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Abstract

We study the stability properties of Bose-Einstein condensate mixtures trapped on the surface of
spherical shells. This work is strongly motivated by the recent achievements in the confinement of
ultracold gases into shell-shaped two-dimensional geometries in microgravity environments aboard
the International Space Station. We observe two main setups. In the first one, we analyze station-
ary homogeneous and vortex states, settled as a hidden vorticity system, where the vortex states are
achieved with opposite vortex charges in each species. In the second one, we study time-periodic
spatial-homogeneous states, driven by Rabi oscillations, where each species can convert in the other
one. The oscillation frequency can be tuned in order to get parametric resonance. We deeply an-
alyze the role of the interaction parameters and the Rabi coupling on the resulting stability profile
of the mixture solutions. Once the instability runs the dynamics, it can lead the atomic clouds to
break into a well-defined number of immiscible pieces, and when parametric resonance is triggered,
Faraday waves can coexist with the immiscible profile. In both problems, we consider a mean-field
theory to describe the condensates, and we assume that the gases are trapped on the surface of an
ideal hard spherical shell. In this context, we can track the rise of instability through the familiar
math of spherical harmonics angular modes. We can predict the dynamic stability profile by handling
Bogoliubov-de Gennes and Floquet theories for stationary, and periodic states, respectively. Next, we
are able to check the predictions by observing the full dynamics of the states driven by the Gross-
Pitaevskii equation. In this way, by investigating these problems, we provide reliable studies on the
stability of several states which can be performed in future experiments with condensates in bubble
traps.

Keywords: Bose-Einstein Condensate. Condensate Mixtures. Bubble trap. Faraday Waves.



Resumo

Estudamos propriedades de estabilidade de misturas de condensados de Bose-Einstein confinados na
superfície de cascas esféricas. Este trabalho é fortemente motivado pelos avanços recentes no confi-
namento de gases ultrafrios criados em geometrias de cascas bidimensionais em ambientes de micro-
gravidade a bordo da Estação Espacial Internacional. Nós observamos duas configurações principais.
Na primeira, analisamos estados estacionários homogêneos e de vórtices, configurados de maneira
que o sistema tenha vorticidade oculta, onde estados de vórtices são tais que as espécies tenham
carga de vórtice oposta. Enquanto que na segunda, estudamos estados espacialmente homogêneos
e periódicos no tempo, dirigidos por oscilações de Rabi, onde cada espécie pode ser convertida na
outra. A frequência de oscilação pode ser sintonizada de maneira a obter ressonância paramétrica.
Analisamos em detalhes o papel dos parâmetros de interação e acoplamento de Rabi no perfil de
estabilidade resultante das misturas. Uma vez que a instabilidade dirija a dinâmica, ela é capaz de
levar as nuvens atômicas a quebrarem em um número bem definido de pedaços imiscíveis. E quando
existe ressonância paramétrica, ondas de Faraday podem coexistir com o perfil imiscível. Nos dois
problemas, consideramos uma teoria de campo médio para descrever os condensados e assumimos
que os gases estão confinados sobre a superfície de uma casca esférica impenetrável ideal. Neste
contexto, nós podemos rastrear o surgimento da instabilidade em termos dos modos angulares dos
esféricos harmônicos, cuja matemática é bem conhecida. Podemos prever o perfil de estabilidade
dinâmica usando teorias de Bogoliubov-de Gennes e Floquet, para estados estacionários e periódicos,
respectivamente. Em seguida, somos capazes de checar as previsões observando a dinâmica completa
dos estados dirigidos pela equação de Gross-Pitaevskii. Desta maneira, investigando esses dois prob-
lemas, promovemos sólidos estudos sobre a estabilidade de diversos estados que podem ser obtidos
em futuros experimentos futuros com misturas de condensados em armadilhas de bolha.

Palavras-Chave: Condensado de Bose-Einstein. Misturas de condensados. Armadilha de bolha.
Ondas de Faraday.
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Chapter 1

Introduction

A system of bosons was first described with an appropriate statistics in 1924 [1],
originally aiming to find the black-body radiation spectrum without elements from
the classical physics. Bose introduced an innovative statistics where the particles are
indistinguishable and can occupy discrete states, and these states can be occupied by
more than one particle. Einstein extended these ideas to an ideal atomic gas (massive
particles), where he observed that at very low temperatures this distribution over
the quantized energy levels gives rise to a large occupation of the lowest quantum
state [2, 3], today called Bose-Einstein condensation phenomenon. Seven decades
later, this regime was experimentally observed with dilute weakly interacting gases
of alkali atoms of 87Rb [4], which was followed by the observation with 23Na [5], and
7Li [6]. The success of these experiments engaged many research groups to study
the properties of ultracold atomic gases [7, 8].

The properties of a Bose-Einstein condensate (BEC) of a dilute gas can be very
well described by the mean-field model, where the system is driven by a nonlinear
Schrödinger equation (NLSE) known as Gross-Pitaevskii (GP) equation [8]. The
GP framework allows several studies, and we perform some of them in this project,
focusing on the analysis of the dynamics of condensates.

A numerically expensive way to find out the stability profile of an initial state is to
perform the full dynamics simulation of these states for a very long time, and observe
whether the initial state changes. It is not a feasible task when we want to establish
the stability profile for a large range of parameters. Therefore, we must resort to a
theoretical tool to predict stability profiles. This tool only requires the initial state
information and system parameters, without the need for a long time simulation.
The main tools for such endeavor are based on the solutions of the linearized GP
equations, from where we get the eigenvalues of the small amplitude oscillations. In
this way, we can figure out how the fluctuations increase with time. For stationary
states, this approach is called Bogoliubov-de Gennes (BdG) theory [7–9], and when
we have time-periodic states, we call Floquet theory [10–12]. Therefore, by handling
GP equations and the linearized methods, we have powerful tools to predict stability
profile of Bose-Einstein condensates.

17
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About two decades ago, some techniques were introduced aiming to confine ul-
tracold gases in two-dimensional ellipsoidal closed shell [13,14]. However, the grav-
itational sag always was an inherent challenge for Earth-based laboratories. In this
way, the wondered kind of system once proposed could be feasible just recently by
the breakthrough experiments with ultracold gases in microgravity environment of
space-based laboratories [15–17]. Since then, all community of cold atoms physics
is deeply interested in the physics of cold atoms trapped on two-dimensional bub-
bles. Therefore, our research group is strongly motivated to take part in the new
achievements with condensates in these geometries.

In this Thesis, we focus on stability properties of Bose-Einstein condensate mix-
tures trapped on the surface of an ideal spherical shell. First, we consider station-
ary systems, for which we can handle a BdG analysis to predict how long both
spatial-homogeneous and vortex-antivortex states are dynamically stable. Second,
we investigate spatially-homogeneous states with populations periodically driven by
Rabi coupling, where parametric resonance can be achieved and give rise to Fara-
day waves. To our knowledge, our findings are the first investigations on stability
behavior of mixtures in the context of condensates confined on the same surface of
bubbles.

In the first work presented here, we study stability of binary BEC mixtures ini-
tially arranged as miscible stationary states. We consider homogeneous gases, or
gases designed in vortex-states where each species has a vortex-charged with oppo-
site sign to each other. Here, the last case is called hidden-vorticity (HV) set up. An
interacting gas mixture has intra- (same species) and inter-species (different species)
interactions. The ratio between them affects the gases’ miscibility properties, and
therefore, it influences the stability of stationary solutions. For both kind of config-
urations, we analyze the elementary excitation spectrum around the states by using
the BdG technique. We find the region of stability in terms of the interaction param-
eters and the number of particles of each species, and we are also able to track which
angular modes are actually driving the dynamics. Since an angular mode arise, it can
drive the system to a broken picture, where the species become immiscible clouds.
The number of clouds is related to the angular mode that governs the dynamics. Our
main results are displayed in the paper published in the Physical Review A jour-
nal [18].

In the second work, we study time-periodic spatially homogeneous states driven
by Rabi oscillations, where each species can convert into the other. In this kind of
system, we have the remarkable feature that it is possible effectively handle time-
dependent interaction energy with no need of periodic modulations in the scattering
length or the trap frequencies. The population oscillations are sufficient to trigger
parametric resonance. Then, once the Rabi coupling is tuned to achieve the natural
excitation frequencies, spatial patterns emerge, and Faraday waves arise in the sys-
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tem. Similar to the first work, here unstable modes can take over the dynamics and
lead the initial state to a break into a well defined number of pieces corresponding to
the angular dominant mode. With the Floquet method, we can predict the stability
profile of a system given the interaction parameters and the Rabi coupling by per-
forming a linearized method to get the time-dependent excitation modes behavior.
This powerful method enables us to get some insight about the dynamics of the sys-
tem just with only one complete period of simulation. Once an angular mode breaks
the system into pieces, Faraday waves can coexist with the immiscible profile. Our
results are available in a preprint version at arXiv [19].

1.1 Thesis outline

This text is organized as follows. In chapter 2, we introduce the mean-field theory,
Gross-Pitaveskii equation and we describe the stability methods based on Bogoliubov-
de Gennes and Floquet theories. It is followed by an introduction to the bubble trap
in chapter 3, where we also handle a dimensionally-reduced model, and we discuss
its validity. We present the first original work in chapter 4, where we study the
stability of stationary states in homogeneous and vortex-charged solutions. In chap-
ter 5, we present the second original work, where we study the stability of spatial-
homogeneous time-periodic solutions. We finish the main text with a conclusion in
chapter 6, where we also present our perspectives for the next research years. In
addition, in appendix A, we present the main numerical techniques used to solve the
problems.

The contents of this thesis are displayed in the papers:

• Stability of a Bose-condensed mixture on a bubble trap. Alex Andriati, Leonardo
Brito, Lauro Tomio, and Arnaldo Gammal. Phys. Rev. A 104, 033318 (2021)
[18].

• Faraday waves on a bubble Bose-Einstein condensed binary mixture. Leonardo
Brito, Lauro Tomio, and Arnaldo Gammal [19].

During this period, the author also worked on the projects below, but we do not
present them in this text for better focus on a subject.

• Coherent control of nonlinear mode transitions in Bose-Einstein condensates.
L. B. da Silva, and E. F. de Lima. J. Phys. B: At. Mol. Opt. Phys. 53 125302
(2020) [20].
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• Breakup of rotating asymmetric quartic-quadratic trapped condensates. Leonardo
Brito, Alex Andriati, Lauro Tomio, and Arnaldo Gammal. Phys. Rev. A 102,
063330 (2020) [21].



Chapter 2

Weakly Interacting Bosons

A realistic approach for the gas of N bosons can be to consider an interacting dilute
gas in a potential trap at low temperatures. This is the scenario for an experiment in a
laboratory, where a trap potential is required to confine the bosons, and that potential
leads the system to an inhomogeneous pattern. In a first approximation, we can take
into account a weakly interaction between the pairs of bosons, which is a good model
to describe cold alkali gases, which are largely used in actual experiments.

The gas of bosons is called dilute if the range of interatomic interactions is much
smaller than the average distance d between the bosons. At low temperatures, and
therefore, at low energies, an interaction parameter can be the s-wave scattering
length as, and the gas is weakly interacting if we have [7, 8]

|as| ≪ d , (2.1)

and since that condition is satisfied we can neglect three-body interactions and more.
Then, we are able to write the Schrödinger equation for bosons with mass M in a
potential trap Vtrap with only two-body interactions driven by a potential Vint as [8]

iℏ
∂

∂t
ψ̂(r, t) =

[
− ℏ2

2M
∇2 + Vtrap(r, t) +

∫
dr′ψ̂†(r′, t)Vint(r

′ − r)ψ̂(r′, t)

]
ψ̂(r, t) , (2.2)

where ℏ is the Planck h constant divided by 2π, and i =
√
−1 is the imaginary

unit. The system is described by boson-field operators ψ̂†(r), and ψ̂(r) which, re-
spectively, create and annihilate a boson at position r. They obey the commutation
relations

[ψ̂(r), ψ̂†(r′)] = δ(r− r′) , [ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0 . (2.3)

We can introduce the one-body density matrix ρ(1), that can be written in the position-
space as [8]

ρ(1)(r, r′) =
〈
ψ̂†(r′)ψ̂(r)

〉
, (2.4)

it can express an amplitude for removing a boson at r and set it at r′. The average
⟨· · · ⟩ meaning depends on the physical situation. If we handle a system in a pure
state |ψ⟩, represented by a many-body wave function ψn(r1, · · · , rN), the average is

21
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the trace of all particles except one [7], but if we deal with a statistical mixture, we
suppose to average that trace over the probabilities of a system occupying different
many-body states ψn [8]. Here we focus on the first case where we can describe a
pure condensate. The diagonal of ρ(1)(r, r′) is the particle density n

n(r) = ρ(1)(r, r) , (2.5)

then the one-body density matrix is normalized by∫
drρ(1)(r, r) = N , (2.6)

where N is the number of bosons. The matrix ρ(1)(r, r′) is Hermitian and positive
definite. Therefore, it has real and positive eigenvalues [7], and we can write it in a
diagonalized form, in terms of its eigenvalues nj and the corresponding eigenfunc-
tions φj

ρ(1)(r, r′) =
∑
j

njφ
∗
j(r

′)φj(r) . (2.7)

We remark that {φj} is a set of single-particle ortho-normalized wave functions, and
N =

∑
j

nj, with j = 0, 1, 2, · · · . Bose-Einstein condensation can be understood

as the situation where one of the single-particle states, take φj, is macroscopically
occupied, i.e, the corresponding eigenvalue is of order of the total number of parti-
cles, nj ≈ N , and the other eigenvalues are around zero [22]. Usually, we mean the
ground-state φ0 with n0 = N0 ≈ N when we refer to a Bose-Einstein condensate
(BEC), since in practice can be very difficult to build a condensate in an excited state.
The functions {φj} can also be used to write the boson field ψ̂

ψ̂(r) =
∑
j

φj(r)âj , (2.8)

with âj and â†j, which, respectively, annihilate or create a particle in the single-state
function φj. These operators satisfy the commutation relations

[âi, â
†
j] = δij , [âi, âj] = [â†i , â

†
j] = 0 , (2.9)

where δij is the usual Kronecker delta. It is convenient to write the field operator as
a sum where the lower state is explicit

ψ̂(r) = φ0(r)â0 +
∑
j>0

φj(r)âj . (2.10)

Here, we can begin by assuming that the lower state is macroscopically occupied,
indicating that we are dealing with a condensed state. Consequently, it becomes
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valuable to introduce the Bogoliubov prescription [23], which states that the first
term of Eq. (2.10) is a c-number, or a classical field. We can write

â0â
†
0 − â†0â0 = 1 . (2.11)

The occupation number at the state j = 0 is N0 =
〈
â†0â0

〉
, then the operators are of

order
√
N0, which are much larger than 1. Therefore, we can state

â0â
†
0 ≈ â†0â0 , (2.12)

which means that we can ignore the commutation relations for this state, and consider
â0 ≈ â†0 ≈ √

N0, then we can define the classical field ψ0 =
√
N0φ0 and the non-

condensed components by δψ̂ [9, 23]

ψ̂(r) = ψ0(r) + δψ̂(r) . (2.13)

2.1 Gross-Pitaesvkii equation

At very low temperatures, where the particles are mainly condensed in the ground
state, the field operator can be well described by the classical field, and we can
neglect δψ̂ and set the field as

ψ̂(r) ≈ ψ(r) , (2.14)

where we omit the index j = 0 of the lower state, since we are assuming the system
consisting of all bosons in the ground state. The approximated field ψ(r) is called
wave function of the condensate, or sometimes the order parameter. The total num-
ber of particles N is assumed to be occupying the ground state, in such a way that
the normalization condition is ∫

dr|ψ(r)|2 = N , (2.15)

which eventually can be set as 1, if we incorporate the number of atoms in the def-
inition of interaction parameters. Then, in the classical approach, the Schrödinger
equation (2.2) becomes

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2M
∇2 + Vtrap(r, t) +

∫
dr′ψ∗(r′, t)Vint(r

′ − r)ψ(r′, t)

]
ψ(r, t) . (2.16)

We are supposing the system at low temperatures, with all particles in the ground-
state. Moreover, we can consider the regime of low-energy scattering in the in-
teractions. Then, the potential goes to zero out of a small range, i.e, we can set
Vint(r

′ − r) ≈ Vint(r
′), and therefore, this is the case of a soft interaction potential,

called effective potential Veff . Within that region, the wave function is weakly af-
fected, which means ψ(r′) ≈ ψ(r), and we can use the Born approximation [24], i.e,
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we can perform the interaction term as∫
dr′ψ∗(r′, t)Vint(r

′ − r)ψ(r′, t) ≈
∫
dr′ψ∗(r, t)Veff(r

′)ψ(r, t)

≈ |ψ(r, t)|2
∫
dr′Veff(r

′) , (2.17)

and at low energies, the scattering amplitude can be written in terms of a s-wave
scattering length as as [8]

g =
4πℏ2as
M

=

∫
dr′Veff(r

′) , (2.18)

in which, we define g the interaction parameter, which can contain the normalization
condition in an alternative approach performed along this thesis. Inserting these
approximations into Eq. (2.16), we get

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2M
∇2 + Vtrap(r, t) + g|ψ(r, t)|2

]
ψ(r, t) . (2.19)

This is a mean-field equation that describes the whole condensate by only one orbital,
and it is called Gross-Pitaevskii (GP) equation [7, 8]. We also can write it as

iℏ
∂

∂t
ψ(r, t) = ĤGP [ψ]ψ(r, t) , (2.20)

with the operator

ĤGP [ψ] = − ℏ2

2M
∇2 + Vtrap(r, t) + g|ψ(r, t)|2 . (2.21)

2.1.1 Binary condensate mixtures

We can generalize the GP equation for a mixture of two species [7, 8], where we do
not take into account that, in practice, different hyperfine states of Bose gas in a mix-
ture require different traps to confine them. In our first approximation, we consider
the same trap for both species, since we are supposing spinless particles, and we an-
alyze the miscibility and stability properties driven by the interaction between these
gases. Therefore, we extend the GP equation (2.19) to a coupled two-component
system

iℏ
∂ψ1

∂t
= − ℏ2

2M1
∇2ψ1 + Vtrapψ1 + g11|ψ1|2ψ1 + g12|ψ2|2ψ1 , (2.22a)

iℏ
∂ψ2

∂t
= − ℏ2

2M2
∇2ψ2 + Vtrapψ2 + g22|ψ2|2ψ2 + g21|ψ1|2ψ2 , (2.22b)

where the interaction parameters take into account the number of atoms Nj,k of each
species by gjj = 4πℏ2ajjNj/Mj and gjk = 2πℏ2ajkNk/Mr, with the reduced mass
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Mr is given by 1/Mr = 1/Mj + 1/Mk [8], and j, k = 1, 2 with k ̸= j. The
scattering lengths ajj and ajk correspond to same (intra) and different (inter) species
interactions, respectively. For simplicity, we are omitting the (r, t) dependency. And
at this time, the normalization conditions can be set as∫

dr|ψj(r, t)|2 = 1 , (2.23)

where j = 1, 2. An auxiliary property used to investigate how the species coexist in
the same region is the overlap Λ, which follows the expression [25]

Λ(t) =

[∫
dr|ψ1(r, t)|2|ψ2(r, t)|2

]2[∫
dr|ψ1(r, t)|4

] [∫
dr|ψ2(r, t)|4

] , (2.24)

where 0 ≤ Λ ≤ 1. When Λ = 1 the coupled system can be considered miscible, or
mixed. And for Λ < 1 the system is considered immiscible, or demixed. Miscibility
is a useful property to investigate stability, since for a particular class of problems,
that property is straightly related with the dynamic stability.

If the different species are, in fact, distinct hyperfine states of the same atomic
gas, it becomes feasible to introduce a coupling mechanism capable of converting
one species into another. In this system, we can track the actual population Pj within
each species j at the time t by

Pj(t) =

∫
dr|ψj(r, t)|2∫

dr
[
|ψ1(r, t)|2 + |ψ2(r, t)|2

] , (2.25)

where in this case the normalization stands for N = N1 +N2.

2.2 Bogoliubov-de Gennes theory

As we introduced in section 2.1, the Bose-Einstein condensate of a dilute gas can
be well described by GP equation (2.19). Around the equilibrium, the system can
have small-amplitude oscillations, they are elementary excitations on the stationary
solution ψ(r, t) = ψ(r)e−iµt, where µ ≈ ∂E/∂N is the chemical potential of the
system, which stands for the total energy E variation with the number N of particles
[8]. We can write the order parameter under fluctuations as

ψ(r, t) = [ψ(r) + η(r, t)] e−iµt , (2.26)

with η given by a linear combination of all possible modes k

η(r, t) =
∑
k

[
uk(r)e

−iωkt + v∗k(r)e
+iω∗

kt
]
, (2.27)
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where uk and vk are amplitudes of elementary excitations corresponding to the fre-
quency ωk from the spectrum around the ground state. Since we insert Eqs. (2.27)
and (2.26) into GP equation (2.19), and hold no more than second order amplitude
terms, we get a system [8]

ℏωkuk(r) =
[
ĤGP [ψ] + g|ψ(r)|2 − µ

]
uk(r) + gψ2(r)vk(r) , (2.28a)

−ℏωkvk(r) =
[
ĤGP [ψ] + g|ψ(r)|2 − µ

]
vk(r) + gψ∗2(r)uk(r) , (2.28b)

which can be written in the matrix form

Muk = ωuk , (2.29)

where

M =

[ĤGP [ψ] + g|ψ(r)|2 − µ
]

gψ2(r)

−gψ∗2(r) −
[
ĤGP [ψ] + g|ψ(r)|2 − µ

] , (2.30)

and uk = [uk(r) vk(r)]
T, where T stands for the transpose operation over a vector.

Here we omit the indexes k, since all eigenvalues are present when we diagonalize
the matrix M. This system can be called the Bogoliubov-de Gennes (BdG) equations
[8]. Once we diagonalize this matrix and find all possible modes ω, if it exists at least
a frequency ω with a nonzero imaginary part, this mode grows exponentially, then
we call the system dynamically unstable. That is our criterion to study the stability
of Bose-Einstein condensates. We are handling a linear stability theory [26], which
provides linear equations of motion to describe the possible independent modes, in
such a way we can track the behavior of all of them separately and observe if they are
going to drive the initial state to an unstable profile. The concept of Dynamic Stability
holds a distinct physical meaning from that of Energetic Stability. The former one is
related to how an initial state can be changed by small amplitude perturbations which
can grow and take over the dynamics of the system, while the last one is based on
the energy profile of a state. In this context, an unfavorable energy configuration can
be transformed into a state of lower energy by small oscillations, particularly when
dissipation mechanisms come into play [8].

2.3 Floquet theory

We consider a system described by Hamiltonian Ĥ0(r), which is supported by a
complete set of orthonormal eigenfunctions {ϕj(r)}. We suppose the system per-
turbed by an external potential Ĥext(r, t) that is a periodic function in time, i.e,
Ĥext(r, t + T ) = Ĥext(r, t), where T is its period. Therefore the perturbed Hamil-
tonian ĤF = Ĥ0 + Ĥext is also a periodic function in time. The dynamics of the
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system is driven by the Schrödinger equation

iℏ
∂

∂t
ψ(r, t) = ĤF (r, t)ψ(r, t) . (2.31)

The Floquet theorem [10–12] predicts solutions which are linear combination of
functions ϕ̃j(r, t) periodic in time, called Floquet modes

ψ(r, t) =
∑
j

cjϕ̃j(r, t)exp(−iεjt/ℏ) , (2.32)

where εj are Floquet exponents, sometimes called quasienergies. These concepts are
useful to study the dynamics of a linear Schrödinger equation driven by a Hermitian
matrix. This is not the case of the Gross-Pitaevskii equation, which is a nonlinear
Schrödinger equation. But the collective modes around the solution of the conden-
sate are led by linear equations. And therefore, the Floquet theory can describe how
the amplitudes of the elementary excitations evolve with time once we have a system
with periodic dynamics.

We have introduced a general theory to study quantum systems driven by a time-
periodic Hamiltonian. From now on, we consider a Bose-Einstein condensate with
dynamics led by the Gross-Pitaevskii equation. We restrict our study to time-dependent
systems, i.e, condensates with spatial homogeneous solutions ψ0(t) = f(t)e−iα(t),
where f(t) is a periodic function with period T and α is a real function of time. We
suppose small amplitude oscillations around it as

ψ(r, t) = [f(t) + ζ(r, t)] exp [−iα(t)] , (2.33)

with
ζ(r, t) =

∑
k

[ũk(t)φk(r) + ṽ∗k(t)φ
∗
k(r)] , (2.34)

where the amplitudes ũj and ṽj are periodic functions with the same period T of the
function f(t) and {φk(r)} is a set of orthonormal eigenfunctions of the free particle
Hamiltonian Ĥ0 = −ℏ2∇2/2M . In this way, we have Ĥ0φk(r) = ϵkφk(r), where
ϵk are free particle eigenergies. We insert the perturbed solution (2.33) into the GP
equation (2.20), next we neglect amplitude terms going with second (and higher)
order, then we get the equations of motion of the elementary excitations [27, 28]

iℏ
dũk(t)

dt
=

[
HGP [f ] + g|f(t)|2 − d

dt
α(t)

]
ũk(t) + gf2(t)ṽk(t) , (2.35a)

−iℏ
dṽk(t)

dt
=

[
HGP [f ] + g|f(t)|2 − d

dt
α(t)

]
ṽk(t) + gf∗2(t)ũk(t) , (2.35b)

with HGP [f ] = ϵk + g|f |2, and we write this system in the matrix form

iℏ
d

dt
ũ(t) = M̃(t)ũ(t) , (2.36)
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with ũ(t) = [ũ(t) ṽ(t)]T and

M̃(t) =

[HGP [f ] + g|f(t)|2 − d
dtα(t)

]
gf2(t)

−gf∗2(t) −
[
HGP [f ] + g|f(t)|2 − d

dtα(t)
] . (2.37)

The system (2.36) is a linear equation, and since the hermitian matrix M̃(t) evolves
with the same period of the density |ψ0(t)|2, and therefore by the Floquet theorem
[11], the amplitude vector u(t) are expected to be led by a periodic function p(t)

ũ(t) = eλt/ℏp(t) , (2.38)

in which, for convenience, we use a complex constant λ as the Floquet exponent in-
stead of quasienergies, which is going to return some information about the stability
of the dynamics of ũ(t). If we consider a complete period T , the periodic mode has
the property p(T ) = p(0). Then, we have

ũ(T ) = eλT/ℏp(0) , (2.39)

where we suppose p(0) = ũ(0), and so M̃(t = 0) = 1, the unitary matrix. If λ has
a nonzero real part, then the system is dynamically unstable, since the amplitudes
will exponentially grow in time. Then, the initial homogeneous solution is a dynam-
ically stable system only if we have Re(λ) = 0. This method is sometimes called
time-dependent BdG, and is very useful to study the stability of periodic systems.
Our presented approach to Floquet stability analysis is mainly based on the method
proposed in [27].



Chapter 3

Condensates on the spherical bubble

In 2001, Zobay and Garraway introduced the first realistic ideas on how to confine
ultracold gases on the surface of a two-dimensional ellipsoidal closed shell [13]. The
authors suggest that shell-shaped ellipsoidal gases can be performed by adiabatically
tuning parameters of a radio-frequency (rf) induced potential. However, once we
take into account the inherent Earth gravitational force, the atoms are energetically
favored to populate the bottom of the trap. The same authors tried to overcome this
challenge by considering the use of a dipole optical potential as a gravitational com-
pensation [14]. But actually, the experimental research groups did not follow this
approach. It is a hard task to compensate the gravitational force. An alternative ex-
perimental set up to mimic weightless atoms is a free fall experiment performed in
a tower of 146 meters at the Center of Applied Space Technology and Microgravity
(ZARM) in Bremen, Germany [29], see Fig. 3.1a. The Ernst Rasel’s group perform
an ingenious maneuver that allow a 5- second free fall condition, which also has
shown that, in these conditions, the experiment can be handled with trap potentials
weaker than in standard experiments. Indeed, this set up accomplished temperatures
of 50 picokelvins, the coldest sample ever performed at that time. In this way, to
avoid the gravitational effect enables to reach not only low dimensional topologies,
but also to achieve colder condensates. Recently, experimental groups shed new
light on the pathway suggested by Zobay and Garraway in 2001. But this time, these
ideas were performed in a microgravity environment, the NASA cold atom labora-
tory (CAL) aboard the international space station (ISS) [15,16,30,31] see Fig. 3.1b.
In the absence of the gravitational sag, a bubble trap enables to get ultracold gases
on an ellipsoidal two-dimensional closed surface. Besides this great achievement,
other researchers did not give up to handle bubble condensates on Earth. New alter-
natives were proposed, the first one explores the immiscible property of a Bose-Bose
mixture in order to keep one of the species covering the other as a shell [32]. It was
experimentally handled with two immiscible condensate species [33], in such a way
that one of the species behaves like a core, and the second one behaves as a shell,
see Fig. 3.1c. Then, the core cloud is released without affecting the shell condensate.
And therefore, for a short time is obtained a quasi-spherical bubble, which is unsta-

29
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(a) Tower Free Fall.
From [29].

(b) Microgravity Lab.
From [30].

(c) Immiscible
Species. From [33].

(d) Rotating Traps.
From [34].

Figure 3.1: Available experimental setups to handle bubble shaped cold gases.

ble and no longer keeps its shape. The second alternative is based on performing fast
rotation of the trap. In this case, the condensate is not going to become a spherical- or
ellipsoidal-like bubble, but instead it reaches a ring-bubble shape [34], see Fig. 3.1d.

Many groups of the community of cold atom physics are currently interested in
the fundamental properties of condensates in microgravity environments, where not
only 2D bubbles are investigated, but also matter-wave lensing, metrology and a
search for picoKelvin energy scales. We can highlight important experimental and
theoretical works in China [33], England-France [13, 14, 34–37], Germany [29, 32,
38–48], Italy [49–53], and USA [15–17, 54–58]. And a next generation of experi-
ments in microgravity environments will be performed by a bilateral project by Ger-
many and USA [31, 48].

At this moment, we have several research groups in Brazil working on cold atom
physics in the bubble. Specially in São Paulo state, we have four universities pub-
lishing works on this subject. Indeed, in the present year São Paulo was the host of
an international workshop focused in low dimensional physics of quantum gases 1.
Among all posters and talks, the physics of Bose-Einstein condensates on the bubble
was one of the major topics. In order to acknowledge the main works performed in
Brazil in the last four years, we are going to discuss next some achievements. The
first study in the context of bubbles was carried out in 2019 at São Carlos Institute of
Physics (IFSC) by the group of Vanderlei S. Bagnato [59], where was investigated
the condensation critical temperature for traps with spherical symmetry, by observ-
ing bubbles described by a spherical box and also a thick shell [59]. In 2020, the
group of Francisco E. A. dos Santos at Federal University of São Carlos (UFScar)
has started to perform deep analyses of the effect of curved manifolds on the interac-
tion and stability of condensates [60,61]. Also in 2020, Emanuel A. L. Henn (IFSC)

1Please visit https://www.ictp-saifr.org/ldqg2023

https://www.ictp-saifr.org/ldqg2023
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and Aristeu R. P. Lima from University of International Integration of Afro-Brazilian
Lusofonia (UNILAB) have led another branch of research, particularly studying po-
larized dipolar condensates in bubble traps. In this context, it was possible to in-
vestigate the influence of the long-range and anisotropic dipole-dipole interaction on
collective excitations in the limit of a thin shell [62]. Since 2021, Mônica Caracanhas
(IFSC) has handled classical fluid mechanics approaches to study dynamics of vor-
tices on the surface of the sphere, spheroids and another revolution surfaces [63,64].
She also has explored vortex-lattices and macro-vortex physics in the context of ring
bubbles [65]. At Institute of Physics (IFUSP) and at Institute of Theoretical Physics
(IFT), Arnaldo Gammal, Lauro Tomio, and the present Thesis’ author, Leonardo
Brito, have been investigating the dynamic stability of Bose-Bose mixtures trapped
on the surface of sphere [18, 19].

In this chapter, we provide a direct derivation of a quasi-2D model we intend
to handle for describing the system of Bose-Einstein condensates confined on the
surface of spherical ideal bubbles. In section 3.1, we introduce the trap potential
usually performed to confine gases in bubbles. Next, we derive the dimensionally-
reduced equations in Sec. 3.2, and finally, in Sec. 3.3, we provide estimations to
support the validity of our model, which will be extensively employed along the
following chapters.

3.1 Ultracold gas trapped on the bubble

In 2001, Zobay and Garraway [13] have introduced an experimental pathway to get
an effectively two-dimensional matter-wave bubble starting from a loaded atomic
ultracold gas confined by a conventional magnetic trap by performing adiabatic de-
formation. A few years later, the authors have extended the model to Bose-Einstein
condensates [14], where the ultracold gas is well described by the Gross-Pitaevskii
equation. Next, we briefly discuss how the condensates can be confined in an effec-
tive two-dimensional shell. By employing radio-frequency-induced adiabatic poten-
tials, two or more internal atomic states are coupled by a strong resonant external
field, in such a way that the atomic motion is no longer driven by the bare potentials,
but is better described by dressed states.

Consider a condensed atomic gas, for which we have two hyperfine states ψ1

and ψ2 available. For example, for 87Rb, it is possible to handle a mixture of the
states |1⟩ = |F = 1,mF = −1⟩ and |2⟩ = |F = 2,mF = 1⟩ [66]. For simplicity, we
consider that both species can be trapped by the same three-dimensional spherical
harmonic potential Vh(r) = Mω2

0r
2/2, where r = |r| is the absolute value of the

position r = (x, y, z). Then, once we prepare a condensate in the first state |1⟩, we
can turn on an external field with induced-field coupling of strength ΩZ(t) tuned in
such a way that a Zeeman sublevel |2⟩ can be coupled to the first state. Therefore, we
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can can write the coupled Gross-Pitaevskii equations in the interaction picture [14]
as

iℏ
∂ψ1

∂t
=

[
− ℏ2

2M
∇2 + Vt −

1

2
∆(t)

]
ψ1 + ℏΩZ(t)ψ2

+
(
g11|ψ1|2 + g12|ψ2|2

)
ψ1 , (3.1a)

iℏ
∂ψ2

∂t
=

[
− ℏ2

2M
∇2 + Vt +

1

2
∆(t)

]
ψ2 + ℏΩZ(t)ψ1

+
(
g22|ψ2|2 + g21|ψ1|2

)
ψ2 , (3.1b)

where the external field has a frequency detuning given by ∆(t) = ℏωf −∆E, with
the frequency of the field given by ωf , and the energy difference between the coupled
sublevels |1⟩ and |2⟩ given by ∆E. The interaction parameters gij are given by the
standard definition gij = 4πℏ2aij/M , where aij stands for the s-wave scattering
length for intra- and inter-species interactions. The gravitational force is taken into
account by observing the total potential

Vt(x, y, z) =MGz + Vh(r) , (3.2)

where G is the Earth gravitational acceleration. If we handle a transformation ψj =
ϕj/4πr, with j = 1, 2, we are able to rewrite Eqs. (3.1a) and (3.1b) as

iℏ
∂ϕ1
∂t

=

[
− ℏ2

2M

∂2

∂r2
+ Vt −

1

2
∆(t)

]
ϕ1 + ℏΩZ(t)ϕ2

+
(
g11|ϕ1|2 + g12|ϕ2|2

) ϕ1
r2
, (3.3a)

iℏ
∂ϕ2
∂t

=

[
− ℏ2

2M

∂2

∂r2
+ Vt +

1

2
∆(t)

]
ϕ2 + ℏΩZ(t)ϕ1

+
(
g22|ϕ2|2 + g21|ϕ1|2

) ϕ2
r2
, (3.3b)

for which we have the normalization condition
∫∞
0 dr

(
|ϕ1|2 + |ϕ2|2

)
= 1. If we ne-

glect the the gravitational acceleration, the equations (3.3a) and (3.3b) can be written
in a basis that diagonalize the potential and the coupling at each point. At this basis,
the eigenstates ϕ± are the dressed states. And for a sufficiently strong field, we have
the adiabatic potentials

V±(r, t) = ±1

2
Mω2

0

√
[r2 −∆(t)]2 + [2ΩZ(t)]

2 , (3.4)

which provides a shell trapping potential. We can consider all interactions approxi-
mately the same, i.e, gij ≈ g. At this conditions, we can describe one of the eigen-
functions ϕ = ϕ+ by the GP equation

iℏ
∂ϕ

∂t
=

[
− ℏ2

2M

∂2

∂r2
+ Vbubble + g|ϕ|2

]
ϕ , (3.5)
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with the effective bubble trap potential

Vbubble(r, t) =
1

2
Mω2

0

√
[r2 −∆(t)]2 + [2ΩZ(t)]

2 . (3.6)

Despite the time-dependence in the bubble trap, we change parameters ΩZ and ∆
in a much slower time compared to the time of the condensate dynamics. They are
adiabatically changed in order to control the width and radius of the shell. The adia-
batic expansion is supposed to be sufficiently slow to avoid nonadiabatic excitations,
however fast enough to avoid losses from leakage [13]. We can see how the detuning
parameter ∆ can be tuned in order to expand the bubble radius in Fig. 3.2.

Figure 3.2: Dressed potential and matter-wave shell at microgravity environment. From [58].

In Fig. 3.3, we present how the potential proposed by Zobay and Garraway is
affected by the gravity acceleration, by considering the bare potentials, and also the
radio-frequency (rf) field- induced dressed potentials. In 2019, bubble trap was fi-

Figure 3.3: Bare and dressed potential under effect of the gravity. From [14].

nally applied in microgravity conditions aboard Cold Atom Laboratory at Interna-
tional Space Station, where the lab is in a continuous free fall, experiencing only a
residual force corresponding to an effective gravitational acceleration around 0.005G



CHAPTER 3. CONDENSATES ON THE SPHERICAL BUBBLE 34

[17], which does not significantly affect the shell potential. The 87Rb ultracold
atomic gas can be trapped in dressed potential shell as depicted in Fig. 3.4, where the
atoms do not pool at the bottom of the trap and form ellipsoidal quasi-homogeneous
2D bubbles, see Fig. 3.5.

Figure 3.4: Dressed potential and matter-wave shell at microgravity environment. From [16].

Figure 3.5: Matter-wave bubble. From [16].

From now on, we consider the system already configured in the dressed adiabatic
potentials, in such a way the effective GP equation describing the wave function Ψ0

of a condensed-ultracold gas confined in the bubble trap is

iℏ
∂Ψ0

∂t
=

[
− ℏ2

2M
∇2 + Vbubble + g|Ψ0|2

]
Ψ0 , (3.7)

with the effective bubble trap potential

Vbubble(r, t) =
1

2
Mω2

0

√
[r2 −∆]2 + [2ΩZ ]

2 . (3.8)

In the following sections, we present a dimensional-reduction GP equation in
the limit of a very thin shell, and we discuss the validity of this approximation by
considering realistic parameters.
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3.2 Dimensional reduction

In this section, we aim to show that realistic parameters provide enough reasons to
believe that an ideal two-dimensional framework is a suitable model to study con-
densates trapped in bubbles. From now on, we derive a dimensional-reduced model
by assuming the bubble-trap (3.8) in the limit of a thin shell.

In a first approximation, we can suppose an ansatz function for the ground state
of the system as separable in radial and angular solutions

Ψ0(r, θ, ϕ, t) = f(r)ψ(θ, ϕ, t) , (3.9)

where the dynamics is supposed to be restricted to angular variables. We assume
separate normalization conditions ∫ ∞

0

dr r2|f(r)|2 = 1 , (3.10a)∫ 2π

0

dϕ

∫ π

0

dθ sin θ|ψ(θ, ϕ, t)|2 = 1 . (3.10b)

The GP equation can be rewritten as

iℏf
∂ψ

∂t
= − ℏ2

2M

[
ψ∇2

rf +
f

r2
∇2
θ,ϕψ

]
+ Vbubblefψ + g|f |2|ψ|2fψ , (3.11)

where

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
, (3.12a)

∇2
θ,ϕ =

1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂ϕ2

]
. (3.12b)

Multiplying Eq. (3.11) by f ∗, we get

iℏ|f |2∂ψ
∂t

= − ℏ2

2M

[
ψf ∗∇2

rf +
|f |2
r2

∇2
θ,ϕψ

]
+ Vbubble|f |2ψ + g|f |4|ψ|2ψ , (3.13)

which we integrate in the r variable, following a protocol to get a dimensional re-
duced equation [67]

iℏI1
∂ψ

∂t
= − ℏ2

2M

[
I2 + I3∇2

θ,ϕ

]
ψ + I4ψ + gI5|ψ|2ψ , (3.14)

or also

iℏ
∂ψ

∂t
=

(
−ℏ2κ1

2M
∇2
θ,ϕ + κ2g|ψ|2 + κ3

)
ψ , (3.15)

where

κ1 =
I3
I1
, κ2 =

I5
I1
, κ3 =

1

I1

(
− ℏ2

2M
I2 + I4

)
, (3.16)
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and

I1 =

∫ ∞

0

dr r2|f(r)|2 , (3.17a)

I2 =

∫ ∞

0

dr r2f ∗(r)∇2
rf(r) , (3.17b)

I3 =

∫ ∞

0

dr |f(r)|2 , (3.17c)

I4 =

∫ ∞

0

dr r2Vbubble(r)|f(r)|2 , (3.17d)

I5 =

∫ ∞

0

dr r2|f(r)|4 . (3.17e)

(3.17f)

By supposing ψ̃(θ, ϕ, t) = ψ(θ, ϕ, t)exp(iκ3t/ℏ), we get the transformed two-dimensional
GP equation

iℏ
∂ψ̃

∂t
=

(
−ℏ2κ1

2M
∇2
θ,ϕ + κ2g|ψ̃|

2
)
ψ̃ , (3.18)

which is a suitable model since the values of Ij (j =1,· · · , 4), κ1, and κ2 are finite
constants. We can assume a trial function for f(r) [14] as

f(r) =
A

r
exp

[
−(r −R0)

2

2σ2

]
, (3.19)

and once we have f(r) = u(r)/r, the density |u|2 is a Gaussian function centered at
R0 with width σ . It gives us some insight about the thickness δR of the bubble, that
is supposed to be around σ. The Gaussian decays significantly toward the center of
the trap. Once the solution is zero for r < 0, as an approximation, we consider the
integrals in the interval of [−∞,∞]. Therefore, the normalization condition can be
set as

|A|2
∫ ∞

−∞
dr e−(r−R0)

2
/σ2

= 1 , (3.20)

and we get A = 1/(σ1/2π1/4), once
∫∞
−∞ dr̃ exp(−r̃2) = √

π, with r̃ = (r − R0)/σ.
We are able to calculate the integrals and get

I1 = 1 , (3.21a)

I2 =
3

2σ2
, (3.21b)

I3 =
1

R2
0

, (3.21c)

I4 = Mω2
0

√
(R2

0 −∆)
2
/4 + Ω2

Z , (3.21d)

I5 =
1√

2πR2
0σ

, (3.21e)
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where we neglect terms going with second or higher order in σ, once it is related to
the thickness of the bubble shell. For large ∆, we expect σ ∼ 1/

√
∆, in order to

keep κ3 a finite constant. In conclusion, we get the effective two-dimensional GP
equation

iℏ
∂ψ̃

∂t
=

(
− ℏ2

2MR2
0

∇2
θ,ϕ + g2D|ψ̃|

2
)
ψ̃ , (3.22)

where
g2D =

g√
2πR2

0δR
, (3.23)

since we consider δR ≈ σ.

3.3 Validity of a two-dimensional approximation

After obtaining the effective GP equation for describing the dynamics of a conden-
sate trapped on the surface of a spherical shell, the next step is to investigate the con-
ditions under which this model is valid. We must establish that the interaction energy
is significantly lower than energy required to drive the system from the ground state
to the first radial excited state, in such a way the system is confined into the ground
state of a radial solution. And therefore, the dynamics can be fully described by the
quasi-2D model.

First, we assume the non-interacting system, where the system is described by
Schrödinger equation

iℏ
∂Ψ

∂t
=

[
− ℏ2

2M
∇2 + Vtrap

]
Ψ . (3.24)

We suppose the limit where the gas is confined in a thin shell, and the effective
potential can be well described by a spherical box potential Vtrap = Vbox [59]

Vbox(r) =

{
0 , r ≤ R0 ,

∞ , r > R0 ,

for which we suppose the stationary solutions

ψ(θ, ϕ, t) = Yℓ,m(θ, ϕ)e
−iϵt/ℏ . (3.25)

Inside the box, we have the radial equation

ϵkℓfk = − ℏ2

2M

[
∇2
r +

ℓ(ℓ+ 1)

r2

]
fk , (3.26)

or also

ϵkℓuk = − ℏ2

2M

[
d2

dr2
+
ℓ(ℓ+ 1)

r2

]
uk , (3.27)
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for which we have solutions

uk(r) = r [Ajℓ(kr) +Bnℓ(kr)] , (3.28)

where jℓ and nℓ are the Bessel and Neumann functions, respectively. By supposing
a thick shell with width δR around the radius R0, we have to assure

uk

(
R0 ±

δR

2

)
= 0 , (3.29)

which can be written as

B

A
= − jℓ [k(R0 ± δR/2)]

nℓ [k(R0 ± δR/2)]
. (3.30)

In the low energy approximation, we can consider only the angular mode ℓ = 0, and
once j0(x) = sin(x)/x and n0(x) = − cos(x)/x, we get

tan [k(R0 − δR/2)] = tan [k(R0 + δR/2)] , (3.31)

and once we suppose y = k(R0 − δR/2), we have tan(y) = tan(y + kδR). We can
relate the period π of tangent function with the parameters as

kn = n
π

δR
, (3.32)

and the energy ϵkℓ for the mode ℓ = 0 can be written as

ϵn0 =
ℏ2

2M
k2n , (3.33)

and the energy difference between the ground state and first excited state is ∆ϵ =
ϵ20 − ϵ10, or also

∆ϵ =
3

2

ℏ2π2

MδR2
. (3.34)

Now we can investigate the order of the interaction energy by carrying out the
approximation of low energy where ℓ = 0. We want to assure that we have a finite
solution at r = 0, and then we impose B = 0, and in the range [R0 − δR/2, R0 +
δR/2], we have the normalized solution

uk(r) =

√
2

δR
sin(kr) . (3.35)

The ground-state interaction energy is

Eint =
g

2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ R0+δR

R0−δR
dr r2

|ukY00|4
r4

≈ 3

16π

g

R2
0δR

, (3.36)
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where we assume r ≈ R0 + O(δR2), with R0 ≫ δR. And therefore, the ratio γ
between the energies is

γ =
Eint

∆ϵ
≈ 1

8π

MgδR

ℏ2R2
0

, (3.37)

and once g = 4πℏ2as/M , we get γ = asδR/2R
2
0. If we suppose atomic gas of Ru-

bidium 87Rb that is performed at the NASA spatial laboratory [17], we can consider
realistic parameters as scattering length as ≈ 5 × 10−9 meters, bubble with radius
aroundR0 ≈ 0.5×10−3 meters, and thickness about 25% of the radius δR = 0.25R0,
we get γ ≈ 10−7.this approach ensures that interactions can not induce radial exci-
tations in the condensate, since the energy gap is significantly higher than the inter-
action energy, and therefore, the bubble can be well described in a 2D model, as we
intend to do. Then, from now on we consider the effective GP equation

iℏ
∂ψ̃

∂t
=

[
− ℏ2

2MR2
0

∇2
θ,ϕ + g2D|ψ̃|

2
]
ψ̃ , (3.38)

with

g2D =

√
8πℏ2as

MR2
0δR

. (3.39)

3.4 Dimensionless model

Once we have a 2D-reduced model to describe Bose-Einstein condensates in Eq.
(3.38), it is convenient to handle our problems in dimensionless form. For this pur-
pose, we can write length in units of the radius R0, energy in units of ℏ2/MR2

0,
and time in units of MR2

0/ℏ. If we introduce the dimensionless time variable t̃ =
ℏt/MR2

0, we get

i
∂ψ̃

∂t̃
=

[
−1

2
∇2
θ,ϕ + g̃|ψ̃|2

]
ψ̃ , (3.40)

where we have g̃ = (MR2
0/ℏ2)g2D, or also g̃ =

√
8πasN/δR. For convenience, we

drop the tildes and write the dimensionless GP equation as

i
∂ψ

∂t
=

[
−1

2
∇2
θ,ϕ + g|ψ|2

]
ψ . (3.41)

Yet we aim to explore mixture features, in this thesis we focus only in mixture of
different hyperfine states of the same atomic species, i.e, we handle mass-balanced
mixtures, so we have to deal with only one atomic mass. Therefore, the GP model
for a binary mixture become

i
∂ψj
∂t

=

[
−1

2
∇2
θ,ϕ + g11|ψ1|2 + g12|ψ2|2

]
ψ1 , (3.42a)

i
∂ψ2

∂t
=

[
−1

2
∇2
θ,ϕ + g22|ψj|2 + g21|ψ1|2

]
ψ2 , (3.42b)
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where the indexes j = 1, 2 state for the hyperfine states. This is a standard model for
describing a condensate mixture [8], where atoms interact with theirs own species
and with the other one only by the contact interactions, depicted in the interaction
parameters g11, g22 (intra-species interactions), and g21 = g12 (inter-species interac-
tions). This is a simplified model, which we handle in chapter 4. However, in chapter
5, we also take into account that atoms can be transferred from a state to the other
by Rabi oscillations. In the latter case we have to handle a GP coupled system with
additional terms, which we shall introduce later.



Chapter 4

BEC Mixtures Stability

Bose-Einstein condensate mixtures represent an important field of study of cold
atoms, where particular properties like interchange of angular momentum and stable
currents are found and can be modulated by few parameters like the intra- (between
the same species) and inter-species (between different species) interactions. These
structures can be set in practice with the same bosonic isotopes in different hyperfine
states, or different isotopes, or even different atoms [7]. The mixtures can hold stable
persistent currents, and are able to work like a matter-wave circuit, which make them
very relevant to atomtronics future applications [68], and therefore here we have a
rich framework to explore.

One of the main problems is to study the stability of the mixture on the spherical
shell. In practice, such a topology can be performed with bubble traps in laboratories
in a space station at low gravity conditions [16]. This is an interesting geometry
which can present some features found in annulus geometries, like stable persistent
currents. And we also can observe the effects of miscibility and competition of
angular modes, which can take over the system. We present new studies, exploring
the angular geometry, and carrying out a deep analysis of the interaction role on
stability when we have hidden vorticity [18].

Interactions can change the spatial distribution of the species, in such a way that
they overlap or not, i.e, the miscibility is related with the interactions and the ini-
tial stationary states can be led to very different ones. Another way we can use to
track the instability is to observe the unstable modes from the Bogoliubov-de Gennes
spectrum [7,8]. Depending on the geometry we are studying, it is possible to observe
the modes breaking the condensates into pieces [25, 69].

This chapter is organized as follows. In section 4.1, we extend the mean-field
model to take into account mixtures, and particularly, binary mixtures. Next, we
employ techniques to study stability and dynamics. In Sec. 4.2, we focus on ho-
mogeneous solutions, and we present an analytical study of the BdG spectrum and
compare it with the overlap behavior when we find the ground state of the mix-
ture. In sec. 4.3, we observe the hidden-vorticity (HV) configurations, where we
have vortex- and antivortex- states, with each species achieved with the same vortex

41
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charge, but with different signs. In this system, we have inhomogeneous but misci-
ble initial states for which we perform a variational study of the states and energy in
4.3.1. Next, BdG spectrum can provide the spectrum of the elementary excitations,
from which we can predict the stability of the initial state, once the inter-species in-
teractions start to affect the system, see 4.3.2. In 4.3.3, we analyze the dynamics of
some systems supposed to be unstable, and confirm that an unstable mode is able to
break the atomic clouds into immiscible pieces. Finally, in Sec. 4.4, we summarize
the main conclusions our results have provided. Our main results, can be found in
the published paper [18].

4.1 Model

Recently, some experiments were performed using bubble traps schemes, where the
BEC is confined to the surface of an ellipsoidal, or spherical shell in microgravity
settings at the Nasa Cold Atom Laboratory (CAL) aboard the international space
station [16]. Therefore, it means a new feasible closed geometry, where we can
find properties around the persistent currents as observed for annulus geometries.
Then, spherical shells provide an opportunity to observe interesting features. In this
context, we can study mixtures on the shell and study their stability by observing the
angular unstable modes and also the miscibility.

Our main focus is to observe the role of unstable angular modes from the BdG
spectrum on the initial stationary states, which can be homogeneous for the non-
vorticity regime, or inhomogeneous when we consider hidden vorticity (HV). In
both cases, we start with miscible species. But we remark that in the HV case,
the miscibility can not be connected with homogeneity as we perform with non-
vorticity problems, since the inhomogeneous solution is straightly related with the
vorticity, regardless of the immiscibility. The mixture interactions can make the
unstable angular modes grow, and once that happens, these modes are able to split
the condensate into few pieces [25, 69].

A BEC mixture on the spherical shell can be described in the dimensional-reduced
model for GP already developed in Sec. 3.2. Here, in order to follow the notation
from our work [18], we change some variables to get a dimensionless problem. Then,
each species j is driven by the GP equation

i
∂ψj
∂t

=

[
−1

2
∇2
θ,ϕ + γjj|ψj|2 + γjk|ψk|2

]
ψj , (4.1)

where j, k = 1, 2, with k ̸= j, and

∇2
θ,ϕψj ≡

1

sin θ

∂

∂θ

(
sin θ

∂ψj
∂θ

)
+

1

sin2θ

∂2ψj
∂ϕ2

. (4.2)
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The number of atoms Nj is set into the interaction parameter γjk = gjkNj [18], and
the normalization conditions are∫

dϕdθ sin θ|ψj(θ, ϕ)|2 = 1 , (4.3)

with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and ψj(θ, 0) = ψj(θ, 2π). We can search for stationary
solutions where the species carry some angular momentum, then we set the ansatz

ψj(θ, ϕ, t) =
fj(θ)√
2π

exp [i(sjϕ− µjt)] , (4.4)

with f a real function, normalized to 1/2, and sj imposes a vorticity on the solution.
We get a one-dimensional time-independent GP

µjfj = −1

2

1

sin θ

∂

∂θ

(
sin θ

∂fj
∂θ

)
+

1

2

s2jfj

sin2θ
+
γjj
2π
f 3j +

γjk
2π
f 2kfj , (4.5)

therefore, the chemical potential can be written as

µj =

∫
dϕdθ sin θ

[
1

2

(∣∣∣∣∂fj∂θ
∣∣∣∣2 + s2j

sin2θ
|fj|2

)
γjj
2π

|fj|4 +
γjk
2π

|fj|2|fk|2
]
,

(4.6)

and the total energy

E =

∫
dϕdθ sin θ

2∑
j,k=1k ̸=j

[
1

2

(∣∣∣∣∂fj∂θ
∣∣∣∣2 + s2j

sin2θ
|fj|2

)
+
γjj
4π

|fj|4 +
γjk
4π

|fj|2|fk|2
]
.

(4.7)

If we have sj = 0, then fj(θ) ̸= 0 at the poles θ = 0, π. But if we have sj ̸= 0, so
fj(θ) = 0 at the poles. With the ansatz in Eq. (4.4) we are able to set a vortex pair
localized at the sphere poles. If we set s1 = s and s2 = −s, where s > 0, the system
presents a hidden-vorticity (HV) [25, 69], since the species have opposite vorticity,
whereas s = 0 defines a homogeneous system.

When the condensates have vortex charge, they eventually can exchange angular
momentum. And therefore it is useful to define the angular momentum operator
L = −ẑi ∂∂ϕ for each species

⟨Lz⟩j = −i

∫
dϕdθ sin θ ψ∗

j

∂ψj
∂ϕ

, (4.8)

which is supposed to be a constant ⟨Lz⟩j = sj, if the proposed solutions in Eq. (4.4)
are stable.
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4.2 Homogeneous system

Here we present a semi-analytical analysis for non-charged system, i.e, s1 = s2 = 0,
for which the solutions are given by ψj = fj/

√
2π, see Eq. (4.4). Even simpler

solutions can be assumed, where f1 = f2 = 1/
√
2, which stand for condensates that

are miscible and homogeneous, where the solutions in Eq. (4.4) can be written as

ψj = a0exp(−iµjt) , (4.9)

with a0 = 1/
√
4π. We can perform a stability study and track how long this simple

solution is the ground-state of the system.

4.2.1 Stability

We consider small amplitude fluctuations around the homogeneous stationary states
in Eq. (4.9), and we suppose fluctuations carried out by an angular dependence given
by spherical harmonics Yℓ,m(θ, ϕ) [24]. This assumption is related on the fact that
the solutions of the linear problem (no interaction) are eigenvalues of the angular
momentum operator. The perturbed functions are

ψj(θ, ϕ, t) =
[
a0 + uj,ℓYℓ,m(θ, ϕ)e

−iωt + v∗j,ℓY
∗
ℓ,m(θ, ϕ)e

iω∗t
]
e−iµjt , (4.10)

with j = 1, 2. The BdG matrix (2.30) for the mixture becomes

M =


D1 γ11a

2
0 γ12a

2
0 γ12a

2
0

−γ11a20 −D1 −γ12a20 −γ12a20
γ21a

2
0 γ21a

2
0 D2 γ22a

2
0

−γ21a20 −γ21a20 −γ22a20 −D2

 , (4.11)

with
Dj = ϵℓ − µj + (2γjj + γkj)a

2
0 , (4.12)

where j, k = 1, 2 (k ̸= j) and ϵℓ = ℓ(ℓ + 1)/2, since we have the properties
∇2
θ,ϕYℓ,m = ℓ(ℓ+ 1)Yℓ,m and µj = (γjj + γjk)a

2
0. The diagonalization of this matrix

returns the eigenvalues

ω2
ℓ,± = ϵℓ

[
ϵℓ + a20

(
γ11 + γ22 ±

√
(γ11 − γ22)

2 + 4γ12γ21

)]
. (4.13)

If we consider γ11 = γ22 and γ21 = γ12, we get

ω2
ℓ,± = ϵℓ

[
ϵℓ + 2a20(γ11 ± |γ12|)

]
, (4.14)

for which we have complex solutions when ω2
ℓ,± < 0, i.e, when the inter-species

interaction is
|γ12| > γ11 +

ϵℓ
2a20

. (4.15)
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Then, the spectrum of the system has a nonzero imaginary part, and the system
becomes dynamically unstable.

In Fig. 4.1, we present a modes diagram based on the analytical result in Eq. 4.15.
We observe that the angular modes grow depending on the interacting parameters.
Since the first mode appears, the homogeneous (miscible) solutions are no longer
stable, which means that these interaction parameters favor inhomogeneous (immis-
cible) solutions. But in the unstable region, we can have more than one mode acting
on the system. In this figure, we observe the first three ℓ =1, 2, and 3. A more
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Figure 4.1: Modes diagram for homogeneous (s1 = s2 = 0) solutions depending on the interactions
γ12 versus γ11 = γ22, following the Eq. (4.15). Stable regions stand for parameters for which no
mode has imaginary part higher than zero. The lines presents when the unstable modes ℓ =1, 2, and
3 emerge. From [18].

Figure 4.2: Stability diagram for homogeneous solutions as a function of intra- and inters-species γ11
and γ12, respectively, see Eq. (4.15). Black spaces stand for stable regions. Violet, orange and yellow
places refer to unstable regions where the dominant mode is ℓ = 1, 2, and 3, respectively. From [18].

general diagram can be displayed by observing the modes that exhibit the highest
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imaginary spectrum for a specific set of parameters. In Fig. 4.2, we present the dom-
inant unstable modes as a function of the intra- and inter-species interaction. In order
to enhance our understanding of how an unstable mode overcome the others, we can
see the explicit imaginary spectrum of all of modes. In Fig. 4.3, we present the com-
petition of the unstable angular modes and the critical values of γ12 needed to turn on
a specific angular mode ℓ. When we have the fixed parameter γ11 = 10, the critical
values for ℓ = 1, 2, 3, and 4 are γ12 ≈ 16.28, 28.85, 47.70 and 72.84, respectively, as
we can see in Eq. (4.15) [18]. These analytical predictions are presented in Fig. 4.2.
This can be verified in Eq. (4.14). A fifth mode does not appear because the critical
g12 is out of our range, see (4.15). To access the mode ℓ = 5 we need an inter-species
interaction γ12 ≈ 104.25.

Figure 4.3: Imaginary spectrum of modes ℓ = 1, 2, 3, and 4 as functions of the inter-species interaction
γ12, based on analytical unstable frequencies, see Eq.(4.14). The intra-species interactions are fixed
in γ11 = γ22 = 10.

The unstable regions pointed out by the angular unstable modes growth are re-
gions where the miscible solutions are not longer favored by the interaction param-
eters. In Fig. 4.4, we handle an numeric imaginary-time evolution where we let the
functions free to find the appropriated solutions, i.e, the ground states, by the set-
ting inhomogeneous ansatz with f1(θ) ̸= f2(θ) in the GP Eqs. (4.5), in which we
consider a spatial grid with Nθ = 201 points, see the methods appendix sections
A.1 and A.3 for more details. We see the densities |fj(θ)|2 of the system going
from a miscible homogeneous initial solution, where |fj(θ)|2 = 1/2, to an immis-
cible inhomogeneous one, following the predicted pattern found by the analytical
and numerical diagonalizations of the BdG matrices. When the inter-species interac-
tion is strongly repulsive the species favor an inhomogeneous solutions with a very
low overlap (see Eq. (2.24)) between them. Following the solutions path from ho-
mogeneous solutions to inhomogeneous ones, we show in Fig. 4.5 the corresponding
density waves |ψj(θ, ϕ)|2, for the same parameters of Fig. 4.4, where we can see how
the species are distributed along the spherical shell. For zero, or low interactions the
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Figure 4.4: Pattern of |fj(θ)|2, j = 1, 2 when the system goes from the miscibility to the immiscibility,
for fixed γ11 = 10 when the inter-species interaction increases. (a) γ12 = 10 and Λ = 1. (b) γ12 = 20
and Λ = 0.17. (c) γ12 = 100 and Λ = 0.00. Solid-black line refers to the species 1, and red-dashed
line to the species 2. From the author.

species can occupy the whole sphere, and the densities are given by the constant
|ψ1|2 = |ψ2|2 = a20 = 1/4π. When the inter-species interaction is repulsive enough,
the species are localized like two bowls. On the other hand, a weak, or intermediary
attractive inter-species interaction makes the system remains as a homogeneous solu-
tion, but a strong attractive inter-species interaction drives the system to the collapse.

Figure 4.5: Density wave patterns |ψj(θ, ϕ)|2, j = 1, 2, with (a), (b), and (c) following the parameters
of (a), (b) and (c) from Fig. 4.4 for species 1. And (d), (e), and (f) corresponding to the species 2.
Low density regions are darker and higher density regions are lighter. Note the pole θ = 0 is localized
on the top of the spheres, and θ = π at the bottom. From the author.
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4.3 Hidden-vorticity system

Now we consider the more general case where the system has hidden-vorticity, i.e,
s > 0. On the poles of the spherical shell arise quantized vortices, then the solutions
are inhomogeneous, and we can not obtain an analytical prediction for dynamic sta-
bility like before.

4.3.1 Variational approximation

A first approach to study the solutions in the HV regime can be a variational treat-
ment. We set s1 = −s2 = 1, which correspond to the ℓ = 1 spherical harmonics
solutions in the non-interaction problem (linear Schrödinger equation). Then the so-
lutions are proportional to sin θ, and in a preliminary analysis, we can suppose that
when the interaction is turned on the solution goes with a power β of sin θ , i.e,

f 2v (θ) = λsinβθ , (4.16)

where β is a variational parameter and λ a normalization constant. We propose
initially miscible solutions ψ2 = ψ1 = fv/

√
2π. When the interaction is turned off,

the solution is exact and corresponds to β = 1 and λ =
√

3/4. The normalization
condition is∫ 2π

0

dϕ

∫ π

0

dθ sin θψ2
v(θ) = λ

∫
dθ sin θsinβθ = λJ(β) = 1 , (4.17)

where we define the integral function J(β), that obeys the property

J(β) =
β

β + 1
J(β − 2) , (4.18)

which can be written in terms of the Wallis’ integrals Wn [70]

Wn =

∫ π/2

0

dθsinnθ , (4.19)

for an integer n. Then, we write J(β) = 2Wβ+1. That function can be rewritten with
gamma functions Γ(n) = (n− 1)! [71], and it is extended to real arguments β

J(β) = 2Wβ+1 =

√
πΓ(β+2

2 )

Γ(β+1
2 + 1)

. (4.20)

Therefore, with the variational solution we are able to approximate the energy (4.7)

E(γ, β) =
(β + 2)2

8β
+

γ

8π

(β + 1)2

Γ(2β + 2)

[
Γ(β + 1)

Γ(β2 + 1)

]2
, (4.21)
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where we define γ = γ11 + γ12, and effectively, we have a single species problem.
We find the variational parameter β that minimizes the energy functional E(γ, β).
We get the variational energy Evar(β), and the corresponding variational chemical
potential

µvar(β) = 2Evar(β)−
(β + 2)2

8β
. (4.22)

When the interactions are negative (γ < 0), the parameter β grows, then in the
regime of β ≫ 1, i.e, a strong negative interaction, we can use the Stirling’s formula
Γ(z + 1) ≈

√
2πz(z/e)z [71], this is an asymptotic limit, where the energy is

Easy(γ, β) ≈
β

8
− |γ|

8π

√
β

π
, (4.23)

which can be minimized, thus we get the variational parameter βmin = |γ|2/(4π3),
and the energy goes asymptotically with −βmin/8. We can write the variational
energy and chemical potential in terms of γ

Easy,var(γ) ≈ − |γ|2
32π3

, µasy,var(γ) ≈ −3|γ|2
32π3

, (4.24)

with the variational density going to a Dirac-delta function localized at π/2 when
β → ∞. In Fig. 4.6a , we present the comparison between the parameter β found by
variational and variational-asymptotic βmin approximations. While in Fig. 4.6b, we
see the numerical chemical potential given by Eq. (4.6) and energy of Eq. (4.7). In
the attractive regime, the comparison with the variational and asymptotic-variational
energies found by Eqs. (4.21), (4.22), and (4.24). For strongly attractive interac-
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Figure 4.6: Variational quantities in terms of the interaction parameter γ. (a) Minimization varia-
tional parameter β where the solid-red line is the variational parameter and the blue-dashed line is
the asymptotic approximation. (b) Comparison between variational and exact-numerical results for
the energies and chemical potentials. Solid-red line with circles and the blue-solid line are the nu-
merical energy and chemical potential, respectively. The dashed-red and dashed-blue lines are the
corresponding quantities by variational approximation. From [18].

tions, the variational and asymptotic approaches are in good agreement with the
numerical results. In this regime, the parameter β increases to a high value, but for
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repulsive interactions β → 0, since effectively we have a single species problem,
thus high interactions lead to a quasi-homogeneous system. The boundary condi-
tions prevent the fully homogeneous distribution because the solution goes to zero
at the boundaries (poles), the region where the vortices are localized. The Fig. 4.7a
shows the numerical and variational pattern of |f(θ)|2 as a function of the interac-
tion parameters, making clear how the repulsive interactions lead the system to a
quasi-homogeneous solution, and attractive interaction leads to a Dirac-delta func-
tion localized at θ = π/2, the equator of the sphere. The variational approximation
captures the behavior of the function, but it does not return a good agreement with
numerical results, as the variational energy does. In Fig. 4.7b, we see the maximum
density as a response to the interaction parameter, and again the variational approach
is a good approximation to predict the general behavior of the function, but not its
absolute values. And that is the limitation of the variational tool.

Figure 4.7: Numerical and Variational results (with β indicated) for |f |2. (a) The quantity is shown
as a function of θ. (b) Is presented the maximum values (θ = π/2) as function of γ. From [18].

4.3.2 Stability

We consider the fluctuations around the stationary input sates. We can write the small
amplitude oscillations in an angular basis, with an explicit azimuthal ϕ - dependence
regarding a phase with quantum number m

uj,m = uj,m(θ)e
imϕ , vj,m = vj,m(θ)e

imϕ , (4.25)

and we get

ψj(θ, ϕ, t) =

[
fj(θ)√
2π

+ uj,m(θ)e
imϕe−iωt + v∗j,m(θ)e

−imϕeiω
∗t

]
ei(sjϕ−µjt) , (4.26)

with j = 1, 2. The BdG matrix, as Eq. (2.30) is

M =


D̂+

1 γ̃11f
2
1 γ̃12f1f2 γ̃12f1f2

−γ̃11f 21 −D̂−
1 −γ̃12f1f2 −γ̃12f1f2

γ̃21f1f2 γ̃21f1f2 D̂+
2 γ̃22f

2
2

−γ̃21f1f2 −γ̃21f1f2 −γ̃22f22 −D̂−
2

 , (4.27)
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with γ̃jk = γjk/2π, j, k = 1, 2, and

D±
j = −1

2

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

2

1

sin2θ
(m± sj)

2

+
1

2π
(2γjjf

2
j + γjkf

2
k )− µj , (4.28)

or

D±
j = −1

2

∂2

∂θ2
− 1

2
cot θ

∂

∂θ
+

1

2

1

sin2θ
(m± sj)

2

+
1

2π
(2γjjf

2
j + γjkf

2
k )− µj , (4.29)

where j, k = 1, 2 and k ̸= j.
We focus on the study of how unstable angular modes influence the system once

we set an initial miscible system with f1(θ) = f2(θ) = f(θ), where both states have
unitary vortex charge, with s1 = −s2 = 1. The vortex imposes an inhomogeneous
solution for which we can not afford an analytical solution. We found the ground
state by performing an imaginary-time evolution described in the appendix sections
A.1 and A.3, write the matrix (4.27) by finite differences method described in the
appendix section A.4. We numerically diagonalize the matrix by the routine ZGEEV
from Lapack library available in the compiler of Intel Fortran. For this task we use a
spatial grid ofNθ = 201 points. The spectrum we get provides information about the
dynamic stability even in regions where the mixture are miscible. We highlight that
for repulsive interactions, the unstable modes are related on the immiscible phase
solutions. However, for attractive interactions the solutions are always miscible, but
can be unstable anyway. In Fig. 4.8, we present a stability diagram as a function of
the interaction parameters γ11 = γ22 and γ12 = γ21. We see a stable region indexed
by ’s’, and unstable ones labeled by the number of the dominant angular mode m
at this region. Once we get the BdG spectrum of the system, we are able to figure
out which mode is the largest one in a particular region. The stable region is more
likely in the repulsive region (γ11 + γ12 ≥ 0), but we have a small region of stability
in the overall attractive region, which is not expected by a naive assumption that the
stability is always guaranteed when miscibility is present. While the attractive region
is exhibits miscibility, it’s remarkable that the number of unstable modes grows in
proportion to the magnitude of the interaction. On the other hand, the repulsive
region seems to show a correspondence with miscibility properties.

In Fig. 4.9, we present the competition of the angular modes for specific cases into
the previous diagram in Fig. 4.8. We set a fixed intra-species interaction γ11 = 10 and
observe the spectrum as a function of the inter-species interaction γ12 in Fig. 4.9a.
And in Fig. 4.9b, we observe the case of no interaction between different species
(γ12 = 0), and we see that the attractive region is likely to be unstable even without
the influence of the other species.



CHAPTER 4. BEC MIXTURES STABILITY 52

Figure 4.8: Stability diagram for hidden vorticity solutions (s1 = −s2 = 1) displayed as a function
of the interactions parameters γ12 versus γ11 = γ22, obtained by the diagonalization of Eq. (4.27).
The index ’s’ refers to the stable region and the numbers present the modes m = 0, · · · , 7, which are
dominant in that unstable regions. From the author.

Figure 4.9: Maximum imaginary BdG spectrum Im(ω) returned by diagonalization of (4.27) as a
function of the interaction parameters, driven by the excitation modes m = 0, · · · , 5. (a) Spectrum
when γ11 = 10 is fixed. (b) Spectrum when γ12 = 0 is fixed. From [18].

4.3.3 Dynamics

We set initial conditions where the wave functions are given by ψj = f(θ)eisjϕ/
√
2π,

and carry out a time-dependent evolution of the 2D GP equation (4.1) with the
full Laplacian ∇2

θ,ϕ (4.2), and no additional approximations. We perform the nu-
meric calculations with a spatial grid where Nθ = 201 and Nϕ = 401, with spatial
steps dθ = π/Nθ and dϕ = 2π/Nϕ. The dynamics is observed with a time-step
dt = 0.0005. We choose an initial state for which the interaction parameters are
γ11 = 10 and γ12 = 12, we can have better picture of this state in the Fig. 4.10.
As higher the interactions are, more the vortex core becomes smaller and the cloud
around it homogeneous. For this same initial states, we show in Fig. 4.11, how
evolve the angular momentum in the direction z and the overlap between the species.
For which we have BdG semi-analytical predictions in Fig. 4.8 and Fig. 4.9a, which
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Figure 4.10: Ansatz for both species at the time t = 0 when we have the parameters γ11 = 10 and
γ12 = 12, and vortex charges s1 = −s2 = 1, see Eq. (4.4). Note that each species has a vortex-
antivortex pair. At this perspective, we only can see the bottom vortices, but also have the top ones.
Unfortunately, we can not see all vortex in only one 2D picture. From the author.
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Figure 4.11: Properties dynamics of the unstable case where parameters are γ11 = 10 and γ12 = 12.
(a) Average angular momentum ⟨Lz⟩j , see Eq.(4.8). (b) Overlap Λ(t) evolution in time, see Eq.(2.24).
From [18].

have shown that the at this chosen parameters, the system is unstable and driven by
the dominant angular mode ℓ = 2. Indeed, we note that by the time t = 48, the
species are no longer miscible. And particularly, the species enter a regime where
they exchange angular momentum between each other every time they collapse and
revive in such a way the current persist. For this special case, we can see a peri-
odic behavior which is not what happens for every choice of parameters. Another
way to see how the unstable mode take over the dynamics is to observe the density
clouds for both species, as we display in Fig. 4.12. The previous theory is confirmed,
since Fig. 4.12 shows the densities are broken into 2 pieces, as an inherent behavior
of states led by the unstable mode ℓ = 2. This dynamic periodic phenomenon is
found in several examples in our work [18]. When the angular unstable mode is not
destructive enough, it drives the system to a periodic regime where it breaks into ℓ
pieces and later returns to the same initial pattern. However, we point out that, if we
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have several unstable modes simultaneously driving the dynamics, the interfere with
each other and the system can not afford a periodic behavior.

Figure 4.12: Densities of species 1, 2 and the sum them (from left to right) at the time t = 55 when
γ11 = 10 and γ12 = 12, same case of Fig. 4.11. Row (a) presents the spheres with z-direction
pointing outwards the page. And row (b) presents the spheres with y-direction pointing inwards the
page. From [18].

4.4 Conclusions

With our results, we have shown that the mixture on the spherical shell provides a
rich scenario to study the stability. The particular geometry of a sphere provide a very
special framework with a discrete spectrum, where we can track which of the modes
are actually taking over the dynamics of the system. We have performed accurate
predictions about the stability behavior of the system with a one-dimensional BdG
model, and confirmed our predictions by carrying out a dynamics simulation.

The main result of our model is to reveal that vortex states can be dynamically
stable on the surface of a sphere, which was an open question, once in the literature
we have solid evidences that vortices are energetically unstable [57]. Here we have
presented results that support that these states can be stable once the condensate do
not interact with a thermal cloud. We have observed that the spherical geometry, like
the annulus ones, is able to afford persistent currents. A mixture can achieve a very
interesting behavior of collapse and revival, already observed in the context of gases
confined in optical lattices [72]. But here, we have presented another context were
this phenomenon can be observed in future experiments.

In this work, we had overcome the challenges related to very coordinate system.
When we handle numerical calculations in spherical coordinates, we have to deal
with several trick problems related to singularities. Furthermore, we observed that,
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in these coordinates, conventional finite differences methods often yield unreliable
results. Therefore, we have developed a novel pseudo-spectral method, which, to
the best of our knowledge was not already available in literature. With our methods,
we set our research group a step ahead another theoretical groups currently handling
problem of condensates in the bubble.



Chapter 5

Faraday Waves on Mixtures Driven by Rabi
Coupling

We can observe spatial pattern formations in several branches of physics [73], it was
first reported by Michael Faraday in his famous experiments in 1831 [74], at that
time regarding spatial patterns on liquids inside a vibrating receptacle. Currently,
we call Faraday waves the surface excitations that emerge over a flat surface of a
fluid. These phenomena are also important in nonlinear waves, out-of-equilibrium
fluid mechanics, and nonlinear optics. In the last three decades, the advance in cool-
ing and trapping techniques has enabled the feasibility of Bose-Einstein condensates
in ultracold gases. In this context, it is possible to control the particle s-wave in-
teractions and shape of the condensate, even in low dimensions. This environment
has opened new ways to explore and investigate how classical mechanics fluid phe-
nomena can be observed in quantum fluids. In atomic gases, spatial patterns can
be performed by parametric modulations in the scattering length or trap potential.
Regarding this subject, some ways to experimentally and theoretically observe the
emergence of Faraday waves have been reported [75–79]. Time-dependent modula-
tions in the trap potential or the scattering length are able to drive systems to target
excited states [20], induce time-crystal formation [80], and manipulate the popu-
lation dynamics [81, 82]. A novel approach to induce Faraday waves without the
need for parameter modulation within the trap or interactions is by performing Rabi
coupling between a mixture of condensates [27, 83]. In this method, the effective
time-dependent interaction energy plays an important role in driving the dynamics.
In addition, there is already evidence that an effective time-dependent interaction
also can be performed by Raman-induced spin-orbit coupling [28]. It suggests that
we have some advantages if we deal with condensate mixtures for triggering of para-
metric resonance. Moreover, not only the spatial pattern can be induced, but also
new features can be observed, once intra- and inter-species interactions are able to
drive the system to phase separation. Currently, condensate mixtures can be per-
formed with the same atomic species initially set into different hyperfine states [84],
but also can be handled with different atomic species [85]. It is possible to observe

56
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how the elementary excitations can grow and induce phase separation depending on
the interaction parameters [18, 69]. An open question is how Faraday waves can be
achieved in closed geometries, where we have a discrete spectrum, and we need very
especial conditions to accomplish parametric resonance. The recent experiments
performed with ultracold gases aboard the International Space Station as well as the
Earth-based experiment with mixtures [32, 33], make us very confident that our re-
sults are relevant for cold atom physics. Our findings will be available in a preprint
version soon [19].

In this chapter, we aim to study the stability of spatially-homogeneous time-
periodic states in Bose-Einstein binary mixtures confined on the surface of a spher-
ical bubble, inspired by the recent work [27], where homogeneous mixtures are
handled into Rabi oscillations in order to give rise to Faraday waves. The authors
observed that spatial patterns coexist with the immiscible separation phase of the
mixture. We manage a similar study, but in our environment the spherically closed
geometry provides a discrete spectrum, in such a way that we have to tune different
parameters of the system to give rise to parametric resonance. Since this kind of setup
presents a novelty in promoting Faraday waves without any external modulation in
the interactions or the trap, we can highlight that another interesting feature of this
system is the possibility of triggering Faraday waves without energy injection. The
Faraday waves are excited just by tuning the Rabi oscillation frequency in resonance
with the small-amplitude fluctuations around the periodic state. Here we observe
that the same unstable angular modes which break the condensate into pieces, as
observed in the previous chapter 4, are also able to induce Faraday-patterns excita-
tions. We study the dynamics stability by carrying out linearized GP equations for
the fluctuations, based on Bogoliubov-de Gennes method for stationary states, and
also a suitable stability method for periodic states provided by the Floquet theory.
For small interactions we can figure out the resonance conditions and its relation
with the Floquet spectrum. We perform full GP simulations to check the stability
predictions, and we find pretty good agreement between Floquet diagrams and the
full dynamics simulations. Our results are relevant to the recent development of con-
densates in microgravity environments, once we bring up how the Rabi coupling can
drive the stability of boson-boson mixtures performed with different hyperfine states
of the same atomic gas, where conversion between the states is likely to happen.

The remainder of this chapter is organized as follows. In section 5.1, we present
a model for gases driven by fields that promote Rabi oscillations. Next, in Sec. 5.2,
we introduce the Gross-Pitaevskii model to study both contact-noninteracting and
-interacting condensed mixtures in the dynamic periodic regime. In Sec. 5.3, we
handle a BdG stationary model to study stability of our system, which is followed by
a suitable model depicted in Sec. 5.4, which is based on Floquet theory to correctly
analyze dynamic stability of periodic states. The Sec. 5.5 stands for simulations
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of the dynamics by considering the 2D GP equations with all terms, and observe in
which way the initial states are affected by unstable modes. In Sec. 5.6, all methods
regarding stability predictions and the full GP calculations are compared in such a
way we can have a better picture of the regimes where analytical predictions are
valid, and which of the methods provide reliable results. Finally, in the conclusion
Sec. 5.7, we provide our main results and major insights supported by the results of
this work.

5.1 Mixtures driven by Rabi oscillations

We consider a mass-balanced mixture of two atomic hyperfine states confined by
different potentials V1 and V2. The achieved states have a hyperfine splitting Vhf in
the absence of interactions. The coupling drive can by characterized by an oscillating
radiofrequency (rf) field tuned with frequency ωrf , for which the physics of interest
can be described in a pair of GP equations [66]

i
∂ψ1

∂t
=

[
−1

2
∇2 + V1 + g11|ψ1|2 + g12|ψ2|2

]
ψ1

+ Ωeiωrf tψ2 , (5.1a)

i
∂ψ2

∂t
=

[
−1

2
∇2 + V2 + Vhf + g22|ψ2|2 + g21|ψ1|2

]
ψ2

+ Ω∗e−iωrf tψ1 , (5.1b)

where in general we have a Rabi frequency Ω(t), which can be turned on or turned
off, which for simplicity, we consider the situation where the coupling is controlled
to be working during all the time of the experiment as a constant term in the GP
equations. Hereafter, we consider the Rabi-coupling constant as a real and posi-
tive value. We can handle unitary transformations ψ1 = ei(ωrf t/2+π/4)ψ̃1 and ψ2 =
e−i(ωrf t/2+π/4)ψ̃2 [8], in order to get a simplified form for GP equations. Once we
consider a rf-tuning of ωrf equivalent to the hyperfine splitting Vhf = ℏωrf between
the states, we get

i
∂ψ̃1

∂t
=

[
−1

2
∇2 + V + g11|ψ̃1|

2
+ g12|ψ̃2|

2
]
ψ̃1 − iΩψ̃2 , (5.2a)

i
∂ψ̃2

∂t
=

[
−1

2
∇2 + V + g22|ψ̃2|

2
+ g21|ψ̃1|

2
]
ψ2 + iΩψ̃1 , (5.2b)

in which we also have considered both species trapped about the same potential,
apart from the hyperfine splitting, i.e, V2 ≈ V1 ≈ V . From now on, we drop the
tildes for convenience.
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5.2 Model

We assume a mixture managed in such a way the atomic population can oscillate
between both condensed states, where the dynamics is drive by the GP equations
(5.2a) and (5.2b). We suppose condensates confined by the bubble trap (V = Vtrap),
for which we already have derived a dimensional-reduced form in Sec. 3.2. There-
fore, our model is described by the two-dimensional GP equations

i
∂ψ1

∂t
=

[
−1

2
∇2
θ,ϕ + g11|ψ1|2 + g12|ψ2|2

]
ψ1 − iΩψ2 , (5.3a)

i
∂ψ2

∂t
=

[
−1

2
∇2
θ,ϕ + g22|ψ2|2 + g21|ψ1|2

]
ψ2 + iΩψ1 , (5.3b)

for which we are assuming a ideal 2D spherical shell, where the condensates are
initially set into a miscible homogeneous configuration. Next, we are going to study
how this initial state evolve in time in several kind of particular regimes, where our
main goal is to predict the dynamic stability profile.

5.2.1 Non-interacting system

We consider a uniform system with no interaction (gij = 0), i.e, we neglect the
Laplacian and all interaction in the Eqs. (5.3a) and (5.3b), in such a way we get

i
∂ψ1

∂t
= −iΩψ2 , (5.4a)

i
∂ψ2

∂t
= iΩψ1 , (5.4b)

which can be written in the matrix form

i
∂

∂t

(
ψ1

ψ2

)
=

(
0 −iΩ
iΩ 0

)(
ψ1

ψ2

)
, (5.5)

or equivalently

i
∂ψ̂

∂t
= Ωσyψ̂ , (5.6)

where σy is a Pauli matrix [24] and ψ̂ stand for the species solutions column vector
given by

σy =

(
0 −i
i 0

)
, ψ̂ =

(
ψ1

ψ2

)
. (5.7)

The solution of the system (5.6) is

ψ̂ = Rψ̂ , (5.8)
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with the evolution operator R(Ωt) given by R(Ωt) = exp(−iΩσyt), which can be
written as R(Ωt) = 1 cos(Ωt) − iσy sin(Ωt) [86], where 1 is the identity matrix.
Therefore, the column vector ψ̂ evolves like a spin state under a rotation operator
through an angle Ωt.(

ψ1

ψ2

)
=

(
cos(Ωt) − sin(Ωt)
sin(Ωt) cos(Ωt)

)(
ψ1

ψ2

)
. (5.9)

For initial conditions ψ1(t = 0) = ψ2(t = 0) = 1/
√
8π, where we have half of the

total population in each state. From (5.9), the states evolve in time with

ψ1(t) =
cos(Ωt)− sin(Ωt)√

8π
, (5.10a)

ψ2(t) =
cos(Ωt) + sin(Ωt)√

8π
, (5.10b)

which can be written as

ψ1(t) =
1√
4π

cos(Ωt+ π/4) , (5.11a)

ψ2(t) =
1√
4π

sin(Ωt+ π/4) . (5.11b)

5.2.2 Interacting system

When both interactions and Rabi coupling are important to the system we can have
some special kinds of homogeneous solutions: Stationary ones as well as periodic
ones. We assume spatial homogeneous solution which are driven by the system of
equations

i
∂ψ1

∂t
=
[
g11|ψ1|2 + g12|ψ2|2

]
ψ1 − iΩψ2 , (5.12a)

i
∂ψ2

∂t
=
[
g22|ψ2|2 + g21|ψ1|2

]
ψ2 + iΩψ1 , (5.12b)

for which we can observe the particular solutions. The stationary solution can be
written as

ψ1 = ψ2 =
1√
8π

exp(−iµt) , (5.13)

with the chemical potential given by µ = (g + g12)/(8π), for g21 = g12 and g11 =
g22 = g. In the case of periodic solutions, we can have an analytical sinusoidal
solution for equal interaction parameters g12 = g

ψ1(t) =
1√
4π

cos(Ωt+ π/4)exp(−iµt) , (5.14a)

ψ2(t) =
1√
4π

sin(Ωt+ π/4)exp(−iµt) , (5.14b)
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with µ = g/(4π). A more general solution in the regime g12 ̸= g can not be written
by means of sinusoidal functions, and actually we have to solve the GP equations
numerically. With no loss of generality we can write these solutions as

ψj(t) = fj(t)exp(−iγjt), (5.15)

with j = 1, 2, where fj are complex periodic functions and γj are constant real
values, in general, different from the chemical potentials. We have f2 ̸= f1, but in
other hand the constants are about the same γ2 = γ1 = γ.

By considering the more general homogeneous solution (5.15), it can be shown
that the period decreases as |g − g12| increases, with the maximum period occurring
when the inter- and intra-species parameters are the same (g = g12) [27]. This depen-
dence of the period on the interaction parameters and Rabi frequency was verified
numerically and plotted in Fig. 5.1, where it was also verified how the oscillation
period decreases as the Rabi coupling increases. To illustrate the density behavior,
when considering different Rabi couplings and interactions, we also present two pan-
els in Fig. 5.2. Panel (a) shows the behavior of the densities for the particular cases
with g12 = g, when the two components follow the simple analytical expressions
(5.14a) and (5.14b). By contrast, panel (b) illustrates the behavior of a more general
case with g12 ̸= g, according to Eq. (5.15), when the solutions are deviating from
the sinusoidal form. For a given Rabi parameter Ω, as the differences between the in-
teractions (|g− g12|) increase, the number of particles being exchanged (represented
by the corresponding amplitudes) decreases, oscillating within a smaller interval.

Figure 5.1: (Color online) Density oscillating period T as a function of the absolute difference of
the interaction parameters |g − g12|. The results stand for different Rabi couplings Ω, as indicated.
From [19]

With respect to the Rabi frequency Ω (larger periods implying lower values of Ω),
more time is needed for an oscillating solution to complete each periodic cycle with
lower values of Ω than for higher ones (shorter period). As pointed out in Fig. 5.2
for the initial time interval, lower frequencies provide almost linear behaviors (in-
creasing or decreasing) with time when compared with the corresponding behavior
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Figure 5.2: (Color online) Time-evolution of the atom-number ratio (normalized densities),
Nj(t)/N ≡ 4πnj = 4π|ψj(t)|2, with initial condition nj(0) = 1/2, for constant Rabi couplings
Ω = 0.01, 0.1, and 0.2, where the absolute difference between the interaction parameters are given by
|g− g12| = 0 (a) and |g− g12| = 10 (b). In both panels, the black dashed lines lines refer to species 1
and the red solid lines to species 2, where the horizontal blue dotted line stands for Ω = 0.

obtained with higher frequencies. Therefore, at short times, when the Rabi coupling
constant is weak (Ω → 0), stationary solutions and oscillating ones are likely to be
the same. Conversely, this is no longer true when the coupling becomes stronger.

5.3 Stability of stationary solutions

The role of the Rabi coupling Ω on stationary solutions (5.13) is studied in this
section by performing a dynamic stability analysis, using the BdG method [8], see
Sec. 2.2. Within this approach, small amplitude oscillations are considered around
the uniform stationary solution (5.13). With the perturbations being eigenfunctions
of the kinetic energy operator, we can express the perturbed wave functions by
ℓ−angular-mode oscillations, in terms of the usual spherical harmonics Yℓ,m(θ, ϕ),
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as

ψj,ℓ(θ, ϕ, t) =

[
1√
8π

+ ηj,ℓ(θ, ϕ, t)

]
exp(−iµt) , (5.16)

where ηjℓ are the angular distribution modes, being expressed in terms of the spheri-
cal harmonics Yℓ,m(θ, ϕ),

ηj,ℓ(θ, ϕ, t) = uj,ℓYℓ,m(θ, ϕ)e
−iωℓt + v∗j,ℓY

∗
ℓ,m(θ, ϕ)e

iω∗
ℓ t , (5.17)

where uj,ℓ and vj,ℓ are complex parameters to be determined. The spectral solutions
are given by ωℓ, with ℓ being specific angular mode oscillations. Therefore, all the
perturbation terms of Eq. (5.16) are exact solutions of the linear part of Eqs. (5.3a)
and (5.3b) (apart from the Rabi-coupling term), with eigenvalues ϵℓ ≡ ℓ(ℓ + 1)/2.
The particular simplified symmetric form of Eq. (5.17) allows us to assume perturba-
tions with no dependence on the azimuthal mode excitation, given by m (an integer
running from −ℓ to ℓ), which can be arbitrarily chosen. Therefore, in the expo-
nential factors of Eq. (5.17), the frequency parameters ωℓ are excitation modes that
carry only the angular momentum index ℓ. They are in general complex numbers,
with non-zero imaginary parts when the system becomes dynamically unstable. By
initially assuming they are real numbers, we are considering parameters such that the
system is in a stable configuration. As we vary these parameters, for some specific
modes of oscillation the system becomes unstable, acquiring non-zero imaginary
parts.

We insert the perturbed solutions (5.16) into GP Eqs. (5.3a) and (5.3b), and by
neglecting the second and higher-order amplitude terms, we obtain the corresponding
BdG matrix equation,

Muℓ = ωℓuℓ , (5.18)

where

M =


ϵℓ +

g
8π

g
8π

g12
8π − iΩ g12

8π
g
8π ϵℓ +

g
8π

g12
8π

g12
8π + iΩ

g12
8π + iΩ g12

8π ϵℓ +
g
8π

g
8π

g12
8π

g12
8π − iΩ g

8π ϵℓ +
g
8π

 , (5.19)

and uℓ is the column vector that contains the amplitude terms of the two coupled
components uℓ = [u1,ℓ v1,ℓ u2,ℓ v2,ℓ]

T. We have four possible solutions for each
mode ℓ of the frequencies ωℓ given by

ω2
ℓ,± =

(
ϵ2ℓ +

ϵℓ g

4π

)
+ Ω2 ± 2

√(
ϵ2ℓ +

ϵℓ g

4π

)
Ω2 +

ϵ2ℓ g
2
12

(8π)2
. (5.20)

However, two of them with opposite overall signs are redundant as they correspond
to exchanging signals in the original definitions. The system is said to be dynam-
ically stable if these frequencies are real: Im(ωℓ,±) = 0; becoming dynamically
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unstable when some of the solutions turns out to be complex: Im(ωℓ,±) ̸= 0. In
Fig. 5.3, we present a BdG stability diagram, which depicts how large is the stable
region, when the interactions change. By comparing the panels 5.3a and 5.3b, we
are verifying that the strength of the Rabi coupling has an important role in the rise
of new regions of stability. To verify how the system is driven for weak and strong
coupling regimes, the BdG spectrum is discussed in the next sections 5.3.1 and 5.3.2,
by considering extreme regime approximations, with the weak and strong coupling
cases given, respectively, by Ω → 0 and Ω → ∞.

Figure 5.3: (Color on-line) BdG stability diagrams, as given by Eq. (5.20). Black places are stable
regions (Im(ωℓ,±) = 0) and the colors provide the dominant unstable angular modes (Im(ωℓ,±) ̸= 0).
Violet places stand for the unstable angular mode ℓ = 1 and orange for ℓ = 2. (a) Rabi coupling
constant Ω = 0.1. (b) Ω = 0.9. From [19].

5.3.1 Zero coupling

By considering a zero Rabi coupling constant (Ω = 0), the BdG spectrum (5.20)
provides substantially simpler excitation frequencies

ω2
ℓ,± = ϵℓ

[
ϵℓ +

1

4π
(g ± g12)

]
, (5.21)

which are supposed to be a good approximation for cases where Ω ≪ 1, and the
system has a period too large (T → ∞) that the effective system is almost stationary.

5.3.2 Strong coupling

We consider the case where the Rabi coupling Ω is much larger than any other fre-
quency scales in the system. In this way, there are two time scales in the system, the
dynamics driven by interactions and confinement potential, and also the faster dy-
namics of Rabi oscillations of the internal hyperfine states. We can study the system
in the rotating frame, where the slower system dynamics is almost stationary. We
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can rewrite our GP equations in the matrix form

i
∂ψ̂

∂t
= Ĥψ̂ , (5.22)

where Ĥ = ĤGP + Ωσy, with

ĤGP =

(
−1

2∇2 + g|ψ1|2 + g12|ψ2|2 0

0 −1
2∇2 + g|ψ2|2 + g12|ψ1|2

)
, (5.23)

and

ψ̂ =

(
ψ1

ψ2

)
. (5.24)

Consider the unitary transformation

Ŵ (t) = eiΩσyt , (5.25)

with the property ŴŴ † = 1. We are able to rewrite ψ̂ = ŴŴ †ψ̂ and Ĥ = ŴŴ †Ĥ ,
and the GP equation 5.22 as

i
∂

∂t
(Ŵ ψ̂

′
) = Ŵ Ĥ

′
ψ̂

′
, (5.26)

which can be set in another way

i
∂ψ̂

′

∂t
= Ĥ

′
ψ̂

′
, (5.27)

where ψ̂
′
= Ŵ †ψ̂ and Ĥ

′
= Ŵ †ĤŴ . With some algebraic steps, we get the GP

equations in the rotating frame in terms of dressed states ψ± = (ψ1 ± iψ2)/
√
2, in

such a way a dressed GP equation becomes

i
∂ψ̂D
∂t

= ĤDψ̂D , (5.28)

with
ĤD =

(
−1

2∇2 + g++|ψ+|2 + g+−|ψ2|2 0

0 −1
2∇2 + g−−|ψ−|2 + g+−|ψ+|2

)
, (5.29)

and ψ̂D = [ψ+ ψ−]T, with the dressed interaction parameters given by g++ = g−− =
(g11 + g22 + 2g12)/4 and g+− = (g11 + g22)/2. In this transformed variables, we can
get the BdG spectrum

ω2
ℓ,± = ϵℓ

[
ϵℓ +

1

8π
(g++ + g−−)

]
± ϵℓ

8π

√
(g++ − g−−)

2 + 4g2+− , (5.30)
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or written with the old variables

ωℓ
2
+ = ϵℓ

[
ϵℓ +

1

8π
(g12 + 3g)

]
, (5.31a)

ωℓ
2
− = ϵℓ

[
ϵℓ +

1

8π
(g12 − g)

]
, (5.31b)

where we are assuming g11 = g22 = g. The stability diagram of the extreme regimes
approximation is displayed in Fig. 5.4, where we can see in the panel 5.4a, the good
approximation in the regime of weak coupling, by comparison with the panel 5.3a,
but a very different behavior in the strong coupling limit, when we compare the
panels 5.4b and 5.3b, which makes the stationary BdG approximation no longer
reliable when the Rabi coupling is increased.

Figure 5.4: (Color on-line) BdG stability diagrams regarding the extreme regimes. Black places are
stable regions (Im(ωℓ,±) = 0) and the colors provide the dominant unstable angular modes (Im(ωℓ,±) ̸=
0). Violet places stand for the unstable angular mode ℓ = 1 and orange for ℓ = 2. (a) Zero Rabi
coupling regime, see Eq. (5.21). (b) Strong Rabi coupling regime, see Eqs. (5.31a) and (5.31b).

5.4 Stability of periodic solutions

Now we consider the evolution of the system given by the homogeneous oscillating
solutions (5.15), in order to better take into account the role of Rabi coupling in
the dynamics. Those solutions can be studied dynamically by the time-dependent
Floquet method, as in Refs. [27, 28]. If we suppose small amplitude oscillations
around them

ψj(θ, ϕ, t) = e−iγt [fj(t) + ζj,ℓ(θ, ϕ, t)] , (5.32)

with
ζj,ℓ(θ, ϕ, t) = ũj,ℓ(t)Yℓ,m(θ, ϕ) + ṽ∗j,ℓ(t)Yℓ,m(θ, ϕ) , (5.33)

where the amplitudes ũj,ℓ and ṽj,ℓ are periodic functions with the same period of the
densities. When inserting (5.32) into the GP equations (5.3a) and (5.3b), we neglect
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the second and higher order terms of the amplitude. Then, we get the following
matrix equation [27]:

i
d

dt
ũℓ = M̃ũℓ , (5.34)

where ũℓ(t) ≡ [ũ1,ℓ(t) ṽ1,ℓ(t) ũ2,ℓ(t) ṽ2,ℓ(t)]
T and

M̃ =


D1 gf 21 G12 − iΩ g12f1f2

−gf ∗1 2 −D1 −g12f ∗1f ∗2 −G∗
12 − iΩ

G∗
12 + iΩ g12f1f2 D2 gf 22

−g12f ∗1f ∗2 −G12 + iΩ −gf ∗2 2 −D2

 , (5.35)

with Dj ≡ (ϵℓ − γ) + 2g|fj|2 + g12|f3−j|2 and G12 ≡ g12f1f
∗
2 . When the system is

driven by a periodic time-dependent Hamiltonian, the Floquet theorem [11] predicts
that the solutions ũℓ(t) can be written as

ũℓ(t) = exp (λℓt)pℓ(t) , (5.36)

where pℓ are periodic functions, which in our case satisfy the same periodicity of the
densities. The factor λℓ stands for the Floquet exponent. From its periodic property
at the time t = T , pℓ(T ) = pℓ(0), we get

ũℓ(T ) = exp (λℓT )pℓ(0) . (5.37)

We carry out these calculations performing the method presented in the Ref. [27],
i.e., we integrate the Floquet Eq. (5.34) by a fourth-order Runge-Kutta method (RK4)
from t = 0 to t = T (a complete period), supposing four different initial conditions
for the amplitudes, which are ũℓ(t = 0) = [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T, and
[0 0 0 1]T. For each initial vector we get a different vector at the time t = T , then
we write these four final vectors as a column matrix F = [ũ

(1)
ℓ ũ

(2)
ℓ ũ

(3)
ℓ ũ

(4)
ℓ ]. That

matrix represents eλℓT . If we suppose the eigenvalues of F are λ̃ℓ, then we are able to
get the exponent λℓ by the natural logarithm λℓ = log(λ̃ℓ/T ). If the system evolves
to the time t = T with a nonzero real part in the full spectrum (Re(λℓ) > 0), it means
that the solution ũ is growing exponentially with t, and it is no longer stable, in other
words, the uniform oscillating system is dynamically unstable by excitations from
the orbital angular mode ℓ. In this approach, we are able to study how long the BdG
approach for stationary solution returns correct results. In Fig. 5.5, we present a
stability diagram obtained from the oscillating functions fj for a complete period T .
In panel 5.5a, we see a good agreement with the stationary result in the panel 5.3a,
but a very different result from its panel 5.3b. Then we conclude that as soon as the
Rabi coupling is turned on, the better way to study the stability of the system is to
carry out the Floquet method. Some set of parameters in these Floquet diagrams can
be observed separately in Fig. 5.6, where the spectrum of unstable modes clarifies the
meaning of very faint lines in the diagrams. The Floquet spectrum is able to predict
resonance regions and in the next section 5.4.1, we compare it with a semi-analytic
model in the regime where |g12 − g| ≪ Ω.
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Figure 5.5: (Color on-line) Floquet stability diagrams based on Max[Re(λℓ)], see Eq. (5.34). Black
places are stable regions (Max[Re(λℓ)] ≤ 0) and the colors provide the dominant angular unstable
modes (Max[Re(λℓ)] > 0), violet places stand for the unstable angular mode ℓ = 1, orange for ℓ = 2
and yellow for ℓ = 3. (a) Rabi coupling constant Ω = 0.1. (b) Ω = 0.9. From [19].

Figure 5.6: (Color on-line) Floquet spectrum Max[Re(λℓ)] as a function of inter-species interaction,
see Eq. (5.34). Violet solid lines stand for the unstable angular mode ℓ = 1, and red dashed lines refer
to ℓ = 2. Intra-species interaction and Rabi coupling constant are given by (g, Ω) = (20, 0.1) and (40,
0.9). Which are displayed in panels (a) and (b), respectively. Inset panels show the lower peaks in the
main panel. From [19].

5.4.1 Resonance conditions

We suppose the regime where ξ ≪ Ω, with ξ = g12 − g. In a ξ-first order approach,
the solutions are slightly perturbations of Eqs. (5.14a) and (5.14b), when g12 = g.
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As proposed in [27], we can write them as

ψ1(t) = ϕ1(t)e
−i(µ+δµ)t , (5.38a)

ψ2(t) = ϕ2(t)e
−i(µ+δµ)t , (5.38b)

where

ϕ1(t) =
1√
4π

cos(Ωt+ π/4)[1 + i∆(t)] , (5.39a)

ϕ2(t) =
1√
4π

sin(Ωt+ π/4)[1− i∆(t)] , (5.39b)

and ∆(t) = (ξ/32πΩ) cos(2Ωt), with the chemical potential µ = (2g+ ξ)/8π, and a
phase correction δµ = −ξ/16π. If we consider small amplitude fluctuations around
the solutions in Eqs. (5.38a) and (5.38b), we get

ψ1(θ, ϕ, t) = [ϕ1(t) + δϕ1(θ, ϕ, t)] , (5.40a)
ψ2(θ, ϕ, t) = [ϕ2(t) + δϕ2(θ, ϕ, t)] . (5.40b)

We can manage a useful transformation [28]

δϕd = ϕ∗1δϕ1 + ϕ∗2δϕ2 , (5.41a)
δϕs = ϕ1δϕ2 − ϕ2δϕ1 , (5.41b)

for which we have the inverse transformation (neglecting second and higher order
terms with ξ)

δϕ1 = 4π[ϕ1δϕd − ϕ∗2δϕs] , (5.42a)
δϕ2 = 4π[ϕ2δϕd + ϕ∗1δϕs] . (5.42b)

In this way, by inserting the perturbed functions into the GP equation, and neglecting
second and higher order terms with ξ, δϕd, and δϕs, we get the equations of motion
of the excitations

i
∂δϕd
∂t

=
{
− 1

2
∇2
θ,ϕ +

g

4π
+

ξ

16π
[1 + 2 cos(4Ωt)]

}
δϕd

+
{ g

4π
+

ξ

16π
[1 + cos(4Ωt)]

}
δϕ∗d

+
{
− g

4π
sin(4Ωt) +

ξ

8π
sin(4Ωt)

}
δϕs

+
{
− 3g

16π
sin(4Ωt)− ξ

16π
sin(4Ωt)

}
δϕ∗s , (5.43)

and

i
∂δϕs
∂t

= −
{ ξ

8π
sin(4Ωt)

}
δϕd −

{ ξ

16π
sin(4Ωt)

}
δϕ∗d

+
{
− 1

2
∇2
θ,ϕ +

ξ

16π
[1− 2 cos(4Ωt)]

}
δϕs

−
{ ξ

16π
[1 + cos(4Ωt)]

}
δϕ∗s . (5.44)
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We can assume that the dynamics of the excitations evolve in time in a much slower
scale than the sinusoidal functions sin(4Ωt) and cos(4Ωt), in such a way that is
convenient take the average of Eqs. (5.43) and (5.44) in time, i.e, given a time-
dependent function J(t), the average in the period T ′ = 2π/(4Ω) of the sinusoidal
functions is

⟨J⟩T ′ =
1

T ′

∫ T ′

0

dt J(t) , (5.45)

then the time-averaged equations of motion can be written in the form of the Floquet
equation

i
∂δϕ

∂t
= Zδϕ , (5.46)

where we have δϕ = [δϕd δϕ
∗
d δϕs δϕ

∗
s]
T (the symbol T stands for the transpose of a

vector) and the Floquet matrix is given by

Z =


−1

2∇2
θ,ϕ + g

4π + ξ
8π

g
4π + ξ

16π 0 0

− g
4π − ξ

16π
1
2∇2

θ,ϕ − g
4π − ξ

16π 0 0

0 0 −1
2∇2

θ,ϕ + ξ
16π − ξ

16π

0 0 ξ
16π

1
2∇2

θ,ϕ − ξ
16π

 .

(5.47)

Note that, the sinusoidal functions are zero in the average, but δϕ(t) and time-
independent terms are about the same as they were before the average calculation.
We can suppose the fluctuations amplitudes as stationary functions which go with
the spherical harmonics δϕ(θ, ϕ, t) = δϕ0Yℓ,m(θ, ϕ)e

−iωℓt, where we can consider
δϕ0 as a vector of constants. In this way we get a BdG matrix system

ωℓδϕ0 = Z̃δϕ0 , (5.48)

with

Z̃ =


ϵℓ +

g
4π +

ξ
8π

g
4π +

ξ
16π 0 0

− g
4π −

ξ
16π −ϵℓ − g

4π −
ξ

16π 0 0

0 0 ϵℓ +
ξ

16π − ξ
16π

0 0 ξ
16π −ϵℓ − ξ

16π

 ,

(5.49)

for which we have the spectrum in the ξ-first order approach

ω
(d)
ℓ,± = ±

[√
ϵℓ(ϵℓ + g/2π) +

ϵℓξ

16π
√
ϵℓ (ϵℓ + g/2π)

]
, (5.50a)

ω
(s)
ℓ,± = ±

(
ϵℓ +

ξ

16π

)
. (5.50b)

They are natural frequencies of excitation of the system regardless of Rabi oscilla-
tion. The parametric resonance conditions for an external potential is achieved when
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its frequency goes with about twice of the natural frequencies [87]. Once the Rabi
coupling potential drives the excitations with cos(4Ωt) and sin(4Ωt) in Eqs. (5.43)
and (5.44), the three critical Rabi coupling frequencies for which we have parametric
resonance are

4Ω
(d)
ℓ = 2ω

(d)
ℓ,+ , (5.51a)

4Ω
(s)
ℓ = 2ω

(s)
ℓ,+ , (5.51b)

4Ω
(ds)
ℓ = ω

(d)
ℓ,+ + ω

(s)
ℓ,+ , (5.51c)

which stand for density-density, spin-spin and density-spin resonances, respectively.

Figure 5.7: (Color online) Resonance couplings and unstable Floquet spectrum as functions of the
Rabi coupling Ω. The vertical dashed lines stand for the three predicted resonance critical couplings
(5.51a), (5.51b) and (5.51c) for g = 1, while the peaks are provided by the unstable Floquet spectrum
(Max[Re(λℓ)]), see Eq. (5.34). Only the unstable angular mode ℓ = 1 is actually important for the
chosen parameters. (a) Cases where the inter-species interactions are g12 = 1.1, 1.3, and 1.5, on
black/bottom, red/middle and blue/top set of peaks, respectively. (b) Cases where g12 = 3.0, 5.0, and
8.0, on black/bottom, red/middle and blue/top peaks, respectively. From [19].

Note we have considered just the plus-sign (+) branches, since we are considering



CHAPTER 5. FARADAY WAVES ON MIXTURES DRIVEN BY RABI COUPLING 72

the Rabi coupling parameter Ω as a positive real constant. The critical frequencies
Ωℓ can be observed in the Floquet spectrum in the regime of g12 ≈ g. When g12 be-
comes higher, the three peaks continuously merge into only one peak. In Fig. 5.7, we
compare the Floquet spectrum with the approximations (5.51a), (5.51b), and (5.51c)
for the resonance couplings. The spectrum shows us that once we increase the inter-
species interaction g12, the resonance peaks soon go away from the predicted ones,
they also become closer and higher. Then we no longer can distinguish the peaks
from each other, they become only one peak.

5.5 Dynamics

We investigate the dynamics of the system by performing the full numeric calcula-
tions of the coupled GP Eqs. (5.3a) and (5.3b), carrying out the spectral method intro-
duced in [18]. We perform the calculations with a spatial grid in θ and ϕ directions of
size 256× 256, with step sizes dθ = π/256 ≈ 0.013 and dϕ = 2π/256 ≈ 0.025, and
time step dt = 10−5. The GP equations are solved starting from homogeneous solu-
tions, where each species has half of the total population, i.e, ψ1 = ψ2 = 1/

√
8π, as

in Eq. (5.13), with a 5% random noise added to each point in the mesh grid. We are
able to compare how long the homogeneous periodic solutions (5.15) solved by RK4
method provide a good model to describe the evolution of the populations. We track
the stability behavior of homogeneous miscible initial states by displaying their over-
lap evolution, population dynamics, and density pattern when unstable modes are
present. In order to estimate the miscibility of the system, we consider the overlap

Figure 5.8: Overlap Λ(t) (see Eq. (2.24) between the species for cases 1 to 4, depicted in Λ1 to
Λ4, where the corresponding values are calculated for the set of parameters intra- and inter-species
interaction, and Rabi coupling constant (g, g12, Ω) = (1, 8, 0.50), (40, -10, 0.94), (1, 10, 0.10), and (1,
25, 0.99), respectively. Cases 1 and 2 are presented in the main panel on violet and orange solid lines,
respectively. Cases 3 and 4 are displayed in the inset panel on the red-solid and black-dotted lines,
respectively. From [19].
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Figure 5.9: (Color on-line) Population dynamics Pj(t) (see Eq. (2.25)) of the species for the cases 1
and 2, with intra- and inter-species, and Rabi coupling constant given by (g, g12, Ω) = (1, 8, 0.50),
(40, -10, 0.94), respectively. The cases are displayed in panels (a) and (b), respectively. Solid lines
stand for the full GP calculation of the system given by Eqs. (5.3a) and (5.3b), taking into account
spatial-time-dependent wave functions and the dotted ones are homogeneous only time-dependent
solutions (5.15). Black lines are species 1 and the red ones are species 2.

function Λ given in Eq. (2.24). Once the initial overlap decreases, it means that the
initial miscible set up is no longer stable. In Fig. 5.8, we show the overlap dynamics
of four different cases, where the set of parameters including intra- and inter-species
interaction, and Rabi coupling constant are given by (g, g12, Ω) = (1, 8, 0.50), (40,
-10, 0.94), (1, 10, 0.10), and (1, 25, 0.99), for which the stability predictions can
be localized in Figs. 5.14b, 5.15 , 5.5a and 5.14c, respectively. A complementary
analysis can be made by observing the population dynamics of the previous cases.
We already defined the population Pj of each species in (2.25). Fig. 5.9 shows us
how the population oscillation is affected for unstable cases 1 and 2. The population
behavior is closely related to the overlap, since both properties are changed when
the miscible homogeneous functions Eq. 5.14a and (5.14b) are no longer the true
solutions of the system. It is important to note that the overlap dynamics for unstable
cases is driven by two different frequencies. The slow frequency is a periodic be-
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havior of the miscibility, which was first observed in our previous work [18], and it
happens only for specific choices for interaction parameters. Moreover, in this work,
we observe a second frequency in the overlap dynamics, which is faster than the first
one, and it is driven by the population dynamics frequency. In Fig. 5.10, we present
two different cases where both frequencies are actually leading the overlap behavior.
In panel 5.10a, we set the parameters of the case 2, which are (g, g12, Ω) = (40, -10,
0.94), where we clearly see that the faster kind of overlap oscillation has the same
frequency of the population dynamics. Another case, which we call case 5, is de-
picted in panel 5.10b. This case has the parameters (g, g12, Ω) = (-10, 20, 0.90), for
which we have the stability prediction in Fig. 5.5b. Here is not easy to observe some
periodic behavior with two distinguished frequencies as before. This is an example
where the slower kind of modulation is not a periodic oscillation. In this way, the
periodic oscillation caused by the Rabi coupling can be expected for all choices of
parameters, but the same statement it is not true for the slower kind of modulation.
It may exhibit periodic behavior under certain conditions while being non-periodic
under others, as already observed in [18]. The dynamics process of an unstable mode
driving the behavior of the system can be more clearly seen in Fig. 5.11, where we
observe how the densities of both species evolve in time for the parameters of the
case 1, given by (g, g12, Ω) = (1.00, 8.00, 0.50), which is suppose to be unstable by
the angular mode ℓ = 1 in the panel 5.14b. By observing the density dynamics, we
are able to see that after some time, a density pattern emerges in both species, and
soon the species evolve to an immiscible setup. When the condensates become lo-
calized small clouds, where Faraday waves become difficult to be seen. Actually, in
the last picture, it seems that the system is able to get rid of these waves. But in this
case, the miscibility is periodic and the Faraday waves can survive for a long time.
However, once the clouds grow again, this waves are going to be higher. Here we
observe that both species are going to break into only one piece. This phenomenon
confirms that the system is driven by the unstable mode ℓ = 1, as predicted by the
Floquet spectrum. We previously observed in [18], that unstable angular modes ℓ are
able to break the condensate into a corresponding number ℓ of pieces, but here we
also point out that these angular modes are also able to trigger Faraday waves, once
the Rabi oscillations effectively drive time-dependent interaction energy [83], as a
parametric modulation does. Then, as predicted in another geometry [27], Faraday
waves can also coexist with the immiscible phase on the spherical bubble surface.

A similar calculation is performed in Fig. 5.12, where we present how the den-
sities evolve for the unstable cases 2, and 5, with parameters (g, g12, Ω) = (40, -10,
0.94), and (-10, 20, 0.9), respectively. The first row of the figure shows us the Fara-
day patterns arise, and species going to an immiscible-phase state, breaking into one
piece. In the second row of the figure, we see that both condensates soon break
into two pieces, where also Faraday patterns emerge. The stability of cases 2, and 5
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Figure 5.10: (Color on-line) Population Pj(t) and Overlap Λ(t) dynamics, see Eqs. (2.25) and (2.24),
respectively. Black and red solid lines are populations of species 1 and 2, respectively. The overlap
between the species is displayed in the dashed blue line. (a) Case 2, with intra- and inter-species
interaction, and Rabi coupling constant given by (g, g12, Ω) = (40, -10, 0.94). (b) Case 5, with
parameters (-10, 20, 0.90).

can be checked by the Floquet spectrum in the panels 5.15 and 5.5a), respectively.
Which predict that cases 2 and 5 are unstable, and driven by the modes ℓ = 1 and
ℓ = 2, respectively. The simulations of the dynamics confirm these predictions, and
in each case the condensates are likely to break into one and two pieces, respectively.
Therefore, the Floquet spectrum correctly predicts the stability behavior observed in
the dynamics. In the next section 5.6, we compare all methods with the dynamics
results, and observe that Floquet method provides the most suitable analysis as soon
as Ω > 0. However, BdG spectrum can return about the same results for small cou-
pling constant Ω ≪ 1. In summary, the density dynamics simulation of the unstable
cases 1, 2 and 5 displayed on the figures 5.11 and 5.12, show us the phase separation
is going to happen in a higher order of density than the Faraday patterns, and if the
condensates quickly break into localized small clouds, the Faraday waves effect is
not likely to be seen.

In Fig. 5.13, we quantify the effect of the unstable modes on the dynamics by
the square modulus of the coupling |cℓ,m|2, where the coefficients cℓ,m are defined in
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Figure 5.11: (Color online) Density dynamics |ψj|2 of the case 1 with intra- and inter-species interac-
tion, and Rabi coupling constant given by given by (g, g12, Ω) = (1, 8, 0.50). Species one is displayed
on the left, and species two on the right. Panels (a)-(e) refer to time t = 0, 15, 35, 42, and 60, respec-
tively. Species 1 is displayed on the left, and species 2 on the right.

Figure 5.12: (Color online) Density dynamics |ψj|2 of the cases 2, and 5 with intra- and inter-species
interaction, and Rabi coupling constant given by (g, g12, Ω) = (40, -10, 0.94), and (-10, 20, 0.90),
respectively. Species one is displayed on the left, and species two on the right. The first row displays
case 2 on panels (a)-(c) for time t = 0, 20, and 30, respectively. The second row presents the case 5
on the panels (d)-(f) for t = 0, 10, and 15, respectively.
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Figure 5.13: (Color online) Coupling parameters |cℓ,m(t)|2 of species 1 as functions of time t
[Eq. (5.52)]. Cases 1, 2, and 5 are depicted in (a), (b), and (c), with intra- and inter-species inter-
action, and Rabi coupling constant given by (g, g12, Ω) = (1, 8, 0.50), (40, -10, 0.94), and (-10, 20,
0.90), respectively. The insets in panels (a) and (b) stand for the lower lines of the main panels.

(5.52)

cℓ,m(t) = ⟨Yℓ,m|ψj⟩ =
∫
dS Y ∗

ℓ,m(S)ψj(S, t) . (5.52)

We calculate the coupling for the species 1 wave function coupled with the spherical
harmonics Yℓ,m(S) = Yℓ,m(θ, ϕ). We observe the three unstable cases 1, 2, and 5.
Once an angular mode ℓ is unstable, the amplitudes of the couplings regarding each
degenerate mode m = −ℓ, · · · , ℓ are arbitrary. Note that in case 5, depicted on
the panel 5.13c, we show only the coupling with degenerate modes associated with
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ℓ = 2, since they are the dominant ones, and the early modes to drive the dynamics.
Modes regarding ℓ = 1 also can be important for longer times. For cases with ℓ = 1,
the coupling with the modes m = −1, 0, 1 has the same behavior, but the mode
m = 0 has a different amplitude of the modes m = ±1. When ℓ > 1, this symmetric
behavior between the modes m is no longer observed.

5.6 Methods comparison

We already have stressed out in section 5.2 how the true solutions can be different
from stationary ones, when the Rabi coupling is leading the dynamics. The conden-
sate wave functions go with periodic functions in time, and therefore the associate
spectrum can be very distinct from the spectrum of stationary solutions. In this sec-
tion, we compare the BdG and Floquet spectrum, which are actually suitable for
stationary and periodic functions in time, respectively. Once the Rabi coupling con-
stant is increased, and the oscillating period of population dynamics becomes short,
the methods are more likely to disagree from each other. In Fig. 5.14, we set to-
gether all stability approximations previously discussed in order to observe more
deeply how they are related to each other. In panels 5.14a, 5.14b and 5.14c we dis-
play three different regimes of Rabi coupling. In the weak region Ω = 0.01, we see
the complete BdG spectrum, the zero limit Ω = 0, and the Floquet scheme return-
ing the same spectrum as we already expected, based on the very similar behavior
of the stationary and oscillating solutions in this regime, see the case Ω = 0.01 in
Fig. 5.2. Conversely, when the Rabi coupling constant is increased, the spectrum of
the approximations become very different from each other, and once the coupling
grows (Ω → 1), even the stationary dressed states (Ω → ∞) return bad results com-
pared with the Floquet spectrum. An even deeper analysis is provided in Fig. 5.16,
which displays simultaneously the different role of the Rabi coupling depending on
the inter-species interaction, where it is very clear that the coupling is able to open a
large region of stability, which makes the unstable behavior to be postponed. But in
some situations it can make the system unstable, even when the BdG spectrum pro-
vides no clue of instability. This phenomenon is also depicted for fixed parameters
in Fig. 5.15. We display the two different set of interaction parameters (g, g12) = (1,
15) and (40, -10), the first one is driven from an unstable to a stable solution by the
increasing of the Rabi coupling, and the second one is led from a stable regime to an
unstable one when the coupling becomes higher.
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Figure 5.14: (Color on-line) Maximum unstable spectrum for each unstable angular mode ℓ as func-
tion of the inter-species interaction g12 and Rabi coupling constant Ω, with fixed intra-species inter-
action g = 1. BdG unstable spectrum is given by Max[Im(ωℓ,±)] and Floquet unstable spectrum is
provided by Max[Re(λℓ)]. The numbers stand for the corresponding angular mode ℓ. dashed lines
refer to BdG spectrum, see Eq. (5.20). Empty squares present the BdG regime Ω = 0, see Eq. (5.21).
Violet dots show the strong BdG regime Ω → ∞, see Eqs. (5.31a) and (5.31b). Red solid lines display
the Floquet spectrum, see Eq. (5.34). (a) Ω = 0.01. (b) Ω = 0.50. (c) Ω = 0.99.

In table 5.1, we compare the predictions of BdG and Floquet methods with the
full dynamics calculations for five cases mostly discussed in the text. We can check
that the Floquet spectrum agrees with the dynamics simulations for all cases, then it
is more suitable for our system than BdG method.
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Figure 5.15: (Color on-line) Floquet maximum spectrum (Max[Re(λℓ)]) of each unstable angular
mode ℓ as a functions of the Rabi coupling Ω, see Eq. (5.34). Cases (g, g12) = (1, 15) and (40, -
10) are displayed on red dashed lines and black solid lines, respectively. The numbers stand for the
corresponding unstable angular mode ℓ.

Figure 5.16: (Color on-line) Stability diagram as a function of inter-species interaction and Rabi
coupling, with fixed intra-species interaction g = 1. Black places are stable regions and the colors
provide the dominant unstable angular modes ℓ. Violet places stand for ℓ = 1 and the orange ones for
ℓ = 2. (a) BdG, see Eq. (5.20). (b) Floquet, see Eq. (5.37).

Table 5.1: Stability status given by the three methods, given the parameter of intra- and inter-species
interaction, and Rabi coupling constant Ω, g, g12. Unstable cases are displayed with the dominant
unstable mode ℓ. The reference figures where the results can be checked are set in parentheses.

Case g g12 Ω BdG Floquet Dynamics
1 1 8 0.50 stable ℓ = 1 ℓ = 1

(5.14b) (5.14b) (5.8, 5.9a, 5.11)
2 40 -10 0.94 stable ℓ = 1 ℓ = 1

(5.3b ) (5.15) (5.8, 5.9b, 5.10a, 5.12a-c)
3 1 10 0.10 stable stable stable

(5.3a) (5.5a) (5.8)
4 1 25 0.99 ℓ = 1 stable stable

(5.14c) (5.14c) (5.8)
5 -10 20 0.90 ℓ = 1 ℓ = 2 ℓ = 2

(5.3b) (5.5b) (5.10b, 5.12e-f)
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5.7 Conclusions

We have investigated the dynamics and stability of homogeneous binary BEC mix-
tures trapped on a spherical bubble with populations oscillation achieved by Rabi
coupling. As observed, the Rabi oscillations are able to drive the system to different
stability profiles, once an effective time-oscillating interaction energy is achieved.
In the two-dimensional spherical topology, discrete unstable orbital angular modes
can rise and lead the BEC mixture to an immiscible phase separation, in which the
condensate can break into a discrete corresponding number of pieces. Given the pres-
ence of effective interaction modulation, the unstable degenerate azimuthal angular
modes can give rise to Faraday waves, which coexist with the separate phase.

We also show that for some range of parameters, the system can enter a peri-
odic regime, where the miscibility of the species are going to change in time. The
main feature regarding the spherical bubble topology where only discrete modes
are possible, is that a phase separation where the condensates breaks into localized
fixed number clouds, has a density order much higher than the Faraday waves pat-
terns, and eventually the last phenomenon can be hidden when the former one is
too much faster. Another interesting feature is that all discrete degenerate unstable
modes have some role on the dynamics. Our findings are available in a preprint ver-
sion at ArXiv [19]. We expect they impact the future experimental investigations
which are been performed aboard the International Space Station [15–17, 31]. The
presented model is very suitable for a coherently coupled BEC mixture of different
hyperfine states trapped on a bubble shell.



Chapter 6

Conclusions

In this Thesis, we have focused on the emergent problems of Bose-Einstein conden-
sates trapped on the bubble. Our main interest is to accomplish reliable mean-field
studies about stability of condensed mass-balanced spinless mixtures confined on
the surface of an ideal two-dimensional spherical shell. In the first work, we study
stationary states, homogeneous or vortex-charged ones. In the second work, we
investigate periodic states, observing the regimes where parametric resonance and
Faraday Waves emerge.

In the first work, we set binary mixtures coupled only by the contact interactions.
We study the stability of miscible stationary states. Among them, we consider homo-
geneous or inhomogeneous states. The last class of problems are related to vortex-
states. In our set up, both species have a unitary vortex charge, however each species
has opposite vortex sign to the other, in such a way the system has a zero net charge.
For the first class of states, i.e, the homogeneous ones, we handle a analytical lin-
earization of the GP equations by the BdG model, from which we can predict which
modes are going to make the system unstable. In the regime where interactions are
repulsive, we can observe a straightforward relationship between stability and mis-
cibility. When a unstable angular mode rises, the species are no longer miscible, and
therefore, the system finds a suitable solution where the overlap of the species goes
to zero. In the second class of problems, the vortex-states, the miscibility-stability
relationship is more complicated than the first case. The vortex-states are inherently
inhomogeneous. We suppose initial miscible states, and we perform a numerical
study of the BdG spectrum by assuming azimuthal symmetry and actually supposing
a one-dimensional approximation. We develop a stability diagram for a large range
of interaction parameters and or predictions succeed, once two-dimensional GP dy-
namics simulations confirm the predictions of the BdG model. We provide consistent
results to support that Bose-Einstein condensate mixtures achieved in homogeneous
or vortex-states can be dynamically stable on the surface of a spherical ideal hard
sphere. Moreover, we have observed an interesting periodic regime of collapse and
revival achieved by a dominant unstable mode, when it does not interfere with an-
other modes. Our main results can be seen in the published paper available at the
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physics journal Phys. Rev. A 104, 033318 (2021) [18].
In the second work, we consider a binary mixture of condensates coupled by both

interactions and Rabi coupling. In this system, the species can be converted to the
other, and the population dynamics has a periodic behavior in time. We study the
stability of spatial-homogeneous time-periodic states. In this kind of system, we
have a very particular framework, where we can achieve parametric resonance and
Faraday waves, without energy injection by external fields related to modulations
in the interactions or the trap potential. We handle a stability analysis, performing
a small amplitude linearization of the GP equations by BdG and Floquet methods.
When we observe the full dynamics of the GP simulations, we note that when we
have a time-dependent effective Hamiltonian, the Floquet method is the most suitable
tool for prediction of the stability profile of the initial states, which performs much
better than BdG method, even the approximation for strong modulated dressed states.
Stability methods designed for stationary can not capture all the physics of periodic
states. We have observed parametric resonance achieved by tuning the frequency of
the Rabi oscillation. Once a unstable angular mode becomes important,it gives rise
to Faraday waves and simultaneously to phase separations phase. Therefore, we can
observe that both phenomena coexist when the initial state is unstable. And different
from the first study of this thesis, here we observe a collapse and revival driven by
two frequencies, the frequency of the periodic collapse, and also by the frequency of
the Rabi oscillation, and like the first work, there is a very limited range of parameters
for which the modes do not interfere and the system enter this periodic regime. Our
findings are available in a preprint version at arXiv [19], which is expected to be
published in an international physics journal in the next few months.

We are looking forward our results become the main references for the future
experiments with mixture of condensates confined in a same bubble surface.

6.1 Perspectives

We have provided deep studies on dynamic stability of Bose-Einstein condensate
mixtures trapped on the surface of spherical shells, which are reliable benchmarks
for the present-day problem of ultracold gases confined on bubbles in microgravity
environments. The cold atom community is very interested in physics of condensates
in low dimensions, indeed in March of the present year, São Paulo city was the host
of Workshop mostly devoted to this topic [88]. A bilateral collaboration between
NASA (USA) and DLR (Germany) is launching a Laboratory BECCAL as succes-
sor of the CAL [31, 48]. Therefore, all community of Bose-Einstein condensates is
expecting fruitful years of discoveries and important achievements coming in next
generation of experiments handled on Laboratories aboard the International Space
Station. is expected to lead in the next years. This Ph. D. Thesis and our published



CHAPTER 6. CONCLUSIONS 84

works are supposed to be one of the main references for studies of stability of mix-
tures in bubbles. Beyond our findings, we expect that our numerical methods foster
fundamental tools to handle future studies in curved geometries.
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Appendix A

Methods

Here we present some of the methods to solve the mean-field problems in the closed
geometries of an ideal spherical shell. All methods are mainly based on finite dif-
ferences (FD) schemes [89] adapted to spherical coordinates. We also introduce a
new kind of pseudo-spectral method [90] developed in [18], which is a tricky com-
bination of FD approach and Fast Fourier Transform (FFT) [91] method. In the next
sections, the interaction parameters are mainly denoted by g or gjk, j, k = 1, 2 for
binary mixtures, while in the main text, these symbols can be eventually changed de-
pending on the problem, in order to keep most of the symbols used in the published
papers. We already have written our problems in dimensionless form in the main
text, but we can also stress out that for equations not discussed before, we consider
the unit for masses and Planck constant (divided by 2π) M =M1 =M2 = ℏ = 1.

This chapter is organized as follows. In Sec. A.1, we present the split step
method, describing how we separate the derivative from nonderivative part of the
problem and solve them by different methods. In Sec. A.2, we introduce our orig-
inal method to handle the 2D angular problem, by combining spectral and finite
differences methods. We present in Sec. A.3, how we solve 1D equation in the
polar-angular part of the Hamiltonian when we assume azimuthal symmetry. For
one-dimensional problem, we depict in Sec. A.4, how we perform the BdG approach
to study stability of the solutions. In Sec. A.5, we show how to solve the problem
of spatial-homogeneous time-periodic solutions by 4th order Runge-Kutta method.
And finally, in Sec. A.6, we present the Floquet method to study the stability of
homogeneous periodic solutions.

A.1 Split-Step method

The Nonlinear Schrödinger equation (NLSE) provided by the mean-field approach
to describe a BEC can be solved by dividing the problem into two parts, which are
the derivative part and the nonderivative one. Actually, we solve them by different
methods [92, 93]. For convenience, we formulate the problem for a binary BEC
mixture, but it can be easily extended to a single species system, just setting the

93
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extra terms as zero. Once we have each species j (j = 1, 2) driven by NLSE

i
∂ψj
∂t

(r, t) = H(j)ψj(r, t) , (A.1)

if the Hamiltonian H(j) has two parts, the derivative H
(j)
d and nonderivative H

(j)
nd

H(j) = H
(j)
d +H

(j)
nd , (A.2)

then the GP equations has two steps

i
∂ψj
∂t

(r, t) = H
(j)
d ψj(r, t) , (A.3a)

i
∂ψj
∂t

(r, t) = H
(j)
ndψj(r, t) . (A.3b)

We operate on the wave functions by two different evolution operators Ud and Und,
derivative and nonderivative, respectively. The wave functions ψ1,2 evolve in time
from t0 to t = t0 + dt by two nonderivative time half-steps dt/2 and one derivative
time step dt

ψj(r, t) = U
(j)
nd (dt/2)U

(j)
d (dt)U

(j)
nd (dt/2)ψj(r, t0) . (A.4)

The nonderivative terms H
(j)
nd include the trap potential Vtrap, interaction potential

H
(j)
int, and also the Rabi Coupling H

(j)
R

H
(j)
nd = Vtrap +H

(j)
int +H

(j)
R , (A.5)

where
H

(j)
int(r, t) =

∑
k=1,2

gjk(t)|ψk(r, t)|2 , (A.6)

and
H

(j)
R (r, t) = −(−1)3−jiΩψ3−j(r, t) . (A.7)

For small time steps (dt ≪ 1), the evolution interaction operator is approximately
the exponential operator of the time-independent Hamiltonian case [94], and we can
merge the trap and interaction terms in a single operator H(j)

trap+int = Vtrap +H
(j)
int

U
(j)
trap+int(dt) = exp

(
−idtH

(j)
trap+int

)
, (A.8)

we can not explicitly write the Rabi evolution operator U(j)
R for each species j, but

we can write down how it operates on each wave function

U
(j)
R (dt)ψj(t) = cos(Ωdt)ψj(r, t) + (−1)j sin(Ωdt)ψ3−j(r, t) . (A.9)
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In summary, we can write the nonderivative operator in a pictorial way as a single
operator U(j)

nd (dt) = U
(j)
R (dt)U

(j)
trap+int(dt). The derivative Hamiltonians H(j)

d are the
Laplacians

H
(j)
d = −1

2
∇2
rj
, (A.10)

but we need a different method to solve it. These schemes can be changed depending
on boundary conditions, singularities, the order of derivative terms, etc. In general,
we can not explicit the evolution operator U(j)

d , but we can calculate how it actually
operates on the wave functions.

We formulate the problem for real time, i.e, we set the equations to perform the
dynamics of the system, but if we consider an imaginary time defined by t = −iτ ,
and we renormalize the wave function every time step, we can find the ground state
of the system [93], which is usually called Relaxation Method.

A.2 Two-dimensional spherical shell: Spectral and finite differ-
ences method

Consider the spatial discretization θp = (p− 1)dθ and ϕq = (q − 1)dϕ, and the time
discretization tn = (n − 1)dt then the wave function is fully described in the dis-
cretized system by ψ(θp, ϕq, tn) = ψnp,q, where p = 1, · · · , Nθ+1, q = 1, · · · , Nϕ+1,
and n = 1, · · · , NT +1, withNθ = π/dθ, Nϕ = 2π/dϕ, NT = T/dt. The steps sizes
dθ, dϕ, and dt are chosen according to the required precision. The linear equations
we want to solve is

c
∂ψj
∂t

= −1

2

1

sin θ

∂

∂θ

(
sin θ

∂ψj
∂θ

)
+

1

2

1

sin2θ

∂2ψj
∂ϕ2

, (A.11)

with c = i for a real-time propagation and c = −1 for an imaginary-time propaga-
tion. We take the Fourier Transform of ψ in the ϕ - direction

ψj(θ, ϕ, t) =
∑
kϕ

eikϕϕψ̃j,kϕ(θ, t) , (A.12)

and we get a one-dimensional equation in the transformed space

c
∂ψ̃j,kϕ
∂t

= −1

2

1

sin θ

∂

∂θ

(
sin θ

∂ψ̃j,kϕ
∂θ

)
− 1

2

k2ϕ

sin2θ
ψ̃j,kϕ , (A.13)

then, once we solve it for each kϕ, we are able to get the full wave function ψj.

A.3 Polar-direction finite differences

Once we consider an ansatz with an azimuthal symmetry in ϕ - coordinate, we have
to solve just a single one-dimensional equation for the polar θ - coordinate. In the
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last Section A.2, we had split a 2D problem in an array of Nϕ + 1 1D equations. In
such a way that, for which ϕ - coordinate, we had the ansatz ψ = eikϕϕψ̃j,kϕ(θ, t). A
pretty much easier problem is to considerate that we have a well-defined vorticity sj
given by the vortex charge in vortex-states for each species j. In this case, we have
kϕ = sj for all values of the coordinate ϕ. It returns an unique explicit dependency
on the ϕ variable, then we get an effective one-dimensional problem, and we do not
need to split the derivative term of the Hamiltonian into the θ and ϕ variables, then
it is straightforward to solve the problem by the FD scheme. Therefore, we have to
solve only one partial differential equation regarding the function ψ̃j,sj = fj(θ, t).
Although we are working with two species, we are going to solve the linear part of
the GP equation in the same way for each species separately. Then, for simplicity
we denote fj → f . From now on, the subscripts indexes only stand for spatial-grid
discretized indexes

c
∂f

∂t
= −1

2

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

2

s2j

sin2θ
f , (A.14)

or

c
∂f

∂t
= −1

2

∂2f

∂θ2
− 1

2
cot θ

∂f

∂θ
+

1

2

s2j

sin2θ
f . (A.15)

Nevertheless, we have poles which raise some troubles with singularities, and we
have to deal with them. We can set a spatial discretization θp = (p − 1)dθ, where
p = 1, · · · , Nθ+1 and dθ = π/Nθ and the time discretization tn = (n− 1)dt, where
n = 1, · · · , NT . The (Nθ + 1) and (NT + 1) quantities define the size of the grid.
The total period is T , then dt = T/NT , with NT the number of time steps. We can
address the function f(θ, t) = fnp . Then by trapezium method and CN scheme [89],
we can write our problem as

fn+1
p = fnp − dt

4c

[
1

dθ2
δ2θ +

cot θ

2dθ
δθ −

s2j

sin2θ

]
(fn+1
p + fnp ) , (A.16)

where δ2θf
n
p = (fnp+1 − 2fnp + fnp−1) and δθfnp = (fnp+1 − fnp−1). We also can rewrite

Eq. (A.16) as(
1 +

dθ cot θp
2

)
fn+1
p+1 +

(
αθ − 2−

s2jdθ
2

sin2θp

)
fn+1
p +

(
1− dθ cot θp

2

)
fn+1
p−1

= −
(
1 +

dθ cot θp
2

)
fnp+1 +

(
αθ + 2 +

s2jdθ
2

sin2θp

)
fnp

−
(
1− dθ cot θp

2

)
fnp−1 , (A.17)

with αθ = 4cdθ2/dt. Note we have singularities at the poles θ = 0, and π, or at the
discrete points p = 1 and p = Nθ + 1, since we have 1/ sin θ → ∞ and cot θ → ∞
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at this points. If we consider the cases where the vorticity is different from zero, i.e,
sj ̸= 0, the solutions have density going to zero at the poles, since we have vortices
in these regions, then we can just drop the first/last rows/columns. And therefore, we
get the system in the matrix form
γ−2 β+

2

β−
2

. . . . . .

. . . . . . β+
Nθ

β−
Nθ

γ−Nθ



fn+1
2

fn+1
3
...

fn+1
Nθ

 =


γ+2 β−

2

β+
2

. . . . . .

. . . . . . β−
Nθ

β+
Nθ

γ+Nθ



fn2
fn3
...
fnNθ

 ,

(A.18)

where blank spaces are zero elements and

β±
p = 1± dθ cot θp/2 , (A.19a)
γ±p = αθ ±

(
2 + s2jdθ

2/sin2θp
)
. (A.19b)

But when we have sj = 0, the system have no vortices, and the density does not go
to zero at the poles, then we have to handle the singularities. We set the values of the
solution at the poles by considering forward and backward substitutions [89], since
we can state the derivative condition df(θ)/dθ = 0 at the poles. Then we get the first
point (by forward substitution) and the last one (by backward substitution)

f1 =
4f2 − f3

3
, fNθ+1 =

4fNθ
− fNθ−1

3
. (A.20)

The system in the matrix form must not contain the divergent terms at the first and
last points. Then we get

γ−1 β+1

β−1
. . . . . .
. . . . . . β+Nθ+1

β−Nθ+1 γ−Nθ+1



fn+1
1

fn+1
2
...

fn+1
Nθ+1

 =


γ+1 β−1

β+1
. . . . . .
. . . . . . β−Nθ+1

β+Nθ+1 γ+Nθ+1




fn1
fn2
...

fnNθ+1

 ,

(A.21)

but with the first and last terms adapted to

β±
1 = β±

Nθ+1 = 2 , (A.22a)
γ±1 = γ±Nθ+1

= αθ ± 2 , (A.22b)

another points follow the rule of the Eq. (A.19). All these matrices are tridiagonal
and can be solved by LU decomposition method [89]. In summary, if we want to
solve the 2D problem or a 1D problem with azimuthal symmetry given by the well-
defined vorticity, we have to use the same method. However, in the 2D problem we
have the solve much more equations, once for each kϕ-variable we have a different
equation to solve.
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A.4 Polar-direction Bogoliubov de-Gennes method

We can see the BdG equations in the M matrix (4.27). In the grid-space, each of
the matrix elements are square (Nθ + 1) × (Nθ + 1) matrix blocks and M is a
(4Nθ + 4) × (4Nθ + 4) square matrix. We have 16 block elements, then for short,
we write only some of them. We suppose to observe the boundary conditions of
the modes {u1,m(θ), v1,m(θ), u2,m(θ), v2,m(θ)}, they follow the required conditions
based on the equations (4.29), i.e, (m + s1), (m − s1), (m + s2) and (m − s2),
respectively. When the factor (m± sj) = 0, the corresponding mode does not go to
zero at the poles, but if (m+ sj) ̸= 0, the mode goes to zero at the poles.

For example, the M1,1 = D̂+
1 element based on Eq. (4.29) is

M(1,1) =


γ̄
(1)
1 β̄

β̃+
2 γ̃

(1,+)
2 β̃−

2
. . . . . . . . .

β̃+
Nθ

γ̃
(1,+)
Nθ

β̃−
Nθ

β̄ γ̄
(1)
Nθ+1

 , (A.23)

which is valid only when we have (m + s1) = 0, because the eigenvectors of the
matrix do not are zero at the poles. But when (m + s1) ̸= 0, the eigenvectors are
zero at the poles, then the matrix is reduced to

M(1,1) =


β̃+
2 γ̃

(1,+)
2 β̃−

2
. . . . . . . . .

β̃+
Nθ

γ̃
(1,+)
Nθ

β̃−
Nθ

 , (A.24)

with

β̃(±)
p = −0.5

1

dθ2
± 0.25

cot θp
dθ

, (A.25a)

β̄ = − 1

dθ2
, (A.25b)

γ̃(j,±)
p =

1

dθ2
+ 0.5

(m± sj)
2

sin2 θp
+

1

2π
(2gjj + gjk)f

2
p − µj , (A.25c)

γ̄(j)p =
1

dθ2
+

1

2π
(2gjj + gjk)f

2
p − µj . (A.25d)

Another example can be a nondiagonal term in the matrix M, we take theM(1,2) =
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g11f
2 from Eq. (4.27) element when (m− s1) = 0

M(1,2) =


g̃11f

2
1

. . .
. . .

g̃11f
2
Nθ+1

 , (A.26)

or when (m− s1) ̸= 0

M(1,2) =


g̃11f

2
2

. . .
. . .

g̃11f
2
Nθ


, (A.27)

where g̃jk = gjk/2π and j, k = 1, 2. We have a fixed vorticity parameter s, and s1 =
−s2 = s, then we choose a specific mode m and track it, observing the spectrum. In
this process, we vary the interaction parameters and the protocol to study the dynamic
stability is to observe if the matrix M has at least one eigenvalue with imaginary part
different from zero. If so, we consider the system as dynamically unstable, once a
complex eigenvalue means that an unstable mode exponentially grows with time.

A.5 Spatial-homogeneous Time-periodic solutions by Runge-Kutta
method

We suppose the condensates in the mixture can be considered spatial-homogeneous,
only time-dependent solutions ψj = ψj(t) for the GP equations (5.12a) and (5.12b)

i
dψ1

dt
=
[
g|ψ1|2 + g12|ψ2|2

]
− iΩψ2 , (A.28a)

i
dψ2

dt
=
[
g|ψ2|2 + g12|ψ1|2

]
+ iΩψ1 . (A.28b)

In the discrete formalism, for each time step, we are able to write the wave function
solution ψj(t) as ψnj , where tn = (n−1)dt, with n = 1, · · · , NT+1 andNT = tf/dt.
We assume that tf is the final time of the simulation, which is performed with a time
step dt. The GP equations (A.28a) and (A.28b) can be written in the matrix form as

dψ̂n

dt
= F̂ (ψ̂n) , (A.29)

where ψ̂ is a vector with two entries, which stores ψj for each species at the time tn,
i.e, ψ̂ = [ψn1 ψ

n
2 ]

T. The function F̂ can be written as

F̂ (ψ̂n) = −i

(
g|ψn1 |2 + g12|ψn2 |2 −iΩ

iΩ g|ψn2 |2 + g12|ψn1 |2
)
. (A.30)
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We evolve the solutions of both species performing a 4th order Runge-Kutta method.
For each time tn, we can find the evolved solutions by using the equations (A.31e)

k̂1 = F (ψ̂n) , (A.31a)
k̂2 = F (ψ̂n + dtk̂1) , (A.31b)
k̂3 = F (ψ̂n + dtk̂2) , (A.31c)
k̂4 = F (ψ̂n + dtk̂3) , (A.31d)

ψ̂n+1 = ψ̂n +
dt

6

(
k̂1 + 2k̂2 + 2k̂3 + k̂4

)
. (A.31e)

This system is periodic since the Rabi coupling induce population oscillations. By
considering periodic properties, we observe how the functions ψj evolve in time for
a complete period, in order to retrieve the value of the period T . And in this way,
once we assume the solutions are given by ψj(t) = fj(t)e

−iγjt, following (cite the
main text). We are able to get the constants γj by comparing the value of ψj(t = T )
with ψj(t = 0), which depends on the initial states. Then, once both values must
be the same, we have ψj(T ) = ψj(0)e

−iγjT . And therefore we write the constant γj
as a function of the natural logarithm γj = Re [−i log(ψj(T )/ψj(0))/T ], or in the
discrete formalism γj = Re

[
−i log(ψn+1

j /ψ1
j )/T

]
. And finally we are also able to

write the function fj as fj(t) = eiγjtψj(t), or fnj = eiγjtnψnj . Actually, both species
have almost the same constant γj, then we can handle all calculations by considering
only one constant γj = γ.

A.6 Floquet method for spatial-Homogeneous time-periodic so-
lutions

We are able to solve the Floquet equations by evolving the vector of modes am-
plitudes u by the Floquet matrix M̃. Once we suppose M̃(t = 0) = 1, we must
handle the initial conditions u(t = 0) = [1 0]T and [0 1]T for a single species prob-
lem, and u(t = 0) = [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T, and [0 0 0 1]T for a binary
mixture problem. For each initial condition, we can define vectors ua, ub, uc, and
ud, and next we individually evolve them from t = 0 to the first complete period
t = T . Once we evolve all possible initial conditions separately, we write a col-
umn matrix of all the evolved vectors. For a single species case we have a 2 × 2
matrix U = [uNT+1

a uNT+1
b ], and for two-species problem, we have a 4 × 4 matrix

U = [uNT+1
a uNT+1

b uNT+1
c uNT+1

d ]. Floquet theorem states that, when we have a
linear problem driven by a periodic operator, like M̃(t), the solution u(t) goes with
periodic functions p(t) as

u(t) = eλtp(t) , (A.32)

where both u and p have the the same period of the operator M̃. The periodic prop-
erties can be used in order to obtain the Floquet exponent λ. We get the eigenvalues



APPENDIX A. METHODS 101

λ̃ from matrix U, and they are related to λ by λ = log (λ̃/T ). We are able to pre-
dict the dynamic stability of the system by evaluating the Floquet exponent. If at
least one eigenvalue λ has a positive real part , the system is said to be unstable,
once the amplitudes exponentially grow in time, as the protocol introduced in [27].
In the following sections we present the matrix M̃ of interest for different physics
problems.

We can evaluate the stability profile of the homogeneous time dependent solutions
fj of the binary mixture with Rabi coupling by observing how the unstable modes
evolve in time. In the Appendix section A.5, we have presented how to obtain the
solutions fj, and here we develop the Floquet method based on these solutions. For
each time tn, we have a matrix

M̃(fn1 , f
n
2 ) =


Dn

1 gfn1
2 Gn

12 − iΩ g12f
n
1 f

n
2

−gfn1 ∗2 −Dn
1 −g12fn1 ∗fn2

∗ −Gn
12

∗ − iΩ
Gn

12
∗ + iΩ g12f

n
1 f

n
2 Dn

2 gf22
−g12fn1 ∗fn2

∗ −Gn
12 + iΩ −gfn2 ∗2 −Dn

2

 , (A.33)

where Dn
j = (ϵℓ − γ) + 2g|fnj |2 + g12|fnj−1|2 and Gn

12 = g12f
n
1 f

n
2
∗. We can define

Q̂(un) = −iM̃(fn1 , f
n
2 )u

n, in such a way that

d

dt
un = Q̂(un) . (A.34)

This system can be evolved by a 4th order Runge-Kutta method, where for each time
tn, the amplitude vector u goes with

ŵ1 = Q̂(un) , (A.35a)
ŵ2 = Q̂(un + dtŵ1) , (A.35b)
ŵ3 = Q̂(un + dtŵ2) , (A.35c)
ŵ4 = Q̂(un + dtŵ3) , (A.35d)

un+1 = un +
dt

6
(ŵ1 + 2ŵ2 + 2ŵ3 + ŵ4) . (A.35e)
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