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RESUMO 

Dias, G. M. C., 2023. Análises de incerteza para o Planejamento de Curto Prazo e Controle 

de Qualidade Aplicada às Minas de Capitão do Mato e Galinheiro - MG [Dissertação de mes-

trado], São Paulo, Instituo de Geociências, Universidade de São Paulo,73 p. 

A incorporação de análises de incertezas de teores e dos contatos geológicos por meio de 

métodos geoestatísticos não lineares é essencial para otimizar o sequenciamento da produ-

ção e gerir os riscos associados aos planos de lavra de forma mais adequada. O objetivo 

desse trabalho é investigar as aplicações de técnicas de geoestatística não linear para quan-

tificação e análise de incerteza, com foco em aplicações para o planejamento de curto prazo. 

O intuito é mensurar a incerteza geológica do depósito mineral a partir da análise da variabi-

lidade dos teores globais das principais variáveis de controle para o minério de ferro, do risco 

de contaminação e do risco de classificação errônea dos blocos previstos planos de lavra. Os 

resultados desse trabalho são apresentados na forma de dois artigos. O primeiro artigo apre-

senta o "indicador de risco geológico-operacional", o indicador é composto por dois compo-

nentes: (i) a continuidade dos teores, obtida por simulação sequencial gaussiana (SGS) para 

variabilidade do teor em relação ao limite econômico ou operacional da variável; (ii) a incer-

teza dos contatos geológicos, obtida pela variância da simulação sequencial de indicadores 

(SIS). O índice proposto é aplicado a cinco variáveis principais de um modelo de curto prazo 

da mina de ferro Capitão do Mato. Os resultados são satisfatórios e trazem grandes avanços 

na concepção de um indicador de risco geológico mais adequado para operações de médio 

e curto prazo, ajudando a prever e gerenciar as incertezas associadas aos planos de mine-

ração com antecedência. O segundo artigo foi realizado mina de ferro do Galinheiro e teve 

como objetivo aprimorar os controles destinados a gerenciar os níveis de contaminantes no 

minério de ferro, por meio de mapas de probabilidade das chances de ocorrência de cada 

contaminante de interesse em níveis superiores aos limiares críticos. Os mapas foram gera-

dos com base em dois métodos geoestatísticos que permitem a quantificação da variabilidade 

natural dos teores e da distribuição espacial das incertezas, a simulação por bandas rotativas 

(SBR) e a krigagem MultiGaussiana (KMG). A comparação entre os métodos mostrou resul-

tados semelhantes, a krigagem MultiGaussiana fornece uma alternativa direta que permite 

acessar a incerteza local e a probabilidade de exceder os limiares críticos. A análise dos 

contaminantes do minério de ferro revelou a existência de zonas e lentes com níveis poten-

cialmente elevados de contaminantes que permaneceriam não detectados em métodos tra-

dicionais, como a krigagem ordinária. As ferramentas propostas nesse trabalho se mostraram 

muito eficientes para a análise de risco associada ao controle de qualidade e planejamento 

de lavra de curto prazo. Mensurar, analisar e gerenciar a variabilidade e incerteza geológica 

é essencial para o bom funcionamento de qualquer empreendimento minerário.  
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ABSTRACT 

Dias, G. M. C., 2023. Uncertainty Analyzes for Short-Term Planning and Quality Con-

trol Applied to Capitão do Mato e Galinheiro mines – MG. [Master’s Tesis], São Paulo, 

Instituo de Geociências, Universidade de São Paulo, 73 p. 

The incorporation of uncertainties analysis of the grades content and geological contacts 

through nonlinear geostatistical methods is essential to optimize production scheduling and 

manage the risks associated with mining plans more appropriately. The objective of this work 

is to investigate the applications of nonlinear geostatistics techniques for quantification and 

uncertainty analysis, focusing on applications for short-term planning. The aim is to measure 

the geological uncertainty of the mineral deposit from the analysis of the variability of the global 

contents of the main control variables for iron ore, the risk of contamination and the risk of 

erroneous classification of the blocks provided for mining plans. The results of this work are 

presented in the form of two articles. The first article presents the “geological-operational risk 

indicator,” which comprises: (1) the uncertainty of geological contacts, determined by the var-

iance of the sequential indicator simulation; and (2) the continuity of grades, obtained by se-

quential Gaussian simulation for variability of grades in relation to the economic or operational 

limit of that variable. The proposed index is applied to five grade variables of a short-term 

model of the Capitão do Mato iron mine in Brazil. The results are satisfactory and advance the 

concept of a geological risk indicator that is appropriate for medium- and short-term opera-

tions. This novel indicator helps to predict and manage the uncertainties associated with min-

ing plans in advance. The second article was carried out in the Galinheiro Mine - QF and 

aimed to enhance the controls designed to manage contaminant levels through the develop-

ment of probability maps, in which the chances of occurrence of each contaminant of interest 

at levels greater than critical thresholds were reflected. The maps were generated based on 

two methods that allows the quantification of the natural variability of contaminant contents 

and spatial distribution uncertainties, the turning band simulation (TBS) and the MultiGaussian 

kriging (MGK). The comparison between the methods showed similar results, the MultiGauss-

ian kriging is the straightforward alternative that provides access to local uncertainty and the 

probability to exceed critical thresholds. The analysis of iron ore contaminants revealed the 

existence of zones and lenses with potentially high levels of contaminants that remained un-

detected in traditional methods such as ordinary kriging. The tools proposed in this work 

proved to be very efficient for risk analysis associated with quality control and short-term min-

ing planning.  Measuring, analyzing and managing geological variability and uncertainty is 

essential for the proper functioning of any mining company.  

Keywords: Geostatistical simulation, Iron ore, Risk index, Uncertainty, MultiGaussian kriging, 

Short-term mine planning, Quality Control.  
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1. Introdução 

A província mineral do Quadrilátero Ferrífero (QF) está localizada na porção central 

de Minas Gerais, próximo às cidades de Belo Horizonte, Brumadinho, Ouro Preto, Rio 

Acima e Caeté, com área de aproximadamente 7000 m2 (DORR, 1969), na região 

limítrofe entre o cráton do São Francisco e a faixa Araçuaí (ALMEIDA, 1977; ALKMIM, 

2004). A região representa um dos maiores distritos produtores de minério de ferro 

no mundo. As reservas estão hospedadas em Formações Ferríferas Bandadas (FFB) 

metamorfizadas, denominadas de itabiritos, pertencentes à Formação Cauê (DORR, 

1964). 

Esse trabalho com foco em Geoestatística, é realizado nas minas de Capitão do Mato 

(CMT) e de Galinheiro (GAL), localizadas no QF. Investiga-se o uso de métodos de 

geoestatística não linear para análise de incertezas associadas a estimativa dos teo-

res (Fe, Mn, Al, P e perda ao fogo – PF) e aos contatos de minério e estéril nos 

modelos geológicos. O estudo visa gerar modelos probabilísticos para incorporar a 

análise de incertezas no planejamento de mina de curto prazo. Os resultados desse 

trabalho tem como objetivo auxiliar a equipe de controle de qualidade a evidenciar 

zonas de alta variabilidade de ferro e contaminantes no minério e tornar a tomada de 

decisão a partir do modelo geológico mais assertiva, assim como os dados fornecidos 

às etapas subsequentes da cadeia produtiva.  

A avaliação de um projeto minerário é feita a partir da construção de modelos com-

putacionais tridimensionais de um depósito mineral, representando a forma dos cor-

pos mineralizados, a localização espacial e todas as características geológicas (dis-

tribuição de teores, volume, massa), geotécnicas e metalúrgicas que impactam a ex-

tração dos metais ou minerais econômicos (ABZALOV, 2016). Esse modelo deve ser 

simples e genérico o suficiente para que seja possível trabalhar com os dados – definir 

domínios, planejar a explotação, tomar decisões com base no modelo – e, ao mesmo 

tempo, preciso e acurado o suficiente para que seja representativo da realidade. Ge-

rar modelos simples, precisos e acurados, geralmente, é um grande desafio quando 

se trata de depósitos minerais, pois estes apresentam heterogeneidades naturais re-

lacionadas aos processos formadores da rocha, que dificilmente são representadas 

por um modelo simplista, aumentando a incerteza e o risco associados ao depósito. 

As técnicas de Geoestatística, quando aplicadas seguindo as recomendações de 

boas práticas, podem gerar resultados fundamentais para o planejamento de um 



 

13 
 

empreendimento mineral, evitando perdas de capital sem custos adicionais significa-

tivos (MATHERON, 1963). 

De acordo com a Sociedade de Análise de Riscos (SRA, 2015), em uma visão ampla, 

risco pode ser definido como o potencial de ocorrência de uma realização indesejada, 

as consequências negativas de um evento e/ou desvio de um valor de referência e 

as incertezas associadas. Uma vez que as incertezas nunca poderão ser diretamente 

medidas, quaisquer análises sobre elas deverão ser feitas a partir da construção de 

modelos de incertezas (CAERS, 2011). Bardossy e Fodor (2004), apontam que as 

investigações geológicas são associadas a incertezas elevadas causadas por duas 

fontes principais:  

a) Incertezas relacionadas a variabilidade natural do fenômeno geológico;  

b) Incertezas devido a imperfeições e incompetências humanas, como amostra-

gem não representativa, erros analíticos, modelos inadequados, interpretações 

enviesadas entre outras. 

 

Consequentemente, as decisões no setor mineral apresentam riscos mais altos 

quando comparados às decisões semelhantes no setor econômico ou industrial (BAR-

DOSSY; FODOR, 2004). Por isso, Abzalov (2016) indica que alto risco relacionado 

aos projetos minerários deve ser mensurado através dos riscos técnicos e financeiros, 

incluindo a quantificação da incerteza geológica na qual se deve mensurar a variabi-

lidade de teores e deletérios e quantificação dos erros de estimativas.  

Incertezas associadas à estimativas podem inviabilizar todo um empreendimento mi-

nerário, subestimando recursos produtivos ou superestimando recursos não-econô-

micos, além de induzir a erros na planta de operação e beneficiamento, que geram 

atrasos no cumprimento de metas e/ou travam a operação, acarretando prejuízos de 

milhões de dólares (YAMAMOTO, 2001). Conforme descrito por Vasylchuk e Deutsch 

(2017), o trabalho do controle de qualidade é realizar procedimentos para determinar 

a rota dos litotipos lavrados, uma vez que esses podem ser direcionados para vários 

destinos, incluindo pilhas de estocagem, pilhas de estéril, pilhas de blendagem e para 

a usina de beneficiamento e o direcionamento errôneo do material acarretará perdas 

no valor do empreendimento. Os modelos de incerteza devem expressar o desvio da 

realidade do sistema estudado, quanto maior for a complexidade do fenômeno, maior 

deverá ser a complexidade do modelo, desta forma, mais variáveis influenciarão os 
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resultados e consequentemente maiores serão as incertezas associadas (BÁR-

DOSSY; FODOR, 2004, CAERS, 2011).  

Serão aplicados nesse trabalho metodologias para quantificação da incerteza geoló-

gica visando aferir a confiabilidade da estimativa dos teores de elementos maiores 

dos depósitos de ferro estudados e identificar zonas de alta variabilidade. O objetivo 

é compreender melhor as variáveis no local de estudo através da quantificação da 

variabilidade dos teores, o que, acredita-se, possibilitará a melhor gestão do risco 

associado aos planos de lavra. A identificação das zonas de alto risco associado pos-

sibilita aos engenheiros de planejamento mitigar os impactos da variabilidade e ex-

cesso de contaminantes no minério que geram o aumento dos custos e das perdas 

operacionais. Entretanto, vale ressaltar que não é realista esperar que trabalhos desta 

natureza determinem o risco exato associado ao depósito mineral, pois as diferentes 

fontes de incertezas não podem ser definidas com precisão e exatidão e sempre res-

tará uma proporção de risco que não se pode prever (BARDOSSY; FODOR, 2004). 
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1.1 Colocação do Problema e Objetivos 

 

A variabilidade observada nos litotipos do minério é a resultante de vários processos 

modificadores da deposição original das formações ferríferas bandadas (FFB). Os 

litotipos são definidos com base em características geoquímicas e sua geometria não 

obedece a um padrão deposicional e/ou estrutural de fácil distinção.  

As grandes oscilações de teores entre diferentes fases de lavra também se caracte-

rizam como agravante, pois a média mensal torna-se pouco representativa do mate-

rial que está alimentando diariamente a usina de beneficiamento. As predições de 

qualidade do minério não consideram valores extremos devido ao efeito de suaviza-

ção de krigagem e, consequentemente, essas predições são pouco representativas 

da variabilidade real dos teores. Além disso, o indicador de risco geológico utilizado 

nas minas em que este estudo se baseia é a variância de krigagem, um método geo-

métrico determinístico que não leva em consideração a variabilidade do minério, ape-

nas a distribuição espacial das amostras. Para fins de controle de qualidade e geolo-

gia de curto prazo necessita-se determinar a incerteza geológica associada aos teo-

res estimados para os elementos principais e, com isso, determinar o risco geológico 

associado ao plano de lavra. Adicionalmente, a incerteza espacial auxilia a definir 

campanhas de amostragem otimizadas, com foco em zonas de alta variabilidade.  

Deste modo, investigar-se-á o uso das técnicas de Simulação Geoestatística (Simu-

lação Sequencial Gaussiana, Simulação Sequencial de Indicadores e Simulação por 

Bandas Rotativas) para quantificar as incertezas associadas à predição de teores. 

Além disso, esse trabalho se propõe a comparar os resultados obtidos através da 

simulação geoestatística com uma metodologia alternativa de quantificação de incer-

tezas, a krigagem MultiGaussiana. 
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1.2 Objetivos 

O objetivo desse trabalho é investigar as aplicações de técnicas de geoestatística não 

linear para quantificação e análise de incerteza, com foco em aplicações para o pla-

nejamento de curto prazo. O intuito é mensurar a incerteza geológica do depósito a 

partir da análise da variabilidade dos teores globais das principais variáveis de con-

trole para o minério de ferro, do risco de contaminação e do risco de classificação 

errônea dos blocos previstos planos de lavra. Especificamente, esse trabalho visa: 

o Definir um indicador de risco baseado na variabilidade do minério (através da 

simulação sequencial gaussiana) e nos contatos minério-estéril (através da si-

mulação sequencial de indicadores) para avaliar o risco operacional das fren-

tes de lavra. 

o Gerar mapas de probabilidade dos contaminantes excederem valores críticos, 

de acordo com as metas de qualidade do minério, através de dois métodos 

(simulação por bandas rotativas e krigagem MultiGaussiana) e comparar os 

resultados obtidos por ambos. 

 

Os resultados desse trabalho visam fornecer métricas de controle de incerteza para 

o planejamento de lavra de forma a aprimorar a reconciliação entre valores reais e 

estimados, prever o risco associado à variabilidade do minério e auxiliar nas campa-

nhas de amostragem para o planejamento de curto prazo.  
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2. Artigo I - A novel geostatistical index of uncertainty for short-

term mining plan 

G. M. Cerqueira Dias and M. Monteiro Rocha 

Institute of Geosciences - University of São Paulo, São Paulo, Brazil 

 

V. M. Silva 

Vale S. Águas Claras Mine, Nova Lima, Brazil 

giuliacerqueira@hotmail.com; +55 31 997522362 

ABSTRACT: The uncertainty associated with geostatistical estimates is as important in a 

model as the estimated value itself. Commonly, this uncertainty is accessed through different 

scenarios obtained by geostatistical simulation methods. Although the applications of geosta-

tistical simulation methods have grown significantly in recent decades in long-term modelling, 

the same improvement hasn’t occurred in medium- and short-term modelling. This study pre-

sents the “geological-operational risk indicator,” which comprises: (1) the uncertainty of geo-

logical contacts, determined by the variance of the sequential indicator simulation; and (2) the 

continuity of grades, obtained by sequential Gaussian simulation for variability of grades in 

relation to the economic or operational limit of that variable. The proposed index is applied to 

five grade variables of a short-term model of the Capitão do Mato iron mine in Brazil. The 

results are satisfactory and advance the concept of a geological risk indicator that is appro-

priate for medium- and short-term operations. This novel indicator helps to predict and man-

age the uncertainties associated with mining plans in advance. 

Keywords: Geostatistical simulation, Iron ore, Risk index, Uncertainty 

RESUMO: A incerteza associada às estimativas geoestatísticas é tão importante em um 

modelo quanto o próprio valor estimado. Comumente, essa incerteza é acessada através de 

diferentes cenários obtidos por métodos de simulação geoestatística. Embora as aplicações 

dos métodos de simulação geoestatística tenham crescido significativamente nas últimas dé-

cadas na modelagem de longo prazo, a mesmo crescimento não ocorreu na modelagem de 

médio e curto prazo. Este estudo apresenta o "indicador de risco geológico-operacional", o 

indicador é composto por dois componentes: (i) a continuidade dos teores, obtida por simu-

lação sequencial gaussiana (SGS) para variabilidade do teor em relação ao limite econômico 

ou operacional da variável; (ii) a incerteza dos contatos geológicos, obtida pela variância da 

simulação sequencial de indicadores (SIS). O índice proposto é aplicado a cinco variáveis 

principais de um modelo de curto prazo da mina de ferro Capitão do Mato. Os resultados são 

mailto:giuliacerqueira@hotmail.com
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satisfatórios e trazem grandes avanços na concepção de um indicador de risco geológico 

mais adequado para operações de médio e curto prazo, ajudando a prever e gerenciar as 

incertezas associadas aos planos de mineração com antecedência. 

Palavras-chave: incerteza, simulação geoestatística, minério de ferro, índice de 

risco 
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2.1. Introduction 

The term “uncertainty” is widely used in many fields of study, such as economics, en-

gineering, and geology. Uncertainty involves imperfect or unknown information about 

the study target. In the mining industry, the main source of uncertainty is imperfect 

information regarding the actual variability in geological behavior, which is commonly 

assessed as the difference between the modelled and observed behavior of the vari-

ables of interest. This difference may be due to a lack of sufficient data, sampling and 

analytical errors, and imperfect understanding of geological behavior, among others. 

Geological models and their related uncertainties directly affect decision mak-

ing in the mining industry. Therefore, the mining industry generally needs to manage 

more associated risks than other industries because of the high uncertainty of the ge-

ological modelling and the ore body itself (Bárdossy & Fodor, 2004; Snowden, Glacken 

& Noppé, 2002). The chances of success of mining scheduling and operational plans 

are proportional to the correct quantification and management of the uncertainty of the 

mineral content of interest and of deleterious elements.  

Beginning in the early 1970s, methodologies to quantify and manage geological 

uncertainty and its impact on mining operations and decision making were developed, 

including the application of the stochastic simulation methods to spatially correlated 

data, that is, modelling spatial uncertainty by generating multiple realizations of the 

joint distribution of attribute values in space (Goovaerts, 1997). Methods of stochastic 

simulation conditioned by available data and parameters are considered the best at 

quantifying uncertainty in geological modelling for the mining industry, and could be 

used in mineral resource classification (Snowden, 1996). The generation of conditional 

realizations was introduced by Journel (1974) based on: 1) drawing equiprobable re-

alizations conditioned to the data, 2) globally reproducing the random-function param-

eters to honor the locally available data in terms of spatial variability, and 3) and 
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histogram distribution. The measured uncertainty is proportional to the variability be-

tween these realizations (Goovaerts, 1997; Journel & Huijbregts, 1978; Rossi & 

Deutsch, 2014). 

The use of geostatistical simulation methods to quantify uncertainties and clas-

sify mineral resources has significantly increased in recent decades and is becoming 

commonplace (Deutsch, 2018). Although simulation should be a standard method to 

quantify uncertainties, the industry still struggles with managing multiple realizations 

of a variable. The application of simulation methods to uncertainty assessment in me-

dium- (quarterly, annual, bi-annual) and short-term (daily, weekly, monthly) mine plan-

ning is even more restricted. Concerns primarily center on high computational require-

ments for models that need to be frequently updated, the non-uniqueness of multiple 

realizations, and the high number of calculations, including mine planning algorithms, 

within a single block model (Deutsch, 2018). Another limit to widespread use of simu-

lations is the availability of software used to implement them. Different algorithms 

could be written to produce simulations from a given model, but they are not equally 

efficient. The implementation of certain algorithms may lead to inefficient programs, 

especially in terms of numerical precision, speed, and memory (Lantuéjoul, 2002). 

In the twenty-first century, computational limitations have been overcome, and 

computer performance has improved by a factor of 1.7–76 trillion compared to manual 

computing (Nordhaus, 2007). The ability to use multiple cores and graphics processing 

units means that it is not necessary to compromise on complexity to consider all real-

izations in downstream calculations, that is, pass all realizations through a transfer 

function to construct a distribution of responses for resource estimates (Deutsch, 

2018). However, working with multiples scenarios remains a shortcoming in the indus-

try. Simple summary models could be useful, such as the modelling the probability of 

meeting an economic threshold or modelling the local variance. For example, the 
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realizations could be passed through a decision tree structure to help support a deci-

sion. Another approach is to collapse uncertainty into a few summary measures and 

base plan on them. These approaches will never be as good as using all the realiza-

tions simultaneously but they provide a practical solution using available software 

(Deutsch, 2018). Based on these concerns, geostatistical simulations are commonly 

overlooked in real mining-industry applications (Dominy, Noppé & Annels, 2002; Ortiz, 

Magri & Libano, 2012; Verly, 2005; Yamamoto, 2001).  

Analysis or decision-making will be suboptimal if the uncertainty inherent to any 

geological model is ignored. Therefore, many kriging-based methods were developed 

as more convenient and easy-to-implement uncertainty assessment methods (Arik, 

1999; Deutsch, Szymanski & Deutsch, 2014; Miguel-Silva, 2021; Ribeiro et al., 2010). 

Uncertainty analysis using kriging quality metrics involves the same assumptions as 

kriging estimation, making the best linear unbiased estimate, minimizing the local error 

variance, and setting the mathematical expectation of the error to zero. This method-

ology results in a smoothed interpolation, which is a serious deficiency if the goal is to 

detect extreme values and highlight the variability of the attribute (Goovaerts, 1997). 

Another drawback of kriging is that the smoothing is not uniform, which may produces 

artifact structures: it is minimal close to the data locations and increases with distance 

from the sample (Goovaerts 1997).  

Considering the limitations of kriging-based methods to measure uncertainty 

and the rapid evolution of computational performance, this paper proposes to compare 

the geostatistical risk index (RI) proposed by Ribeiro et al. (2010) to a full simulation-

based approach. The method, called the Operational-geostatistical Risk Index (ORI), 

is composed of two components. The first component is the spatial continuity of the 

modelled geological domains, such as packages of rocks with similar properties. It is 

obtained by sequential indicator simulation (SIS; Isaaks, 1983). The second is the 
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variability of the grades of interest and their chance of being above or below defined 

threshold values based on cutoff grades or operational constraints. It is obtained by 

sequential Gaussian simulation (SGS; Isaaks, 1990; Deutsch & Journel, 1997). 

The primary purpose of this paper is to propose the ORI for short-term mining 

planning. First, the literature is reviewed in terms of the RI and the SIS and SGS geo-

statistical simulation methods. Next, the fundamentals of the ORI are presented. Fi-

nally, the proposed approach is tested for a real mining deposit, the Capitão do Mato 

mine in Brazil.  
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2.2. Literature review 

2.2.1. The RI 

The RI proposed by Ribeiro et al. (2010) is a kriging-based method to support mineral 

resource classification. The index combines the estimation error through a kriging var-

iance and geological continuity through an indicator kriging approach. This method 

was developed to mineral resource classification at Vale Ferrous (Ribeiro et al., 2010). 

The RI has been applied to risk analysis of a gold deposit (Gomes, 2021) and to adapt 

the equation incorporating the specific volume to reduce the effect of block size 

(Rivoirard, et al., 2017). 

The RI is performed at each kriged node or block (𝑥0). The kriging variance 

(𝑆𝐼𝐾
2 ) and the kriged indicator (𝐼𝐾) are merged through equation 1: 

𝑅𝐼 (𝑥0) =  √[1 −  𝐼𝐾(𝑥0)]2 +  [𝑆𝐼𝐾
2 (𝑥0)]2                                (1) 

𝑆𝐼𝐾
2  is a geometric index that depends on the variogram model used and the 

spatial data configuration—two excellent features to assess risk estimates. It is pro-

portional to the number of samples in the neighborhood of the estimated block or node. 

Spatial continuity anisotropy will affect the variability distribution of the estimated 

grades: the variability is higher in the lower continuity direction. The uncertainty also 

increases where there are too few samples to properly estimate grades. However, 𝑆𝐼𝐾
2  

is independent of data values—a harmful feature because the areas surrounded by 

data with high or low variability have the same 𝑆𝐼𝐾
2  (Figure 1). Thus, 𝑆𝐼𝐾

2  will only reflect 

the variogram model anisotropy and the data spatial distribution. Therefore, we con-

sider 𝑆𝐼𝐾
2  a good summary of the spatial configuration given the modelled variogram 

structural distance (Goovaerts, 1997) but a poorly indicator of data variability. 

𝐼𝐾 handles transformed data within a chosen stationary domain (Journel, 1983). 

Observations are coded as 1 if their values are above a given threshold grade; other-

wise, they are assigned 0. The estimated indicators can be interpreted as the 
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probability or proportion of each point belonging to each class (1 or 0). It is worth noting 

that 𝐼𝐾 estimates depend on indicator variability but are not influenced much by data 

spacing (Figure 2). 

 

Figure 1 – Estimation of blocks from the same data configuration. The Kriging Variance of A 

and B is the same due to its independence to data values (Armstrong, 1998). 

 

Figure 2 – Estimation of blocks from the same indicator values. See that in A the estimation is 

the same of B, regardless of the increasing distance between data and kriged node (Miguel-

Silva, 2021). 

Thus, RI is represented by a two-dimensional graph, where the results between 

geological continuity (1 −  𝐼𝐾) and variability (𝑆𝐼𝐾
2 ) are related to each other (Figure 3). 

The proposed ORI overcomes the limitations of the RI in terms of assessing geological 

uncertainty, that is, 𝑆𝐼𝐾
2  does not properly represent the data variability, and 𝐼𝐾   is only 

weakly influenced by data spacing.  
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Figure 3 – Mineral resource classification based on sectorization of the Risk Index based on 

its kriging variance (y-axis) and geological continuity (x-axis) component (Ribeiro et al., 2010).  
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2.2.2. Geostatistical simulation – SIS and SGS 

The regionalized variable of interest, z(𝑥0), may be assumed as a realization of the 

random variable function, Z(𝑥0). Z(𝑥0) is characterized by a cumulative distribution 

function and a covariogram or variogram model that controls z(𝑥0). The conditional 

simulations may draw other realizations, 𝑧𝑙(𝑥0), of Z(𝑥0). The realization 𝑧𝑙(𝑥0) will 

honor the sampled values at locations Xi and each realization must honor the same 

variogram model and histogram as the original input data. The simulated and data-

sampled realization will thus be equiprobable and can be viewed as two possible var-

iants of the same geological process from Z(𝑥0). The simulated realization, however, 

is known at all simulated nodes and not only at the data points Xi as the data-sampled 

realization (Journel & Huijbregts, 1978). 

Evaluating uncertainty is required as best practice in mineral resource estima-

tion. Uncertainties in any of the criteria that could lead to under- or over-statement of 

Mineral Resources should be disclosed (JORC, 2012). The JORC code also states 

that the choice of the appropriate category of Ore Reserve is determined primarily by 

the relevant level of confidence in the mineral resource and after considering any un-

certainties in modifying factors. Therefore, methods of geostatistical simulation are 

starting to be more widely accepted and implemented in the last decades to quantify 

uncertainty and classify mineral resources. Conditional simulation is an ideal tool for 

uncertainty and risk assessment: the risk and uncertainty may be determined as a 

probability distribution assembled from the drawn realizations (Emery, Ortiz & 

Rodríguez, 2006). The simulated nodes may be averaged into blocks or production 

areas of any shape to assess their uncertainty. 

The sequential simulation approach is a generalization of the conditioning idea. 

It is extended to include all data available in the neighborhood, including the original 

samples and previously simulated values (Deutsch & Journel, 1997). SGS and SIS 
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are the most widely used methods for sequential simulation ( Deutsch & Journel 1997; 

Goovaerts 1997; Isaaks 1983, 1990). In both algorithms, a random path is defined to 

visit all nodes to be simulated. A value randomly drawn from the conditional distribution 

is then used as conditioning data for the next node to be visited.  

In SIS, indicator kriging (Journel, 1983) is used to sequentially characterize the 

conditional distribution at each node to be simulated. The indicator simulation algo-

rithm is a nonparametric method originally designed for categorical variables where 

the Gaussian random function model is inappropriate. The method was later extended 

to continuous variables, for example, a continuous variable discretized over K classes, 

where Ik = 1 if the category k above a given threshold occurs at 𝑥0, otherwise Ik = 0 

(Journel, 1983; Goovaerts, 1997). 

In SGS, the distribution at each node to be estimated is fully characterized by 

its conditional mean and variance given by simple kriging. The method relies on the 

multi-Gaussian property in which a Gaussian random function is fully characterized by 

its mean vector and covariance matrix. In general, experimental data are not Gauss-

ian. Therefore, the original data may need to be transformed into a Gaussian distribu-

tion, usually by normal score transformation (Deutsch & Journel, 1997). The simulated 

nodes are then back-transformed to their original units. 
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2.3. The ORI 

 

In the ORI, the geological uncertainty is evaluated by taking into account model-based 

operational decisions, such as classifying a block as ore or waste or defining an infill-

drilling campaign based on areas of higher uncertainty. Similar to the RI, ORI is based 

on combining two components. First, SIS generates several realizations of the do-

mains of interest to define the variability in each node of the category k that it belongs 

to. Second, considering the random function properties of each node and its category 

k, SGS is used to draw realizations of the variables of interest. In this way, the output 

considers the uncertainty associated with the distribution of rocks and/or domains and 

then the uncertainty of the grades within each domain. Thus, the uncertainty of the 

variables or grades of interest within each geostatistical domain are modelled by SGS, 

while the geological continuity of those domains are modelled through SIS. The do-

mains may be based on rock type, ore /waste packages, or other criteria. 

The local uncertainty on a point is assessed by the probability of this point ex-

ceeding a defined threshold value in several realizations (equation 2):  

𝑃𝑟𝑜𝑏[𝑧𝑙(𝑥0) ≤ 𝑧𝑐] =  
𝑛(𝑥0)

𝐿
                                           (2) 

where 𝑧𝑙(𝑥0) is the simulated value at point 𝑥0, 𝑧𝑐 represents the defined threshold 

value, 𝑛(𝑥0) is the number of realizations in which the variable exceeded 𝑧𝑐, and L is 

the total number of realizations. 

The threshold value is established for each variable of interest based on criteria 

that influence the block classification or geological domains. For each block, values 

are assigned for the quantiles of 5% (Q05) and 95% (Q95) and the average of all 

realizations. Then, the simulation uncertainty is calculated confining 90% of distribu-

tion (𝐼𝐶90%) in each block for each variable (equation 3): 

𝐼𝐶90% =
𝑄95−𝑄05 

2×𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛
                                          (3) 
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Often, more than one variable affects operational risk. Thus, the 𝐼𝐶90% values 

of all variables need to be combined to assess the total uncertainty. Auxiliary variables 

define which variables from each block will be considered in the ORI equation. If the 

block has a high probability (> 50%) of exceeding the threshold, its auxiliary variable 

is associated with 1; otherwise, it is associated with 0. Then, the accumulated simula-

tion uncertainty calculated at 90% confidence (𝐼𝐶𝑎𝑐) is calculated (equation 4): 

𝐼𝐶𝑎𝑐 =  
(𝐴𝑢𝑥𝑥×𝐼𝐶𝑥)+(𝐴𝑢𝑥𝑦×𝐼𝐶𝑦)+(𝐴𝑢𝑥𝑧×𝐼𝐶𝑧)

  (𝐴𝑢𝑥𝑥+𝐴𝑢𝑥𝑦+𝐴𝑢𝑥𝑧)
                                 (4) 

where 𝐼𝐶𝑖, 𝐼𝐶𝑗, and 𝐼𝐶𝑘 are the simulation uncertainty calculated at 90% confidence for 

variables i, j, and k, respectively, and 𝐴𝑢𝑥𝑖, 𝐴𝑢𝑥𝑗, and 𝐴𝑢𝑥𝑘 are their auxiliary variables 

(0 or 1), respectively. The auxiliary variables are coded as 1 if z(𝑥0) is greater than a 

defined cutoff or threshold. 

The geological continuity of the domains is modelled through SIS, and variabil-

ity is incorporated on the ORI equation through the simulation variance between the 

domain classification (𝑉𝑎𝑟𝑠𝑖𝑠). After simulating the grade and indicator uncertainty, ORI 

is computed through (equation 5). The higher the variance within the drawn realization, 

the higher the uncertainty associated to the block and the higher the associated risks.  

𝑂𝑅𝐼(𝑥0) = √[ 𝑉𝑎𝑟𝑠𝑖𝑠(𝑥0)]2 +  [𝐼𝐶𝐴𝐶(𝑥0) ]2                                (5) 

where 𝑉𝑎𝑟𝑠𝑖𝑠(𝑥0) is the variance within SIS realizations. It evaluates the uncertainty in 

which the simulated node 𝑥0 belongs to the geological domain. The component  

𝐼𝐶𝐴𝐶(𝑥0) is the accumulated simulation uncertainty of the variables of interest at 90% 

confidence of exceed a defined cutoff or threshold. 
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2.3. Case study 

2.3.1. Geological background 

The case study compares the RI and ORI in a real iron ore deposit owned by Vale. 

The Capitão do Mato mine is located in the Quadrilátero Ferrífero, Brazil (Figure 4). 

The deposits comprise metamorphosed banded iron formations hosted in itabirites. 

The Quadrilátero Ferrífero is considered one of the most important sources of iron ore 

to the global market with several world-class iron ore deposits. It consists of sedimen-

tary rocks, such as conglomerates, quartizites, and phylites from the Minas Super-

group overlain by marine sedimentary rocks, banded iron formations, and carbonates 

from the Itabira Group (Dorr, 1969). Intrusive bodies and an iron-rich duricrust (canga) 

are also present crossing and covering the stratigraphy, respectively. The iron-ore de-

posits resulted from 1) weathering of itabirite rocks, which formed friable contaminated 

ores (soft ore), and 2) hydrothermal overprint of the itabirite, which formed compact 

hematite (hard ore) (Hensler et al., 2015).  

At Capitão do Mato mine, iron-ore mineralization is described based on miner-

alogical and chemical compositions, resulting in 10 ore types: friable itabirite, high-

grade friable itabirite, compact itabirite, goethite itabirite, aluminous itabirite, manganif-

erous itabirite, goethite-aluminous–hematite, compact hematite, friable hematite, and 

canga. There are also five waste lithotypes: intrusive rocks, phyllite, dolomite, dolo-

mitic phyllite, and laterite.  
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Figure 4 - Simplified geological map of the Quadrilátero Ferrífero, modified from Dorr et al. 

(1969), showing the location of the study area, Capitão do Mato mine. Inset abbreviation: BIF 

= Banded Iron Formation; MG = Minas Gerais State. 
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2.3.2. Operational aspects 

 

In the Capitão do Mato mine, six ore variables are monitored daily: Fe2O3, SiO2, Al2O3, 

P2O5, and MnO2 content and loss on ignition. Although SiO2 content is monitored, it 

was disregarded because it has a strong negative correlation with Fe2O3. Iron is the 

main ore product. Keeping contaminants below the values negotiated on the global 

market is essential and a challenge for quality control. Iron formations outside the re-

quirements in Table 1, and other lithologies are classified as waste. There is a greater 

tolerance in the acceptable limits of each grade to classify the block as ore or marginal 

ore because the monthly run-of-mine (ROM) comprises several blended blocks. How-

ever, in the daily ROM for feeding the beneficiation plants, the acceptable contents 

are more restrictive. 

Table 1. Destination classification key for iron formations at Capitão do Mato mine (%); ROM: 

run-of-mine 

Classification  Fe2O3 Al2O3 P2O5 MnO2 Loss on ignition 

Ore ≥37 ≤ 6 - ≤2 ≤ 6 

Marginal ore ≥32 > 6 - >2 > 6 

Avg. ROM feed >40 <1.5 <0.09 <0.15 <2 
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2.3.3. ORI Implementation 

 

To implement ORI in this case study, 30 scenarios were simulated for each compo-

nent.  

The component simulated by SIS (𝑉𝑎𝑟𝑠𝑖𝑠(𝑥0)) was obtained from the simulation of the 

destination classification indicator according to Table 1. For each block, there were 

three possible destination classifications (ore, marginal ore, and waste) in each reali-

zation. Each component was simulated independently by its indicator variable. The 

most probable destination classification was assigned to each block in each realization 

according to the simulated classification indicator. Then, the categorical variables were 

transformed to a numerical variable to calculate the variance from the realizations re-

sults: ore was assigned 1, marginal ore 0.5, and waste 0. The variance between the 

realizations represents the destination classification uncertainty. 

For the SGS component (𝐼𝐶𝐴𝐶), the five variables in Table 1 were simulated. The grade 

contents were combined according to equation 6: 

𝐼𝐶𝑎𝑐 =  
𝐼𝐶𝐹𝑒+(𝐴𝑢𝑥𝐴𝑙×𝐼𝐶𝐴𝑙)+(𝐴𝑢𝑥𝑃×𝐼𝐶𝑃)+(𝐴𝑢𝑥𝑀𝑛×𝐼𝐶𝑀𝑛)+(𝐴𝑢𝑥𝐿𝑂𝐼×𝐼𝐶𝐿𝑂𝐼)

  (𝐴𝑢𝑥𝐹𝑒+𝐴𝑢𝑥𝐴𝑙+𝐴𝑢𝑥𝑃+𝐴𝑢𝑥𝑀𝑛+𝐴𝑢𝑥𝐿𝑂𝐼)
             (6) 

where 𝐼𝐶𝐹𝑒, 𝐼𝐶𝐴𝑙, 𝐼𝐶𝑃, 𝐼𝐶𝑀𝑛, and 𝐼𝐶𝐿𝑂𝐼 are the simulation uncertainty calculated at 90% 

confidence for Fe2O3, Al2O3, P2O5, MnO2 and LOI, respectively, and 𝐴𝑢𝑥𝐹𝑒, 𝐴𝑢𝑥𝐴𝑙, 

𝐴𝑢𝑥𝑃, 𝐴𝑢𝑥𝑀𝑛 and 𝐴𝑢𝑥𝐿𝑂𝐼 are their indicator auxiliary variables, respectively, in terms 

of the probability of exceeding the thresholds. Each indicator auxiliary variable is de-

fined as 1 when the chances of the respective study variable exceeding the critical 

thresholds of beneficiation plant quality specifications are > 50%; otherwise, it is de-

fined as 0. 
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2.4. Results and discussion 

 

It is possible to distinguish two sectors in the mine. In the eastern sector, itabirite and 

hematite predominate with little contamination and higher grades and are mainly clas-

sified as ore (Figure 5a). The southern sector, on the other hand, has a greater varia-

bility of ore lithotypes, predominantly contaminated materials, such as canga, goethitic 

and aluminous itabirites, and low-grade itabirites. We can expect from this visual anal-

ysis that the southern sector will present more associated operational risks due to the 

predominance of lower grade and contaminated rocks. Considering the intrusive 

(waste) rocks as a physical boundary between the two sectors, and the materials clas-

sification as ore, marginal ore, and waste (Figure 5b), it can be stated that the eastern 

sector is dominated by blocks classified as ore while southern sector predominates 

marginal ore. 

The borehole sampling mesh is sufficiently regular enough and covers the area, 

with a few gaps in the mesh at the bottom of the eastern sector and southwest portion 

of the southern sector (Figure 6). 

The kriging variance is the first component of the RI (equation 1). The kriging 

variance and areas with lower risk have the same preferential orientation as the sam-

ples (N26°E), suggesting that this could be an artifact of the data spacing (Figure 7a). 

The probability of the block to be ore, computed through indicator kriging, is the second 

component of the RI. Approximately 70% of the blocks are classified as ore (Figure 

7b). The probabilities to be ore for blocks that are near barren lithotypes samples are 

close to zero; they are classified as waste. A “halo” of blocks with intermediate values 

can be observed around these blocks. Combining the variables in Figures 7a and 7b 

yields the RI (Figure 7c). Its behavior is strongly influenced by the sampling design 
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and does not adequately represent the grade variability and lithotypes observed in the 

area. 

 

Figure 5 – Distribution of the proposed ore for annual mining plan at the Capitão do Mato mine, 

shown as lithotypes distribution (a) and block classification distribution (b). As the boundary 

between the eastern and the southern region isn’t visually easy to define, we could consider 

the intrusive rocks (brown color) as a physical boundary between them. 
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Figure 6 – Sample distribution (10 m from topography) at the Capitão do Mato mine.  

 

The spatial distribution and uncertainty of the block destination classification 

obtained by the variance of the SIS realizations (Figure 8a) is correlated with geolog-

ical continuity. Elevated values indicate the probability of misclassification of the block 

is high and vice versa. The high SIS variance values (red) are correlated with the 

boundary regions observed at Figure 5b. The second component of the ORI, the grade 

variability obtained by SGS, highlights those regions with a high probability of exceed-

ing critical thresholds (Figure 8b). This component numerically quantifies the phenom-

ena described by the visual analysis of the lithotypes and block classification. The 

southern region has high grade variability because there are more contaminants and 

diffuse contact relationships between the ore and marginal ore classifications. In con-

trast, the east region has low grade variability since there is less lithotype variability 

and less contamination.   

The ORI is obtained by a quadratic equation of the spatial continuity and grade 

variability components. It allows the practitioner to distinguish between two sectors 

with different geological impacts during mining operations at Capitão do Mato mine. In 
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the east region, there are high risk values near the contact with the barren lithotypes 

(intrusive rocks and phyllite) because this contact is transitional (Figure 8c). Losses by 

dilution in iron content and contamination by Al2O3 commonly occur. In the southern 

region, the high risk values are more comprehensive since there are several lenses of 

marginal ore and waste among the blocks classified as ore as well as contaminated 

ores that present high values of Al2O3, P2O5, MnO2, or loss on ignition.  

The proposed use of ORI to replace the RI presents advantages with respect 

to the assessment of the actual geological uncertainty of the deposit. The RI exhibited 

a strong correlation with the sampling spatial distribution, indicating areas of high risk 

where there is no sampling or close to the limits between ore and waste blocks. Alt-

hough the lack of sampling is, in general, a source of risk, the quantification of risk 

during mining should not be based only on number of samples or proximity to waste 

blocks, for two reasons (Figures 6 and 8c). 1) Some regions as the south/central area 

have a dense sampling grid and still present operational problems due to the great 

variability of lithotypes and contents. Consequently, a high risk is associated with the 

natural variability of the deposit in that region. 2) The uncertainty levels may be ac-

ceptable even in the presence of sparser samples in regions lacking high grade vari-

ability or transitions within lithotypes, as was observed in the lower east region. 

Furthermore, the classification of the block as waste should not in itself be 

treated as a risk. If the block is classified as waste but has greater reliability in classi-

fication and estimated value, it is not a high risk. What should be incorporated as a 

risk factor is the low reliability in the classification of the block. If there is an ore block 

with low reliability of classification, this equates to a high risk: there is a high chance 

of misclassification. 
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Figure 5 – Spatial distribution and histograms of the components of the risk index (RI), Kriging 

Variance (a), Ore Indicator (Ore = 1, Marginal Ore = 0.5 and Waste = 0) (b) and the risk index 

(c).  
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Figure 6 – Spatial distribution and histograms of the components of the operational-geological 

risk index, geological continuity (a), grade variability (b) and the ORI (c).  

2.5. Conclusions 

Although geostatistical simulation is currently used for resource classification, in the 
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short-term routines of the mineral industry, its applications are very limited. Within this 

context, incorporating uncertainty of grade and geological contacts through simulation 

methods advances the concept of a more appropriate geological operational risk in-

dex. The management of risks related to geological uncertainty in the short term can 

minimize incorrect decisions and consequently, financial losses that can reduce a 

mine’s profit and productivity. In general, such gains are far greater than the expenses 

associated with the additional time and increased computational demands required by 

simulation methods. 

The ORI summarizes the variability of ore content and the reliability of the block 

classification. It provides essential information for mine planning engineers to incorpo-

rate uncertainties into the mine schedule. Short-term planners could use the ORI to 

make better decisions during mine planning in several ways. 1) Blocks that presents 

high ORI values could be downgraded in the ore classification. 2) Blocks that are clas-

sified as ore but present high ORI values could be destined for blending stockpiles. 3) 

The sampling mesh could be optimized using the ORI values: regions with high ORI 

values could be sampled with a dense mesh while regions with low ORI values could 

be sampled with a sparse mesh. 4) The mine plan with uncertainties within operational 

tolerance could be achieved by combining areas with high and low ORI values. 

This work explores a preliminary application of the ORI. However, there is room 

for improvement and further investigation. Future studies should review how the two 

components (SIS and SGS) are combined. The geometric method of joining geological 

continuity (𝑉𝑎𝑟𝑠𝑖𝑠) and grade variability (𝐼𝐶𝑎𝑐) could be investigated to understand the 

relative contribution of each variable to the overall risk. In this study, the contaminants 

in the 𝐼𝐶𝑎𝑐 were given equal weight. Future studies could weight variables based on 

their impact on an economic factor (e.g., impact of a given contaminant on the final 

price of ore). The uncertainty related to geological continuity could be improved 
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through analysis of geological boundary variability by comparing different modelling 

techniques such SIS versus implicit modelling. Finally, although the ORI was created 

with a focus on short-term mine planning, it could be incorporated into the resource 

classification framework to better predict uncertainties related to mineral resources.  
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ABSTRACT: Iron ore is the main mineral commodity produced in Brazil, and the Quad-

rilátero Ferrífero (QF) ranks among the largest iron-producing regions of the world. For 

almost the entire 20th century and into the early 21st century, Brazilian iron ore has 

been known for its high iron content. However, dwindling high-grade iron ore reserves 

have pushed mining companies into exploring ores with lower iron and higher contam-

inant contents. For this reason, quality control of iron ore in mining operations has 

become an essential element in managing contaminant levels and ensuring compli-

ance with international market requirements, since elements such as alumina and 

manganese directly affect steelmaking processes and the final properties of steel prod-

ucts. This study was carried out in the Galinheiro Mine - QF and aimed to enhance the 

controls designed to manage contaminant levels through the development of probabil-

ity maps, in which the chances of occurrence of each contaminant of interest at levels 

greater than critical thresholds were reflected. The maps were generated based on 

two methods that allows the quantification of the natural variability of contaminant con-

tents and spatial distribution uncertainties, the turning band simulation (TBS) and the 

MultiGaussian kriging (MGK). The comparison between the methods showed similar 

results, the MultiGaussian kriging is the straightforward alternative that provides ac-

cess to local uncertainty and the probability to exceed critical thresholds. The analysis 

of iron ore contaminants revealed the existence of zones and lenses with potentially 

high levels of contaminants that remained undetected in traditional methods such as 

ordinary kriging. The findings derived from this study will help quality control and short-

term planning teams make better, more informed decisions. 

Key-words: Turning Bands Simulation, MultiGaussian kriging, Iron Ore, BIF, Short-

term mine planning, Quality Control. 

 

RESUMO: O minério de ferro é a principal commodity mineral produzida no Brasil, e 

o Quadrilátero Ferrífero (QF) está entre as maiores regiões produtoras de ferro do 
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mundo. Por quase todo o século 20 e no início do século 21, o minério de ferro brasi-

leiro tem sido conhecido por seu alto teor de ferro. No entanto, a redução das reservas 

de minério de ferro de alta qualidade levou as empresas de mineração a explorar 

minérios com teor de ferro mais baixos e teores mais altos de contaminantes. Por essa 

razão, o controle de qualidade do minério de ferro nas operações de mineração tor-

nou-se um elemento essencial na gestão dos níveis de contaminantes e na garantia 

do cumprimento dos requisitos do mercado internacional, uma vez que elementos 

como alumina e manganês afetam diretamente os processos siderúrgicos e as propri-

edades finais do aço. Este estudo foi realizado na Mina do Galinheiro - QF e teve 

como objetivo aprimorar os controles destinados a gerenciar os níveis de contaminan-

tes no minério, por meio de mapas de probabilidade das chances de ocorrência de 

cada contaminante de interesse em níveis superiores aos limiares críticos. Os mapas 

foram gerados com base em dois métodos geoestatísticos que permitem a quantifica-

ção da variabilidade natural dos teores e da distribuição espacial das incertezas, a 

simulação por bandas rotativas (SBR) e a krigagem MultiGaussiana (KMG). A com-

paração entre os métodos mostrou resultados semelhantes, a krigagem MultiGaussi-

ana fornece uma alternativa direta que fornece acesso à incerteza local e a probabili-

dade de exceder os limiares críticos. A análise dos contaminantes do minério de ferro 

revelou a existência de zonas e lentes com níveis potencialmente elevados de conta-

minantes que permaneceriam não detectados em métodos tradicionais, como a kriga-

gem ordinária. Os resultados derivados deste estudo ajudarão as equipes de controle 

de qualidade e planejamento de curto prazo a tomar decisões assertivas. 

Palavras-chave: Simulação por Bandas Rotativas, Krigagem MultiGaussiana, Minério 

de Ferro, BIF, Planejamento de Mina de Curto Prazo, Controle de Qualidade 
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3.1. Introduction 

 

Located in Southeastern Brazil, the Quadrilátero Ferrífero (QF) is one of the largest 

banded iron formations (BIFs) of the world (Figure 1). In 2020, Brazil ranked second 

in the world as the nation produced about 400 million tons of iron ore, backed up by 

reserves estimated at 34 billion tons (USGS, 2020). The chemical composition of iron 

ore and its concentrates varies substantially, particularly in regard to the contents of 

Fe (56 – 67%) and key contaminants SiO2 (0.6 – 5.7%), Al2O3 (0.6–3.7%), Mn (0.03 – 

0.8%), and P (0.015 – 0.154) (Clout; Manuel, 2015). A trend towards declining iron ore 

grades has been observed in recent years, which pushed mining companies into ex-

ploring ores with lower iron and higher contaminant contents (Lu et al., 2007; Clout; 

Manuel, 2015).  

Managing contaminant levels in iron deposits is a fundamental element in controlling 

the quality of end products and optimizing the profitability of a mining operation, since 

contaminants adversely affect steelmaking processes and decrease the prices paid 

for iron ore in the international market. Slight increases in the content of alumina in 

sinter feed may lead to significant impacts in characteristics such as strength and re-

duction degradation index, causing the deterioration of gas permeability in the upper 

portion of the blast furnace (Lu et al., 2007). Although present in some types of steel, 

manganese in extremely high contents increases the need for dilution through blend-

ing with cleaner materials to preserve the expected properties of the desired steel 

products (Clout; Manuel, 2015). 

Therefore, production targets set based on iron ore quality and quantity are essential 

for the success of mining operations. However, the natural variability of iron ore grades 

and spatial distribution uncertainties may cause deviations in production and financial 

losses (Benndorf; Dimitrakopoulos, 2018). Estimation of local recoveries such as ton-

nage and ore grade in a selective mining operation is a challenging geostatistical prob-

lem, it is necessary to calculating local probability distributions where the distributions 

are conditioned to a local data environment (Verly, 1983). This study compares two 

different methodologies used to uncertainty quantification of a spatially distributed var-

iable, in this case, the contents of contaminants Al2O3 and MnO2 in the Galinheiro Iron 

Ore Mine. The first method is the Turning Bands Simulation (TBS), a commonly used 

simulation method and the second method is the MultiGaussian Kriging (MGK), a flex-

ible alternative to simulation. Both methods allowed the development of probability 
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maps, in which the chances of occurrence of each target contaminant at levels greater 

than critical thresholds are reflected.  

 

Figure 1: Plot Plan of Quadrilátero Ferrífero and location of Galinheiro and Sapecado Mines 
– M.G, adapted from Dorr et al. (1969). Approximated study area delineated in red.  
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3.2. Literature review 

 

The turning bands simulation is a commonly used method of simulation proposed by 

G. Matheron (1973) and developed by Journel (1974). The method generates a series 

of one-dimensional independent simulations along lines (which could be rotated in 3-

D space) to performs simulations in a multi-dimensional space (Chilès; Delfiner, 1999). 

TBS is based on a decomposition of the random function defined by a variogram. The 

width of the bands is proportional to the range of the variogram, but its rotation and its 

"rhythm" are random. Simulations are performed using a gaussian distribution, and 

they reproduce the covariance from the gaussian data and original data after the back-

transformation. A post processing is required to conditioning the unconditional simu-

lation realizations through kriging residuals between input data and non-conditional 

simulation (Journel; Huijbregts, 1978) (Figure 2). The methodology implementation 

consists the following steps: 1) The spatially distributed are declustered and trans-

formed to normal score values distribution; 2) Variogram calculation and modelling of 

the normal values; 3) Unconditional simulation in Gaussian units, with the experi-

mental histogram reproduced by transformation and the covariance or variogram from 

the data being also reproduced; 4) Condition the turning bands simulation through a 

post-processing using kriging; 5) Backtransformation of the gaussian simulated values 

to the original units of the variable.  

MultiGaussian kriging applies simple kriging to a Gaussian or normal transformation 

of the original sample data to amounts the conditional distribution of uncertainty, that 

is fully defined by their mean and variance under the multiGaussian assumption. (Ortiz 

et al., 2004). A Gaussian random field, or multigaussian random function, is charac-

terized by the fact that any weighted average of its variables follows a Gaussian dis-

tribution, which means that its spatial distribution is entirely defined by its first- and 

second-order moments (mean and covariance function or variogram). In this method, 

the conditional distribution of the variable of interest is Gaussian-shaped, with mean 

equals to its simple kriging (SK) result and variance equals to the simple kriging vari-

ance (Emery, 2005). The methodology implementation consists of the following steps 

(Ortiz; Deutsch, 2003): 1) The spatially distributed are declustered and transformed to 

normal score values distribution; 2) Variogram calculation and modelling of the normal 

values; 3) Kriging estimation of the mean and variance of the normal score values in 

a regular grid; 4) The shape of a gaussian distribution is known by its means and 
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variance, hence the full conditional distribution in the original units of the variable can 

be retrieved by backcalculating the z values for given percentiles (Figure 3). 

 

 

Figure 2: Ilustration of the TBS approach to develop uncondicional simulations of gaussian 
values, then post process the simulation results to conditioning the unconditional simulation 
realizations through kriging residuals between input data and non-conditional simulation. The 
conditional simulations are backtransformated to the original units of the variable using the 
global normal score anamorphosis of the data as reference. 
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Figure 3: Ilustration of the MGK approach to backtransformation of the local gaussian estima-
tion to the local estimation in original units of the variable using the global normal score ana-
morphosis os the data as reference, image and caption from Ortiz and Deutsch (2003): Cal-
culation of the mean by numerical integration. The local uncertainty distribution is given by the 
kriging estimate and variance and the assumption that the shape is normal (bottom right). 
Several quantiles are calculated in the illustration. The nine deciles of the distribution, y1, ..., 
y9, are back-transformed (top) and the corresponding values, z1, ..., z9, are used to calculate 
the mean (bottom left). 
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3.3. Case of Study 

 

This study was carried out in the Galinheiro Mine, an iron deposit located in a site 

close to the municipality of Itabirito, in the southeast flank, inverse fold, of the Moeda 

syncline – QF (Figure 1). The mine owned by VALE produced about 12 million tons of 

iron ore in 2020. Previous studies described the mineral body as the product of super-

gene alteration of itabirites, which formed friable contaminated ores (soft ore), and 

hydrothermal alteration, which formed veins of compact hematite (hard ore) (Hensler, 

et al. 2014; Hensler, et al. 2015). Ore lithotypes were described based on geochemical 

characteristics, yielding a total of 12 ore types: compact itabirite (IC), friable itabirite 

(IF), goethite-bearing itabirite (IGO), alumina-bearing itabirite (IAL), manganese-bear-

ing itabirite (IMN), high-grade friable itabirite (IFR), friable hematite (HF), compact 

hematite (HC), goethite-bearing hematite (HGO), alumina-bearing hematite (HAL), 

canga (CG), and rolado (RO).  

Although, the company geological team described the ore into to 12 different types, 

there is a weak stationarity within them. Once, they are discretized by geochemical 

cut-offs, there is not a clear separation between these domains in the data distribution 

and nether visually in the field, and the contact analysis showed a soft transition be-

tween them. The geochemical distribution is mostly related to supergene activity than 

lithological or structural controls. Iron ore from the Galinheiro mine site has higher 

contents of contaminants such as Al2O3 and Mn, especially in nearby the topographic 

surface.  

For purposes of geostatistical analysis, there are not enough samples to properly es-

timated each individual ore type, thus the ore types were arranged in three groups 

based on mutual similarities, such as geological context, spatial distribution, and the 

range of the grades. The ore lithotypes were integrated into contaminated ore group 

(IGO, IAL, IMN, HGO, HAL and CG), rich ore group (HF, HC and IFR) and poor ore 

group (IF and IC).  

The correlations between variables were analyzed before the choice between simula-

tion and co-simulation methods was made. Therefore, the correlation matrix between 

variables presents a low linear correlation between them (Table 1). Based on the ob-

tained results, the choice was made to run an independent data simulation.  
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Table 1: Correlation matrix between the variables of interest. 

  Al2O3 MnO2 

Al2O3 1 0.02 

MnO2 0.02 1 

 

Once, the samples are clustered into domains and there is a low correlation between 

the variables, the samples were declustered and transformed to a normal distribution. 

The variograms of the gaussian values of the Al2O3 and MnO2 were modelled for each 

variable in each group independently. The simulation was performed on the resource 

pit considering the next five years of production. A total of 100 scenarios were run for 

each variable. 

Table 2: Neighborhood parameters used in TBS and MGK for all the ore groups. 

Elipsoid orientation Dip = 00° Dip Azi-

muth = 120° Pitch = 00° 

Elipsoid range 200 m, 150 m, 35 m 

Anisotropic distance Yes 

Angular Sectors 4 

Optimum number of samples per 

sector 

8 

Split elipsoid vertically yes 

Number of bands 1000 

Minimum of samples 4 

 

For TBS, the local uncertainty of a variable in a given point could be assessed from 

the frequentist probability of such point to exceed a given critical threshold in various 

simulated scenarios (Equation 1).  

                                        𝑃𝑟𝑜𝑏[𝑧(𝑥0) ≤ 𝑧𝑐] =  
𝑛(𝑥0)

𝐿
                                   Equation 1 

Where 𝑧(𝑥0) is the value of variable 𝑧 on point 𝑥0, 𝑧𝑐 equivalent to the critical threshold, 

𝑛(𝑥0) is the number of realizations in which the variable exceeded 𝑧𝑐 , and 𝐿 is the 

total number of realizations.  
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For MGK, the probability of exceed the thereshold is obtained by integrating the prob-

ability distribution function within an interval. The area resulting from the integration 

equals the probability of 𝑥0 in the integration interval (Equation 2). 

𝑃(𝑧𝑐  ≤ 𝑥0 ) =  ∫ 𝑓𝑋(𝑥0)𝑑𝑥
𝑧𝑐

−∞
                                 Equation 2 

The spatialization of the results derived from equation 1 and equation 2 generates 

probability maps, which provide for a practical way of visually integrating and validating 

the data obtained from the simulated scenarios and the MultiGaussian kriging results. 

Local uncertainty distribution is generated based on the analysis of the results by the 

calculation of the probability of each given point to exceed the critical threshold from 

the local distribution. A value of 𝑧𝑐 was assigned to each element based on the iron 

ore and beneficiation plant quality control specifications: Alumina above 1.8% and 

Manganese above 0.2%. 
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3.4. Results and Discussion 

 

Figure 4 shows the spatial configuration of iron ore and waste rock lithotypes in the 

simulated region (a), as well as the spatial distribution of the three arranged groups of 

ore based on mutual similarities (b). Contaminated ore is predominantly found in the 

upper central area of the site, while in the South portion poor ore prevails. The rich ore 

occurs sparsely in the whole area in form of lenses. 

 

Figure 4: (a) Spatial distribution of lithotypes in the Galinheiro Mine, contaminated lithotypes 
are predominantly present in the North area, while hematites and friable itabirites prevail in 
the southern portions of the site. (b) Spatial distribution of the grouping of lithotypes in con-
taminated ore, poor ore, and rich ore. 

 

The spatial distribution of the samples grades through the area is presented in Figure 

5 and the statistics of the grades for each ore group before and after declustering are 

presented in Table 3. The samples present a regular distribution along the area and 

the desclustering process doesn’t change the statistics significantly. The distribution 

of the Al2O3 grades is disseminated, but there is a concentration of high grades in the 



 

56 
 

central region. The high grades of MnO2 occurs mostly as spots in south region of the 

study area. 

 

Figure 5: Spatial distribution of the grades of the variables of interest in the samples. (a) Alu-
mina content distribution in the samples; (b) Manganese content distribution in the samples. 

 

Figure 6 and Figure 7 shows the validation graphics (histogram and variograms) of 

simulation results versus samples data of each ore group for Al2O3 and MnO2, respec-

tively. There is a dispersion cloud of the simulated scenarios around the samples data 

which indicates the uncertainty space of the results. The graphics show that the sim-

ulation scenarios were able to reproduce the morphology of the distribution by repro-

ducing the histogram, and the spatial continuity by reproducing the variograms mod-

els. 
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Table 3: Samples statistics for the interest variables with and without declustering for each ore 
group. 

 

The E-type comparison between the TBS and the MGK results of the distribution of 

the Al2O3 content in the study area is presented in Figure 8. Figure 8a shows the spa-

tial distribution of the E-Type of the TBS scenarios and Figure 8b shows the spatial 

distribution of the E-Type of the MGK results. The higher alumina contents were con-

centrated in the central portion and outer east rim area of the site in both methods. 

Both figures highlighted the same areas of high and low grades and the scatterplot of 

the results (Figure 8c) present a coefficient of linear correlation of 0.98.  

Similarly, Figure 9 presents the spatial distribution of the standard deviation of TBS 

(Figure 9a) and the MGK (Figure 9b) results, a comparison between both distribution 

of the Al2O3 variability in the study area. MGK results showed a slighted smoother 

transition between regions with extreme values, while the simulation provided for a 

crisper line around extreme contents with a lower smoothing around the edges of the 

ore body. Although, both results are very similar and the scatterplot (Figure 9c) shows 

a high linear correlation of 0.95. 

Group Variable 
Declus-

ter 

Num. of 

samples 
Mean Var 

Std 

Dev 
CV Min Max 

Contaminated ore Al2O3 No 3609 2.34 5.590 2.36 1.01 0.1 36.06 

Contaminated ore Al2O3 Yes 3609 2.29 4.502 2.12 0.93 0.1 36.06 

Contaminated ore MnO2 No 3609 0.21 1.521 1.23 5.84 0.01 31.51 

Contaminated ore MnO2 Yes 3609 0.25 1.665 1.29 5.12 0.01 31.51 

Poor ore Al2O3 No 1212 0.83 0.227 0.48 0.57 0.1 3.33 

Poor ore Al2O3 Yes 1212 0.81 0.240 0.49 0.61 0.1 3.33 

Poor ore MnO2 No 1212 0.1 0.039 0.2 1.98 0.01 2.98 

Poor ore MnO2 Yes 1212 0.09 0.031 0.18 1.89 0.01 2.98 

Rich ore Al2O3 No 1375 1.14 0.334 0.58 0.51 0.12 3.4 

Rich ore Al2O3 Yes 1375 1.15 0.353 0.59 0.52 0.12 3.4 

Rich ore MnO2 No 1375 0.09 0.037 0.19 2.19 0.01 5.57 

Rich ore MnO2 Yes 1375 0.09 0.024 0.15 1.72 0.01 5.57 
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Figure 6: Validation graphics of the alumina simulation results for each ore group. Red lines 
represent the simulation scenarios and the black line represent the samples data. (a,b,c) Raw 
histogram of the samples vs. simulation results; (d,e,f) Variogram model vs. simulation results 
for the main direction; g,h,i) Variogram model vs. simulation results for the intermediate direc-
tion; (j,k,l) Variogram model vs. simulation results for the minor direction. 
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Figure 7: Validation graphics of the manganese simulation results for each ore group. Red 
lines represent the simulation scenarios and the black line represent the samples data. (a,b,c) 
Raw histogram of the samples vs. simulation results; (d,e,f) Variogram model vs. simulation 
results for the main direction; g,h,i) Variogram model vs. simulation results for the intermediate 
direction;  (j,k,l) Variogram model vs. simulation results for the minor direction. 
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Figure 8: E-Type comparison for alumina grades. (a) Spatial distribution of TBS results; (b) 
Spatial distribution of MGK results; (c) Scatterplot of the results of both methods showing a 
high linear coefficient of correlation equals to 0.98. 
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Figure 9: Standard deviation comparison for alumina grades. (a) Spatial distribution of TBS 
results; (b) Spatial distribution of MGK results; (c) Scatterplot of the results of both methods 
showing a high linear coefficient of correlation equals to 0.9 

Figure 10 a and b show the borders of the domains with a high probability of exceeding 

the critical threshold of 1.8% Al2O3 in the iron ore for TBS and MGK, respectively. The 

highlighted areas are mostly the same for both methods, showing that both methods 

are equally efficient to access the local uncertainty and local risk analysis. Contents 
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above this threshold may jeopardize wet beneficiation processes and clog screens 

and transfer chutes in the plant. The distribution of domains with a high probability of 

exceeding the percent threshold was correlated with bodies of canga, alumina-bearing 

hematite and itabirite grouped into the contaminated ore group, mostly in the central 

and east region of the site.  

 

 

Figure 10: Probability map showing chances of occurrence of alumina contents greater than 

1.8 %. (a) Results by TBS; (b) Results by MGK. Low risk was ascribed to areas with probabil-

ities of up to 25%; medium risk to areas with probabilities between 25% and 50%; high risk to 

areas with probabilities between 50% and 75%; and very high risk to areas with probabilities 

greater than 75%. 

The E-type comparison between the TBS and the MGK results of the distribution of 

the MnO2 content in the study area is presented in Figure 11. An analysis of Figure 

11a and b show the differences in the spatial distribution of manganese contents from 

both methods. The overall trends are very similar between both methods, with higher 

contents concentrated in areas closer to the extremely South and North regions. The 

main difference is in the central-west region, where TBS shows a few spots with 
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medium to high grades, that do not appear in the MGK results. Although, both figures 

highlighted mostly the same areas of high and low grades and the scatterplot of the 

results (Figure 11 c) present a coefficient of linear correlation of 0.91, slightly lower 

and more scattered than the Al2O3 results. 

Similarly, Figure 12 presents the spatial distribution of the standard deviation of TBS 

(Figure 12a) and the MGK (Figure 12b) results, a comparison between both distribu-

tion of the MnO2 variability in the study area. The results obtained by TBS (Figure 12a) 

presents a lot of spots, regions were less continuous and had higher levels of variabil-

ity and concentrated in lenticular bodies distributed in close proximity to each other. 

Otherwise, the MGK results showed a slighted smoother transition between regions 

with extreme values, with larger and more continuous areas of high standard deviation. 

The MGK presented smooth boundaries and a well-defined lenticular geometry, while 

TBS shows crisp borders and discontinuous lenses of high variability. In comparison 

to the Al2O3 distribution, the results are less similar and the scatterplot (Figure 12 c) 

shows a lower linear correlation of 0.82. However, despite the differences, it is still a 

good correlation between the methods. 

Figure 13 shows the manganese risk map based on the probability of contents sur-

passing the 0.2% threshold for TBS results (Figure 13a) and for MGK results (Figure 

13b). Despites the differences in the standard deviation results, the probability maps 

of both methods highlighted the same areas, showing that both methods are equally 

efficient to access the local uncertainty and local risk analysis. Manganese content 

occurs mostly as local spots with low spatial continuity, concentrated in the South and 

North regions of the study area. 
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Figure 11 – E-Type comparison for manganese grades. (a) Spatial distribution of TBS results; 
(b) Spatial distribution of MGK results; (c) Scatterplot of the results of both methods showing 
a high linear coefficient of correlation equals to 0.91. 
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Figure 12 – Standard deviation comparison for manganese grades. (a) Spatial distribution of 
TBS results; (b) Spatial distribution of MGK results; (c) Scatterplot of the results of both meth-
ods showing a high linear coefficient of correlation equals to 0.82. 
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Figure 13: Probability map showing chances of occurrence of manganese contents greater 
than 0.2%. (a) Results by TBS; (b) Results by MGK. Low risk was ascribed to areas with 
probabilities of up to 25%; medium risk to areas with probabilities between 25% and 50%; high 
risk to areas with probabilities between 50% and 75%; and very high risk to areas with proba-
bilities greater than 75%. 
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3.5. Conclusions 

 

The tools described in this article added value to the analysis of the risks managed by 

quality control and short-term mine planning teams. The probability maps in clearly 

depicts the trends described by the E-type distributions and makes analysis much 

faster and more intuitive. Manganese occurs in lenses along the N-S trend, primarily 

in two areas, extremely Northeast border and in the South region of the site. The re-

sults for alumina revealed the contaminant occurred mainly in the central region and 

in the borders of the mineralized body. The analysis of iron ore contaminants by both 

methodologies evinced the same zones and lenses with high probability of occurrence 

of contaminants, which shows that both methods are properly adequate to measured 

local uncertainty. The maps generated by both methods are similar, and both provides 

key information to follow critical areas of the mine plans. Geostatistical simulations are 

well known to uncertainty quantification for spatially distributed variable at any scale. 

Although MGK proved to be a flexible alternative to simulation since it is easy to im-

plement and request less computational time. For short term mine planning, faster 

computational time represents a great advantage because models updates are fre-

quently necessary. The findings derived from this study will help quality control and 

short-term planning teams make better and more informed decisions. 
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4. Conclusões  

 

Embora a simulação geoestatística seja atualmente mais utilizada para classificação 

de recursos, as aplicações das técnicas de simulação geoestatística nas rotinas de 

curto prazo da indústria mineral ainda são limitadas. Nesse contexto, a incorporação 

de análises de incertezas de teores e dos contatos geológicos por meio de métodos 

geoestatísticos não lineares é essencial para otimizar o sequenciamento da produção 

e gerir os riscos associados aos planos de lavra de forma a otimizar sua adequação. 

As ferramentas propostas nesse trabalho se mostraram muito eficientes para a aná-

lise de risco associada ao controle de qualidade e planejamento de lavra de curto 

prazo. O sucesso obtido nos resultados da simulação estocástica condicional deve-

se ao método destacar as heterogeneidades e variabilidade dos dados. Além disso, 

os resultados obtidos adicionam clareza e previsibilidade em relação aos riscos geo-

lógicos associados aos planos de lavra.  

Conforme apresentado nos resultados do primeiro artigo, análises pautadas apenas 

na variância de krigagem (indicador geométrico proporcional ao espaçamento amos-

tral) como indicador de risco, não permitem ações preventivas e mitigatórias dos im-

pactos gerados pela alta variabilidade de teores e contatos observados durante a la-

vra do minério. O ORI resume a variabilidade dos teores e a confiabilidade da classi-

ficação do bloco como minério ou estéril. Este índice fornece informações essenciais 

para os engenheiros de planejamento de lavra incorporarem incertezas no crono-

grama da mina. A comunicação entre geólogos e engenheiros de minas frequente-

mente torna-se laboriosa pela ausência de um fator numérico para incorporação da 

variabilidade geológica observada pelo geólogo para os engenheiros de minas utili-

zarem nos softwares de sequenciamento de lavra. Dessa forma, o ORI torna-se uma 

ferramenta essencial para comunicação entre as equipes e transmissão da incerteza 

geológica do depósito mineral de maneira quantitativa através de índice numérico que 

sumariza a variabilidade dos teores e a confiabilidade da classificação do bloco para 

o planejamento de lavra incorporar como condicionante no sequenciamento da mina   

Se o risco operacional não é incorporado no sequenciamento de lavra, formando pla-

nos onde se busca minimizá-lo através do blend entre diferentes regiões, frequente-

mente irão ocorrer problemas, ou até mesmo paralisar as operações, por alta variabi-

lidade e classificação errônea da destinação do material lavrado.  
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A comparação dos resultados da simulação por bandas rotativas e a krigagem Multi-

Gaussiana realizada no segundo artigo evidenciou as mesmas zonas de riscos e as 

análises de incerteza oriunda de ambos os métodos foi bastante semelhante. Dessa 

forma, considera-se a krigagem MultiGaussiana uma alternativa flexível à simulação, 

uma vez que é mais simples de implementar e necessita menos tempo computacio-

nal. Para o planejamento de minas de curto prazo, um tempo computacional mais 

rápido é vantajoso, porque as atualizações de modelos são frequentemente neces-

sárias.  

Mensurar, analisar e gerenciar a variabilidade e incerteza geológica é essencial para 

o bom funcionamento de qualquer empreendimento minerário. A gestão de riscos re-

lacionados à incerteza geológica no curto prazo pode reduzir decisões incorretas e, 

consequentemente, perdas financeiras que podem influenciar negativamente no lucro 

e na produtividade de uma mina. Em geral, tais ganhos são muito maiores do que as 

despesas associadas ao tempo adicional e ao aumento das demandas computacio-

nais exigidas pelas metodologias propostas nesse estudo para quantificação e aná-

lise de incertezas. 
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