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$JUDGHoR D PLQKD IDPtOLD H DPLJRV SRU WRGR DSRLR SUHVWDGR GXUDQWH WRGR HVVH

SHUtRGR �GLItFLO� GR PHVWUDGR� (QIUHQWDU XPD SDQGHPLD H GLYHUVDV LQFHUWH]DV HP

PHLR D WRGR HVVH SURFHVVR IRL H[WUHPDPHQWH GHVDILDGRU� 0DQWHU DV IRUoDV SDUD

VHJXLU HP IUHQWH Vy IRL SRVVtYHO SHOR DSRLR LQFRQGLFLRQDO H DPRU TXH UHFHEL GD PLQKD

IDPtOLD� 2 WHPSR p SURIHVVRU SDUD QRV HQVLQDU R SRGHU GH WHU SHVVRDV TXH WH DPDP

DR ODGR� FDGD YH] ILFD PDLV FODUR R TXmR VRUWXGR HX VRX GH Wr�ORV j PLQKD YROWD�

$ RXWUD VRUWH TXH WLYH IRL GH HQFRQWUDU QR 63$0/DE XP ODU RQGH IL] ERQV DPLJRV

TXH PH DMXGDUDP PXLWR HP WRGR HVVH SURFHVVR� 'HL[R DTXL PHXV DJUDGHFLPHQWRV

HVSHFLDLV DR *XDQR SRU VHU VHPSUH SUHFLVR QDV RULHQWDo}HV� VROtFLWR H DEHUWR DV

LGHLDV SURSRVWDV GXUDQWH HVVH SURMHWR� $ +HOHQ� 5DIDHO� *XLOKHUPH� $O\QQH H *DEULHO

GHL[R XP PXLWR REULJDGR SRU WRGDV FRQYHUVDV� FDPSRV H UHIOH[}HV TXH WLYHPRV QR

WHPSR TXH IRL SRVVtYHO QRV HQFRQWUDUPRV QR ODERUDWyULR� ,QIHOL]PHQWH D SDQGHPLD

DFDERX OLPLWDQGR XP SRXFR QRVVD LQWHUDomR� 3RUpP� DV SHVTXLVDV VHJXHP D WRGR

YDSRU� 7HQKR PXLWD DGPLUDomR SRU WRGRV YRFrV�

$JUDGHoR D 8QLYHUVLGDGH GH 6mR 3DXOR� HP HVSHFLDO DRV GHSDUWDPHQWRV GH

(QHUJLD H 0HLR $PELHQWH �,((� H R ,QVWLWXWR GH *HRFLrQFLDV� SRU WRGD D HVWUXWXUD

GH ODERUDWyULRV H LQVWDODo}HV� $JUDGHoR HVSHFLDOPHQWH j )XQGDomR GH $PSDUR j

3HVTXLVD GR (VWDGR GH 6mR 3DXOR �)$3(63� SRU ILQDQFLDU HVVD SHVTXLVD SRU PHLR

GR SURFHVVR GH Q~PHUR� ������������� e HVSHUDQoRVR YHU TXH DLQGD H[LVWHP LQV�

WLWXLo}HV TXH DFUHGLWDP QD SHVTXLVD H SURSRUFLRQDP FRQGLo}HV H[FHOHQWHV SDUD WDO�

0XLWR REULJDGR� VHP HVVH DSRLR VHULD WXGR PDLV GLItFLO�
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2 Q~PHUR GH FDVRV GH GHVOL]DPHQWR GH WHUUD WHP DXPHQWDGR HP WRGR RPXQGR

HP IXQomR GH SURFHVVRV GH XUEDQL]DomR H RFXSDomR GR WHUULWyULR� DOpP GD PDLRU IUH�

TXrQFLD GH HYHQWRV FOLPiWLFRV H[WUHPRV� 2V HVWXGRV DWp KRMH UHDOL]DGRV PRVWUDP

TXH DV UHGHV GH FRQYROXomR WrP REWLGR RV PHOKRUHV UHVXOWDGRV SDUD VHJPHQWDomR

GH FLFDWUL]HV GH GHVOL]DPHQWR GH WHUUD HP LPDJHQV GH VHQVRUHV UHPRWRV� 3RUpP�

DLQGD VmR QHFHVViULDV PDLV SHVTXLVDV QHVWD iUHD� Mi TXH RV PpWRGRV XWLOL]DGRV

SDUD R SUp�SURFHVVDPHQWR GDV LPDJHQV� DUTXLWHWXUDV H FDOLEUDomR GRV SDUkPHWURV

GR PRGHOR DLQGD UHSUHVHQWDP XP JUDQGH GHVDILR SDUD VH REWHU PRGHORV DFXUDGRV�

(VWH HVWXGR WHYH FRPR REMHWLYR SULQFLSDO DXWRPDWL]DU R SURFHVVR GH VHJPHQWDomR GH

FLFDWUL]HV GH GHVOL]DPHQWR GH WHUUD HP LPDJHQV REWLGDV SRU VHQVRUHV UHPRWRV SRU

PHLR GH WpFQLFDV GH GHHS OHDUQLQJ XWLOL]DQGR UHGHV QHXUDLV FRQYROXFLRQDLV �51&�� $

UHJLmR 6HUUDQD GR 5LR GH -DQHLUR� SDOFR GR PDLRU GHVDVWUH QDWXUDO GR %UDVLO� RFRUULGR

HP MDQHLUR GH ����� H D UHJLmR GH 5RODQWH� QR 5LR *UDQGH GR 6XO� IRUDP XWLOL]DGDV

FRPR iUHD GH HVWXGR� $V LPDJHQV XWLOL]DGDV SDUD WUHLQDU RV PRGHORV IRUDP REWL�

GDV SHOR VDWpOLWH 5DSLG(\H� $ SHVTXLVD DYDOLRX D FDSDFLGDGH GH JHQHUDOL]DomR GRV

PRGHORV HP iUHDV GLVWLQWDV GDV GH WUHLQDPHQWR� DOpP GLVVR� FRQFHQWURX�VH QR WUHL�

QDPHQWR GD UHGH 8�1HW� XWLOL]DQGR GLIHUHQWHV PpWRGRV GH DPRVWUDJHP� GLPHQV}HV

GH LQSXW H GDWDVHWV� SDUD DYDOLDU FRPR LVWR LPSDFWD QD DFXUiFLD GD VHJPHQWDomR

GRV GHVOL]DPHQWRV GH WHUUD� 2V UHVXOWDGRV VXJHUHP TXH RV PRGHORV WUHLQDGRV FRP

LPDJHQV GH PDLRU GLPHQVmR ���� [ ��� H ��� [ ��� SL[HOV� WHQGHP D VHU PDLV DFX�

UDGRV HP iUHDV VLPLODUHV D iUHD GH WUHLQDPHQWR� HQTXDQWR RV PRGHORV WUHLQDGRV

FRP LPDJHQV GH PHQRU GLPHQVmR ��� [ �� H ��[�� SL[HOV� WHQGHP D SRVVXLU XPD

FDSDFLGDGH GH JHQHUDOL]DomR PHOKRU� FRQVHTXHQWHPHQWH� REWLYHUDP RV PHOKRUHV

UHVXOWDGRV HP iUHDV TXH GLIHUHP GDV iUHDV GH WUHLQR� 2 SyV�SURFHVVDPHQWR GRV

UHVXOWDGRV FRP RSHUDo}HV PRUIROyJLFDV p HILFLHQWH SDUD PHOKRUDU D SUHFLVmR GRV

UHVXOWDGRV�

3DODYUDV�&KDYH� 'HHS /HDUQLQJ� 5HGHV 1HXUDLV GH &RQYROXomR �51&�� 0D�

SHDPHQWR GH GHVOL]DPHQWRV GH WHUUD�

LLL
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7KH JOREDO QXPEHU RI ODQGVOLGHV FDVHV KDV LQFUHDVHG GXH WR JUHDWHU XUEDQL]D�

WLRQ DQG ODQG XVH DQG D KLJKHU IUHTXHQF\ RI H[WUHPH FOLPDWLF HYHQWV� 6LQFH WKHVH

HYHQWV KDYH VXEVWDQWLDO VRFLDO DQG HFRQRPLF LPSDFWV RQ %UD]LO DQG ZRUOGZLGH� WKH\

DUH FRQVLGHUHG RQH REVWDFOH WR VXVWDLQDEOH GHYHORSPHQW� DFFRUGLQJ WR WKH 8QLWHG

1DWLRQV �81�� 6WXGLHV VKRZ WKDW FRQYROXWLRQ QHXUDO QHWZRUNV �&11� DFKLHYH WKH

EHVW UHVXOWV RQ ODQGVOLGH VHJPHQWDWLRQ LQ DHULDO LPDJHU\� +RZHYHU� FKRRVLQJ WKH

EHVW QHWZRUN DUFKLWHFWXUH� SUHSDULQJ WKH GDWDVHW� DQG WXQLQJ WKH K\SHUSDUDPHWHUV

LV VWLOO FKDOOHQJLQJ� 7KLV VWXG\¶V PDLQ REMHFWLYH LV WR XVH GHHS OHDUQLQJ ZLWK FRQYR�

OXWLRQDO QHXUDO QHWZRUNV �&11� WR DXWRPDWH WKH VHJPHQWDWLRQ RI ODQGVOLGH VFDUV RQ

UHPRWH VHQVLQJ LPDJHU\� 7KH VWXG\ DUHD LV ORFDWHG LQ WKH PRXQWDLQRXV UDQJH RI 5LR

GH -DQHLUR VWDWH� ZKHUH� LQ -DQXDU\ ����� WKH ZRUVW %UD]LOLDQ 1DWXUDO 'LVDVWHU RF�

FXUUHG� ,Q DGGLWLRQ� WKH DUHD ORFDWHG LQ 5RODQWH� LQ WKH 5LR *UDQGH GR 6XO VWDWH� ZDV

DOVR XVHG DV D VWXG\ DUHD� 7KH LPDJHV XVHG WR WUDLQ WKH PRGHOV ZHUH DFTXLUHG IURP

WKH 5DSLG(\H VDWHOOLWH� 7KH UHVHDUFK IRFXVHG RQ HYDOXDWLQJ WKH JHQHUDOL]DWLRQ FD�

SDFLW\ RI WKH PRGHOV HP DUHDV WKDW GLIIHU IURP WKH WUDLQLQJ DUHD� 0RUHRYHU� WKH VWXG\

DOVR HYDOXDWHG KRZ GLIIHUHQW VDPSOLQJ PHWKRGV� SDWFK VL]HV� DQG GDWDVHWV LPSDFW

WKH RYHUDOO DFFXUDF\ RI 8�1HW RQ ODQGVOLGH VHJPHQWDWLRQ� 7KH UHVXOWV VXJJHVW WKDW

WKH PRGHOV WUDLQHG ZLWK WKH ELJJHU SDWFK VL]HV ����[��� DQG ���[��� SL[HOV� WHQG WR

DFKLHYH EHWWHU DFFXUDF\ LQ DUHDV VLPLODU WR WKH WUDLQLQJ DUHDV� ZKLOH PRGHOV WUDLQHG

ZLWK WKH VPDOOHU SDWFK VL]HV ���[�� SL[HOV DQG ��[�� SL[HOV� DFKLHYHG EHWWHU JHQH�

UDOL]DWLRQ UHVXOWV LQ DUHDV WKDW DUH GLIIHUHQW IURP WKH WUDLQLQJ LPDJHV� 3RVWSURFHVVLQJ

WKH UHVXOWV ZHUH HIILFLHQW WR LQFUHDVH WKH SUHFLVLRQ RI WKH PRGHOV�

.H\ZRUGV� 'HHS /HDUQLQJ� &RQYROXWLRQ 1HXUDO 1HWZRUNV �&11�� ODQGVOLGH

PDSSLQJ�

LY
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� 7LSRV GH PRYLPHQWR GH PDVVD� � � � � � � � � � � � � � � � � � � � � � � �

� (VSHFWUR HOHWURPDJQpWLFR HPLWLGR SHOR 6RO H 7HUUD� � � � � � � � � � � ��

� 3URFHVVR GH DTXLVLomR GH XPD LPDJHP HP VHQVRULDPHQWR UHPRWR� � ��

� 2SHUDomR UHDOL]DGD HP FDGD QHXU{QLR GH XPD UHGH QHXUDO DUWLILFLDO� � ��

� 5HGH QHXUDO GH P~OWLSODV FDPDGDV� � � � � � � � � � � � � � � � � � � � ��

� (WDSD GH IRUZDUG SURJDWLRQ� � � � � � � � � � � � � � � � � � � � � � � � � ��

� (WDSD GH EDFNSURSDJDWLRQ� � � � � � � � � � � � � � � � � � � � � � � � � ��

� ,PSDFWR GR YDORU GH OHDUQLQJ UDWH QR SURFHVVR GH RWLPL]DomR� � � � � � ��

� *UiILFR GD IXQomR VLJPyLGH H GH VXD GHULYDGD GH SULPHLUD RUGHP� � � ��

�� *UiILFR GD IXQomR 5H/8 H GH VXD GHULYDGD GH SULPHLUD RUGHP� � � � � ��

�� ,PSDFWR GH GLIHUHQWHV YDORUHV GH OHDUQLQJ UDWH QD FRQYHUJrQFLD GR

PRGHOR� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� 3URFHVVR GH RYHUILWWLQJ H XQGHUILWWLQJ� � � � � � � � � � � � � � � � � � � ��

�� 2SHUDomR GH FRQYROXomR� � � � � � � � � � � � � � � � � � � � � � � � � ��

�� 2SHUDomR GH FRQYROXomR HP XPD LPDJHP 5*%� � � � � � � � � � � � � ��

�� 2SHUDo}HV GH 0D[ 3RROLQJ H $YHUDJH 3RROLQJ � � � � � � � � � � � � � ��

�� $UTXLWHWXUD GH UHGH 8�QHW� � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� 2SHUDo}HV PRUIROyJLFDV � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� (OHPHQWRV HVWUXWXUDQWHV FRP GLIHUHQWHV GLPHQV}HV H IRUPDV� � � � � � ��
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� ,1752'8d­2 ( -867,),&$7,9$ � � � � � � � � � � � � � � � � � � � � �

� 2%-(7,926 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� 2EMHWLYR *HUDO � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� 2EMHWLYRV (VSHFtILFRV � � � � � � � � � � � � � � � � � � � � � � � �

� 25*$1,=$d­2 '2 75$%$/+2 � � � � � � � � � � � � � � � � � � � � � �

� )81'$0(17$d­2 7(Ï5,&$ � � � � � � � � � � � � � � � � � � � � � � �

��� 0RYLPHQWRV GH 0DVVD � � � � � � � � � � � � � � � � � � � � � � � �

��� 6HQVRULDPHQWR 5HPRWR � � � � � � � � � � � � � � � � � � � � � � ��

����� &ODVVLILFDomR %DVHDGD HP 3L[HOV � � � � � � � � � � � ��

����� &ODVVLILFDomR 2ULHQWDGD DR 2EMHWR � � � � � � � � � � � ��

��� 'HHS /HDUQLQJ � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 5HGHV 1HXUDLV $UWLILFLDLV � � � � � � � � � � � � � � � � ��

����� )XQo}HV GH $WLYDomR � � � � � � � � � � � � � � � � � � ��

����� )XQomR GH &XVWR � � � � � � � � � � � � � � � � � � � � ��

����� /HDUQLQJ 5DWH � � � � � � � � � � � � � � � � � � � � � � ��

����� )XQomR GH 2WLPL]DomR � � � � � � � � � � � � � � � � � ��

����� 2YHUILWWLQJ H 8QGHUILWWLQJ � � � � � � � � � � � � � � � � ��

��� 5HGHV 1HXUDLV &RQYROXFLRQDLV � � � � � � � � � � � � � � � � � � ��

����� &DPDGDV GH &RQYROXomR � � � � � � � � � � � � � � � � ��

����� &DPDGDV GH 3RROLQJ � � � � � � � � � � � � � � � � � � ��

����� &DPDGDV GH 'URSRXW � � � � � � � � � � � � � � � � � � ��

����� &DPDGDV GH %DWFK 1RUPDOL]DWLRQ � � � � � � � � � � � ��

��� 6HJPHQWDomR 6HPkQWLFD � � � � � � � � � � � � � � � � � � � � � ��

����� 8�1HW � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 2SHUDo}HV 0RUIROyJLFDV � � � � � � � � � � � � � � � � � � � � � � ��

����� (URVmR H 'LODWDomR � � � � � � � � � � � � � � � � � � � ��

����� $EHUWXUD H )HFKDPHQWR � � � � � � � � � � � � � � � � � ��

� 5(68/7$'26 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 8�1HW� (YDOXDWLQJ 'LIIHUHQW 6DP�

SOLQJ 0HWKRGV DQG 3DWFK 6L]HV � � � � � � � � � � � � � � � � � � ��



��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 'HHS /HDUQLQJ� (YDOXDWLQJ 0R�

GHO *HQHUDOL]DWLRQ LQ 5DLQIDOO�,QGXFHG /DQGVOLGHV LQ %UD]LO � � � ��

� &21&/86®(6 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

5()(5Ç1&,$6 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� $3Ç1',&( � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 8�1HW� (YDOXDWLQJ 'LIIHUHQW 6DP�

SOLQJ 0HWKRGV DQG 3DWFK 6L]HV � � � � � � � � � � � � � � � � � � ��

��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 'HHS /HDUQLQJ� (YDOXDWLQJ 0R�

GHO *HQHUDOL]DWLRQ LQ 5DLQIDOO�,QGXFHG /DQGVOLGHV LQ %UD]LO � � � ��

��� /DQGVOLGH GHWHFWLRQ LQ WKH +LPDOD\DV XVLQJ PDFKLQH OHDUQLQJ

DOJRULWKPV DQG 8�1HW � � � � � � � � � � � � � � � � � � � � � � � ��

��� )HDWXUH�EDVHG FRQVWUDLQW GHHS&11PHWKRG IRUPDSSLQJ UDLQIDOO�

LQGXFHG ODQGVOLGHV LQ UHPRWH UHJLRQV ZLWK PRXQWDLQRXV WHUUDLQ�

$Q DSSOLFDWLRQ WR %UD]LO � � � � � � � � � � � � � � � � � � � � � � ���

YLL



� ,1752'8d­2 ( -867,),&$7,9$

2 LPSDFWR GRV GHVDVWUHV QDWXUDLV VH WRUQRX PDLV VHYHUR QDV ~OWLPDV GpFDGDV�

HOHYDQGR RV FXVWRV SDUD D HFRQRPLD GRV SDtVHV H R Q~PHUR GH SHVVRDV DIHWDGDV�

2 DOWR FUHVFLPHQWR SRSXODFLRQDO DOLDGR D SURFHVVRV GH XUEDQL]DomR H RFXSDomR GH�

VRUGHQDGD IDYRUHFHP D RFXSDomR GH iUHDV GH ULVFR H WHP JUDQGH UHOHYkQFLD SDUD

R DXPHQWR QR Q~PHUR GH YtWLPDV �.2%,<$0$ HW DO�� ������ $OpP GLVVR� RV HYHQ�

WRV FOLPiWLFRV HVWmR PDLV IUHTXHQWHV H H[WUHPRV� IDYRUHFHQGR XPD RFRUUrQFLD PDLV

FRQVWDQWH GHVWHV GHVDVWUHV�

'H DFRUGR FRP R 0DUFR GH $omR 6HQGDL SDUD D 5HGXomR GH 5LVFR D 'HVDVWUHV

��������� �81,6'5� ������ HPLWLGR SHOD 2UJDQL]DomR GDV 1Do}HV 8QLGDV �218��

RV GHVDVWUHV VmR XPD GDV SULQFLSDLV EDUUHLUDV DR GHVHQYROYLPHQWR VXVWHQWiYHO� Mi

TXH� HQWUH ���� H ����� RV SUHMXt]RV HFRQ{PLFRV XOWUDSDVVDUDP ��� WULOK}HV GH Gy�

ODUHV� DOpP GLVVR� PDLV GH ��� PLO SHVVRDV SHUGHUDP D YLGD� ��� PLOK}HV GH SHVVRDV

ILFDUDP IHULGDV H �� PLOK}HV GH SHVVRDV GHVDEULJDGDV�

1R %UDVLO� RV GHVOL]DPHQWRV GH WHUUD� LQXQGDo}HV H HQ[XUUDGDV VmR UHVSRQVi�

YHLV SRU JUDQGH SDUWH GRV SUHMXt]RV JHUDGRV SRU GHVDVWUHV� 6HJXQGR R (PHUJHQF\

(YHQWV 'DWDEDVH �(0�'$7� ������ QR SHUtRGR GH ���� D ����� VHWH PLOK}HV GH

SHVVRDV IRUDP DIHWDGDV H IRUDP UHJLVWUDGRV DSUR[LPDGDPHQWH ����� yELWRV H RV

SUHMXt]RV XOWUDSDVVDUDP 5� �� ELOK}HV� 1HVWH FHQiULR� GHVWDFDP�VH RV GRLV PDLR�

UHV GHVDVWUHV JHUDGRV SRU PRYLPHQWRV GH PDVVD QR SDtV� RV HYHQWRV RFRUULGRV QR

DQR GH ���� QR YDOH GR ,WDMDt� HP 6DQWD &DWDULQD� RQGH PDLV GH ��� PLOK}HV GH SHV�

VRDV VRIUHUDP GDQRV H ��� yELWRV IRUDP UHJLVWUDGRV H R HYHQWR GH ���� QD UHJLmR

VHUUDQD GR 5LR GH -DQHLUR� TXH DIHWRX GLUHWDPHQWH PDLV GH � PLOKmR GH SHVVRDV H

FDVRX ����� yELWRV�

'HVOL]DPHQWRV GH WHUUD VmR FDUDFWHUL]DGRV SRU PRYLPHQWRV GH VROR� URFKD H�RX

YHJHWDomR DR ORQJR GD YHUWHQWH VRE LQIOXrQFLD GLUHWD GD JUDYLGDGH� )DWRUHV FRPR

D iJXD H R JHOR SRGHP FRQWULEXLU QHVWH SURFHVVR� XPD YH] TXH GLPLQXHP D UH�

VLVWrQFLD GRV PDWHULDLV H DIHWDP VHX FRPSRUWDPHQWR UHROyJLFR �720,1$*$� 6$1�

7252� $0$5$/� ������ $OpP GLVVR� DV FRQGLo}HV JHRPRUIROyJLFDV� SHGROyJLFDV�

JHROyJLFDV� FOLPiWLFDV H KLGUROyJLFDV RULJLQDLV GD iUHD SRGHP DWXDU FRPR DJHQWHV

SUHGLVSRQHQWHV QD GHIODJUDomR GH PRYLPHQWRV GH PDVVD� 6HQGR DV FKXYDV LQWHQ�

�



VDV� HURVmR� WHUUHPRWRV H WVXQDPLV RV SULQFLSDLV IDWRUHV GHVHQFDGHDGRUHV GHVWH

SURFHVVR�

2V PRGHORV GH VXVFHSWLELOLGDGH H ULVFR D GHVOL]DPHQWRV GHSHQGHP GH PD�

SDV GH LQYHQWiULR GH FLFDWUL]HV GH HYHQWRV DQWHULRUHV SDUD VHUHP YDOLGDGRV� 3RUpP�

HVWHV PDSDV VmR HVFDVVRV H PXLWDV YH]HV LQH[LVWHQWHV Mi TXH R SURFHVVR GH HODER�

UDomR GHVWHV PDSDV� D GHSHQGHU GDV GLPHQV}HV GD iUHD� p OHQWR H QmR DSUHVHQWD

XPD VLVWHPiWLFD EHP GHILQLGD VHQGR� SRU LVVR� PXLWDV YH]HV VXEMHWLYR�

2V PDSDV GH LQYHQWiULR GHYHP FRQWHU D ORFDOL]DomR� IRUPD� OLPLWHV� GDWD GH

RFRUUrQFLD� WLSR H RXWUDV LQIRUPDo}HV GRPRYLPHQWR GHPDVVD �+(59È6� %2%52:6.<�

����� UHJLVWUDGDV HP XP EDQFR GH GDGRV DFHVVtYHO HP SODWDIRUPD GH VLVWHPD GH

LQIRUPDo}HV JHRJUiILFDV �6,*�� (VWHV PDSDV SRGHP VHU HODERUDGRV GH PDQHLUD PD�

QXDO� VHPLDXWRPiWLFD H DXWRPiWLFD� 2V PpWRGRV PDQXDLV VH EDVHLDP QD FROHWD GH

GDGRV GH FDPSR H QD LQWHUSUHWDomR GDV FLFDWUL]HV HP LPDJHQV GH VHQVRULDPHQWR

UHPRWR� -i RV VHPLDXWRPiWLFRV H DXWRPiWLFRV XWLOL]DP DOJRULWPRV GH FODVVLILFDomR

EDVHDGRV HP REMHWRV H HP SL[HOV �',$6 HW DO�� ������

2V PpWRGRV EDVHDGRV HP SL[HOV EXVFDP FODVVLILFDU LQGLYLGXDOPHQWH RV SL[HOV

GH XPD LPDJHP FRP EDVH HP VXD LQIRUPDomR HVSHFWUDO� 'HQWUH RV PpWRGRV XWLOL�

]DGRV� GHVWDFDP�VH D FODVVLILFDomR VXSHUYLVLRQDGD H QmR VXSHUYLVLRQDGD� GHWHFomR

GH PXGDQoDV H VHJPHQWDomR EDVHDGD HP XP OLPLWH �WKUHVKROG�� 2V PpWRGRV EDVH�

DGRV HP SL[HOV� DSHVDU GH VHUHP RV PDLV FRPXQV� PXLWDV YH]HV QmR DSUHVHQWDP

ERD DFXUiFLD QD VHJPHQWDomR GH FLFDWUL]HV GH GHVOL]DPHQWRV GH WHUUD� SRLV QmR FRQ�

VLGHUDP LQIRUPDo}HV JHRPpWULFDV H FRQWH[WXDLV GD LPDJHP R TXH DXPHQWD R UXtGR

GRV UHVXOWDGRV �67803)� .(5/(� ����� %/$6&+.( HW DO�� ����� =+21* HW DO��

����� 35$.$6+� 0$1&21,� /2(:� ������ -i RV PpWRGRV EDVHDGRV HP REMH�

WRV FRPELQDP LQIRUPDo}HV HVSDFLDLV� HVSHFWUDLV� PRUIROyJLFDV HP XPD DERUGDJHP

VHPL�DXWRPiWLFD� TXH GHSHQGH GD H[SHULrQFLD GR HVSHFLDOLVWD� SDUD FODVVLILFDU XP

FRQMXQWR GH SL[HOV GH XPD LPDJHP �%/$6&+.(� ������ (VWH PpWRGR UHGX] R UXtGR

GD FODVVLILFDomR H SHUPLWH TXH DV FDUDFWHUtVWLFDV GR GHVOL]DPHQWR VHMDP H[WUDtGDV

FRP PDLRU DFXUiFLD�

1RV ~OWLPRV DQRV� R GHHS OHDUQLQJ WHP VH WRUQDGR R HVWDGR GD DUWH HP SUREOH�

PDV GH YLVmR FRPSXWDFLRQDO� VHQGR� SRU LVVR� FDGD YH] PDLV XWLOL]DGR HP VHQVRUL�

DPHQWR UHPRWR SDUD DSOLFDo}HV GH VHJPHQWDomR VHPkQWLFD� GHWHFomR GH REMHWRV H

�



FODVVLILFDomR GH FHQDV HP LPDJHQV GH DOWD UHVROXomR �*+25%$1=$'(+� %/$6�

&+.( HW DO�� ����� 3(1*� =+$1*� *8$1� ����� =+8 HW DO�� ����� /21*� 6+(�

/+$0(5� '$55(//� ����� 5$'29,&� $'$5.:$� :$1*� ������ 3RUpP� H[LVWHP

SRXFRV WUDEDOKRV TXH XWLOL]DP HVWDV WpFQLFDV SDUD D GHWHFomR GH GHVOL]DPHQWRV GH

WHUUD �=+21* HW DO�� ������

2V PRGHORV GH GHHS OHDUQLQJ VmR DYDOLDGRV FRP EDVH QD DQiOLVH GRV YDORUHV

GH YHUGDGHLURV SRVLWLYRV �93�� IDOVR SRVLWLYRV �)3� H IDOVRV QHJDWLYRV �)1�� &RP

HVWHV YDORUHV p SRVVtYHO FDOFXODU DV PpWULFDV GH SUHFLVmR� UHFDOO� I��VFRUH H tQGLFH

GH -DFFDUG TXH SHUPLWHP XPD DQiOLVH PDLV GHWDOKDGD GD SHUIRUPDQFH GR PRGHOR�

'LQJ HW DO� ������ XWLOL]DUDP UHGHV QHXUDLV FRQYROXFLRQDLV �51&� SDUD GHWHFWDU

DXWRPDWLFDPHQWH GHVOL]DPHQWRV GH WHUUD HP LPDJHQV *DRIHQ�� �*)��� FRP TXDWUR

EDQGDV HVSHFWUDLV H RLWR PHWURV GH UHVROXomR HVSDFLDO� 2 PpWRGR REWHYH ��� GH

DFXUiFLD FRP D WD[D GH GHWHFomR GH ����� H WD[D GH IDOVRV SRVLWLYRV GH ������

&KHQ HW DO� ������ XWLOL]DUDP UHGHV QHXUDLV FRQYROXFLRQDLV SURIXQGDV HP LPD�

JHQV EL�WHPSRUDLV SDUD LGHQWLILFDU iUHDV TXH SDVVDUDP SRU PXGDQoDV DEUXSWDV H�

SRVWHULRUPHQWH� UHDOL]DUDP XPD DQiOLVH HVSDoR�WHPSRUDO H DYDOLDUDPPXGDQoDV HP

XP PRGHOR GLJLWDO GH HOHYDomR SDUD LGHQWLILFDU RV GHVOL]DPHQWRV� 2 PpWRGR REWHYH

DFXUiFLD VXSHULRU D ����� QDV iUHDV DYDOLDGDV�

*KRUEDQ]DGHK� %ODVFKNH HW DO� ������ XWLOL]DUDP LPDJHQV 5DSLG(\H H XP PR�

GHOR GLJLWDO GH HOHYDomR �0'(�� DPERV FRP � PHWURV GH UHVROXomR HVSDFLDO� SDUD

FRPSDUDU PpWRGRV GH DSUHQGL]DGR GH PiTXLQD �UHGHV QHXUDLV DUWLILFLDLV� VXSSRUW

YHFWRU PDFKLQHV H UDQGRP IRUHVW� FRP PRGHORV GH DSUHQGL]DGR SURIXQGR GH Pi�

TXLQD SDUD VHJPHQWDU GHVOL]DPHQWRV GH WHUUD QR GLVWULWR GH 5DVXZD� 1HSDO� 2V

UHVXOWDGRV REWLGRV PRVWUDUDP TXH D UHGH GH FRQYROXomR DSUHVHQWRX R PHOKRU UHVXO�

WDGR� REWHQGR XP tQGLFH GH -DFFDUG GH ������� $LQGD� DV LQIRUPDo}HV REWLGDV GR

0'( DMXGDUDP D GLVFULPLQDU DV iUHDV XUEDQDV GH GHVOL]DPHQWRV GH WHUUD� SRUpP�

QmR PHOKRUDUDP D DFXUiFLD JHUDO GR PRGHOR�

6DPHHQ H 3UDGKDQ ������ FRPSDUDUDP D SHUIRUPDQFH GH UHGHV 5HVLGXDLV

�5HV1HWV� WUHLQDGDV FRP LQIRUPDo}HV WRSRJUiILFDV TXH IRUDP IXVLRQDGDV j LQIRUPD�

o}HV HVSHFWUDLV XWLOL]DQGR UHGHV GH FRQYROXomR FRP 5HV1HWV TXH IRUDP WUHLQDGDV

FRP GDGRV WRSRJUiILFRV DGLFLRQDGRV FRPR EDQGDV H[WUDV HP LPDJHQV HVSHFWUDLV�

2 UHVXOWDGR PRVWUD TXH RV PRGHORV TXH XWLOL]DUDP 51&V SDUD IXVLRQDU RV GDGRV

�



REWLYHUDP I��VFRUH VXSHULRU HP ��� H tQGLFH GH -DFFDUG HP �������

<X� &KHQ H ;X ������ XWLOL]DUDP tQGLFHV GH YHJHWDomR H XP 0'( SDUD REWHU

iUHDV FRP SRWHQFLDO j RFRUUrQFLD GH GHVOL]DPHQWRV GH WHUUD QR 1HSDO� 3RVWHULRU�

PHQWH� HVWHV GDGRV VHUYLUDP SDUD WUHLQDU D UHGH 3\UDPLG 6FHQH 3DUVLQJ 1HWZRUN

�3VS1HW� QD VHJPHQWDomR GH FLFDWUL]HV HP LPDJHQV /DQGVDW� 2 PpWRGR REWHYH

��� GH UHFDOO H ������ GH DFXUiFLD�

3UDNDVK� 0DQFRQL H /RHZ ������ XWLOL]DUDP D DUTXLWHWXUD GH UHGH 8�1HW HP

FRQMXQWR FRP D 5HV1HW�� H FRPSDUDUDP HVVHV UHVXOWDGRV FRP PpWRGRV WUDGLFLR�

QDLV GH FODVVLILFDomR GH SL[HO H PpWRGRV EDVHDGRV HP REMHWRV� 2V PRGHORV IRUDP

WUHLQDGRV FRP LPDJHQV GR 6HQWLQHO�� H FRP XP 0'( JHUDGR SRU OLGDU� $ UHGH 8�

1HW � 5HV1HW�� REWHYH RV PHOKRUHV UHVXOWDGRV FRP XP FRHILFLHQWH GH FRUUHODomR

GH 0DWWKHZV GH ����� H WD[D GH GHWHFomR GH �����

/LX HW DO� ������ XWLOL]DUDP D UHGH 8�1HW FRP DOJXPDV PRGLILFDo}HV SDUD VHJ�

PHQWDU HVFRUUHJDPHQWRV GH WHUUD JHUDGRV DSyV WHUUHPRWRV� $V LPDJHQV XWLOL]DGDV

QR WUHLQDPHQWR GRPRGHOR FRQVLVWHP GDV EDQGDV 5*%� 0'(� GHFOLYLGDGH� DVSHFWR H

SRVVXHP UHVROXomR GH ���� PHWURV� 2V UHVXOWDGRV PRVWUDP TXH R PpWRGR XWLOL]DGR

REWHYH DFXUiFLD GH ������

6KL HW DO� ������ FRPELQDUDP DV WpFQLFDV GH GHWHFomR GH PXGDQoDV H UHGHV

QHXUDLV FRQYROXFLRQDLV SDUD GHWHFWDU HVFRUUHJDPHQWRV GH WHUUD QDV UHJL}HV GH /DQ�

WDX ,VODQG H 6KDUS 3HDN HP +RQJ .RQJ� $ WpFQLFD REWHYH XPD DFXUiFLD GH ����

4L HW DO� ������ XWLOL]DUDP D UHGH 5HV8�1HW SDUD PDSHDU HVFRUUHJDPHQWRV GH

WHUUD GH HVFDOD UHJLRQDO DXWRPDWLFDPHQWH� 2V PRGHORV IRUDP WUHLQDGRV FRP DV

EDQGDV 5*% GDV LPDJHQV *HR(\H�� FRP ��� PHWURV GH UHVROXomR� 2V UHVXOWDGRV

PRVWUDP TXH D 5HV8�1HW REWHYH UHVXOWDGRV VXSHULRUHV� HP ��� HP UHODomR D 8�1HW�

*KRUEDQ]DGHK� 0HHQD HW DO� ������ XWLOL]DUDP XPD UHGH QHXUDO FRQYROXFLRQDO

H D WpFQLFD GH 'HPSVWHU�6KDIHU �'�6� SDUD DYDOLDU TXDO D UHOHYkQFLD GH GDGRV yWL�

FRV H WRSRJUiILFRV QD SUHGLomR GRV PRGHORV� $V LPDJHQV XWLOL]DGDV IRUDP GR VHQVRU

3ODQHW�6FRSH H $/26� 2V UHVXOWDGRV PRVWUDP TXH XWLOL]DU GDGRV yWLFRV HP FRQMXQWR

FRP GDGRV GH WRSRJUDILD� HP HVSHFtILFR R VORSH� DX[LOLDP D GLIHUHQFLDU RV HVFRUUH�

JDPHQWRV GH RXWURV HOHPHQWRV FRP UHVSRVWD HVSHFWUDO VLPLODU�

<L H =KDQJ ������ GHVHQYROYHUDP D DUTXLWHWXUD GH UHGH FRQYROXFLRQDO FRQKH�

FLGD FRPR /DQGV1HW� TXH SHUPLWH TXH R PRGHOR DSUHQGD FDUDFWHUtVWLFDV GRV HV�
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FRUUHJDPHQWRV FRP GLIHUHQWHV GLPHQV}HV HVSDFLDLV� 2 PRGHOR REWHYH I��VFRUH GH

������ H IRL VXSHULRU HP �� H �� HP UHODomR D 5HV8�1HW H D 8�1HW� UHVSHFWLYD�

PHQWH�

0HHQD HW DO� ������ XWLOL]DUDP LPDJHQV GD 3ODQHW�6FRSH H IDWRUHV WRSRJUiILFRV

�GHFOLYLGDGH� SDUDU VHJPHQWDU� FRP UHGHV FRQYROXFLRQDLV� HVFRUUHJDPHQWRV GH WHUUD

JHUDGRV GHYLGR DR VLVWHPD GH PRQo}HV� QD ËQGLD� $ DFXUiFLD PpGLD DXPHQWRX GH

����� SDUD ��� TXDQGR RV GDGRV WRSRJUiILFRV IRUDP XWLOL]DGRV�

3UDNDVK� 0DQFRQL H /RHZ ������ DYDOLDUDP D FDSDFLGDGH GH JHQHUDOL]DomR GD

5HV8�1HW SDUD VHJPHQWDU HVFRUUHJDPHQWRV GH WHUUD HP GLIHUHQWHV ORFDOLGDGHV GR

PXQGR� 2 PpWRGR FRPELQD LPDJHQV GH HVFRUUHJDPHQWRV GH GLIHUHQWHV iUHDV GH

XPD PDQHLUD SURJUHVVLYD SDUD PHOKRUDU D FDSDFLGDGH GH JHQHUDOL]DomR GHVWHV PR�

GHORV� 2V UHVXOWDGRV PRVWUDP TXH D WpFQLFD p ~WLO SDUD VHJPHQWDU HVFRUUHJDPHQWRV

HP iUHDV TXH QmR SRVVXHP LQYHQWiULR ORFDO�

*KRUEDQ]DGHK� &ULYHOODUL HW DO� ������ XWLOL]DUDP DV LPDJHQV 6HQWLQHO�� H $/26

SDUD VHJPHQWDU HVFRUUHJDPHQWRV HP WUrV iUHDV GLVWLQWDV� 2 HVWXGR IRL R SULPHLUR D

XWLOL]DU LPDJHQV GLVSRQLELOL]DGDV JUDWXLWDPHQWH FRP D WpFQLFD GH GHHS OHDUQLQJ� 2

PDLRU YDORU GH I��VFRUH REWLGR IRL GH �������

*KRUEDQ]DGHK� 6KDKDEL HW DO� ������ LQWHJUDUDP D WpFQLFD GH GHHS OHDUQLQJ

FRP D DQiOLVH EDVHDGD HP REMHWRV �2%,$� SDUD GHWHFWDU RV HVFRUUHJDPHQWRV� 2V

PRGHORV IRUDP WUHLQDGRV FRP LPDJHQV 6HQWLQHO��� $ PHWRGRORJLD FRQVLVWLX HP FRP�

ELQDU R UHVXOWDGR REWLGR QR PRGHOR GH GHHS OHDUQLQJ FRP D LPDJHP RULJLQDO H DSOLFDU

D WpFQLFD GH 2%,$� 2 UHVXOWDGR PRVWUD TXH HVVH PRGHOR KtEULGR FRQVHJXLX YDORUHV

TXH VmR ��� VXSHULRUHV HP UHODomR D PRGHORV TXH XWLOL]DUHP DV WpFQLFDV LQGLYLGX�

DOPHQWH�

2V WUDEDOKRV DWp DTXL UHDOL]DGRV HYLGHQFLDP TXH DV UHGHV GH FRQYROXomR DSUH�

VHQWDP XPDPDLRU DFXUiFLD SDUD VHJPHQWDU RV GHVOL]DPHQWRV GH WHUUD� TXDQGR FRP�

SDUDGDV D RXWURV PRGHORV GH DSUHQGL]DGR GH PiTXLQD� $OpP GLVVR� QRWD�VH TXH p

FRPXP XP GHVEDODQFHDPHQWR HQWUH D FODVVH GH LQWHUHVVH �GHVOL]DPHQWR GH WHUUD�

H D FODVVH QHJDWLYD �EDFNJURXQG� QDV LPDJHQV XWLOL]DGDV QRV WUHLQDPHQWRV GR PR�

GHOR� GLILFXOWDQGR HVWH SURFHVVR� Mi TXH VmR QHFHVViULDV PHWRGRORJLDV TXH SHUPLWDP

UHGX]LU HVWH GHVEDODQFHDPHQWR� (P FRQMXQWR D LVWR� RV UHVXOWDGRV GHVWHV WUDEDOKRV

DLQGD LQGLFDP TXH DV UHGHV GH FRQYROXomR� HP SUREOHPDV GH DSUHQGL]DGR VXSHU�
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YLVLRQDGR� SRGHP DSUHQGHU UHSUHVHQWDo}HV GRV GDGRV VHP TXH VHMDP QHFHVViULDV

WpFQLFDV FRPSOH[DV GH SUp�SURFHVVDPHQWR� 3RUpP� DMXVWDU RV GDGRV GH LQSXW� FRQIL�

JXUDU RV SDUkPHWURV H DUTXLWHWXUDV GR PRGHOR DLQGD p XP GHVDILR� VHQGR QHFHVViULR

PDLV HVWXGRV TXH DERUGHP WDLV WHPiWLFDV�

1HVWH FHQiULR� HVWXGRV TXH DYDOLHP GLIHUHQWHV PpWRGRV GH DPRVWUDJHP� GL�

PHQV}HV GDV LPDJHQV GH WUHLQDPHQWR� FRQILJXUDo}HV H DUTXLWHWXUDV GH UHGH VmR UH�

OHYDQWHV� XPD YH] TXH H[LVWHP SRXFRV WUDEDOKRV TXH WLYHUDP WDO ILQDOLGDGH� $VVLP�

HVWH WUDEDOKR WHYH FRPR REMHWLYR SULQFLSDO XWLOL]DU DV UHGHV QHXUDLV FRQYROXFLRQDLV

SDUD VHJPHQWDU FLFDWUL]HV GH GHVOL]DPHQWR GH WHUUD HP LPDJHQV GH VHQVRUHV UHPR�

WRV GH PDQHLUD DXWRPiWLFD H DYDOLDU R LPSDFWR GH GLIHUHQWHV DUTXLWHWXUDV GH UHGH�

PpWRGRV GH DPRVWUDJHP H GLPHQV}HV GDV LPDJHQV GH WUHLQDPHQWR QD DFXUiFLD GR

PRGHOR� $OpP GLVVR� XP GRV IRFRV GR HVWXGR IRL WDPEpP HQWHQGHU D FDSDFLGDGH GH

JHQHUDOL]DomR GHVVHV PRGHORV� 3DUD LVVR� IRUDP WUHLQDGRV UHGHV WRWDOPHQWH FRQYR�

OXFLRQDLV �IXOO\ FRQYROXWLRQDO QHWZRUN�� 8�1HW� XWLOL]DQGR LPDJHQV 5DSLG(\H GH 1RYD

)ULEXUJR H 7HUHVySROLV� ORFDOL]DGDV QD UHJLmR 6HUUDQD GR 5LR GH -DQHLUR �5-�� H GH

5RODQWH� QR 5LR *UDQGH GR 6XO �56��

� 2%-(7,926

��� 2EMHWLYR *HUDO
� 6HJPHQWDU DXWRPDWLFDPHQWH FLFDWUL]HV GH GHVOL]DPHQWR GH WHUUD XWLOL]DQGR UH�

GHV QHXUDLV FRQYROXFLRQDLV�

��� 2EMHWLYRV (VSHFtILFRV
� $YDOLDU GLIHUHQWHV DUTXLWHWXUDV H SDUkPHWURV GH UHGH�

� $YDOLDU GLIHUHQWHV IRUPDV GH DPRVWUDJHP H GLPHQV}HV GH LQSXW�

� $YDOLDU R LPSDFWR GDV WpFQLFDV GDWD DXJPHQWDWLRQ H LQIRUPDo}HV WRSRJUiILFDV

QD DFXUiFLD GR PRGHOR�

� $YDOLDU D FDSDFLGDGH GH JHQHUDOL]DomR GRV PRGHORV�

� $YDOLDU WpFQFLDV GH SyV�SURFHVVDPHQWR GRV UHVXOWDGRV�

�
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(VWH WUDEDOKR HVWi RUJDQL]DGR QD IRUPD GH DUWLJRV� SRUWDQWR� VXD HVWUXWXUD FRQ�

WpP WUrV VHo}HV SULQFLSDLV� D VDEHU� IXQGDPHQWDomR WHyULFD �VHomR ��� UHVXOWDGRV

�VHomR �� H FRQFOXV}HV �VHomR ��� 1D VHomR GH IXQGDPHQWDomR WHyULFD VHUmR DSUH�

VHQWDGRV DVSHFWRV UHIHUHQWHV DRV GHVOL]DPHQWRV GH WHUUD� VHQVRULDPHQWR UHPRWR�

GHHS OHDUQLQJ H RSHUDo}HV PRUIROyJLFDV GH SyV�SURFHVVDPHQWR� $ VHomR GH UHVXO�

WDGRV DSUHVHQWD XP UHVXPR� HP SRUWXJXrV� GRV GRLV DUWLJRV GHVHQYROYLGRV GXUDQWH

HVWD SHVTXLVD H D UHIHUrQFLD SDUD RXWURV GRLV WUDEDOKRV TXH IRUDP GHVHQYROYLGRV HP

FRDXWRULD FRP SHVTXLVDGRUHV LQWHUQDFLRQDLV� 2V WH[WRV FRPSOHWRV� HP LQJOrV� HVWmR

QD VHomR GH DSrQGLFHV �VHomR ��� $ ~OWLPD VHomR FRUUHVSRQGH DV FRQFOXV}HV TXH

IRUDP REWLGDV GXUDQWH D SHVTXLVD�

�
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��� 0RYLPHQWRV GH 0DVVD
2V PRYLPHQWRV GH PDVVD VmR FDUDFWHUL]DGRV FRPR R GHVORFDPHQWR GH TXDO�

TXHU PDWHULDO WHUURVR RX URFKRVR VREUH D LQIOXrQFLD GLUHWD GD JUDYLGDGH� 'LYHUVRV DX�

WRUHV DSUHVHQWDP VLVWHPiWLFDV SDUD FODVVLILFDU HVWHV PRYLPHQWRV �9$51(6� �����

$8*8672 ),/+2� ����� 86*6� ������ $ FODVVLILFDomR GH $XJXVWR )LOKR ������

IRL HODERUDGD SDUD FDUDFWHUL]DU HVFRUUHJDPHQWRV SDUD R PHLR WURSLFDO H VXEWURSLFDO

~PLGR� WLSR FOLPiWLFR TXH p SUHGRPLQDQWH QD UHJLmR 6HUUDQD GR 5LR GH -DQHLUR H QD

6HUUD GR 0DU �',$6� ������ 3RU LVVR� HVVD IRL DGRWDGD QHVWH WUDEDOKR� 2 DXWRU GLYLGH

RV PRYLPHQWRV GH PDVVD HP TXDWUR WLSRORJLDV� UDVWHMRV� HVFRUUHJDPHQWRV� TXHGDV

H FRUULGDV� $ FDUDFWHUL]DomR GRV PRYLPHQWRV p IHLWD FRP EDVH QD JHRPHWULD� PHFD�

QLVPR GH PRYLPHQWDomR� QDWXUH]D� HVWDGR GR PDWHULDO PRELOL]DGR H FRPSRUWDPHQWR

DR ORQJR GR WHPSR�

2V UDVWHMRV �ILJXUD ��$� VmR PRYLPHQWRV OHQWRV H JUDGXDLV TXH RFRUUHP HP

WHUUHQRV FRP DOWD GHFOLYLGDGH� )HLo}HV FRPR GHJUDXV GH DEDWLPHQWRV HP HQFRVWDV�

WULQFDV HP SDUHGHV H iUYRUHV LQFOLQDGDV SRGHP LQGLFDU HVWH WLSR GH PRYLPHQWR�

$V FRUULGDV �ILJXUD ��%� RFRUUHP HP YHORFLGDGHV HOHYDGDV GHYLGR D FKXYDV LQ�

WHQVDV TXH PRELOL]DP XPD JUDQGH TXDQWLGDGH GH PDWHULDO DR ORQJR GDV GUHQDJHQV�

(VWHV PRYLPHQWRV WUDQVSRUWDP XP JUDQGH YROXPH GH PDWHULDO� SRU LVVR� WrP DOWR

SRGHU GHVWUXWLYR�

2V HVFRUUHJDPHQWRV �ILJXUD ��&� DSUHVHQWDP YHORFLGDGHV PpGLDV j DOWDV FRP

SODQRV GH UXSWXUD EHP GHILQLGRV H YDULiYHO YROXPH GH PDWHULDO WUDQVSRUWDGR� 2 VHX

PHFDQLVPR GHPRYLPHQWDomR HVWi DVVRFLDGRV DR WLSR GH UHOHYR� VROR H URFKD� VHQGR

GLYLGLGRV HP WUrV WLSRV� FXQKD� FLUFXODUHV H SODQDUHV�

2V HVFRUUHJDPHQWRV FLUFXODUHV SRVVXHP VXSHUItFLH GH UXSWXUD FXUYD TXH GHV�

ORFDP JUDQGH TXDQWLGDGH GH PDWHULDO GH IRUPD URWDFLRQDO� ÈUHDV FRP URFKDV PXLWR

IUDWXUDGDV H FRP VRORV EHP GHVHQYROYLGRV H KRPRJrQHRV VmR PDLV VXVFHSWtYHLV D

VXD RFRUUrQFLD� 2V HVFRUUHJDPHQWRV SODQDUHV RX UDVRV DSUHVHQWDP VXSHUItFLH GH

UXSWXUD SODQDU TXH� QR JHUDO� FRLQFLGH FRP DV GHVFRQWLQXLGDGHV GR PDWHULDO �MXQWDV�

IDOKDV� OLPLWHV OLWROyJLFRV�� 6mR SURFHVVRV TXH RFRUUHP HP SRUo}HV VXSHUILFLDLV GD

HQFRVWD� 2V HVFRUUHJDPHQWRV HP FXQKD HVWmR DVVRFLDGRV FRP VRORV H URFKDV FRP

�



GRLV SODQRV GH IUDTXH]D�

1R SUHVHQWH WUDEDOKR� RV WHUPRV ³GHVOL]DPHQWR GH WHUUD´ H� HP LQJOrV� ³ODQGV�

OLGHV³� VHUmR XWLOL]DGRV FRPR VLQ{QLPRV GRV WUrV WLSR GH SURFHVVRV GH HVFRUUHJD�

PHQWR �URWDFLRQDO� SODQDU H FXQKD��

$V TXHGDV �ILJXUD ��'� HVWmR DVVRFLDGDV D PRYLPHQWDomR GH DOWD YHORFLGDGH

GH PDWHULDLV URFKRVRV DR ORQJR GH XPD HQFRVWD� 2V SULQFLSDLV WLSRV GH PRYLPHQWD�

omR DJUXSDGRV QHVWD FDWHJRULD VmR� WRPEDPHQWRV GH EORFRV� URODPHQWR GH EORFRV�

TXHGD GH EORFRV H GHVSODFDPHQWR GH ODVFDV H EORFRV GH URFKD�

)LJXUD �� 7LSRV GH PRYLPHQWR GH PDVVD�

)RQWH� $GDSWDGR GH UF�XQHVS�EU�LJFH�DSOLFDGD�HDG�LQWHUDFDR�LQWHU���KWPO� DFHVVDGR HP

�����������

�



��� 6HQVRULDPHQWR 5HPRWR
2 VHQVRULDPHQWR UHPRWR p XPD FLrQFLD TXH YLVD REWHU LPDJHQV GD VXSHUItFLH

WHUUHVWUH SRU PHLR GD GHWHFomR H PHGLomR TXDQWLWDWLYD GDV UHVSRVWDV GDV LQWHUDo}HV

GD UDGLDomR HOHWURPDJQpWLFD �5(0� FRP RV PDWHULDLV WHUUHVWUHV �0(1(6(6� $/�

0(,'$� ������ 4XDOTXHU REMHWR FRP WHPSHUDWXUD DFLPD GH � .HOYLQ HPLWH 5(0�

SRUpP� SDUD TXH XPD LPDJHP VHMD JHUDGD� p QHFHVViULR TXH D IRQWH GHVWD UDGLDomR

SRVVXD XPD DOWD WD[D GH WUDQVIHUrQFLD GH HQHUJLD� &RP LVVR� R 6RO H D 7HUUD VmR DV

SULQFLSDLV IRQWHV QDWXUDLV GH 5(0 XWLOL]DGDV HP VHQVRULDPHQWR UHPRWR �ILJXUD ��� 2

6RO HPLWH XP HVSHFWUR FRQWtQXR TXH YDL GH FRPSULPHQWRV GH RQGDV PHQRUHV �XOWUD�

YLROHWD� D FRPSULPHQWRV PDLRUHV �LQIUDYHUPHOKR SUy[LPR H LQIUDYHUPHOKR GH RQGDV

FXUWDV�� 3RU RXWUR ODGR� D 7HUUD HPLWH FRPSULPHQWRV GH RQGDV PDLRUHV TXH GR VRO�

QD IDL[D GR LQIUDYHUPHOKR� ([LVWHP DOJXQV FRPSULPHQWRV GH RQGD� FRPR DV PLFUR�

RQGDV� TXH QmR SRGHP VHU HPLWLGDV SRU HVWDV IRQWHV� VHQGR SRU LVVR QHFHVViULR R

XVR GH IRQWHV DUWLILFLDLV�

)LJXUD �� (VSHFWUR HOHWURPDJQpWLFR HPLWLGR SHOR 6RO H 7HUUD�

)RQWH� 0RGLILFDGR GH KWWSV���ZZZ�ZHDWKHU�JRY�MHWVWUHDP�DEVRUE� DFHVVDGR HP �����������

$ UDGLDomR HOHWURPDJQpWLFD UHIOHWLGD SHORV DOYRV WHUUHVWUHV GHYH VHU FDSWDGD

SRU VHQVRUHV LQVWDODGRV HP SODWDIRUPDV GH DTXLVLomR �VDWpOLWHV� DHURQDYHV� EDVHV

GH REVHUYDomR� HWF�� SDUD TXH VHMD JHUDGD XPD LPDJHP GH VHQVRULDPHQWR UHPRWR

�ILJXUD �� � 3DUD LVVR� D UDGLDomR HOHWURPDJQpWLFD TXH SDUWH GH XPD IRQWH �$�� DTXL

��



R VRO VHUi XWLOL]DGR FRPR H[HPSOR� GHYH DWUDYHVVDU D DWPRVIHUD �%� H FKHJDU D XP

DOYR QD VXSHUItFLH WHUUHVWUH �&� H� DSyV LQWHUDJLU FRP HVWH DOYR� UHWRUQDU D XP VHQVRU

�'�� DWUDYHVVDQGR QRYDPHQWH D DWPRVIHUD� SRUpP DJRUD QR FDPLQKR DVFHQGHQWH� 2

VHQVRU UHJLVWUD R YDORU GH UDGLkQFLD� HPLWkQFLD H UHWURHVSDOKDPHQWR GRV DOYRV � HP

SL[HOV FXMRV YDORUHV VmR GLVFUHWL]DGRV HP Q~PHURV GLJLWDLV �0(1(6(6� $/0(,'$�

������ 3RVWHULRUPHQWH� H[LVWHP HVWDo}HV WHUUHVWUHV �(� TXH UHJLVWUDP R VLQDO GLJLWDO

HQYLDGR SHORV VDWpOLWHV H R FRQYHUWHP HP XPD LPDJHP GLJLWDO� WDPEpP FRQKHFLGD

FRPR UDVWHU� $QWHV GD GLVSRQLELOL]DomR GHVWDV LPDJHQV �*�� HP JHUDO� VmR UHDOL]DGDV

FRUUHo}HV DWPRVIpULFDV� JHRPpWULFDV� UDGLRPpWULFDV H GH UHDOFH �)��

)LJXUD �� 3URFHVVR GH DTXLVLomR GH XPD LPDJHP HP VHQVRULDPHQWR UHPRWR�

)RQWH� HODERUDGR SHOR DXWRU�

$ LQWHQVLGDGH GD LQWHUDomR HQWUH D 5(0 H R DOYR p GHILQLGD SRU VHX FRPSUL�

PHQWR GH RQGD� $V LQWHUDo}HV QR QtYHO PDFURVFySLFR RFRUUHP HP PDLRUHV FRPSUL�

PHQWRV GH RQGD �FRP PHQRU HQHUJLD�� TXH QmR JHUDP LQWHUDo}HV HP QtYHLV DW{PL�

FRV� &RP LVVR� DV LQWHUDo}HV RFRUUHP DSHQDV QRV QtYHLV VXSHUILFLDLV� R TXH IDYRUHFH

D LGHQWLILFDomR GH FDUDFWHUtVWLFDV PRUIROyJLFDV GRV DOYRV FRPR WH[WXUD H UXJRVLGDGH
�$ UDGLkQFLD p D PHGLGD GD GHQVLGDGH GH IOX[R UDGLDQWH TXH VH SURSDJD HP XPD GLUHomR GHILQLGD

SRU XP FRQH HOHPHQWDU QDTXHOD GLUHomR� $ HPLWkQFLD PHGH D HQHUJLD HPLWLGD SRU XP FRUSR SRU

VHJXQGR H XQLGDGH GH iUHD� 2 UHWURHVSDOKDPHQWR p D UHIOH[mR GRV VLQDLV HP VXD GLUHomR GH SDUWLGD�

�0(1(6(6� $/0(,'$� ������

��



�-(16(1� ������ -i RV PHQRUHV FRPSULPHQWRV GH RQGD FDUUHJDP HQHUJLD VXILFL�

HQWH SDUD JHUDU WUDQVLo}HV QRV QtYHLV GH HQHUJLD GRV iWRPRV H PROpFXODV GRV DOYRV�

'HVWD IRUPD� XPD YH] TXH PDWHULDLV GH GLIHUHQWHV FRPSRVLo}HV DSUHVHQWDP GLIH�

UHQWHV DEVRUWkQFLD H UHIOHFWkQFLD�� D SDUWH TXH p UHIOHWLGD GHVWD LQWHUDomR FDUUHJDUi

XPD DVVLQDWXUD HVSHFWUDO TXH FRQWpP LQIRUPDo}HV VREUH D FRPSRVLomR GR REMHWR

�0(1(6(6� $/0(,'$� 0(//2 %$37,67$� ������

$ DQiOLVH HVSHFWUDO GRV PDWHULDLV SHUPLWH TXH� HP VHQVRULDPHQWR UHPRWR� VH�

MDP UHDOL]DGDV LQWHUSUHWDo}HV TXH OHYDP HP FRQWD QmR DSHQDV D PRUIRORJLD GR PD�

WHULDO� PDV WDPEpP VXD UHIOHFWkQFLD� 3RUpP� SDUD D HVFROKD GD LPDJHP DGHTXDGD

SDUD UHDOL]DU HVWD LQWHUSUHWDomR� p QHFHVViULR DYDOLDU D UHVROXomR HVSDFLDO� HVSHF�

WUDO� UDGLRPpWULFD H WHPSRUDO GR VHQVRU TXH VHUi XWLOL]DGR� Mi TXH HVWHV IDWRUHV VmR

OLPLWDQWHV D HVWD DQiOLVH�

$ UHVROXomR HVSDFLDO VH UHIHUH DR LQWHUYDOR DPRVWUDO� H SRU FRQVHTXrQFLD� DR

WDPDQKR GR PHQRU REMHWR SDVVtYHO GH VHU LGHQWLILFDGR HP XPD LPDJHP� 3RU GHILQL�

omR� Vy p SRVVtYHO GHWHFWDU XP REMHWR TXDQGR VHX WDPDQKR p LJXDO RX PDLRU TXH R

WDPDQKR GR HOHPHQWR GH UHVROXomR QR WHUUHQR�

$ UHVROXomR HVSHFWUDO GHILQH D ODUJXUD GDV IDL[DV GR HVSHFWUR HOHWURPDJQpWLFR

TXH VmR DGTXLULGDV SRU XP VHQVRU� 8P VHQVRU WHP XPD PHOKRU UHVROXomR HVSHF�

WUDO TXDQGR DGTXLUH XP PDLRU Q~PHUR GH EDQGDV VLWXDGDV HP GLIHUHQWHV UHJL}HV

HVSHFWUDLV H FRP ODUJXUDV HVWUHLWDV� SHUPLWLQGR XPD FDUDFWHUL]DomR PDLV GHWDOKDGD

GD UHIOHFWkQFLD GH XP GHWHUPLQDGR DOYR�

$ PHGLGD GD LQWHQVLGDGH GH UDGLkQFLD GD iUHD GH FDGD SL[HO GHILQH D UHVROXomR

UDGLRPpWULFD� 2 Q~PHUR GLJLWDO JHUDGR QR VHQVRU p TXDQWL]DGR QD IRUPD GH Q~PHUR

GH GtJLWRV ELQiULRV �ELWV�� ,PDJHQV FRP XPD PDLRU TXDQWLGDGH GH ELWV� SRU H[HPSOR

�� ���� ELWV� UHJLVWUDP PDLRUHV GHWDOKHV YLVXDLV HP UHODomR D LPDJHQV FRP PHQRUHV

UHVROXo}HV UDGLRPpWULFDV GH �� � H � ���� ��� ��� ELWV�

2 WHPSR GH UHYLVLWD GR VHQVRU HP GHWHUPLQDGD iUHD GHILQH VXD UHVROXomR WHP�

SRUDO� 8PD YH] TXH H[LVWHP YDULDo}HV VD]RQDLV TXH SRGHP DIHWDU D UHVSRVWD HV�

SHFWUDO GRV DOYRV� p IXQGDPHQWDO DYDOLDU D UHVROXomR WHPSRUDO GH XPD LPDJHP SDUD

VH UHDOL]DU XPD FDUDFWHUL]DomR HVSHFWUDO DGHTXDGD� $OpP GLVVR� SDUD JHUDomR GH
�$ UHIOHFWkQFLD p FDOFXODGD SRU PHLR GD UD]mR HQWUH D UDGLkQFLD H D LUUDGLkQFLD �TXDQWLGDGH GH

HQHUJLD LQFLGHQWH QDTXHOD iUHD�� �0(1(6(6� $/0(,'$� 0(//2 %$37,67$� �����

��



VpULHV WHPSRUDLV TXH DYDOLDP PXGDQoDV RX HYROXo}HV QD VXSHUItFLH WHUUHVWUH� D UH�

VROXomR WHPSRUDO WHP XP SDSHO LPSRUWDQWH�

$ UHVROXomR HVSDFLDO GR VHQVRU p XP GRV IDWRUHV PDLV LPSRUWDQWHV QD HVFROKD

GH LPDJHQV SDUD DQDOLVDU H VHJPHQWDU GHVOL]DPHQWRV GH WHUUD� XPD YH] TXH Vy p

SRVVtYHO LGHQWLILFDU FRP FODUH]D DV IHLo}HV JHUDGDV SRU HVWHV HYHQWRV HP LPDJHQV

TXH DSUHVHQWDP UHVROXomR TXH VHMD VLPLODU D GLPHQVmR GD FLFDWUL] TXH p JHUDGD QR

VROR DSyV XP GHVOL]DPHQWR� $ UHVROXomR WHPSRUDO WDPEpP IDYRUHFH D LGHQWLILFDomR

GRV GHVOL]DPHQWRV Mi TXH p SRVVtYHO� SRU PHLR GH DQiOLVHV WHPSRUDLV H VXEWUDo}HV

HQWUH DV EDQGDV GH LPDJHQV REWLGDV HP GLIHUHQWHV GDWDV� LGHQWLILFDU iUHDV TXH SDV�

VDUDP SRU XP PDLRU SURFHVVR GH PXGDQoD� 3RUpP� XPD YH] TXH RV GHVOL]DPHQWRV

QmR DSUHVHQWDP UHVSRVWDV HVSHFWUDLV FDUDFWHUtVWLFDV TXH SHUPLWD GLVWLQJXL�ORV GH

REMHWRV FRP UHIOHFWkQFLD VLPLODU� FRPR VRORV H[SRVWRV� WHOKDGRV H ULRV FRP HOHYDGD

FDUJD GH IXQGR� FRPXPHQWH VmR XWLOL]DGDV URWLQDV FRPSOH[DV GH SUp SURFHVVDPHQWR

GH LPDJHQV H DOJRULWPRV GH FODVVLILFDomR QD WHQWDWLYD GH DFHOHUDU H IDFLOLWDU HVWH SUR�

FHVVR LGHQWLILFDomR�

$V WpFQLFDV GH FODVVLILFDomR GLJLWDO GH LPDJHP YLVDP LPSOHPHQWDU XP SURFHVVR

GH GHFLVmR TXH SHUPLWD DR FRPSXWDGRU DWULEXLU FHUWR FRQMXQWR GH SL[HOV D XPD GH�

WHUPLQDGD FODVVH� $ FODVVLILFDomR EDVHDGD HP SL[HO H EDVHDGD HP REMHWRV VmR RV

PpWRGRV GH FODVVLILFDomR GH LPDJHQV PDLV XWLOL]DGRV� 5HFHQWHPHQWH� D WpFQLFD GH

GHHS OHDUQLQJ �VHomR ����� XWLOL]DGD QHVWH WUDEDOKR� HVWi VHQGR FDGD YH] PDLV XWLOL�

]DGD SDUD FODVVLILFDU LPDJHQV HP VHQVRULDPHQWR UHPRWR�

����� &ODVVLILFDomR %DVHDGD HP 3L[HOV

$ FODVVLILFDomR EDVHDGD HP SL[HOV EXVFD FODVVLILFDU LQGLYLGXDOPHQWH FDGD SL�

[HO GH XPD LPDJHP FRP EDVH HP VHX SDGUmR HVSHFWUDO� (VWH SURFHVVR p R PDLV

FRPXP HP VHQVRULDPHQWR UHPRWR� SRGHQGR VHU UHDOL]DGR GH PDQHLUD VXSHUYLVLR�

QDGD RX QmR VXSHUYLVLRQDGD �-(16(1� ������ 1D FODVVLILFDomR VXSHUYLVLRQDGD R

DQDOLVWD GHYH IRUQHFHU DR DOJRULWPR DPRVWUDV TXH FRQWHQKDP LQIRUPDo}HV HVSHF�

WUDLV GD FODVVH GH LQWHUHVVH� $ SDUWLU GHVWDV LQIRUPDo}HV� TXH VmR XWLOL]DGDV FRPR

SDUkPHWURV GH HQWUDGD QR VLVWHPD GH FODVVLILFDomR� RV DOJRULWPRV EXVFDP FODVVLIL�

FDU RV SL[HOV FRP FRPSRUWDPHQWR HVSHFWUDO VHPHOKDQWH� 2V DOJRULWPRV FRPXPHQWH

XWLOL]DGRV VmR R GH Pi[LPD YHURVVLPLOKDQoD �0D[9HU�� PpWRGR GR SDUDOHOHStSHGR H

GLVWkQFLD HXFOLGLDQD� 6XSSRUW 9HFWRU 0DFKLQHV �690�� $GD%RRVW� ;J%RRVW H 'HHS

��



/HDUQLQJ� -i QD FODVVLILFDomR QmR VXSHUYLVLRQDGD R DOJRULWPR EXVFD DJUXSDU SL[HOV

VLPLODUHV HP JUXSRV �FOXVWHUV�� &DGD JUXSR p FRQVLGHUDGR FRPR UHSUHVHQWDWLYR GD

GLVWULEXLomR GH SUREDELOLGDGH GH XPD GHWHUPLQDGD FODVVH� 'HQWUH DV WpFQLFDV PDLV

XWLOL]DGDV HP VHQVRULDPHQWR UHPRWR GHVWDFD�VH D .�PHDQV�

����� &ODVVLILFDomR 2ULHQWDGD DR 2EMHWR

$ FODVVLILFDomR EDVHDGD HP REMHWRV� *HRJUDSKLF 2EMHFW�%DVHG ,PDJH $QDO\�

VLV �*(2%,$�� QmR FODVVLILFD LQGLYLGXDOPHQWH FDGD SL[HO� PDV HVWD WpFQLFD DJUXSD

SL[HOV TXH DSUHVHQWDP VLPLODULGDGHV HVSHFWUDLV� PRUIROyJLFDV H WH[WXUDLV HP REMH�

WRV SULPLWLYRV� 3DUD LVVR� p QHFHVViULR TXH D LPDJHP VHMD SDUWLFLRQDGD HP UHJL}HV

�VHJPHQWDomR� TXH VmR SRVWHULRUPHQWH DVVRFLDGDV D XPD FODVVH� e IXQGDPHQWDO

TXH D HWDSD GH VHJPHQWDomR VHMD EHP UHDOL]DGD� Mi TXH DV FDUDFWHUtVWLFDV GRV REMH�

WRV DOL GHOLPLWDGRV VHUmR XWLOL]DGDV SHOR DOJRULWPR SDUD VHJPHQWDU REMHWRV VLPLODUHV

�%/$6&+.(� ������

$V WpFQLFDV GH *(2%,$ JHUDOPHQWH VmR LQGLFDGDV HP LPDJHQV GH DOWD UHVR�

OXomR HVSDFLDO� Mi TXH HVWDV LPDJHQV DSUHVHQWDP XP QtYHO PDLRU GH GHWDOKH YLVXDO�

R TXH DXPHQWD D YDULDELOLGDGH HVSHFWUDO HP XP ~QLFR DOYR� JHUDQGR UXtGRV QR SUR�

FHVVR GH FODVVLILFDomR SRU SL[HOV� 2 DJUXSDPHQWR HP REMHWRV HQJORED HVWD YDULDomR

GH FDGD FODVVH H� FRQVHTXHQWHPHQWH� JHUD UHVXOWDGRV PHQRV UXLGRVRV H FRP PDLRU

TXDOLGDGH �(60$(/ HW DO�� ������

��



��� 'HHS /HDUQLQJ
2 GHHS OHDUQLQJ p XPD WpFQLFD GH DSUHQGL]DGR GH PiTXLQD HP TXH VH EXVFD�

SRU PHLR GH UHGHV QHXUDLV DUWLILFLDLV SURIXQGDV� GHVFREULU GH PDQHLUD DXW{QRPD� LVWR

p� VHP SURJUDPDomR H[SOtFLWD� UHJUDV H SDUkPHWURV D UHVSHLWR GH XP FRQMXQWR GH GD�

GRV TXH SRVVDP IRUQHFHU XPD UHSUHVHQWDomR DGHTXDGD SDUD R SUREOHPD HP TXHV�

WmR �<$1� <26+8$� *(2))5(<� ������ 2 WHUPR ³DSUHQGL]DGR SURIXQGR´ GHULYD

GD JUDQGH TXDQWLGDGH GH FDPDGDV HVFRQGLGDV �KLGGHQ OD\HUV�� ORFDOL]DGDV HQWUH D

FDPDGD GH HQWUDGD �LQSXW� H D FDPDGD GH VDtGD �RXWSXW��

2V PRGHORV SRGHP VHU WUHLQDGRV GH PDQHLUD VXSHUYLVLRQDGD� QmR VXSHUYLVLR�

QDGD H UHIRUoDGD� 1HVWH WUDEDOKR� IRL XWLOL]DGR R PpWRGR VXSHUYLVLRQDGR� Mi TXH DV

LPDJHQV XWLOL]DGDV QR SURFHVVR GD UHGH IRUDP SUHYLDPHQWH FODVVLILFDGDV� VHUYLQGR

FRPR XP JXLD SDUD R WUHLQDPHQWR GR PRGHOR�

$ HVFROKD GD DUTXLWHWXUD GH UHGH HVWi FRQGLFLRQDGD DR SUREOHPD HP TXHVWmR�

8PD YH] TXH R REMHWLYR GHVWH WUDEDOKR p FODVVLILFDU RV SL[HOV GD LPDJHP QDV FODVVHV

HVFRUUHJDPHQWRV GH WHUUD H EDFNJURXQG� FDUDFWHUL]DQGR R SUREOHPD GH VHJPHQWD�

omR VHPkQWLFD� D DUTXLWHWXUD FRQKHFLGD FRPR 8�1HW �5211(%(5*(5� ),6&+(5�

%52;� ����� IRL XWLOL]DGD�

����� 5HGHV 1HXUDLV $UWLILFLDLV

$V UHGHV QHXUDLV DUWLILFLDLV IRUDP GHVHQYROYLGDV LQVSLUDGDV QD HVWUXWXUD KLH�

UiUTXLFD H LQWHUFRQHFWDGD GR PRGHOR ELROyJLFR QHXUDO �*22')(//2:� %(1*,2�

&2859,//(� ������ (VWDV UHGHV VmR UHSUHVHQWDGDV SRU XP HPSLOKDPHQWR GH QHXU{�

QLRV RV TXDLV MXQWRV GHILQHP XPD FDPDGD� 2V QHXU{QLRV HVWmR WRWDOPHQWH LQWHUOL�

JDGRV �IXOO\ FRQQHFWHG� D QHXU{QLRV GH FDPDGDV DGMDFHQWHV SRU PHLR GH FRQH[}HV

TXH VmR FRQWURODGDV SRU SHVRV� 'XUDQWH R WUHLQDPHQWR GHVWDV UHGHV� EXVFD�VH FD�

OLEUDU R YDORU GHVWHV SHVRV XPD YH] TXH VmR HOHV TXH H[SUHVVDP D UHOHYkQFLD GD

LQIRUPDomR FRPSXWDGD SDUD D SUHGLomR ILQDO�

2V QHXU{QLRV VmR DV XQLGDGHV EiVLFDV GH XPD UHGH QHXUDO H WrP R SDSHO GH

UHDOL]DU RSHUDo}HV OLQHDUHV HP TXH SHVRV �Z� VmR PXOWLSOLFDGRV SRU XP YDORU GH HQ�

WUDGD �[� H DGLFLRQDGRV D XP YDORU GH ELDV �E� �1* HW DO�� ����� � 2 YDORU REWLGR HP

FDGD QHXU{QLR p PXOWLSOLFDGR SHOD IXQomR GH DWLYDomR QmR OLQHDU �α� TXH IDYRUHFH R

DXPHQWR GR JUDX GH OLEHUGDGH GD IXQomR FRPSXWDGD� &RQVHTXHQWHPHQWH� SHUPLWH

R DSUHQGL]DGR GH SDGU}HV FRPSOH[RV H QmR OLQHDUHV H[SUHVVRV QRV GDGRV �HTXDomR

��



� H ILJXUD ��� 2V SHVRV VmR YDORUHV TXH YDULDP GXUDQWH R SURFHVVR GH WUHLQDPHQWR

GD UHGH H YmR VHQGR FDOLEUDGRV SDUD GHILQLU RV YDORUHV PDLV UHOHYDQWHV SDUD D SUH�

GLomR GR PRGHOR� -i R YDORU GH ELDV IXQFLRQD FRPR XPD FRQVWDQWH TXH SHUPLWLUi R

GHVORFDPHQWR GD IXQomR GH DWLYDomR �.(//(+(5� ������

y = α(w · x+ b) ���

x2 w2 α f

)XQomR GH

$WLYDomR
y

6DtGD

x1 w1

x3 w3

3HVRV

%LDV

b

&DPDGDV GH (QWUDGD

)LJXUD �� 2SHUDomR UHDOL]DGD HP FDGD QHXU{QLR GH XPD UHGH QHXUDO DUWLILFLDO�

)RQWH� HODERUDGR SHOR DXWRU�

2 SURFHVVR GH WUDQVPLVVmR GH LQIRUPDomR� RX IRUZDUG SURSDJDWLRQ� HP XPD

UHGH GH YiULDV FDPDGDV H QHXU{QLRV� WDPEpP FRQKHFLGD FRPR PXOWL�OD\HU SHUFHS�

WURQ �ILJXUD ��� RFRUUH SRU PHLR GH FiOFXORV GH SURGXWRV HVFDODUHV HP FDGD FDPDGD

GD UHGH H SDVVDJHP GH LQIRUPDomR SDUD WRGRV RV QHXU{QLRV GD FDPDGD VHJXLQWH

�.(//(+(5� ������ e LPSRUWDQWH UHVVDOWDU TXH XPD YH] TXH R RXWSXW GH XPD FD�

PDGD DQWHULRU VH WRUQD R LQSXW GD SUy[LPD FDPDGD� DV FRPSXWDo}HV YmR VH WRUQDQGR

VXFHVVLYDPHQWH PDLV FRPSOH[DV H DEVWUDWDV j PHGLGD HP TXH DYDQoDP DWp R ~OWLPR

QHXU{QLR GD UHGH�

��



)LJXUD �� 5HGH QHXUDO GH P~OWLSODV FDPDGDV�

)RQWH� HODERUDGR SHOR DXWRU�

3DUD HOXFLGDU HVWH SURFHVVR� YHPRV TXH R QHXU{QLR D����� �ILJXUD �� LUi FRPSXWDU

XP SURGXWR HVFDODU HQWUH R YHWRU TXH FRQWpP RV SHVRV �Z�� TXH HVWmR OLJDGRV D

HVWHV QHXU{QLRV� H R YHWRU �D�� TXH FRQWpP RV LQSXWV �DGYLQGRV GRV LQSXWV [�� [��

[�� H DGLFLRQi�ORV D XP YDORU GH ELDV �E� �HT� ��� $ HVWH UHVXOWDGR VHUi DSOLFDGD XPD

IXQomR GH DWLYDomR �α�� 3RVWHULRUPHQWH� D LQIRUPDomR FDOFXODGD p WUDQVPLWLGD SDUD

WRGRV RV QHXU{QLRV GD FDPDGD VHJXLQWH �D������ TXH UHDOL]DUi XPD RSHUDomR VLPLODU

�HT� ��� SRUpP� DJRUD R LQSXW UHSUHVHQWD YDORUHV FRPSXWDGRV SHORV QHXU{QLRV GD

FDPDGD DQWHULRU �D����� 2 FiOFXOR UHDOL]DGR HP FDGD FDPDGD SRGH VHU JHQHUDOL]DGR

FRQIRUPH D HTXDomR �� 2QGH ´/´ UHSUHVHQWD D FDPDGD HP TXH R QHXU{QLR HVWi

ORFDOL]DGR H ´:´ D PDWUL] TXH FRQWpP RV SHVRV OLJDGRV D FDGD QHXU{QLR� VHQGR

FDGD OLQKD GHVWD PDWUL] FRUUHVSRQGHQWH D XP QHXU{QLR GD UHGH�

a1,( 1) = α(w(1) · a(0) + b1) ���

a1,( 2) = α(w(2) · a(1) + b1) ���

��



a(L) = α(W (L) · a(L−1) + b(L−1)) ���

(P UHGHV TXH XWLOL]DP R SURFHVVR GH WUHLQDPHQWR VXSHUYLVLRQDGR� FRPR D GHV�

FULWD QHVWH WUDEDOKR� R ~OWLPR QHXU{QLR p UHVSRQViYHO SRU FDOFXODU XP YDORU HVFDODU

TXH SHUPLWLUi DYDOLDU VH R YDORU GHWHUPLQDGR SHOR PRGHOR p LJXDO RX SUy[LPR DR YDORU

HVSHUDGR� (VVD FRPSDUDomR HQWUH R YDORU HVSHUDGR H R SUHYLVWR SHOR PRGHOR p UH�

DOL]DGD SRU XPD IXQomR GH FXVWR� &RP EDVH QHVVD IXQomR� RFRUUHUi R SURFHVVR GH

SURSDJDomR UHYHUVD �EDFNZDUG SURSDJDWLRQ� TXH SRU PHLR GR FiOFXOR GR JUDGLHQWH

GRV SHVRV LUi DMXVWi�ORV� HP FDGD pSRFD GH WUHLQDPHQWR �� YLVDQGR UHGX]LU R YDORU

GD IXQomR GH FXVWR�

$ IXQomR GH FXVWR �-� p XPD IXQomR GLIHUHQFLiYHO TXH p XWLOL]DGD SDUD PHQVXUDU

D TXDOLGDGH GD SUHGLomR TXH HVWi VHQGR UHDOL]DGD �&+$58� ������ $ IXQomR GH HUUR

PpGLR TXDGUiWLFR VHUi XWLOL]DGD DTXL FRPR H[HPSOR SDUD VLPSOLILFDU D H[SOLFDomR�

1D VHVVmR ����� D IXQomR GH HQWURSLD FUX]DGD ELQiULD XWLOL]DGD QHVWH WUDEDOKR p

H[SOLFDGD� 1D HTXDomR �� ´Z´ UHSUHVHQWD WRGRV RV SHVRV GD UHGH� ´E´ RV YDORUHV

GH ELDV� ´Q´ R WRWDO GH GDGRV GH WUHLQR H ´\´ R YDORU GH VDtGD GD UHGH� ´Ŷ ´ R YDORU

HVSHUDGR� 1RWH TXH QHVVD IXQomR R YDORU QXQFD p QHJDWLYR H VH DSUR[LPD GH ]HUR

j PHGLGD TXH R YDORU SUHGLWR SHOR PRGHOR VH DSUR[LPD GR YDORU HVSHUDGR�

J(w, b) =
1

2n

∑

x

(y − Ŷ )2 ���

$SyV R FiOFXOR GD IXQomR GH FXVWR� WHP LQtFLR D HWDSD GH EDFNZDUG SURSDJDWLRQ

HP TXH RV JUDGLHQWHV GDV IXQo}HV FRPSXWDGDV HP FDGD QHXU{QLR VmR FDOFXODGRV

GH PDQHLUD UHYHUVD� LVWR p� GD FDPDGD GH VDtGD GD UHGH DWp D SULPHLUD FDPDGD

HVFRQGLGD FRP EDVH QD UHJUD GD FDGHLD GR &iOFXOR� $ UHJUD GD FDGHLD p XWLOL]DGD

DTXL� SRLV XPD YH] TXH DV IXQo}HV FRPSXWDGDV QRV QHXU{QLRV VmR FRPSRVWDV GH

IXQo}HV FRPSXWDGDV HP QHXU{QLRV DQWHULRUHV� D GLIHUHQFLDomR GHYH VHJXLU D OyJLFD

GD HTXDomR �� HP TXH D GHULYDGD GD IXQomR H[WHUQD � I�[� � p PXOWLSOLFDGD SHOD

IXQomR LQWHUQD � J�[� �� 2 LQWXLWR GHVWH SURFHVVR p FDOFXODU R JUDGLHQWH GH FDGD

QHXU{QLR H FRP LVVR PRYHU RV SDUkPHWURV �SHVRV� GD UHGH QD GLUHomR QHJDWLYD GR

PDLRU JUDGLHQWH SDUD UHGX]LU R YDORU GD IXQomR GH FXVWR�
�8PD pSRFD GH WUHLQDPHQWR p GHILQLGD TXDQGR WRGRV RV GDGRV GLVSRQtYHLV VmR XWLOL]DGRV QR WUHL�

QDPHQWR GR PRGHOR�

��



d

dw
f(g(w)) = f ′(g(w)).g′(w) ���

$ ILJXUD � PRVWUD XPD UHGH QHXUDO VLPSOLILFDGD FRP DSHQDV XPD FDPDGD HV�

FRQGLGD TXH DX[LOLDUi D LOXVWUDU WRGR R SURFHVVR GH WUHLQDPHQWR� 1D HWDSD GH IRUZDUG

SURSDJDWLRQ R QHXU{QLR D����� LUi FRPSXWDU D VRPD SRQGHUDGD GRV SHVRV �Z� SHORV

YDORUHV GH HQWUDGD �[�� H[SUHVVD QD HTXDomR �� 2 QHXU{QLR D����� UHDOL]DUi R PHVPR

SURFHVVR FRQIRUPH GHVFULWR QD HTXDomR �� $R ILQDO� R UHVXOWDGR SDVVDUi SRU XPD

IXQomR GH DWLYDomR �α�� 2 QHXU{QLR GH VDtGD �\� LUi UHFHEHU R UHVXOWDGR GRV QHXU{�

QLRV DQWHULRUHV �D����� H D������ H UHDOL]DUi R FiOFXOR FRQIRUPH GHVFULWR QD HTXDomR ��

$R ILQDO� D IXQomR GH FXVWR VHUi FDOFXODGD XWLOL]DQGR R YDORU HVFDODU REWLGR QD VDtGD

GD UHGH H R YDORU HVSHUDGR �Ŷ ��

)LJXUD �� (WDSD GH IRUZDUG SURJDWLRQ�

)RQWH� HODERUDGR SHOR DXWRU�

a1,
( 1) = α(w1.x1 + w2.x2 + b1) ���

a2,
( 1) = α(w3.x1 + w4.x2 + b1) ���

y = α(w5.a1,
( 1) + w6.a2,

( 1) + b2) ���

$SyV R FiOFXOR GR YDORU GD IXQomR GH FXVWR� WHP LQtFLR D HWDSD GH EDFNSUR�

SDJDWLRQ TXH VHUi H[SOLFDGD HP GHWDOKHV� SRLV WUDWD�VH GD SDUWH PDLV FRPSOH[D H

��



FUXFLDO SDUD R IXQFLRQDPHQWR GH XPD UHGH QHXUDO� $VVLP� D IXQomR GH FXVWR �-� p

GHULYDGD FRP UHODomR DRV SHVRV �Z�� VHJXLQGR D UHJUD GD FDGHLD �HT� ����

∂J

∂w
= (y − Ŷ )2� = 2

2
(y − Ŷ ).y′ − Ŷ ����

$ GHULYDGD GD IXQomR \ �HT� �� VHJXLUi DV PHVPDV UHJUDV Mi TXH WDPEpP VH WUDWD

GH XPD IXQomR FRPSRVWD� 2 FiOFXOR RFRUUH GH DFRUGR FRP D HTXDomR ��� 1RWH TXH

Ŷ p XPD FRQVWDQWH� SRUWDQWR� GHL[D GH H[LVWLU QHVVD IXQomR Mi TXH VXD GHULYDGD p

]HUR�
∂J

∂w
= (y − Ŷ ).y′ = (y − Ŷ )α(w5.a1,

( 1) + w6.a2,
( 1) + b2)

′ ����

3DUD SURVVHJXLU FRP D GHULYDomR p QHFHVViULR GHILQLU D IXQomR GH DWLYDomR �α�� $V�

VLP� YLVDQGR IDFLOLWDU R HQWHQGLPHQWR� D IXQomR VLJPyLGH �HT� ��� VHUi FRQVLGHUDGD

HP WRGRV QHXU{QLRV ��

α(wTx+ b) =
1

1 + e−(wT x+b)
����

3URVVHJXLQGR FRP RV FiOFXORV �HT� ��� H GHULYDQGR D IXQomR HP UHODomR D Z��

RV YDORUHV GH Z� H GR ELDV �E� VmR FRQVLGHUDGRV FRQVWDQWHV� SRUWDQWR� VHX YDORU p �

�]HUR�� -i R YDORU GD GHULYDGD GH Z� p � �XP�� SRLV� FRQIRUPH D UHJUD GD LGHQWLGDGH�

D GHULYDomR VH Gi HP UHODomR D HVWH YDORU �HT� ���

∂J

∂w
= (y − Ŷ )α′(w5.a1,

( 1) + w6.a2,
( 1) + b2).(w5.a1,

( 1) + w6.a2,
( 1) + b2)

′ ����

∂J

∂w
= (y − Ŷ )α′(w5.a1,

( 1) + w6.a2,
( 1) + b2).a

(1)
1 ����

6DEHQGR TXH D GHULYDGD GD IXQomR VLJPyLGH p GHILQLGD FRQIRUPH D HTXDomR �� H

VXEVWLWXLQGR ´]´ SRU ´w5.a1,( 1) + w6.a2,( 1) + b2´� VH REWpP D HTXDomR ���

α′ = α(z).(1− α(z)) ����

∂α

∂w
= α(w5.a1,

( 1) + w6.a2,
( 1) + b2).(1− α(w5.a1,

( 1) + w6.a2,
( 1) + b2)) ����

�1HVWH WUDEDOKR� D IXomR VLJPyLGH IRL XWLOL]DGD DSHQDV QR ~OWLPR QHXU{QLR GD UHGH� 1RV GHPDLV

QHXU{QLRV D IXQomR 5HFWLILHG /LQHDU 8QLW �5H/8� IRL XWLOL]DGD� $PEDV DV IXQo}HV HVWmR H[SOLFDGDV

HP GHWDOKHV QD VHomR ������

��



1RWH TXH DV HTXDo}HV GHVWD IXQomR FRUUHVSRQGHP MXVWDPHQWH DR YDORU FRP�

SXWDGR QD FDPDGD GH VDtGD GD UHGH �\�� DVVLP� SRGH�VH VXEVWLWXLU HVWH YDORU H REWHU

D HTXDomR ��� -XQWDQGR R UHVXOWDGR GHVWD GHULYDomR FRP R TXH IRL REWLGR DQWHULRU�

PHQWH� FKHJD�VH QD HTXDomR ���

∂α

∂w
= y.(1− y) ����

∂J

∂w
= (y − Ŷ )y.(1− y).a(1)1 ����

(VWH UHVXOWDGR GHILQH R JUDGLHQWH GR SHVR Z� �HT� ��� H DQDORJDPHQWH R JUD�

GLHQWH GH Z� �HT� ���� 1RWH TXH DSHQDV R YDORU D���� p GLIHUHQWH� HP IXQomR GD

GHULYDomR GD HTXDomR ���� HP UHODomR D Z� H QmR PDLV D Z�� 2 SHQVDPHQWR DQi�

ORJR SRGH VHU UHDOL]DGR SDUD QHXU{QLRV TXH VH HQFRQWUDP HP FDPDGDV HVFRQGLGDV

DQWHULRUHV �)LJ� ���

∇w5 = (y − Ŷ ).y.(1− y).a(1)1 ����

∇w6 = (y − Ŷ ).y.(1− y).a(1)2 ����

)LJXUD �� (WDSD GH EDFNSURSDJDWLRQ�

)RQWH� HODERUDGR SHOR DXWRU�

1RWH TXH R FiOFXOR GR JUDGLHQWH SHUPLWH GHWHUPLQDU TXDO D GLUHomR TXH LUi GL�

UHFLRQDU D IXQomR GH FXVWR D WHU VHX YDORU UHGX]LGR� SRUpP p LPSRUWDQWH QRWDU TXH D

��



PDJQLWXGH GHVWH DMXVWH QmR SRGH VHU GHILQLGD SHOR SURFHVVR GH GHULYDomR� DVVLP R

SDUkPHWUR FRQKHFLGR FRPR OHDUQLQJ UDWH GHILQLUi HVWD PDJQLWXGH �ILJXUD ���

)LJXUD �� ,PSDFWR GR YDORU GH OHDUQLQJ UDWH QR SURFHVVR GH RWLPL]DomR�

)RQWH� HODERUDGR SHOR DXWRU�

2 OHDUQLQJ UDWH � α � p XP YDORU HVWDEHOHFLGR GXUDQWH R SURFHVVR GH WUHLQDPHQWR

TXH GHWHUPLQD TXDO D PDJQLWXGH GR DMXVWH TXH R DOJRULWPR GH RWLPL]DomR JUDGLHQW

GHVFHQW � UHDOL]DUi QRV SHVRV GH FDGD QHXU{QLR �HT� ����

w = w − α · ∂J
∂w

����

&RP RV DMXVWHV QRV SHVRV UHDOL]DGRV� R SURFHVVR GH WUHLQDPHQWR VH UHSHWH

SRU XP Q~PHUR SUp�GHWHUPLQDGR GH pSRFDV RX DWp TXH XPD GHWHUPLQDGD FRQGLomR

VHMD FXPSULGD� $ GHILQLomR GHVWH YDORU H D FDOLEUDomR GH RXWURV SDUkPHWURV �K\SHU�

SDUDPHWHUV� HVWmR GLUHWDPHQWH OLJDGRV D SHUIRUPDQFH GR PRGHOR� 7DLV SDUkPHWURV

VmR GHILQLGRV PDQXDOPHQWH H EXVFDP HYLWDU TXH R PRGHOR DSUHVHQWH RYHUILWWLQJ �YHU
�3DUD IDFLOLWDU D H[SOLFDomR� R RWLPL]DGRU FRQKHFLGR FRPR JUDGLHQW GHVFHQW VHUi XWLOL]DGR QHVWH

H[HPSOR� SRUpP� H[LVWHP RWLPL]DGRUHV PDLV DYDQoDGRV FRPR R $GDSWLYH 0RPHQW (VWLPDWLRQ �$GDP�

TXH IRL XWLOL]DGR QD SHVTXLVD H HVWi H[SOLFDGR HP GHWDOKHV QD VHomR ������

��



VHomR ������� LVWR p� SHUPLWLU TXH R PRGHOR UHDOL]H SUHGLo}HV FRUUHWDV HP GDGRV TXH

QmR IRUDP XWLOL]DGRV HP VHX WUHLQDPHQWR�

����� )XQo}HV GH $WLYDomR

$V IXQo}HV GH DWLYDomR VmR IXQo}HV GLIHUHQFLiYHLV TXH WUDQVIRUPDP R VLQDO GH

LQSXW HP RXWSXW� DGLFLRQDQGR XP FRPSRQHQWH QmR OLQHDU D HVWD WUDQVIRUPDomR� 7DO

UHVXOWDGR JXLD R SURFHVVR GH DWLYDomR RX QmR DWLYDomR GH XP QHXU{QLR� 1D HWDSD

GH EDFNSURSDJDWLRQ� D GLIHUHQFLDomR GHVWDV IXQo}HV DX[LOLDP R SURFHVVR GH RSWLPL�

]DomR GRV SHVRV� $V IXQo}HV VLJPyLGH� WDQJHQWH KLSHUEyOLFD �7DQ+�� XQLGDGH OLQHDU

UHWLILFDGD �5H/8�� /HDN\ 5H/8 H XQLGDGH OLQHDU H[SRQHQFLDO �(/8�� JHUDOPHQWH VmR

DV PDLV XWLOL]DGDV FRPR IXQo}HV GH DWLYDomR� 1HVWH WUDEDOKR IRUDP XWLOL]DGDV DV

IXQo}HV 5H/8 H VLJPyLGH�

$ IXQomR VLJPyLGH �ILJXUD ��� RX ORJtVWLFD� WUDQVIRUPD VHX LQSXW� TXH VH HQFRQ�

WUD QR GRPtQLR GRV Q~PHURV UHDLV� HP YDORUHV TXH HVWmR QR LQWHUYDOR ������ $VVLP�

JHUDOPHQWH HOD p XWLOL]DGD QR QHXU{QLR ILQDO HP SUREOHPDV GH FODVVLILFDomR ELQiULD�

$ GHULYDGD DSUHVHQWD R YDORU Pi[LPR ������ TXDQGR R YDORU GH LQSXW p ]HUR H j PH�

GLGD TXH R YDORU GLYHUJH GH ]HUR HP DPEDV DV GLUHo}HV� D GHULYDGD VH DSUR[LPD GH

]HUR�

)LJXUD �� *UiILFR GD IXQomR VLJPyLGH H GH VXD GHULYDGD GH SULPHLUD RUGHP�

)RQWH� HODERUDGR SHOR DXWRU�

$ IXQomR 5H/8 �ILJXUD ��� PDQWpP DSHQDV RV HOHPHQWRV SRVLWLYRV GR LQSXW H

WUDQVIRUPD RV YDORUHV QHJDWLYRV HP ]HUR� 'HYLGR D VLPSOLFLGDGH GHVWD WUDQVIRUPD�

��



omR QmR OLQHDU� H ERD SHUIRUPDQFH HP SUREOHPDV GH SUHGLomR� HVWD IXQomR p FRPX�

PHQWH XWLOL]DGD QRV QHXU{QLRV ORFDOL]DGRV QDV FDPDGDV HVFRQGLGDV �48,11 HW DO��

������ (VWD IXQomR DSUHVHQWD GHULYDGD GH YDORU ]HUR TXDQGR R LQSXW p QHJDWLYR H

XP ��� TXDQGR R YDORU p SRVLWLYR�

)LJXUD ��� *UiILFR GD IXQomR 5H/8 H GH VXD GHULYDGD GH SULPHLUD RUGHP�

)RQWH� HODERUDGR SHOR DXWRU�

����� )XQomR GH &XVWR

$ IXQomR GH FXVWR �-� p XWLOL]DGD SDUD PHQVXUDU D TXDOLGDGH GD SUHGLomR TXH

HVWi VHQGR UHDOL]DGD� 2 WUHLQDPHQWR GHPRGHORV VXSHUYLVLRQDGRV WHP FRPR REMHWLYR

PLQLPL]DU R YDORU GHVWD IXQomR� (P SUREOHPDV GH VHJPHQWDomR ELQiULD p FRPXP R

XVR GD IXQomR GH HQWURSLD FUX]DGD ELQiULD �HT� ���� 1HVWD HTXDomR� < UHSUHVHQWD R

YDORU HVSHUDGR� Ŷ R YDORU SUHGLWR SHOR PRGHOR� 1 R Q~PHUR GH DPRVWUDV�

J = − 1

N

N∑

i=1

(Y )(−log(Ŷ ) + (1− Y )(−log(1− Ŷ )) ����

����� /HDUQLQJ 5DWH

$ DWXDOL]DomR GRV SHVRV HQWUH RV QHXU{QLRV p IHLWD SHOR DOJRULWPR GH RWLPL]D�

omR� YLVDQGR HQFRQWUDU XP YDORU PtQLPR� TXH SRGH VHU ORFDO RX JOREDO� GD IXQomR

GH FXVWR� $ GLPHQVmR GR DMXVWH p FRQWURODGD SHOR OHDUQLQJ UDWH� SRU LVVR� p LP�

SRUWDQWH HQFRQWUDU XP YDORU LGHDO GH OHDUQLQJ UDWH� Mi TXH YDORUHV PXLWR HOHYDGRV

SRGHP GLILFXOWDU D FRQYHUJrQFLD� HQTXDQWR YDORUHV EDL[RV SRGHP OHYDU PXLWR WHPSR

��



SDUD FRQYHUJLU �ILJXUD ����

)LJXUD ��� ,PSDFWR GH GLIHUHQWHV YDORUHV GH OHDUQLQJ UDWH QD FRQYHUJrQFLD GR

PRGHOR�

)RQWH� 0RGLILFDGR GH KWWSV���ZZZ�MHUHP\MRUGDQ�PH�QQ�OHDUQLQJ�UDWH�� DFHVVDGR HP

�����������

����� )XQomR GH 2WLPL]DomR

$ IXQomR GH RWLPL]DomR WHP FRPR REMHWLYR DMXVWDU RV SHVRV GD UHGH QHXUDO� YL�

VDQGR UHGX]LU D IXQomR GH FXVWR� $ IXQomR $GDSWDWLYH 0RYHPHQW (VWLPDWLRQ �$GDP�

�.,1*0$� %$� ����� IRL XWLOL]DGD QHVWD SHVTXLVD� (VWH DOJRULWPR IRL GHVHQYROYLGR

SDUD DFHOHUDU R SURFHVVR GH RWLPL]DomR H p FRQVLGHUDGR R PHOKRU SDUD GLYHUVRV SUR�

EOHPDV HP TXH VH XWLOL]D D WpFQLFD GH GHHS OHDUQLQJ �%8'80$� /2&$6&,2� ������

$ IXQomR $GDP p XP DOJRULWPR TXH XWLOL]D FDUDFWHUtVWLFDV GRV DOJRULWPRV $GDS�

WLYH *UDGLHQW $OJRULWKP �$GD*UDG� H 5RRW 0HDQ 6TXDUH 3URSDJDWLRQ �5063URS� H

FRP LVVR FRQVHJXH UHDOL]DU XP DMXVWH SDUD R YDORU GH OHDUQLQJ UDWH GLQDPLFDPHQWH

SDUD FDGD SDUkPHWUR GD UHGH� $OpP GLVVR� JXDUGD R GHFDLPHQWR H[SRQHQFLDO GR

TXDGUDGR GRV JUDGLHQWHV DQWHULRUHV� 7DLV FDUDFWHUtVWLFDV IDFLOLWDP D FRQYHUJrQFLD

GRV PRGHORV� Mi TXH XP YDORU GH OHDUQLQJ UDWH IL[R p GHVYDQWDMRVR TXDQGR D IXQomR

GH FXVWR VH DSUR[LPD GH YDORUHV PtQLPRV H JXDUGDU R YDORU GRV GHFDLPHQWR GRV

JUDGLHQWHV PHOKRUD D HILFLrQFLD FRPSXWDFLRQDO H D HIHWLYLGDGH GR DOJRULWPR �*22'�

)(//2:� %(1*,2� &2859,//(� ������ 3DUD XPD H[SOLFDomR PDWHPiWLFD PDLV

GHWDOKDGD UHFRPHQGD�VH D OHLWXUD GH .LQJPD H %D �������

��



����� 2YHUILWWLQJ H 8QGHUILWWLQJ

$R WUHLQDU XP PRGHOR p LPSRUWDQWH TXH HVWH DSUHVHQWH ERD FDSDFLGDGH GH

JHQHUDOL]DomR� LVWR p� FODVVLILTXH FRUUHWDPHQWH GDGRV TXH QmR SDUWLFLSDUDP GR SUR�

FHVVR GH WUHLQDPHQWR� 3DUD LVWR� FRPXPHQWH R GDWDVHW p VHSDUDGR HP GDGRV GH

WUHLQR� YDOLGDomR H WHVWH� (VWHV GDGRV VmR XWLOL]DGRV SDUD DYDOLDU VH HVWi RFRUUHQGR

R SURFHVVR GH XQGHUILWWLQJ RX RYHUILWWLQJ �ILJXUD ����

)LJXUD ��� 3URFHVVR GH RYHUILWWLQJ H XQGHUILWWLQJ�

)RQWH� 0RGLILFDGR GH KWWSV���ZZZ�HGXFDWLYH�LR�HGSUHVVR�RYHUILWWLQJ�DQG�XQGHUILWWLQJ�

DFHVVDGR HP �����������

2 XQGHUILWWLQJ� RX DOWR ELDV� RFRUUH TXDQGR R PRGHOR REWLGR FRPHWH PXLWRV

HUURV DR VHU DYDOLDGR QRV GDGRV HP TXH IRL WUHLQDGR� ,VWR PRVWUD TXH R PRGHOR

XWLOL]DGR p PXLWR VLPSOHV RX DLQGD TXH RV GDGRV DSUHVHQWDGRV VmR LQVXILFLHQWHV SDUD

R PRGHOR DSUHQGHU UHSUHVHQWDo}HV UHOHYDQWHV DR SUREOHPD� $ XWLOL]DomR GH UHGHV

PDLV FRPSOH[DV ± SRU H[HPSOR� XPD UHGH QHXUDO FRP PDLV FDPDGDV HVFRQGLGDV ±

SRGH VHU XPD DOWHUQDWLYD SDUD UHVROYHU HVWH SUREOHPD�

3RU RXWUR ORGR� QR RYHUILWWLQJ� RX DOWD YDULkQFLD� R PRGHOR FRPHWH SRXFRV RX

QHQKXP HUUR QRV GDGRV GH WUHLQR� SRUpP DR VHU DYDOLDGR HP XP GDGR GH WHVWH R

HUUR p DOWR� ,VWR SRGH HYLGHQFLDU TXH R PRGHOR p PXLWR FRPSOH[R� SHUPLWLQGR R DMXVWH

SHUIHLWR DRV GDGRV GH WUHLQR� RX TXH D TXDQWLGDGH GH GDGRV GH WUHLQDPHQWR QmR p

VXILFLHQWH� 3DUD UHGX]LU R RYHUILWWLQJ� p FRPXP R XVR GH FDPDGDV GH UHJXODUL]DomR

�GURSRXW H EDWFK QRUPDOL]DWLRQ�� GDWD DXJPHQWDWLRQ H WUDQVIHUrQFLD GH FRQKHFLPHQWR

�WUDQVIHU OHDUQLQJ� �%85.29� ������

��



��� 5HGHV 1HXUDLV &RQYROXFLRQDLV
5HGHV 1HXUDLV &RQYROXFLRQDLV �51&� �&RQYROXWLRQ 1HXUDO 1HWZRUNV � &11�

IRUDP GHVHQYROYLGDV LQVSLUDGDV QR PRGR GH IXQFLRQDPHQWR GR VLVWHPD GH YLVmR

DQLPDO� &RQIRUPH GHVFULWR SHORV WUDEDOKRV GH +XEHO H :LHVHO ������ H 0DUU �������

R FyUWH[ YLVXDO SRVVXL XPD RUJDQL]DomR FRPSOH[D GH FpOXODV TXH DWXDP FRPR ILO�

WURV HP GLIHUHQWHV VXE�UHJL}HV GR FDPSR YLVXDO� (VWH SURFHVVR GH ILOWUDJHP RFRUUH

GH PRGR KLHUiUTXLFR HP TXH DV LQIRUPDo}HV PDLV FRPSOH[DV GH XP REMHWR FRPR

SURIXQGLGDGH H YROXPH VmR FRQVWUXtGDV D SDUWLU GH FDUDFWHUtVWLFDV PDLV VLPSOHV WDLV

FRPR ERUGDV� FXUYDV H YpUWLFHV� (VWHV SULPHLURV PRGHORV VHUYLUDP GH EDVH SDUD R

GHVHQYROYLPHQWR GDV 51&�

$V UHGHV FRQYROXFLRQDLV VmR FRQVLGHUDGDV FRPR XP WLSR GH UHGH QHXUDO DUWL�

ILFLDO GH P~OWLSODV FDPDGDV �/(&81 HW DO�� ������ $VVLP� VHX SURFHVVR GH WUHLQD�

PHQWR p DQiORJR DR GDV UHGHV QHXUDLV DUWLILFLDLV� 3RUpP� RV QHXU{QLRV QDV UHGHV

FRQYROXFLRQDLV VmR UHSUHVHQWDGRV SRU SHTXHQRV ILOWURV H QmR HVWmR WRWDOPHQWH FR�

QHFWDGRV XQV DRV RXWURV� 7DLV FDUDFWHUtVWLFDV SHUPLWHP TXH HVWDV UHGHV PDQWHQKDP

D HVWUXWXUD HVSDFLDO GRV GDGRV GH HQWUDGD� QmR VHQGR QHFHVViULR WUDQVIRUPi�ORV

HP XP YHWRU� $OpP GLVVR� DV UHSUHVHQWDo}HV DSUHHQGLGDV VmR ORFDLV� DR LQYpV GH

UHSUHVHQWDo}HV JOREDLV FRPR QDV UHGHV GHQVDV �&+2//(7� ������ &RP UHSUHVHQ�

WDo}HV ORFDLV R PRGHOR SRGH GHWHFWDU XP PHVPR SDGUmR HP GLIHUHQWHV SRVLo}HV

GD LPDJHP� $LQGD� DV UHSUHVHQWDo}HV REWLGDV DSUHVHQWDP XPD KLHUDUTXLD GH FRP�

SOH[LGDGH� HP TXH DV FDPDGDV LQLFLDLV GD UHGH VH HVSHFLDOL]DP HP GHWHFWDU IHLo}HV

VLPSOHV� D VDEHU� ERUGDV YHUWLFDLV� ERUGDV KRUL]RQWDLV H YpUWLFHV� H DV FDPDGDV PDLV

SURIXQGDV FRPELQDP HVWDV LQIRUPDo}HV SDUD REWHU SDGU}HV VXFHVVLYDPHQWH PDLV

FRPSOH[R H DEVWUDWRV�

$ DUTXLWHWXUD GH XPD UHGH GH FRQYROXomR p FRPSRVWD SRU XPD LQWHUFDODomR GH

FDPDGDV GH FRQYROXomR H SRROLQJ� $V FDPDGDV GH FRQYROXomR VmR SHTXHQDV PD�

WUL]HV GH Q~PHURV UHDLV� HP JHUDO GH GLPHQV}HV tPSDUHV ��[�� �[�� �[��� TXH IXQFL�

RQDP FRPR ILOWURV� WDPEpP FRQKHFLGRV FRPR NHUQHOV� (VWHV ILOWURV VH GHVORFDP SRU

WRGDV DV GLPHQV}HV GD LPDJHP UHDOL]DQGR SURGXWRV HVFDODUHV TXH JHUDP XPPDSD

GH FDUDFWHUtVWLFDV �IHDWXUH PDS� GD LPDJHP HP DQiOLVH� 2 WUHLQDPHQWR GHVWH WLSR

GH UHGH YLVD FDOLEUDU RV YDORUHV GHVWHV SHVRV SDUD TXH RV ILOWURV REWHQKDP FDUDFWH�

UtVWLFDV UHOHYDQWHV TXH SHUPLWDP LGHQWLILFDU GHWHUPLQDGR HOHPHQWR QD LPDJHP� (P

��



FRQWUDSDUWLGD� DV FDPDGDV GH SRROLQJ VmR XWLOL]DGDV SDUD UHGX]LU R FXVWR FRPSXWD�

FLRQDO Mi TXH GLPLQXHP D GLPHQVmR HVSDFLDO GR PDSD GH FDUDFWHUtVWLFD REWLGR SHODV

RSHUDo}HV GH FRQYROXomR H DX[LOLDP D UHPRYHU YDORUHV UHGXQGDQWHV H SUHVHUYDU RV

PDLV UHOHYDQWHV� 3DUD LVVR� SHTXHQDV MDQHODV PyYHLV� JHUDOPHQWH GH GLPHQV}HV

SDUHV ��[�� �[�� �[��� GHVORFDP�VH SRU WRGD D LPDJHP H[WUDLQGR R YDORU Pi[LPR

GRV HOHPHQWRV HQJOREDGRV SRU HVWD�

����� &DPDGDV GH &RQYROXomR

$V FDPDGDV GH FRQYROXomR DWXDP FRPR SHTXHQRV ILOWURV TXH VH GHVORFDP

SRU WRGD D LPDJHP UHDOL]DQGR SURGXWRV HVFDODUHV �ILJXUD ���� 2 UHVXOWDGR GHVWD

RSHUDomR SDVVD SRU XPD IXQomR GH DWLYDomR QmR OLQHDU TXH JHUD XP PDSD GH FD�

UDFWHUtVWLFD TXH FRQWpP UHSUHVHQWDo}HV DEVWUDWDV GRV GDGRV GH HQWUDGD� 2V PDSDV

JHUDGRV SHORV GLYHUVRV ILOWURV SUHVHQWHV HP XPD FDPDGD VmR HPSLOKDGRV IRUPDQGR

XP WHQVRU FXMD SURIXQGLGDGH p LJXDO DR Q~PHUR GH ILOWURV�

)LJXUD ��� 2SHUDomR GH FRQYROXomR�

)RQWH� HODERUDGR SHOR DXWRU�

$V FDPDGDV GH FRQYROXomR WrP FRPR LQSXW XPD PDWUL] WULGLPHQVLRQDO TXH

SRVVXL ODUJXUD� DOWXUD H SURIXQGLGDGH� $ ODUJXUD H DOWXUD UHSUHVHQWDP DV GLPHQV}HV

HVSDFLDLV GD LPDJHP� Mi D SURIXQGLGDGH FDUDFWHUL]D D TXDQWLGDGH GH FDQDLV GH FRU�

SUHVHQWHV QD LPDJHP� 2V ILOWURV GH FRQYROXomR TXH LUmR RSHUDU QHVWD LPDJHP� WDP�

EpP DSUHVHQWDUmR WUrV GLPHQV}HV� VHQGR TXH D ODUJXUD H D DOWXUD UHSUHVHQWDP DV

GLPHQV}HV HVSDFLDLV GR ILOWUR H D SURIXQGLGDGH VHUi D PHVPD GD LPDJHP GH LQSXW�

SHUPLWLQGR TXH HVWH ILOWUR RSHUH DR ORQJR GH WRGR R YROXPH GD LPDJHP �ILJXUD ����
�(P VHQVRULDPHQWR UHPRWR D SURIXQGLGDGH p HTXLYDOHQWH D TXDQWLGDGH GH EDQGDV HVSHFWUDLV SUH�

VHQWHV QR VHQVRU�

��



)LJXUD ��� 2SHUDomR GH FRQYROXomR HP XPD LPDJHP 5*%�

)RQWH� HODERUDGR SHOR DXWRU�

2 ILOWUR LUi VH PRYLPHQWDU DR ORQJR GD LPDJHP FRP EDVH QR VWULGH TXH p XP

SDUkPHWUR TXH GHILQH TXDO R GHVORFDPHQWR ODWHUDO� HP SL[HOV� 2 FRQWUROH GHVWH SDUk�

PHWUR HP FRQMXQWR FRP R SDGGLQJ� TXH UHSUHVHQWD D DGLomR GH SL[HOV QDV ERUGDV GD

LPDJHP� GHILQH TXDO VHUi D GLPHQVmR GH ODUJXUD H DOWXUD UHVXOWDQWH GH FDGD FDPDGD

GH FRQYROXomR �HT� ����

O =
(w −K + 2P )

S
+ 1 ����

1HVWD HTXDomR� ´2´ UHSUHVHQWD D GLPHQVmR GH VDtGD GD RSHUDomR GH FRQYR�

OXomR� ´:´ D GLPHQVmR �DOWXUD RX ODUJXUD� GR GDGR GH HQWUDGD� ´.´ D GLPHQVmR GR

ILOWUR� ´3´ R YDORU GH SDGGLQJ H ´6´ R YDORU GR VWULGH�

��



����� &DPDGDV GH 3RROLQJ

$V FDPDGDV GH SRROLQJ UHGX]HP D GLPHQVmR HVSDFLDO GRV PDSDV REWLGRV QDV

FDPDGDV GH FRQYROXomR� (VVD RSHUDomR WHP FRPR REMHWLYR UHGX]LU R FXVWR FRP�

SXWDFLRQDO H� DOpP GLVVR� UHDOoDU RV YDORUHV TXH PDLV DWLYDUDP RV NHUQHOV� &RQFHL�

WXDOPHQWH� HVWD RSHUDomR p VLPLODU D GH FRQYROXomR� SRUpP� RV ILOWURV� DR LQYpV GH

UHDOL]DUHP WUDQVIRUPDo}HV OLQHDUHV� H[WUDHP R PDLRU YDORU �PD[ SRROLQJ� RX R YDORU

PpGLR �DYHUDJH SRROLQJ� GRV HOHPHQWRV HQJOREDGRV SHOD MDQHOD GH ILOWUDJHP� $OpP

GLVVR� FRPXPHQWH DV MDQHODV GH SRROLQJ DSUHVHQWDP GLPHQVmR �[� H VWULGH � SDUD

UHGX]LU R PDSD GH FDUDFWHUtVWLFDV SHOD PHWDGH�

)LJXUD ��� 2SHUDo}HV GH 0D[ 3RROLQJ H $YHUDJH 3RROLQJ

)RQWH� HODERUDGR SHOR DXWRU�

����� &DPDGDV GH 'URSRXW

2 GURSRXW �65,9$67$9$ HW DO�� ����� p XPD WpFQLFD XWLOL]DGD GXUDQWH D IDVH

GH WUHLQDPHQWR GD UHGH TXH HQYROYH D GHVDWLYDomR DOHDWyULD FRP SUREDELOLGDGH S GH

XPD SDUFHOD GH QHXU{QLRV GRPRGHOR� $ LGHLD GHVWD WpFQLFD p UHGX]LU D FRPSOH[LGDGH

GR PRGHOR� FRQVHTXHQWHPHQWH� R RYHUILWWLQJ�

����� &DPDGDV GH %DWFK 1RUPDOL]DWLRQ

2 EDWFK QRUPDOL]DWLRQ �,2))(� 6=(*('<� ����� p XPD WpFQLFD XWLOL]DGD SDUD

HVWDELOL]DU D GLVWULEXLomR GRV GDGRV� HP XP JUXSR �EDWFK� GH DPRVWUDV� DQWHV GR

LQSXW GHVWHV YDORUHV QD SUy[LPD FDPDGD� 3DUD LVVR� FDOFXOD�VH D PpGLD DFXPXODGD

GRV RXWSXWV GH XPD GHWHUPLQDGD FDPDGD H HVWH YDORU p GLYLGR SHOR GHVYLR SDGUmR

GR JUXSR� 6HJXQGR 6DQWXUNDU HW DO� ������ HVWH SURFHGLPHQWR VXDYL]D R ³WHUUHQR´

GD IXQomR GH RSWLPL]DomR� R TXH SHUPLWH R XVR GH PDLRUHV YDORUHV GH OHDUQLQJ UDWH

H XPD FRQYHUJrQFLD PDLV UiSLGD GR PRGHOR�

��



��� 6HJPHQWDomR 6HPkQWLFD
$ VHJPHQWDomR VHPkQWLFD p GHILQLGD FRPR XP SUREOHPD GH FODVVLILFDomR HP

TXH VH EXVFD FODVVLILFDU� HP FODVVHV SUp�GHILQLGDV� RV SL[HOV GH XPD LPDJHP� (P

PRGHORV VXSHUYLVLRQDGRV� GHYH�VH UHDOL]DU XPD FODVVLILFDomR SUpYLD GRV SL[HOV GDV

LPDJHQV GH WUHLQR� TXH SRVWHULRUPHQWH VHUYLUi FRPR EDVH SDUD D JHUDomR GH XPD

PiVFDUD TXH LQGLFDUi DV FODVVHV FRUUHVSRQGHQWHV GH FDGD SL[HO� (VWD LPDJHP GHYH

DSUHVHQWDU DV GLPHQV}HV GH ODUJXUD H DOWXUD GD LPDJHP GH WUHLQR� 8PD YH] TXH

VH EXVFD FODVVLILFDU FDGD SL[HO GD LPDJHP� R UHVXOWDGR GHYH DSUHVHQWDU D PHVPD

GLPHQVmR HVSDFLDO GDV FDPDGDV GH LQSXW� $VVLP� DV UHGHV XWLOL]DGDV SDUD VHJPHQ�

WDomR JHUDOPHQWH XWLOL]DP DSHQDV FDPDGDV FRQYROXFLRQDLV HP VXD HVWUXWXUD� VHQGR

FRQKHFLGDV FRPR UHGHV WRWDOPHQWH FRQYROXFLRQDLV �IXOO\ FRQYROXWLRQDO QHWZRUNV��

$V UHGHV WRWDOPHQWH FRQYROXFLRQDLV FRPXPHQWH DSUHVHQWDP XPD HVWUXWXUD

TXH FRQWpP XP FDPLQKR FRQWUDFLRQDO �HQFRGHU�� R TXDO p UHVSRQViYHO SRU FDSWX�

UDU R FRQWH[WR GD LPDJHP� SRUpP QmR OHYD HP FRQWD D ORFDOL]DomR HVSDFLDO GR SL[HO

FODVVLILFDGR� 3DUD UHFXSHUDU D SRVLomR HVSDFLDO VmR UHDOL]DGDV RSHUDo}HV GH XS�

VDPSOLQJ H FRQFDWHQDomR HP XPD UHGH GH H[SDQVmR �GHFRGHU�� (P DUTXLWHWXUDV

FRPR D 8�QHW H[LVWHP FRQH[}HV TXH OLJDP DV UHSUHVHQWDo}HV REWLGDV GXUDQWH R

FDPLQKR FRQWUDFLRQDO DR FDPLQKR H[WHQVLRQDO SRU PHLR GH FRQFDWHQDo}HV�

����� 8�1HW

$ 8�QHW �5211(%(5*(5� ),6&+(5� %52;� ����� �ILJXUD ��� p XPD UHGH GH

VHJPHQWDomR WRWDOPHQWH FRQYROXFLRQDO GHVHQYROYLGD FRP LQWXLWR GH VHU WUHLQDGD GH

SRQWD D SRQWD �HQG�WR�HQG� FRP SRXFDV LPDJHQV� (VWD UHGH FODVVLILFD FDGD SL[HO GD

LPDJHP SRU PHLR GH XPD DUTXLWHWXUD GR WLSR HQFRGHU�GHFRGHU� $ SRVLomR HVSDFLDO

GD FODVVLILFDomR p UHFXSHUDGD QD HWDSD GHFRGHU SRU XP SURFHVVR GH XSVDPSOLQJ�

DWUDYpV GH FRQYROXo}HV WUDQVSRVWDV H FRQFDWHQDomR GRV PDSDV GH FDUDFWHUtVWLFDV�

ORFDOL]DGRV HP SRVLo}HV VLPpWULFDV QR FDPLQKR FRQWUDFLRQDO� e GHYLGR D HVWD VLPH�

WULD� VLPLODU D OHWUD ³8´� TXH D UHGH SRVVXL R QRPH GH 8�QHW�

��



)LJXUD ��� $UTXLWHWXUD GH UHGH 8�QHW�

)RQWH� 0RGLILFDGR GH 5RQQHEHUJHU� )LVFKHU H %UR[ �������

��



��� 2SHUDo}HV 0RUIROyJLFDV
$V RSHUDo}HV PRUIROyJLFDV IRUDP XWLOL]DGDV QHVWH WUDEDOKR SDUD PHOKRUDU RV

UHVXOWDGRV REWLGRV SHORV PRGHORV GH GHHS OHDUQLQJ� 8PD YH] TXH H[SOLFDo}HV GH�

WDOKDGDV VREUH D WHRULD PDWHPiWLFD PRUIROyJLFD IRJHP DR HVFRSR GHVWH WUDEDOKR�

UHFRPHQGD�VH D OHLWXUD GH *RQ]DOH] H :RRGV ������ SDUD H[SOLFDo}HV FRP PDLRU

ULJRU H GHWDOKH PDWHPiWLFR� 1HVWD VHomR� R IRFR SULQFLSDO VHUi H[SOLFDU R HIHLWR GH

FDGD XPD GDV RSHUDo}HV PRUIROyJLFDV QDV PiVFDUDV ELQiULDV TXH UHVXOWDP GRV PR�

GHORV GH GHHS OHDUQLQJ�

$PRUIRORJLDPDWHPiWLFD VXUJLX HP IXQomR GH SHVTXLVDV FRQMXQWDV GH*�0DWKH�

URQ H -� 6HUUD TXH XWLOL]DUDP D 7HRULD GRV &RQMXQWRV SDUD GHILQLU VXDV RSHUDo}HV�

&RP LVVR� D GHVFULomR FRPSOHWD GH XPD LPDJHP ELQiULD p FDUDFWHUL]DGD SHOR FRQ�

MXQWR GH WRGRV RV VHXV SL[HOV SUHWRV �0$7+(521� 6(55$� ������ $V RSHUDo}HV

PRUIROyJLFDV FRQVLVWHP HP SHUFRUUHU D LPDJHP FRP XP HOHPHQWR HVWUXWXUDQWH H

TXDQWLILFDU D IRUPD TXH HVWH VH HQFDL[D QD LPDJHP� $VVLP� SRGHP VHU UHDOL]DGDV

RSHUDo}HV GH HURVmR� GLODWDomR� DEHUWXUD H IHFKDPHQWR �ILJ� ���� (VWDV RSHUDo}HV

VmR WLSLFDPHQWH DSOLFDGDV QD UHPRomR GH LPSHUIHLo}HV LQWURGX]LGDV GXUDQWH D VHJ�

PHQWDomR�

��



)LJXUD ��� 2SHUDo}HV PRUIROyJLFDV

)RQWH� HODERUDGR SHOR DXWRU�

2 HOHPHQWR HVWUXWXUDQWH p XPD PDWUL] TXH SRVVXL DSHQDV YDORUHV ´�´H ´�´H TXH

SRVVXL GLPHQV}HV PHQRUHV TXH D LPDJHP VRE DQiOLVH� 6HX SL[HO FHQWUDO� RX RULJHP�

SHUFRUUH FDGD HOHPHQWR GD LPDJHP LGHQWLILFDQGR R SL[HO TXH VHUi SURFHVVDGR H

VXD YL]LQKDQoD� 2 HIHLWR GR SURFHVVDPHQWR p VLPLODU D XP SURFHVVR GH ILOWUDJHP H

GHSHQGH GD IRUPD GR RSHUDGRU TXH HVWi VHQGR XVDGR �ILJ� ����

��



)LJXUD ��� (OHPHQWRV HVWUXWXUDQWHV FRP GLIHUHQWHV GLPHQV}HV H IRUPDV�

)RQWH� HODERUDGR SHOR DXWRU�

����� (URVmR H 'LODWDomR

$ RSHUDomR GH HURVmR p XWLOL]DGD SDUD HVFXUHFHU D LPDJHP SRU PHLR GD DPSOLD�

omR GR SODQR GH IXQGR �SL[HOV SUHWRV� R TXH DX[LOLD D UHPRYHU FRPSRQHQWHV PHQRUHV

TXH R HOHPHQWR HVWUXWXUDQWH� DOpP GLVVR� DMXGD D VHSDUDU FRPSRQHQWHV FRQHFWDGRV�

3RGH�VH GHILQLU D HURVmR SHOD HTXDomR ��� HP TXH A#B UHSUHVHQWD D HURVmR GH $

SRU % H ´]´ WRGRV RV SRQWRV HP TXH %� WUDVODGDGRV SRU ]� FRQWpP $�

A# B = {z|(B)z ⊆ A} ����

$ GLODWDomR DX[LOLD D FODUHDU D LPDJHP� UHPRYHU RV UXtGRV GDV PiVFDUDV H

FRQHFWDU SHTXHQRV EXUDFRV �SL[HOV SUHWRV� TXH VH ORFDOL]DP HP PHLR DRV SL[HOV

EUDQFRV� (VWD RSHUDomR SRGH VHU GHILQLGD FRQIRUPH D HTXDomR ��� HP TXH A ⊕ B

UHSUHVHQWD D RSHUDomR GH GLODWDomR GH $ SRU % H ´]´ UHSUHVHQWD WRGRV RV GHVORFD�

PHQWRV HP TXH B̂ �UHIOH[mR GH % VREUH VXD RULJHP� H $ VH VREUHS}HP HP DR PHQRV

XP HOHPHQWR �*21=$/(=� :22'6� ������

A⊕ B = {z|[(B̂)z ∩ A] ⊆ A} ����

��



����� $EHUWXUD H )HFKDPHQWR

$V RSHUDo}HV GH DEHUWXUD JHUDOPHQWH DX[LOLDP D VXDYL]DU RV FRQWRUQRV GH XP

REMHWR� TXHEUDU SHTXHQDV OLJDo}HV HQWUH RV FRPSRQHQWHV H HOLPLQDU R UXtGRV GDV

LPDJHQV� -i DV RSHUDo}HV GH IHFKDPHQWR WDPEpP DX[LOLDP D VXDYL]DU RV FRQWRUQRV

GRV REMHWRV� SRUpP� DR FRQWUiULR GDV RSHUDo}HV GH DEHUWXUD� HODV DX[LOLDP D MXQWDU jV

FRPSRQHQWHV FRP SHTXHQR HVSDoDPHQWR� HOLPLQDU EXUDFRV HP REMHWRV H SUHHQFKHU

YD]LRV HP VHXV FRQWRUQRV �*21=$/(=� :22'6� ������

$ RSHUDomR GH DEHUWXUD SRGH VHU GHILQLGD FRQIRUPH D HTXDomR ��� $VVLP� D

DEHUWXUD GH $ SRU % p D HURVmR GH $ SRU % VHJXLGR SRU XPD GLODWDomR� 6LPLODUPHQWH�

R IHFKDPHQWR GH $ SHOR HOHPHQWR HVWUXWXUDQWH % p GHILQLGR FRPR D GLODWDomR GH $

SRU % VHJXLGR SHOD HURVmR GR UHVXOWDGR SRU % �HT� ����

A •B = (A⊕ B)# B ����

A ◦B = (A# B)⊕ B ����

��
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$ PHWRGRORJLD H RV UHVXOWDGRV REWLGRV QHVWH WUDEDOKR IRUDP RUJDQL]DGRV HP

GRLV DUWLJRV FLHQWtILFRV� 2 DUWLJR LQWLWXODGR ³/DQGVOLGH 6HJPHQWDWLRQ ZLWK 8�1HW� (YD�

OXDWLQJ 'LIIHUHQW 6DPSOLQJ 0HWKRGV DQG 3DWFK 6L]HV´ IRL HODERUDGR GXUDQWH R SUL�

PHLUR DQR GH SHVTXLVD H GLVSRQLELOL]DGR QR $U;LY QD IRUPD GH SUHSULQW � -i R DUWLJR

HODERUDGR GXUDQWH R VHJXQGR DQR GH SHVTXLVD H LQWLWXODGR ³/DQGVOLGH 6HJPHQWDWLRQ

ZLWK 'HHS /HDUQLQJ� (YDOXDWLQJ 0RGHO *HQHUDOL]DWLRQ LQ 5DLQIDOO�,QGXFHG /DQGVOL�

GHV LQ %UD]LO´ IRL VXEPHWLGR QD UHYLVWD LQGH[DGD 1DWXUDO +D]DUGV� $ VHomR DEDL[R

DSUHVHQWD XP EUHYH UHVXPR GHVWHV GRLV WUDEDOKRV� 2V WH[WRV FRPSOHWRV SRGHP VHU

FRQVXOWDGRV QRV DSrQGLFHV ��� H ���� UHVSHFWLYDPHQWH� 2XWURV GRLV WUDEDOKRV WDP�

EpP IRUDP UHDOL]DGRV HP FRDXWRULD FRP SHVTXLVDGRUHV GD 8QLYHUVLGDGH GH 6DO]�

EXUJ�QD ÈXVWULD� H GD 8QLYHUVLGDGH GH :XKDQ� QD &KLQD� (VWHV WUDEDOKRV SRGHP VHU

FRQVXOWDGRV QR DSrQGLFH ��� H ����

��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 8�1HW� (YDOXDWLQJ 'LIIH�

UHQW 6DPSOLQJ 0HWKRGV DQG 3DWFK 6L]HV
2 REMHWLYR GHVWD SHVTXLVD IRL DYDOLDU FRPR RV GLIHUHQWHV PpWRGRV GH DPRVWUD�

JHP H DV GLPHQV}HV GDV LPDJHQV GH WUHLQDPHQWR LPSDFWDP D DFXUiFLD GRV PRGHORV

GH GHHS OHDUQLQJ GXUDQWH D VHJPHQWDomR GH HVFRUUHJDPHQWRV GH WHUUD� $V LPDJHQV

XWLOL]DGDV SDUD R WUHLQDPHQWR H WHVWH GRV PRGHORV VmR GD UHJLmR GH 1RYD )ULEXUJR�

QR 5LR GH -DQHLUR �5-� H IRUDP REWLGDV GR VHQVRU 5DSLG(\H� )RUDP WDPEpP XWLOL�

]DGRV PRGHORV GLJLWDLV GH HOHYDomR IRUQHFLGRV SHOD $ODVND 6DWHOOLWH )DFLOLW\ FRP ��

PHWURV GH UHVROXomR�� $V LPDJHQV IRUDP DPRVWUDGDV HP GLPHQV}HV FRP ��[���

��[�� H ���[��� SL[HOV XWLOL]DQGR JULGV UHJXODUHV FRP VREUHSRVLomR GH ��� HQWUH

DV JUDGHV H GH PDQHLUD UDQG{PLFD� 2 SURFHVVR GH GDWD DXJPHQWDWLRQ WDPEpP IRL

XWLOL]DGR SDUD DXPHQWDU D TXDQWLGDGH GH DPRVWUDV GH WUHLQDPHQWR DUWLILFLDOPHQWH�

2V PRGHORV IRUDP WUHLQDGRV XWLOL]DQGR D UHGH WRWDOPHQWH FRQYROXFLRQDO FRQKHFLGD

FRPR 8�1HW� 2V UHVXOWDGRV PRVWUDP TXH RV DOJRULWPRV TXH XWLOL]DUDP LPDJHQV FRP

PDLRUHV GLPHQV}HV REWLYHUDPPDLRUHV YDORUHV GH SUHFLVmR� I��VFRUH H tQGLFH GH -DF�

FDUG� HQTXDQWR RV PRGHORV WUHLQDGRV FRP PHQRUHV GLPHQV}HV REWLYHUDP PDLRUHV

YDORUHV GH UHFDOO� $OpP GLVVR� RV PRGHORV TXH XWLOL]DUDP DPRVWUDJHP UDQG{PLFD

REWLYHUDP PDLRUHV DFXUiFLDV QDV iUHDV GH WHVWH DYDOLDGDV�

��



��� /DQGVOLGH 6HJPHQWDWLRQ ZLWK 'HHS /HDUQLQJ� (YDOXD�

WLQJ 0RGHO *HQHUDOL]DWLRQ LQ 5DLQIDOO�,QGXFHG /DQGVOL�

GHV LQ %UD]LO
2 WUDEDOKR WHYH FRPR REMHWLYR VHJPHQWDU FLFDWUL]HV GH HVFRUUHJDPHQWRV GH

WHUUD HP iUHDV GLVWLQWDV GD iUHD GH WUHLQDPHQWR� )RUDP DYDOLDGDV TXDWUR GLIHUHQWHV

GLPHQV}HV GH LPDJHQV GH WUHLQDPHQWR ���[��� ��[��� ���[��� H ���[��� SL[HOV�

SDUD FRPSUHHQGHU TXDO R LPSDFWR GD GLPHQVmR GD LPDJHP GH WUHLQDPHQWR QD FD�

SDFLGDGH GH JHQHUDOL]DomR GR PRGHOR� $ UHGH 8�1HW H DV LPDJHQV 5DSLG(\H H R

PRGHOR GLJLWDO GH HOHYDomR �0'(� GD PLVVmR 6570 IRUDP XWLOL]DGRV QR WUHLQDPHQWR

GRV PRGHORV� $ iUHD XWLOL]DGD SDUD R WUHLQDPHQWR FRUUHVSRQGH D UHJLmR GH 1RYD

)ULEXUJR �5-� H DV WUrV iUHDV XWLOL]DGDV SDUD DYDOLDU RV PRGHORV VH ORFDOL]DP HP

1RYD )ULEXUJR �5-�� 3HWUySROLV �5-� H 5RODQWH �56�� 2V UHVXOWDGRV PRVWUDP TXH RV

PRGHORV WUHLQDGRV FRP LPDJHQV GH PDLRU GLPHQVmR WHQGHP D VH HVSHFLDOL]DU QD

GHWHFomR GRV HVFRUUHJDPHQWRV TXH HVWmR SUHVHQWHV QD iUHD GH WUHLQR� $VVLP� RV

DOJRULWPRV WUHLQDGRV FRP LPDJHQV GH PHQRU GLPHQVmR DSUHVHQWDP PHOKRU FDSDFL�

GDGH GH JHQHUDOL]DomR SDUD DV GLIHUHQWHV iUHDV GD iUHD GH WUHLQDPHQWR� Mi TXH RV

PRGHORV QmR DSUHQGHP SDGU}HV HVSHFtILFRV GD iUHD GH WUHLQDPHQWR� 2V UHVXOWD�

GRV IRUDP SyV�SURFHVVDGRV FRP GLIHUHQWHV WpFQLFDV GH SURFHVVDPHQWR GH LPDJHQV

�HURVmR� GLODWDomR� DEHUWXUD H IHFKDPHQWR� H QRWRX�VH TXH R SyV�SURFHVVDPHQWR

GRV UHVXOWDGRV p XPD PDQHLUD HILFLHQWH SDUD DXPHQWDU D SUHFLVmR GRV UHVXOWDGRV�

��



� &21&/86®(6

$V DQiOLVHV H UHVXOWDGRV REWLGRV QHVWD SHVTXLVD HYLGHQFLDP TXH D WpFQLFD GH

GHHS OHDUQLQJ DSUHVHQWD JUDQGH SRWHQFLDO SDUD VHJPHQWDU GH PDQHLUD DXWRPiWLFD

RV HVFRUUHJDPHQWRV GH WHUUD� 3RUpP� HP IXQomR GD FRPSOH[LGDGH GR SUREOHPD

HP TXHVWmR H GD YDULHGDGH GH FRQILJXUDo}HV H DUTXLWHWXUDV TXH D WpFQLFD GH GHHS

OHDUQLQJ DSUHVHQWD� RV UHVXOWDGRV REWLGRV HYLGHQFLDP D LPSRUWkQFLD GD GLPHQVmR

GDV LPDJHQV GH WUHLQDPHQWR� GRV PpWRGRV GH DPRVWUDJHP H GDV FRQILJXUDo}HV GR

KLSHUSDUkPHWURV �K\SHUSDUDPHWHUV� GRV PRGHORV�

$ GLPHQVmR GDV LPDJHQV GH WUHLQDPHQWR p XP GRV SDUkPHWURV PDLV UHOHYDQ�

WHV� Mi TXH GH DFRUGR FRP D QDWXUH]D GR SUREOHPD TXH VH SUHWHQGH UHVROYHU� HOD

SDUHFH VHU XP IDWRU OLPLWDQWH� (P SUREOHPDV HP TXH VH GHVHMD VHJPHQWDU HVFRU�

UHJDPHQWRV HP iUHDV VLPLODUHV D iUHD GH WUHLQR� DV PDLRUHV GLPHQV}HV DQDOLVDGDV

���� [ ��� SL[HOV� ��� [ ��� SL[HOV� REWLYHUDP RVPHOKRUHV UHVXOWDGRV� SRLV RV PRGH�

ORV WRUQDP�VH PDLV HVSHFLDOL]DGRV QRV GDGRV GD iUHD GH WUHLQDPHQWR� 1R HQWDQWR�

HP SUREOHPDV HP TXH VH EXVFD VHJPHQWDU HVFRUUHJDPHQWRV HP iUHDV GLVWLQWDV GD

iUHD GH WUHLQDPHQWR� DV GLPHQV}HV PHQRUHV ���[�� H ��[�� SL[HOV� VmR PDLV HILFL�

HQWHV XPD YH] TXH R PRGHOR DSUHQGH SDGU}HV PDLV ³ORFDLV´ GRV HVFRUUHJDPHQWRV

H GD FHQD H DFDED QmR FRPSUHHQGHQGR FDUDFWHUtVWLFDV PDLV ³JOREDLV´ GD FHQD H

HVSHFtILFDV GD iUHD GH WUHLQDPHQWR�

2PpWRGR GH DPRVWUDJHP GDV LPDJHQV WDPEpP p IXQGDPHQWDO SDUD EXVFDU UH�

GX]LU R GHVEDODQFHDPHQWR HQWUH D FODVVH GH LQWHUHVVH �SRVLWLYD� H D FODVVH GH EDFN�

JURXQG �QHJDWLYD�� 2 PpWRGR XWLOL]DGR VH EDVHRX QD VHOHomR SRU ORFDOL]DomR TXH

VH PRVWURX HILFLHQWH SDUD HOLPLQDU DV iUHDV TXH QmR DSUHVHQWDP D FODVVH SRVLWLYD

H� FRQVHTXHQWHPHQWH� HTXLOLEUDU D TXDQWLGDGH GH DPRVWUDV FRP D FODVVH QHJDWLYD

�PDLV DEXQGDQWH�� SHUPLWLQGR D FRQYHUJrQFLD GR PRGHOR�

2V KLSHUSDUkPHWURV GD UHGH FRPR R EDWFK VL]H� YDULDo}HV GH DUTXLWHWXUD H YDORU

GH OHDUQLQJ UDWH WDPEpP VmR GLUHWDPHQWH UHVSRQViYHLV SHOD DFXUiFLD GRV UHVXOWDGRV

REWLGRV� e IXQGDPHQWDO WHVWDU GLYHUVDV FRPELQDo}HV GH YDORUHV HQWUH HVVHV SDUk�

PHWURV� HP XP SURFHVVR FRQKHFLGR FRPR JULG VHDUFK� SDUD HQFRQWUDU D FRPELQDomR

PDLV HILFLHQWH SDUD R SUREOHPD HP TXHVWmR�

$V RSHUDo}HV GH SyV�SURFHVVDPHQWR VmR HILFLHQWHV SDUD PHOKRUDU D SUHFLVmR

��



GRV UHVXOWDGRV REWLGRV� SRUpP� QmR H[LVWH XPD RSHUDomR TXH VHMD VXSHULRU D RXWUD�

p SUHFLVR WHVWDU GLYHUVDV FRPELQDo}HV HQWUH HODV SDUD HQFRQWUDU R PHOKRU UHVXOWDGR�

([LVWHP DOJXPDV OLPLWDo}HV GR WUDEDOKR UHDOL]DGR TXH PHUHFHP VHU UHVVDOWD�

GDV SDUD VHUYLU GH PRWLYDomR SDUD HVWXGRV IXWXURV� $V LPDJHQV XWLOL]DGDV QR SUR�

FHVVR GH WUHLQDPHQWR GRV PRGHORV IRUDP DSHQDV GR VDWpOLWH 5DSLG(\H� SRUWDQWR�

DLQGD H[LVWHP G~YLGDV FRP UHODomR D FDSDFLGDGH GH JHQHUDOL]DomR GD WpFQLFD GH

GHHS OHDUQLQJ SDUD VHJPHQWDU RV HVFRUUHJDPHQWRV HP LPDJHQV REWLGDV SRU GLIH�

UHQWHV VHQVRUHV� $XWRUHV FRPR 3UDNDVK� 0DQFRQL H /RHZ ������ H *KRUEDQ]DGHK�

&ULYHOODUL HW DO� ������ UHDOL]DUDP DOJXQV HVWXGRV VHJXLQGR HVVD GLUHomR� SRUpP H[LV�

WHP DLQGD SRXFRV WUDEDOKRV H DV FRQFOXV}HV VmR LQFLSLHQWHV SDUD DYDOLDU GH PDQHLUD

DPSOD R SRWHQFLDO QHVVH WLSR GH DSOLFDomR� 2XWUR IDWRU TXH PHUHFH DWHQomR p D UH�

VROXomR HVSDFLDO GR PRGHOR GLJLWDO GH HOHYDomR �0'(� XWLOL]DGR QHVWD SHVTXLVD� 2V

GDGRV XWLOL]DGRV VmR GD PLVVmR 6570� FRP �� PHWURV GH UHVROXomR HVSDFLDO� H

GR 6570 GD $ODVND 6DWHOOLWH )DFLOLW\� UHDPRVWUDGR SDUD �� PHWURV GH UHVROXomR�

$VVLP� XPD YH] TXH RV GDGRV DSUHVHQWDP UHVROXo}HV GLVWLQWDV GDV LPDJHQV 5D�

SLG(\H XWLOL]DGDV �� PHWURV�� HP QHQKXP GRV HVWXGRV UHDOL]DGRV REVHUYRX�VH PH�

OKRUD VLJQLILFDWLYD QRV PRGHORV DR XWLOL]DU HVWHV 0'(V� 2V DXWRUHV /LX HW DO� �������

*KRUEDQ]DGHK� 0HHQD HW DO� ������ H 0HHQD HW DO� ������ REVHUYDUDP PHOKRUDV

QD VHJPHQWDomR XWLOL]DQGR IDWRUHV WRSRJUiILFRV HP FRQMXQWR FRP RV GDGRV yWLFRV�

SRUpP� DLQGD QmR H[LVWHP WUDEDOKRV TXH DYDOLHP VH RV GDGRV WRSRJUiILFRV WDPEpP

DX[LOLDP QD FDSDFLGDGH GH JHQHUDOL]DomR GRV PRGHORV GH GHHS OHDUQLQJ�

��
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$8*8672 ),/+2� 2VZDOGR� &DUDFWHUL]DomR JHROyJLFR�JHRWpFQLFD YROWDGD j

HVWDELOL]DomR GH HQFRVWDV� XPD SURSRVWD PHWRGROyJLFD� ,Q� &21)(5Ç1&,$

%UDVLOHLUD VREUH (VWDELOLGDGH GH (QFRVWDV�&2%5$(� $QDLV� >6�O�� V�Q�@� �����

S� ���±����

%/$6&+.(� 7KRPDV� 2EMHFW EDVHG LPDJH DQDO\VLV IRU UHPRWH VHQVLQJ� ,6356

MRXUQDO RI SKRWRJUDPPHWU\ DQG UHPRWH VHQVLQJ� (OVHYLHU� Y� ��� Q� �� S� �±��� �����

%/$6&+.(� 7KRPDV HW DO� *HRJUDSKLF REMHFW�EDVHG LPDJH DQDO\VLV±WRZDUGV D

QHZ SDUDGLJP� ,6356 MRXUQDO RI SKRWRJUDPPHWU\ DQG UHPRWH VHQVLQJ� (OVHYLHU�

Y� ��� S� ���±���� �����

%8'80$� 1LNKLO� /2&$6&,2� 1LFKRODV� )XQGDPHQWDOV RI GHHS OHDUQLQJ� 'HVLJQLQJ

QH[W�JHQHUDWLRQ PDFKLQH LQWHOOLJHQFH DOJRULWKPV� >6�O�@� ´2¶5HLOO\ 0HGLD� ,QF�´� �����

%85.29� $QGUL\� 7KH KXQGUHG�SDJH PDFKLQH OHDUQLQJ ERRN� >6�O�@� $QGUL\ %XUNRY

4XHEHF &LW\� &DQ�� �����

&+$58� & $JJDUZDO� 1HXUDO 1HWZRUNV DQG 'HHS /HDUQLQJ� $ 7H[WERRN� >6�O�@�

6SLQJHU� �����

&+(1� =KRQJ HW DO� $XWRPDWHG ODQGVOLGHV GHWHFWLRQ IRU PRXQWDLQ FLWLHV XVLQJ

PXOWL�WHPSRUDO UHPRWH VHQVLQJ LPDJHU\� 6HQVRUV� 0XOWLGLVFLSOLQDU\ 'LJLWDO

3XEOLVKLQJ ,QVWLWXWH� Y� ��� Q� �� S� ���� �����

&+2//(7� )UDQoRLV� 'HHS /HDUQLQJ ZLWK 3\WKRQ� >6�O�@� 0DQQLQJ� QRY� ����� ,6%1

��������������

(0�'$7� &5('� 7KH LQWHUQDWLRQDO GLVDVWHU GDWDEDVH� &HQWHU IRU 5HVHDUFK RQ WKH

(SLGHPLRORJ\ RI 'LVDVWHUV� $YDLODEOH DW� KWWSV���ZZZ� HPGDW� EH >$FFHVVHG RQ

����������@� �����

',$6� +HOHQ &ULVWLQD� 0RGHODJHP GD VXVFHWLELOLGDGH D HVFRUUHJDPHQWRV UDVRV

FRP EDVH HP DQiOLVHV HVWDWÕғVWLFDV� 'LVVHUWDomR �0HVWUDGR HP *HRJUDILD )tVLFD��

>6�O�� V�Q�@� �����

��



',$6� +HOHQ &ULVWLQD HW DO� /DQGVOLGH UHFRJQLWLRQ XVLQJ 690� 5DQGRP )RUHVW� DQG

0D[LPXP /LNHOLKRRG FODVVLILHUV RQ KLJK�UHVROXWLRQ VDWHOOLWH LPDJHV� $ FDVH VWXG\ RI

,WDyFD� VRXWKHDVWHUQ %UD]LO� %UD]LOLDQ -RXUQDO RI *HRORJ\� 6FL(/2 %UDVLO� Y� ���

�����

',1*� $Q]L HW DO� $XWRPDWLF UHFRJQLWLRQ RI ODQGVOLGH EDVHG RQ &11 DQG WH[WXUH

FKDQJH GHWHFWLRQ� ,Q� ,(((� ���� ��VW <RXWK $FDGHPLF $QQXDO &RQIHUHQFH RI

&KLQHVH $VVRFLDWLRQ RI $XWRPDWLRQ �<$&�� >6�O�� V�Q�@� ����� S� ���±����

(60$(/� $JQDOGR $SDUHFLGR HW DO� &ODVVLILFDomR PXOWLFODVVH PXOWLHVFDOD GH

LPDJHQV GH VHQVRULDPHQWR UHPRWR� >VQ@� �����

*+25%$1=$'(+� 2PLG� %/$6&+.(� 7KRPDV HW DO� (YDOXDWLRQ RI GLIIHUHQW

PDFKLQH OHDUQLQJ PHWKRGV DQG GHHS�OHDUQLQJ FRQYROXWLRQDO QHXUDO QHWZRUNV IRU

ODQGVOLGH GHWHFWLRQ� 5HPRWH 6HQVLQJ� 0XOWLGLVFLSOLQDU\ 'LJLWDO 3XEOLVKLQJ ,QVWLWXWH�

Y� ��� Q� �� S� ���� �����

*+25%$1=$'(+� 2PLG� &5,9(//$5,� $OHVVDQGUR HW DO� $ FRPSUHKHQVLYH

WUDQVIHUDELOLW\ HYDOXDWLRQ RI 8�1HW DQG 5HV8�1HW IRU ODQGVOLGH GHWHFWLRQ IURP

6HQWLQHO�� GDWD �FDVH VWXG\ DUHDV IURP 7DLZDQ� &KLQD� DQG -DSDQ�� 6FLHQWLILF

5HSRUWV� 1DWXUH 3XEOLVKLQJ *URXS� Y� ��� Q� �� S� �±��� �����

*+25%$1=$'(+� 2PLG� 0((1$� 6DQVDU 5DM HW DO� /DQGVOLGH 0DSSLQJ 8VLQJ

7ZR 0DLQ 'HHS�/HDUQLQJ &RQYROXWLRQ 1HXUDO 1HWZRUN 6WUHDPV &RPELQHG E\ WKH

'HPSVWHU±6KDIHU 0RGHO� ,((( -RXUQDO RI VHOHFWHG WRSLFV LQ DSSOLHG HDUWK

REVHUYDWLRQV DQG UHPRWH VHQVLQJ� ,(((� Y� ��� S� ���±���� �����

*+25%$1=$'(+� 2PLG� 6+$+$%,� +HMDU HW DO� /DQGVOLGH GHWHFWLRQ XVLQJ GHHS

OHDUQLQJ DQG REMHFW�EDVHG LPDJH DQDO\VLV� /DQGVOLGHV� 6SULQJHU� S� �±��� �����

*21=$/(=� 5DIDHO &�� :22'6� 5LFKDUG (� 'LJLWDO LPDJH SURFHVVLQJ� 8SSHU

6DGGOH 5LYHU� 1�-�� 3UHQWLFH +DOO� ����� ,6%1 �������������� 'LVSRQtYHO HP�

�?iiT,ffrrrX�K�xQMX+QKf.B;Bi�H@AK�;2@S`Q+2bbBM;@j`/@

1/BiBQMf/TfyRjRe3dk3s!�

*22')(//2:� ,DQ� %(1*,2� <RVKXD� &2859,//(� $DURQ� 'HHS OHDUQLQJ� >6�O�@�

0,7 SUHVV� �����

��
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+(59È6� -DYLHU� %2%52:6.<� 3HWHU� 0DSSLQJ� LQYHQWRULHV� VXVFHSWLELOLW\� KD]DUG

DQG ULVN� ,Q� /$1'6/,'(6±',6$67(5 5LVN 5HGXFWLRQ� >6�O�@� 6SULQJHU� �����

S� ���±����

+8%(/� 'DYLG +� :,(6(/� 7RUVWHQ 1� 5HFHSWLYH ILHOGV RI VLQJOH QHXURQHV LQ WKH

FDW¶V VWULDWH FRUWH[� 7KH -RXUQDO RI SK\VLRORJ\� :LOH\ 2QOLQH /LEUDU\� Y� ���� Q� ��

S� ���±���� �����

,2))(� 6HUJH\� 6=(*('<� &KULVWLDQ� %DWFK QRUPDOL]DWLRQ� $FFHOHUDWLQJ GHHS

QHWZRUN WUDLQLQJ E\ UHGXFLQJ LQWHUQDO FRYDULDWH VKLIW� DU;LY SUHSULQW

DU;LY������������ �����

-(16(1� -RKQ 5� 5HPRWH VHQVLQJ RI WKH HQYLURQPHQW� $Q HDUWK UHVRXUFH

SHUVSHFWLYH ��H� >6�O�@� 3HDUVRQ (GXFDWLRQ ,QGLD� �����
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ABSTRACT

Landslide inventory maps are crucial to validate predictive landslide models; however, since most
mapping methods rely on visual interpretation or expert knowledge, detailed inventory maps are still
lacking. This study used a fully convolutional deep learning model named U-net to automatically
segment landslides in the city of Nova Friburgo, located in the mountainous range of Rio de Janeiro,
southeastern Brazil. The objective was to evaluate the impact of patch sizes, sampling methods, and
datasets on the overall accuracy of the models. The training data used the optical information from
RapidEye satellite, and a digital elevation model (DEM) derived from the L-band sensor of the ALOS
satellite. The data was sampled using random and regular grid methods and patched in three sizes
(32x32, 64x64, and 128x128 pixels). The models were evaluated on two areas with precision, recall,
f1-score, and mean intersect over union (mIoU) metrics. The results show that the models trained
with 32x32 tiles tend to have higher recall values due to higher true positive rates; however, they
misclassify more background areas as landslides (false positives). Models trained with 128x128 tiles
usually achieve higher precision values because they make less false positive errors. In both test areas,
DEM and augmentation increased the accuracy of the models. Random sampling helped in model
generalization. Models trained with 128x128 random tiles from the data that used the RapidEye
image, DEM information, and augmentation achieved the highest f1-score, 0.55 in test area one, and
0.58 in test area two. The results achieved in this study are comparable to other fully convolutional
models found in the literature, increasing the knowledge in the area.

Keywords Deep Learning · Fully Convolutional Networks (FCN) · Nova Friburgo · RapidEye · Landslide mapping

1 Introduction

Natural hazards are more frequent and harmful in recent years due to unplanned urbanization, climate change, and
population growth [Kobiyama et al., 2006, Hong et al., 2017, Alexander, 2008, Zhong et al., 2019]. According to the
Sendai framework for disaster risk reduction 2015-2030 [UNISDR, 2015], between 2008 and 2012, those hazards
affected more than 25 million people, with an economic loss of about 1.3 trillion dollars, impeding the progress towards
sustainable development.

Landslides commonly cause victims, damages to human habitations, and economic losses. Therefore, the study
of landslide detection has been considered a critical area of research in remote sensing [Hong et al., 2017]. However,
despite the importance highlighted by many authors, detailed landslides inventories are still lacking [Mondini et al.,
2019, Guzzetti et al., 2012]. Landslide inventory maps are used to prepare and validate landslide susceptibility models,
evaluate risk and vulnerability, study erosion and geomorphology, and document the impact of a landslide disaster
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[Van Westen et al., 2008]. Limited and incomplete data may be a source of bias for these studies since model success
depends directly on inventory accuracy.

Landslides inventory maps usually are prepared by using remote sensing imagery with high (HR) and very-high
(VHR) resolution [Zhong et al., 2020]. The landslides can be recognized in an aerial image manually by visual
interpretation, semi-automatically, or automatically by using algorithms for object image analysis (OBIA) and pixel-
based classification. Manual classification of landslides is the prevailing method [Xu, 2015, Yu et al., 2020], but,
for large areas, it is time-consuming. OBIA methodologies classify landslide areas by grouping objects with similar
spectral, spatial, hierarchical, textural, and morphological properties [Blaschke, 2010]. Nevertheless, the assignment
of those parameters is highly dependent on the analyst experience. Pixel-based methodologies classify each pixel of
the image based on its spectral information. However, geometric and contextual information present in the image is
ignored, increasing the salt-and-pepper noise in the results [Stumpf and Kerle, 2011, Blaschke et al., 2014, Zhong et al.,
2019, Prakash et al., 2020].

In recent years, deep convolution neural networks (DCNN) achieve state-of-art results in applications such as
semantic segmentation, object detection, natural language processing, and speech recognition [Ghorbanzadeh et al.,
2019, Peng et al., 2019, Zhu et al., 2017, Long et al., 2015, Radovic et al., 2017]. However, only a few studies have
used DCNNs for landslide detection [Zhong et al., 2020].

Ding et al. [2016] used DCNN on GF-1 (Gaofen-1) images with four spectral bands and eight-meter resolution,
achieving an overall accuracy of 67%, a detection rate of 72.5%, and 10.2% of false positive rate. Chen et al. [2018]
used DCNN on bi-temporal images to evaluate areas with drastic changes and combined a spatial context learning
(STCL) and information from a digital elevation model (DEM) to detect landslide areas. The method yield an accuracy
of more than 61% on the evaluated areas. Ghorbanzadeh et al. [2019] compared state-of-art machine learning methods
and DCNN on RapidEye images and a DEM, with five meters of spatial resolution. The DCNN that used only spectral
information and small windows was the best model achieving 78.26% on the mean intersect over union (mIoU) metric.
Sameen and Pradhan [2019] compared residual networks (ResNets) trained with topographical information fused using
convolutional networks with topographical data added as additional channels. The models trained with the fused data
achieved f1-score and mIoU that were superior by 13% and 12.96% compared to the other models. Yu et al. [2020]
used the enhanced vegetation index (EVI), DEM degradation indexes, and a contouring algorithm on Landsat images
to sample potential landslide zones with less class imbalance distribution. The trained fully convolutional network
(PSPNet) achieved 65% of recall and 55.35% of precision. Prakash et al. [2020] used Lidar DEM and Sentinel-2 images
to compare traditional pixel, object, and DCNN methods. The deep learning method, U-net with ResNet34 blocks,
achieved the best results with the Matthews correlation coefficient score of 0.495 and the probability of detection rate of
0.72.

DCNNs, in supervised learning problems, can learn to identify patterns on the training data without the need for
complex operations to extract features or preprocessing methods. However, choosing the best network architecture,
preparing the training dataset, and tuning the hyperparameters is still a challenge [Pradhan et al., 2017, Sameen and
Pradhan, 2019]. Landslides scars dataset usually have an imbalanced class distribution with more pixels belonging to
background objects, such as urban areas, vegetation, and water, than landslide scars [Yu et al., 2020]. Therefore, since
landslide scars have different shapes and sizes, sampling methods and patch sizes may affect the model accuracy as it
can be a way to reduce the class imbalance between the positive and the negative class.

This research aims to evaluate how different datasets, sampling methods, and patch sizes impacts on the landslide
segmentation accuracy of U-net. To achieve that, we trained 288 models with landslide optical information from a
RapidEye satellite and topographical information from a DEM derived from the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) sensor of the ALOS satellite. The models were trained with images patched in three
different sizes (32x32, 64x64, 128x128 pixels), and sampled using random and regular grid sampling methods. Data
augmentation was also tested. The study area is in the city of Nova Friburgo, located in the mountainous range of Rio
de Janeiro, Brazil. The models were evaluated in two test areas with f1-score, recall, precision, and mean intersect over
union (mIoU) metrics.

The main contributions of this research are as follows:

• Broad comparison between patch sizes, sampling method, and datasets.

• Evaluation of U-net architecture for semantic segmentation of landslides.
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2 Study Area

In January 2011, an extreme rainfall event (350 mm/48h) triggered at least 3500 translational landslides that killed
more than 1500 people and disrupted all major city facilities in the mountainous region of Rio de Janeiro, Brazil. This
event is considered the worst Brazilian natural disaster [Avelar et al., 2013].

The mountainous region of Rio de Janeiro encompasses the municipalities of Nova Friburgo, Teresópolis, Petrópo-
lis, Sumidouro, São José do Vale do Rio Preto and Bom Jardim (Fig. 1). The study area is in the municipality of Nova
Friburgo, which was severely damaged by the disaster.

Nova Friburgo is in the geomorphological unit of Serra dos Orgãos. The geological units have a WSW-ENE trend,
and the elevation ranges between 1100 and 2000 meters above the mean sea level [Dantas, 2001]. The geology consists
mainly of igneous and metamorphic rocks such as granites, diorites, gabbros, and gneisses [Tupinambá et al., 2012].
According to Köppen’s climate classification scheme [Köppen, 1936], the climate is subtropical highland (Cwb) with
dry winter and mild summers. The annual mean precipitation is 1585.62 mm, with most of the rainfall in November,
December, and January [Sobral et al., 2018].

Figure 1: A) Location of the study area in southeastern Brazil. B) Location of the Mountainous Range in the Rio
de Janeiro State. C) Mountainous Range of Rio de Janeiro with the study area highlighted in blue. D) True color
composition of the RapidEye image over Nova Friburgo, with the segmented landslides in yellow. The image was
acquired on 2011-08-13.

3 Methodology

The spectral information from a RapidEye image and topographical information from a digital elevation model (DEM)
derived from the ALOS’s Phased Array L-band Synthetic Aperture Radar (PALSAR) were used to evaluate the
performance of the U-net on landslide segmentation. The models were trained with images in three different window
dimensions (32x32, 64x64, 128x128 pixels) that were sampled using random and regular grid methods. Random
rotation, vertical, and horizontal flip were used for data augmentation. In total, 288 models were trained (Table 1).

The model’s performance was evaluated in two test areas by using the mean intersect over union (mIoU), f1-score,
precision, and recall metrics. The proposed methodology involves the following steps: (1) data preprocessing, (2) model
training (3) model evaluation.
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Table 1: Number of trained models on each dataset.

# of Models Dataset
72 RapidEye
72 RapidEye + Augmentation
72 RapidEye + DEM
72 RapidEye + DEM + Augmentation

3.1 Data Preprocessing

3.1.1 RapidEye

RapidEye consists of a constellation of five identical satellites with high-resolution sensors with a 6.5 meters nominal
ground sampling distance at nadir. The orthorectified products are resampled and provided to users at a pixel size of 5
meters. The data are acquired with a temporal resolution of 5 days in five spectral bands: blue (440–510 nm), green
(520–590 nm), red (630–685 nm), red-edge (690–730 nm), near-infrared (760–850 nm) [RapidEye, 2011].

This work used the raw digital number (DN) of a 3A product (orthorectified, radiometric, and geometric corrections)
with an area of 625 km2. The image was acquired on 13 August 2011 and downloaded from the Planet Explorer website
[Planet Team, 2017].

3.1.2 ALOS/PALSAR

The Phased Array type L-band Synthetic Aperture Radar (PALSAR) is one of the three observation sensors of the
Advanced Land Observing Satellite (ALOS). PALSAR data is acquired at an off-nadir angle of 34.3 degrees in a
Sun-synchronous Sub-recurrent Orbit (SSO) with a 46-day recurrent period.

In this study, we used the radiometric terrain correction (RTC) product with 12.5 meters of spatial resolution
obtained from the Alaska Satellite Facility (ASF) [DAAC, 2015]. The image was acquired on 28 January 2011. The
data were resampled to 5 meters pixel resolution with bilinear interpolation method, to match the spatial resolution of
the RapidEye image, using GRASS GIS version 7.2.2 [Neteler et al., 2012, GRASS Development Team, 2017].

3.1.3 Data Labeling

The landslides were manually labeled in the RapidEye image using QGIS version 3.8 [QGIS Development Team, 2009].
The segmented landslides were validated with Google Earth Pro version 7.3 [Google, 2019] and by comparison with
the landslide map produced by [Netto et al., 2013]. In total, 1007 landslides were extracted from the scene, with area
ranging from 200.32 m2 to 78117.35 m2 (638.51 m2 average).

3.1.4 Test Areas

The model’s accuracy was evaluated in two test areas with 1024x1024 pixels (Fig. 2). In the first area, agriculture
and grazing are predominant, while in the second, native vegetation and human settlements predominate. Ninety-six
landslides were extracted from the first area and ninety-one from the second.

3.1.5 Binary Mask

The landslide scars polygons from the train and test areas were rasterized with Rasterio [Gillies et al., 2013–] and
Numpy [Oliphant, 2006] Python libraries, to generate a binary mask with the same dimensions of the original scene.
The pixels assigned with the value 1 (white pixels) correspond to the landslide scars class and the value 0 (black pixels)
to the background class.

3.1.6 Sampling Methods and Patch Sizes

The data was sampled by using random and regular grid methods in three different sizes: 32x32, 64x64, 128x128 pixels
(Fig. 3).

The grid method used the bounding coordinates and the image resolution (5 meters) to generate a vector grid.
The squares over the grid have an overlap of 20%. The random sampling used the same procedure to generate 5000
sampling square polygons. A select-by-location operation was used to select only the polygons intersecting landslides.
This ensures that all sampled images will have at least a small portion of a landslide scar, reducing class imbalance. The
code used was adapted from the Keras-Spatial library [Terstriep, 2019].
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Figure 2: Location of test areas and their binary masks. White pixels represent the manually segmented landslides and
black pixels the background.

Figure 3: Sampling methods (left) and results obtained for each patch size (right).
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3.1.7 Data Augmentation

The Albumentation library [Buslaev et al., 2018] was used to augment the data by using random rotations around 90�,
vertical, and horizontal flips. Table 2 shows the sizes of all the datasets used to train the models.

Table 2: Number of samples from all the datasets and patch sizes used to train the models.

Dataset Size (pixels) Regular Sampling Random Sampling
RapidEye 32x32 3541 1740

64x64 2264 2368
RapidEye + DEM 128x128 1565 3653
RapidEye + Augmentation 32x32 9912 4872

64x64 6336 6628
RapidEye + DEM + Augmentation 128x128 4380 10228

3.2 Model Training

3.2.1 Model Architecture

U-net [Ronneberger et al., 2015] is a fully convolutional network developed for the segmentation of biomedical images.
This type of architecture does not use fully connected layers in their structure; instead, they have an encoder-decoder
architecture with just convolutional layers. The encoder path is responsible for classifying the pixels, but without
taking the spatial location into account. The decoder path uses up-convolutions and concatenation to recover the spatial
location of the classified pixels and return a mask with the same dimensions of the input image.

In this study, we evaluated the U-net architecture (Fig. 4) in three different values of initial filters: 16, 32, and 64
filters. The convolutional blocks on the encoder path have two 3x3 convolutional layers, activated with ReLu non-linear
function, and followed by a max-pooling operation that reduces the spatial dimension by 2. In each convolutional block,
the number of filters increases by 2n, where n is the block’s position. On the decoder path, 2x2 up-sampling operations
increase the data’s spatial dimension to allow the concatenation of feature maps with the same dimension from the
encoder path. Then, the concatenated data serve as input for two convolutional layers before another up-sampling
operation.

Figure 4: U-net architecture. Filters increase by 2n in each convolutional block.

3.2.2 Hyperparameters

The models were trained for 200 epochs with a fixed learning rate of 0.001. The initial tests also evaluated 0.01 and
0.0001 learning rate values, but the model’s accuracy was lower than the models trained with a learning rate of 0.001.
Binary cross-entropy and Adam were used as the loss and optimization function, respectively. The models were trained
with four different batch sizes (16, 32, 64, 128 samples). The model’s weights were just saved when the validation loss
function decrease to reduce the overfitting.
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The models were trained on Google Colaboratory virtual environment [Google, 2018] with Keras [Chollet et al.,
2015] and Tensorflow [Abadi et al., 2015] Python libraries. 30% of each dataset was used as validation data.

3.3 Evaluation Metrics

The model’s performance was evaluated over two test areas by using f1-score, recall, precision, and mean intersect over
union (mIoU) metrics. Those metrics are based on true positives (TP), false positives (FP), and false negatives (FN). TP
are pixels correctly classified as landslides. FP represents the pixels incorrectly classified as landslides, and FN the
pixels incorrectly classified as the background [Ghorbanzadeh et al., 2019, 2018, Guirado et al., 2017]. The models that
were trained with DEM as an additional channel were evaluated on test areas with an additional DEM channel.

3.3.1 Precision

Precision (Eq. 1) defines how accurate the model is by evaluating how much of the classified areas are landslides. The
metric is useful for evaluating the cost of false positives.

Precision =
True Positives

True Positives+ False Positives
(1)

3.3.2 Recall

Recall (Eq. 2) calculates how many of the actual positives are true positives. This metric is suitable to evaluate the cost
associated with false negatives.

Recal =
True Positives

True Positives+ False Negatives
(2)

3.3.3 F1-Score

F1-score (Eq. 3) combines precision and recall to measure if there is a balance between true positives and false negatives.

F1� Score = 2 ⇤ Precision ⇤ Recall

Precision+Recall
(3)

3.3.4 Mean Intersect Over Union (mIoU)

Mean intersect over union (Eq. 4), also known as Jaccard Index, computes the overlapping of areas between the ground
truth (A) and the model prediction (B) divided by the union of these areas. Then, the values are averaged for each class.
A value of 1 (one) represents perfect overlapping, while 0 (zero) represents no overlap.

mIoU =
A \B

A [B
=

True Positives

True Positives+ False Positives+ False Negatives
(4)

The result section shows for each dataset, sampling method, and patch size the models with the highest F1-Score
and mIoU. The complete results are available in the Supplementary Material. The model generalization was evaluated
by averaging the mIoU values from both test areas.

4 Results and Discussion

The models were evaluated on two test areas with precision, recall, f1-score, and mIoU metrics. The results (Fig. 5)
shows that the models trained with the RapidEye+DEM and RapidEye+DEM+Augmentation datasets achieved the best
results in all evaluated metrics in test area one. The models trained with 32x32 tiles had the lowest precision (0.24) over
all the datasets, while models trained with regular 64x64 and random 128x128 tiles from the RapidEye+DEM dataset
achieved 0.67 and 0.66 of precision. The recall was higher for the models trained with 128x128 regular tiles (0.68) and
32x32 random tiles (0.65). The model trained with 128x128 random tiles from the RapidEye+DEM+Augmentation
dataset achieved the best f1-score (0.55) and mIoU (0.38).
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Figure 5: Precision, recall, f1-score and mIoU of the models with the highest f1-score and mIoU in test areas one (left)
and two (right).

In test area two, the dataset had a smaller influence over the results; however, models trained with RapidEye+DEM+
+Augmentation dataset also achieved the best results. The model trained with 128x128 random tiles achieved the
highest precision (0.62), f1-score (0.58), and mIoU (0.41). Just recall was higher for the 32x32 regular tiles (0.70).

Precision evaluates the cost of false positives, while recall evaluates the cost of false negatives. At test area one
(Fig. 6, left), the 32x32 models had lower precision meaning that they misclassify more background areas as landslides
(false positives). Similar results occur at test area two (Fig. 6, right), but 64x64 models also had low precision values.
Recall varied among the datasets; nevertheless, in both test areas, the models trained with 32x32 tiles achieved high
results. Therefore, these models classified more landslide areas as landslides (true positive), reducing false negatives.

The F1-score value will always show a positive correlation with mIoU; however, mIoU tends to penalize incorrect
classifications more quantitatively than f1-score. In both test areas, the models trained with random 128x128 tiles from
the RapidEye+DEM+Augmentation dataset had the best f1-score and mIoU. In the test area one, this model achieved
0.55 of f1-score and 0.38 of mIoU. While in test area two, it achieved an f1-score of 0.58 and mIoU of 0.41. Comparing
with the RapidEye dataset, where these models had the worst performance, the f1-score and mIoU increased 0.2 and
0.16 in test area one, and 0.16, 0.14 in test area two.

When the test areas are evaluated individually, the sampling method seems to be less critical than the dataset to the
overall accuracy of the models. However, by averaging the mIoU score of both test areas, it can be seen (Table 3) that
random sampling outperformed the regular sampling. Thus, random sampling helped in increasing the generalization
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Figure 6: Results of the models with the highest mIoU on each test area. In test area one (left), the image shows
the models trained with 32x32 and 64x64 regular tiles from the RapidEye+DEM dataset, and 128x128 random tiles
from the RapidEye+DEM+Augmentation dataset. In test are two (right), the image shows the models trained 32x32
and 64x64 regular tiles from RapidEye+DEM dataset, and the 128x128 model trained with random tiles from the
RapidEye+DEM+Augmentation dataset.

capacity of the models. Moreover, similar to what was observed in each test area individually, models trained with
DEM and DEM+Augmentation had a better performance.

Table 3: Results of the models with the highest average mIoU.

Sampling Size Test Area 1 - mIoU Test Area 2 - mIoU Average mIoU Dataset
Random 32 0.26 0.32 0.29 RapidEye+DEM
Random 64 0.29 0.31 0.30 RapidEye+DEM+Augmentation
Random 128 0.31 0.41 0.36 RapidEye+DEM+Augmentation

The results (Fig. 7) of each model from table 3, shows that the 32x32 model predicted, in both test areas, 0.36
and 0.38 km2 of true positives, 0.82 and 0.59 km2 of false positives, achieving the highest values. While the model
trained with 128x128 tiles predicted the smallest true positive areas (0.26 and 0.32 km2), false positive areas (0.29 and
0.20 km2), and larger false negatives (0.30 and 0.27 km2) and true negatives (25.37 and 25.42 m2) areas. The model
trained with 64x64 tiles achieved values in between those two models, with 0.29 and 0.36 km2 of true positives; 0.46,
0.57 km2 of false positives; 0.27 and 0.23 km2 of false negatives, and true negative of 25.19 and 25.05 km2.

The results of all evaluated models suggest that the models trained with smaller window sizes tend to understand
the local context better. Thus, they classify more landslides correctly, achieving higher true positives and lower false
negative values. However, as they are trained with small tiles, the scene’s global context, which helps differentiate the
background areas, is lost. As a result, they misclassify more background areas as landslides (false positives). On the
other hand, models trained with the larger window sizes, in general, understand the global context better, reducing
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Figure 7: Results of the models with the best generalization results (Table 3), for each patch size, on test area one (left)
and two (right).

the false positive errors. Nevertheless, they classify a smaller number of pixels representing landslide scars correctly,
increasing the number of false negatives.

Areas with similar spectral responses to landslides such as rivers with increased bedload, gravel roads, grazing,
and agricultural areas are more common in area one than area two. Therefore, the models usually make more false
positives errors in this area. In area two, the most common false positive mistakes were due to human settlements.
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5 Conclusions

This study’s main objective was to assess how the datasets, sampling methods, and patch sizes impact the overall
performance of U-net on landslide segmentation. Our study suggests that the use of DEM and augmentation helped
increase the overall accuracy of the models. Random sampling helped in increasing model generalization. Models
trained with 32x32 patches classified more landslides areas correctly, thus, achieving higher true positive areas and
lower false negatives. However, they also predict more false positive areas directly impacting precision, f1-score, and
mIoU values. Contrarily, models trained with 128x128 tiles make less false positive errors and predict more areas
correctly as background. Nevertheless, they also misclassify more landslide areas, increasing the number of false
negatives and reducing the recall value. 64x64 tile models achieved results that lie in between the 32x32 and 128x128
models.

In our study, the use of the digital elevation model as an additional channel helped improve the accuracy of the
models. This results differs from the ones obtained by Sameen and Pradhan [2019] and Ghorbanzadeh et al. [2019].
However, since both authors used DEMs with higher spatial resolutions and the models were trained with different
architectures and smaller tiles than the ones used in this research, more study is needed to address the most effective ways
to use DEM with deep learning models. The 128x128 random model trained with the RapidEye+DEM+Augmentation
dataset achieved the best performance in this research. The F1-score, 0.55 and 0.58, achieved in both test areas, is
comparable to U-Net + ResNet34 evaluated by Prakash et al. [2020], which achieved 0.56 of f1-score, and the PspNet
tested by Yu et al. [2020] that achieved f1-score of 0.6. Future studies should explore multi-input models that can be
trained with different input sizes; and evaluate different post-processing segmentation techniques to increase the quality
of the results.

Computer Code Availability

All the codes used in this research are available on GitHub: https://github.com/lpsmlgeobr/Landslide_
segmentation_with_unet.

Data Availability

The RapidEye image used in this study (Image ID:2328825) was acquired from Planet (www.planet.com) through
Planet’s Education and Research Program. The ALOS PALSAR DEM (Tile 26708) is available from the Alaska
Satellite Facility (ASF) Distributed Active Archive Center (DAAC – https://search.asf.alaska.edu/).
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Abstract: Automatic landslide mapping is crucial for a fast response in a disaster scenario and
improving landslide susceptibility models. Recent studies highlighted the potential of deep learning
methods for automatic landslide segmentation. However, only a few works discuss the generalization
capacity of these models to segment landslides in areas that differ from the ones used to train the
models. In this study, we evaluated three different locations to assess the generalization capacity
of these models in areas with similar and different environmental aspects. The model training
consisted of three distinct datasets created with RapidEye satellite images, Normalized Vegetation
Index (NDVI), and a digital elevation model (DEM). Here, we show that larger patch sizes (128 ⇥ 128
and 256 ⇥ 256 pixels) favor the detection of landslides in areas similar to the training area, while
models trained with smaller patch sizes (32 ⇥ 32 and 64 ⇥ 64 pixels) are better for landslide detection
in areas with different environmental aspects. In addition, we found that the NDVI layer helped
to balance the model’s results and that morphological post-processing operations are efficient for
improving the segmentation precision results. Our research highlights the potential of deep learning
models for segmenting landslides in different areas and is a starting point for more sophisticated
investigations that evaluate model generalization in images from various sensors and resolutions.

Keywords: deep learning; landslides; U-Net; automatic segmentation

1. Introduction
Landslides are one of the most frequent and destructive natural hazards worldwide.

They are responsible for causing infrastructure damages, economic losses, and victims,
mainly when it occurs near human habitation [1–3]. In recent years, increased deforestation,
unplanned urbanization, climate change, and population growth have enhanced the impact
of these events on human lives and infrastructure [4–8]. In 2021, according to the Emergency
Event Database (EM-DAT), landslides were classified as the second most costly disaster and
caused 40 billion dollars of economic losses in Germany alone and 234 deaths in India [9].

In South America, Brazil concentrates around 40% of all fatal landslides in the conti-
nent [2]; several events that occurred in the past few decades in the country led to social
and economical losses [10–12]. Therefore, landslide detection studies have been considered
critical in remote sensing [5]. However, despite the importance highlighted by many au-
thors, detailed landslide inventories are still scarce [13–15]. Asia/Oceania and Europe lead
the publication of studies about landslide inventory construction [16–19]. Nevertheless,
several countries, such as Brazil, lack common procedures to recognize landslide features
on the landscape [20]. Landslide inventory maps are used to prepare and validate landslide
susceptibility models [16,21–24], evaluate risk and vulnerability [25–31], perform geormor-
phometric (geomorphology) studies [29,32–39], and evaluate landslide events [40]. Limited
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and incomplete data may be a source of bias for these studies since model success depends
directly on inventory accuracy [41,42].

Landslide inventory maps are usually prepared using high (HR) or very high (VHR)
resolution remote sensing imagery [7]. Detection of landslides can be performed manu-
ally by aerial image visual interpretation [43–49], semi-automatically, or automatically by
using object-based image analysis (OBIA) algorithms [49–51] and pixel-based classifica-
tion [52,53]. Manual classification of landslides is the prevailing method [14,54,55], but is
costly, exhaustive, and time-consuming, almost impracticable for large areas. OBIA is an
alternative method for HR and VHR image analysis. The method is based on objects rather
than individual pixels [56]. Object-based approaches have two main steps: segmentation
and classification [56,57]. Subsequently expert knowledge can be added to the analysis.
After segmentation, several object characteristics can be used to classify landslide areas,
such as spectral, spatial, hierarchical, textural, and morphological [56]. Pixel-based methods
classify each pixel of the image based on its spectral information, ignoring geometric and
contextual information, which increases the salt-and-pepper noise in the results [58–60].

In recent years, deep convolutional neural networks (DCNN) have achieved state-
of-the-art results in applications such as semantic segmentation, object detection, natural
language processing, and speech recognition [61–65]. However, only a few studies have
used DCNNs for landslide detection [7].

The recent literature covers topics that evaluate how different architectures affect the
model accuracy; the impact of patch size, sampling, and different layers in the results,
and the generalization capacity of deep learning models to detect landslides in different
areas. Sameen and Pradhan [66] compared residual networks (ResNets) trained with
topographical information fused by convolutional networks with topographical data added
as additional channels. The models trained with the fused data achieved f1 score and
mean intersection over union (mIoU) that were superior by 13% and 12.96% compared to
the other models. Ghorbanzadeh et al. [61] compared state-of-the-art machine learning
methods and DCNN using RapidEye images and a DEM, with five meters of spatial
resolution. The DCNN that used only spectral information and small windows was the best
model, achieving 78.26% on the mIoU metric. Yi and Zhang [67] evaluated the LandsNet
architecture in two test areas with different environmental characteristics. The results were
optimized with morphological operations and the proposed approach yielded an f1 score
of 86.89%. Yu et al. [55] used the enhanced vegetation index (EVI), DEM degradation
indexes, and a contouring algorithm on Landsat images to sample potential landslide zones
with less class imbalance distribution. The trained fully convolutional network (PSPNet)
achieved 65% of recall and 55.35% of precision. Prakash et al. [60] used lidar DEM and
Sentinel-2 images to compare traditional pixel-based, object-based, and DCNN methods.
The deep learning method, U-net with ResNet34 blocks, achieved the best results, with
the Matthews correlation coefficient score of 0.495 and the probability of detection rate of
0.72. Prakash et al. [68] evaluated a U-Net in a progressive training with different image
spatial resolutions and sensors that used a combination of landslide inventories to predict
landslides in different locations around the world. The highest Matthews correlation
coefficient achieved was 0.69.

DCNNs, in supervised learning problems, can learn to identify patterns on the training
data without the need for complex operations to extract features or pre-processing methods.
However, choosing the best network architecture, preparing the training dataset, and
tuning the hyperparameters is still a challenge [66,69]. Landslide scar datasets usually have
an imbalanced class distribution, with more pixels belonging to background objects, such
as urban areas, vegetation, and water, than landslide scars [55]. Therefore, since landslide
scars have different shapes and sizes, sampling methods and patch sizes may affect the
model accuracy as it can be a way to reduce the class imbalance between the positive and the
negative class. Moreover, to the best of our knowledge, only Prakash et al. [68] evaluated
the generalization capacity of deep learning models. However, the scenes used to evaluate
the models usually are in vegetated areas, where the contrast between the landslide scars
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and vegetation allows the models to distinguish the landslides. Moreover, only Yi and
Zhang [67] tested post-processing operations to improve the segmentation results.

Thus, the objective of this study is to evaluate model generalization and post-processing
techniques with models trained with different datasets and patch sizes in scenes with vary-
ing spatial complexity. The main contribution of this paper is as follows:

• Evaluation of model generalization in areas with different scene complexity in Brazil;
• Evaluation of binary opening, closing, dilation, and erosion as post-processing techniques;
• Evaluation of how different patch sizes affect model generalization;
• Evaluation of different datasets on model generalization.

2. Study Areas
The study areas (Figure 1) were located in Rio de Janeiro (RJ) and Rio Grande do Sul

(RS) states in the southern part of Brazil. The areas located in the city of Nova Friburgo (RJ
state) were used to train the deep learning models and were considered as test area 1 (TA1).
The area close to the city of Teresópolis, which is also located in RJ state, was used as test
area 2 (TA2); and test area 3 (TA3) was located close to the city of Rolante (RS state).

Figure 1. Location of the train and test areas used to train and evaluate the deep learning models.
(a) Location of the train and test areas in Brazil. (b) Train Area. (c) Test Area 1 (TA1). (d) Test Area 2
(TA2). (e) Test Area 3 (TA3).

2.1. Nova Friburgo and Teresópolis
The mountainous region of Rio de Janeiro encompasses the municipalities of Nova

Friburgo, Teresópolis, Petrópolis, Sumidouro, São José do Vale do Rio Preto, and Bom
Jardim. In January 2011, an extreme rainfall event (140 mm/h) triggered at least 3500
translational landslides that killed more than 1500 people and disrupted all major city
facilities in this mountainous region [11]. This event is considered the worst Brazilian
natural disaster [70].

Nova Friburgo and Teresópolis are in the geomorphological unit of Serra dos Orgãos.
The geological units have a WSW-ENE trend, and the elevation ranges between 1100 and
2000 m a.s.l. [71]. The geology consists mainly of igneous and metamorphic rocks such as
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granites, diorites, gabbros, and gneisses [72] (Figure 2a). According to Köppen’s climate
classification scheme [73], the climate is subtropical highland (Cwb), with dry winters and
mild summers. The annual mean precipitation is 1585.62 mm, with most of the rainfall in
November, December, and January [74].

2.2. Rolante
The Rolante River Catchment has a drainage area of 828 km2, with altitudes varying

from 19 to 997 m a.s.l [75]. The area is inserted in the geomorphological unit of Serra
Geral, with a predominance of basaltic rocks and sandstones (Figure 2b). The climate is
characterized as very humid subtropical, with precipitation annual average between 1700
and 2000 mm. On 5 January 2017, an extreme precipitation event (272 mm in four hours)
triggered at least 300 shallow landslide events in the area [75–78]. The flash flood caused by
the material that moved from the slopes into the Mascara river (a tributary of the Rolante
River) reached Rolante city.

Figure 2. Simplified geological maps of the study areas. (a) Geological map of the mountainous
region of Rio de Janeiro. (b) Geological map of the Rolante River area.

3. Methodology
The methodology applied in this study consists of four parts: pre-processing, training,

evaluation, and post-processing (Figure 3). In the pre-processing step, the data were
prepared to serve as the input to the U-Net models. Three different datasets were created
to train the models. The sampling was done with regular grids in four different patch
sizes: 32 ⇥ 32, 64 ⇥ 64, 128 ⇥ 128, 256 ⇥ 256. Augmentation consisted of random rotations,
vertical and horizontal flips, and was used to keep the sample size the same among
the different patch sizes. The training was done using the Tensorflow 2.0 Python Deep
Learning Framework and used grid search to find the optimal hyperparameters. The
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evaluation step used precision, recall, f1 score, and mean intersection over union (mIoU)
to evaluate the accuracy of the models and their generalization capacity. The models
were tested in three different areas with different scene complexities and locations. The
post-processing step consisted of evaluating binary opening, closing, dilation, and erosion
morphological operations.

Figure 3. Workflow used to prepare the dataset and train, evaluate, and post-process the deep
learning models and the results. “R”, “G”, “B”, “Red-Edge”, and “NDVI” represent the bands red,
green, blue, red-edge, and the normalized vegetation index, respectively.

The data used in this study consist of the spectral information from the RapidEye
satellite and topographical data from the Shuttle Radar Topography Mission (SRTM–[79]).
RapidEye consists of a constellation of five identical satellites with high-resolution sensors
with a 6.5 m nominal ground sampling distance at nadir. The orthorectified products
are resampled and provided to users at a pixel size of 5 m. The data are acquired with a
temporal resolution of 5 days in five spectral bands: blue (440–510 nm), green (520–590 nm),
red (630–685 nm), red-edge (690–730 nm), near-infrared (760–850 nm) [80]. The SRTM
acquired interferometric radar data with dual antennas and provided data with 1 arc-
second (30 m) spatial resolution. The mission used single-pass interferometry radar to
acquire two signals simultaneously by using two different radar antennas. Differences
between the two signals permit the calculation of surface elevation [81].

This work used the RapidEye 3A product (orthorectified, radiometric, and geometric
corrections) and was acquired from the Planet Explorer website [79]. The acquisition dates
of the training and test images are in Table 1. The SRTM product was the 1 arc-second
global (30 m).

Three datasets were generated to train and evaluate the deep learning models. All
the datasets used the five RapidEye bands. However, dataset 1 used only those five
bands, while in dataset 2, the elevation information was added as an extra channel in
the image, and in dataset 3, the Normalized Difference Vegetation Index (NDVI) [82] was
calculated (Equation (1)) using the red and the near-infrared (NIR) bands and added as an
extra channel.

NDVI =
NIR � RED
NIR + RED

(1)

The landslides were interpreted from the RapidEye and Google Earth Pro version
7.3 imagery and validated with [10,75] to minimize interpretation errors. Table 1 shows
the number of landslide polygons interpreted in each scene. Later, the landslides were
rasterized using the Rasterio Python library [83] to a binary mask, on which “1” represents
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the landslides and “0” the background. The satellite images were normalized to convert all
the pixel values into a 0–1 range interval. All the image pixel values were divided by 216 (16
bits image). Data normalization helps in model convergence and is a common procedure
in the machine learning field.

Table 1. Train and test images acquisition date, and the number of landslides present on each scene.

Images Acquisition Date Number of
(RapidEye/SRTM) Landslides

Train Area (Nova Friburgo) 10 January 2011/23 September
2014 455

TA1 (Nova Friburgo) 10 January 2011/23 September
2014 42

TA2 (Teresópolis) 20 January 2011/23 September
2014 117

TA3 (Rolante) 13 March 2017/23 September
2014 110

The data were sampled with regular grids in four sizes: 32 ⇥ 32, 64 ⇥64, 128 ⇥ 128,
256 ⇥ 256 pixels. Patching the data in different sizes is an important step to address the
differences in the shapes and sizes of the landslides [61]. Moreover, since the patch sizes
are directly correlated with the balance between the positive (landslides) and the negative
(background) classes, training the models with different sizes is crucial to determine the
optimal size for the best model performance in the study areas. A select-by-location
operation was used to select only the polygons intersecting landslides. This process
ensures that all sampled images will have a small portion of a landslide scar, reducing
class imbalance.

Data augmentation allows the use of the annotated data more efficiently during the
training phase [67,84]. In this work, because the data were sampled in different patch sizes,
the smaller patch sizes have more samples than the larger ones. Hence, comparing the
models trained with varying patch sizes may not be fair as the different sample sizes may
affect the training of the deep learning models [4]. Thus, to keep the same sample size for
all the models, augmentation processes of random rotations and vertical and horizontal
flips were performed in the sampled data with patch sizes of 64 ⇥ 64, 128 ⇥ 128, and 256 ⇥
256 pixels.

3.1. U-Net
U-Net [85] is a fully convolutional network developed for the segmentation of biomed-

ical images. This type of architecture does not use fully connected layers in their structure;
instead, they have an encoder–decoder architecture with just convolutional layers (Figure 4).
The encoder path is responsible for classifying the pixels without taking the spatial location
into account, while the decoder path uses up-convolutions and concatenation to recover
the spatial location of the classified pixels and return a mask with the same dimensions of
the input image.

The convolutional blocks on the encoder path have two 3 ⇥ 3 convolutional layers,
activated with the Rectified Linear Unit (ReLU) function, and followed by a max-pooling
operation that reduces the spatial dimension by 2. The dropout layer was used with a
0.5 probability after each max-pooling to randomly deactivate some of the layers of the
network as a method to reduce the overfitting.

The convolutional layers are responsible for creating feature maps of the input image to
allow the model to predict the landslide. During the training step, the 3 ⇥ 3 kernels present
in these layers are calibrated to find specific features of the landslides. The nonlinear
activation function ReLU was calculated according to Equation (2). The use of ReLU
increased the degrees of freedom of the computed function, which allows the model to
learn nonlinear patterns present in the data [86]. The max-pooling layers with 2 ⇥ 2 kernels
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translate around the image, obtaining only the highest values and reducing the image
dimensions by half. This operation is essential to reduce the computation cost and to
preserve the values with the highest relevance. Dropout [87] layers are commonly used in
the training phase to reduce the complexity of the model and, consequently, the overfitting
with random deactivation of the layers with a p probability. In the architecture used in this
study, the dropouts were implemented after each max-pooling layer in the encoder path.

On the decoder path, 2 ⇥ 2 up-sampling operations increase the data’s spatial dimen-
sion to concatenate feature maps with the same dimension from the encoder path. Then, the
concatenated data serve as input for two convolutional layers before another up-sampling
operation. At the last layer, a sigmoid function converts the output into a binary mask. The
2 ⇥ 2 kernels of the transposed convolutions learn how to increase the dimensions of the
feature maps during the training step and increase the size of the feature maps by 2. The
sigmoid function (Equation (3)) converts the values to the 0–1 range at the last layer.

ReLU = max(0, x) (2)

s(x) =
1

1 + e�x (3)

Figure 4. U-Net network architecture.

The models were trained for 200 epochs with a dynamic learning rate of 0.001 that
reduces by 0.1 in a loss function plateau. Binary Cross Entropy and Adam function were
used as the loss and optimization function, respectively. The models were trained with
four different batch sizes (16, 32, 64, 128 samples). The model’s weights were saved when
the validation loss function decreased to reduce the overfitting. The models were trained
on Keras [88] and Tensorflow 2.0 [89] Python libraries. Moreover, 30% of each dataset was
used as validation data. The training was held in a NVIDIATM GeForce RTX 2060 GPU
(8 GB memory, NVIDIA, Santa Clara, CA, USA).

3.2. Validation Metrics
The model’s performance was evaluated over two test areas by using the f1 score,

recall, precision, and mean intersection over union (mIoU) metrics. These metrics are
based on true positives (TP), false positives (FP), and false negatives (FN) [61,90,91]. TP
are pixels correctly classified as landslides. FP represents the pixels incorrectly classified
as landslides, and FN the pixels incorrectly classified as the background. The models that
were trained with DEM and NDVI as an additional channel were evaluated on test areas
with an additional DEM and NDVI channel. Precision (Equation (4)) defines how accurate
the model is by evaluating how many of the classified areas are landslides. The metric
is useful for evaluating the cost of false positives. Recall (Equation (5)) calculates how
many of the actual positives are true positives. This metric is suitable to evaluate the cost
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associated with false negatives. The f1 score (Equation (6)) combines precision and recall to
measure if there is a balance between true positives and false negatives. Mean intersection
over union (Equation (7)), also known as the Jaccard Index, computes the overlapping of
areas between the ground truth (A) and the model prediction (B) divided by the union of
these areas. Then, the values are averaged for each class. A value of 1 (one) represents
perfect overlapping, while 0 (zero) represents no overlap.

Precision =
True Positives

True Positives + False Positives
(4)

Recall =
True Positives

True Positives + False Positives
(5)

f1-Score = 2 ⇤ Precision ⇤ Recall
Precision + Recall

(6)

mIoU =
A \ B
A [ B

=
True Positives

True Positives + False Positives + False Negatives
(7)

3.3. Post-Processing
In this study, post-processing morphological operations were used to optimize the re-

sults. Binary opening, closing, erosion, and dilation operators were evaluated individually
and combined to find the greater improvement (Figure 5). The binary opening helps in re-
moving minor errors that do not represent landslide candidates. Meanwhile, closing, which
consists of a dilation followed by erosion, fills the holes inside predicted landslides [67].
Erosion is a mathematical morphological operation that erodes the boundaries of the fore-
ground to shrink the landslide candidates and enlarge the background. Dilation opening
helps in removing small noises (i.e., “salt”) in the landslide prediction and connects small
dark cracks. This tends to open background gaps between the landslides [92]. Several
parameters were tested to find the optimal configuration for the post-processing operations.
The best structuring element was a 3 ⇥ 3 square and the interaction was done until the
results did not change anymore.

Figure 5. Morphological operations used to post-process the segmentation results.
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4. Results and Discussion
The models were trained with four different patch sizes. In general, models trained

with all patch sizes learned the feature maps to detect the landslides. The result shows
(Figure 6) that the models trained with 32 ⇥ 32 and 64 ⇥ 64 pixels achieved the best f1 scores
in TA2 (0.53) and TA3 (0.60). In contrast, models trained with 128 ⇥ 128 pixels patches
achieved the best f1 score results in TA1 (0.52). Since TA1 is located close to the training
area, the results show that the models trained with larger patches became better in detecting
landslides similar to the training images. This occurs because the patches with greater
dimensions facilitate the understanding of the global scene context. Consequently, the deep
learning model specialized in detecting landslides with similar spectral and morphological
characteristics to the training images. On the other hand, the models trained with the
smaller tiles learn the local context of the landslide better. Therefore, they make excessive
predictions (low precision), reducing the f1 and mIoU in TA1. However, they achieve better
results in TA2 and TA3.

Ghorbanzadeh et al. [61] and Soares et al. [93] evaluated samples with different patch
sizes to address the difference in landslide shapes. Ghorbanzadeh et al. [61] conclude that
the patch sizes affected the results in a non-systematic way. Meanwhile, Soares et al. [93]
observed that models trained with larger patches achieved higher precision and lower
recall. Similar results were observed by Prakash et al. [68], where the authors trained the
models with 224 ⇥ 224 pixels and obtained results with bias towards high precision and
lower recall. In this study, the results show that the models tend to achieve better precision
and lower recall rates with larger patch sizes. Moreover, comparing the results achieved, it
is possible to see that this pattern is more evident in TA1 than the other areas. Thus, once
models trained with larger patch sizes become highly specialized in detecting the shape
and spectral characteristics of the training area, they tend to achieve better precision in
those areas and have worse results in the regions that differ from the training regions.

Figure 6. F1 score, precision, recall, and mIoU results of the best segmentation models trained with
different patch sizes.

Dataset 3 achieved more balanced results than the other datasets, while dataset 1
achieved better f1 and mIoU scores in most models. The higher balance of dataset 3 may be
related to the extra NDVI band. NDVI is a band normalization computation with values
that range from 0 to 1 and are comparable even in different images. Consequently, it
provides information that facilitates the model generalization. Furthermore, dataset 1 has
a lower dimensionality (five bands); therefore, according to the Hughes Phenomena [94],
it needs less data to train the model than the other datasets with higher dimensionality
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(six bands). The topographical data do not improve the results, which are in accordance
with the results obtained by Sameen and Pradhan [66]. This may be related to the greater
dimensionality of dataset 3 and the SRTM spatial resolution (30 m).

Spectral indices, such as NDVI, are commonly used in remote sensing to help in
the interpretation of the spectral signatures of various objects [95]. The correct selection
of features based on these indices is crucial in improving traditional machine learning
algorithms [96–98]. However, there is a tradeoff between the number of samples and the
dimensionality of the data [99]. The extra bands with spectral indices may not improve
the algorithm’s performance if the dataset is not large enough to overcome the Hughes
Phenomena. Moreover, the deep learning convolution operations may learn to calculate the
NDVI in the training process from the spectral bands, and the extra band will be redundant.
To the best of our knowledge, only the study of Ghorbanzadeh et al. [100] evaluated the
impact of using spectral bands and topographic factors (slope, aspect, plan curvature,
elevation). However, in this study, the NDVI was used as the basis for landslide detection
and was not evaluated; the model architecture used is a classification network that predicts
in a pixel-wise manner. For fully convolutional networks, such as U-Net, still, no study
evaluates each band’s impact on the model performance.

Evaluating the histogram of the best model results in each test area (Figure 7) and it is
possible to see that in TA1, the model prediction achieves higher true and false positive
rates than the other test areas. Meanwhile, in the other test areas, false negative results
were higher. This pattern shows that despite the models’ generalization capacity, the areas
with different environmental and spectral characteristics from the training area made the
model more restrictive. Therefore, fewer landslides are predicted correctly, and the number
of false negatives is greater. Prakash et al. [68] observed a similar pattern, where the models
trained with different study areas were biased towards high false negatives. Thus, the false
positives of TA1 may represent landslides missing in the ground truth inventory, which
does not directly represent a poor result.

Figure 7. Segmentation results of each test area and result histograms showing the number of pixels
representing true positives, false positives, and true negatives. These results correspond to the
prediction of the model trained with 128 ⇥ 128 pixel tiles and dataset 3 for TA1; the model trained
with 32 ⇥ 32 tile pixels and dataset 1 for TA2, and the model trained with 64 ⇥ 64 pixels and dataset
1 TA3.

The complexity of the scene is also an essential factor in evaluating the generalization
capacity of the models. In previous studies [61,67,68], the test areas are usually vegetated
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areas around the landslide scars. Models trained and tested with these scenes may not
be efficient to detect landslides in urban areas due to the higher complexity of the scene
and may not be feasible for applications in disaster scenarios. In Qi et al. [98], the authors
noticed that the deep learning models had difficulties distinguishing roads and buildings
from landslides. In this study, the test areas were chosen to represent areas with different
characteristics and complexity. As shown in the histogram of Figure 8, the scores of the
models evaluated on TA1 and TA2, which are close to Nova Friburgo and Teresópolis, were
reduced by false positives caused by roads and the roofs of the houses. The errors occur
in areas with similar spectral responses to the landslides. Since the spatial resolution of
the RapidEye images used in this study is 5 m, the model cannot differentiate the shape of
the landslides from rivers with increased bedload, areas with bare soil, roads, and roofs.
Consequently, the models made these mistakes in all areas. It was expected that the models
trained with the DEM layer would overcome the misclassification of the drainage and
urban areas since these areas usually have different terrain morphological attributes such
as slope and aspect. Probably, these errors occurred due to the coarse resolution of the
available DEM (30 m), which cannot clearly detach objects and generalizes the terrain. In
Ghorbanzadeh et al. [61], the authors used a 5 m DEM and observed that the DEM helped
in differentiating the human settlement areas.

Figure 8. Comparison of the most frequent errors made by the deep learning models during landslide
segmentation and histograms showing the number of pixels for each error category. Images with
lower resolution (left) are from the RapidEye satellite, and images with higher resolution (right) are
from Google Earth.

The post-processing operations were efficient in improving the precision of all test
areas. The precision values improved from 0.56 to 0.64 in TA1, 0.57 to 0.65 in TA2, and
0.64 to 0.81 in TA3 (Figure 9). The results of all operations are given in the Supplementary
Material Table S1. These results show that the post-processing techniques are efficient in
removing the model’s systematic errors and are efficient for improving the segmentation
precision results.



Remote Sens. 2022, 14, 2237 12 of 17

Figure 9. F1 score, recall, precision, and mIoU of the best segmentation results of each test area after
the post-processing operations. The data used for the post-processing operations correspond to the
prediction of the model trained with 128 ⇥ 128 pixel tiles and dataset 3 for TA1; the model trained
with 32 ⇥ 32 pixel tiles and dataset 1 for TA2, and the model trained with 64 ⇥ 64 pixel tiles and
dataset 1 for TA3.

The morphological operations were evaluated individually and in combination; Table 2
shows the best three combinations’ average results for each test area. TA2 and TA3 achieved
the best results with the same operations (dilation; closing/dilation; erosion/opening/closing),
while in TA1, the operations that yielded the best results were opening; erosion/dilation;
and dilation/erosion/opening. Such similarity in the post-processing of TA2 and TA3 and
the difference with TA1 may be related to the environmental differences in the training
area and the prediction pattern of the model. TA3 achieved better precision results in
comparison with the other test areas. This difference seems to be related to each area’s
landslide characteristics and the model results. Therefore, post-processing operations
cannot be generalized and different operations should be tested to find the optimal solution.

Table 2. Best post-processing operations and results for each test area. The best results were cal-
culated by summing all the result values. Values in bold represent the best results before the
post-processing operations.

Area Operation Recall Precision F1-Score mIoU

TA1 - 0.57 0.47 0.52 0.35

TA1
Opening
Erosion + Dilation
Dilation + Erosion + Opening

0.48 0.56 0.52 0.35

TA2 - 0.50 0.57 0.53 0.36

TA2
Dilation
Closing + Dilation
Erosion + Opening + Closing

0.44 0.65 0.53 0.36

TA3 - 0.56 0.64 0.60 0.42

TA3
Dilation
Closing + Dilation
Erosion + Opening + Closing

0.48 0.81 0.60 0.43

5. Conclusions
This study evaluated the generalization capacity of deep learning models and post-

processing techniques. The results show that the patch size highly affects the prediction
accuracy in areas that are different from the training zone. The larger patch improved the
test area results that were close to the training area because larger patches favor a global
comprehension of the scene. Consequently, the model becomes specialized in detecting
landslides similar to the ones used for the training. On the other hand, the models trained
with the smaller patches achieved better results in TA2 and TA3 in locations different from
the training zone. This is because the models trained with smaller patches understand the
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local context better; they can predict the landslides in a more satisfactory way in different
locations. Nevertheless, they also tend to be more restrictive and make more false negative
errors. The complexity of the scene is directly correlated with the performance of the
models. Therefore, comparing results obtained from different authors, and from different
data acquisition methods, such as lidar and Remote Piloted Aircrafts (RPA), may not be
reasonable since each training and test area has its own characteristics and complexities.
In this way, to better evaluate the machine and deep learning models, a future effort
should be made towards an open dataset to evaluate landslide deep learning models.
Such open datasets are standard in other computer vision studies such as ImageNet [101],
MNIST [102], EuroSat [103] UC Merced Land Use Dataset [104], AID dataset [105], and
Brazilian Coffee Scene [106]. Post-processing the results is an efficient step to improve the
precision of the segmentation results. The TA3 results improved by 0.17 after combining
binary erosion, opening, and closing. The best method to post-process the results will
depend on the landslides’ characteristics and the model results. Therefore, one should
test different combinations and parameters in a semi-supervised way to find the optimal
solution. The use of spectral indexes seems to help in balancing the precision and recall of
the models and improving model generalization. Since spectral indexes have comparable
ranges that facilitate model convergence, the calculation of these indexes is important for
predicting landslides in areas with different characteristics from the training areas. Future
work should evaluate whether the use of these indexes also facilitates landslide detection
in images from different sensors and resolutions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14092237/, Table S1: Post-processing operation results.
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Landslide detection in the Himalayas using  
machine learning algorithms and U-Net

Abstract Event-based landslide inventories are essential sources 
to broaden our understanding of the causal relationship between 
triggering events and the occurring landslides. Moreover, detailed 
inventories are crucial for the succeeding phases of landslide risk 
studies like susceptibility and hazard assessment. The openly 
available inventories differ in the quality and completeness lev-
els. Event-based landslide inventories are created based on man-
ual interpretation, and there can be significant differences in the 
mapping preferences among interpreters. To address this issue, we 
used two different datasets to analyze the potential of U-Net and 
machine learning approaches for automated landslide detection 
in the Himalayas. Dataset-1 is composed of five optical bands from 
the RapidEye satellite imagery. Dataset-2 is composed of the Rapi-
dEye optical data, and ALOS-PALSAR derived topographical data. 
We used a small dataset consisting of 239 samples acquired from 
several training zones and one testing zone to evaluate our models’ 
performance using the fully convolutional U-Net model, Support 
Vector Machines (SVM), K-Nearest Neighbor, and the Random 
Forest (RF). We created thirty-two different maps to evaluate and 
understand the implications of different sample patch sizes and 
their effect on the accuracy of landslide detection in the study area. 
The results were then compared against the manually interpreted 
inventory compiled using fieldwork and visual interpretation of 
the RapidEye satellite image. We used accuracy assessment met-
rics such as F1-score, Precision, Recall, and Mathews Correlation 
Coefficient (MCC). In the context of the Nepali Himalayas, employ-
ing RapidEye images and machine learning models, a viable patch 
size was investigated. The U-Net model trained with 128 × 128 pixel 
patch size yields the best MCC results (76.59%) with the dataset-1. 
The added information from the digital elevation model benefited 
the overall detection of landslides. However, it does not improve the 
model’s overall accuracy but helps differentiate human settlement 
areas and river sand bars. In this study, the U-Net achieved slightly 
better results than other machine learning approaches. Although it 
can depend on architecture of the U-Net model and the complex-
ity of the geographical features in the imagery, the U-Net model 
is still preliminary in the domain of landslide detection. There is 
very little literature available related to the use of U-Net for land-
slide detection. This study is one of the first efforts of using U-Net 
for landslide detection in the Himalayas. Nevertheless, U-Net has 
the potential to improve further automated landslide detection in 
the future for varied topographical and geomorphological scenes.

Keywords Landslides · U-Net · Deep learning · Machine learning · 
Himalayas

Introduction

Loss of property and human life due to earthquake-triggered 
landslides is significantly high and is expected to increase due 
to climate change (Froude and Petley 2016; Gariano and Guzzetti 
2016). About 47,000 earthquake-induced landslide casualties were 
reported from 2004 to 2010 (Petley 2012). Earthquake-induced 
landslides (EQIL) have direct and indirect long-term socioeco-
nomic and environmental effects (Fan et al. 2018). The direct and 
indirect effects of landslides, for example, through the formation 
and breakout of landslide dams, are a significant natural hazard in 
the mountain regions of the Himalayas (Dhital 2015). Studies show 
unprecedented loss to both human lives and the economy in the 
Himalayan regions due to landslides, contributing up to 30% of the 
world’s total landslide-related damage value (Dahal and Hasegawa 
2008; Haigh and Rawat 2011). In Northern India, for example, dur-
ing the recent 2021 Uttarakhand landslides, 24 people were killed by 
landslides and around 150 were missing (Meena et al. 2021a). A large 
number of people are affected in the Himalayan regions by small 
and large-scale landslides, especially during the monsoon seasons 
(Khanal and Watanabe 2005; Thapa and Dhital 2000; Upreti and 
Dhital 1996). Although landslides often occur in remote areas, the 
resulting catastrophic flash floods from landslide dam outbreak 
cause extensive damage to settlements, hydroelectric projects, and 
agriculture fields in the downstream areas (Meena and Tavakkoli 
Piralilou 2019).

To better analyze the frequency and distribution of landslides, 
there is a growing demand for event-based inventories that can be 
used to determine the probability of landslide occurrence in space 
and time as a basis for hazard and risk assessment. There is still 
insufficient information on landslide occurrences for many areas 
to make reliable hazard maps (Reichenbach et al. 2018). Landslide 
susceptibility and hazard modeling require accurate and complete 
landslide inventory datasets. This inventory dataset is usually used 
for training hazard models to find potential landslide-prone areas 
(Guzzetti et al. 2012).

The accuracy and completeness of landslide inventory data-
sets are essential for making spatial predictions for future events 
(Hakan and Luigi 2020). The mapping of event-based landslide 
inventories in remote and mountainous areas makes remote sens-
ing data the primary source of information for mapping these 
events (Chen et al. 2018).

In terms of detecting landslide boundaries with remote sensing  
images, classification methods like pixel-based, feature-based, and  
object-based techniques can be employed (Lu et al. 2020; Su et al.  
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2020). While pixel-based methods only extract features by classi-
fying each pixel, they do not take the spatial-context into account. 
However, feature-based methods (like gray level co-occurrence 
matrix and principal component analysis) (Whitworth et al. 2002) 
and object-based image analysis (OBIA) explicitly leverage the spa-
tial information from satellite images (Bacha et al. 2020; Hölbling 
et al. 2012; Martha et al. 2010). During the last decade, deep-learning 
models and other machine learning models, particularly Convolu-
tional Neural Networks (CNNs), have been applied successfully in a 
broad range of image segmentation and object detection purposes 
(Ding et al. 2016; Ghorbanzadeh et al. 2020; Jin et al. 2019; Liu et al. 
2019; Shi et al. 2020).

The use of CNN models has yielded promising results for clas-
sification of aerial images (Bui et al. 2019; Ghorbanzadeh et al. 2021, 
2020; Meena et al. 2021b; Yu et al. 2017). Numerous studies using 
CNN have been conducted for landslide detection (see Table 1). 
Many authors used CNN models for automated landslide detec-
tion in mountainous regions using multi-temporal high-resolution 
remote sensing data, mono-temporal medium-resolution image 
data (Chen et al. 2018), where others optimized their models and 
compared with existing baseline models such as Fully Convolu-
tional Networks (FCNs) (Lei et al. 2019). Hyperspectral data for 
landslide detection was first investigated by Ye et al. (2019). In recent 
studies, different topographical factors like elevation and its deri-
vates like slope, aspect, and curvature combined with remote sens-
ing data for landslide detection were explored to improve landslide 
detection (Sameen and Pradhan 2019; Liu et al. 2020b; Prakash et al. 
2020).

Deep learning models usually require large amount of training 
data to detect objects efficiently. However, since landslide inven-
tories are generated for small areas using manual interpretation 
and fieldwork, such inventories commonly have just a few samples 
and present a limitation for the training of deep learning models 
(Chen et al. 2020; Liu et al. 2020a; Qi et al. 2020) Therefore, in this 
study, the main objective was to evaluate and compare the perfor-
mance of the machine and deep learning models trained with a 
small dataset composed of only 239 landslide polygons (55 polygons 
for training and 184 polygons for testing purposes). The fully con-
volutional U-Net deep learning model and other machine learning 
models were trained with data from a 5-m RapidEye optical satellite 
imagery and resampled 12.5-m ALOS PALSAR digital elevation data 
for landslide detection.

Study area

The study area is located in Rasuwa district Nepal, which is situ-
ated in higher Himalayas and is one of the highly affected regions 
after the 2015 Gorkha earthquake (see Fig. 1). Most of the study 
area falls in the Langtang national park and there are several 
hydropower plants projects along the Trishuli River. After the 2015 
Gorkha earthquake, a series of landslides triggered by the earth-
quake caused damage to hydro powerplants, agricultural land, and 
human settlements. On 15 April 2015, during the Gorkha earthquake, 
more than 80 people were killed due to EQILs and flood events 
near the Mailung village hydropower plant camps. Several attempts 
have been made by local authorities and foreign institutes to study 
impact of landslide on human settlements and hydro powerplants 
in the region. However, in many inaccessible hilly areas, field visit 

was not feasible hence remote sensing tools can help supplement 
the field visits. The study area is highly affected by monsoonal rains 
and every year several deep-seated landslides get reactivated such 
as the one near Ramche village.

Data used and methodology

Datasets

The landslides were visually interpreted as polygons from RapidEye 
imagery acquired on 04 November 2016 (Planet Labs Inc.) and field 
observations. The data has 5 m spatial resolution in five spectral 
bands: blue (440–510 nm), green (520–590 nm), red (630–685 nm), 
red-edge (690–730 nm), and near-infrared (760–850 nm) (RapidEye 
2011).

A total of 239 landslide polygons were mapped in the entire 
study area, 55 in the training zones and 184 in the test zone (the 
training zones are yellow and testing zones are red in color in 
Fig. 1c). For training the model, 117 sampling points were manually 
selected along the centerline of the landslide polygons present in 
the training zone. Other 57 points were selected outside the land-
slide polygons to represent non-landslide samples (see Fig. 1c). 
Therefore, a total of 174 sampling points were used to train the 
models. Those points were used as the centroid to generate the 
training patches of four sizes: 16 × 16, 32 × 32, 64 × 64, and 128 × 128 
pixels (Fig. 2).

Two datasets were created to train the models. Dataset-1 consists 
of the five spectral bands (RGB, red-edge, NIR) from the RapidEye 
satellite. The Dataset-2 consists of the same five bands and two 
extra topographical bands (elevation and slope). The elevation and 
slope data were acquired from a digital elevation model (DEM), 
resampled to 5-m spatial resolution, derived from Phased Array 
type L-band Synthetic Aperture Radar (PALSAR) of the Advanced 
Land Observing Satellite (ALOS).

All the models used the same training data to compare the 
results from the models properly. The deep learning algorithms 
were trained using the Python libraries TensorFlow 2.0 and the 
machine learning using Scikit-Learn.

Classifiers

U-Net model

U-Net (Ronneberger et al. 2015) is a state-of-art deep learning 
model used for semantic segmentation tasks. This model has an 
encoder-decoder architecture similar to the letter “U” (Fig. 3). The 
encoder path is composed of blocks of two 3 × 3 convolutional lay-
ers followed by a 2 × 2 max-pooling layer. The convolutional layers 
are 3 × 3 moving windows that translate around the image, calcu-
lating a dot product that can be summarized by Eq. 1 (Zhang et al. 
2018):

where Ol−1 refers to the output of the (l-1)th layer, Wl represents 
the weights and bl represents the bias. ! indicates the non-linear 
activation function. The rectified linear unit (ReLU) was used as the 
activation function in this research. ReLU is commonly used as the 

(1)O
l = !(Ol−1 ∗ W

l + b
l)
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activation function because it is more efficient than other functions 
and reduces the gradient vanishing problem during the training 
step (Wang et al. 2019). The function returns 0 when the input is 
negative and the same input value if it is positive. The max-pooling 
layers keep only the maximum values from the feature maps gen-
erated from the convolution operation. Thus, after a max-pooling 

operation, the spatial dimension of the feature map is reduced to 
half of the input size.

The decoder path recovers the spatial location by using up-con-
volutions and concatenations from the encoder path (Ronneberger 
et al. 2015). The up-convolution layers increase the dimensions of 
the feature maps. The layers’ output is concatenated with the feature 
map from the symmetrical position in the encoder path. In the last 
layer, a sigmoid function was used to output the class predictions 
in a 0–1 probability range. A threshold of 0.5 was used to deter-
mine the positive (> 0.5) and the negative (< 0.5) classes after the 
prediction.

Several papers describe and explain the U-Net structure and 
how convolutional neural networks are trained (Ghorbanzadeh 
et al. 2019a, b; Prakash et al. 2020; Wang et al. 2019). In this study, 
we use a fully convolutional neural network that is capable of calcu-
lating per-pixel probability of comprising a landslide. Unlike previ-
ous work conducted by Ghorbanzadeh et al. (2019a, b) where they 
used a classical convolutional neural network to generate patch-
wise landslide classification, the neural network used in our study 
is more efficient for landslide segmentation problems as the result 
is a binary output with the same size as the input image (Prakash 
et al. 2020, 2021; Qi et al. 2020). The network hyperparameter tuning 
process considered different number of filters (8, 16, 32), learning 
rates (0.01, 0.001, 0.0001), and batch sizes (8, 16, 32). The learning 
rate value was reduced by a factor of 0.1 when the validation loss 
function reaches a plateau for more than twenty epochs. The mod-
els were saved only when the validation loss function decreased as 
an attempt to avoid overfitting.

Support vector machine (SVM) model

SVM is a machine learning method that uses kernel functions to 
map the dataset into a higher dimension to determine a hyperplane 
that separates the training data feature spaces (Cortes and Vapnik 
1995). The margining of the hyperplanes, also known as support 
vectors, is maximized to be the closest to the training features. This 
method gained popularity for landslide mapping due to accurate 
results, even with small datasets and unknown statistical distribu-
tions (Moosavi et al. 2014; Mountrakis et al. 2011; Pawłuszek and 
Borkowski 2016).

The classification result is affected by the kernel function (e.g., 
linear, sigmoid, polynomial, radial basis). Thus, various kernel 
functions were evaluated to find the best classifier.

K-nearest neighbors algorithm (KNN) model

K-nearest neighbors is a machine learning algorithm that uses the 
training data to find the feature space’s K-closest neighbors. The 
algorithm outputs a class probability that reflects the uncertainty 
with which a given individual item can be assigned to any given 
class (Marjanovic et al. 2009). In this study, the distance between 
the feature space points was calculated using the Euclidean distance 
method. An optimal K value was determined by testing K in a 1–10 
range.

Fig. 1  A Location of the study area in Nepal, B landslide training and 
testing zones in the study area, and C sampling points along the 
center line of the landslide polygons (black) and non-landslide class 
(purple)
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Random forests (RF) model

Random forest is an ensemble method widely used for landslide 
detection (Chen et al. 2014). The method is based on multiple deci-
sion trees. Each tree is slightly different since they are trained with 
the training dataset’s random subsets. The technique is less prone 
to overfitting because each tree’s output class is weighted based on 

a majority voting technique where the class with the most votes 
becomes the model’s prediction.

Multiple input patches

Different patch sizes may affect the model accuracy because 
landslides have different shapes and sizes, which may not be 

Fig. 2  Conceptualization of 
generating the patches for 
training the models

Fig. 3  The architecture of the U-Net model. The numbers below the convolution represent the number of filters used to train the model
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well-represented depending on the patch size. Moreover, since 
the negative class is usually more frequent than the positive class 
in remote sensing imagery, larger patches may negatively influ-
ence the model because they can increase the imbalance between 
the positive and negative class (Ghorbanzadeh et al. 2019a, b).

In this work, the patches used to train the models were con-
stituted by a multiple of 16 pixels since this is a condition to 
effectively train the U-Net model. The models were trained with 
16 × 16, 32 × 32, 64 × 64, and 128 × 128 pixel patches to compare 
and evaluate how the different patch sizes affect the accuracy of 
the model. The models were also trained with 256 × 256 pixels 
patches. However, since the results were inferior compared to the 
other patch sizes, only the results achieved with the mentioned 
patch sizes were considered in the “Results” section.

Results

The machine and deep learning models were trained using only 
174 samples to evaluate and compare the performance of the algo-
rithms using small datasets. In total, sixteen result maps were 
generated for each dataset (dataset-1 and dataset-2). The result 
maps (Figs. 4a, b; 5a, b; 6a, b; 7a, b) are named based on the algo-
rithm, the patch size, and the dataset used to train the algorithm. 
Therefore, the map U-Net_16_5 and U-Net_16_7 (Fig. 4a and b) 
correspond to the U-Net deep learning algorithm trained with 
the 16 × 16 patch size using the dataset with five optical bands 
(dataset-1) and seven bands (dataset-2), respectively. The best 
results were achieved by U-Net models with a learning rate of 
0.001; SVM models trained with a polynomial kernel function 
and a scalable gamma parameter (ͥ); KNN models trained with 
nine neighbors; and RF models with 200 trees and depth 8.

Figure 8 portrays the differences in the areas of the landslides 
detected with the different machine learning models with respect 
to the influence of the topographical information from dataset-2. 
As seen in Fig. 8b, the total area in most of the models is relatively 
higher in dataset-2 than dataset-1 when compared against the 
manually interpreted ground truth area. This difference is because 
of the detection of false positives as an influence from the slope 
and elevation in dataset-2. Although there are improvements in the 
built-up area and river sand bars, the model gets confused and gen-
erates false positives in forests and agricultural areas.

The models were evaluated based on precision, recall, F1-score, 
and Matthews Correlation Coefficient (MCC) metrics, which are 
calculated using the value of true positive (TP), false positives (FP), 
and false negatives (FN) (Fig. 9). Precision (Eq. 2) calculates the 
proportion of pixels correctly classified as landslides. Recall (Eq. 3) 
value represents the number of pixels that was correctly classified 
as landslides from the total pixels representing landslides.

F1-score (Eq. 4) is a harmonic mean between precision and 
recall; therefore, the highest values of F1-score correspond to 

(2)Precision =
TP

TP + FP
× 100

(3)Recall =
TP

TP + FN
× 100

models with better performance. Landslide datasets usually 
have an unbalance between the positive (landslides) and nega-
tive (background) classes. Thus, the MCC (Eq. 5) metric is better 
for comparing imbalanced datasets (Baldi et al. 2000).

The results show that among the models trained with data-
set-1, the U-Net 128,5 model achieved the highest MCC (71.06) and 
F1-score (71.12). Nevertheless, compared with the other algorithms, 
the MCC results are just 0.63, 1.59, and 2.65 higher than the SVM, 
KNN, and RF algorithms (Table 2). SVM 1285 achieved the highest 
precision (80.28), while U-Net 16,5 had the highest recall (83.94).

The U-Net also had better performance in dataset-2 (Table 3). 
However, in dataset-1, the model trained with 128 × 128 patch size 
achieved the best F1-score and MCC, while in dataset-2, the model 
trained with 16 × 16 patch size achieved the highest F1-score (69.42) 
and MCC (69.70). The patch size seems to be more relevant to data-
set-2 since all the models trained with 16 × 16 patch size achieved 
the best results. In dataset-1, the SVM and KNN trained with the 
16 × 16 patch size also had the best results; however, the best U-Net 
and RF model was trained with 128 × 128 and 32 × 32 patch size, 
respectively.

Comparing the results of both datasets, the models trained with 
dataset-1 achieved better results compared to the same algorithm 
over dataset-2. The U-Net 128,5 was the best overall model among 
both datasets. Similar to what was observed by Ghorbanzadeh et al. 
(2019a, b) with machine learning models trained in the same area, 
the topographical layers helped differentiate human settlement 
areas, which have identical spectral responses to landslides; how-
ever, the models generate more false-positive in the steeper areas. 
Visually evaluating the segmentation of each algorithms (as seen in 
Fig. 10), the U-Net segmentation is smoother and more continuous, 
with greater similarity in comparison to the manual annotations 
than with the other ML methods. SVM, KNN, and RF results show 
similar segmentation patterns and mistakes.

Discussion

The U-Net deep learning model achieved the best results in this 
study based on the metrics used to evaluate the models. However, 
the MCC and F1-score values were similar among all the models. 
The results highlight that U-Net can achieve robust results even 
with few training samples. However, since the machine and deep 
learning achieved similar accuracies, all the algorithms have similar 
behavior with a small dataset, and it is impossible to define a bet-
ter algorithm based on the accuracy metrics. However, similarities 
between the manual annotations and the U-Net model results are 
noted in terms of landslide prediction smoothness and continuity, 
demonstrating better segmentation results than the other models. 
The models evaluated by Ghorbanzadeh et al. (2019a, b) in the same 
study area were trained with a bigger dataset composed of 3500 
samples, which was augmented to 7000 samples. In that study, the 
CNN model achieved the best results with an F1-score that was 

(4)F1score =
2 × precison × recall

(precision + recall)
× 100

(5)MCC =
TP × TN − FPxPN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100
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Fig. 4  a Landslide detection 
results using U-Net model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using U-Net 
model in sampled area in the 
test zone using dataset-2
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Fig. 5  a Landslide detection 
results using SVM model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using SVM 
model in sampled area in the 
test zone using dataset-2
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Fig. 6  a Landslide detection 
results using KNN model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using KNN 
model in sampled area in the 
test zone using dataset-2.
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Fig. 7  a Landslide detection 
results using RF model in sam-
pled area in the test zone using 
dataset-1. b Landslide detec-
tion results using RF model in 
sampled area in the test zone 
using dataset-2.
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5.73% greater than the best machine learning model. The signifi-
cant differences in the author’s accuracy between the machine and 
deep learning models highlight the importance of the dataset size. 
In this study, despite the slightly higher accuracy achieved by the 
U-Net, the deep learning algorithms were computationally more 
expensive, needing a GPU (GeForce RTX 2060, 8 GB memory) for 
the training process, while the machine learning algorithms only 
used the CPU (Intel I7 10700 K).

The patch size is an important parameter to find the best algo-
rithm since it affects the model’s accuracy. The U-Net trained with 
the optical data showed a similar pattern to what was observed by 
Soares et al. (2020), where the U-Net models trained with smaller 
patches (32 × 32) yield a greater recall while the models trained 
with the bigger patches (128 × 128) achieved a greater precision. The 
models trained with bigger patches became more restrictive (made 
fewer false-positive errors) than the models trained with smaller 
patches. Nevertheless, this pattern was not observed in the U-Net 
models trained with the topographical dataset and on the results 
achieved by the machine learning models.

The topographical data does not improve the results of the mod-
els in this study. This may be related to the resampled DEM used 
and the samples. Since the dataset is composed of 174 samples, the 

Fig. 8  Area of detected 
landslides using different 
machine learning and U-Net 
models against the manually 
interpreted ground truth (red 
color). A Dataset-1, B dataset-2

Fig. 9  Confusion matrix showing true class and predicted classes of 
landslides and other features and four different evaluation metrics
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models were not exposed to various topographic features. There-
fore, the pattern learned with the training samples may not repre-
sent the test area, and consequently, the results were worse. Moreo-
ver, the Hughes Phenomenon (Hughes 1968), also known as the 
Curse of Dimensionality in the field of machine learning, may also 
be related to the inferior results with the topographical dataset. 
Since the dataset with two extra topographical bands has a higher 
dimensionality, a greater number of samples are needed to improve 
the models’ accuracy. The small number of samples used to train 
the models was not enough for the classifier to reliably classify the 
landslide areas; therefore, the classification performance degraded 
with the higher dimensional data. This phenomenon may also jus-
tify why the models trained with 16 × 16 patch size (smaller patch, 
with lower dimensionality) achieved the best results within this 
dataset.

The training and test area used in this study have landslides with 
similar spectral characteristics. Therefore, this may also explain the 
comparable results achieved with the machine and deep learning 
models. However, since machine learning algorithms are trained 
using a one-dimensional vector with pixel values, the spatial pat-
tern of the landslides, such as the shapes, is not learned by those 
models. Consequently, it is expected that the deep learning method 
achieves better results in areas with different spectral characteris-
tics than the machine learning algorithm because those models are 
trained with two-dimensional patches that keep the spatial infor-
mation of the images. According to the literature, the U-Net like 
architectures achieve the best results for segmenting landslides in 
test areas with similar spectral characteristics to the training zones, 
and test areas with different spectral characteristics highlighting 
their generalization capacity and good accuracy on landslide seg-
mentation (Qi et al. 2020; Prakasha et al. 2020; Soares et al. 2020; Yi 
et al. 2020; Prakasha et al. 2021).

Table 2  The results of landslide detection in the study area based on 
the different ML and U-Net model for dataset-1; accuracies are stated 
as precision, recall, F1-measure, and MCC. The best values are in bold

Model Precision Recall F1-Score MCC

U-Net 16_5 57.20 83.94 68.03 68.99

U-Net 32_5 57.88 81.99 67.85 68.56

U-Net 64_5 67.19 71.09 69.09 68.83

U-Net 128_5 76.59 66.38 71.12 71.06

SVM 16_5 75.75 65.95 70.51 70.43

SVM 32_5 74.96 62.62 68.23 68.25

SVM 64_5 72.43 60.65 66.02 66.00

SVM 128_5 80.28 55.84 65.87 66.71

KNN 16_5 67.79 71.77 69.73 69.47

KNN 32_5 73.66 62.47 67.60 67.57

KNN 64_5 73.36 61.39 66.84 66.84

KNN 128_5 73.64 60.00 66.16 66.24

RF 16_5 58.70 76.54 66.44 66.69

RF 32_5 76.64 61.52 68.25 68.41

RF 64_5 72.82 60.42 66.04 66.06

RF 128_5 73.91 59.73 66.07 66.17

Table 3  The results of landslide detection in the study area based on 
the different ML and U-Net model for dataset-2; accuracies are stated 
as precision, recall, F1-measure, and MCC. The best values are in bold

Model Precision Recall F1-Score MCC

U-Net 16_7 61.46 79.74 69.42 69.70

U-Net 32_7 59.31 80.44 68.28 68.75

U-Net 64_7 62.07 77.11 68.78 68.88

U-Net 128_7 60.27 78.17 68.35 68.58

SVM 16_7 72.20 66.52 69.24 69.04

SVM 32_7 66.74 67.34 67.04 66.74

SVM 64_7 68.80 63.19 65.88 65.64

SVM 128_7 71.32 61.03 65.77 65.69

KNN 16_7 66.24 72.58 69.27 69.05

KNN 32_7 69.37 66.47 67.89 67.62

KNN 64_7 70.25 63.29 66.59 66.39

KNN 128_7 71.77 58.72 64.59 64.63

RF 16_7 70.22 68.67 69.44 69.17

RF 32_7 69.80 66.81 68.27 68.01

RF 64_7 69.95 60.04 64.62 64.51
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Fig. 10  Enlarged maps of 
sub-area from the test zone. 
Landslide detection results are 
overlayed on the inventory 
data
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Conclusions

This work evaluates different machine and deep learning model 
performances trained with small datasets and different patch 
sizes for landslide segmentation. The U-Net deep learning model 
achieved the best results on dataset-1 and dataset-2. However, all 
the models achieved similar MCC and F1-scores, highlighting 
that deep learning models achieve comparable results to machine 
learning algorithms with small datasets. The extra topographic 
features (slope and elevation) did not improve the models’ results 
but yielded improved detection of false-positive such as built-up 
areas, an error in riverbeds. In this study, U-Net has slightly better 
results than other machine learning approaches. Although it can 
depend on the model architecture and the complexity of geograph-
ical features in the imagery, the U-Net model is still preliminary 
when considered for landslide detection. A reason for the U-Net 
model to perform better is because of the encoder-decoder and 
skip-connection structure of the model that preserves the struc-
tural integrity of the output results even with lower training data 
(Ronneberger et al. 2015). This exhibits the notion of actually using 
lesser training data, which is generally the case for new events, and 
can be then used in training and detecting landslides for newer 
events.

This study is one of the first efforts of using U-Net for land-
slide detection in the Himalayas. Nevertheless, U-Net has the 
potential to further improve automated landslide detection in 
the future as U-Net excels in producing good results as stated 
above in regard to the architecture structure but also that since 
the output is a segmentation result, we are provided with the 
information of the landslide boundary and the delineation of 
the landslide body as well. Further adjusting of the encoder part 
of the model, we can add deeper layers like Virtual Geometry  
Group (VGG) and Residual Neural Network (ResNet-50) (Simonyan  
and Zisserman 2014; He et al. 2016) to further improve the 
results and thereby detecting more landslides with fewer false 
positives as model complexity overall tends to overcome such  
artifacts.

The use of only spectral bands can be a limitation for landslide 
detection since geological and the degree of saturation of the soil 
directly affect the targets’ spectral response. Therefore, areas with 
higher soil saturation may present darker colors while less satu-
rated areas will have light colors. Moreover, rocks with different 
weathering conditions will show different spectral responses. Thus, 
to avoid algorithm misclassifications and improve the results, fur-
ther studies need to use images covering a more comprehensive 
range of time and different seasons. This way, the models can learn 
and predict a broader range of spectral responses of the landslides 
and achieve better results.
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Feature-Based Constraint Deep CNN Method for
Mapping Rainfall-Induced Landslides in Remote

Regions With Mountainous Terrain: An
Application to Brazil

Guosen Xu , Yi Wang , Member, IEEE, Lizhe Wang , Fellow, IEEE, Lucas Pedrosa Soares ,
and Carlos H. Grohmann

Abstract—Landslides have caused tremendous damage
to human lives and property safety. However, the complex
environment of mountain landslides and the vegetation coverage
around landslides make it difficult to identify landslides quickly
and efficiently using high-resolution images. To address this
challenge, this article presents a feature-based constraint deep
U-Net (FCDU-Net) method to detect rainfall-induced mountainous
landslides. Usually, the vegetation in the landslide area is severely
damaged, and the vegetation coverage can indirectly reflect the
spatial extent of the landslide. Meanwhile, the texture features of
high-resolution images can characterize the surface environment
of landslide hazards to a certain extent. We first introduce auxiliary
features of normalized difference vegetation index and gray-level
co-occurrence matrix into the proposed method to further improve
the detection performance. Then, to minimize the information
redundancy of these features and the image, we combine Relief-F
and Deep U-Net to screen the optimal features to effectively identify
accurate and detailed landslide boundaries. Compared with tradi-
tional semantic segmentation methods, the FCDU-Net method can
capture fine-grained details in high-resolution images and produce
more accurate segmentation results. We conducted experiments by
applying the proposed method and other most popular semantic
segmentation methods to a high-resolution RapidEye image in Rio
de Janeiro, Brazil. The results demonstrate that the FCDU-Net
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method can achieve better landslide detection results than the other
semantic segmentation methods, and the evaluation measures of
Precision, F1 score, and mean Intersection-over-Union are as high
as 88.87%, 81.17%, and 83.19%, respectively. Furthermore, we
quantitatively analyze the effect of the convolution input window
size on the performance of FCDU-Net in detecting landslides. We
believe that FCDU-Net can serve as a reliable tool for fast and
accurate regional landslide hazard surveys.

Index Terms—Auxiliary features, deep convolutional neural
networks (DCNNs), feature selection, high-resolution image,
landslide detection.

I. INTRODUCTION

A S A common geological disaster, landslides cause immea-
surable damage to infrastructure and seriously threaten

the safety of human life and property [1]–[3]. Therefore, ef-
ficiently and accurately locating of landslide areas is crucial
for emergency rescue and disaster warning. Landslide inventory
data is the main resource for landslide research at different
scales [4]. The training and testing of landslide prediction begins
with the creation of a landslide inventory map [5]. Traditional
landslide inventory mapping methods mainly rely on field survey
and visual interpretation of aerial images [6], but it requires
personnel with professional knowledge to complete it, wastes
a lot of manpower and material resources, and cannot meet the
needs of efficient and accurate positioning of landslides.

Remote sensing data can cover hundreds of square kilometers,
providing rich image data for disaster observation. Optical and
radar remote sensing images have been widely used to observe
the landscape changes of landslides [7]–[12]. Traditional image
processing techniques mainly detect landslides on remote sens-
ing images through statistical methods [10] and semi-automatic
methods [13]. However, these methods need to obtain the image
features of the landslide area in advance by artificial means, and
also require a lot of parameter modulations, and the process is
complicated.

Satellite images are significant for identifying landslides fol-
lowing large-scale events, especially when the disaster occurs in
remote or hard-to-reach areas [14]. Generally, landslides can be
automatically identified in aerial photographs, high-resolution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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and very-high-resolution remote sensing images by using pix-
elwise identification methods and object-based information ex-
traction (OBIE) methods [15]. Among them, pixelwise methods
can overcome the shortcomings of human interpretation, and can
be mainly separated into two main categories: supervised learn-
ing and unsupervised learning. The former includes discrimi-
nant analysis, feature analysis, maximum likelihood analysis,
support vector machine, etc., and the latter includes iterative
self-organizing data analysis technique algorithm and K-means.
These pixelwise methods were used to identify landslides in
Taiwan and compared with visual interpretation results [16].
After discussing six different image fusion methods, Marcelino
et al. [17] proved that the intensity-hue-saturation technique can
better preserve the information of the original image and used
it to identify landslide scars. In addition, the change detection
technique allows the extraction of landslides from images at
different time phases [18]–[25]. The pixelwise methods only
exploit the spectral features of different materials in the image
without considering the geometric and contextual information
in the image. Therefore, these methods are prone to “pepper and
salt” noise in the resultant map. However, OBIE-based methods
can consider multiple features, such as spectral (pixel value,
hue, color, etc.), spatial (landslide area size, shape, contour,
etc.), and background features [26], which are widely used for
landslide detection using airborne and satellite images [27], [28].
For example, Martin et al. [29] took the image segmentation
result as the basic unit and established landslide recognition con-
straints based on shape, texture, and adjacent features, and the
classification accuracy reached 65%. Based on FORMOSAT-2
images and DEM data, Rau et al. [30] identified landslides in
the mountainous areas of central and southern Taiwan through
multilevel segmentation and hierarchical semantic network, and
achieved good experimental results. Meanwhile, conventional
classification methods such as support vector machine [31]
and random forest [28] have also been introduced into the
OBIE-based landslide detection, and their effectiveness has been
verified. However, some empirical parameters of OBIE rely too
much on experts and the degree of automation is low. Thus, there
are still certain limitations in practical applications [32], [33].

Convolutional neural networks (CNNs) can effectively cap-
ture abstract features from the original image [34]. In recent
years, CNNs have attracted extensive attention and applications
in the fields of large-scale image recognition, target detection,
and semantic segmentation due to their advantages of local
receptive, weight sharing, and connection sparsity [35]–[38].
However, only a few articles have used CNNs for landslide
detection based on remote sensing image [2]. Ding et al. [39]
first used texture and spectral features to remove the interference
of background features such as buildings, water bodies, and
vegetation, and then used CNNs to capture remote sensing image
information before and after the landslide and calculated the
Euclidean distance of the two features to determine whether
there is a landslide on the image. Yu et al. [40] first screened
out candidate images with landslides from remote sensing im-
ages through a shallow CNN, and then used a region growing
algorithm to determine landslide boundaries and centers. Ghor-
banzadeh et al. [1] performed different numbers of convolutions

and different levels of feature fusion on remote sensing images
of southern Nepal. To further reduce the influence of background
on the image, Ji et al. [2] developed a deep convolutional neural
network (DCNN) for end-to-end landslide target detection. Yi
et al. [41] constructed a cascaded end-to-end DCNN to intel-
ligently detect earthquake-triggered landslides. Qin et al. [42]
applied distant domain transfer learning and traditional CNNs
for landslide detection.

In summary, traditional feature extraction methods and CNNs
have been used for landslide detection in high-resolution images.
However, only a few articles have used deep learning techniques
to detect landslides in areas with complex terrain, especially
those triggered by extreme weather such as heavy rain. We
believe that the task of detecting landslides in mountainous areas
caused by heavy rainfall still faces the following challenges.
First, the background of remote sensing images with moun-
tainous terrain is very complex, including quarries, terraces,
slopes, and riverbeds, which may be similar in characteristics
to landslides and easily interfere with detecting them. Second,
landslides usually appear at different scales on remote sensing
images, and the length of landslides may vary from a few meters
to several kilometers. Finally, there are obvious seasonal changes
in remote sensing images of mountainous areas, and the specific
characteristics of coverage in different seasons may make it
difficult to identify landslides.

To fill a gap in the previous articles, we present a feature-based
constraint deep U-Net (FCDU-Net) method to map rainfall-
induced landslides in remote areas with mountainous terrain.
The main contributions are summarized as follows:

1) We only need to acquire postdisaster optical remote sens-
ing imagery and process landslide data through data aug-
mentation strategies, without inputting other data such as
topographic factors and multitemporal images.

2) Deep U-Net (DU-Net) is used as a prediction model for
landslide detection. Since it combines the advantages of
U-Net and DenseNet, it can capture fine-grained details
in high-resolution images and produce more accurate se-
mantic segmentation results than most popular networks.

3) The FCDU-Net method combines auxiliary features with
the original image to improve the identification accuracy
of landslides. Usually, the vegetation in the landslide area
is severely damaged, and the vegetation coverage can
indirectly reflect the spatial extent of the landslide. Mean-
while, the texture features of high-resolution images can
characterize the surface environment of landslide hazards
to a certain extent. On this basis, normalized difference
vegetation index (NDVI) and gray-level co-occurrence
matrix (GLCM) are input into the network as auxiliary
features. Furthermore, to minimize the information re-
dundancy of these features and the image, we combine
Relief-F and DU-Net to screen the optimal features for
subsequent processes, and effectively identify accurate
and detailed landslide boundaries.

The rest of this article is organized as follows. Section II
introduces the study area. Section III describes the auxiliary
features used in this article and the modified DU-Net method.
Section IV analyzes landslide detection results of different
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Fig. 1. Location of the study area and annotated rainfall-induced landslides (red polygons).

methods. Section V discusses the effectiveness of the proposed
method. Finally, Section VI concludes the article.

II. STUDY AREA AND DATA

The study area is located in the Nova Friburgo mountains
in Rio de Janeiro, Brazil, as shown in Fig. 1. In January
2011, a heavy rainfall event of 350 mm/48 h occurred in Nova
Friburgo, triggering at least 3500 translational landslides with
a total area of about 5.56 km2, and more than 1500 people
died from the rainfall-induced landslides [43]. The landslide
inventory map of the study area was manually generated by
experts from high-resolution satellite images based on shape
and tone information, and validated using Google Earth Pro and

compared with landslide maps produced by other scholars [44].
The high-resolution image used in this article was acquired by
the RapidEye sensor on August 13, 2011. It has 5000 × 5000
pixels and five bands in the range of 440–850 nm, with a spatial
and temporal resolution of 5 m and 5.5 days, respectively. In the
image, 816 landslides caused by heavy rainfall were marked
as solid polygons of different sizes, ranging from 200.32 to
78117.35 m2, as shown in Fig. 1.

III. METHODOLOGY

A. Auxiliary Features

1) NDVI: NDVI, a remote sensing index reflecting the status
of land vegetation cover, has been widely employed in land use
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TABLE I
CALCULATION FORMULA OF TEXTURE FEATURE FACTOR

and land cover change. In the study of landslide identification,
it is generally believed that the vegetation coverage inside the
landslide body will change with the movement of the landslide.
Therefore, this article introduces the index to strengthen the
distinction between vegetation areas and nonvegetation areas

NDVI =
NIR −R

NIR +R
(1)

where NIR and R represent the reflectivity in the near-infrared
band and in the red band, respectively.

2) GLCM: The GLCM is a classic analysis method that ex-
tracts texture features by calculating the conditional probability
density between gray levels of an image, and is widely used for
information extraction of remote sensing images. The texture
of the landslide is significantly different from the surrounding
geological environment. In order to synthesize the information
of each band and reduce the dimensionality of data, the principal
component analysis is used on the original image, and eight
GLCM texture features of the first principal component are
calculated. Table I lists the texture features of high-resolution
images used for deep learning modeling. The Mean indicates
how regular the texture distribution is. The stronger the regu-
larity, the greater the mean. Variance is the difference between
each pixel and the mean. If the gray value of the pixel changes
greatly, the variance value is larger. Homogeneity is a measure
of uniformity within a local area. In this area, the more uniform
the image distributed, the greater the homogeneity. Contrast
represents how the matrix values are distributed and to what
extent local variations in the image reflect the sharpness of the
image and the depth of the grooves in the texture. The greater
the contrast, the deeper the grooves, and the sharper the effect.
Dissimilarity is similar to Contrast. In a local area, the higher
the contrast, the stronger the dissimilarity. Entropy is a measure

of the randomness of the information contained in an image.
Entropy is greatest when all means in the GLCM are equal or the
pixel values show the greatest randomness. Therefore, the higher
the entropy value, the more complex the grayscale distribution of
the image. The second moment represents the uniformity of the
grayscale distribution of the image and texture thickness. When
the image texture is fine and the grayscale distribution is uniform,
the second angular moment is larger. Correlation refers to the
similarity of the grayscale of the image in the row or column
direction. The texture reflects the local grayscale correlation of
the image. The larger the value is, the greater the correlation.

B. Deep Convolutional Neural Networks

1) Fully Convolutional Network: To apply deep learning
CNNs to semantic segmentation, a full convolutional network
(FCN) was proposed [45], which replaces the last part of the
CNN with a convolution layer (a kernel of size 1 × 1), allowing
prediction of two-dimensional dense class label maps [46]. The
semantic segmentation effect of point-to-point classification is
achieved by restoring the feature map to the input size while
preserving the spatial structure of the image. It modifies the fully
connected layers of deep CNNs (AlexNet, VGG, GoogleNet,
etc.) for image classification into convolutional layers, and pro-
poses an end-to-end semantic segmentation model.

2) U-Net: U-Net was proposed to improve the situation
where the target edges are not fine enough in the resultant
segmentation map [47]. In this network, the number of channels
of the feature map is doubled during each downsampling proce-
dure to allow more feature information (e.g., boundaries, colors,
shapes, etc.) to propagate among the convolutional layers, while
this number is halved during each upsampling procedure. The
skip connection is performed and the stacking operation of
dimensional concatenation to fuse feature maps of different
scales. This process preserves more high-resolution details to
help restore the spatial resolution of the output map and improve
segmentation accuracy [48]. This network has been widely used
in target extraction from remote sensing images [49]–[51].

3) DeepLabv3+: DeepLabv3+ was proposed to use atrous
convolutions to improve segmentation performance [52].
Specifically, it uses atrous convolutions [53] with different
strides [54]. The receptive field is expanded through atrous
convolution without increasing the network training parameters
and reducing the resolution of the output feature map. In essence,
DeepLabv3+ fuses the shallow features of the encoder with the
deep features of the atrous spatial pyramid pooling [55] module
to output more accurate semantic segmentation results. Shallow
features can provide better object details, and deep features
can provide more abstract semantic information and location
information of objects. The fusion of the two features can output
higher precision semantic segmentation results.

To better compare the aforementioned methods, Table II lists
their advantages and disadvantages.

C. Feature Selection Based on Relief-F

Relief-F is a multiclass feature selection algorithm based
on mathematical statistics, calculating the weights of each
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TABLE II
COMPARISON OF CHARACTERISTICS OF THREE SEMANTIC SEGMENTATION METHODS

Fig. 2. Input and output of the first layer of DU-Net.

feature variable and rank the magnitude of the weight values
by randomly selecting samples [56]. The Relief-F method can
determine the relative importance of the features to landslide
occurrence, and it evaluates the value of features by considering
the correlation between features and categories [57].

The Relief-F algorithm first selects a random sample R from
the dataset D, and then selects k nearest neighbor samples from
the similar and different classes of the sample R. In the feature set
F, if the distance between samples of different classes is greater
than that of samples of similar classes in one feature, the feature
is conducive to classification, and its weight is increased. The
process repeats n times to take the mean of all the results as the
final weight value of each feature. Finally, the feature weight is
defined as follows:

ω (Fj)=ω (Fj)−
1

n · k
∑

h∈H
|Rj − hj |+

1

n · k
∑

m∈M
|Rj −mj |

(2)
where ω(Fj) is the weight value of the jth feature, k is the
number of nearest neighbor samples,

∑
h∈H |Rj − hj | indicates

the sum of the distances between the selected k similar class
neighbor samples and the sample R on the jth feature, and∑

m∈M |Rj −mj | represents the sum of distances between k
heterogeneous nearest neighbor samples and the sample R on
the jth feature.

D. Deep U-Net Architecture

DU-Net [58] can effectively combine the advantages of tradi-
tional U-Net [47] and DenseNet [59], using skip connection

to combine low-level and high-level information in U-Net,
while using dense connection to enhance feature propagation in
DenseNet. In U-Net, the feature maps of the encoder are received
directly in the decoder. However, in DU-Net, the redesigned
dense skip connections change the connectivity of the encoder
and decoder subnetworks, and the number of convolutional
layers depends on the network level. For example, as shown in
Fig. 2, the layer-jumping path between nodes x0,0 and x0,3 is com-
posed of dense convolutional blocks with three convolutional
layers. Each convolutional layer is preceded by a connection
layer that merges the output of the previous convolutional layer
from the same dense block and the corresponding upsampled
output of the lower dense block. The DU-Net structure can
capture subtle information, obtaining better output than U-Net.
Therefore, the use of DU-Net for semantic segmentation of
remote sensing images has great application value.

The formula for DU-Net’s dense skip connection is given by

xa,b =

{
H

(
xa−1,b

)
, b = 0

H{[
[
xa,k

]b−1

k=0
, U

(
xa+1,b−1

)
]} b > 0

(3)

where xa,b represents the output of the b th node of the a th layer
of the network, and H (!), U (!), and [!] represent convolution
operation, upsampling operation, and concatenation operation,
respectively. When b = 0, the node only takes as input from
the downsampling layer of the upper layer. There are two inputs
passed to the node with b = 1, both of which come from the
encoding subnetwork and are two consecutive layers. When
b + 1 inputs are passed to a node with b > 1, b of those inputs
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Fig. 3. Architecture of DU-Net.

come from the output of the previous node in the skip path
consistent with that node, while one more input is obtained
from a skip path lower than that node after an upsampling
operation.

We propose an FCDU-Net method to detect landslides, which
fuses spectral bands, NDVI, GLCM texture features, and uses
the Relief-F algorithm to filter out positive factors from auxiliary
features and uses the DU-Net model for feature extraction and
training. Fig. 3 shows the DU-Net architecture, consisting of
an encoding structure, a decoding structure, and dense skip
connections. The feature maps of the same layer have the same
size, and from top to bottom, they are the first to fifth layers.
According to [58], three, two, and one convolutional modules
are included between the first, second, and third layers of the
encoder–decoder path, respectively. Each convolution module is
composed of two sets of convolutional layers with a kernel size of
3 and a rectified linear unit. The overall feature fusion structure
of DU-Net is in the shape of an inverted pyramid. Each layer of
the pyramid is equivalent to a dense block, and the features are
transferred backward through dense skip connections. Among
different layers, the features are deeply aggregated from top
to bottom, which shortens the semantic gap when the encoder
features and decoder features skip and connect, and improves
the feature learning ability of the model.

E. Flowchart of Landslide Inventory Mapping

Fig. 4 illustrates the overall flow of the proposed method.
First, training samples are generated through data preprocessing,
including image normalization, feature selection, and landslide
data processing. The proposed method is supervised and trained
based on the training dataset and real samples. Meanwhile,
the model is continuously calculated and analyzed based on
validation data to ensure satisfactory generalization to unknown
datasets. After the validation loss reaches the minimum value,
the training process terminates. The model inference process

adopts the edge-ignoring prediction method [60], and the pros
and cons of the model are evaluated based on the test dataset.

1) Data Preprocessing: Data preprocessing mainly includes
image cropping, normalization, and preparation of landslide
training datasets. Different features of the target often have
different dimensional units, which will affect the results of data
analysis. To eliminate the influence between indicators, image
normalization is usually required to make the data indicators
in the same order of magnitude and facilitate the training of
deep CNNs. In this article, each channel of the original image
is normalized by Min–Max normalization so that the input has
a similar distribution. Due to the diversity of landslide shapes
and sizes, multiple input window sizes are used for landslide
detection. First, an n-band high-resolution image and a single-
band rasterized ground-truth label layer are stacked to form
a (n+1)-channel array to ensure that feature transformations
remain in the image. We then scan the image using a sliding
window algorithm to generate training patches, as shown in
Fig. 5.

To better train a deep learning network, it is necessary to select
a sufficient number of samples to train the network. If the number
of training image sets is small, the scenes contained in these
image data may be relatively homogeneous, and the network
model cannot learn features extensively, so the generalization
ability of the trained model is not strong. Inspired by previous
articles in similar fields [61], [62], we use a data augmenta-
tion strategy to generate more training samples. Next, these
patches are expanded horizontally, vertically, and diagonally,
which increases the invariance and robustness of the network to
such deformations. All training samples are generated from the
training area, and images from the test area are not used during
training.

2) Model Training: Using a small-batch training strategy,
only a small portion of the training dataset is used as input in each
iteration to avoid local minimizing of training errors and achieve
rapid convergence in the parameter optimization process [63].
In addition, the scales of landslides are different. We randomly
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Fig. 4. Flowchart of this article.

Fig. 5. Flowchart of cropping a high-resolution image to generate raster tiles through scanning the image using a sliding window.

selected three test areas. The total training area contains 749
landslides (88%) and test area contains 98 landslides (12%). For
imbalanced datasets, this may result in the minority categories
being easily ignored since classifiers are usually designed to
optimize overall accuracy (OA) [64], [65]. Dice loss [66] is
especially proposed as a loss function for medical images with
too large proportion of background information and too small
proportion of foreground information, resulting in imbalance of
positive and negative sample categories. Taking into account the
difference in landslide and background proportions, this article
uses the weighted dice loss. Specifically, we weight the losses

for different categories and calculate the weight for each class.
The higher the frequency, the smaller the lower of the category.

3) Model Validation and Inference: During training, 30%
of each dataset is used as validation data, and they are not
augmented to evaluate the generalization ability of DCNNs. In
this article, a threshold of 0.5 is chosen to classify the results into
binary classes. Specifically, if the predicted probability value of
a certain pixel is greater than 0.5, the pixel is considered to be
a landslide unit, and the pixel with a probability value less than
0.5 is a nonlandslide unit. Next, we conduct model testing to
analyze the quality of the network. In particular, we select a
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Fig. 6. Sketch map of model inference. (a) Test area image. (b) Cropping the image. (c) Inference results are directly spliced together. (d) Direct splicing results.
(e) Splicing inference results while ignoring the edges. (f) Edge-ignoring inference result.

robust model that does not overfit in the training dataset, and
evaluate it qualitative and quantitative through visual inspection
and different objective metrics.

What is more, the automatic landslide detection model uses
datasets from the test area for evaluation. The test area image is
sliced into a series of smaller images to be input to the network
for inference, and the prediction results are merged into a mosaic
to fully cover the original range, as shown in Fig. 6. Direct
stitching prediction methods often result in splicing traces, af-
fecting landslide inventory mapping. In this article, we perform
edge-ignoring prediction, i.e., cropping overlapping images and
adopt the edge-ignoring strategy when splicing. In Fig. 6(e)
and (f), the actual cropped image is predicted to be A, then the
stitching result is a. The percentage of a in area A is r, and the
overlap ratio of adjacent cropped images is 1−

√
r, where the

value of r is 0.5.

F. Accuracy Evaluation

To quantitatively analyze the effectiveness of the proposed
method, the experiments calculate several evaluation measures
of Precision, Recall, and F1 score (F1). Precision indicates that
the correctly recognized landslides are divided by the aggregate
number of landslides recognized by the model. Recall means that
the correctly recognized landslides are divided by the aggregate
number of actual landslides. F1 is used as a standard measure
of model performance, which represents the harmonic average
of the measures of Precision and Recall. Besides, two statistical
measures of Kappa and OA are applied to evaluate the predictive
ability of different landslide inventory mapping methods. The
aforementioned measures are given by

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2× precision× recall

precision + recall
(6)

Kappa =
Pc − Pexp

1− Pexp
(7)

Pexp =
(TP + FN ) (TP + FP ) + (FP + TN ) (FN + TN )

(TP + TN + FN + FP )
2

(8)

Overall Accuracy =
TP + TN

TP + FP + TN + FN
(9)

where TP and TN represent the number of positive and negative
samples correctly classified by the model, respectively, and FP

and FN denote the number of positive and negative samples in-
correctly classified by the model, respectively. Pc is the observed
agreement rate meaning the percentage of type consistent frac-
tions in the two datasets, and Pexp is the expected probability of
change agreement. The Kappa coefficient is generally calculated
to be between−1 and 1, but usually between 0 and 1. The higher
the F1, the better the prediction.

Mean Intersection-over-Union (mIoU) is a commonly
adopted validation metric in computer vision. The intersection
and union of the predicted area and the true area are obtained, and
mIoU is the ratio of these two components. In this article, these
two sets are the landslide interpretation map and the landslide
prediction map. The value ranges from 0 to 1, where 1 means
the best result. The measure of mIoU is given by

mIoU =
1

m+ 1

m∑

j=0

Pij
Pii∑m

j=0 Pij +
∑m

j=0 Pji − Pii
(10)
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Fig. 7. Landslide inventory mapping results by different DCNN methods. (a) FCN. (b) DeepLabv3+. (c) U-Net. (d) DU-Net. (e) FCDU-Net.

where m = 1 in this article and m + 1 is the number of classes.
Pij represents the number of real i, but predicted to be j.

IV. RESULTS

A. Experimental Settings

To illustrate the performance of FCDU-Net in landslide
inventory mapping, four deep CNNs were compared, including

FCN, DeepLabv3+, U-Net, and DU-Net. All deep CNNs were
performed on Linux platform using Tensorflow-based Keras
framework, and the training and testing process was carried
out on a deep learning machine with 64G CPU memory. Cal-
culations were performed using two NVIDIA GeForce RTX
2080Ti GPUs (12 GB RAM) in the NVIDIA CUDA Toolkit
10.1 environment. Experiments all restarted training the network
without involving any pretrained model weights. The commonly
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Fig. 8. ROC curves of different methods using the test set.

used Adam optimizer [67] was chosen to update the hyperparam-
eters in the network. Through extensive experiments, 0.001 was
used as the learning rate. To avoid overfitting, an early-stopping
measure is used to save network parameters when the validation
loss curve reaches a minimum. During the training phase, a
maximum of 200 training epochs were conducted. To balance
training time and model inference performance, a batch size of
64 was chosen. All experimental hyperparameters, training data,
and other variables were set identically.

B. Landslide Inventory Mapping Results

All the mentioned deep learning methods were trained using
the training dataset, and tested on three subareas of the study
area. Referring to previous articles and landslide distribution,
all methods used an input window size of 128 × 128. Fig. 7
shows landslide detection maps for the five DCNN methods.
It is clear from Fig. 7 that FCN and DeepLabv3+ produced
more omission errors in the upper left and lower right corners
of the study area, respectively. In contrast, the DU-Net model
had fewer false positives and false negatives, compared to U-
Net. Fig. 7(e) shows that FCDU-Net has a good recognition
for small landslides that are indistinguishable to the naked eye,
degree. The landslide boundaries inferred by FCDU-Net match
the true distribution of landslides better than U-Net and DU-Net.
The visual inspection results show that FCDU-Net has the best
prediction performance.

Fig. 8 plots receiver operating characteristic curves of the
five models. The area under the curve (AUC) is a quantitative
measure of the accuracy of each method in distinguishing cat-
egories. In this article, the two categories are landslide areas
and nonlandslide areas. Theoretically, the minimum value of
AUC is 0 and the maximum is 1. Moreover, the closer the AUC
value is to 1, the better the model’s ability to identify samples of
different classes. As can be seen from Fig. 8, the AUC values of
all the models are above 0.95, indicating that DCNN can exhibit
very satisfactory predictive ability. Furthermore, the FCDU-Net

method outperforms the other methods with the highest AUC
value of 0.983.

Table III lists the detection accuracy evaluations of different
methods for Precision, Recall, F1, mIoU, Kappa, and OA,
demonstrating the quantitative assessment accuracy of each
method based on the test dataset. It can be observed that
FCDU-Net has the highest mIoU at 83.19%, which is about 7%
higher than U-Net (76.47%). In addition, FCDU-Net achieves
the highest Precision, Recall, F1, Kappa, and OA values. Except
for Recall, the FCN model performs worse than the other three
models in terms of all other statistical metrics.

C. Parametric Analysis

1) Influence of Convolutional Input Window Size: To analyze
the influence of convolutional input window size, we conducted
landslide detection experiments using FCDU-Net with different
convolutional input window sizes. Specifically, the size of 128
× 128 was used as the large input window size of the model,
while the sizes of 64 × 64 and 96 × 96 were considered as
two different versions of the small window. On this basis, 3060,
1880, and 1296 training samples of size 64 × 64, 96 × 96, and
128 × 128 were derived, respectively. Fig. 9 shows landslide
detection maps for two landslide subareas in the study area using
FCDU-Net with three different input window sizes. It can be
seen that different convolutional input window sizes can reflect
the geological environmental conditions of different scales of
landslides. As a result, the model can extract different spatial
contextual information during training.

To quantitatively analyze the usability of the FCDU-Net
method with three different input window sizes, a confusion
matrix is used to calculate the four evaluation measures men-
tioned in Section III-B, as listed in Table IV. The size from 64
× 64 to 96 × 96 improves Precision, but results in lower Recall,
mainly because the larger input window has a negative impact
on the classification of random points distributed in the landslide
polygon. Some randomly distributed points will be close to the
boundary of the landslide area. As a result, the nonlandslide area
will increase with the size of the input window. However, the
lowest F1 and Kappa were obtained based on the size of 96 ×
96. In short, FCDU-Net with 128 × 128 can perform better on
all evaluation metrics compared to other sizes.

2) Influence of the Relief-F Feature Selection: To verify the
effectiveness of DU-Net integrated with Relief-F, the feature
importance (FI) of each auxiliary feature is shown in Fig. 10.
The higher the FI value, the more important the conditioning
factor is to modeling. As can be observed from Fig. 10, the
NDVI factor reached the highest FI value. The correlation with
landslide occurrence raises as the value increases. Therefore, the
conditioning factors that obtained the first three FI values were
selected for subsequent modeling.

In this section, we compare the landslide detection perfor-
mance of DU-Net and FCDU-Net. All experiments used only
an input window size of 128× 128. The test area covers a variety
of land use types such as roads, shrubs, woodlands, and houses,
and soil landslides mainly occur in woodlands and grasslands.
Each landslide varies in shape and size, and some landslides have
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Fig. 9. Three convolution input window sizes from two landslide subareas.

Fig. 10. Feature importance of each auxiliary feature factor using Relief-F.

TABLE III
DETECTION ACCURACY ASSESSMENTS BY DIFFERENT METHODS IN ALL TEST AREAS

The highest accuracies are indicated in bold in each statistical measure.
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Fig. 11. Landslide detection maps of two test areas obtained by DU-Net and FCDU-Net. (a) DU-Net on test area 1. (b) FCDU-Net on test area 1. (c) DU-Net on
test area 2. (d) FCDU-Net on test area 2.

Fig. 12. Performance of DU-Net and FCDU-Net in terms of statistical measures.

spectral signatures similar to bare soil, posing a great challenge
to landslide detection. Fig. 11 shows the landslide inventory
mapping results for DU-Net and FCDU-Net. It can be seen
from Fig. 11(a) and (c) that most of the large landslides can be
distinguished from the background by DU-Net, and the bound-
aries of some slender landslides can also be accurately identified.

However, the results reveal some incomplete and overdetection
of small-scale landslides for two reasons. One is the serious
imbalance between landslide and nonlandslide samples, and the
other is due to the impact of imaging techniques or vegetation
coverage, some small landslides cannot be detected by remote
sensing images alone. From Fig. 11(b) and (d), we can observe
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Fig. 13. Very-high-resolution images from Google Earth overlapped with the landslide detection results by FCDU-Net. Figures (a)–(d) denote landslides that
were not recorded in the previous landslide inventory data.

TABLE IV
PERFORMANCE OF FCDU-NET USING DIFFERENT INPUT WINDOW SIZES

that the entire landslide map in both figures is satisfactory,
reducing the number of overidentified and incorrectly identified
landslides, and most of the landslide scars are consistent with
the boundaries of the true inventory data. shows the performance
of DU-Net and FCDU-Net in terms of five statistical measures
Fig. 12previously mentioned in Section III-B. As can be seen
from this figure, FCDU-Net performs more balanced in all test
domains, and FCDU-Net is better than DU-Net in terms of the
statistical measures. Specifically, the Precision of FCDU-Net is
88.87%, which is more than 12% higher than that of DU-Net
(76.63%), and the F1, mIoU, and Kappa of FCDU-Net are all
5% higher than that of DU-Net.

V. DISCUSSION

Landslide inventory mapping is the key to emergency res-
cue and landslide disaster loss assessment [68]. Meanwhile,
improving the efficiency of spatial prediction is also important
for technical experts to obtain detailed landslide disaster distri-
bution. Therefore, this article compares several DCNNs such as
FCN, DeepLabv3+, U-Net, and DU-Net for landslide detection.
Furthermore, we evaluate the impact of using different input
window sizes on prediction accuracy and ensemble performance
of DU-Net and Relief-F.

Generally speaking, high-resolution images have fewer avail-
able spectral bands, the spectral distribution of objects in the
image varies greatly, and the spectra of different objects overlap
each other. However, the geometry and textural information of
the object displayed in the image are more obvious. Landslides
are usually covered with vegetation. Therefore, it is necessary
to combine spectral features with other auxiliary features for
landslide detection. Based on the results by Relief-F, NDVI,
texture features of Entropy, and Second Moment are the eigen-
factors because they represent the characteristic properties and
structural information of the landslide. The experimental results
show that FCDU-Net achieved higher prediction accuracy than
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DU-Net alone because the filtering factor of Relief-F has a pos-
itive impact on the detection model and reduces the prediction
bias of the model.

To further improve the effectiveness of the proposed method,
we apply FCDU-Net to other high-resolution images to identify
potential or unlabeled landslide hazards. As shown in Fig. 13,
FCDU-Net can manually infer unlabeled landslides in different
test areas, which further proves that it can perform well in
landslide detection. Furthermore, DCNNs play an active role in
updating or supplementing existing landslide databases as they
can detect areas that were previously neglected.

In previous articles, some scholars began to explore the appli-
cation of deep learning or transfer learning in landslide inventory
mapping [69]–[74]. A comprehensive quantitative comparison
is not conducted herein due to differences in image size and
geographic location. They used OBIE, change detection, or
long time series detection algorithms, and included several topo-
graphic factors (e.g., DEM and its derivatives). For example, Lu
and Ma [70] combined transfer learning with OBIE to achieve
edge extraction for large landslides. Shi et al. [72] proposed a
new integrated method combining DCNN and change detection
for efficient landslide mapping in the Hong Kong area. Ghor-
banzadeh et al. [74] showed that topographic factors such as
elevation, slope, and plane curvature can improve the prediction
performance of deep learning networks. In contrast to these
articles, we did not use high-resolution DEM and any postpro-
cessing methods. The excellent performance demonstrates the
effectiveness and robustness of the proposed method.

Through comparative analysis, the application of DCNN
methods has greater advantages. Specifically, they require less
manual fine-tuning than traditional methods and can be easily
used in new domains that require only a small amount of train-
ing data. Moreover, the trained DU-Net will allow continuous
processing and segmentation of high-resolution images, driving
the development of software for continuous detection of new
landslides.

One of the aims of this article is to explore the effect of
landslides at different scales on the detection accuracy of deep
learning methods, so we have adopted the strategy of different
convolutional input window sizes for the proposed FCDU-Net
method. The experimental results demonstrate that FCDU-Net
with the convolutional input window size of 128 × 128 can
perform the best. It can found that multitemporal or long time
series data may be required to train the proposed method to well
remove the seasonal changes in mountainous areas. However, by
integrating NDVI and eight GLCM texture features with spectral
bands in the original image, this article proposes a strategy for
landslide feature extraction in high-resolution remote sensing
images in southern latitudes in winter, and we will investigate
the generalizability of this method in the future.

VI. CONCLUSION

In this article, we propose an effective FCDU-Net semantic
segmentation method. The FCDU-Net training model has the
advantages of fewer parameters and lower error probability,
and can be put into use quickly. To validate the effectiveness
of the proposed method, we apply it to landslide detection in

remote areas of the Novo Fribourg Mountains. In addition, we
also analyze the influence of different convolution input window
sizes on the landslide detection results. The experimental results
demonstrate that FCDU-Net using an input window size of 128
× 128 can produce the best performance and achieve higher
prediction results than classical methods of FCN, DeepLabv3+,
U-Net, and DU-Net. Therefore, FCDU-Net has greater appli-
cation potential in the landslide inventory dynamic mapping
system, which will expand the landslide database and promote
the subsequent studies of landslide susceptibility mapping. In
the future, we will increase landslide samples from other rainfall
events and continue to train the proposed model to enhance its
robustness to other disaster areas.
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