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Abstract

In this work, we study the impact of a non-comoving observer measuring the anisotropies
of the Cosmic Microwave Background (CMB). We recover the cross-correlation signal
appearing in neighboring multipoles, as a consequence of the statistical isotropy viola-
tion, caused by the observer’s movement. It is also presented the impact of this effect
over the temperature and polarization power spectra. We tested the impact of the sta-
tistical isotropy violation on cosmological parameters using three different likelihood
estimators, which combine temperature and polarization measurements. These esti-
mators were used to restrict a sub-set of cosmological parameters of the ΛCDM model
(more precisely, Ωbh

2,Ωch
2, 100ΘMC , τ, ln(1010As), ns) obtaining constraints on the pa-

rameters using CMB anisotropy measurements compatible with a Planck-like satellite.
No significant systematic effects were found in this subset of ΛCDM parameters in-
duced by the kinematic effects of an observer with peculiar velocity β = 1.23× 10−3, at
least using full-sky CMB maps, in both temperature and polarization. Finally, we built
a maximum likelihood estimator based on the combined effects of Doppler modulation
and relativistic aberration. This estimator was applied to determine the peculiar veloc-
ity β using full-sky CMB synthetic maps as input data, as well as Bayesian analysis
techniques using Markov chains for reconstructing the posterior probability distribu-
tions. During the consistency tests performed, we did not detect any significant bias in
the estimator. On the other hand, its precision on the magnitude of peculiar velocity
was estimated to be 84 km s −1 and an angular resolution of 11.5◦, comparable, there-
fore, to those obtained, via the quadratic estimator, by the Planck collaboration of 78
km s−1 and 14◦, respectively.

Keywords: Cosmic Microwave Background; cosmological observations; cosmological
parameters.
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Resumo

Neste trabalho, estudamos o impacto de um observador não-comóvel nas anisotropias
da Radiação Cósmica de Fundo (RCF). Recuperamos o sinal de correlação cruzada
aparecendo em multipolos vizinhos como consequência da violação da isotropia es-
tatística originada pelo movimento do observador. É apresentado o impacto desse
efeito, ao nível do espectro de potência das anisotropias tanto para a temperatura como
a polarização. Testamos o impacto da violação de isotropia estatística em parâmet-
ros cosmológicos, usando três estimadores diferentes, que combinam tanto medidas
de temperatura como de polarização. Estes estimadores foram usados para restringir
um conjunto de parâmetros cosmológicos do modelo ΛCDM (mais precisamente, Ωbh

2,
Ωch

2, 100ΘMC ,τ , ln(1010As), ns) obtendo vínculos nestes parâmetros quando são usadas
medições das anisotropias na RCF compatíveis com um satélite do tipo Planck. Não
foram encontrados efeitos sistemáticos significativos nos parâmetros cosmológicos do
modelo ΛCDM, induzidos pelos efeitos cinemáticos de um observador com velocidade
peculiar β = 1.23× 10−3, pelo menos usando mapas sintéticos ao ceú inteiro, tanto de
temperatura como de polarização. Finalmente, construímos um estimador de máxima
verosimilhança baseado nos efeitos combinados de modulação Doppler e aberração
relativística. Tal estimador foi aplicado na determinação da velocidade peculiar β us-
ando mapas sintéticos como dados de entrada, bem como técnicas de análise Bayesiana
utilizando cadeias de Markov para a reconstrução das distribuições de probabilidade
a posteriori. Nos testes de consistência realizados, não detectamos a presença de um
viés significativo no estimador. Por outro lado, sua precisão foi estimada em 84 km s−1

na magnitude da velocidade peculiar e uma resolução angular de 11.5◦, comparáveis,
portanto, àquelas obtidas via estimador quadrático pela colaboração Planck, de 78 km
s−1 e 14◦, respectivamente.

Palavras-chave: Radiação cósmica de fundo, observações cosmológicas, parâmetros
cosmológicos.

III



Contents

Acknowledgments I

Abstract II

Resumo III

1 Introduction 1

2 Foundations 4
2.1 The ΛCDM model 4

2.1.1 Energy content 4
2.1.2 Thermal history 6

2.2 Anisotropies 10
2.2.1 Gravitational perturbations 10
2.2.2 Boltzmann equations for photons 11

2.3 The CMB power spectra 13
2.3.1 Polarization Anisotropies 14
2.3.2 Cosmological parameters dependence 18

2.4 Summary 21

3 Modeling kinematic effects 22
3.1 Frames 22
3.2 Kinematic effects 24

3.2.1 Relativistic Doppler modulation 26
3.2.2 Relativistic aberration 27
3.2.3 The boost cross-correlation function 29

3.3 Determination of β for Planck 33
3.4 Impact on the CMB power spectra 34
3.5 Summary 37

4 Impact of boost effects on cosmological parameters 38
4.1 Markov Chain Monte Carlo 38
4.2 Planck’s Likelihoods 39
4.3 Ad-hoc likelihood implementation 42

4.3.1 The likelihood model 42
4.3.2 Comparing with Planck’s likelihoods 43

4.4 Impact on the derived cosmology of breaking the statistical isotropy 46
4.4.1 Temperature 47
4.4.2 Polarization 51
4.4.3 Temperature - Polarization 53
4.4.4 Combined analysis 56

IV



CONTENTS V

4.5 Summary 61

5 Reconstructing the peculiar velocity β 63
5.1 A maximum likelihood estimator 63
5.2 MCMC estimations of β 72

5.2.1 MCMC estimation of β1N components 72
5.3 Derived angular resolution 76
5.4 Summary 78

6 Conclusions 80

A Healpix polarization conventions 83
A.1 Polarization conventions 83

B The black body spectrum under a Lorentz boost 84

C MCMC chains 85
C.1 MCMC samplers 85
C.2 Auto-correlation 86

C.2.1 Combined analysis: TT+TE+EE likelihood 86
C.2.2 Temperature: TT likelihood 87
C.2.3 Polarization: EE likelihood 88
C.2.4 Temperature-Polarization: TE likelihood 89
C.2.5 Boosting likelihood estimator 90

C.3 Chains convergence 91
C.3.1 Combined analysis: TT+TE+EE likelihood 91
C.3.2 Temperature: TT likelihood 92
C.3.3 Polarization: EE likelihood 93
C.3.4 Temperature-Polarization: TE likelihood 94
C.3.5 Boosting likelihood estimation 95

D Derivation of the cross-correlation function 96

E Noise impact over the boost likelihood 101

F Harmonic to real space transformation rules 103

Bibliography 104



List of Figures

1.1 Improvement in angular resolution for observing the CMB anisotropies
by COBE, WMAP and Planck satellites observing a 10◦ degrees square of
the CMB anisotropies 2

2.1 Comparison for energy density budget, for the ΛCDM model according
to 5 years WMAP data, with today energy densities (left) and during the
decoupling (right). 6

2.2 Effective number of degrees of freedom contributing as radiation in the
thermal bath assuming the standard model for interactions. The plot
shows the typical energy scale for electroweak symmetry breaking and
the QCD phase transition. At the end of the plot the photon decoupling
is shown. 7

2.3 Schematic evolution of the Universe and its associated time scale. The
diagram shows a pictorical evolution of the observable Universe from
the quantum fluctuations associated with inflation to the present epoch. 9

2.4 Main contributions to the temperature power spectrum: the Sachs-Wolfe
effect (SW: red), Integrated Sachs-Wolfe effect (ISW: green and orange),
and (Doppler effect: blue). The pure gravitational contribution is also
showed (gray). 14

2.5 High resolution sky map Commander in Galactic coordinates showing
anisotropies in all of the Stokes parameters. Notice that the scale for
Intensity map is dominant (a) being 10 times bigger than for polariza-
tion maps (b) and (c). The maps also show remaining polarized galaxy
emission at the center of each plot. 16

2.6 Power spectra from CAMB code. The hierarchy in the power ordering
gives a bigger signal for temperature CTT` and its correlation function
with modulus of the polarization component CTE` . Polarization spectra
(i.e. CEE` and CBB` ) are always subdominant in comparison with the tem-
perature in all the scales. 18

2.7 Variation of curvature energy density fraction Ωk showing the shift ex-
pected in acoustic peaks in the CMB temperature power spectrum. 19

2.8 Temperature power spectrum variation by evolving Boltzmann equa-
tions with slightly modifications in fiduciary cosmological parameters
values in table (2.3). The set of cosmological parameters (Ωbh

2, Ωch
2,

ΘMC ,τ , ln(1010As),ns) 20

3.1 Relative position of the Planck satellite in the L2 point in the solar system
(left) and an illustration of scanning strategy employed by the satellite
(right). The spacecraft relative orientation is transformed in Equatorial
(J2000) coordinates on Earth, and later in galactic coordinates centered
at the sun. 23

VI



LIST OF FIGURES VII

3.2 CMB sky maps measured by two observers: CMB detected by an ob-
server moving with a velocity of 369 km s−1, towards (l, b) = (264◦, 48◦)
(top), in the direction given by Planck satellite (top), compared to the
same CMB anisotropies measured by a comoving observer (bottom).
Notice a dipole appearing in large scales as a consequence of the Doppler
effect in the direction of motion of the observer in addition to the in-
creased power in µK. 25

3.3 CMB anisotropies with Doppler modulation only effects with no boost
velocity (top), and an applied boost of 90% of the speed of light (bot-
tom), towards the north pole (l,b) = (0◦, 90◦) (bottom left). Notice that
anisotropies are fixed in position with strong modulation appearing to-
wards the direction of motion of the observer. 26

3.4 CMB anisotropies with aberration only effects with no boost velocity
(top), and an applied boost of 90% of the speed of light (bottom), towards
the north pole (l,b) = (0◦, 90◦) (bottom left). Under a Lorentz boost the
relative position of the anisotropies changes due to relativistic aberration
effects towards the velocity direction (bottom). 28

3.5 Extracted cross-correlation function for an ensemble of 1000 randomly
generated full-sky CMB temperature maps containing Doppler modula-
tion only effects with boost β = 1.23 × 10−3 applied in ẑ direction (red),
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1 | Introduction

Since the work of Arno Penzias and Robert Woodrow Wilson in 1964 [1], the
Cosmic Microwave Background (CMB) has provided invaluable data for testing the
foundations of cosmology. According to the standard cosmological model (known as
ΛCDM), the CMB is the radiation released after the decoupling of photons from elec-
trons and protons in late radiation dominance era [2–4]. Assuming General Relativity
as the correct theory of gravitation at cosmological scales, in combination with the stan-
dard model of particle physics, it is possible to consistently derive a radiation field of
photons propagating to lower redshift or late times. This radiation field, as the COBE
satellite showed with astonishingly accuracy, has a black body spectrum with a tem-
perature of 2.7260± 0.0013 K [5]. This measurement is currently considered one of the
strongest evidence supporting the Big Bang theory of the origin of the universe.

According to the ΛCDM model, the CMB is expected to contain fluctuations with
respect to the smooth black body temperature measured by COBE [2, 6]. The exis-
tence of these anisotropies gives strong support to the ΛCDM model, the perturba-
tions are extremely useful in constraining the parameters of the model in combination
with other data sets [7]. Indeed, these fluctuations in black body temperature were
confirmed by the COBE satellite in addition to its temperature, being denoted as the
monopole of the CMB [8]. The first dipolar moment of the anisotropies is known as the
kinematic dipole of the CMB, that by assuming only kinematic motion of the observer,
a boost velocity is obtained from this dipole. COBE estimated this peculiar velocity of
the observer with respect to the CMB, obtaining a value of: 369.0± 2.5 km s−1 towards
the direction (`gal, bgal) = (264◦.31± 0◦.04stat ± 0◦.16sist,+48◦.05± 0◦.02stat ± 0◦.09sist). [9].

The fluctuations in the radiation temperature were confirmed later in the 2000s by
the WMAP satellite. With improved resolution, WMAP probed angular scales as small
as 0.3◦, much better than the 7◦ reached by COBE. In addition to the dipole, several
other predicted effects expected from the ΛCDM model were confirmed by the probe
due to the improved resolution of the satellite. Among the most important effects, one
can mention the Sachs-Wolfe effect, due to the evolution of the gravitational potentials
along the photon’s path all the way from the last scattering surface to us, and the detec-
tion of the acoustic peaks in the anisotropies spectrum, explained from the dynamics
of photons, electrons, protons and dark matter before the recombination (i.e. baryon
acoustic oscillations). In addition to accessing smaller scales in the anisotropies, this
satellite was able to confirm that CMB photons were polarized, adding further valu-
able data supporting the ΛCDM model. Recently, the resolution of the CMB probes
improved by the launch of Planck satellite, a probe that was able to produce the clear-
est maps of the CMB anisotropies with the angular resolution of 5′ [10] accessing the
smallest CMB scales to date. Figure (1.1) shows this improvement in the detection of
the CMB anisotropies from COBE to the WMAP to the Planck satellite.

1
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Figure 1.1: Improvement in angular resolution for observing the CMB anisotropies
by COBE, WMAP and Planck satellites observing a 10◦ degrees square of the CMB
anisotropies(Extracted from: NASA/JPL-Caltech/ESA).

The improvements in resolution allowed the Planck collaboration to measure the
solar system peculiar velocity by using a bigger multipolar region than from COBE
measurement, due to the availability of high resolution maps. By using tempera-
ture maps the collaboration reported a value of (384 km s−1 ± 78 km s−1 (stat.) ±
115 km s−1 (syst.)) towards direction (l, b) = (264◦, 48◦). This is currently the best mea-
surement using small scale effects (i.e. relativistic aberration to be discussed in chapter
3) [11].

By using high resolution maps, the data showed a few sources of statistical isotropy
breaking in the sky, the most significant being the one interpreted as the peculiar mo-
tion of the observer with respect to the CMB [12]. It was argued in [13] and in [11], that
this velocity can be measured by using the resulting cross-correlation between nearby
multipoles (`, ` + 1) of the CMB temperature in harmonic space. In addition to that,
it was shown in [14] that boost effects can actually modify the power spectrum of the
anisotropies in the absence of a mask, introducing second order effects in peculiar ve-
locity (i.e. O(β2)). As a consequence, the resultant bias in this spectrum, widely used
for testing ΛCDM, could in principle impact further analysis in other cosmological ob-
servables.

In this work, we focus on the understanding and disentanglement of kinematic
(i.e. due to the observer’s relative motion) and primordial CMB anisotropies using
Monte Carlo simulations. Our goal is to understand the possible impact of kinematic
effects on cosmological parameter estimations and to develop an unbiased method to
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determine the solar system velocity in the CMB rest frame based on their imprints
(aberration and modulation) in the CMB temperature.

This thesis is organized as follows:

In chapter 2, we show a few properties of the ΛCDM model like its energy den-
sity content, geometry and thermal history. Later, we present the Boltzmann equation
governing the evolution of photons, and the underlying equations from which CMB
temperature anisotropies are derived. In this chapter polarization anisotropies are also
reviewed, concentrating in the correlation functions and their parity restrictions. At
the end of this chapter the dependence on cosmological parameters of the CMB power
spectra is presented to the reader showing how sensitive is the temperature power
spectrum under changes in a set of cosmological parameters.

In chapter 3, we define the frames relevant for boosting the anisotropies, quantify-
ing the impact on the primordial fluctuations by having pixelized CMB maps boosted
with a given velocity β. The signatures of both Doppler modulation and aberration ef-
fects were explored in this chapter by computing the theoretical cross-correlation func-
tion 〈a`ma∗`+1m〉 and comparing the results with the corresponding correlation from
synthetic CMB maps containing boost effects. At the end of this chapter we show
the impact of a moving observer in temperature and polarization CMB anisotropies
power spectra (i.e. CTT

` , CTE
` , CEE

` ) showing the sensitivity of these quantities under
an applied boost.

In chapter 4, by using MCMC methods, we make a set of tests showing that
the systematic shifts induced onto cosmological parameters extracted via the usual
CMB power spectra (CTT

` , CEE
` and CTE

` ) when kinematic effects are present are sub-
dominant with respect to the statistical uncertainties for a Planck-like satellite resolu-
tion and boost velocities β ∼ 10−3.

In chapter 5 we present an extension of the method described in [15], which was
originally developed for detecting signals of statistical isotropy breaking of dipolar
type through modulaton-like terms in the CMB covariance matrix. Our extension al-
lowed for the estimator to incorporate also relativistic aberration effects which, in turn,
were used to determine the velocity of the solar system. Both the accuracy and the pre-
cision of the estimator were carefully studied, showing that it is unbiased and that its
precision is comparable to the current quadratic estimator employed by Planck in its
aberration dominated measurement of the solar system barycenter velocity.

Finally, in chapter 6 a summary of the results is shown in addition to future per-
spective for extensions of the current work.



2 | Foundations

According to our current knowledge of the evolution of the universe, the cosmos
is filled with a radiation field, known as the CMB, whose maximum spectral intensity
is nowadays in the microwave region. The perturbative form of Einstein’s equations
of General Relativity applied to our universe predicts that this radiation field should
present anisotropies, whose statistical properties are uniform across the sky, that is, we
say that it is statistically isotropic. In the following, we focus on introducing the reader
to the main features of the standard cosmological model relevant in the context of the
CMB. We revisit in a nutshell the ΛCDM model and its thermal history as starting point
for obtaining the properties of the CMB, we show Boltzmann equations used to derive
the anisotropies detected, both in the intensity and in the polarization, along the last
three decades by the COBE, WMAP and Planck satellites, and the dependence of the
power spectrum of these anisotropies with a minimum set of parameters of the ΛCDM
model.

2.1 The ΛCDM model

By analogy with the standard model of particle physics, cosmology has its own
standard model, known as ΛCDM or concordance model. It is currently the best de-
scription of the Universe compatible with most of the observational data. In the fol-
lowing, we present the most relevant features of the model, that consistently lead into
a decoupling of photons from electrons and protons at redshift z ∼ 1100, detected as
black body radiation by COBE, WMAP and Planck satellites.

2.1.1 Energy content

The ΛCDM model specifies a few physical sources of the energy density budget
of the cosmos. In the model, fluids are distinguished by their equation of state (given
by the pressure to energy density ratio), in the form of pressure-less matter, radiation,
and a pure cosmological constant. The equations of state w associated to each of these
components and the way their energy density ρ evolve with the scale factor of the
universe a is shown in table (2.1). Since in Einstein’s equations of General Relativity,
spatial curvature plays a role in the evolution of the universe [16], it is possible to
associate an effective equation of state to this component which is also shown in table
(2.1).

4
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Component ρ(a) ω

Matter ρ0a
−3 0

Radiation ρ0a
−4 1

3

Dark energy ρ0 −1

Curvature ρ0a
−2 −1

3

Table 2.1: Energy density ρ(a), and the equation of state for the fluid components as
well as for the effective energy density associated to curvature, ρ0 denotes the energy
density today. (Adapted from [16]).

Additionally, the model distinguishes between the normal baryonic matter (lep-
tons and barions described by the Standard Model of particles) and the non-interacting
cold dark matter, both having the same energy density evolution with the scale factor.
The relative percentage between baryonic and dark matter have a relation of 1 to 5,
approximately [17, 18]. The true nature of dark matter present in the ΛCDM model,
however, is yet to be understood. The energy budget contemplated in the model can
be summarized as follows:

1) Baryonic matter: it represents around 5% of the total energy density in the
model, containing all the baryons and leptons of the standard model of particle physics.

2) Dark Matter: it represents roughly 25% of the total energy density, the true na-
ture of these particles is still unknown due mainly to the lack of statistically significant
signals by direct detection experiments. However, indirect evidence nowadays comes
from: rotational curves of galaxies [19], the level of fluctuations observed in the 3D
matter power spectrum [20], the offset identified between the amount of mass esti-
mated through X-ray and optical observation and that reconstructed via gravitational
lensing in the bullet cluster [21], the mass-luminosity ratio in clusters [22], the fact that
dark matter is an important ingredient of the model to correctly describe the CMB
anisotropies [23, 24] .

3) Dark Energy: this ΛCDM energy density is not well-understood yet, it repre-
sents nearly 70% of the total energy budget in the Universe. According to the model,
this form of energy density is constant in time. It is believed that it drives the current
accelerated phase of the Universe as inferred from type Ia supernovae (SNIa) lumi-
nosity distance measurements. SNIa is a special type of star explosion whose intrinsic
luminosity is well understood, so that apparent magnitude measurements can be used
to infer the supernova distance [25].

4) Radiation: in the concordance model, relativistic species (matter and radiation)
contribute with less than 1% in the total energy density today. It gathers all relativistic
degrees of freedom. Today one of the known contributions comes from photons, with
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a number density of roughly 411 photons cm−3.

5) Neutrinos: Neutrinos are also taken into account inside the ΛCDM model as
relativistic species, except at low redshift z, their total mass and the number of effective
species are observable quantities constrained from data [26].

Figure 2.1: Energy density pie chart for the ΛCMD model according to WMAP data-set,
with today energy densities (left) and during the decoupling (right). (Extracted from:
https://map.gsfc.nasa.gov/media/080998/index.html).

2.1.2 Thermal history

According to the ΛCDM model, the very early universe experienced a period of
time when particle species were in thermal equilibrium with each other, maintained
by the scattering of particles [27,28]. This thermal bath cools down as the Universe ex-
pands, while the interaction rate of a given species, i.e. Γ, diminishes. It turns out that,
when the temperature of the Universe reaches a sufficiently low value, this interaction
rate falls below a certain threshold, provided by the Hubble rate H when Γ < H , and
after that the particle stops interacting and decouples from the thermal bath.

For most of the particles, after decoupling from the thermal bath its contribution
is transferred from radiation energy density to the matter-energy density.

The radiation density of all relativistic species obeys the Stefan-Boltzmann law:

ρr =
π2

30
g(T )T 4, (2.1)

where g(T ) is the total number of relativistic degrees of freedom at temperature T con-
tributing to the fluid. Since bosons contribute differently from fermions to the effective
number of degrees of freedom at a given temperature T , one has:

g(T ) =
∑

bosons

gb(T ) +
7

8

∑

fermions

gf (T ), (2.2)
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where gb(T ) counts the number of bosonic degrees of freedom in the thermal bath and
gf (T ) counts the number of fermionic degrees of freedom present in the same thermal
bath at temperature T . Notice that fermions contribute less than bosons. Besides,
matter and radiation evolve differently with scale factor:

ρm = ρ0a
−3 , ρr = ρ0a

−4, (2.3)

and, therefore, there is a point in the evolution of the Universe when both quantities are
comparable, this period in the cosmological evolution is known as the matter-radiation
equivalence era. For the ΛCDM model, using present values of matter and radiation
energy densities [7], the scale factor at this period of time is given by:

aeq =
Ωr

Ωm

≈ 3× 10−4, (2.4)

happening shortly before the decoupling of photons [29].

Depending on the strength of the interaction, particles will decouple sooner or
later from the thermal bath. Therefore, the thermal history for a ΛCDM universe will
be strongly influenced by its underlying particle interaction model. As figure (2.2)
shows, assuming the standard model of particle physics, the relativistic degrees of
freedom from the thermal bath taken into account inside the g(T ) function decreases
with temperature.

Figure 2.2: Effective number of degrees of freedom contributing as radiation in the
thermal bath assuming the standard model for interaction. The plot shows the typical
energy scale for electroweak symmetry breaking and the QCD phase transition. At the
end of the plot the photon decoupling is shown. Dotted line denotes the number of
degrees of freedom contributing to entropy. (Extracted from [27]).
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Notice that as the Universe cools down, some particles are no longer relativistic.
In the Standard Model of particle physics, weakly interacting particles and their medi-
ator bosons decouple first, later QCD phase transition occurs and baryons are created.
Finally, electromagnetically interacting particles do the same, leaving photons free to
propagate. As an example, a typical reaction involving electron-positron annihilation:

e− + e+ ↔ γ + γ, (2.5)

stops being a reversible process, that normally keeps both particles in equilibrium,
when temperature cools down below the electron mass:

T << me → T << 0.51 MeV. (2.6)

The thermal history of the Universe is relevant to predict the relic densities due
to Big Bang nucleosynthesis. The resulting abundances for Helium, for example, and
heavier elements is a reflection of the thermal history followed by the Universe imme-
diately after the Big Bang. As a summary, table (2.2) and figure (2.3), both summa-
rize thermal history of the Universe, including the photon decoupling happening at
z ≈ 1100.

Event Time Redshift z Temperature

Singularity 0 s ∞ ∞
Inflation ≥ 10−34 s - -

Baryogensis ≤ 20 ps > 1015 > 100 GeV

Electro-weak phase transition 20 ps 1015 100 GeV

QCD phase transition 20µs 1012 150 MeV

Neutrino decoupling 1 s 6× 109 1 MeV

Nucleosynthesis 3 min 4× 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Photon decoupling 380 kyr 1100 0.26 eV

Reionization 100− 400 Myr 10− 30 2.6− 7.0 meV

Dark energy matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 2.2: Summary of the most relevant dynamical events before and after the photon
decoupling, the temperature scale assuming the Standard Model of particle physics.
(Extracted and adapted from [27]).
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2.2 Anisotropies

Over the years, several surveys have demonstrated that cosmic microwave back-
ground radiation is nearly isotropic, with fluctuations five orders of magnitudes be-
low the black body radiation temperature accurately measured by COBE [30]. The
same probe showed that a typical magnitude for temperature fluctuations of the CMB
is about 10−5K, measuring them at large scales. The probe performed the first mea-
surements of the CMB anisotropies [8] beyond the monopole, measuring dipolar and
quadrupolar moments [31]. Several years later, WMAP was able to map the anisotropies
with increased resolution, measuring the CMB angular power spectrum with signal-
to-noise exceeding unity for multipoles ` ≤ 10601. Lastly, the Planck satellite showed
the clearest view of temperature anisotropies accessing multipoles ` ≤ 25082. These
data sets together have been used to improve the constraints on cosmological param-
eters [34], as well as their combination with other data sets, such as the measured
distribution of galaxies [35] and supernovae data [36]. In fact, current data support the
idea of fluctuations in the early universe that evolved into clumps of matter at very
different size scales. In the following pages we summarize the most important aspects
from perturbation theory needed to derive the CMB anisotropies.

2.2.1 Gravitational perturbations

The most general perturbation approach that can be used implies a gauge invari-
ant scalar, vector, tensor decomposition (SVT) [4, 27, 28]. To linearize Einstein’s field
equations, a given set of fields is introduced in the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric [16]. Writing this metric in conformal coordinates, one has:

ds2 = a2(η)[−(1 + 2φ)dη2 + 2Aidx
idη + ((1− 2ψ)δij + hij)dx

idxj], (2.7)

where φ, Ai, hij , are the scalar, vector and tensor perturbations, respectively. However,
some fields are spurious and can be eliminated through an appropriate choice of gauge.
An example of choice of gauge is the Newtonian one [4, 27] which allows to write the
perturbed line element as:

ds2 = a2(η)[−(1 + 2Φ)dη2 + (1− 2Ψ)dx2], (2.8)

where a is the scale factor, Ψ is the spatial metric perturbation, and Φ is the Newtonian
potential (commonly seen in the weak gravity regime). By analogy with the metric
perturbations in equation (2.8), an SVT decomposition can be introduced in the stress-
energy tensor Tµν . Separating components, the perturbed stress-energy tensor [4,29] is
written as:

δT 0
0 = −δρ, δT 0

i = (ρ̄+ P̄ )vi, δT ij = −δPδij − Πi
j, (2.9)

1The upper limit on ` corresponds to that of reference [32]
2The upper limit on ` corresponds to that of reference [33]
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where fluctuations over pressure and energy density are labeled as δρ and δP respec-
tively, vi is the bulk velocity of the fluid and Πi

j the stress-anisotropy tensor. Usu-
ally perturbations are set in such a way that stress anisotropies are null3. Using the
perturbed metric in the Newtonian gauge, together with the perturbed stress-energy
tensor, evolution equations for Ψ and Φ are derived [4]:

∇2Ψ− 3H(Ψ′ +HΦ) = −4πGa2δρ, (2.10)

∂i(Ψ
′ +HΦ) = 4πGa2(ρ̄+ P̄ )vi, (2.11)

Ψ′′ + 2H(2Ψ + Φ)′ + (2H′ +H2)Φ +
1

2
∇2(Ψ− Φ) = 4πGa2δP, (2.12)

− 1

2
∂i∂j(Φ−Ψ) = 4πGa2Πi

j, (2.13)

This set of coupled differential equations establish the dynamics in the primordial uni-
verse.

2.2.2 Boltzmann equations for photons

For a complete derivation of the anisotropies in the CMB, we need also to take
into account the evolution of their probability density distribution. Since photons are
propagating in a time evolving gravitational potential, it is expected that photon paths
are modified by this gravitational potential. In the context of linear perturbation theory,
the temperature of the CMB can be written as follows:

Θ(x,p, η) = Θ0 + Θ(x, |p|, η), (2.14)

where Θ0 is the black body temperature, and Θ(x, |p|, η) are the anisotropies in the
photon radiation distribution.

Another feature from the Boltzmann equation comes from CMB photons interact-
ing with electrons after the recombination epoch. These scatterings are another source
of distortion for the Boltzmann distribution being important in the context of CMB
polarization. The process is driven by the Thomsom scattering amplitude [4, 28]:

|M|2 = 6πσTm
2
e(1 + cos2 [p̂ · p̂′]), (2.15)

where σT is the Thomson scattering cross section describing the efficiency of the pro-
cess, p̂ is the incident collision momentum, p̂′ the momentum of the photon after col-
lision with electrons. In Fourier space, Boltzmann’s equation leads into an evolution
equation that depends on the temperature perturbations:

Θ̇ + ikµΘ = −Φ̇− ikµΨ− Γ

[
Θ−Θ0 − iµve

]
, (2.16)

3Neutrinos modify this assumption [4].
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where µ is the cosine of the angle between p̂ and p̂′, v̂e is the velocity of the electrons
in the comoving frame, k is the wave-vector used in Fourier transformations, and Γ is
the scattering rate of the photons off the electrons.

Accordingly, CMB fluctuations Θ can be fully integrated by specifying the po-
tentials and the baryon fluid velocity: Φ, Ψ, and ve

4; however, baryons evolve in the
perturbed background, and the gravitational potential is a function that depends on
the matter density contrast generated by gravitational potential. As a consequence, a
few more equations are needed to fully describe the dynamics of the CMB photons.
These equations can be derived from the Boltzmann equations for other components
evolving with the CMB obtaining a system of coupled differential equations [4]. The
relevant equations for computing the CMB anisotropies are given by:

Θ̇ + ikµΘ = −Φ̇− ikµΨ− τ̇ [Θ0 −Θ + µvb +
1

2
P2(µ)(Θ2 + ΘP2 + ΘP0)], (2.17)

δ̇ + ikv = −3Φ̇, (2.18)

v̇ +
ȧ

a
v = −ikΨ, (2.19)

δ̇b + ikvb = −3Φ̇, (2.20)

v̇b +
ȧ

a
vb = −ikΨ +

τ̇

R
[vb + 3iΘ1], (2.21)

Ṅ + ikµN = −Φ̇− ikµΨ, (2.22)

ΘP + ikµΘP = −τ̇ [−ΘP +
1

2
(1− P2(µ))(Θ2 + ΘP2 + ΘP0)], (2.23)

where δ and δb are density contrast for matter and baryons, and Θ1 is the dipole of the
CMB; v and vb are the bulk velocities of the fluids in the stress-energy tensor, equation
(2.9), for matter and baryons respectively; N is the neutrino energy density perturba-
tion, and τ is the optical depth. Equation (2.23) is the dynamical equation for strength
of the polarization field ΘP [4].

The set of equations (2.17)- (2.22) are used to evolve the dynamics of the universe
for: matter density perturbation, CMB anisotropies, gravitational potentials, and neu-
trinos simultaneously. It is worth to mention that several codes perform this task,
for example, CLASS [37] and CAMB [38]. In the next chapters, CAMB is used to evolve
anisotropies and calculate the CMB 2-point correlation function, or the angular power
spectrum C`, from the cosmological parameters.

4ve is equal to vb (the velocity of baryons in the fluid)
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2.3 The CMB power spectra

As it was discussed in the last section, temperature and polarization anisotropies
are described by equations (2.17)-(2.23). By writing the CMB anisotropies in Fourier
space, Θ can be expanded by using Legendre polynomials P`(µ) [29]:

Θ(k̂, µ) =
∞∑

`=0

(2`+ 1)(−i)`Θ`(k̂)P`(µ), (2.24)

where Θ`(k̂) coefficients are given by:

Θ`(k̂) =
i`

2

∫ 1

−1
dµΘ(k̂, µ)P`(µ), (2.25)

notice that using this decomposition one can write:

〈Θ`(k̂)Θ∗`′(k̂
′)〉 = Θ`(|k̂|)(2π)3δ(3)(k̂ − k̂′)δ``′ , (2.26)

and this specific property translates into statistical isotropic and homogeneous anisotropies
in the CMB temperature. By applying an inverse Fourier transform over the modes for
Θ(k̂, µ), the real space anisotropies are recovered [29]. From this equation we can cal-

culate the cross-correlation of the temperature fluctuation
∆T

T
:

〈
∆T

T
(n̂)

∆T

T
(n̂′)

〉
=

1

2π2

∑

`

(∫
dkk2Θ`(k̂)

)
(2`+ 1)P`(µ), (2.27)

where the angular temperature power spectrum CTT
` is derived5:

CTT
` =

2

π

∫
dkk2Θ`(k̂). (2.28)

If recombination can be considered as instantaneous, we can see that temperature
fluctuations in the CMB are dominated by three main contributions [4]:

∆T

T
≈ Ψ + Θ0 + 2

∫ η0

0

dη(Φ̇ + Ψ̇)− n · (v0 − ve), (2.29)

containing the Sachs-Wolfe (SW) effect due to the additional redshift that photons
experience when climbing gravitational potentials; the integrated Sachs-Wolfe effect
(ISW), which considers all the contributions from time-varying gravitational potential
along the line of sight; and the Doppler effect originated from the baryon-photon fluid.

5Where the relation
〈

∆T

T
(n̂)

∆T

T
(n̂′)

〉
=

1

4π

∑
`(2`+ 1)C`P (n̂ · n̂′) has been used.
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Each of these terms contributes to the total measured spectrum in all scales, as can
be seen in figure (2.4).

Figure 2.4: Main contributions for the temperature power spectra for the Sachs-Wolfe
effect (SW: red), Integrated Sachs-Wolfe effect (ISW: green and orange), and Doppler
effect: (blue). The pure gravitational contribution is also showed (gray). (Extracted
from [39]).

2.3.1 Polarization Anisotropies

In addition to scalar perturbations characterized by Ψ and Φ increasing evidence
in CMB supports the existence of polarized anisotropies [40–42]. These tensor pertur-
bations leave characteristic imprints in the CMB anisotropies, that are used as indepen-
dent data in addition to the temperature anisotropies with a similar formalism used to
derive the temperature power spectrum [43]. In principle any electromagnetic signal
can be described by a Stokes vector, containing the intensity and the polarization of the
signal. Starting from the polarization tensor [44], we have:

P(n̂) = I(n̂)I + U(n̂)σx + V (n̂)σy +Q(n̂)σz, (2.30)

where I(n̂), Q(n̂), U(n̂), V (n̂), are the Stokes parameters for the signal in P(n̂), the
representation basis of P(n̂) is the Pauli basis: (I,σi), where σi, are the Pauli matri-
ces [44, 45].

Stokes parameters describe the electromagnetic wave: I corresponds to the to-
tal intensity, Q is the vertical polarization in a reference frame fixed by the observer,
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and U the horizontal polarization relative to the same reference frame used for U 6,
and V denotes the circular polarization. Photon polarization states are generated from
anisotropic differences in the temperature of the baryon-photon fluid, creating an ad-
ditional source of anisotropies in the CMB from Thomson scattering, the effect is ac-
counted in a polarization dependent term in Thomson scattering differential cross-
section [4, 6]:

dσ

dΩ
∝ |ε̂i · ε̂f|2, (2.31)

where ε̂i is the polarization of the incoming photon, and ε̂f the polarization of the out-
going photon, the most efficient scattering correspond to an incoming polarization par-
allel to the outgoing one [6].

From the linear perturbation theory one expects that CMB photons are roughly
10% polarized [29]. Figure (2.5) shows an example of the CMB map, after proper clean-
ing of the foreground sources, containing non-null Stokes parameters associated to
polarization (i.e. Q(n̂) and U(n̂) ).

6We adopt the frame used in HEALPix projection maps (see Appendix A)



2. Foundations 16

(a) Stokes parameter: I

(b) Stokes parameter: Q

(c) Stokes parameter: U

Figure 2.5: High resolution sky map Commander in Galactic coordinates showing
anisotropies in all of the Stokes parameters. Notice that the scale for Intensity map
is dominant (a) being 10 times bigger than for polarization maps (b) and (c). The maps
also show remaining polarized galaxy emission at the center of each plot. (Reproduced
from: https://pla.esac.esa.int)
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Another feature from polarization is that, as for the temperature, it is possible to
define a power spectrum from the Stoke’s parameters (see [29] for a detailed deriva-
tion). In order to define their power spectra, careful attention is needed in order to take
into account the fact that Q and U are not rotational invariant quantities. In contrast
with the intensity they depend on the observer’s frame, and a specific combination of
Q andU is needed to calculate the spectra. This decomposition on a`m coefficients leads
into the E-mode and B-mode polarization coefficients [29, 45]. The Stokes parameter
combination Q± iU transforms as follows :

(Q± iU)′(n̂) = e∓2iφ(Q± iU)(n̂), (2.32)

where φ is the phase observed in polarization after a rotation. This transformation
property is used to project the polarization parameters in a different spherical har-
monic basis [43, 45, 46]. This projection is given by:

(Q(n̂) + iU(n̂)) =
∞∑

l=0

∑̀

m=−`

a2,`m 2Y
m
` (n̂) , (2.33)

(Q(n̂)− iU(n̂)) =
∞∑

l=0

∑̀

m=−`

a−2,`m −2Y
m
` (n̂) , (2.34)

where the functions ±2Y m
` (n̂) are the spin-weighted spherical harmonics7, from where

we define the electric, aE`m, and magnetic coefficients aB`m [29]:

aE`m = −(a2,`m + a−2,`m)/2 , aB`m = −(a2,`m − a−2,`m)/2i. (2.35)

Using these coefficients the following set of spectra can be formed:

〈a∗E`maE`m′〉 = δ``′δmm′CEE` , 〈a∗B`maB`m′〉 = δ``′δmm′CBB` , 〈a∗T`maT`m′〉 = δ``′δmm′CTT` , (2.36)

〈a∗B`maE`m′〉 = δ``′δmm′CBE` , 〈a∗T`maE`m′〉 = δ``′δmm′CTE` , 〈a∗T`maB`m′〉 = δ``′δmm′CBT` (2.37)

where CTT
` is the temperature power spectrum, CEE

` the electric power spectrum, CBB
`

the magnetic power spectrum, CBE
` the magnetic to electric power spectrum, CTE

` the
temperature to electric power spectrum, and CTE` the temperature to magnetic power
spectrum. By symmetry considerations CBE` and CBT` are zero [43]. Figure (2.6) shows
the 5 non-zero power spectra, notice that due to the low polarization fraction in the
CMB anisotropies, near 10%, temperature spectrum has the dominant signal.

7See Appendix in [43] for discussion of properties of spin-weighted spherical harmonics.
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Figure 2.6: Power spectra from CAMB code. The hierarchy in the power ordering gives
a bigger signal for temperature CTT` and its correlation function with modulus of the
polarization component CTE` . Polarization spectra (i.e. CEE` and CBB` ) are always sub-
dominant in comparison with the temperature in all the scales.

2.3.2 Cosmological parameters dependence

The ΛCDM model as the standard model of cosmology has a set of relevant pa-
rameters. Although, there are several competing theories from where ΛCDM model
is a limit case, the model is still phenomenologically successful. In the following we
consider the minimal set of relevant constants that fully parameterize a given universe,
this set of cosmological parameters is used by Planck collaboration as the minimal set
of parameters that best fits the measured CMB anisotropies [7, 33], known as the base
ΛCDM model. They are summarized in table (2.3). Two types of parameters are shown:
those used as input for solving the perturbation equations (upper part of the table) and
those derived from the obtained solution.
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Parameter Name Fiducial value

Ωbh
2 Physical baryon energy density 0.02237

Ωch
2 Physical cold dark matter energy density 0.1200

100ΘMC Acoustic horizon scale 1.04092
τ Optical depth due to reionization 0.0544

ln(1010As) Primordial scalar amplitude 3.044
ns Spectral scalar index 0.9649
Ωk Curvature energy density fraction 0.0

H0 Hubble constant 67.36 km s−1Mpc−1

Ωm Matter energy density fraction 0.3153
σ8 Galaxy clustering at 8h−1Mpc 0.8111

Table 2.3: Summary of the base-ΛCDM + Ωk parameters and their used values in CAMB.
Fiducial values are the ones reported in the best fit Planck collaboration analysis from
the TT+TE+EE+lowE+lensing likelihood combination [7]. Curvature energy density
Ωk is added, and assumed zero by construction. Derived parameters are in the lower
half of the table.

Figures (2.7) and (2.8) show the dependence of the temperature power spectrum
with the parameters of the base ΛCDM model.

Figure 2.7: Variation of curvature energy density fraction Ωk showing the shift expected
in acoustic peaks in the CMB temperature power spectrum.



2. Foundations 20

(a) Ωbh
2 (b) Ωch

2

(c) 100ΘMC (d) τ

(e) ns (f) ln(1010As)

Figure 2.8: Temperature power spectrum variation by evolving Boltzmann equations
with slightly modifications in fiduciary cosmological parameters values in table (2.3).
The set of cosmological parameters (Ωbh

2, Ωch
2, ΘMC ,τ , ln(1010As),ns) varied here are

those refereed as a sampled parameters in the context of chapter 4.
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2.4 Summary

We have presented in this chapter an introduction to the CMB anisotropies by
revisiting the thermal history predicted by the ΛCDM model. From Boltzmann equa-
tions, we summarized the calculation of the anisotropies, within the linear perturba-
tion theory, used by codes as CAMB. We have shown the formalism needed to derive
the dynamics of the photons for both temperature and polarization. We show the rele-
vance properties needed from polarization data to be used in other chapters.

We finished this chapter, by showing the dependence on the cosmological param-
eters of the CMB temperature power spectrum. We computed the Boltzmann equa-
tions for CMB temperature spectrum by varying the best-fit base-ΛCDM cosmological
parameters (i.e a subset of cosmological parameters, in addition to the curvature en-
ergy density, studied by Planck collaboration [33] in a six-dimensional parameter space
given by: (Ωbh

2, Ωch
2, ΘMC ,τ , ln(1010As),ns) ) to show how sensitive the temperature

power spectrum is under variations of these parameters. We used this subset of cosmo-
logical parameters as a reference in chapter 4 for cosmological parameters estimation.
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The first evidence that our solar system is not at rest comes from Jacobus Kapteyn
in 1904, showing that the solar system is moving with respect to the nearby stars [47].
Later, as astrophysicists were able to probe larger scales in the universe, increased evi-
dence suggested that even the Milky Way was moving with respect to nearby galaxies
(i.e. the blue-shift measurement from the Andromeda galaxy or the detected move-
ment towards Virgo super-cluster by using redshift measurements from nearby galax-
ies [48, 49]). These work proved that observers on Earth (and even in the local group)
are not comoving observers and, consequently, they are not able to measure statisti-
cally isotropic CMB anisotropies. With satellites measuring the anisotropies (i.e. COBE,
WMAP and Planck), kinematic effects started to appear in data showing the signatures
expected from the Doppler dipole (detected first in full sky mode by COBE, then by
WMAP and Planck), and Doppler modulation and relativistic aberration (both detected
by Planck). It is argued in [50], that this relative motion of the solar system appears
to be important in the context of supernovae data as a potential source of systematic
effects. In this chapter, we focus on defining the theoretical background behind rela-
tivist effects in the CMB. The relevant frames used to interpret the CMB dipole due to
the solar system peculiar velocity is presented. We discuss the appearance of a non-
vanishing cross-correlation, in nearby multipoles, by relativistic Doppler modulation
and aberration effects. The use of this correlation in determining the relative velocity
of the solar system with respect to the CMB comoving frame is shown. Lastly, we show
the changes in the CMB power spectra due to kinematic effects associated to observers
moving at different velocities with respect to the CMB frame.

3.1 Frames

In this chapter, we adopt the interpretation given by Planck collaboration in deal-
ing with the solar dipole in the CMB. This interpretation is that the power observed in
the dipole is coming mostly from the Doppler boost of the monopole [11] due to the
peculiar velocity of the solar system with respect to the CMB, neglecting intrinsic con-
tributions from the ΛCDM model. By assuming this interpretation we identify three
relevant frames, used by the collaboration and in this work, for measuring the solar
system peculiar velocity β, these are:

• CMB comoving frame: It is the frame defined as the one where the CMB anisotropies
are statistically isotropic [4, 29]. Observers in this frame will not measure any
Doppler effect, neither any relativistic aberration effects, except those expected
from the gravitational potential described in the linear perturbation theory [4]
(i.e. Sachs-Wolfe effect).

• Satellite reference frame: The satellite is placed orbiting (and spinning) around
the Lagrange point L2 [10]. It is one of the five equilibrium points in terms of

22
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gravitational force of the Sun-Earth system. This point has been used along the
time to perform measurements concerning the CMB (i.e. WMAP and Planck)1.
The relative motion of the satellite with respect to the Sun generates an additional
dipolar contribution to the CMB called the orbit dipole that is subdominant with
respect to the solar dipole [12, 52]. The orbit dipole has a velocity of βorb = 1.0 ×
10−4, one order of magnitude less than the solar dipole βdip = 1.23× 10−3 [53].

• Solar system barycenter frame: It is the frame centered at the barycenter of the
solar system. This frame is defined by the International Earth Rotation Service
(IERS) using measurements of distant extragalactic radio sources [54].

Figure (3.1) illustrates the relative position of the Planck satellite, at the Lagrange
point L2 in motion with respect to the sun, in addition to the spinning of the satellite
in its reference frame used to scan the sky. The observational point is located at 1.5 ×
106 km beyond the Earth’s orbit.

Figure 3.1: Relative position of the Planck satellite in the L2 point in the solar system
(left) and an illustration of scanning strategy employed by the satellite (right). The
spacecraft relative orientation is transformed into Equatorial (J2000) coordinates on
Earth, and later in galactic coordinates centered at the sun. (Extracted from [10])

In all the analyses performed here, we have, therefore, neglected a possible in-
trinsic (i.e. cosmological) dipole. Further information concerning the impact of the
intrinsic dipole contribution can be found in [55].

1COBE satellite was not placed in the L2 point but rather in a Sun-synchronous orbit [51].
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3.2 Kinematic effects

We start modeling kinematic effects in the CMB anisotropies by showing the trans-
formation rule connecting measurements from the observer in a moving frame with
respect to the CMB comoving frame. The transformation rule is driven by Lorentz
transformations over the Planck distribution for photons [11, 14]. For the temperature
of the photons, we have:

T (n̂) =
T ′(n̂′)

γ(1− n̂ · β)
, (3.1)

where T (n̂) is the observed temperature in the moving frame, T ′(n̂′) is the CMB tem-
perature measured by a comoving observer, β = v/c is the velocity of the observer in
units of the speed of light, n̂ is the photon direction in the sky measured by the ob-
server in the moving frame, and n̂′ is the direction in the sky measured by a comoving
observer. Additionally, the shift in direction is given by [11, 14]:

n̂ =
n̂′ + [(γ − 1)n̂′ · β̂ + γβ]β̂

γ(1 + n̂′ · β)
, (3.2)

where γ is the usual relativistic factor given by:

γ =
1√

1− β2
. (3.3)

The notation used in equations (3.1) and (3.2) has been chosen to be consistent
with the one used in [11]. As it is stated in [31], and according to the independent
measurements of the peculiar velocity of the solar system [49], the Doppler shift in
photon’s temperature in equation (3.1) can be linearized. The expansion leads to a
separation of the kinematic effects affecting the anisotropies, showing the contributions
to the observed temperature T (n̂) in the moving frame:

T (n̂) = T0︸︷︷︸
Monopole

+ T0(β · n̂)︸ ︷︷ ︸
Doppler Dipole

+ δT ′(n̂)︸ ︷︷ ︸
Anisotropies

+

δT ′(n̂)(β · n̂)︸ ︷︷ ︸
Doppler modulation

− ∇T ′(n̂) ·∇(β · n̂)︸ ︷︷ ︸
Relativistic aberration

+ O(β2)︸ ︷︷ ︸
Higher order corrections

,
(3.4)

which is a Taylor expansion in β for equation (3.1), from where equation (3.2) has been
linearized in what it is called the weak lensing approximation for relativistic aberration
effects (see section 3.2.2) [11, 13, 56].

Notice that in the perturbative expansion used to derive equation (3.4), the monopole
contribution corresponds to the black body radiation temperature. One can also see the
dipole due to the Doppler shift of the photon’s frequency, as well as terms associated
to Doppler modulation and relativistic aberration on the photon direction. Figure (3.2)
shows two sky maps measured by different observers: one in a comoving frame and



3. Modeling kinematic effects 25

another that moves with a certain velocity with respect to the CMB. The relative motion
between the observer and the CMB generates a dipole anisotropy in the direction of the
motion (second term in equation (3.4)) superimposed to the monopole. According to
equation (3.4), additional kinematic effects are present in all angular scales (modula-
tion and aberration), but are not visible in the plot at the top of figure (3.2), because
they are much smaller in amplitude in comparison to the monopole and dipole terms.

In figures (3.2), (3.3), and (3.4), in order to model the impact of the boost on the
anisotropies, we have used HEALPix C++ libraries to change the temperature and/or
the direction of the photons according to equations (3.1) and (3.2).

Figure 3.2: CMB sky maps measured by two observers: CMB detected by an observer
moving with a velocity of 369 km s−1 towards (l,b) = (264◦, 48◦) (top), against the same
CMB anisotropies measured by a comoving observer (bottom). Notice a dipole appear-
ing in large scales as a consequence of the Doppler effect in the direction of motion of
the observer.
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3.2.1 Relativistic Doppler modulation

According to [11], the Doppler modulation effect is expected to affect all the CMB
anisotropies multipoles. The main effect associated to Doppler modulation is to in-
crease the power of the anisotropies in the direction of movement. Figure (3.3) shows
the impact of this effect in full-sky synthetic CMB maps for an applied boost of 90%
of the speed of light. Doppler modulation is separated from relativistic aberration, by
setting no change in photons direction (i.e n̂ = n̂′ in equation (3.2)), the same figure
shows the temperature map measured by a comoving observer (i.e. β = 0).

(a) Doppler only (β = 0)

(b) Doppler only (β = 0.9)

Figure 3.3: CMB anisotropies with Doppler modulation only effects with no boost ve-
locity (top), and an applied boost of 90% of the speed of light (bottom), towards the
north pole (l,b) = (0◦, 90◦) (bottom left). Notice that anisotropies are fixed in position
with strong modulation appearing towards the direction of motion of the observer.



3. Modeling kinematic effects 27

According to [13, 14], the Doppler modulation is expected to modify the polariza-
tion parameters (i.e. Q(n̂) and U(n̂)). In appendix B, you can find a more detailed
discussion, based on reference [14], of the transformation properties of all three Stokes
parameters I , Q and U relevant for cosmology.

3.2.2 Relativistic aberration

As stated in the previous section, Taylor expansion of equation (3.1) requires an
additional assumption on the relative angular shift in the relativistic aberration for-
mula (see equation (3.2)). This approximation states that it is possible to model the
aberration deflection angles through an effective weak-lensing-like potential [11, 57].
By using this approximation we can write equation (3.2) as follows:

n̂ = n̂′ +∇φ, (3.5)

with φ as the "lensing potential" for boost effects, which to first order inβ can be written
as:

φ = −n̂ · β. (3.6)

The approximation is justified by the typical deflection angle due to relativistic
effects. According to [11], this angle is around ≈ 3′ comparable with the gravitational
lensing effects from the large scale structure from CMB data [57]. Therefore, according
to equation (3.6), the effective potential to be used here, when transformed to harmonic
space, only has a dipole component.

Notice that this treatment of relativistic aberration is considered a first order ap-
proximation and in principle the full aberration potential could have several harmonic
multipoles (as the standard large scale weak lensing potential derived from the CMB).
However, the approximation fully captures the relativistic aberration effects as it is
mentioned in [11,13,58]. As we will present in figure (3.7), relativistic aberration dom-
inates the small scales in the CMB by inducing correlation between mutipoles `, ` + 1
for angular scales ` ≥ 400 (the typical scale expected for weak lensing effects [29]). Its
most significant footprint in the anisotropies is inducing a deflection in the direction
of the photons and an enhancement of the anisotropies towards the direction of mo-
tion of the observer [11]. Figure (3.4) illustrates the effect induced in pixelized CMB
anisotropies by having relativistic aberration effects for the case of an applied boost
velocity of β = 0.9, when only equation (3.2) is applied to pixelized CMB maps.

By using the same effective lensing potential, one can model to first order in β, at
least part of the aberration effects that appear into the polarization parameters Q and
U . Due to the nature of the polarization parameters, this constitutes an approximation
due to the fact the polarization basis is also changing under the boost, however as it
is shown in [59], for the large scale gravitational weak lensing, these effects can be
neglected at first order.
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(a) Aberration only (β = 0)

(b) Aberration only (β = 0.9)

Figure 3.4: CMB anisotropies with aberration only effects with no boost velocity (top),
and an applied boost of 90% of the speed of light (bottom), towards the north pole (l,b)
= (0◦, 90◦) (bottom left). Under a Lorentz boost the relative position of the anisotropies
changes due to relativistic aberration effects towards the velocity direction (bottom).



3. Modeling kinematic effects 29

3.2.3 The boost cross-correlation function

As it is discussed in [11, 58], boost effects (Doppler modulation and relativistic
aberration) induce an effective cross-correlation in nearby multipoles (i.e. ` and `+ 1).
Within the weak lensing approximation, the cross-correlation can be calculated ex-
actly [14]. This theoretical cross-correlation function is linearly dependent on β, ap-
plied for β << 1. As [13] shows, this cross-correlation can be used to determine the
boost velocity sourcing the correlation for a CMB experiment like Planck.

In this section, we show several features of the boost cross-correlation function
when Doppler modulation and relativistic aberration are treated separately. Figure
(3.5) shows the first-neighbor cross-correlation function for a pure Doppler modulation
associated to a boost β = 1.23× 10−3 along the ẑ direction and applied directly over a
pixelized map (HEALPix nside=1024).

Figure 3.5: Extracted cross-correlation function for an ensemble of 1000 randomly gen-
erated full-sky CMB temperature maps containing Doppler modulation only effects
with β = 1.23 × 10−3 applied in ẑ direction (red), against the theoretical prediction
from equation (D.37) within the weak lensing approximation (blue). The extracted cor-
relation has been binned with a multipole band of ∆` = 20 for visualization purposes.
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The red bins shows the cross-correlation obtained directly from the map, after de-
composing it into spherical harmonics using HEALPix routines. The blue curve is the
theoretical model based on the first order calculation of the effect presented in Ap-
pendix D. To mitigate the effect of cosmic variance, for each multipole `, the red bins
represents an average over 1000 sky map realizations as well as over the 2` + 1 har-
monic coefficient a`m available, each bin contains an average of the recovered power
for a bandwidth of ∆` = 20. As can be seen from the plot, Doppler modulation is
dominant at large scales (small `’s).

On the other hand, it is known that relativistic aberration is a dominant small
scale effect [11], with enhanced cross-correlation in the region of higher `s. Similar to
the case of Doppler modulation, we considered relativistic aberration effect separately,
by calculating the shift in the direction of photons following equation (3.2) for a set of
1000 synthetic full-sky CMB maps. Figure (3.6) shows the average over this sample of
synthetic full-sky CMB maps for the cross-correlation function 〈a`ma∗`+1m〉.

Figure 3.6: Extracted cross-correlation function for an ensemble of 1000 randomly gen-
erated full-sky CMB temperature maps containing relativistic aberration only effects
with β = 1.23 × 10−3 applied in ẑ direction (red), against the theoretical prediction
derived in Appendix D (see equation D.37) within the weak lensing approximation
(blue). The extracted correlation has been binned with a multipole band of ∆` = 20 for
visualization purposes.
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From figure (3.6), we conclude that first neighbor cross-correlation due to relativis-
tic aberration is the dominant boost effect at small scales and it is well described by the
weak lensing approximation.

By employing equation (3.4), we show in Appendix D that the expected cross-
correlation function, at first order in β, is the sum of the combined Doppler modulation
and relativistic aberration correlations. Figure (3.7) shows this calculated combined
cross-correlation, again for the averaged over an ensemble of 1000 synthetic full-sky
CMB temperature maps generated through the boost of statistically isotropic maps
using equation (3.1). By combining both effects, we see that the cross-correlation is
dominated by relativistic aberration.

Figure 3.7: Extracted cross-correlation function for an ensemble of 1000 randomly
generated full-sky CMB temperature maps containing Doppler modulation and rel-
ativistic aberration effects with β = 1.23 × 10−3 applied in ẑ direction (red), against
the theoretical prediction from equation (D.37) within the weak lensing approximation
(blue). The extracted correlation has been binned with a multipole band of ∆` = 20 for
visualization purposes.
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In [11] and [14], arguments were shown that the weak lensing approximation
would only be valid in the region β` . 1. We see from figure (3.7), however, that for a
boost velocity β = 1.23× 10−3 and `max = 2048 (i.e. β` . 2.5), the weak lensing is still a
good approximation to model the first neighbor cross-correlation. For the considered
case, the calculated cross-correlation function extracted from full-sky synthetic CMB
maps using a boost velocity βẑ, shows little to no impact in the small scale regime (i.e.
`max ≥ 1000) due to second order effects in β. Additionally, The recent determination of
the solar system velocity by the Planck collaboration using aberration effects modeled
through a weak lensing approximation and `max = 2000 [11] gives us confidence to use
this approximation in chapter 5 to extract β using a maximum likelihood estimator.
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3.3 Determination of β for Planck

As it was discussed in previous sections, the first neighbors cross-correlation in-
duce by boost is the most relevant characteristic of relativistic effects. In [11], the cross-
correlation function was shown to be useful to estimate the solar system peculiar ve-
locity. As it is shown by [14], polarization parameters (i.e. Q(n̂) and U(n̂)) are also
correlated by relativistic effects, and within the resolution of polarization experiments,
these data could be useful for constraining β as well. According to [58], this is possible
by using current resolution of polarization data from the Planck satellite in addition
to intensity maps. Figure (3.8) shows the expected signal to noise ratio from an ex-
periment with the resolution of the Planck satellite, for both temperature and crossed
temperature to polarization data with a partial sky coverage of 85%.

Figure 3.8: Signal to noise ratio for determining β as a function of the maximum
multipoles for temperature CTT

` and temperature to polarization spectra CTE
` . The

result is valid for a telescope with the resolution of the Planck satellite.(Extracted from
[58]).

Such a determination of β was indeed achieved by the Planck collaboration in [11]
using cross-correlation functions for Intensity maps (I) only. The multipole region used
in that work considered an interval 500 ≤ ` ≤ 2000.
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3.4 Impact on the CMB power spectra

In this analysis, we have extracted the CMB power spectra for an ensemble of
1000 independently generated full-sky CMB maps with relativistic effects given by
equations (3.1, B.6 and B.7). We have chosen three velocities (v = (0, 369, 3690) km s−1)
applied directly over pixelized maps. Figure (3.9) shows the ensemble average of the
intensity power spectrum for each of the 3 boost velocities considered (top), as well as
the difference of β 6= 0 cases with respect to the β = 0 case.

Figure 3.9: Ensemble average of the temperature power spectrum DTT
` = `(` + 1)CTT

`

for each velocity: v = 0 km s−1 (blue), v = 369 km s−1 (green) and v = 3690 km s−1 (red)
(top part of the plot). Difference of β 6= 0 cases with respect to the β = 0 case (bottom).
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An ensemble of 2000 independently generated polarization maps (1000 maps for
Q(n̂) parameters and 1000 maps forU(n̂) parameters ) were used to extract the polar-
ization E-modes shown in chapter 2. Figure (3.10) shows the resultant averaged power
spectrum CTE

` for each velocity.

Figure 3.10: Ensemble average of the temperature to polarization power spectrum
DTE
` = `(` + 1)CTE

` for each velocity : v = 0 km s−1 (blue), v = 369 km s−1 (green) and
v = 3690 km s−1 (red) (top part of the plot). Difference of β 6= 0 cases with respect to
the β = 0 case (bottom).
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Finally, the CEE
` power spectrum was extracted from the two ensemble of CMB

polarization maps (i.e. Q(n̂) and U(n̂)). Figure (3.11) shows the resultant power
spectrum for CEE

` for each velocity.

Figure 3.11: Ensemble average of the polarization power spectrum DEE
` = `(`+1)CEE

`

for each velocity : v = 0 km s−1 (blue), v = 369 km s−1 (green) and v = 3690 km s−1

(red) (top part of the plot). Difference of β 6= 0 cases with respect to the β = 0 case
(bottom).
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3.5 Summary

We have discussed in this chapter the appearance of a cross-correlation function
in nearby multipoles 〈a`ma∗`+1m〉. The cross-correlation signal has been extracted us-
ing synthetic temperature CMB maps containing Doppler modulation and relativistic
aberration effects. For a boost velocity β = 1.23 × 10−3, the cross-correlation extracted
directly from an ensemble of pixelized maps was shown to be well described by a first
order expansion on β together with the weak lensing approximation.

Additionally, we have shown that relativistic effects are present in the CMB power
spectra for both temperature and polarization. The simulations showed that the change
of frame for a boost β = 1.23×10−3, small perturbations are introduced into the 3 power
spectra (CTT , CEE and CTE) with respect to the statistically isotropic case (see figures
(3.9), (3.10) and (3.11)). In this analysis we have considered the most idealized situation
where relativistic effects were treated alone without any consideration of the observer
resolution limitations in measuring the anisotropies.



4 | Impact of boost effects on cosmological pa-
rameters

In the previous chapter, we have presented the anisotropies in the CMB temper-
ature associated to the velocity of the observer in the CMB rest frame. Except for the
Doppler dipole, these non-primordial anisotropies are difficult to distinguish at the
map level, being only evident for higher boosting velocities, but they are, however, still
imprinted in the power spectra extracted from sky maps. At first order, the observer
motion through the CMB modifies the anisotropies by coupling adjacent multipoles in
all scales, breaking the statistical isotropy seen by a comoving observer. Therefore, it is
important to check if cosmological parameters estimation based on the hypothesis of
statistical isotropy is robust enough when boosting effects are present in the input CMB
sky maps. In this chapter, we show that the systematic uncertainty introduced in the
determination of cosmological parameters when boost anisotropies are not accounted
for is sub-dominant when compared to the statistical one, for solar system velocities
β = v�/c ' 10−3 in full-sky coverage [60]. In order to do that, we have built an ad-hoc
likelihood for the CMB temperature and polarization consistent with the resolution of
a satellite like Planck. ΛCDM has been taken as the base cosmological model and its
parameters were estimated through sampling of the posterior probability distribution
using an MCMC (Monte Carlo Markov Chain) sampler.

4.1 Markov Chain Monte Carlo

An MCMC is a Monte Carlo method based in Markov Chains, in order to sample
from a given probability distribution, usually applied for integration or calculation of
expectation values, by generating points following defined probability distributions.
As a traditional example, in order to calculate the expectation value E[g] of a quantity
g(x) when x is a random variable, we evaluate:

E[g] =

∫
g(x)p(x)dx, (4.1)

where p(x) is the probability distribution function of x. The method works by gener-
ating a finite number of points following the p(x) distribution [61]. The expectation
value is obtained by evaluating the function in those points:

E(g(x)) ≈ 1

N

N∑

i=1

g(xi), (4.2)

where xi are the points generated from p(x). Depending on the particular form of the
pdf p(x), the sampling process, especially in the multi-dimensional case, can be dif-
ficult as well as inefficient. For those cases, MCMC algorithms are based on sets of

38
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points Xt belonging to a Markov Chain whose equilibrium distribution is the desired
pdf p(x). In a Markov chain, the probability for transition Xt → Xt+1 can only de-
pend on the previous state of the chain. Such a lack of long-term memory is called the
Markov property [61, 62]:

P(Xt∈X|X0,X1,··· ,Xt−1) = P(Xt∈X|Xt−1), (4.3)

notice that as the Xt are generated, the conditional probabilities satisfy:

P(Xt∈X) = P(Xt∈X|Xt−1) · · ·P(X2∈X|X1)P(X1∈X|X0). (4.4)

Indeed, probabilities evolve in time after n iterations of the Markov chain, pa-
rameterized by the "time" t of a given update. After a sufficiently large number of
steps, the probability distribution should reach an asymptotic form. The existence of
this asymptotic distribution can be proved [63] and is crucial for the method to work
as a sampling algorithm associated to a given p(x). In order for the equilibrium state
to be reached, criteria for accepting or rejecting samples along the chain need to be
adopted, like those associated to the Metropolis-Hastings algorithm. It was first used
as a method to investigate properties of the equation of state for interacting molecules
in spherically symmetric potentials [64] and later generalized by Hasting in 1970 [65].

4.2 Planck’s Likelihoods

In principle, cosmological parameters can be estimated by using CMB multipoles
in combination with other data sets. The Planck Collaboration has developed sev-
eral codes that organize the measured data facilitating cosmological calculations us-
ing these data products. The preprocessed likelihoods use temperature measurements
together with polarization maps, separating the power spectra into different regions
for different cosmological studies. These likelihoods have the useful characteristic of
being easily implemented through the CosmoMC code [66]. A detailed discussion of
these likelihoods can be found in: [33, 67].

In general, there are two groups of likelihoods depending on the interval of mul-
tipoles being considered, ` = 30 being the multipole value for separating the large and
small scales in CMB sky maps. In the following, we briefly summarize the likelihoods
used in the 2018 release [7, 33].

• Likelihoods for low multipoles ` ≤ 29:

– Commander: This likelihood is based on the CMB sky map1 called Commander
that uses a specific component separation technique for map projection and
foreground subtraction [68, 69].

1Several sky maps have been produced by Planck collaboration for cosmological studies [7, 68, 69]
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– LowTEB: This is a pixel-based likelihood for the temperature and polariza-
tion maps. Commander is used as temperature map, whereas for polariza-
tion, the 70 GHz map is used and a marginalization over the 30 GHz and
353 GHz maps is performed and taken as tracers for synchrotron and dust
emission, respectively [33, 69].

– LowE: This likelihood uses polarization multipoles in the range 2 ≤ ` ≤ 29
from the SimAll likelihood [70]. It uses the high frequency maps at 100 GHz
and 143 GHz, for constraining the optical depth parameter τ , polarization
maps at 30 and 353 GHz are used for foreground emission subtraction. [70].

• Likelihoods for high multipoles ` ≥ 30:

– TT-Plik: This likelihood uses a combination of CMB sky maps at 100, 143,
and 217 GHz, together with the other component separation map called
SMICA at 353 GHz, and templates of the nuisance parameters associated
with galactic dust emission [33, 69].

– TE-Plik: It uses combined temperature and polarizations maps between
2 ≤ ` ≤ 1996 multipoles, and averages over the extracted power spectra
from CMB maps in the frequencies: 100, 143, 217 GHz [33, 69].

– EE-Plik: It uses only polarization maps in the same multipole range and
frequency maps as in the TE-Plik likelihood.

– TT-TE-EE-Plik: This is a combined likelihood that uses: TT-Plik, TE-Plik,
EE-Plik together to sample the parameter space [33,69]. Figure (4.4) shows
the best fit for a ΛCDM model based on this likelihood in combination with
LowE and lensing.

– TT-PlikLite and EE-PlikLite : These likelihoods are the marginalized
version of the TT-Plik and EE-Plik likelihoods. The marginalization is
performed over the nuisance parameters associated with foreground con-
tamination from the galactic plane [68, 69].

• Other multipole ranges: 4 ≤ ` ≤ 400:

– Lensing: This likelihood uses lensing signatures in the CMB, deflection in
photons path due to inhomogeneities in the universe, by reconstructing the
lensing potential from foreground-cleaned SMICA maps. The likelihood is
used as a consistency check with previous measurements for: σ8, Ωm, H0,
obtained from direct measurements of the Hubble constant or galaxy shear
surveys [7, 67].

Barion Acoustic Oscilations (BAO) provide important constraints on some cosmo-
logical parameters. CosmoMC allows for this piece of information to be included in
the likelihood, using a combination of data from the 6dF [71] and Sloan Digital Sky
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Survey [72] galaxy surveys. Figure (4.1) shows the constraints at 68% and 95% confi-
dence level for the base ΛCDM using some of the mentioned likelihoods.

It is worth mentioning that, even though they are not shown in the plot of figure
(4.1), there are extra parameters that are sampled along the MCMC chain. However, we
only concentrate in the same parameter space used in [67] to show the reproductibility
of their results by using Planck’s likelihoods in CosmoMC. Table (4.1) shows the best fit
values for this set of cosmological parameters by combining four different likelihoods.
These results are consistent with those reported in [67] including lensing.

Figure 4.1: Base-ΛCDM parameters at 68% and 95% confidence level. Posterior dis-
tributions were calculated using GetDist [73] for 4 × 105 samples (Reproduced from
[70]).

Parameter EE-Plik+lowE+BAO TT-Plik+lowE TE-Plik+lowE TT+TE+EE-Plik+lowE

Ωbh
2 0.02343± 0.00064 0.02203± 0.00022 0.02248± 0.00025 0.02236± 0.00015

Ωch
2 0.1177± 0.0014 0.1218± 0.0022 0.1177± 0.0020 0.1205± 0.0014

100θMC 1.03990± 0.00080 1.04060± 0.00048 1.04141± 0.00049 1.04086± 0.00030

τ 0.0510+0.0085
−0.0074 0.0512± 0.0071 0.0501± 0.0082 0.0553± 0.0074

ln(1010As) 3.048± 0.022 3.042± 0.015 3.018± 0.020 3.048± 0.015

ns 0.9748± 0.0095 0.9587± 0.0058 0.967± 0.011 0.9630± 0.0044

H0 68.69± 0.83 66.35± 0.95 68.44± 0.89 67.15± 0.62

Ωm 0.3007± 0.0088 0.328± 0.014 0.301± 0.012 0.3184+0.0082
−0.0091

σ8 0.802± 0.010 0.8151± 0.0089 0.793± 0.011 0.8135± 0.0074

Table 4.1: Summary of our results for the best fit base ΛCDM parameters by using
Planck Collaboration likelihoods in CosmoMC sampler. Sampled parameters are shown
in the upper half of the table in addition to derived parameters in the lower half of the
table.
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4.3 Ad-hoc likelihood implementation

In this section, we focus on the construction of a likelihood for cosmological pa-
rameters inference that is supposed to emulate the properties of some of Planck’s
likelihoods after marginalization over all nuisance parameters. More precisely, the
likelihood will use harmonic space information on the CMB intensity (i.e. TT) and
E-mode polarization autocorrelation (i.e. EE), as well as Temperature-E mode cross-
correlation (i.e. TE), as input data. The final likelihood should be regarded as the
result of marginalization over all Planck’s nuisance parameters that are taken into ac-
count in the construction of likelihoods as Plik-Lite, for example. Such an effective
likelihood will later be used for quantifying the systematic uncertainty on cosmologi-
cal parameters associated to the presence of statistically anisotropic signals in the input
sky maps due to boost effects.

4.3.1 The likelihood model

The effective likelihood to be used in the determination of ΛCDM cosmological
parameters is given by:

− 2 ln(L(D̂|DTh)) = (D − D̂)TΣ−1(D − D̂), (4.5)

whereD is a vector containing the theoretical weighted CMB power spectra:

DXY
` = `(`+ 1)CXY

` /2π, (4.6)

computed from CAMB, and D̂ is the extracted power spectrum from a given sky map
realization, Σ is the covariance matrix of the model that for this implementation has
the form:

Σ = Diag(σ2
`min
, σ2

`min+1
· · · , σ2

`max−1, σ
2
`max

), (4.7)

where σ` represents the statistical uncertainty in the value of D̂` for Planck’s best fit
power spectrum for the 2018 data release. The uncertainties are dominated by noise
at small scales and by cosmic variance at large scales. They are asymmetric in the low
` region (` . 10), as can be seen in figure (4.4), following a χ2 distribution with low
number of degrees of freedom. We have symmetrized them when calculating the like-
lihood (4.5).

Next, we have implemented this custom made likelihood into the CosmoMC code
in order to obtain Bayesian estimates for ΛCDM parameters. As input synthetic datasets,
we have used the power spectra of full sky maps (i.e. no mask has been applied) gen-
erated both with and without boost effects. The main idea here is to show that in this
optimal situation, corresponding to a scenario where one has full sky coverage and
foregrounds have been fully subtracted, the systematic shifts introduced into the cos-
mological parameters due to statistically anisotropic boost effects, are already small
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compared to the statistical uncertainties (these uncertainties correspond to the error
propagation from the diagonal covariance matrix of equation (4.7) into the cosmolog-
ical parameters). The work flow adopted in this part of the analysis is represented in
figure (4.2).

The synthetic power spectra were taken as the average over an ensemble of 1000
independent realizations of the CMB sky. It is worth mentioning that even though the
synthetic maps were decomposed into spherical harmonics at full sky mode, likelihood
(4.5) retains, at least partially, some information on partial sky coverage encoded into
the covariance matrix (4.7), since it was obtained from cut sky maps. In addition to
that:

• Priors are set to be flat for all the cosmological parameters sampled in CosmoMC.

• Temperature and polarization multipole ranges correspond to the ones imple-
mented inside the TT,TE,EE+lowE+lensing likelihood: 2 ≤ ` ≤ 2500 for tem-
perature maps, and 2 ≤ ` ≤ 1996 for polarization maps.

This procedure should provide a direct way to probe potential biases on cosmo-
logical parameters induced by boost effects when the likelihood used for cosmological
parameters estimation does not take into account modulation and aberration effects.
The statistical uncertainty, given by the size of the regions in parameter space at a
given confidence level will be our ruler to define whether or not the cosmological pa-
rameters are biased.

4.3.2 Comparing with Planck’s likelihoods

In this section, we make some comparisons between Planck’s and our effective
likelihood implementation in terms of cosmological parameters in order to guarantee
that out implementation is working properly and is consistent with Planck’s published
results. Table (4.2) contains a dictionary for each of the likelihoods built by using tem-
perature and polarization power spectra.

Likelihood Nickname in CosmoMC

L(CTT
` ) TT

L(CTE
` ) TE

L(CEE
` ) EE

L′(CTT
` , CTE

` , CEE
` ) TT + TE + EE

Table 4.2: Dictionary of labels for the likelihood sets implemented in CosmoMC, the
labels are used to distinguish the different power spectrum combinations.
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Planck’s Spectra: TT, TE, EE Error bars: σ

Map generation

Pixel boostingβ

Harmonic Decomposition

〈a`ma∗`m〉 〈a`ma∗`+1m〉

Update: i = i+1

Extracted Ĉ` Covariance Σ̂

Likelihood L̂

Sampler:CosmoMC

Markov Chains

Figure 4.2: Schematic description of the simulation flow: power spectra from Planck’s
best fit is taken along with the error bars, the spectra are used to generate synthetic
maps where a boosting effect (i.e. modulation, Doppler and aberration) are specified
with β, this "boosted" map is decomposed into spherical harmonic coefficients to build
the correlations functions: 〈a`ma∗`m〉, 〈a`ma∗`+1m〉. Iterations in the pipeline to reduce
cosmic variance are specified in i.
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Figure (4.3) shows the contours at 68% and 95% confidence level for 9 ΛCDM pa-
rameters obtained with our effective likelihoods of table (4.2), as well as Planck TT
+ TE +EE-Plik+lowE likelihood, the estimated parameters from the posteriors are
shown in table (4.3) showing agreement between the likelihoods. One can clearly see
the increase in constraining power as the CMB intensity and polarization are com-
bined. One can also see a nice agreement between the contours of the effective likeli-
hood and those coming from the Planck implementation.

Figure 4.3: Base-ΛCDM parameters at 68% and 95% confidence level showing compat-
ibility in all cosmological parameters for each likelihood combination from Table (4.2).
All the likelihood combinations are plotted in addition to TT+TE+EE-Plik+lowE.

Parameter TT TE EE TT+TE+EE TT+TE+EE-Plik+lowE

Ωbh
2 0.02234± 0.00022 0.02250± 0.00028 0.0238± 0.0015 0.02239± 0.00015 0.02236± 0.00015

Ωch
2 0.1181± 0.0024 0.1175± 0.0024 0.1164+0.0051

−0.0061 0.1188± 0.0014 0.1205± 0.0014

100θMC 1.04110± 0.00053 1.04135± 0.00061 1.0401± 0.0011 1.04094± 0.00035 1.04086± 0.00030

τ 0.076± 0.028 0.047+0.019
−0.017 0.0579+0.0091

−0.0069 0.0571+0.0071
−0.0051 0.0553± 0.0074

ln(1010As) 3.082± 0.053 3.015+0.038
−0.034 3.065+0.023

−0.020 3.046+0.014
−0.010 3.048± 0.015

ns 0.9724± 0.0060 0.968± 0.012 0.977± 0.017 0.9703± 0.0040 0.9630± 0.0044

H0 68.1± 1.1 68.5± 1.1 69.7± 3.3 67.80± 0.63 67.15± 0.62

Ωm 0.305+0.014
−0.015 0.300± 0.014 0.293+0.029

−0.042 0.3086± 0.0084 0.3184+0.0082
−0.0091

σ8 0.823± 0.021 0.792± 0.016 0.802± 0.021 0.8094± 0.0065 0.8135± 0.0074

Table 4.3: Estimated values for the base-ΛCDM parameters with 1σ errors using the
likelihoods in table (4.2) and TT+EE+TE-Plik+lowE from Planck. A comparison be-
tween the last 2 columns shows a nice agreement between them. Sampled parameters
are shown in the upper half of the table in addition to derived parameters in the lower
half of the table.
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4.4 Impact on the derived cosmology of breaking the sta-
tistical isotropy

As shown in the last chapter, in harmonic space, boost effects induce distortions
in the spherical harmonics correlations, due to the combined effects of Doppler boost,
modulation and aberration. Here we probe the impact of estimating cosmological pa-
rameters using a likelihood based on statistical isotropy, when boost effects, like mod-
ulation and aberration are present in the input sky maps. Two scenarios will be investi-
gated: (a) the nominal one associated to a boost velocity of magnitude β = 1.23× 10−3,
that is, consistent both with the Doppler boost based COBE measurement [8] and the
aberration dominated measurement from Planck [11]; (b) an extreme scenario where
the effects are magnified by applying a factor 10 over the nominal boost velocity. In
both cases, the direction of the boost applied over input statistically isotropic synthetic
maps (i.e. Monte Carlo) containing the primordial CMB fluctuations is consistent with
previous measurements, that is, in galactic coordinates we have:

(lgal, bgal) = (264◦, 48◦). (4.8)

In order to probe for potential biases, three sets of power spectra were extracted
from the synthetic sky maps: CTT

` , CTE
` , CEE

` . Next, these spectra were used to feed the
likelihood shown in equation (4.5) in addition to the error bars from Planck collabora-
tion best fit [34]. In our analysis we show the resulting 68% and 95% confidence level
2-dimensional regions for the base-ΛCDM parameter space for each data set extracted
from the synthetic maps. Three sets of contours are shown: the statistically isotropic
case (i.e. no boost), the nominal case (i.e. β = 1.23 × 10−3), and an extreme case (i.e.
β = 1.23 × 10−2) representing a control sample where we know the bias should be
detectable.

In addition to constraining regions, we compute the residuals, for two sets of sim-
ulations (i.e. β = 0 and β = 1.23 × 10−3), by using posterior information (i.e. the
estimated value and the statistical error derived from the posteriors at 1σ). Therefore,
we define the fit residual ∆ for each of the 9 parameters of the base-ΛCDM model as :

∆ =
xexp − xtrue

σx
, (4.9)

where xtrue is the true value of the parameter as given by CAMB, xexp its estimated value
and σx the corresponding uncertainty. In the absence of biases and assuming Gaussian
errors, ∆ should follow a normal distribution with zero mean and unit variance.

In addition to the systematic estimation performed by using the residuals, we re-
fer the reader for details of the MCMC chains to Appendix C, where we show the per-
formed statistical tests for separating the burn-in phase from the convergence phase
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and the auto-correlation length in MCMC samples. The criteria used to establish con-
vergence of the chain is the Gelman-Rubin test [74] to ensure that the posterior dis-
tribution is achieving the target probability distribution. In addition to convergence
tests, the lag factor for each chain is determined through the auto-correlation function.
The lag is the distance between a pair of samples along the chain, so the amount of
auto-correlation at a given lag gives us information on how correlated two samples
are. Therefore, for statistical analyses, given a pair of samples separated by a given lag
whose auto-correlation is at the predefined threshold, one should discard all samples
in between.

In the following, we discuss the results obtained from the proposed statistically
isotropic likelihood in equation (4.5). Each dataset (TT, EE and TE) is first explored
separately, followed by a combined analysis (TT+EE+TE).

4.4.1 Temperature

For likelihood sampling inside the CosmoMC environment (see Appendix C), we
first implemented the temperature likelihoodL(CTT

` ), that uses temperature only power
spectrum in its weighted form: `(` + 1)CTT

` /2π. The considered multipole range for
building the covariance matrix Σ includes the interval 2 ≤ ` ≤ 2508 from the best-fit
Planck collaboration power spectrum (See Figure (4.4)).
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Figure 4.4: Planck collaboration best fit power spectrum for the CMB temperature
intensity maps using Plik TT+TE+EE likelihood (i.e. `(`+ 1)CTT

` /2π). The error bars
correspond to ±1σ; these error bars contain the statistical error (cosmic variance +
noise) inherent to the measurement. (Extracted from: [7]).

After carefully discarding samples within the burn-in phase and correcting the
residual auto-correlation of the samples (see Appendix C), base-ΛCDM posterior dis-
tributions were obtained by using the effective likelihood method (4.5). Figure (4.5)
shows contour regions for the three boost velocities mentioned at the beginning of this
section.

From the contours of figure (4.5) the impact of the breaking of statistical isotropy
in the input sky maps when β = 1.23 × 10−3 for the base-ΛCDM parameters is small
compared to the statistical error in the cosmological parameters for a satellite with a
resolution on the TT-spectrum similar to Planck’s. However, the biases in the β = 0 and
β = 1.23 × 10−3 cases are better quantified by using the residuals defined in equation
(4.9).
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Figure 4.5: Base-ΛCDM parameters at 68% and 95% confidence level from MCMC
chains sampled for the likelihood model (4.5) by using the cross-correlation spectrum
CTT
` . Null velocity case and the solar dipole one βdip are superimposed.

Sampled posteriors are used to estimate the statistical error in measuring the se-
lected ΛCDM parameters. Table (4.4) summarizes the relevant information showing
the best fit for each parameter calculated by using the TT-only likelihood with its cor-
responding residual. Additionally, table (4.4) shows these residuals for the β = 0 and
the solar dipole cases. From this table, we notice that for the nominal boost the bias is
always sub-dominant with respect to the statistical uncertainty σ (∆ < 1).
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Parameter True value β = 0 ∆ (β = 0) βdip ∆ (βdip )

Ωbh
2 0.02237 0.02241± 0.00022 0.16 0.02240± 0.00022 0.12

Ωch
2 0.1200 0.1198± 0.0025 −0.10 0.1198± 0.0026 -0.09

100θMC 1.04092 1.04097± 0.00056 0.08 1.04091± 0.00056 -0.02
τ 0.0544 0.062+0.017

−0.035 0.30 0.075+0.027
−0.033 0.74

ln(1010As) 3.044 3.059+0.034
−0.063 0.35 3.086+0.051

−0.060 0.39
ns 0.9649 0.9670± 0.0060 0.31 0.9673± 0.0063 0.78

H0 67.36 67.5± 1.1 0.12 67.5± 1.1 0.09
Ωm 0.3153 0.314± 0.015 −0.09 0.314± 0.016 -0.07
σ8 0.8111 0.817+0.016

−0.022 0.31 0.828+0.020
−0.023 0.82

Table 4.4: Summary of the ΛCDM parameters estimated for the temperature TT likeli-
hood for β = 0 and β = 1.23× 10−3. Sampled parameters are shown in the upper half
of the table and derived parameters in the lower half of the table.



4. Impact of boost effects on cosmological parameters 51

4.4.2 Polarization

In this section, we study the bias using the E-mode power spectrum. As for tem-
perature we use its weighted spectrum: `(` + 1)CEE

` /2π. The multipoles considered
here go from ` = 2 up to ` = 1996 (see Figure (4.6)).
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Figure 4.6: Planck collaboration best fit E-mode polarization in its un-weighted form
(i.e. CEE

` ). (Extracted from: [7]).

As in the previous MCMC runs the parameters used for posterior distribution for
the base-ΛCDM are the same (i.e. no priors in cosmological parameters, convergence
criteria using the Gelman-Rubin test, correlation length of ≈ 20 steps). In this analy-
sis, we use full-sky CMB polarization synthetic maps for the same boosting velocities
considered in the temperature only analysis. Figure (4.7) shows the 2-dimensional con-
tours for the ΛCDM parameters.
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Figure 4.7: Base-ΛCDM parameters at 68% and 95% confidence level from MCMC
chains sampled for the likelihood model (4.5) by using the CEE

` power spectrum. Red
contours (β = 0), green (β = 1.23 × 10−3, i.e. nominal) and blue (β = 1.23 × 10−2, i.e.
the extreme case).

Table (4.5) summarizes the results of the fits and also presents the values of the
bias ∆ for the EE-only case. As in the TT-only case, we see no significant bias in the
values of the cosmological parameters introduced by the break of statistical isotropy in
the input EE-power spectrum.
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Parameter True value β = 0 ∆ (β = 0) βdip ∆ (βdip)

Ωbh
2 0.02237 0.0225+0.0013

−0.0014 0.06 0.0224± 0.0013 0.01
Ωch

2 0.1200 0.1201± 0.0058 0.01 0.1203+0.0053
−0.0060 0.06

100θMC 1.04092 1.0410± 0.0010 0.03 1.0409± 0.0010 0.03
τ 0.0544 0.0515+0.010

−0.0069 -0.31 0.0513+0.010
−0.0068 -0.34

ln(1010As) 3.044 3.039+0.025
−0.020 0.16 3.038+0.025

−0.020 0.10
ns 0.9649 0.968± 0.016 -0.21 0.966± 0.016 -0.26

H0 67.36 67.5± 3.2 0.04 67.3± 3.1 -0.01
Ωm 0.3153 0.317+0.033

−0.044 0.05 0.319+0.032
−0.044 0.10

σ8 0.8111 0.808+0.022
−0.019 -0.14 0.809+0.021

−0.019 -0.12

Table 4.5: Summary of the ΛCDM parameters estimated for the EE likelihood from
sky maps for non-applied boost velocity β = 0 and the solar dipole βdip. Sampled
parameters are shown in the upper half of the table in addition to derived parameters
in the lower half of the table.

The results obtained from the polarization analysis show a different effect in cos-
mological parameters in contrast with temperature, obtaining considerably smaller
residuals for polarization-only data. Since it is known from chapter (3) that polar-
ization and temperature are differently affected by boosting effects, a cross-correlation
between these two synthetic maps represents a consistency check point of the analysis.

4.4.3 Temperature - Polarization

In addition to the temperature- and polarization-only best fit power spectra, Planck
collaboration provides the cross correlation spectra for the temperature and the electric
modes up to multipoles ` ≤ 1996, see Figure (4.8). This additional dataset can be used
as an independent set for constraining cosmological parameters.

Although these data are not commonly employed separately in cosmological pa-
rameters estimation, it is still useful for consistency checks against temperature- and
polarization-only cases. Figure (4.9) shows the constraint regions from cross-correlating
temperature sky maps with polarization (here only one polarization denoted as E-
mode) for the same boosting velocities considered in the temperature-only case.
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Figure 4.8: Planck collaboration best fit power spectrum for the CMB temperature
and polarization maps from Plik TT+TE+EE likelihood (i.e. `(` + 1)CTE

` /2π). The
error bars correspond to ±1σ; these error bars contain the statistical error inherent
to the telescope from cross-correlating the polarization with temperature. (Extracted
from: [7]).

The most important aspect of the analysis using CTE
` comes from the explicit sta-

tistical isotropy breaking that boosting effects induces in this spectrum, where a com-
bination between the Doppler modulation in temperature maps together with boost
modulation in polarization (see last chapter) is present in the data.

The specific parameters concerning this MCMC are the same as those considered
in the temperature case except for the maximum multipole used in the analysis. As
can be seen from figure (4.8), the TE multipole range used is 2 ≤ ` ≤ 1996. Table (4.6)
quantifies the bias in base-ΛCDM parameters by using multipoles from CTE

` .
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Figure 4.9: Base-ΛCDM parameters at 68% and 95% confidence level from MCMC
chains sampled for the likelihood model (4.5) by using only CTE

` power spectrum.
Notice the overlapping within the null velocity case and the solar dipole one βdip.

As in the previous cases (TT and EE), table (4.6) shows a subdominant effect of
statistical isotropy breaking by boosting effects and therefore does not introduce sig-
nificant bias into estimated cosmological parameters.
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Parameter True value β = 0 ∆ (β = 0) βdip ∆ (βdip)

Ωbh
2 0.02237 0.02239± 0.00029 0.07 0.02233± 0.00029 -0.13

Ωch
2 0.1200 0.1200± 0.0023 0.02 0.1204± 0.0024 0.16

100θMC 1.04092 1.04090± 0.00059 -0.03 1.04088± 0.00060 -0.07
τ 0.0544 0.053± 0.015 -0.07 0.053± 0.014 -0.11
ln(1010As) 3.044 3.043± 0.032 0.14 3.039± 0.031 -0.15
ns 0.9649 0.967± 0.013 -0.04 0.963± 0.013 -0.15

H0 67.36 67.4± 1.0 -0.01 67.2± 1.0 -0.16
Ωm 0.3153 0.316± 0.014 0.03 0.318± 0.015 0.18
σ8 0.8111 0.811± 0.016 -0.01 0.810± 0.015 -0.08

Table 4.6: Summary of the ΛCDM parameters estimated for the TE likelihood from sky
maps with three multiples of the solar dipole β = 0,βdip. The true value used is the
best fit from Planck collaboration best fit [70]. Sampled parameters are shown in the
upper half of the table in addition to derived parameters in the lower half of the table.

4.4.4 Combined analysis

For improving the constraining power, an additional test using all data informa-
tion from Planck collaboration is performed. Figure (4.10) shows the posteriors by us-
ing the likelihood combination TT+TE+EE, with multipoles in the interval 2 ≤ ` ≤
1996.

We first point out that constraint regions from the full TT+TE+EE analysis in Fig-
ure (4.10) clearly differ from the individual data sets analyses. Despite the increase in
the constraining power, there is still no statisticaly significant shift for the no-boost and
the solar dipole cases. Table (4.7) quantify better this effect by using the residuals for
these two cases.
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Figure 4.10: 2-Dimensional constrain regions for the base-ΛCDM cosmological pa-
rameters, estimated from the likelihood combination TT+TE+EE. The CMB data (green
contours) compatible with β = βdip overlaps the no boosting case (red contours).

Parameter True value β = 0 ∆ (β = 0) βdip ∆ (βdip) 10× βdip ∆ (10× βdip)
Ωbh

2 0.02237 0.02238± 0.00016 0.07 0.02235± 0.00015 -0.10 0.02208± 0.00015 -1.90
Ωch

2 0.1200 0.1202± 0.0015 0.11 0.1205± 0.0015 0.35 0.1247± 0.0015 3.07
100θMC 1.04092 1.04090± 0.00037 -0.04 1.04084± 0.00037 -0.22 1.04030± 0.00038 -1.62
τ 0.0544 0.0527+0.0078

−0.0056 -0.24 0.0536+0.0076
−0.0053 -0.11 0.0604+0.0051

−0.0043 1.25
ln(1010As) 3.044 3.042+0.015

−0.011 0.27 3.044+0.015
−0.011 0.13 3.067+0.010

−0.0087 -1.28
ns 0.9649 0.9660± 0.0040 -0.17 0.9654± 0.0041 0.02 0.9597± 0.0040 2.39

H0 67.36 67.31± 0.65 -0.08 67.14± 0.65 -0.34 65.31± 0.65 -3.16
Ωm 0.3153 0.3162± 0.0091 0.10 0.3186± 0.0092 0.36 0.346± 0.010 3.01
σ8 0.8111 0.8108+0.0075

−0.0066 -0.04 0.8130± 0.0071 0.27 0.8342± 0.0061 3.81

Table 4.7: Summary of the ΛCDM parameters estimated for temperature and polar-
ization spectra by using the combined likelihood TT+TE+EE. The spectra are extracted
from sky maps with three multiples of the solar dipole βdip: β = 0, β = βdip, and
β = 10×βdip. Sampled parameters are shown in the upper half of the table in addition
to derived parameters in the lower half of the table.

Figure (4.11) shows also, in addition to the 2-dimensional contour plots, 1-dimensional
marginalized distributions in its diagonal for the sampled ΛCDM from the TT+TE+EE
likelihood combination (H0, σ8 and Ωm are not present because these are derived pa-
rameters and to improve the aspect ratio of the plot).
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Figure 4.11: Triangle plots extracted from the TT+TE+EE likelihood combination for
the base-ΛCDM parameters. The marginal probability distributions are shown in the
diagonal part of the plot. The contours contain 68% and 95% confidence level proba-
bilities.

The extreme case of β = 1.23 × 10−2 helps us to understand how the bias appear
in the cosmological parameters. Table (4.7) shows four parameters (Ωc, Ωm, H0 and σ8)
affected at the 3σ level by the boost. Three of them are derived parameters (Ωm, H0 and
σ8). An analysis of the correlation between the fit parameters in figure (4.13) helps us
to interpret the origin of the biases on these 3 derived parameters.
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The change in the acoustic peaks induced by Doppler modulation (see figure (3.3))
and especially by relativistic aberration (see figure (3.4)) changes the value of Ωb (at the
2σ level) and Ωc (at the 3σ level). Due to the strong correlation between Ωc and Ωm, this
last parameter is shifted at the 3σ level.

In a similar way, the strong correlation between H0 and Ωm ends up reducing the
Hubble parameter by 3σ. Finally, σ8 is known to be strongly correlated to Ωm [75] and
such a correlation clearly shows up in figure (4.13) and also explain its almost 4σ bias
in table (4.7). For completeness, we also show in figure (4.12) the fit correlations for the
nominal case.
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Figure 4.12: Correlation matrix for the base-ΛCDM parameters extracted from the
TT+TE+EE likelihood combination for the solar dipole case β = βdip.
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Figure 4.13: Correlation matrix for the base-ΛCDM parameters extracted from the
TT+TE+EE likelihood combination for the extreme considered case where β = 10 ×
βdip.

As a final check, we have repeated the analysis for β = 1.23× 10−3 using a smaller
multipole range (` ≥ 30) where the hypothesis of symmetrical error bars certainly ap-
ply for the likelihood of equation (4.5) due to the presence of more degrees of freedom
in the probability distribution and the dominance of noise over cosmic variance in this
region of the spectrum. As can be seen in table (4.8), the residuals are still fluctuating
within the 1σ region and, as already expected, the parameters with the largest values of
residuals are τ and ns. These two parameters depend on information coming from the
large scale region of the spectrum (` ≤ 30), where for τ , it is known that large scale po-
larization anisotropies play an important role for constraining such parameter [7, 34].
On the other hand, the optical depth to the last scattering surface has a strong correla-
tion with the amplitude of scalar perturbationsAs, due to the fact that CMB is sensitive
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to the combination Ase−2τ [7], impacting the As parameter.

Parameter True value 2 ≤ ` ≤ 1996 ∆(2 ≤ ` ≤ 1996) 30 ≤ ` ≤ 1996 ∆(30 ≤ ` ≤ 1996)

Ωbh
2 0.02237 0.02235± 0.00015 -0.10 0.02239± 0.00016 0.12

Ωch
2 0.1200 0.1205± 0.0015 0.35 0.1200± 0.0016 0.00

100θMC 1.04092 1.04084± 0.00037 -0.22 1.04090± 0.00038 -0.05
τ 0.0544 0.0536+0.0076

−0.0053 -0.11 0.076+0.025
−0.028 0.85

ln(1010As) 3.044 3.044+0.015
−0.011 0.26 3.089± 0.050 0.38

ns 0.9649 0.9654± 0.0041 0.13 0.9666± 0.0045 0.89

H0 67.36 67.14± 0.65 -0.34 67.37± 0.72 0.01
Ωm 0.3153 0.3186± 0.0092 0.36 0.3154± 0.0099 0.01
σ8 0.8111 0.8130± 0.0071 0.27 0.830+0.019

−0.021 0.94

Table 4.8: Summary of the ΛCDM parameters sampled for temperature and polariza-
tion spectra by using the combined likelihood TT+TE+EE. The cosmological param-
eters are estimated from a boost velocity compatible with solar dipole β = βdip, by
using multipole regions between 2 ≤ ` ≤ 1996 and 30 ≤ ` ≤ 1996 for testing the
simetrization in error bars at large scales in CMB sky maps. Sampled parameters are
shown in the upper half of the table in addition to derived parameters in the lower half
of the table.

4.5 Summary

We have shown in this chapter that the systematical uncertainty introduced into
cosmological parameters, when their values are estimated using a likelihood based on
statistical isotropy, is sub-dominant compared to the statistical one for a satellite like
Planck. This has been verified in different situations: 3 fits performed using temperature-
only (TT), polarization-only (EE) and temperature-polarization cross-spectrum (TE), as
well as a combined fit (TT+EE+TE). For a boost velocity β = 1.23 × 10−3, the typical
values of fit residuals ∆ defined in equation (4.9) in all four analyses have fluctuated
below 1σ (see tables 4.4, 4.5, 4.6 and 4.7).

The resolution of a satellite like Planck was incorporated into the likelihood through
the error bars of the respective TT, EE and TE spectra measured by these satellite (see
figures 4.4, 4.6 and 4.8). A break in the statistical isotropy of the input sky maps from
which the power spectra were extracted was introduced by boosting all Stokes param-
eters (I , Q and U ), an operation performed in pixel space. In addition to the nominal
scenario (β = 1.23×10−3), we have also analyzed control samples with β = 1.23×10−2,
where the boost is large enough for its bias to be clearly detectable.

The conclusions drawn are robust, since the inclusion of additional data process-
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ing and cleaning like those present in the Planck cosmological analysis pipeline (fore-
ground cleaning, marginalization over nuisance parameters, etc) are expected to de-
grade the resolution σ on the cosmological parameters and, therefore, further decrease
the values of ∆. Therefore, we conclude that the breaking of statistical isotropy in-
troduced by boosting effects of order β = 1.23 × 10−3 are not significant compared to
the current resolution on cosmological parameters achieved by a satellite like Planck.
This, in turn, allows us to safely fix the parameters of the cosmological model while
estimating the boost velocity through modulation and aberration effects introduced in
harmonic space. That is the subject of the following chapter.



5 | Reconstructing the peculiar velocity β

As seen in chapter 3, footprints of the break of CMB statistical isotropy show up
with a signal to noise ratio above 3 for ` & 1000 when the cross-correlation between
neighboring multipoles is analyzed [58]. Measurements of the solar system velocity
with respect to the CMB rest frame have been performed since the early 1990’s when
the COBE satellite first made a full sky detection of the dipole induced into CMB tem-
perature, a direct consequence of the Doppler effect. In the last decade, an indepen-
dent determination of this velocity has been performed by the Planck satellite through
the aberration effects on the directions of the CMB photons [11], as well as through
modulation of the Sunyaev-Zeldovich effect [76]. In this chapter, we extend a max-
imum likelihood estimator previously employed in the detection of the CMB dipole
anomaly [15], by incorporating also aberration effects. We show that such an extended
estimator is unbiased and is able to detect both modulation and aberration effects in-
duced by the boost. The resolution of the estimator is determined using full sky syn-
thetic CMB maps.

5.1 A maximum likelihood estimator

We start from equation (3.4) which relates (to first order) the CMB temperature
in the two frames of interest in this dissertation. The beginning of this derivation was
already performed in section 3.2, but we shall repeat it here by using a slightly different
notation to facilitate the comparison with the literature. Written in harmonic space,
equation (3.4) takes the form:

a`m =

∫
dn̂
(
T0+T0(β · n̂)+δT ′(n̂)+δT ′(n̂)(n̂ · β)−∇(β ·n̂) ·∇δT ′(n̂)(n̂ · β

)
Y ∗m` (r),

(5.1)
where T0 is the monopole, and δT ′(n̂) are the CMB anisotropies in the comoving frame.
The perturbative expansion is separated into five contributions of the form:

aTotal`m = aMonopole
`m + aDipole

`m + aIsotropic`m + aModulation
`m + aAberration

`m , (5.2)

For purposes of building a covariance matrix ahead, we shall drop completely the
terms identified as "Monopole" and ""Doppler" (of order 10−3), because our final anal-
ysis, similar to what is done by WMAP and Planck, will be performed over maps where
the monopole and the dipole induced by Doppler effect over the original monopole
have been subtracted. Decomposing the anisotropies δT ′(n̂) into spherical harmonics

δT ′(n̂) =
`max∑

`=2

∑̀

m=−`

aIsotropic`m Y m
` (n̂), (5.3)

63
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and

β̂ · n̂ =
1∑

N=−1

β1NY
N
1 (n̂), (5.4)

we have:

a`m = aIsotropic`m +
1∑

N=−1

β1N
∑

`′m′

a`′m′

∫
dn̂ Y N

1 (n̂)Y m′

`′ (n̂)Y m∗
` (n̂)

−
1∑

N=−1

β1N
∑

`′m′

a`′m′

∫
dn̂∇Y N

1 (n̂) ·∇Y m′

`′ (n̂)Y m∗
` (n̂). (5.5)

Therefore, at first order in β1M , we notice that we can write:

a`m = aIsotropic`m +
(−1)m√

12

1∑

N=−1

(−1)Nβ1N
∑

`′m′

a`′m′
√

(2`+ 1)(2`′ + 1)C10
`0`′0C

1−N
`−m`′−m′

− (−1)m√
48

1∑

N=−1

(−1)Nβ1N
∑

`′m′

a`′m′ [2 + `(`+ 1)− `′(`′ + 1)]
√

(2`+ 1)(2`′ + 1)C10
`0`′0C

1−N
`−m`′−m′ ,

(5.6)

where C1−N
`−m`′−m′ and C10

`0`′0 are Clebsch-Gordan coefficients. By computing the cross-
correlation 〈a`1m1a

∗
`2m2
〉, at first order in β1N the covariance matrix is obtained:

S`1m1`2m2
= C`1δ`1`2δm1m2

+
Π`1`2√

12π

1∑

N=−1

(β1NC`1(−1)`1+`2+1 + β1NC`2)C
10
`10`20

C1N
`1m1`2m2

− Π`1`2√
48π

1∑

N=−1

(β1NC`1(−1)`1+`2+1 + β1NC`2) (5.7)

[2 + `1(`1 + 1)− `2(`2 + 1)]C10
`10`20

C1N
`1m1`2m2

,

where Π``′ =
√

(2`+ 1)(2`′ + 1). This expression can be separated into two contribu-
tions, a diagonal part setting `2 = `1 containing the power spectrum of the anisotropies:

S`1m1`2m2
= C`1

(
1 +

1

4π

1∑

N=1

|β1N |2
)
δ`1`2δm1m2 , (5.8)

and an off-diagonal part, containing the first order perturbation in β1N , with `2 = `1+1:

S`m1`+1m2
= (−1)m2

Π``+1√
12π

1∑

N=−1

β1N(C` + C`+1)C
10
`0`+10C

1N
`m1`+1−m2

(5.9)

− (−1)m2
Π``+1√

48π

1∑

N=−1

β1N(C` − C`+1)[`(`+ 1)− (`+ 1)(`+ 2)]C10
`0`+10C

1N
`m1`+1−m2

.
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From equation (5.7), which is valid for first order in β, we notice that for `2 ≥ `1+2
the covariance is identically zero, and there is no mixture for m1 and m2 if `1 and `2
are equal. However, if O(β2) corrections are taken into account these correlations are
expected to be non-zero. Figure (5.1) shows the structure of this matrix in m1×m2 sub-
space where one can see sub-matrices in the form of off-diagonal blocks of dimension
(2`+ 1)× (2`+ 1).
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Figure 5.1: Matrix shape for the covariance in equation (5.7) with `max = 10 with the
diagonal and band-shaped matrix contributions, each off-diagonal square corresponds
to a given ` multipole with a dimension 2`+ 1.

As one can see from figure (5.1), the covariance matrix can be divided into a diag-
onal partD and an off-diagonal matrixO1:

S`1m1`2m2 = D`1m1`2m2 +O1
`1m1`2m2 , (5.10)

where the superscript (1) denotes the first order contribution of the expansion in β.
This splitting in the covariance matrix is performed to match the notation in [15] for
the Joint-Bayesian likelihood estimator. In addition, we notice from equation (5.7) that
at first order in β this matrix can be further separated into two different contributions
containing Doppler modulation and aberrations effects respectively:
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S`m1`+1m2
= SMod

`m1`+1m2
+ SAberr

`m1`+1m2
, (5.11)

where the Doppler modulation covariance SMod
lm1l+1m2

is given by:

SMod
`m1`+1m2

= (−1)m2
Π``+1√

12π

1∑

N=−1

β1N(C` + C`+1)C
10
`0`+10C

1N
`m1`+1−m2

, (5.12)

and the aberration covariance SAberr
lm1l+1m2

follows:

SAberr
`m1`+1m2

= −(−1)m2
Π``+1√

48π

1∑

N=−1

β1N(C`−C`+1)[`(`+1)−(`+1)(`+2)]C10
`0`+10C

1N
`m1`+1−m2

.

(5.13)
For the construction of a maximum likelihood estimator, we shall work in har-

monic space. In that space, the probability to measure a certain CMB sky temperature,
represented by a set of harmonic coefficients d1, when the covariance of the primordial
signal a is given by S from equation (5.9) and the telescope induces into the measure-
ment a certain amount of noise with covarianceN , is given by:

P(S,a|d) =
1√

|S|(2π)n
exp

(
− 1

2
a†S−1a)

)

︸ ︷︷ ︸
Primordial fluctuations

× (5.14)

1√
(2π)n|N |

exp

(
− 1

2
((a− d)†N−1(a− d))

)

︸ ︷︷ ︸
Detector

.

Marginalization over the true primordial signal a allows to combine the primor-
dial covariance matrix S together withN in a compact form:

P(S|d) =
1√

|N + S|(2π)n/2
exp

[
− 1

2
dT (S +N )−1d

]
. (5.15)

Notice that after this marginalization an effective covariance matrix of the data d
that combines the primordial and detector fluctuations appears S + N . In order to
efficiently evaluate this matrix inversion, a very smart perturbative expansion in β has
been derived in [15], by exploiting the diagonal/off-diagonal decomposition of S of
equation (5.10). To second order in β, such an expansion lead to [15]:

− 2 ln(P(Cl, β1N |d)) = n ln(2π) + ln |D|+ d†D−1d

− d†D−1O1D
−1d− 1

2
Tr[(D−1O1)2] + d†(D−1O1)2D−1d. (5.16)

1The input maps are storaged in an array dwith length n.
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Here in this analysis, we are interested in testing the accuracy and efficiency of
this estimator in synthetic Monte Carlo generated CMB maps with boosting effects.
We will not assume any prior information on β1N . Consequently, according to the
Bayes theorem, the posterior probability P(S|d) should be proportional to the likeli-
hood P(d|S). Therefore, in the following, we shall use the expressions posterior and
likelihood interchangeably. Figure (5.2) shows slices of the likelihood (5.15) obtained
from the expansion (5.16) using different covariance matrices: taking into account only
modulation effects (see equation 5.12), only aberration effects (see equation 5.13) or the
combination of both (see equation 5.11). In this chapter, the cosmological parameters
are all fixed, so the likelihood is seen as a function of 3 variables (n = 3), corresponding
to the 3 components of the boost velocity in harmonic space: β10, Re(β10) and Im(β10).
For figure (5.2), the input CMB sky map was boosted in pixel space using a boost ve-
locity β = 1.23 × 10−3 in the direction given by equation (4.8), therefore, it contains
both effects: modulation and aberration.

Figure 5.2: Normalized likelihood slices, i.e., the likelihood is conditioned to the values
of the two harmonic components of β, while the third value is varied along the x-
axis. The CMB input map (with nside = 1024) contains both effects (modulation +
aberration), whereas the likelihood is calculated with only modulation effects (blue),
only aberration (green) or both effects (red).
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The agreement between the true values of β1N and the maximum of the posterior
seen in figure (5.2) shows the reliability of the calculated covariance for detecting β1M
in the synthetic maps. An additional test to probe for possible systematic effects in the
likelihood (5.16) can be seen in figure (5.3), where the full boost case is compared for
two input boost velocities different by an order of magnitude: β = 1.23 × 10−3 and
β = 1.23 × 10−2. In both cases, the linear approximation behind equations (5.12) and
(5.13) is still valid. The case of β = 1.23 × 10−2 is again meant to provide a situation
where β1N is sufficiently large to avoid complete overlap with the β = 0 case.

Figure 5.3: Normalized likelihood slices for modulation and aberration effects in full
sky CMB map for two different velocities β = 1.23 × 10−2 (red) and β = 1.23 × 10−3

(blue) at `max = 1024. Shaded regions show the 1σ confidence interval centered around
the fiducial input value (dashed line).

Figure (5.3) shows that the expansion (5.16) combined with the weak lensing ap-
proximation for the aberration kernel are still applicable for the case β ∼ 10−2 and
`max = 1024. However, increasing the resolution should allow to test the validity
of this approximation. Figure (5.4) shows this test by augmenting the resolution to
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`max = 2048 for three different boosting velocities: β = βdip, 5 × βdip, 10 × βdip. One
can see in this figure the progressive systematic error in β1N coming from ignoring
higher order corrections in equation (5.9). Despite the fact that calculating the nor-
malized probability for only one sky realization for β = 1.23 × 10−3 is not enough for
completely ruling out systematic effects appearing in the likelihood, all the considered
additional tests in this section, using independent realizations of full-sky CMB syn-
thetic maps, points towards the same interpretation as the one given in figures (5.3 ),
and (5.4 ).

Figure 5.4: Normalized likelihood slices for three different input velocities β =
(βdip, 5 × βdip, 10 × βdip) at `max = 2048 resolution. Shaded regions show the 1σ confi-
dence interval centered around the fiducial input value (dashed line).

As one can see from figure (5.2), the aberration effect dominates at small scales
(large `), so the inclusion of multipoles at large ` values should improve the resolu-
tion of the likelihood (5.16). Figure (5.5) clearly shows this reduction of the full boost
conditioned likelihood width for increasing `max = 512, 1024, 2048.
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Figure 5.5: Normalized likelihood slices for full boosting likelihood using full sky
CMB maps for three different maximum multipole `max used inside S. Shaded regions
(blue, green and red) show the corresponding 1σ interval for each case centered at the
true input value in Monte Carlo simulations (dashed line).

A final plot useful for understanding the statistical power contained in different
multipole ranges can be seen in figure (5.6). In this plot, the likelihood has been cal-
culated using non-overlapping multipole ranges 0 ≤ ` ≤ 1024 and 1024 ≤ ` ≤ 2048.
As one can see, the resolution of the maximum likelihood estimator presented here is
dominated by higher multipoles due, of course, to the combination of the rapid in-
crease in their number ∝ `2max and the presence of aberration signal at small scales.
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Figure 5.6: Normalized likelihood slices for full boosting likelihood using two disjoint
multipolar regions in the interval 2 ≤ ` ≤ 1024 (red) and 1024 < ` ≤ 2048 (blue). The
light regions corresponds to 1σ interval for each case centered at the true input value
in Monte Carlo simulations (dashed line).

At this point, likelihood slices show reliability for a further MCMC analysis by
using the likelihood proposed in equation (5.16). As it has been shown in the normal-
ized slices, they appear Gaussian distributed in all of the presented cases, this property
will be used to build a consistent proposal matrix for the Metropolis-Hasting sampler
described in the next section. A further additional test by using isotropic noise, and a
discussion of their impact in the likelihood slices, can be found in Appendix E. In that
section, the equivalence between auto-correlation and cross-correlation modes in the
MCMC is shown.
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5.2 MCMC estimations of β

In this section, we apply MCMC techniques based on the likelihood estimator
shown in equation (5.16). A Metropolis-Hastings algorithm [64] has been adopted as
sampling method and implemented in a custom made code. MCMC samples obtained
with this code were used to constrain the cartesian components of the boost velocity
β previously used to boost statistically isotropic CMB maps. As mentioned before,
the cosmological model was assumed to be known, therefore, the statistically isotropic
power spectrum C` was kept fixed during the sampling.

5.2.1 MCMC estimation of β1N components

We start the MCMC analysis by using full sky CMB synthetic maps with full boost-
ing effects described in chapter 3. The data processing is similar to the one presented in
in chapter 4. As it was mentioned before, the starting point of the Metropolis-Hastings
algorithm employs a proposal covariance matrix, that for this particular case is as-
sumed to be diagonal:

Σ = Diag(σ2
β10
, σ2

Re(β11)
, σ2

Im(β11)
), (5.17)

where the matrix elements σ2
β10

, σ2
Re(β11)

, σ2
Im(β11)

are the corresponding variances from
the likelihood slices in figure (5.5) for the `max = 2048.

The likelihood to be sampled in this pipeline is given by equation (5.16), with
CMB covariance matrix given by (5.11), (5.12) and (5.13). This Joint-Bayesian likeli-
hood is implemented manually in a C++ code linked against HEALPix C++ libraries
for harmonic decomposition and manipulation of the synthetic CMB sky maps. The
employed sampler in this chapter is limited to a three dimensional parameter space
containing the harmonic components of β: β10, Re(β11) and Im(β11) with fixed power
spectrum C`. Although ` = 2048 is the preferred resolution for CMB sky maps, we
also work with a lower resolution for showing properties of the posterior distributions
for β1N (i.e. ` = 1024). Figure (5.7) shows a diagrammatic description of the data
simulation and analysis, starting from CMB synthetic maps generation, following the
likelihood slicing for estimating the proposal covariance matrix, and Markov chains
extraction.
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Map generationFiduciary `(`+1)CT T
` /2π

Pixel boosting β

Harmonic Decomposition

Sky map storage: â`m → d

Joint-Bayesian Likelihood L̂ =− ln(P(Cl ,β1N |d))

β1N profiles P(C`,β1N |d)
∣∣∣∣
β1Ns6=M=0

Proposal covariance Σ

Sampler: Metropolis-Hasting

Markov Chains

Figure 5.7: Schematic description of the simulation and analysis pipeline employed
for an MCMC-based estimation of the boost velocity. Normalized likelihood slices are
used to construct the covariance matrix proposal Σ for the MCMC Metropolis-Hasting
sampler and obtain the Markov Chains for β1N .
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After following a similar sample cleaning and decorrelation on the Markov chains
as the one in chapter 4 for cosmological parameters analysis (see Appendix C), pos-
terior distributions are obtained from likelihood (5.16). Figure (5.8) shows the pos-
terior distributions for the harmonic space components of β, depicting the increase
in constraining power as one probes smaller angular scales going from `max = 1024
to `max = 2048. As discussed before, this can be explained by the fact that, from
the statistical point of view, there is significant information contained in the region
1024 ≤ ` ≤ 2048 due to aberration effects in this multipole range.

Figure 5.8: Posterior distributions for the harmonic space components of boost velocity
β. Two values of maximum multipoles are shown: `max = 1024 (green) and `max =
2048 (blue). The true value is represented by the black dotted line corresponding to
β = 1.23 × 10−3 in the direction of equation (4.8). An approximation to the maximum
likelihood solution is shown in blue and green dotted lines corresponding to the mean
of the posterior distribution.
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Table (5.1) summarizes the results for these two cases (`max = 1024, 2048), show-
ing maximum likelihood estimates for the components of β, as well as residuals, with
respect to the true values in the direction given by equation (4.8). The maximum like-
lihood solution in this table is taken as the mean value of the posterior of figure (5.8).
This is an approximation, it is clearly a good one, given the symmetric shape of the
posteriors and the small level of correlations between the parameters as can be seen in
figure (5.9).

Parameter True value `max = 1024 ∆ (`max = 1024) `max = 2048 ∆ (`max = 2048)

β10 × 103 1.85 3.5+1.5
−1.7 1.06 2.55± 0.58 1.20

Re(β11)× 104 1.22 2.1+1.1
−0.9 0.09 −1.6± 3.9 -0.71

Im(β11)× 103 −1.16 −0.1± 1.2 1.03 −1.1± 0.4 0.29

Table 5.1: Observed mean values for the boosting harmonic parameters at `max =
1024, 2048 for the TT Joint-Bayesian likelihood.

The resulting correlation matrix for these paramaters is shown in figure (5.9),
where negligible correlation between the parameters is appearing. One can conclude,
therefore, that the full posteriors can be approximated by a product of marginalized
posteriors. Moreover, using the marginalized posteriors to extract the maximum like-
lihood values of β1N is also a safe procedure.

β10

Re(β11 )

Im(β11 )

β10

Re(β11)

Im(β11)

1.00 -0.02 -0.01

-0.02 1.00 0.03
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C
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Figure 5.9: Correlation matrix for the boosting parameters in harmonic space β1N . The
samples used in this calculation were obtained from the posterior distribution sampled
with a covariance matrix including `max = 2048 multipoles.
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5.3 Derived angular resolution

In this section we obtain the angular resolution of our maximum likelihood esti-
mator by looking at the posterior distributions of the opening angle:

η = cos−1
(
β̂ · βtrue

|β̂||β̂true|

)
. (5.18)

In addition to solid angle effects due to the definition of the random variables η,
we assume that η is affected by Gaussian fluctuations. Therefore, our model for the
PDF of η is given by:

P(η) = N sin(η) exp(−η2/2σ2), (5.19)

where N is a normalization constant, σ is the standard deviation of the Gaussian fluc-
tuation on η, therefore, σ is what we shall compare with previous estimates in the
literature. Figure (5.10) shows the posterior distribution of η for the MCMC samples
shown in figure (5.8). The best fit curves to each maximum multipole case are also
shown.

Figure 5.10: Posterior distributions for the opening angle η, given by equation (5.18),
compared to the best fit curves of the model, given by equation (5.19). Two cases are
shown: `max = 1024 (green) and `max = 2048 (blue).

From the histogram in figure (5.10), the η distribution allows to constrain solid
angle regions in the sky. By using the variance σ in equation (5.19) all sampled vectors
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β within 1σ correspond to 68% uncertainity in the estimated most likely direction βmax

defining a 1σ confidence circle in the sky. As it is shown in figure (5.10), this variance
depends on the resolution of the CMB maps from where the MCMC samples were ex-
tracted.

As a final step for the presented MCMC analysis, we compare the obtained results
for `max = 2048 with the Planck collaboration analysis in [11]. For the Planck telescope it
is reported a confidence circle at 68% of 14◦ and 26◦ for the 2σ case. Figure (5.11) shows
these two measurements and their confidence circles centered in the corresponding
maximum likelihood estimated values.

Planck (cut sky)

This work (full sky)

Figure 5.11: 1σ and 2σ C.L. regions around their corresponding best fit directions for
this work (green) and for Planck (black) [11]. The system of reference is adapted to be
centered at (L,B) = (360◦, 0◦) in galactic coordinates.

As final result, table (5.2) shows the set of real space components of β at `max =
2048 in galactic coordinates extracted from the MCMC chains in figure (5.8) compared
to that reported by the Planck collaboration in [11].

Parameter This work (full sky) Planck (cut sky) [11]

vdip 433± 84 km s−1 384± 78± 115 km s−1

η (1σ) 11.5◦ ± 0.5◦ 14◦

η (2σ) 23.0◦ ± 1.0◦ 26◦

Table 5.2: Summary of the obtained results for the `max = 2048 Joint-Bayesian likeli-
hood estimator. Both the magnitude and 1σ uncertainty for β as well as the 1σ and 2σ
confidence regions for the opening angle η are shown.
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It is worth mentioning a few technical details involved in the extraction of MCMC
chains based on the likelihood (5.16). The matrix multiplications appearing in this
equation were optimized to take advantage of the fact that the matrices are sparse.
Nevertheless, they still contain typically a total of ∼ 106 elements for `max = 2048. On
the other hand, for the Gellman-Rubin criterion adopted here (1 − R . 0.01), about
8 × 104 samples are required before achieving convergence. This implies that a full
chain for statistical analyses takes about 8 days running in a parallelized environment
with 8 cores and 48 Gb of RAM memory. Therefore, we have been unable to generate
a sufficiently large ensemble of skies required to properly assess potentially small sys-
tematic effects. However, for the few independent skies generated in this chapter, we
have not observed any indication of bias in the estimator and we hope that in the limit
of a large number of sky realizations, the parameters shown in table (5.1) converge to
their true values.

Since the analysis was performed in full sky mode, therefore there are no artifacts
introduced by a mask; The sky maps used as input to the MCMC code were free from
foregrounds, containing only the cosmic signal, therefore residual galactic contamina-
tion is not an issue. Candidates that could contribute to the systematic uncertainty
were the expansion on β shown in equation (5.16) and the weak lensing approxima-
tion to the aberration covariance matrix implicit in equation (5.13). However, we have
shown in this chapter, using synthetic sky maps fully boosted in pixel space (i.e. no
approximation), that in the multipole range 2 ≤ ` ≤ 2048, these are perfectly good
approximations for β ∼ 10−3.

5.4 Summary

We have presented in this chapter an MCMC estimation via a Joint-Bayesian like-
lihood estimator of the solar system velocity with respect to the CMB rest frame using
the break of statistical isotropy at first order in the boost velocity introduced by the
change of frame. The implemented likelihood method was adapted from the cosmic
hemispherical asymmetry (CHA) study elaborated in [15], where we have included, in
addition to the modulation term, a corresponding contribution associated to relativis-
tic aberration. This formalism was applied for reconstructing the boost velocity β and
comparing it to the Planck collaboration results in [11].

Within the weak lensing approximation, the covariance matrices for Doppler mod-
ulation (see equation (5.12)) and aberration (see equation (5.13)) show that modula-
tion effects are negligible at small scales (` > 1000), an angular region dominated by
small deflections in the photon directions due to aberration. This had already been
previously discussed in chapter 3 (see figure 3.7). On the other hand, the aberration
effects completely dominate the likelihood for high resolution experiments as figure
(5.2) shows, an effect also predicted in the cross-correlation function calculated in fig-
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ure (3.7). In all of the situations considered in section 5.1 (i.e. higher multipoles, differ-
ent input velocities) the likelihood successfully estimated the harmonic components of
β showing consistency in less than 1σ with respect to the input value in simulations.

From the MCMC analysis, conclusions are drawn from the posterior distributions
in harmonic space, where an agreement is shown in less than 1σ with respect to the
true boost velocity β value for the highest resolution case with `max = 2048. An-
other interesting result, is the little correlation between the parameters (see figure (5.9))
that allows to conclude that the posterior can be approximated by a product of the
marginalized individual posteriors. However, this might not work when mask effects
are added.

Once the accuracy of the method has been addressed, by showing that our Joint-
Bayesian estimator is unbiased, we have made a final comparison of the resolution
achieved by this estimator with a previous result in the literature, that is, the Planck
aberration dominated measurement of β using quadratic estimators [11]. The esti-
mator of this dissertation is competitive in terms of resolution, leading to a statistical
uncertainty just 7% higher than the one from the Planck Collaboration (84 km s−1 for
2 ≤ ` ≤ 2048 versus 78 km s−1 for 500 ≤ ` ≤ 2000).



6 | Conclusions

In this work, we have presented the effects induced by peculiar motion of the so-
lar system with respect to the CMB reference frame. Firstly by studying its impact in
the underlying cosmological parameters, then estimating the boost velocity itself using
standard MCMC techniques. The problem is presented in three different levels of com-
plexity starting from Monte Carlo generated synthetic sky maps, from where Doppler
modulation and aberration signals in the cross-correlation function 〈a`ma∗`+1m〉 were
retrieved, in agreement with previously described effects in the literature [12, 13, 58].
Then, the impact of neglecting local kinematic effects when estimating cosmological
parameters has been quantified and shown to be negligible compared to the current
resolution provided by satellites like Planck. Finally, we extended and tested the likeli-
hood estimator presented in [15] by adding the aberration effects.

In chapter 3, using full sky CMB synthetic maps, we have shown that the boosting
signal appears in all the power spectra (i.e. CTT

` , CTE
` and CEE

` ) in addition to induc-
ing correlations in the 〈a`ma∗`+1m〉 cross-correlation function. All the signal extractions
were compatible with previous results reported in the literature that support the weak
lensing approximation for modeling aberration effects in the anisotropies [13, 14, 58]
(see figure (3.7)). In addition, it was observed by the good agreement between the
extracted cross-correlation functions from full-sky simulated CMB maps fully boosted
in pixel space (see figure (3.7)), that the approximation is sufficiently good to model
this effect. This figure was produced after cosmic variance reduction, showing a good
agreement between the exact cross-correlation extracted from the pixelized maps and
the corresponding weak lensing-based theoretical curve [13].

We have tested the reliability of cosmological parameters extracted in the pres-
ence of uncorrected local kinematic effects. The question of whether these parameters
may be affected by boosting effects was addressed by using the 2018 CMB temperature
and polarization power spectrum error bars from Planck collaboration. MCMC chains
were constructed from different sets of likelihoods using temperature and polarization
power spectra (see figure (4.2)). Markov chains based on these likelihoods were fed
with sky maps where the primordial statistically isotropic CMB Stokes parameters I ,
Q and U were transformed into a moving frame with velocity consistent with that of
our solar system. The cosmological parameters extracted from the posterior distribu-
tions were then compared to those extracted from statistically isotropic maps as well
as to the ones obtained by the Planck collaboration, showing an agreement within 1σ
in all the cases. The likelihoods allowed us to conclude that there is no significant
change in the base-ΛCDM parameters for a boost velocity β = 1.23× 10−3 in the direc-
tion given by equation (4.8) and three different data sets: intensity-only TT (see table
4.4), polarization-only EE (see table 4.5) and temperature-polarization TE (4.6) spec-
tra. The same conclusion is also drawn in the highest constraining case of a combined
TT+EE+TE likelihood (see figure 4.11 and table 4.8).
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In the Bayesian estimation of β, we have employed the weak lensing approxima-
tion for the aberration effects, together with a very useful expansion in β of the likeli-
hood (see equation (5.16)). Except for the pixelized input sky maps, all the subsequent
analysis steps were performed in harmonic space. At the level of map generation, all
boost effects were introduced without any approximation and are only limited by the
computer’s double precision. The analysis presented here differ from that used by
the Planck collaboration in a few aspects: the estimator used and the lack of real data
complications like partial sky coverage, residual foregrounds and not fully understood
large scale anomalies. Regarding the estimator, we have extended the one presented
in [15] for studying the CHA, and that perfectly describes the Doppler modulation
contribution (see equation (5.12)). The extension was performed by adding an extra
term dealing with relativistic aberration (see equation (5.13)). The range of applicabil-
ity of the weak lensing approximation has been studied by considering different boost
velocity magnitudes and angular resolutions in harmonic space (i.e. different `max).
The study showed the break of the approximation when one probes regions where
β`max ≥ 1 (see figure (5.4)).

We have also highlighted intrinsic properties of the estimator in order to validate
the technique for measuring β, i.e variance reduction by including higher multipoles
(see figure (5.5)), the role played in the likelihood by Doppler modulation and aber-
ration effects (see figure (5.2)), and the dominance (from the statistical point of view)
of the small scales over the large ones (see figure (5.6)). The estimator successfully re-
covered the input velocity in full sky CMB maps, with a resolution compatible to the
Planck estimator. The final accuracy and resolution of our Joint-Bayesian estimator can
be seen in table (5.2) and sky map of figure (5.11).

It is worth mentioning that we have also extended the Joint-Bayesian estimator
presented in this dissertation to also include information on polarization. More pre-
cisely, the boosting effects on all three cosmologically relevant Stokes parameters I , Q
and U have been calculated. These effects have been used for cosmological studies in
chapter 4, but still need to be fully validated when incorporated in the covariance ma-
trices of chapter 5. Such a validation is an ongoing work, but will certainly improve
the final resolution on β. The use of polarized anisotropies is motivated by recent
works using this kind of data in [55] where an independent measurement of β, using
EE modes polarization, is presented.

Although we have presented the Doppler modulation and aberration detection in
full-sky synthetic CMB maps, the work is perfectly extendable to a more general situ-
ation where an extended data processing pipeline is considered. For example, we no-
tice that all presented results were robust and consistent in a full sky coverage regime;
however, it is known that in order to work with real CMB sky maps, a masking pro-
cedure over the galactic plane is needed. Even though these effects are not considered
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here, they represent an important source of systematic effects in the obtained posterior
distributions for β [11]. These sources of systematic uncertainty must be studied and
taken into account inside the estimator before treating real CMB sky maps.

We mention at least two ways to deal with partial sky coverage effects in our es-
timator: 1. the use of marginalization over the signal in the masked region like that
implemented in [15] through the combination of MCMC techniques and Hamiltonian
Monte Carlo methods (HMC) [77–79] or 2. the incorporation of the additional mask
mixing on top of that induced by the boost as presented in [80]. The first option above
is the one currently under implementation by us.



A | Healpix polarization conventions

A.1 Polarization conventions

As it is shown in [81], polarization field is a second rank symmetric trace-free
tensor, that can be written in the following way:

Pij = 2A(n̂)m∗im
∗
j + −2A(n̂)mimj, (A.1)

where the quantity ±2A(n̂) as:

±2A(n̂) = Q(n̂)± iU(n̂). (A.2)

In order to specify the basis in which the tensor is written, the two linear-independent
vectors: m and m∗i are written explicitly in a coordinate basis form (later on specify-
ing the coordinate system itself i.e. spherical coordinates (within the Healpix conven-
tions)):

m =
1√
2

(ê1 + iê2) =
1√
2

(êθ + iêφ), (A.3)

m∗ =
1√
2

(ê1 − iê2) =
1√
2

(êθ − iêφ), (A.4)

by setting the basis: ê1 = êθ, ê1 = êφ, as is specified in [81], under a local, right-
handed rotation of the basis ê1, ê2 by an angle ψ, complex stokes parameters ±2A(n̂),
by convention we can specify the quantity ±2A(n̂) in the basis [43]:

±2A(n̂) =
∞∑

l=0

∑̀

m=−`

a±2,`m ±2Y
m
` (n̂), (A.5)

which allows to write the definitions of Q(n̂) and U(n̂):

(Q(n̂) + iU(n̂)) =
∞∑

l=0

∑̀

m=−`

a2,`m 2Y
m
` (n), (A.6)

(Q(n̂)− iU(n̂)) =
∞∑

l=0

∑̀

m=−`

a−2,`m −2Y
m
` (n), (A.7)

from where we obtain the following definitions:

aE`m = −(a2,`m + a−2,`m)/2 , aB`m = −(a2,`m − a−2,`m)/2i. (A.8)

These coefficients are used to compute the polarization power spectra CEE
` and

CTE
` used in this work. We adopt the HEALPix convention in polarization for all the

calculations concerning polarization spectra.
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B | The black body spectrum under a Lorentz
boost

The intensity measured for the CMB is given by:

I ′(ν ′, n̂) =
2hν ′3

c2

(
exp(hν ′/kBT (n̂))− 1

)−1
, (B.1)

the measured photon frequencies are Doppler shifted by an amount:

ν ′ = νγ(1− β · n̂). (B.2)

in the moving frame the intensity is given by:

I ′(ν ′, n̂) =
2h(νγ(1− β · n̂))3

c2

(
exp[h(νγ(1− β · n̂))/kBT (n̂)]− 1

)−1
, (B.3)

with the appearance of the frequency-depended modulation, as it is shown in [14].
Using the properties of the Poincare sphere for Stokes parameters, the same property
can be mapped from the intensity to the polarization parameters:

I2 = Q2 + U2. (B.4)

The last equation is rotational invariant, which means, that we can fix U = 0, and
get the same properties for Intensity but for parameter Q, and then rotate, and fix U ,
performing these, the law of transformations under a Lorentz transformation behaves
as:

Ĩ ′(ν ′, n̂) = Ĩ(ν, n̂)

(
ν ′

ν

)3

, (B.5)

Q̃′(ν ′, n̂) = Q̃(ν, n̂)

(
ν ′

ν

)3

, (B.6)

Ũ ′(ν ′, n̂) = Ũ(ν, n̂)

(
ν ′

ν

)3

, (B.7)

where the tick quantities refers to the Stokes parameters per unit of solid angle,
measured in the moving frame, in agreement with [14]. The vector n̂ is the same used
in chapter 3.

84



C | MCMC chains

In this appendix we show the details behind the employed MCMC chains for cos-
mological parameters analysis and the joint-Bayesian likelihood estimator for β. We
employed the statistical python package GetDist [73] for plotting, testing and check-
ing statistical consistency in all the MCMC chains obtained in this work. Convergence
test are based in the Gelman-Rubin test for showing whether the chain has reached its
asymptotic probability distribution [64].

C.1 MCMC samplers

For the cosmological parameters analysis we were interested in sampling base-
ΛCDM parameters. In the chains we sampled 6 of the 9 paremeters used by Planck
collaboration in [70]. We employed the sampling code CosmoMC [82] for this part of
the analysis due its performance in multi-core and multi-node environments and its
adaptability in using Planck likelihood products. Table (C.1) shows the configuration
details used in the sampler for all the chains considered in this work.

Parameter Value Description

Boltzmann Equation Integrator CAMB Solver for Boltzmann differential equations [38].
CPUs 16 Number of CPUs used bythe MPI multiprocessor framework.

Sampling method Draggin method Default method used for sampling slow parameters [82].
Chains step 4× 106 Total number of steps in the chain.

Priors Flat No prior information used in the chains.

Table C.1: Configuration details used in CosmoMC sampler.

In addition to cosmological parameters we have implemented a custom-made
sampler based on the Metropolis-Hastings algorithm [64] to sample the posterior dis-
tributions in the estimation of the velocity vector β. This code was implemented in
C++ to sample boosting parameter space by employing the likelihood method of chap-
ter 5. Table (C.2) presents the software configuration used for this specific likelihood
presented in chapter 5.

Parameter Value Description

Synthetic map decomposition HEALPix libraries for harmonic decompostion.
Fiducial model generator CAMB Fiducial power spectrum in the likelihood.

Priors Flat No prior information used in the chains

Table C.2: Configuration details used in the Metropolis-Hastings sampler.
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C.2 Auto-correlation

As it is expected from MCMC methods, samples are in principle correlated with
their neighbors. In order to obtain truly independent samples the lag factor (also
known as autocorrelation time) of the chain is estimated by calculating correlations
between the samples along the chain by using the following equation:

A(l) =
1

N − l
N−l∑

t=1

(Xt − X̄)(Xt+l − X̄), (C.1)

where X̄ is the sample average, Xt is the sample at a given step t, N is the total
number of samples in the chain, and l is the lag factor.

C.2.1 Combined analysis: TT+TE+EE likelihood

Figure C.1: Auto-correlation for the combined likelihood TT+TE+EE as a function of
the lag for each considered boosting velocity β = (0,βdip, 10× βdip).



C. MCMC chains 87

C.2.2 Temperature: TT likelihood

Figure C.2: Auto-correlation for the temperature likelihood as a function of the lag for
each considered boosting velocity β = (0,βdip, 10× βdip).
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C.2.3 Polarization: EE likelihood

Figure C.3: Auto-correlation for the polarization likelihood as a function of the lag for
each considered boosting velocity β = (0,βdip, 10× βdip).
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C.2.4 Temperature-Polarization: TE likelihood

Figure C.4: Auto-correlation for the temperature-polarization likelihood as a function
of the lag for each considered boosting velocity β = (0,βdip, 10× βdip).
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C.2.5 Boosting likelihood estimator

Figure C.5: Auto-correlation for the Joint-Bayesian likelihood estimator as a function
of the lag for each multipole value used ` = (1024, 2048) in the likelihood.
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C.3 Chains convergence

For convergence test we employed the so-called Gelman-Rubin test [74] in our
MCMC chains for testing if the proposal distribution is reaching the asymptotic state.
We use a convergence criteria of 1% deviation from the correlation factor R from 1. In
the following we present convergence of the chains for each MCMC case presented in
both chapters 4 and 5, showing that all the presented posterior distributions are truly
asymptotic states of their respective chain.

C.3.1 Combined analysis: TT+TE+EE likelihood

Figure C.6: Gelman-Rubin test for the combined TT+TE+EE likelihood for cosmologi-
cal parameters estimation as a function of the number of total samples in the chain for
each considered boosting velocity β = (0,βdip, 10× βdip).
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C.3.2 Temperature: TT likelihood

Figure C.7: Gelman-Rubin test for the temperature-only likelihood for cosmological
parameters estimation as a function of the number of total samples in the chain for
each considered boosting velocity β = (0,βdip, 10× βdip).
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C.3.3 Polarization: EE likelihood

Figure C.8: Gelman-Rubin test for the polarization-only likelihood for cosmological
parameters estimation as a function of the number of total samples in the chain for
each considered boosting velocity β = (0,βdip, 10× βdip).
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C.3.4 Temperature-Polarization: TE likelihood

Figure C.9: Gelman-Rubin test for the temperature-polarization likelihood for cosmo-
logical parameters estimation as a function of the number of total samples in the chain
for each considered boosting velocity β = (0,βdip, 10× βdip).
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C.3.5 Boosting likelihood estimation

Figure C.10: Gelman-Rubin test for the Joint-Bayesian likelihood estimator showing
convergence for chains with multipolar ranges of 2 ≤ ` ≤ 1024 (green) and 2 ≤ ` ≤
2048 (blue).



D | Derivation of the cross-correlation function

The CMB measured temperature in the sky transforms under a general Lorentz
transformation as:

T (n̂) =
T ′(n̂′)

γ(1− β · n̂)
, (D.1)

for β << 1 this expression can be Taylor expanded reducing into the following expres-
sion:

T (n̂) = T ′(n̂′)(1 + β · n̂). (D.2)

Since we are interested in the anisotropies, the monopolar contribution can be
separated from the cosmological fluctuations in the temperature:

T ′(n̂′)− T0 = δT ′(n̂′), (D.3)

where the vector n̂′ is a unit vector in the CMB rest frame, connected with the n̂, by a
Lorentz transformation, and describing the aberration effect due to the relative motion
of the solar system:

n̂ =
n̂′ + [(γ − 1)n̂′ · βc+ γ|β|]β̂

γ(1 + n̂′ · β)
, (D.4)

where c is the speed of light. For β << 1, we can write:

n̂′ = n̂+∇φ = n̂−∇(n̂ · β), (D.5)

where φ is introduced as discussed in chapter 3 for the weak lensing approximation. By
applying this equation inside (D.2) we can calculate the spherical harmonic coefficients
for the same equation. The expression for such coefficients is given by:

aTotal`m =

∫
dn̂
(
T0 + T0(β · n̂) + δT ′(n̂) + δT ′(n̂)(n̂ · β)−∇(n̂ · β) ·∇δT ′(n̂)

)
Y ∗m` (n̂).

(D.6)
The last expression can be separated into its different contributing parts:

aMonopole
`m =

∫
dn̂ T0 Y

∗m
` (n̂), (D.7)

aDipole
`m =

∫
dn̂ T0(n̂ · β)Y ∗m` (n̂), (D.8)

aDoppler
`m =

∫
dn̂ δT ′(n̂)(n̂ · β)Y ∗m` (n̂), (D.9)

aAberration
`m = −

∫
dn̂∇(n̂ · β) ·∇δT ′(n̂)Y ∗m` (n̂), (D.10)
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aAnisotropies
`m =

∫
dn̂ δT ′(n̂) Y ∗m` (n̂). (D.11)

These coefficients will we be calculated separately. By starting with the aberration
coefficient we take equation (D.10) by specifying δT ′(n̂) (the anisotropies):

δT ′(n̂) =
∞∑

p=0

p∑

q=−p

aIsotropicpq Y q
p (n̂), (D.12)

the equation for the aberration (D.10) is written in terms of the comoving CMB anisotropies
with harmonic coefficients given by a`m:

aAberration
`m = −

∫
dn̂∇(n̂ · β) ·∇

[ ∞∑

p=0

p∑

q=−p

aIsotropicpq Y q
p (n̂)

]
Y ∗m` (n̂). (D.13)

In addition, we need to specify a basis for the combination n̂ · β, for a velocity
applied in the ẑ direction, the most natural choice according within the weak lensing
approximation is given by:

n̂ · β = β cos(µ) = β

√
4π

3
Y 0
1 (µ, ν). (D.14)

It is important to point out that for a general applied velocity effect in the CMB
maps, it is possible to rotate the basis from where equation (D.14) is written [83]. By
rotating the frame, the spherical harmonics are written in the new basis as follows:

Y m
` (µ, ν) =

∑̀

s=−`

D∗(`)ms Y
s
` (θ, φ), (D.15)

where the matricesD∗(`)ms are the Wigner D-matrices, which are functions of the Eulerian
angles of the velocity vector, the matrices are defined as follows:

D(`)
ms(φ, θ, γ) = e−imγd(`)ms(θ)e

−isφ, (D.16)

where φ, θ and γ are the Euler angles, by using the new basis in equation (D.15), we
can write the harmonic coefficients aAberration

`m as a function of the velocity vector β:

aAberration
`m = −

∫
dn̂∇

(
β

√
4π

3

1∑

s=−1

D
∗(1)
0s Y s

1 (n̂)
)
·∇
[ ∞∑

p=0

p∑

q=−p

aIsotropicpq Y q
p

]
Y ∗m` (n̂),

(D.17)
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setting the basis in equation (D.15) the aberration spherical harmonic coefficient is
given by:

aAberration
`m = −(−1)mβ

√
4π

3

1∑

s=−1

∞∑

p=0

p∑

q=−p

D
∗(1)
0s [2 + p(p+ 1)− `(`+ 1)] ×

√
3(2`+ 1)(2p+ 1)

16π

(
` 1 p
−m s q

)(
` 1 p
0 0 0

)
aIsotropicpq ,

(D.18)

where the following identity has been used [81]:
∫
dn̂ Y ∗m` (n̂)∇Y s

1 (n̂) ·∇Y q
p (n̂) = (−1)m

(
` 1 p
−m s q

)
F 0
`,1,p, (D.19)

the function F 0
`,1,p, where its most general form is discussed in [81], has the form :

F±s`,L,p = [L(L+1)+p(p+1)−`(`+1)]

√
(2L+ 1)(2`+ 1)(2p+ 1)

16π

(
` L p
±s 0 ∓s

)
. (D.20)

On the other hand, Doppler modulation effect in equation (D.9), by using the same
conventions for the aberration, can be written as follows:

aDoppler
`m =

∫
dn̂
[
δT ′(n̂)β

√
4π

3

1∑

s=−1

D
∗(1)
0s Y s

1 (n̂)
]
Y ∗m` (n̂), (D.21)

reducing into:

aDoppler
`m =β

√
4π

3

1∑

s=−1

∞∑

p=0

p∑

q=−p

aIsotropicpq D
∗(1)
0s (−1)m ×

√
3(2p+ 1)(2`+ 1)

4π

(
p 1 `
0 0 0

)(
p 1 `
q s −m

)
,

(D.22)

by using the Gaunt integral with the phase conventions described in [83, 84]:
∫
dn̂Y q

p (n̂)Y s
1 (n̂)Y ∗m` (n̂) =(−1)m

√
3(2p+ 1)(2`+ 1)

4π
×

(
p 1 `
0 0 0

)(
p 1 `
q s −m

)
.

(D.23)

By collecting terms in equations (D.7) - (D.11), we have the expressions for the
relativistic modified spherical harmonics coefficients:

aAberration
`m =− (−1)mβ

√
4π

3

1∑

s=−1

∞∑

p=0

p∑

q=−p

D
∗(1)
0s [2 + p(p+ 1)− `(`+ 1)] ×

√
3(2`+ 1)(2p+ 1)

16π

(
` 1 p
−m s q

)(
` 1 p
0 0 0

)
aIsotropicpq ,

(D.24)
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aDoppler
`m =β

√
4π

3

1∑

s=−1

∞∑

p=0

p∑

q=−p

D
∗(1)
0s (−1)m

√
3(2p+ 1)(2`+ 1)

4π
(
p 1 `
0 0 0

)(
p 1 `
q s −m

)
aIsotropicpq ,

(D.25)

aDipole
1s = T0β

√
4π

3

1∑

s=−1

D
∗(1)
0s , (D.26)

by evaluating the 3j symbols in equations (D.24), (D.25) following the convention in
[13] and introducing the short-hand notation:

H(`,m) =

√
(`−m)(`+m)

4`2 − 1
, (D.27)

J(`,m) =

√
(`−m− 1)(`−m)

8`2 − 2
, (D.28)

K(`,m) =

√
(`+m+ 1)(`+m+ 2)

8`(`+ 2) + 6
. (D.29)

Notice that the calculated coefficients a`m for Doppler modulation and aberration
will reduce into:

aAberration
`m = β

[
sin(θ)√

2
e−iφ(`− 1)J(`,m)aIsotropic`−1m+1 + cos(θ)(`− 1)H(`,m)aIsotropic`−1m

−sin(θ)√
2
eiφ(`− 1)J(`,−m)aIsotropic`−1m−1 +

sin(θ)√
2
e−iφ(`+ 2)K(`,m)aIsotropic`+1m+1

− cos(θ)(`+ 2)H(`+ 1,m)aIsotropic`+1m − sin(θ)√
2
eiφ(`+ 2)K(`,−m)aIsotropic`+1m−1

]
,

(D.30)

aDoppler
`m = β

[
sin(θ)√

2
e−iφJ(`,m)aIsotropic`−1m+1 + cos(θ)H(`,m)aIsotropic`−1m

−sin(θ)√
2
eiφJ(`,−m)aIsotropic`−1m−1 −

sin(θ)√
2
e−iφK(`,m)aIsotropic`+1m+1

+ cos(θ)H(`+ 1,m)aIsotropic`+1m +
sin(θ)√

2
eiφK(`,−m)aIsotropic`+1m−1

]
,

(D.31)

aDipole
1s = T0β

√
4π

3

(
sin(θ)√

2
e−iφ + cos(θ)− sin(θ)√

2
eiφ

)
, (D.32)
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by using these expressions we calculate the non-vanishing contributions to the 〈a∗total`m atotal`+1m〉
correlator:

〈a∗Total`m aTotal`+1m〉 = β
[
a∗Isotropic`m

(
(`+ 1)dTotal`m+1 + (`+ 1)eTotal`m + (`+ 1)fTotal

`m−1

)

+aIsotropic`+1m

(
(−(`+ 2) + 1)g∗Total`+1m+1 + (−(`+ 2) + 1)h∗Total`+1m + (−(`+ 2) + 1)i∗Total`+1m−1

)]
,

(D.33)
with the set of coefficients d, e, f, g, h and i defined as follows:

dTotal`−1m+1 =
sin(θ)√

2
e−iφJ(`,m)aIsotropic`−1m+1, eTotal`−1m = cos(θ)H(`,m)aIsotropic`−1m ,

fTotal
`−1m−1 = −sin(θ)√

2
eiφJ(`,−m)aIsotropic`−1m−1, gTotal`+1m+1 = −sin(θ)√

2
e−iφK(`,m)aIsotropic`+1m+1

hTotal`+1m = cos(θ)H(`+ 1,m)aIsotropic`+1m , iTotal`+1m−1 =
sin(θ)√

2
eiφK(`,−m)aIsotropic`+1m−1.

(D.34)

By requiring statistical isotropy in the comoving basis (i.e. the cross-correlation
function for the CMB anisotropies is diagonal 〈a∗Isotropic`m aIsotropic`′m′ 〉 = δm m′δ``′C

TT
` ), we

have:

〈a∗Total`m aTotal`+1m〉 = 〈β
[
a∗Isotropic`m

(
(`+ 1)(cos(θ)H(`+ 1,m)aIsotropic`m )

)

+aIsotropic`+1m

(
(−(`+ 2) + 1)(cos(θ)H(`+ 1,m)aIsotropic`+1m )

)]
〉
, (D.35)

and the cross-correlation function used in chapter 3 is recovered:

〈a∗Total`m aTotal`+1m〉 = cos(θ)β
[
(`+ 1)H(`+ 1,m)CTT

`

+(1− (`+ 2))H(`+ 1,m)CTT
`+1

]
,

(D.36)

where θ is the azimuth angle, taking as a special case an applied boost in ẑ direction
we recover:

〈a∗Total`m aTotal`+1m〉 = βz

[
`H(`+ 1,m)CTT

` − (`+ 2)H(`+ 1,m)CTT
`+1︸ ︷︷ ︸

Relativistic aberration

+
(
H(`+ 1,m)CTT

` +H(`+ 1,m)CTT
`+1

)

︸ ︷︷ ︸
Doppler modulation

]
.

(D.37)



E | Noise impact over the boost likelihood

In this appendix we show the equivalence between the noiseless auto-correlation
and the noisy cross-correlation modes for the MCMC presented in chapter 5. However,
the likelihood employed for determine β allows to take into account the impact of
noise in CMB maps. As example, figure (E.1) shows the impact in the temperature
power spectrum by including isotropic noise with a RMS of 64 µK pixel−1.

Figure E.1: Impact of noise in the temeperature power spectrum of the CMB. Boosted
CMB temperature power spectrum before including a random gaussian noise (blue),
after including the noise noise with a RMS of 64 µK pixel−1 (red), theoretical power
for the introduced noise (green) and extracted spectrum for a noise-only map template
(black).

In chapter 5, the posteriors have been estimated using as input for the likelihood
noiseless pixelized maps. In real data, these maps contain a certain amount of noise,
usually not even uniform across the sky. It is common, however, to overcome the prob-
lem of modeling the noise contained in the input maps by working on cross-correlation
mode between maps measured at different frequencies and, therefore, containing in-
dependent noise realizations. In that situation, the average cross-correlation noise is
zero and, in practice, results obtained in noiseless auto-correlation mode should be
equivalent to those obtained in noisy cross-correlation mode. Figure (E.1) proves this
point by showing the behavior of the likelihood around its maximum in the harmonic
parameter space {β1N}. The widths of the curves associated to these two modes are
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consistent. A third case is shown to better understand the effect of noise, the one la-
beled as "64 µK auto-correlation mode". The effect of the noise is, of course, increase
the width of the likelihood, that is, degrade the resolution in β1N .

Figure E.2: Normalized likelihood slices for three different modes of correlating CMB
maps in the Metropolis-Hastings algorithm used in chapter 5. No noise applied (Red),
by applying 64µK per pixel in the MCMC with auto-correlation mode (blue), and the
same slices by using the cross-correlation mode (Green) against the true fiducial value
used in simulations (dashed lines). Notice that all the likelihood slices peaks within 1σ
region in β1N parameters.



F | Harmonic to real space transformation rules

Following [15], the dipolar direction of the boosting velocity β can be expressed
in terms of the harmonic components of β1N :

β · n̂ =
1∑

N=−1

β1NY
1
N(n̂), (F.1)

where the n̂ is the line of sight direction of the observer, and β is the boosting vector
velocity connecting observer reference frame and CMB frame.

β =

√
3

4π

√
β2
10 + 2Re(β2

11) + 2Im(β11)2, (F.2)

b =
π

2
− cos−1

[β10
β

√
3

4π

]
, (F.3)

l = − tan−1
[Im(β11)

Re(β11)

]
, (F.4)

where β, l and b are the module of the boosting velocity vector β, b is the colatitude,
and l is the longitude in galactic coordinates. where the relation β∗1−1 = β11 has been
used.
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