at shallower levels (<60 Km), 

is ΔFMQ±2 (i.e. within two log units of the ƒO2 defined by the reaction Fayalite 

→Magnetite + Quartz), but significant variations may occur across different tectonic 

settings. For example, subduction might oxidize the mantle by transport of oxidized 

surface materials to depth (Frost and McCammon, 2008; see Cottrell et al., 2021 for more 

details). At deeper SCLM levels, in principle the ƒO2 of garnet peridotites tends to 

decrease with depth due to the temperature and pressure effects on garnet/pyroxene 

Fe2O3 partition coefficients and Fe3+/Fe2+ equilibria, respectively (e.g., Gudmundsson and 

Wood, 1995; Canil and O’Neill, 1996; Woodland and Koch, 2003; Frost and McCammon, 

2008; Yaxley et al., 2012; Stachel and Luth, 2015). However, perturbations such as the 

infiltration of metasomatic agents into the system can modify this trend (e.g., Goncharov 
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et al., 2012), resulting in a non-obvious correlation with the degree of depletion/fertility 

(Woodland et al., 2006; Ionov and Wood, 1992). Griffin et al. (2018) argued that the 

oxidation of highly reduced C-O-H-N fluids ascending from deep upper mantle, in some 

mantle regions, via interaction with thick SCLM eventually forms diamonds and agents 

(CO2 and H2O) for metasomatism and melting processes, while at shallower levels the 

solid phase will be either graphite or amorphous C. Although in general ascending melts 

tend to be more oxidized, this is dependent on how much they interact with the mantle 

wall-rocks and how far up they go. Thus, the travel length and time determines if the melts 

are either oxidizing or reducing.  

 

1.3.2. Cratons and their margins 
 

Cratons are defined as rheologically and compositionally distinctive domains of 

the continental lithosphere, which have been stable since the Precambrian (e.g., Alkmim, 

2004). Cratonic cores may have survived several tectonic events without pervasive 

deformation, because of their thick (>200 km), cold (35-40 mW/m2), melt-depleted, 

rheologically rigid and buoyant lithospheric keels (e.g., Michaut and Jaupar, 2009). These 

isostatically positive mantle roots produce relatively flat topographies, close to the sea 

level, in the Archean/Paleoproterozoic crust (e.g., Foley, 2008). The low-density and high-

viscosity nuclei (e.g., O’Neill et al., 2008) produce distinctive geophysical signatures such 

as high seismic velocity zones and high resistivity (e.g., Pavlenkova et al., 1996). 

However, numerous studies indicate that cratonic lithosphere can be altered, eroded, 

fragmented and reassembled during supercontinent cycles (e.g., Menzies et al., 1993; 

Xu et al., 2000; Foley, 2008; Hu et al., 2018; Celli et al., 2020; Sun and Dasgupta et al., 

2020; Liu et al., 2021; Gernon et al., 2022). During collage periods, the amalgamation of 

converging cratonic blocks usually incorporates passive margins, micro-continents, intra-

oceanic arcs and other continental fragments to form marginal orogenic belts. The 

accretionary processes, which commonly include subduction, shape cratonic geometries 

and result in high surface topography and consequently, thicker continental crust (~45 

km; e.g., Durrheim and Mooney, 1991).  

Lithological assemblages found in these orogenic zones reflect the overprint 

imposed by collisional processes, involving metamorphism and intense deformation. 

Orogenic events also trigger subsidence in the cratonic interior and favour the 

accumulation of sediments in intracratonic basins. Continental breakup, driven by rifting 
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processes, can lead to disruption of cratons and their mantle-keels. Independently of the 

mechanisms that lead to separation (e.g., mantle plumes) and modification of the cratonic 

roots (e.g., metasomatism), there is a common association of these events with 

magmatism. Large Igneous Provinces and mafic dyke swarms are commonly interpreted 

as the surface expression of mantle plumes impingement (e.g., Beccaluva et al., 2020; 

Pessano et al., 2021 and references therein) and that this activity may trigger cratonic 

fragmentation (Hill, 1991) and erosion (e.g., Foley, 2008). Some most recent views 

(Gernon et al., 2022) suggest that rift-driven mantle instabilities migrate through the base 

of the lithosphere causing removal of the deep parts of mantle keels and emplacement of 

kimberlites and related magmas. Lithosphere thinning (e.g., North China craton, Zhu et 

al., 2011; North Atlantic craton, Tappe et al., 2006; Wyoming craton, Carlson et al., 2004), 

may increase heat flow and cause isostatic uplift. Transformation processes in the 

cratonic mantle influence its buoyancy and stability, and furthermore control their ability 

to provide resources like diamonds and ore-forming elements (e.g., Au, Cu, PGE). 

Although lithospheres are not forever (see O’Reilly et al., 1998; 2001), the 

protracted history of cratons and their extensively reworked margins contains the most 

valuable evidence about Earth’s evolution. Only cratons are long-lived enough to provide 

Early Earth records such as primitive crust and mantle relicts (e.g., Griffin et al., 2014; 

Paquette et al., 2015). Also, they can deliver insights about mantle redox variations (e.g., 

Foley, 2011), primitive tectonic regimes (e.g., Pease et al., 2008; Perchuk et al., 2020) 

and early life (e.g., Mojzsis et al., 1996; Nutman et al., 2016). Finally, cratons are also the 

key to unravelling conditions that have favoured the formation of valuable mineral 

deposits through time.   

 

1.3.3. SCLM metallogenesis 
 

The SCLM is a “durable, buoyant and rigid reservoir for ore-forming elements…” 

(Griffin et al., 2013), and the genesis and accumulation of several important resources 

like diamonds, platinum-group elements (PGE), Ni-Cu-(PGE) and (Cu-)Au (Figure 3) are 

related to the origin and evolution of its physical-chemical characteristics (e.g., Malkovets 

et al., 2007; Richardson and Shirey, 2008; Groves et al., 2010; Begg et al., 2010; 

Fiorentini et al., 2010; Naldrett et al., 2010; Mair et al., 2011; Saunders et al., 2011; 

Tassara et al., 2017). Moreover, the SCLM has been advocated as metal-booster, in 
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which redox-state changes during the ascent of magmas can lead to an increase on the 

extraction of metals (e.g., Au; Tassara et al., 2020).   

 

Diamonds 

Diamonds, as an economic resource, are primarily related to kimberlites which 

inevitably are linked to cratonic lithosphere. Even though kimberlites, and to a minor 

extent lamproites, are undoubtedly the main source of gem-like diamonds (Figure 3a; 

e.g., Boyd and Gurney, 1986), a larger variety of lithotypes may also be diamondiferous, 

at nano-, micro- or macro-scale, across several tectonic settings.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Cartoon from Griffin et al. (2013) showing the interaction between the SCLM metallogenic 

reservoir and magmas: (a) plume-driven events that might form kimberlites which transport diamonds also 

cause melting of thinner SCLM regions and interaction SCLM/crust for the formation of Ni-Cu and PGE 

deposits; (b) different types of convergent-margin settings where Au-poor deposits form from 

asthenospheric or crustal melts and/or low-degree melting of asthenosphere can produce Au-rich SCLM 

metasomatism. Au-enrichment can be driven by subsequent melting forming Cu-Au, epithermal or intrusive-

related orogenic Au; possibly Carlin-type and orogenic Au as well.  

 

Dobrzhinetskaya et al. (2022) provides a detailed compilation of most reported 

occurrences of diamonds in eclogites and other rocks from ultra-high pressure 

metamorphic terrains, ophiolites and lavas from modern volcanic eruptions (e.g., 

Tolbachik, Russia; Karpov et al., 2014). More unusual contexts include volcanoclastic 

komatiites (e.g., Capdevila et al., 1999) and modern oceanic mantle (e.g., Wirth and 

Rocholl, 2003). In the SCLM, the most important diamond source rocks are peridotites, 

followed by eclogites, that in a global scale are much less important but may dominate 

production from some examples (Stachel and Harris, 2009). For the purpose of this work, 

(a) (b) 
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this overview on diamond genesis and key physical-chemical aspects is limited to that 

observed in peridotitic xenoliths/xenocrysts in the continental lithosphere, and in the 

deeper mantle (e.g., transition zone). 

A. Peridotitic sources: It is important to recognize that diamonds are xenocrysts 

which reside in the mantle for a long period of time (see geochronological review by Smit 

et al., 2022), thus it is challenging to correlate their growth conditions with source and 

carrier rocks (e.g., kimberlites). However, inclusions of trapped melts/fluids and minerals 

(e.g., garnet, chromite, clinopyroxene) and mantle xenoliths have provided many insights. 

Cartigny et al., (2014) have argued that diamonds are formed only when carbon is 

thermodynamically stable, which is estimated at temperatures >950°C and depths below 

150 km (~45 kbar), mostly within the “diamond window” of 150-250 km; considering 

typical continental heat flows (38-42 mW/m2). Geothermobarometry data on mineral 

inclusions indicate that the formation of lithospheric diamonds occurs over the 

temperature range of about 1160-1200°C - regardless of source rock types - and 

pressures between 4.5 and 6.5 GPa (~140-200 km; Stachel and Harris, 2008; Stachel 

and Luth, 2015; Nimis, 2022). Besides temperature and pressure, oxygen fugacity and 

metasomatism also play a major role on diamond genesis and destruction (Figure 4; e.g., 

Stachel et al., 2004; Cartiginy et al., 2014; Smit and Shirey, 2020; Weiss et al., 2021). 

The cratonic SCLM is a relatively oxidized (ultra)depleted layer with variable degrees of 

metasomatism, above a Fe-rich carapace of relatively fertile peridotites where kimberlites 

and related rocks might be formed (Tappe et al., 2017; Woodhead et al., 2017; see Griffin 

et al., 2018 for details). When highly reduced asthenosphere-derived metasomatic fluids 

(e.g., CH4-rich) reach the base of the SCLM, they are progressively oxidized and 

reactions such as and CH4 + O2 → C + 2H2O and SiO2 + 3CH4 → SiC + C +3H2 + CO2 

will first provide favourable conditions for diamond growth (Figure 4, stage I; Griffin et al., 

2018). 
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Figure 4. Cartoon from Malkovets et al. (2007) representing the  progression of SCLM metasomatism and 

the directly correlation with diamonds formation/destruction: (I) the relatively oxidized harzburgites/dunites 

form the Archean SCLM are metasomatized by asthenospheric Si-bearing CH4-rich fluids, which initially 

favour the crystallization of diamond/graphite; (II) as the metasomatism process continues with the 

infiltration of more melts/fluid (zoomed detail), diamond/graphite stops precipitating while harzburgites are 

refertilised by melt-related metasomatism (stronger in the right conduit); relict harzburgitic diamonds remain 

in the lherzolites; (III) later, kimberlites and related rocks erupt, sampling distinct parts of the 

depleted/metasomatised lithosphere. High-grade pipes are those which sampled preserved portions of 

SCLM from stage (I), while barren pipes sampled unmetasomatised SCLM; low-grade pipes sample highly 

metasomatized SCLM with relict diamonds. D, dunite; H or Harz, harzburgite; Lherz, lherzolite; Fert, (re)-

fertilised; Perid, peridotite; Cpx, clinopyroxene; Gnt, garnet; Chr, chromite; LREE, light rare-earth elements; 

metas, metasomatised. 

 

Further increase in melts/fluids ƒO2 by metasomatism, causes 

resorption/dissolution of diamonds and depending on the degree of this process, they 

remain as relics in fertile rocks or completely disappear (Figure 4, stages II and III; 

McCammon et al., 2001; O’Reilly and Griffin, 2013; Stachel and Luth, 2015); e.g., 

diamonds are not forever! (see Smit and Shirey, 2020). Alternative models argue in favour 
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of the reduction of carbonates as paired mechanism for diamond growth, besides the 

oxidation of CH4 fluids (Stachel and Harris, 2009). 

Deeper sources: Much higher temperature and pressure ranges are linked to the 

formation of diamonds at depths below the lithosphere (300-800 km or more; see review 

by Smith and Nestola, 2021). This have been supported by the identification of unusual 

inclusions in diamonds such as CaSiO3-perovskite, bridgmanite, ringwoodite, stishovite 

and methane (e.g., Moore and Gurney, 1985; Stachel and Harris, 2008; Harte, 2010; 

Smith et al., 2016; Kaminsky et al., 2012, 2013), C-H-O-N isotopes (e.g., Zedgenizov et 

al., 2014) and plasto-elasto-geobarometry methods (Anzolini et al., 2019). Besides the 

common multi-mineral phases entrapped, super-deep diamonds show higher degrees of 

plastic deformation (e,g., Cayzer et al., 2008) and resorption than lithospheric diamonds 

(e.g., Moore, 2014), and also lower contents of nitrogen impurities (e.g., Moore, 2009; 

Smith and Kopylova, 2014).  

Subduction is a preferred mechanism for the reintroduction of carbon from the 

crust (e.g. graphite) into the mantle, and to the formation of super-deep diamonds (e.g., 

Tappert et al., 2005; Bulanova et al., 2010; Walter et al., 2008, 2011; Pearson et al., 2014; 

Cartigny et al., 2014; Burnham et al., 2015; Seitz et al., 2018; Smith et al., 2018; Doucet 

et al., 2021), which might include the generation of carbon-bearing fluids/melts via low-

degree carbonatitic melting,  dehydration of subducted slabs and metallic melt inclusions 

of Fe-Ni-C-S from subducted serpentinites or iron disproportionation reactions (Smith and 

Nestola, 2021). Palot et al. (2017) have indicated that both reduced and oxidized C-rich 

fluids from recycled crustal sources would favour the growth of sublithospheric diamonds. 

Once formed, these diamonds are transported to mantle depths where they can be 

eventually carried by kimberlites and related rocks.  

Types: Diamond are classified mainly on nitrogen impurities, but also colour, 

clarity, size, inclusion types, infrared spectroscopy (IR) and ultra-violet (UV) absorption 

are significant indicators (Breeding and Shigley, 2009 and references therein). Type I is 

the most abundant group (>98%) referring to diamonds that originated in the lithospheric 

mantle as described above. Both subtypes Ia and Ib contain high levels of N impurities 

(~5-3000 ppm; Kaiser and Bond, 1959; Tappert and Tappert, 2011), but in type Ia N 

variably occupies A and B centers of the crystal structure (IaB, IaAB, IaA), while type Ib 

has simple N substitution (Tappert and Tappert, 2011). Type II are mostly the much rarer 

sublithospheric diamonds with significantly low (< 5ppm; Tappert and Tappert, 2011) 
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amounts of N; rare lithospheric diamonds can be classified as type II (e.g., Gurney et al., 

2010). Subtypes IIa and IIb differ through colour and presence of impurities, being 

diamonds type IIa incolor and pure, and diamonds type IIb blue with 1-10 ppm of B (Smith 

et al., 2018).  

A recently-proposed special category is the CLIPPIR (Cullinan-like, Large, 

Inclusion-Poor, Pure, Irregular and Resorbed diamonds (Smith et al., 2016, 2017, 2018), 

which can include a few type IIa. Their significance rests on the extraordinary environment 

of formation under highly reducing metal-saturated conditions in the deep mantle (360–

750 km), supported by the presence of Fe-Ni-C-S metallic melt and a fluid layer of 

methane ± hydrogen (Smith et al., 2016); strain due to deep Earth conditions is observed 

in their internal structure. Additionally, they have particularly high economic value as 

gemstones due to the large size and high quality of the gems (e.g., Cullinan diamonds).   

Secondary sources, from where?: For several years diamond primary sources 

have been explored with approached relying on the features described above, especially 

the presence of heavy-mineral indicators (HMI) such as harzburgitic garnets, commonly 

called G10 garnets (e.g., Schulze, 2003). However, in many localities such as the Alto 

Paranaíba diamondiferous field in Brazil, within the study area on the present work, the 

main source of diamonds is secondary (e.g., riverbeds) and the use of HMI or other 

methods has not yet provided clues about highly diamondiferous primary souces. The 

biggest challenges are not only recovering the original host-rock localities, but also 

definying a tectonic/genetic model for such a mixed reservoir which can include all types 

of diamonds. Those of subslithospheric origin especially disobey classification and 

formation criteria that traditional SCLM studies might provide.  

 

Magmatic ore deposits  

It is still a matter of debate whether or not the SCLM actively participates as a 

metal reservoir, which can potentially source magmatic ore deposits such as those 

exemplified in Figure 3b. Griffin et al., (2013) provide details of specific examples where 

traditional models account for other origins (e.g., crustal) rather than SCLM for the metals. 

Evidence about the major role of the SCLM in important deposits such as those of Ni, Cu 

and PGE elements (e.g., Bushveld) comes, for example, from the presence of metal 

alloys and sulphur in enriched xenoliths (e.g., Lorand and Luguet, 2016) and Re-Os 

results of sulphides in coexisting diamonds (Richardson and Shirey, 2008). Moreover, 

data from some gold deposits such as Iron-oxide copper-gold (IOCG) deposits (e.g., 
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Groves et al., 2010) suggest that a combination of a mantle-sourced metal-rich region 

with trans-lithospheric zone(s) of weakness and a tectonic/thermal trigger could be a 

SCLM-based model (Griffin et al., 2013). More recently, other authors (Tassara et al., 

2017) found native gold in mantle xenoliths from the SCLM beneath the Patagonia, 

Argentina, linking mantle refertilisation (plume-driven) with the formation of large 

auriferous provinces in the region. Another work in the same region (Tassara et al., 2020) 

demonstrated that redox gradients which oxidize melts during their ascent through the 

SCLM change such parameters as sulphur speciation and solubility that can boost the 

metal fertility of the system and thus the probability of forming large Au deposits. This 

emphasises the metallogenic significance of the SLCM not only for diamonds, but also 

for other world-class magma-related deposits, broadening the relevance of the present 

work. 

 

1.4. Background 
 

1.4.1. Diamonds: historical records and exploration projects 
 

Records from the 19th century indicated the first occurrences of diamonds in 

Brazil close to ~1720 (e.g., Barbosa, 1991), in the washings of gold mines in the 

Diamantina district, eastern Minas Gerais. A report estimated a production reaching >10 

million carats (cts) by 1850, with diamonds so abundant in the region that children could 

easily collect them in their backyards; Svisero (1995) indicated that the diamond 

production was near to 1,000,000 cts/year which was ~2% of the global production at that 

time. This favourable scenario placed Brazil as the global leader in diamond production 

for more than 150 years (see Svisero et al., 2017 for detailed historical record). In the 

Coromandel region, within the Alto Paranaíba Igneous Province (APIP) in western Minas 

Gerais, some of the most profitable deposits were recognized, with the notable discovery 

of several very large gem-quality diamonds (>50 cts; Figure 5; e.g., Svisero, 1995; 

Svisero et al., 2017) including the famous Presidente Vargas (726.6 cts), the largest from 

Brazil and one of the largest in the world, Darcy Vargas (460 ct) and Coromandel VI 

(400.7 ct). 

However, all of these findings were in secondary (alluvial) sources and the first 

potentially economic kimberlite in the APIP was discovered only years later, through the 

efforts of the company SOPEMI; the pioneer Vargem-1 diatreme described by Svisero et 
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al. (1977, 1986, 1995). Later, several other kimberlite prospects were identified along a 

corridor (Svisero et al., 1982) that was characterized by Gonzaga and Tompkins (1991) 

as the lineament of 125° Azimuth (see Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Frequency distribution of historically reported diamonds of >50 cts weight in the secondary 

sources of the APIP region and surroundings; weights are binned in 25-cts intervals. 

 

The SOPEMI works were taken over by the De Beers Group, which carried out 

an extensive exploration program in the following years, revealing hundreds of other 

kimberlites in the APIP and other provinces. Other pipes were reported by Rio Tinto, 

Brazilian Diamonds, Vaaldiam and Prospec, Five Star Diamonds and other companies, 

including the Geological Survey of Brazil (GSB-CPRM) with the Brazilian Diamond Project 

(2011-2014). This significantly increased the number of known occurrences all over the 

country, but up to the present most gem-quality diamonds mined in Brazil are from 

secondary sources such as riverbeds and conglomerates. Nonetheless, a few 

diamondiferous kimberlites have been identified so far in Brazil, but only one kimberlitic 

field (Brauna kimberlites; Donatti-Filho et al., 2013a, b) is currently operating as a mine 

with average recovery grades ~24 carats per hundred tons (cpht; Lipari Mineração Ltda). 

Other diamondiferous kimberlites in the APIP and in other kimberlite fields in the same 
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region (e.g. Canastra Highlands) are generally low to very low grade compared to 

worldwide deposits, and seem unlikely to have produced the large amounts found in 

secondary sources, nor the size of the gems. Morphological analyses showing an 

absence of mechanical transportation features in the diamonds suggest nearby primary 

sources (e.g., Kaminsky et al., 2001). According to Benitez (2009) most of the alluvial 

diamonds are above 2.1 cts and have octahedral and rhombododecahedral shapes; 

predominantly colourless to yellowish colours. There are many theories about the 

possible primary sources of these gemstones (e.g., Gonzaga et al 1994; Chaves et al., 

2008a; Pereira et al., 2007, 2021), and some such as Gonzaga and Tompkins (1991) 

argued that diamonds found in Lower Cretaceous sediments are not correlated with 

kimberlite bodies in the APIP, while others proposed alkaline-carbonatitic complexes as 

main sources (Karfunkel et al., 2015). To date, this still a matter of intense debate.  

 

1.4.2. Brazilian diamond project  
 

The economic relevance of diamond deposits, the enigmatic nature of diamond 

occurrences in Brazil, and the petrological/geochemical/geophysical challenges to 

exploration, such as deep weathering, lead the GSB-CPRM to create the Brazilian 

Diamond Project which is the basis for the development of the present work. Systematic 

field work sampling alluvium materials and hard rock of kimberlites and related rocks 

previously identified was done over 4 years to create a library and a database 

(https://www.geoportal.cprm.gov.br/diamante/) of HMIs (Cr-pyrope, chromite, olivine), 

rock samples and diamonds (Figure 6); both donations from diamond companies and 

new samples are included. Apart from the bureaucratic aims of establishing the extent of 

Brazil’s natural resources, the project was expected to improve diamond-related 

geological knowledge and evaluate the new economic opportunities for the country.  

The Project reached all regions from Brazil, over 20 mega-localities encompassing 

>400 geological maps. It was executed in three stages from data compilation and 

interpretation to the generation of new data (including geochemistry), to data integration. 

Currently, the database contains information on 1365 pipes including new discoveries of 

the Project (e.g., the Santa Fé pipes in the northeast of Brazil). In total, 1069 rock 

samples, 2160 heavy-mineral concentrates, 875 diamonds and >50 drill cores were 

recovered, and integrated with a very large dataset compiled from previous work, to 

http://www.geoportal.cprm.gov.br/diamante/
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generate several technical reports about diamond potential. These comprise the main 

features of the project that gave birth to the present work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Alluvium diamonds from the SW-SFC. Samples donated to the Brazilian Diamond Project by 

diamond exploration companies. 
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• For heavily weathered KKAC rocks, the combined use of microstructural, 

chemical and multiple techniques (major- and trace-element patterns, coexisting and 

cogenetic melts, oxygen fugacity, textures and heavy-mineral associations) is a promising 

approach to identifying parental magmas of resistate minerals.  

 

• The cross-evaluation of multiple geochronometers, isotopic systems and 

methods, combined with textural and chemical evidence, has enabled more robust age 

interpretations as it allows identification of older xenocrysts in younger magmas, which 

represent only maximum intrusion ages.  

 

• The filtering of new and published age data from the SW-SFC, using these 

principles, indicates that most KKAC rocks intruded in the period of 76-88 Ma (median = 

81 Ma). “Cryptic” kimberlite magmatism, in which early magmas stalled and froze within 

the lithosphere, may have begun as early as 110 Ma.  There is no significant difference 

in the intrusion ages of kimberlites, kamafugites and other KKAC magmas across the 

study area. 

 

• The Cretaceous lithosphere in the SW-SFC had typical cratonic model 

geotherms (37.5-42.5 mW/m2) and variable thickness (110-175 km) with short-range 

compositional variability over a large scale. The mean depth for the Base of the Depleted 

Lithosphere (BDL) is ca 140 km, ranging up to 175 km.  

 

• The evolution of the SCLM below the AZ125, at least in the SW-SFC, 

started with originally cratonic Archean mantle, which was progressively modified by 

extension, subduction-related tectonism, intense metasomatism and refertilisation 

processes, reflecting multiple episodes of infiltration by both silicate and carbonatitic 

melts. The results provide a rare picture of craton-margin lithospheric erosion during 

continental collision and later magmatism related to continental dispersal.  

 

• Relatively depleted mantle sections are found both on- and off-craton, 

confirming geophysical models showing cratonic lithosphere extending beneath the SBO, 

which has been overthrust by at least 150 km. The chemical tomography provides robust 

basis for geophysical data interpretation. 
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• The intense magmatism observed in the SCLM below the SW-SFC was 

controlled by a series of melt/fluid channels linked to lithosphere-scale discontinuities, 

especially in the Alto Paranaíba Igneous Province (APIP).  

 

• The newly characterized Tecton-lherzolite (TL) trend identified from trace-

element data indicates the physical mixing of inclusion of asthenospheric and lithospheric 

materials in extensional and/or compressional regimes.  

 

• The values of oxygen fugacity calculated for perovskites of all textural 

classes lie within the broad range of cratonic mantle and kimberlites worldwide and of 

KKAC rocks in the SW-SFC. The ƒO2 values of ΔFMQ -2 or lower from classes B and D 

perovskites probably represent the ƒO2 of parental melts derived the from the deep 

lithosphere.  

 

• Further information on ƒO2 in the SCLM of the study region required the 

development and calibration of a new oxybarometer based on V/Sc in pyrope garnets 

(V/Scgnt). V/Scgnt is largely controlled by the partitioning of V/Sc between clinopyroxene 

and garnet, which varies with the changing of valence states of V as ƒO2 decreases.  

 

• In cratonic SCLM most depleted garnets define a sharp upper limit of V/Scgnt 

at each temperature, rising with depth toward the local BDL. The Craton Reference Line 

(CRL) may represent the primordial distribution of ƒO2 in the Archean SCLM.  Reworked 

SCLM (Protons and Proton/Archons) tends to show more scattered patterns and many 

grains lying above the CRL, while Tecton localities show very coherent low V/Scgnt that is 

independent of temperature. 

 

• The V/Sc analysis of garnet populations shows that the SCLM below the 

study area is significantly more reduced at most depths than typical cratonic mantle, with 

more than half the analyses lying above the CRL. This probably reflects the introduction 

of reduced mantle-derived fluids into a thinner SCLM, with correspondingly less oxidation 

capacity.  This difference in the overall ƒO2 distribution of the SCLM may be a factor in 

producing the range of compositional differences among the KKAC magmas in the study 

region. 
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• Trends in V/Scgnt vs T also characterise different metasomatic processes. 

Phlogopite-related metasomatism, often linked to carbonatitic fluids, is more oxidizing 

than the asthenosphere-derived melt-related metasomatism; the removal of V during 

metasomatism also lowers the V/Scgnt.  

 

• The timing and placement of the SW-SFC KKAC magmas are consistent 

with a geodynamics model (Gernon et al., 2022) in which kimberlitic magmatism is driven 

by interaction between the SCLM and convective instabilities generated during the rifting 

associated with the initiation of continental breakup. The magmatism thus can be 

interpreted as a far-field effect related to the opening of the South Atlantic Ocean (ca 127 

Ma) in the last stages of Gondwana’s breakup.  

 

• These findings suggest that the alluvial diamonds of the region reflect 

secondary concentration of rare diamonds, survivors of the metasomatic processes, 

carried up in the very abundant low-grade KKAC pipes. The presence of large 

sublithospheric diamonds in the alluvial deposits can be related to the physical mixing of 

asthenospheric and lithospheric mantle proposed above. This analysis indicates that this 

region may host low-grade/high-value kimberlites, such as those in Northern Lesotho, 

requiring new exploratory frontiers to be opened. This also reveals novel pathways to 

other mineral resources linked to the SCLM, such as gold and other magmatic ores. 
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