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Resumo

O formalismo de medições fracas explora a simetria temporal da teoria quân-
tica. Dentro deste panorama, consideráveis avanços têm sidos feitos em relação à
medição de fases geométricas. No entanto, o problema têm sido limitado a apenas
uma medição. Neste trabalho, exploramos o problema, extendendo o formalismo para
uma sequência de medições. Exploramos ainda uma extensão do formalismo de fase
geométrica não-Abeliana em sequências de medições incompletas a fim de incluir es-
tados de altas dimensões no contexto das medições fracas. Para isto, nos focamos
em medições sequenciais de projetores não compatíveis e combinamos a ideia de
medições fracas e fase geométrica não-Abeliana. Neste sentido, encontramos que a
fase geométrica não-Abeliana é importante para ganhar informação sobre o espaço de
estados e bem como a conexão entre eles, cenário favorável para reproduzir a matriz
de overlap e o loop de Wilson.

Palavras-chave: fases geométricas; medições fracas; informação quântica.



Abstract

The formalism of weak measurements exploits the time-symmetric feature of quan-
tum theory. Within this context, considerable insights have been gained concerning
the geometric phase. However, the current formalism has been limited to a single
measurement. We address this gap in the literature, extending the formalism to a
sequence of measurements. We also explore a natural extension of the Abelian geo-
metric phase in sequences of incomplete measurements to include high dimensional
quantum states in the weak measurement scenario. To achieve the goal, we focus on
sequential weak measurements of noncommuting projectors and combine the idea of
weak measurements and the notion of a non-Abelian geometric phase. In this way, we
find that the non-Abelian geometric phase in the weak measurement scenario can be
useful to gain information about the state space and the connection between states,
favorable to reproduce the overlap matrix and the Wilson Loop.

Key-words: geometric phases; weak measurements; quantum information .
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Chapter 1

Introduction

Quantum information science deals with knowledge from the most fundamental
level of nature. Over the past decades, the improvement of mathematical methods
and experimental techniques offer coherent control of quantum systems and their
interactions [1, 2].

The intensity of interactions defines the type and amount of information to be ex-
tracted from a quantum system at different scales of distance and temperature. The
concept of weak values is related to experimental setups with small coupling param-
eters between the system and the device. The weak measurements role provides an
interesting approach to measure quantum systems with minimum disturbance com-
pared to the strong measurements. Since its early development, weak measurements
present curious phenomena as well as a huge variety of experimental applicability [3].

Within this framework, the weak measurement of quantum ensembles provides
valuable insights and partial information regarding the probabilistic nature and foun-
dations of quantum theory. Recent applications cover quantum interferometric exper-
iments to measure the geometric phase, quantum state tomography, tests of Bell’s
inequalities, and diverse quantum information processing tasks [4–8].

Furthermore, the geometric properties of quantum systems draw considerable at-
tention due to their applicability to perform quantum computation. For instance,
the non-commutativity of non-Abelian geometric phases can be used to implement
a universal set of quantum gates, in what was called robust all-geometric quantum
computation [9, 10].

The combination of the concepts of geometric phase and weak measurements
allows us to retrieve quantum information on the state space, as suggested by Sjöqvist
et al. [11, 12]. To access this structure, we use the concept of geometric phase (GP)
formulated by Anandan and Pines [13]. The authors proposed a natural extension of
GP to the projective Hilbert space by removing the adiabatic condition. This means
no external parameter space is required to describe a cyclic evolution.

The present project aims to investigate the interplay between weak measurements
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and GP in both, Abelian and non-Abelian structures. After a preliminary exploration
of these topics, we extend the formalism developed in Refs. [11] and [14] to a sequence
of measurements and also to the spin coherent states (SCSs).

This dissertation is organized as follows: Chapter 2 gives a brief introduction to
the fundamental concepts in the literature of measurements. The next chapter looks
at the geometric phases. Chapter 4 introduces the main idea of the formalism of the
geometric phase in the weak measurement scenario. The main findings are given in
Chapter 5. A discussion of the results is given in Chapter 6. The final considerations
are shown in Chapter 7.
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Chapter 2

Retrieving quantum information

One of the key problems of quantum information is to retrieve information from
quantum systems. To achieve this goal, one approach is called quantum measure-
ment or test. In this chapter, we present a brief introduction to this process and its
formalism. We start with the quantum mechanics postulates, and the measurement
process, then introduce the two-state vector formalism. At the end of this chapter,
we describe how to perform weak measurements [15–18].

2.1 Fundamental concepts

The first postulate of quantum mechanics establishes the complex vector space
used to describe quantum mechanical systems and their interactions, called Hilbert
space and usually denoted by H [15].

Postulate 1: Any isolated physical system is described by its state vector, a ket
which belongs to the complex vector space with inner product H, known as the state
space of the system.

We encode the information into state vectors in H to deal with quantum systems.
This kind of information may be a silver atom with a definite spin orientation, a
polarization state of photons, etc [16]. The state vector on the space H is called ket
and represented by |⟩. It is also possible to form a linear combination of kets. Let us
consider a general quantum state |Ψ⟩ in the computational basis

|Ψ⟩ = ¸ |0⟩+ ˛ |1⟩ ; (2.1)

where coefficients ¸; ˛ ∈ C are probability amplitudes. This state has a two-
dimensional state space. Moreover, the kets |0⟩ and |1⟩ are important to quantum
information processing tasks, because they form possible basis states of a qubit. The
qubit is a mathematical object that can store information. Many interesting phenom-
ena rise from the coherent sum of coefficients or superposition, such as destructive
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interference [19, 20]
The bra provides the transpose conjugated of the state defined in Eq. (2.1)

⟨Φ| = ‹∗ ⟨Φ1|+ ‚∗ ⟨Φ2| ; (2.2)

where ‹∗ and ‚∗ are the complex conjugates of the probability amplitudes ‹; ‚ ∈ C,
respectively.

The space H is endowed with the inner product between two vectors |Ψ⟩ and |Φ⟩,
denoted by ⟨Φ|Ψ⟩ [21], which can be computed using the corresponding bra ⟨Φ|. The
overlap (inner product) between these states

⟨Φ|Ψ⟩ = ‹∗¸ ⟨Φ1|0⟩+ ‚∗˛ ⟨Φ2|1⟩ (2.3)

is a complex number. Note that, although the calculations depend on the basis one
chooses for H, the inner product depends only on |Ψ⟩ and |Φ⟩. If the overlap is zero,
then the states are said to be orthogonal.

To manipulate information, such as those contained in kets and bras, we need
operators. An operator P acting on any state of this system produces another state
P |Ψ⟩ [17]. Reciprocally, the Hermitian conjugate P† of the operator is defined by
the requirement that

⟨Ψ|P†|Φ⟩ = ⟨Φ|P|Ψ⟩∗ : (2.4)

Of particular interest are the Hermitian operators. This kind of operator is associ-
ated with physical observables, under the requirement that P† = P. The eigenvalues
–n of a Hermitian operator P satisfy the eigenvalue equation

P |–n⟩ = –n |–n⟩ ; (2.5)

where the |–n⟩ are eigenvectors of that operator and –n real numbers. With this
background, the next postulate establishes the relation between kets that evolve in
time, using operators.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state (2.1) at time t1 is related to the system at time t2
by a unitary operator U

|Ψ′⟩ = U(t2; t1) |Ψ⟩ : (2.6)

Following the discussion, we can define an equivalent version of Postulate 2, given
by the evolution in continuous time. The equation that governs the time evolution of
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a given quantum system is called the Schrödinger equation

i~d |Ψ⟩
dt

= H |Ψ⟩ ; (2.7)

where H is a hermitian operator known as Hamiltonian of the system. This operator,
depending on the system, can be time-dependent or time-independent. In Sections
(2:3) and (2:4) we deal with Hamiltonian and time-evolution operators in the weak
measurement scenario.

2.2 Measurements

A measurement is a physical process corresponding to an evolution that a quantum
system can undergo. This mechanism allows us to retrieve classical information from
a quantum state. This is exactly what the Postulate 3 establishes.

Postulate 3: Quantum measurements are described by a set {Mk} of measure-
ment operators. These are operators acting on the state space of the system being
measured.

The measurement operators satisfy the completeness equation to preserve proba-
bilities X

k

M†
kMk = I; (2.8)

where I is the identity matrix.
An ideal measurement of the observable M associated with the operator M, for

instance, will yield as its result one of the real eigenvalues of M

| ⟩ =
X
n

mn |–n⟩ ; (2.9)

where mn are eigenvalues of M. The probability of getting the outcome –n is then
|mn|2. Note that this decomposition is exactly what Eq.(2.5) establishes.

For instance, an intuitive example of a measurement is the measurement of a
qubit, Eq.(2.1), on a computational basis, {|0⟩ ; |1⟩}. The operators M0 = |0⟩ ⟨0|
and M1 = |1⟩ ⟨1| are associated with the two possible outcomes. The probability to
get the outcome 0 is given by

p(0) = ⟨Ψ|M†
0M0|Ψ⟩ = |¸|2: (2.10)
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The state of the system after the measurement process is

M0 |Ψ⟩q
⟨Ψ|M†

0M0|Ψ⟩
=

¸

|¸| |0⟩ : (2.11)

The measurement of the states (2.1) and (2.10), leads to a probabilistic result.
The probabilistic rule that governs the evolution of a quantum system after the mea-
surement is called the Born rule, See Eq.(2.10). The rule says that the state may
be found in the state |0⟩ with probability |¸|2 and into the state |1⟩ with probability
|˛|2. The rule guarantees the reproducibility of tests, i.e., the consistency of results
for many repetitions of the test.

A special class of measurements is known as projective measurements, described
as observables such as P. The observable has a spectral decomposition [15]

P =
X
k

k |pk⟩ ⟨pk | ; (2.12)

where |pk⟩ ⟨pk | is the projector onto the eigenspace of P with eigenvalue k . The
possible outcomes of the measurement correspond to the eigenvalues, k , of the ob-
servable.

It is worth noting that the state of the system after measurement is different from
the initial state. The device interacts with the physical system under study, in such a
way that a property of that system affects a corresponding property of the apparatus,
such as the pointers’ position and momentum. We call this kind of measurement a
von Neumann or strong measurements [18].

We have different tools to predict the outputs of measurements. Here, we are
interested in probability distributions or expected values of observables. However, the
most common way to do this is by evaluating the expectation value of the operator
P1 concerning the state |Ψ⟩

⟨P1⟩ =
⟨Ψ|P1|Ψ⟩
| ⟨Ψ|Ψ⟩ |2 ; (2.13)

where the expectation value ⟨P1⟩ corresponds to the mean value of the physical
observable represented by P1 when the system is described by the wave function Ψ.
As mentioned, this property is the mean or average of numerous measurements of P1

concerning the state Ψ.
A different approach proposed by Ref. [14] is to read out information immedi-

ately after the measurement process. Sometimes, the Hilbert space H is an infinite-
dimensional space, such as the set of square-integrable functions. In this case, kets
are also known as wave functions and are denoted by Ψ. The measurement device
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is also supposed to be described by an infinite-dimensional Hilbert space, and the
characteristic that we are interested in is described by a value q, generally called the
pointer position, although it can be implemented physically in many ways.

To measure the pointer position q after a von Neumann measurement (pre/post-
selection),

⟨q⟩ =
´
q|ΨM1|2dq´
|ΨM1|2dq

; (2.14)

where ΨM1 is the space distribution of the coupled wave function of the system and
the measurement device.

This integral can be interpreted as the average value of the pointer position for
a given ensemble ΨM1 . It is worth noticing that we evaluate the deviation of the
pointer distribution immediately after a strong measurement. The post-selection can
retrieve information about the past of a quantum state. In the next section, we
introduce the formalism that leads to the concept of weak measurements and pre-
and post-selection.

2.3 Two-State Vector formalism

Here, we introduce the two-state vector formalism, a time-symmetric formulation
of measurements in quantum theory. Our formalism is based on Ref.[22]. We also
deal with the basic formalism introduced in Section (2:1).

The von Neumann measurement allows us to get information immediately after
the measurement process. However, there are many situations in which we want to
deal with the system’s information at a specific time, such as in the relative past.
The answer relies on the time-symmetric formulation of quantum theory known as
two-state vector formalism (TSVF).

Based on the idea of "reduction of the wave packet", this scheme uses the inter-
play between the past and future of the strong measurement process with minimum
disturbance in-between them. The TSVF combined with the notion of weak mea-
surements provides a powerful description and tool to recover information about a
quantum system at a time t. Particularly, this combination leads to interesting phe-
nomena and various experimental applications.

The state |Ψi⟩ which is obtained from a von Neumann measurement of an ob-
servable P at a time t1 [23]

|Ψi⟩ = U(t; t1) |Ψa⟩ = e
−i

´ t
t1
Hdt |Ψa⟩ (2.15)

is called a pre-selected state, with t1 < t and |Ψa⟩ as the initial state of the system
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immediately before the von Neumann measurement.
The measurement for a backward evolving state arriving from the future

⟨Ψf | = ⟨Ψb|U†(t; t2) = ⟨Ψb| e i
´ t
t2
Hdt
; (2.16)

where ⟨Ψf | is called post-selected state. The state ⟨Ψb| is the system’s initial state
at the time immediately before the measurement process.

The measurement disturbs the system, projecting its state into the eigenvectors
(subspace) of the measurement operator. Then, after each strong measurement per-
formed on the system, both states, Eqs.(2.15) and (2.16), are completely determined.
The mathematical structure of quantum theory allows us to combine the system’s his-
tory from both measurements.

We consider now the reduced wave packet at an intermediate time t

| (t)⟩ = ⟨Ψf | |Ψi⟩ ; (2.17)

in between the two strong measurements, where the state |Ψi⟩ is defined by the results
of (strong) von Neumann measurements performed in the relative past (pre-selection),
Eq.(2.15) at the time t1 < t of a backward evolving quantum state ⟨Ψf | defined by
the results of strong measurements performed on this system in the future, Eq.(2.16)
at t2 > t (post-selection). Henceforth, we omitted the time in the notation.

In summary, we deal with the information obtained at an intermediate time in
between the pre-selection and post-selection processes.

Figure 2.1: Two-state vector formalism in the weak measurement scheme, | ⟩,|Ψi⟩,
and ⟨Ψf | are the generalized quantum state, pre-selected and post-selected states,
respectively.

Fig. (2.1) shows the central idea of the reduced wave packet. It is possible to
recover the expressions for prediction from time-symmetric expressions by separating
the final (initial) selection procedure from the measurements under consideration, by
performing strong measurements. The formalism differs from the usual scalar product
between quantum states. For instance, Ref. [24] showed that weakly measuring some
systems can minimize decoherence effects.

Note that the described formalism allows us to recover different steps of the history
of a system by performing certain types of measurements. We focus on this special
type of measurement in the next section.
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2.4 Weak measurements

Revisiting Section (2:2), Eq.(2.14) shows the pointers’ mean after the measure-
ment process. Here, we describe how to get the information about the coupled system
ΨM1 using the TSVF.

The weak value of an operator P is a physical property of a quantum system within
the minimal disturbance scenario, in the time interval between two von Neumann
measurements, using TSVF. The notion of weak value leads to fascinating and strange
features. For instance, Ref. [25] showed that the outcome of a weak measurement
for the spin component is 100. The result is known as the amplification effect. The
reader can understand how it works in the following paragraphs.

The concept of the weak value was introduced by Aharonov, Albert, and Vaidman
[25] in the context of the TVSF. Let an ensemble of particles prepared in the initial
state |Ψi⟩ and the final state |Ψf ⟩. The system and device interact during a finite
time as described by the Hamiltonian

H(t) = −g(t)QPB; (2.18)

where g(t) is a time-dependent coupling function, Q is an operator associated with the
canonical variable of the measurement device and PB acts on the system of interest.
We focus on the case where the weakly measured observable PB is a projector.

At a certain time in between preparation and post-selection, we switch on the inter-
action (2.18), in which the initial state of each measurement apparatus is [1=

√
∆(2ı)1=4]

e(−q
2=4∆2). After the post-selection, the reduced wave packet (2.17) is given by

⟨Ψf | e−i
´
g(t)qPBdt |Ψi⟩ e−q

2=4∆2

(2.19)

with measurement strength

» =
1

~

ˆ
g(t)dt; (2.20)

where 2ı~ is Planck’s constant.
The measurement strength quantifies the amount of correlations between the

system and the measurement device. Now, if the disturbance is sufficiently small, the
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spread (∆) is also small. Then, we expand the exponential term

⟨Ψf | e−i»qPB |Ψi⟩ e−q
2=4∆2

∼= ⟨Ψf |Ψi⟩
»
1 +

iq»(⟨Ψf |PB|Ψi⟩)
⟨Ψf |Ψi⟩

–
e−q

2=4∆2

∼= ⟨Ψf |Ψi⟩ e
h
iq»(⟨Ψf |PB |Ψi ⟩)

⟨Ψf |Ψi ⟩

i
e−q

2=4∆2

∼= ⟨Ψf |Ψi⟩ e [iq»(PB)w ]e
−q2=4∆2

(2.21)

for ∆ such that

∆»≪ | ⟨Ψf |Ψi⟩ |
(| ⟨Ψf |PB|Ψi⟩ |1=n)

; (2.22)

where

(PB)w =
⟨Ψf |PB|Ψi⟩
⟨Ψf |Ψi⟩

=
⟨Ψf |b⟩ ⟨b|Ψi⟩

⟨Ψf |Ψi⟩
(2.23)

is the first order of the weak value of the operator PB concerning the pre-selected
state |Ψi⟩ and the post-selected state |Ψf ⟩ [3].

The weak value defined in Eq.(2.23) is a complex number, i.e., has real and
imaginary parts. In the following paragraphs, the reader may note that these real and
imaginary parts are related to the deviations on the pointers.

Note from Eqs. (2.23) and (2.13) that although conceptually similar to expec-
tation values, these weak values may show curious behavior. For instance, if the
overlap between the final and initial states ⟨Ψf |Ψi⟩ is a small number, i.e., the states
are non-orthogonal, the weak values can assume large values. This effect is called the
amplification effect and is very useful in signal amplification schemes.

The resulting wave packet  (q) of the measuring apparatus reads

 (q) = e iq»Re(PB)w e[−
1

4∆2 (q+2»∆2Im(PB)w )2]: (2.24)

The wave packet is related to the weak values. The meaning of ’weak’ is then related
to defining the strength of interaction, Eq.(2.22). However, the weak measurement
scheme also depends on the relation of pre- and post-selected states, |Ψi⟩ and ⟨Ψf |,
to the observable PB, and the relation of these states to the operator Q for an
interaction such as defined as in Eq. (2.18). This fact is of summary importance for
the scheme developed in Section (4.1), in which we are interested in the read-out of
the pointer device.

The post-selection procedure causes a shift in the position of the pointer by a
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factor

‹q = −»∆2Im(PB)w (2.25)

and its momentum by

‹p = ~»Re(PB)w ; (2.26)

where the shift in the canonical variables of the measurement apparatus is related to
the real and imaginary parts of the weak values [11]. In the following chapters, we
present a method to measure the geometric phase by combining real and imaginary
parts of the weak values. From (2.22), the uncertainty for p for each measurement
apparatus is 1=2∆», much bigger than the measured value. However, for sufficiently
large N , then (1=

√
N)∆p ≪ (PB)w can be ascertained with arbitrary accuracy.
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Chapter 3

Geometric phase

In this chapter, we briefly review the broad perspectives of the non-Abelian geo-
metric phase. When a quantum system evolves under a cyclic evolution it may acquire
an additional geometric phase (GP) in contrast to the dynamical one. The abelian
and non-abelian geometric phases are defined as quantum holonomies. Sjöqvist [12]
showed that these GPs appear naturally in interferometric schemes. Moreover, these
holonomies arise in different interferometric experiments with photons, condensed
matter systems, and cold atoms [2].

Berry demonstrated that the GP arises from the geometric structure of the state
space after a cyclic evolution in the adiabatic regime. Simon connected Berry’s GP
with the holonomy of a closed path. Wilczek and Zee demonstrated that non-Abelian
gauge structures arise in simple quantum systems [26–28] .

A natural extension of the GP for the non-adiabatic scheme was given by Anandan
and Pines [13]. This generalization of the GP allows us to explore the relation between
the Berry potential and the curvature of projective Hilbert spaces. Here, we would
like to highlight that the holonomy can be interpreted as the indicator of confining
behavior in lattice gauge theory [10, 29–32].

3.1 The adiabatic geometric phase

This section is based on Berry’s article [26]. The notion of adiabaticity relies on
dynamic effects when the system is submitted to slow changes. The quantum me-
chanical version of the adiabatic theorem describes the long-time behavior of solutions
of the Schrödinger equation with the Hamiltonian slowly evolving in time.

To speak about slow changes in time one needs an intrinsic time scale to determine
what slow and fast mean. In quantum mechanics, the intrinsic time scale is usually
determined by the energy gaps in the spectrum. If the spectrum is non-degenerate
then the gap condition ( |En(t) − Em(t)| > 0, i.e., we can order the eigenenergies)
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is automatically satisfied.
During a cyclic quantum evolution, the slow changing of external parameters gives

rise to an adiabatic GP. Let the Hamiltonian H be slowly changed by varying external
parameters R = (r1; r2; :::), such that H(R). These parameters can be viewed as
points of a manifold M, such that R = (r1; r2; :::) ∈ M, then M is mapped to H(R).
We require that the spectrum of H be non-degenerate. Otherwise, the eigenstates
will not provide a unique definition of the GP. The time evolution is governed by the
Schrödinger equation [10]

H(R(t)) | (t)⟩ = i~ d
dt

| (t)⟩ : (3.1)

The eigenstates |n(R)⟩ of H(R) satisfy

H(R) |n(R)⟩ = En |n(R)⟩ (3.2)

with eigenergies En(R). The vector |Ψ(0)⟩ = |n(R(0))⟩ is the solution of the
Schrödinger equation of the lowest energy of H. In the adiabatic limit, the vec-
tor |Ψ(0)⟩ evolves at t into

| (t)⟩ = e
−i
~

´ t
0 dt

′En(R(t))ei‚n(t) |n(R(t)⟩ = eiffiei‚n(t) |n(R(t)⟩ ; (3.3)

where the quantity ffi is the dynamical phase. However, the term ‚n(t) is non-
integrable, i.e., ‚n(t) cannot be written as a function of R and may assume different
values for each t.

We can evaluate ‚n(t) making the requirement that | (t)⟩ must satisfy the
Schrödinger equation. The direct substitution of (3.3) into (3.1) leads to

d

dt
‚n(t) = i ⟨n(R(t))|∇R|n(R(t)⟩ ·

d

dt
R(t) (3.4)

The total phase shift of (3.3) around the closed path C is given by

| (t)⟩ = e i‚n(C)e
−i
~

´ t
0 dt

′En(R(t)) | (0)⟩ ; (3.5)

where we define the GP

‚n(C) = i

˛
C
⟨n(R)|∇R|n(R)⟩ · dR (3.6)

as the Berry phase. Note that the closed integral in parameter space is dependent on
the traversed loop.
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We may rewrite (3.6) as,

‚n(C) = i

˛
C
An(R) · dR; (3.7)

where the quantity An(R) is called Berry connection coupled to the slow degrees of
freedom. The Berry connection is a vector potential as in classical electrodynamics
and its integral around C is analog to the magnetic flux [28].

Non-Abelian geometric phase

Simon [27] was the first to conciliate the concept of holonomy and the GP. The
main idea concerns the parallel transport along loops in a fiber bundle. This means
that in the geometric view, a loop corresponds to a cyclic path traced by a tangent
vector at R of a manifold M endowed with a linear combination, the idea of parallel
transportation along a closed curve [33].

In general, when a vector is parallel transported along a loop, the resulting vector
is different from the original one. The difference can be related to the curvature of
the connection between them. The geometric measure of the failure of the resulting
vector to coincide with the initial one is known as a holonomy. This scheme was used
to describe the effects of the two-dimensional electron gas in a uniform magnetic
field, known as the quantum Hall effect [33, 34].

Consider the same loop C(t) and a choice of basis |n(R(0))⟩ of the previous sec-
tion. If the vector |n(R(0))⟩ is parallel transported along this curve, the single-valued
GP (3.6) is equivalent to the holonomy associated with this connection. Wilczek
and Zee [28] proposed an extension of GP to the non-Abelian structure, which is a
matrix-valued holonomy.

Let the Hamiltonian H(R) depending on the set of external parameters. For an
arbitrary set of basis | a(t)⟩ we can set

H(R) | a(t)⟩ = 0 (3.8)

where this choice can be made locally. The GP is a global feature of the quantum
evolution, in which the external parameters are picked up locally along the path in
state space [10].

In the adiabatic limit, we consider the solutions of the Schrödinger equation (3.1)
such that |”a(0)⟩ = | a(0)⟩. Naturally, we can decompose a general state at t

|”a(t)⟩ = Uab(t) | b(t)⟩ ; (3.9)

and where the eigenstate |”a(t)⟩ is normalized .
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The goal is to define the holonomy U(t) using the previous assumption (3.9). The
normalization condition requires thatfi

”b|
d

dt
”a

fl
=

fi
”b|

d

dt
Uac |”c

fl
+

fi
”b|Uac |

d

dt
”c

fl
= 0; (3.10)

where the vector potentialfi
 b|

d

dt
 a

fl
=

fi
”b|U−1 d

dt
U|”a

fl
= Aab; (3.11)

where Aab is matrix-valued and depends on the geometry of the space of degenerate
levels. We can write the above equation in terms of a path-ordered integral

U(t) = Pe
´ t
0 A(fi)dfi : (3.12)

Note that the ordered integral depends only on the path and not on its parametriza-
tion. In particular, for a closed path, the integral is the Wilson Loop (WL), which is
gauge invariant.

If we set a different set of basis

| ′(t)⟩ = Ω(t) | (t)⟩ ; (3.13)

where Ω(t) is a function of t, i.e., Ω(t) is unchanged under local phase transformations
of | (t)⟩.

The A field transforms as

A′(t) =
d

dt
ΩΩ−1 + ΩAΩ−1; (3.14)

as a proper gauge potential.

3.2 Non-adiabatic geometric phase

In this section, we present the mathematical formalism developed in Refs. [13, 35,
36] concerning the non-adiabatic GP. First, we explain the formalism introduced in
Refs.[35, 36] and then, we explore the formalism of the non-adiabatic GP, introduced
by Anandan and Pines [13].

The projective Hilbert space PH represents the set of all possible physical states
of the system. Each state represents a point in that space and the evolution of the
system can be described by a curve in PH. For a finite-dimensional Hilbert space
H(n), the space states PH is a complex projective space (n − 1)− dimensional.

Interference patterns can occur during the evolution of the system, in which state
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vectors interfere constructively and destructively. Hence, the probability amplitude
of transition during a measurement is obtained from the overlap (Eq.(2.3)) between
these states on H. Therefore, the path of any state vector in H can be obtained
from a knowledge of the motions of a complete set of state vectors.

Under a cyclic evolution of states, the state space is a curve C in H, which projects
to a curve C′ in PH with the projection map: Π : H → PH, that maps any state in
H into the ray that contains it. For closed curves C′, the process is called cyclic and
the state that undergoes this evolution will be called a cyclic state. During such an
evolution, the state vector acquires a phase factor, as shown in Ref. [35]. Now, let
us give some mathematical background about the process.

Consider the time-dependent Hamiltonian H = Vn(t) ⊕ Vm(t), resulting from
the decomposition of a (n + m)− dimensional Hilbert space into two subspaces of
dimensions n and m, respectively.

If the subspace Vn undergoes cyclic evolution, we can write Vn(fi) = Vn(0).
Here, we are interested in the states and the connection between them in that sub-
space. Then, consider a set of orthonormal basis

n
| ̃a⟩ ; a = 1; : : : n

o
of Vn(t), with

| ̃a(t)⟩ = | ̃a(0)⟩ for every a. Another possible choice is the orthonormal basis
{| a(t)⟩ ; a = 1; : : : n} which evolves in time according to the Schrödinger equation,
Eq.(3.1)

i~ d
dt

| a(t)⟩ = H | a(t)⟩ (3.15)

with | a(0)⟩ = | ̃a(0)⟩. Then we can associate a unitary evolution (2.6)

| a(t)⟩ =
nX
b=1

Uba | ̃b(t)⟩ ; (3.16)

where Uba is the connection between these states. Substituting Eq.(3.16) into Eq.
(3.15), we obtain the path-ordering integral

U(t) = P exp

„ˆ t

0

i(Aab −Kab)

«
; (3.17)

where Aab = i ⟨ ̃a|d=dt| ̃b⟩ and Kab = (1=~) ⟨ ̃a|H| ̃b⟩ are hermitian matrices and
P represents the path ordering linked to this transformation. The geometric quantity
Aab depends on the space states. A similar development was given for the adiabatic
case in Eqs.(3.11) and (3.12).

A natural choice of basis is | ̃′
a(t)⟩ =

Pn
b=1Ωba(t) | ̃b(t)⟩, with Ωba being a
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unitary operator. The transformation of Aab and Kab is given by

A′ = iΩ†Ω̇ + Ω†AΩ;

K ′ = Ω†KΩ: (3.18)

The next step is to relate a basis manifold for the subspaces and then, set a
connection between them. We identify the Grassmann manifold Gn;m as the set of
all n−dimensional subspaces of H. A natural option is to choose an open covering
{U¸} of Gn;m such that on each U¸,

n
| ̃a⟩ ; a = 1; : : : n

o
are smooths fields, with

their values forming an orthonormal basis of Vn.
Therefore, the matrix i ⟨ ̃a|d | ̃b⟩ is linked to the coefficients of a non-Abelian

connection or gauge field on the space Gn;m. If a state vector | ⟩ ∈ Vn(t) is parallel
transported with respect to this connection, then

⟨ ̃a|d | (t)⟩ = 0; (3.19)

with a = 1; 2; : : : n.
In terms of differential geometry, this connection is in a vector bundle En;m over

Gn;m such that the fiber of En;m over Vn ∈ Gn;m is Vn itself. Since the subgroup of
the unitary group U(n + m), that acts on H, that leaves Vn(t) invariant is U(n) ×
U(m),Gm;n may also be taken to be U(n;m)=U(n)× U(m).

Now, consider a set of n-orthogonal vectors {|bi⟩} of Vn ∈ Gm;n with associated
projection operator

P =
NX
i=1

|bi⟩ ⟨bi | ; (3.20)

where the operator P is independent of the chosen orthonormal basis and therefore
invariant under the unitary group U(n) between the orthonormal basis of Vn.

Then the manifold Gm;n can be connected to the set of rank-n projection operators
P uniquely associated with the subspaces Vn. The set of (n + m)-frames can be
identified with the group U(n+m), and Vn with the equivalence class of (n+m)-frames
each consisting of n vectors in Vn andm vectors in the orthogonal complement Vm of Vn
in H. We can also identify the Grassmann manifold as Gm;n = U(n+m)=U(n)×U(m).

The Stiefel manifold Sm;n is the set of n-frames which Sm;n = SU(n+m)=SU(m).
The idea is to interpret the holonomy in terms of the connection of Stiefel-bundle
over a Grassmann manifold. Then, U(m + n) is a U(m)-principal fiber bundle over
Sm;n with projection map Φ, while Sm;n is U(n)-principal fiber bundle over Gm;n with
U(n)× U(m) as the structure group and projection map ffl = ΠΦ.

There is a connection in the bundle Sm;n over Gm;n whose connection one-form with
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respect to a field of n-frames {|bi⟩} on Gm;n is Bi j = i ⟨Ψ̃i |dΨ̃j⟩. The orthonormality
of {|bi⟩} implies that Bi j is a Hermitian matrix, i.e., is in the Lie algebra of U(n).

Anandan [36, 37] produced extensive works showing that this connection gives
the non-Abelian GP in the cyclic evolution in a closed curve C in Gm;n. The formalism
can be extended to n successive incomplete measurements. Two parallel bases in
subspaces corresponding to P and P ′ ∈ Gn;m are related by parallel transport along
the geodesic C joining P and P ′. For more technical details, see Ref. [13] .
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Chapter 4

Geometric phase in weak
measurements

Weak measurements are performed in experimental setups with precise control
over the interaction between the system and the measuring device. For instance,
it can be realized in interferometric experiments with photons encoding different
polarization states [38]. We present different approaches to measure the GP using
weak measurements. First, we implement the formalism of sequential measurements
in Refs. [11, 14] for a single measurement. After that, we focus on the non-Abelian
geometric phase, using the formalism formulated in Ref. [12].

4.1 Abelian geometric phase

Ref. [14] showed that the deflections on the pointers devices distributions are
related to the real and imaginary parts of the weak values. These results draw our
attention to focus on the mixed products of positions and momenta to measure the
GP.

Let an ensemble of particles S prepared in the initial state

ΨS;M1 = e−igp1P1U |Ψi⟩S ffi(q1); (4.1)

where the system and device are coupled by g and evolves under U from |Ψi⟩. The
measurement of the observable Pi causes a shift in the pointer momentum p1 and in
the initial distribution ffi(q1) .

The system and measuring device interact during a finite time interval according
to the Hamiltonian

H(t) = g(t)P1 ⊗P1; (4.2)
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where P1 is a one-dimensional projector , the time-dependent coupling parameter g
turns on and off the interaction between the measurement device and the measured
system and P1 is the pointer momentum operator. Conditioned on the post selection
of the state |Ψf ⟩, we get

 M1 = ⟨Ψf |We−igp1P1U |Ψi⟩S ffi(q1); (4.3)

where the system evolves under U from |Ψi⟩ to the point where P1 is measured, and
finally under W to |Ψf ⟩. For simplicity, from now on we take U;W = 1.

Under the assumption of a small coupling parameter g , we expand the exponential
term as

 M1 = ⟨Ψf |
„
1− gp1P1 −

g 2

2
p21P2

1 + : : :

«
×e−igp1P1 |Ψi⟩ffi(q1): (4.4)

Using p = −i@=@q (~ = 1), we write

 M1 = ⟨Ψf |Ψi⟩ [ffi(q1)− g(P1)wffi
′
(q1) +

g 2

2
(P1)

2
w

×ffi′′
(q1) + O(g 3)]; (4.5)

where

(P1)w =
⟨Ψf |P1|Ψi⟩
⟨Ψf |Ψi⟩

(4.6)

is the weak value of the operator P1 with respect to the pre and post-selected states
|Ψi⟩ and |Ψf ⟩, respectively.

As mentioned, the post-selection causes a shift in the pointer device position. To
analyze the distribution, we consider the expectation value of q1 (2.14)

⟨q1⟩ =
´
q1| M1|2dq1´
| M1|2dq1

: (4.7)

To evaluate the deviation, we assume that the initial pointer distribution ffi is real
and its mean is zero, i.e.,

´
qffi∗(q)ffi(q)dq = 0. Also, we assume that the pointer

normal distribution is normalized, i.e.,
´
ffi2(q)dq = 1. These assumptions leads to

keep only the first order in g , and we get

⟨q1⟩ = −g [(P1)w + (P1)w ]

„ˆ
q1ffi(q1)ffi

′
(q1)dq1

«
: (4.8)
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Integrating (by parts) over the position space,

ˆ
q1ffi(q1)ffi

′
(q1)dq1 =

ˆ
q1ffi

2(q1)dq1 −
ˆ
q1ffi(q1)ffi

′
(q1)dq1 −

ˆ
ffi2(q1)dq1;

(4.9)

where
´
q1ffi

2(q1)dq1 = 0 and
´
ffi2(q1)dq1 = 1 and then

ˆ
q1ffi(q1)ffi

′
(q1)dq1 = −1

2
: (4.10)

Also, using the properties of complex numbers [39, 40]

z + z = 2Re(z)

i(z − z) = −2Im(z): (4.11)

Then, we get

⟨q1⟩ = gRe[(P1)w ]: (4.12)

Reciprocally, writing ⟨q1⟩ in the momentum basis representation, ffi(q1) = ffi(p1)

and ffi′
(q1) = −ip1ffi(p1), its momentum is given by

⟨p1⟩ = 2gv Im[(P1)w ]; (4.13)

where v =
´
p2ffi(p)dp is the velocity distribution. As mentioned, the deviations in

the pointer device are related to the real and imaginary parts of the weak values [11].
Then, we may write the GP

∆p = arg[(P1)w ] (4.14)

as the argument of the weak values.
Finally, with the results in Eqs. (4.12) and (4.13), we get

∆p = arctan

„
⟨p1⟩

2v ⟨q1⟩

«
: (4.15)

Notice that by measuring the shift in position and momentum of the measuring device
immediately after the weak interaction, we determine the Pancharatnam or Abelian
geometric phase, as shown in Ref. [41]. Similar results obtained in Ref. [11] address
the measure of the geometric phase in the weak measurement scenario. However, the
formalism has been restricted to a single measurement. As a result, we extend the
formalism to two measurements.
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4.2 Formalism of holonomic scheme

Let us begin the discussion by introducing the concept of discrete holonomy.
Following Ref. [12], consider a cyclic sequence C of q+1 projections (q of which are
distinct). We can construct the geometric quantity ΓC

ΓC = Pm : : :P1; (4.16)

which can be viewed as a sequence of projective filtering measurements.
In the N-dimensional Hilbert space, a projection onto a K-dimensional subspace

pb, spanned by a (nonunique) frame Fb = {|bk⟩}Kk=1 can be realised with a projector
Pb. The set of frames constitutes a Stiefel manifold, which is a fiber bundle with the
Grassmanian as the base manifold and the set of K-dimensional unitary matrices as
fibers. The overlap matrix is defined as

(Fc |Fb)kl = ⟨ck |bl⟩ ; (4.17)

the connection between the subspaces.
The product of overlap matrices of a sequence of projective measurements

D = (F1|Fq)(Fq|Fq−1) : : : (F2|F1) (4.18)

defines the holonomy (non-Abelian GP) of the system

U = |D|−1D (4.19)

where |D| =
√
DD† is the positive part of D.

4.2.1 Holonomic scheme and weak measurements

Arecchi et al. [42] introduced the concept of atomic coherent states of two-
level atoms. The spin coherent states (SCSs) are defined by the angular momentum
operator in the Hilbert space as irreducible representations of some symmetry Lie
group. Making the spin as a degree of freedom, we can characterize the states by
a vector of spin direction. Here, we apply the concept of direct holonomy and the
three-spin-1

2
setting formalism to the general spin j developed in Refs. [9, 43].

Let us introduce the main idea. Consider a measuring device described by the unit
vector n = (sin„cosffi; sin„sinffi; cos„) in spherical coordinates. In the weak measure-
ments scenario, the filtering measurements select the maximal angular momentum
quantum numbers, m = ±j . The selection corresponds to the 2-rank operators
Pn¸ = |j ;n¸⟩ ⟨j ;n¸| + |j ;−n¸⟩ |j ;−n¸⟩ =

P
k=± |j ; kn¸⟩ ⟨j ; kn¸|. The use of SCSs
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simplifies the subsequent calculations since |j ;n⟩ can be viewed as a product of 2j
copies of spin-1

2
state |1

2
;n⟩ and |−j ;n⟩ similarly as 2j copies of |−1

2
;n⟩ [9, 44].

The overlap matrix of an ensemble of particles with the pre- and post-selected
states, Fb = span {|bk′⟩}Kk=1 and Fc = span {|ck′′⟩}Kk=1 is defined as

(Fc |Fb)k ′′;k ′ = ⟨ck ′′|bk ′⟩ ; (4.20)

which is the connection between the subspaces. For the SCCs, the overlap matrix
takes the form [44]

(F(„c ; ffic)|F(„b; ffib)) =

 
R(c; b) S(c; b)

(−1)2jS(c; b)∗ R(c; b)∗

!
; (4.21)

where

R(c; b) =

»
cos

„
„c − „b

2

«
cos

„
ffic − ffib

2

«
+icos

„
„c + „b

2

«
sin

„
ffic − ffib

2

«–2j
;

S(c; b) =

»
sin

„
„c − „b

2

«
cos

„
ffic − ffib

2

«
−

isin

„
„c + „b

2

«
sin

„
ffic − ffib

2

«–2j
; (4.22)

are rotations by the angles („; ffi).
For any j ∈ 1

2
N, we can find an irreductible representation of SU(2). If j is a

half-odd integer, then a projective representation of SO(3) exists. This means that
we describe each overleap as

(F(„c ; ffic)|F(„b; ffib)) = »Uc;b; (4.23)

where Uc;b is the relative phase associated to the transformation. In interferometric
setups, the relative phase can be measured as oscillations caused by local manipula-
tions of the internal states of the interfering particles.

Also » is defined by

» =
p

|R(c; b)|2 + |S(c; b)|2 (4.24)

the transition probability associated with this transformation.
Moreover, the number » has an interesting interpretation in interferometric schemes

and can be viewed as the visibility of such experimental devices. In order to associate
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the non-adiabatic GP to the product of overlap matrices, we require that the overlap
matrices are unitary up to a multiplicative factor. On the contrary, it is only possible
to get the holonomy by performing unitary operations on the system [9, 12].
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Chapter 5

Results

Here, we formulate three different forms of writing the weak values. The first
consists of the TSVF in the vectorial form. In this context, we are interested in the
direction of the pointer’s device, i.e., the angles of the pre- and post-selected states
as well as the projection operator of the weak measurement as degrees of freedom.
The second represents the expectation values of the position and momentum of the
pointers devices, and lastly, the formalism in terms of the components or pre- and
post-selected states. The formalism can be extended to high-dimensional quantum
systems. For instance, it can be applied when a photon carries many degrees of
freedom.

5.1 Weak measurements and values

There is a non-trivial relation between the Abelian GP and the weak values. Here,
we explore the geometric properties of SCSs to measure the GP. In this section,
we write the pre- and post-selected SCSs, and the projection operator in terms
of vectors in spherical coordinates, |Ψi⟩ = |j ; k ′n⟩, ⟨Ψf | = ⟨j ; k ′′m| and Pn¸ =P

k=± |j ; kn¸⟩ ⟨j ; kn¸|, with the indices k; k ′; k ′′ = ± corresponding to different com-
binations of signs.

The overlap between two SCSs [18, 45]

⟨j ; k ′′m|j ; k ′n⟩ = e i jΦ(n;m)

„
1 + k ′′k ′n ·m

2

«j
; (5.1)

where n ·m is the scalar product between the vectors and Φ(n;m) is a real number.
Then, the weak values become

(Pn¸)w =
⟨j ; k ′′m|j ; kn¸⟩ ⟨j ; kn¸|j ; k ′n⟩

⟨j ; k ′′m|j ; k ′n⟩ ; (5.2)
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the sum of all possible combinations of signs.
As we are interested in a cyclic process, upon multiplication and division by

⟨j ; k ′′m|j ; k ′n⟩, the above equation can be written

(Pn¸)w =
⟨j ; k ′′m|j ; kn¸⟩ ⟨j ; kn¸|j ; k ′n⟩ ⟨j ; k ′n|j ; k ′′m⟩

| ⟨j ; k ′′m|j ; k ′n⟩ |2

=
e i jΦ(kn¸;k ′′m)e i jΦ(k ′n;kn¸)e i jΦ(k ′′m;k ′n)

`
1+kk ′′n¸·m

2

´j `1+kk ′n·n¸
2

´j`
1+k ′k ′′m·n

2

´j ; (5.3)

which is defined in terms of the vectors n;m;n¸.
Our idea is based on the lattice approach. The vertices of the triangle represent

the connection and thus, the overlap between the states. If the spherical triangle
{n;m;n¸} is an Euler triangle, then we get the Abelian GP

(Pn¸)w =
e i j∆P (k

′′m;kn¸;k ′n)
`
1+kk ′′n¸·m

2

´j `1+kk ′n·n¸
2

´j`
1+k ′k ′′m·n

2

´j ; (5.4)

where the quantities e i j∆P (k
′′m;kn¸;k ′n) are exactly the Pancharatnam GP [46].

Eq.(5.4) shows that the Abelian or Pancharatnam GP is the phase accumulated
during the cyclic evolution. Note that, depending on the interplay between the sign
of pre- and post-selected states and the measuring device, the probability amplitudes
can interfere constructively or destructively.

The geometric properties are determined by different paths in the state space. The
accumulation of phases is thus, related to the phase acquired by overlapping states.
For SCSs, the relationship shows the interference between states. The connection
arises due to the coherent behavior of SCSs and the geometric properties of the
parameter space. The interference of different spin coherent states gives rise to a
relative phase, which contributes to the geometric phase acquired during the cyclic
evolution.

When SCSs with different orientations are superposed, their interference results
in a relative phase that depends uniquely on the angle between the spin directions.
This fact is fascinating because, for SCSs, the parameter space corresponds to the
orientation of the apparatus device. By varying the angle of the pointers device, for
instance, the system undergoes a cyclic evolution in the parameter space.

5.2 Sequence of measurements

In this section, we investigate a sequence of measurements. The advantage of
performing weak measurements of such sequences concerns the possibility of combin-
ing incompatible observables. We based our formalism mostly on Ref.[14] to get an
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extension of Ref.[11].
Our main task is to obtain the GP by combining different mixed products of

momenta and position deviations. The advantage of performing such a sequence
is to combine the results of two incompatible observables, by combining different
degrees of freedom of the pointers devices, such as position and momentum. Refs.[5,
6] demonstrated different implementations of weak measurements to establish bounds
of uncertainty and sequential measurements.

The idea is to read the pointer’s position and momentum deviations immediately
after the measurement, as highlighted in Eqs.(2.25) and (2.26). The observables P1

and P2, are projector operators measured at different times on a system S.
Let us define the initial state of the coupled system in terms of the momentum-

space wave functions

ΨS;M1M2 = e−ig(p2P2+p1P1) |Ψi⟩S ffi(q1)ffi(q2); (5.5)

where the subscripts M1 and M2 indicate the distributions of the pointers devices.
The system and measuring devices interact during a finite time interval according

to the Hamiltonian

H(t) = g(t)(p2 ⊗P2 + p1 ⊗P1); (5.6)

where P2;P1 are observables and the time-dependent coupling parameter g turns on
and off the interaction between the measurement device and the measured system.

Conditioned on the post selection of the state |Φf ⟩, we get

ΨM1M2 = ⟨Ψf | e−ig(p2P2+p1P1) |Ψi⟩ffi(q1)ffi(q2): (5.7)

Now, if the disturbance of the measurement process on the system is sufficiently
small, the terms in the order of (gpi)n, for any n ≥ 2, can be neglected. Under this
assumption, we expand the exponential term

ΨM1M2 = ⟨Ψf |
„
1− gp2P2 −

g 2

2
p22P2

2 + : : :

«
×
„
1− gp1P1 −

g 2

2
p21P2

1 + : : :

«
|Ψi⟩ffi(q1)ffi(q2): (5.8)
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Using p = −i@=@q, we get

ΨM1M2 = ⟨Ψf |Ψi⟩ [ffi(q1)ffi(q2)− g(P1)wffi
′
(q1)ffi(q2)

−g(P2)wffi(q1)ffi
′
(q2) +

g 2

2
(P2

1 )wffi
′′
(q1)ffi(q2)

+
g 2

2
(P2

1 )wffi(q1)ffi
′′
(q2)

+g 2(P2;P1)wffi
′
(q1)ffi

′
(q2)

+O(g 3)]; (5.9)

where

(P2;P1)w =
⟨Ψf |P2P1|Ψi⟩

⟨Ψf |Ψi⟩
: (5.10)

is the weak value of the sequential weak measurements.
Then the expected value of the combination of positions is

⟨q1q2⟩ =
´ ´

q1q2|ΨM1;M2|2dq1dq2´ ´
|ΨM1;M2|2dq1dq2

: (5.11)

The above equation is a double integral, concerning each distribution over the position
spaces. To evaluate the integral, we make the following assumptions. The initial
pointer distributions ffi are real-valued [14] and its mean is zero, i.e.,

ˆ
qffi∗(q)ffi(q)dq =

ˆ
qffi2(q)dq = 0: (5.12)

Also, for simplicity, we assume that the pointer normal distribution is normalized,
i.e.,

´
ffi2(q)dq = 1. With these assumptions, note that now the terms of order 0

and 1 in g in Eq. (5.11) vanish. Then we get

⟨q1q2⟩ = g 2[(P2;P1)w + (P2;P1)w + (P1)w (P2)w

+(P1)w (P2)w ]

„ˆ
qffi(q)ffi

′
(q)dq

«2

: (5.13)

The integral
´
qffi(q)ffi

′
(q)dq = −1=2. Using the properties in Eq. (4.11)

⟨q1q2⟩ =
g 2

2
Re[(P2;P1)w + (P1)w (P2)w ]; (5.14)

where (P2)w is the complex conjugate of the weak value of the operator P2.
This result was obtained in Ref. [14] and it is interesting to note that the product

of pointers positions contains a supplementary term, indicated by (P1)w (P2)w .
The first step is to get the real and imaginary parts of the weak values by com-
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bining the positions and momenta of the pointer devices. Then, we combine ⟨q1; q2⟩,
⟨p1; p2⟩, which are related to the real part of the weak values and ⟨q1; p2⟩ and ⟨p1; q2⟩,
related to the imaginary part.

Similarly, we evaluate the product of momenta using Eq.(5.9) and switching
the basis representation. The transformation from the q-representation to the p-
representation [16]

ffi(q) =

ˆ
e ipqffi(p)dp: (5.15)

And also,
ˆ
e−ipqffi

′
(q)dq = −ip

ˆ
e−ipqffi(q)dq (5.16)

where ˜ffi(p) =
´
e−ipqffi(q)dq. Then, we write the expectation value

⟨p1p2⟩ =
´ ´

p1p2|ΨM1;M2|2dp1dp2´ ´
|ΨM1;M2|2dp1dp2

: (5.17)

Again, note that the above equation is a double integral over the momentum space
of each pointer distribution. Keeping the second order in g , we get

⟨p1p2⟩ = g 2[−(P2;P1)w − (P2;P1)w + (P1)w (P2)w

+(P1)w (P2)w ]

„ˆ
pffi2(p)dp

«2

; (5.18)

where we assume that the pointer devices have the same distribution over the position
and momentum spaces.

The expectation value of the momenta product

⟨p1p2⟩ = 2g 2v 2Re[−(P2;P1)w + (P1)w (P2)w ]; (5.19)

where v =
´
p2ffi(p)dp is the velocity distribution.

Now, we evaluate the mixed products of position and momentum and relate them
with the imaginary part of the weak values. Likewise, following the previous procedure
and switching the basis representation, we get

⟨q1p2⟩ =
´ ´

q1p2|ΨM1;M2|2dq1dp2´ ´
|ΨM1;M2|2dq1dp2

: (5.20)

Note, again that we have a double integral over the position and momentum spaces.
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The expectation value

⟨q1p2⟩ = −g 2v Im[(P2;P1)w + (P1)w (P2)w ]: (5.21)

Similarly, for other combinations of momentum and position

⟨p1q2⟩ =
´ ´

p1q2|ΨM1;M2|2dp1dq2´ ´
|ΨM1;M2|2dp1dq2

: (5.22)

Resulting into

⟨p1q2⟩ = −g 2v Im[(P2;P1)w − (P1)w (P2)w ]: (5.23)

Once the results of weak measurements with the shift in the pointers device, we
address the geometric phase by combining them. The idea is to evaluate the GP
using the real and imaginary parts of the weak values. Then,

⟨q1q2⟩ −
1

(2v)2
⟨p1p2⟩ = g 2Re[(P2;P1)w ]: (5.24)

Similarly, for the second mixed product,

1

2v
⟨q1p2⟩+

1

2v
⟨p1q2⟩ = −g 2

Im[(P2;P1)w ]: (5.25)

Now, rewriting Eq.(5.10) upon multiplication and division by the overlap ⟨Ψf |Ψi⟩,
we get our main result

∆p = arg(P2;P1)w ; (5.26)

where ∆p is the Pancharatnam GP. Note that the deduction does not depend on the
pre-and post-selected states.

Thus, by measuring the shifts in position and momentum and combining them,
we obtain the geometric phase. The pointer device is typically used to read out the
measurement results in weak measurements, and variations in its behavior can provide
valuable information. After performing a sequence of weak measurements, one can
analyze and combine the deviations on the pointer devices to measure the geometric
phase. For further studies, we intend to generalize this scheme for longer sequences
of N measurements.
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5.3 Reconstruction scheme

The knowledge of a quantum process is an important task in quantum information.
For instance, weak measurements can be applied to perform quantum tomography
SCSs. By weakly measuring spin observables along different axes, we can recover
partial information about the state space. This kind of information is convenient to
reconstruct the resulting overlap matrix.

Consider the special case in which we perform a weak measurement of the pro-
jection operator of rank-2. The resulting product of the overlap matrices (A.1) takes
the form

Fc;bFb;aFa;c =
 

⟨j ;m|j ;n¸⟩ ⟨j ;m|j ;−n¸⟩
⟨j ;−m|j ;n¸⟩ ⟨j ;−m|j ;−n¸⟩

!

×
 

⟨j ;n¸|j ;n⟩ ⟨j ;n¸|j ;−n⟩
⟨j ;−n¸|j ;n⟩ ⟨j ;−n¸|j ;−n⟩

!

×
 

⟨j ;n|j ;m⟩ ⟨j ;n|j ;−m⟩
⟨j ;−n|j ;m⟩ ⟨j ;−n|j ;−m⟩

!
: (5.27)

Writing in the vectorial form, we get the coefficients

A = | ⟨j ;m|j ;n⟩ |2(Pn¸+;+)w + | ⟨j ;m|j ;−n⟩ |2(Pn¸+;−)w ; (5.28)

B = | ⟨j ;−m|j ;n⟩ |2(Pn¸−;+)w + | ⟨j ;−m|j ;−n⟩ |2(Pn¸−;−)w ; (5.29)

C = p(Pn¸+;+)w + q(Pn¸+;−)w ; (5.30)

D = r(Pn¸−;+)w + s(Pn¸−;−)w ; (5.31)

where p; q; r and s are defined in Appendix A and hence, we get p = r ∗ and q = s∗.
Writing in a compact form

Fc;bFb;aFa;c =
 
A C

D B

!
: (5.32)

Note that the weak measurements provide an interesting tool to extract partial
information about the quantum state without a significant disturbance. By recon-
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structing the overlap matrix, which characterizes the overlaps between different states,
one can gain insights into the coherence properties and relative weights of different
components in the quantum state. This information is valuable for understanding
the system’s behavior, studying quantum correlations, and exploring quantum inter-
ference phenomena.

However, it should be noted that, while the coefficients A and B are composed of
transition probabilities, the other C and D coefficients have probability amplitudes.
A possible interpretation is given in the next chapter.

Also, the reconstruction of the overlap matrix is useful for experimental verification
in weak measurement scenarios. By comparing the experimental results with the
theoretical values or reference states, one can assess the accuracy and fidelity of the
weak measurements and measurement devices. This verification process helps ensure
the reliability and validity of the obtained results and strengthens the experimental
evidence supporting the weak measurement approach.

The reconstruction of the overlap matrix in the weak measurement scenario offers
valuable insights into the coherence properties, entanglement, and superposition in
quantum systems. It enables partial state characterization, and experimental verifi-
cation, and plays a role in quantum tomography and state engineering, contributing
to our understanding and manipulation of quantum phenomena.

5.4 Holonomy

In this section, our main purpose is to establish the relationship between the weak
measurements and the non-Abelian GP, i.e., the holonomy. The notion of holonomy
around a loop provides an interesting geometric view of the state space and the
connections between the states. The key idea is to show that we can exploit different
combinations of the pre-and post-selected states and the weak measurement device
components to measure the GP [47–51].

Here, we follow the concept of holonomy, and its trace given by Wilczek-Zee [52]
and the WL [53], respectively. One of the major limitations to adopting our method
for obtaining geometric information is the applicability to direct holonomies [11]. For
j ∈ 1

2
N, the holonomy Uc;bUb;aUa;c is given by (A.1)

Fc;bFb;aFa;c = [(»c;bUc;b) (»b;aUb;a) (»a;cUa;c)] ; (5.33)
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We can define the WL as a gauge invariant

Tr[Fc;bFb;aFa;c ]

= »c;b»b;a»a;cTr[Uc;bUb;aUa;c ]

= »WL: (5.34)

Here, » is defined by

» = 2−
3
2

( X
k ′′;k ′;k

| ⟨j ; k ′′m|j ; kn¸⟩ |2| ⟨j ; kn¸|j ; k ′n⟩ |2| ⟨j ; k ′n|j ; k ′′m⟩ |2
) 1

2

; (5.35)

where the sum extends over all transition probabilities.
Now, we can plug Eqs. (5.28) and (5.29) into (5.34) yielding

WL = »−1 (A+ B) = »−1| ⟨j ;m|j ;n⟩ |2|(Pn¸+;+)w + »−1 ⟨j ;m|j ;−n⟩ |2

(Pn¸+;−)w»
−1| ⟨j ;−m|j ;n⟩ |2|(Pn¸−;+)w+

»−1 ⟨j ;−m|j ;−n⟩ |2(Pn¸−;−)w ; (5.36)

where the WL is s gauge invariant defined on a closed contour. This result shows that
we can recover geometric information about the state space through the non-Abelian
GP [28]. However, as highlighted in Ref.[44] the above relation holds only for the
case in which the holonomy is a unitary matrix up to a real number, as defined by
Eq.(4.23).

Note that this approach allows us to capture the topological nature of the system.
It seems reasonable that strong measurements can destroy some kind of information
and thus, some topological features of the system. The Wilson loop provides an
insightful view of the gauge fields and connections in the same view as Ref. [52]. By
performing cyclic evolutions on the system, one can retrieve information about the
gauge structure and thus, topological invariants associated with the path.
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Chapter 6

Discussion

One of the main goals of this project was to attempt to find the relation between
the weak measurements of higher rank operators and the non-Abelian GP. Wilson
[53] proposed an invariant quantity to quantize gauge field theory on closed paths.
Wilczek and Zee realized that the Wilson Loop (WL) can be an indicator of non-
Abelian holonomies [52]. Based on these ideas, the WL could be useful to evaluate
the non-Abelian GP and also, other related quantities such as the Chern number, and
topological invariants.

Our approach relies on the lattice behavior which relates the connection between
states and the measurements performed on a quantum system. Thus, after a sequence
of measurements that correspond to a finite sequence of loops, Eq.(5.34), we define
the WL to give geometric information about the state space.

In the weak measurement scenario, the post-selection allows us to get information
about the state space. This information is accessible through the non-Abelian GP
for the j ∈ 1

2
N SCSs case, where the transition probabilities are simply numbers and

equal in magnitude for each step on the Grassmann manifold. This suggests some
relation to the geometric structure of the system.

Notice that the operator in Eq.(5.2) corresponds to a superposition of the north
and south poles of the Bloch sphere. Thus, it is natural that the solid angle composed
by the vectors {k ′′m; kn¸; k ′n}, for different combinations o signs k ′′; k ′; k = ±, can
be inferred by a weak measurement of spin in the n¸ direction. In this way, the
closed paths acquire a specific GP associated with specific trajectories, i.e., different
combinations of the angles imply different readouts of the device [54].

Note from the denominator of Eq. (5.3) that the weak values may assume large
values as the post-selected being nearly orthogonal to the pre-selected state. This
property is called weak value amplification (WVA) and can provide interesting and
advantageous experimental effects [55]. This amplification effect has no classical
analog and can be described in terms of quantum interference. For this reason, it is
possible to interpret the overlap between the states in terms of transition amplitudes,
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as follows.
For instance, Ref. [55] highlighted the use of WVA when the device is saturated

with a high number of particles or in the case in which the detector cannot differentiate
between two signals. For an interesting discussion of this topic, see [25], where it is
shown that by weakly measuring improbable or rare events, it is possible to produce a
reciprocal improbable outcome. For instance, the spin of an electron may acquire the
value 100 [25]. In Ref. [56], the authors demonstrated the protection of SCSs from
decoherence using the weak measurements scheme, which can be improved using
rotations around arbitrary axes on the Bloch sphere. For instance, in the case of
SCSs, the amplification effect becomes important in optical settings.

In contrast, the weak values diverge when m → −n. This behavior can be
interpreted as a limit for which a pre-selected state at the point n has a vanishing
probability for it to pass a post-selection of −n. The antipodal points ±n correspond
to orthogonal states in which the GP is undefined [11].

The transition probability quantifies the probability of getting a weak value given
the pre- and post-selected states. On the other hand, the transition amplitude quan-
tifies the overlap between those states. In Eqs. (5.30) and (5.31), the coefficients
p; q; r , and s constitute transition amplitudes, in contrast to the transition probabili-
ties in Eqs. (5.28) and (5.29).

Fig.(6.1) presents a schematic view of our interpretation

Figure 6.1: Conceptual representation of measurement back-action. The post-
selected state |c1⟩ is weakly measured by sequential filtering measurements. After
that, the final state is |c2⟩ ⟨c2|a1⟩ ⟨a1|a1⟩.

where the transition corresponds to the connection between the pre-and post-selected
states.

For instance, Aharonov et al. [57] showed that quantum random walks can be
described in terms of probability amplitudes. In this context, the amplitude represents
the decision on whether a particle takes a given path, depending on the outcome of the
measurement. In this sense, it can be interpreted as the partial information remaining
after the measurement process.
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The post-selection plays an important role in the scheme. The presence of transi-
tion amplitudes can be interpreted as the remaining or partial information about the
past of the post-selected state. This is an important feature because it shows the
nature of the weak measurement: the post-selected state carries some information
about the interactions at a given time t < t2. Moreover, due to this fact, it is possible
to get information about the state space using the weak measurement scheme.

However, as highlighted in Ref. [44] the above relation holds only for the case in
which the holonomy is a unitary matrix up to a real number, as defined by Eq.(4.23).

The significance of our findings provides considerable insight into searching for
topological and geometric invariants. The deduction of the Wilson Loop in terms of
weak values offers a compelling interpretation of invariants and the role of overlap
between pre-selected and post-selected states. They can be considered a coming
together of topology and geometry.

In summary, we have presented different approaches to measure and extract the
geometric phase in the weak measurements scenario. Also, one possible method is to
compare the outcomes of different measures along different paths and combine them
to get the geometric phase. By analyzing the deviations or distributions of the pointer
devices’ position and momentum, one might observe patterns that correspond to the
Abelian geometric phase. Future work will concentrate on these sequences.
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Chapter 7

Conclusion

We have explored the extension of the Abelian GP in a sequence of incomplete
measurements to include more than three states by performing sequential weak mea-
surements. This thesis also has investigated the notion of non-Abelian GP in the
weak measurement scenario. The results show that we can recover information about
the state space by performing weak measurements. The formalism can be applied
to longer sequences of operators. The advantage of performing a sequence of weak
measurements concerns the possibility of combining incompatible observables.

The present study has only investigated the case in which the holonomy is a
unitary matrix up to a real number. Our approach could be applied to the SCSs
case (j ∈ 1

2
N), where the transition probabilities are simply numbers and equal in

magnitude for each step on the Grassmann manifold. This suggests some relation to
the geometric structure of the system.

Our studies can be extended to a topological view in order to search for invari-
ants in quantum materials, such as the Chern number, Bargmann invariant, or the
Pancharatnam phase. Future work will investigate the possible implementations of
interferometric, polarimetric schemes where » has a physical interpretation. The mo-
tivations are to develop new experimental techniques and improve the amount of
information that can be extracted from the quantum systems.
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Appendix A

Spin Coherent States (SCSs)

A.1 Product of the overlap matrices

In this section, we evaluate the product of the overlap matrices Here, we consider
a special case of a given rank-2 projector operator.

Fc;bFb;aFa;c =
 
⟨c1|b1⟩ ⟨c1|b2⟩
⟨c2|b1⟩ ⟨c2|b2⟩

! 
⟨b1|a1⟩ ⟨b1|a2⟩
⟨b2|a1⟩ ⟨b2|a2⟩

! 
⟨a1|c1⟩ ⟨a1|c2⟩
⟨a2|c1⟩ ⟨a2|c2⟩

!

=

 
A C

D B

!
; (A.1)

where each matrix element represents the resulting overlap element. The formalism
can be extended to any number of components of the pre and post-selected states,
and the projection operator within the TSVF. The formalism can be extended to
high-dimensional quantum systems and also to other degrees of freedom.

If we consider the weak value of a projector operator 2-rank

(Pn
c1;a1

)w =
⟨c1|Pn|a1⟩
⟨c1|a1⟩

=
⟨c1|b1⟩ ⟨b1|a1⟩

⟨c1|a1⟩
+

⟨c1|b2⟩ ⟨b2|a1⟩
⟨c1|a1⟩

; (A.2)

then we can write the matrix elements A;B; C and D as

A = | ⟨c1|a1⟩ |2(Pn
c1;a1

)w + | ⟨c1|a2⟩ |2(Pn
c1;a2

)w ; (A.3)

B = | ⟨c2|a1⟩ |2(Pn
c2;a1

)w + | ⟨c2|a2⟩ |2(Pn
c2;a2

)w ; (A.4)

C = ⟨c1|a1⟩ ⟨a1|c2⟩ (Pn
c1;a1

)w + ⟨c1|a2⟩ ⟨a2|c2⟩ (Pn
c1;a2

)w ; (A.5)
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D = ⟨c2|a1⟩ ⟨a1|c1⟩ (Pn
c2;a1

)w + ⟨c2|a2⟩ ⟨a2|c1⟩ (Pn
c2;a2

)w : (A.6)

Now, in order to get the relation between the matrix elements, we write

p = ⟨c1|a1⟩ ⟨a1|c2⟩ ;

q = ⟨c1|a2⟩ ⟨a2|c2⟩ : (A.7)

Then, the matrix elements C and D become

C = p(Pn
c1;a1

)w + q(Pn
c1;a2

)w ; (A.8)

D = p∗(Pn
c2;a1

)w + q∗(Pn
c2;a2

)w ; (A.9)

where the coefficients C and D are related by the factors p and q .

A.2 Vectorial form of SCSs

Here, we deduce the expression for the overlap between two SCSs states.
Let n = (sin(„)cos(ffi); sin(„)sin(ffi); cos(„)) be a unit vector pointing in the spatial

direction corresponding to a polar angle „ and azimuth ffi, in spherical coordinates.
We choose a normalized vector |n⟩ and for convenience, we choose |n⟩ to be an
eigenvector of Jz . Thus Jz |n⟩ = m |n⟩ and so we may denote |n⟩ by |m;n⟩ where
m = −j;−j + 1; :::; j . Hence, we also introduce the related expression

U(„; ffi) = e−iffiJze−i„Jy ; (A.10)

and correspondingly we define,

|„; ffi⟩ = R(„; ffi) |m;n⟩ : (A.11)

However, we are interested only in the extreme values of m, i.e., when m = ±j .
The overlap becomes

⟨„′; ffi′|„′′; ffi′′⟩ = ⟨m;n|e i„′′Jy e i(ffi′−ffi′′)Jze−i„′Jy |m;n⟩

=

jX
n=−j

⟨m;n|e i„′′Jy |n;n⟩ ⟨n;n|e−i„′Jy |m;n⟩ e i(ffi′−ffi′′)n; (A.12)

which can be expressed in terms of the reduced Wigner coefficients of the spin-j
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representation [58],

Dj
m;n = ⟨n|e−i„Jy |m⟩ : (A.13)

For the special case in which m = j , this expression leads to the result[18],

⟨„′; ffi′|„′′; ffi′′⟩ =
»
cos

„
„′

2

«
cos

„
„′′

2

«
ei(ffi

′−ffi′′)=2 + sin

„
„′

2

«
sin

„
„′′

2

«
e−i(ffi′−ffi′′)=2

–2j
:

(A.14)

Now, consider two SCSs states ⟨m| = ⟨(„b; ffib)| and |n⟩ = |(„a; ffia)⟩. The squared
modulus of the overlap between them is defined by

| ⟨m|n⟩ |2 =
„
cos

„
„b
2

«
cos

„
„a
2

«
+ cos(ffib − ffia)sin

„
„b
2

«
sin

„
„a
2

««2

+

„
sin(ffib − ffia)sin

„
„b
2

«
sin

„
„a
2

««2

=

= cos2
„
„a
2

«
cos2

„
„b
2

«
+ sin2

„
„a
2

«
sin2

„
„a
2

«
+2cos(ffia − ffib)cos

„
„a
2

«
sin

„
„a
2

«
cos

„
„b
2

«
sin

„
„b
2

«
: (A.15)

Using the following trigonometric relation

cos

„
„a
2

«
sin

„
„a
2

«
cos

„
„b
2

«
sin

„
„b
2

«
=

1

2
sin(„a)

1

2
sin(„b); (A.16)

we get,

| ⟨m|n⟩ |2 = 1

2
+

1

2
cos(„a)

1

2
cos(„b) +

1

2
cos(ffia − ffib)sin(„a)sin(„b)

= e i jffi(n;m)1

2
(1 + n ·m): (A.17)

Expressed in terms of the vectors

| ⟨m|n⟩ |2 = e i jffi(n;m)

„
1 + n ·m

2

«j=2
; (A.18)

where ffi(n;m) is a real phase.
This leads to the result,

⟨m|n⟩ = e i jΦ(n;m)

„
1 + n ·m

2

«j
: (A.19)
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A.3 Transition Amplitudes and Probabilities

Using the concept of relative phase defined in (4.23), we can find the transition
amplitude by writing

»c;b =

»
T r(Fc;bFb;c)

2

– 1
2

=
ˆ
| ⟨c1|b1⟩ |2 + | ⟨c1|b2⟩ |2 + | ⟨c2|b1⟩ |2 + | ⟨c2|b2⟩ |2

˜ 1
2 ; (A.20)

»b;a =
ˆ
| ⟨b1|a1⟩ |2 + | ⟨b1|a2⟩ |2 + | ⟨b2|a1⟩ |2 + | ⟨b2|a2⟩ |2

˜ 1
2 ; (A.21)

»a;c =
ˆ
| ⟨a1|c1⟩ |2 + | ⟨a1|c2⟩ |2 + | ⟨a2|c1⟩ |2 + | ⟨a2|c2⟩ |2

˜ 1
2 : (A.22)

In the vectorial form, we write,

»c;b =

"X
k ′′;k

| ⟨j ; k ′m|j ; kn¸⟩ |2
2

# 1
2

; (A.23)

»b;a =

"X
k;k ′

| ⟨j ; kn¸|j ; k ′n⟩ |2
2

# 1
2

; (A.24)

»a;c =

"X
k ′;k ′′

| ⟨j ; k ′n|j ; k ′′m⟩ |2
2

# 1
2

: (A.25)

In this way, » can be interpreted in terms of transition probabilities.
We can define the transition amplitudes as

⟨c1|a1⟩ = ⟨j ;m|j ;n⟩ ; (A.26)

⟨c1|a2⟩ = ⟨j ;m|j ;−n⟩ ; (A.27)

⟨c2|a1⟩ = ⟨j ;−m|j ;n⟩ ; (A.28)

⟨c2|a2⟩ = ⟨j ;−m|j ;−n⟩ : (A.29)

52



And then we define the product of transition amplitudes

p = ⟨c1|a1⟩ ⟨a1|c2⟩ = ⟨j ;m|j ;n⟩ ⟨j ;n|j ;−m⟩ ; (A.30)

q = ⟨c1|a2⟩ ⟨a2|c2⟩ = ⟨j ;m|j ;−n⟩ ⟨j ;−n|j ;−m⟩ ; (A.31)

r = ⟨c2|a1⟩ ⟨a1|c1⟩ = ⟨j ;−m|j ;n⟩ ⟨j ;n|j ;m⟩ ; (A.32)

s = ⟨c2|a2⟩ ⟨a2|c1⟩ = ⟨j ;−m|j ;−n⟩ ⟨j ;−n|j ;m⟩ : (A.33)

And similarly, for the general case, we can identify that p = r ∗ and q = s∗.
Rewriting the matrix elements A, B, C, and D,

A = | ⟨j ;m|j ;n⟩ |2(Pn¸
+;+)w + | ⟨j ;m|j ;−n⟩ |2(Pn¸

+;−)w ; (A.34)

B = | ⟨j ;−m|j ;n⟩ |2(Pn¸
−;+)w + | ⟨j ;−m|j ;−n⟩ |2(Pn¸

−;−)w ; (A.35)

C = p(Pn¸
+;+)w + q(Pn¸

+;−)w ; (A.36)

D = r(Pn¸
−;+)w + s(Pn¸

−;−)w ; (A.37)

where A more detailed explanation can be found in Appendix A and p = r ∗

and q = s∗.
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A.4 Reconstruction scheme for SCSs

For the SCSs, the coefficients A;B; C, and D are given by the elements of the
overlap matrices or rotation matrices

A = R(c; a)R(a; c)

„
R(c; b)R(b; a)− S(c; b)S(b; a)∗

R(c; a)

«
+S(c; a)S(a; c)

„
R(c; b)S(b; a) + S(c; b)R(b; a)∗

S(c; a)

«
; (A.38)

B = S(c; a)∗S(a; c)∗
„
−S(c; b)∗R(b; a)− R(c; b)∗S(b; a)∗

−S(c; a)∗

«
+S(c; a)∗S(a; c)∗

„
−S(c; b)∗R(b; a)− R(c; b)∗S(b; a)∗

R(c; a)∗

«
; (A.39)

C = R(c; a)S(a; c)

„
R(c; b)R(b; a)− S(c; b)S(b; a)∗

R(c; a)

«
+S(c; a)R(a; c)∗

„
R(c; b)S(b; a) + S(c; b)R(b; a)∗

S(c; a)

«
; (A.40)

D = −S(c; a)∗R(a; c)
„
−S(c; b)∗R(b; a)− R(c; b)∗S(b; a)∗

−S(c; a)∗

«
−S(c; a)S(a; c)∗

„
−S(c; b)∗S(b; a) + R(c; b)∗R(b; a)∗

R(c; a)∗

«
; (A.41)

which we can get that A = B∗ and C = −D∗. Using (A.7), we can define the

D = (−1)2j{p(Pn
c2;a1

)w + q(Pn
c2;a2

)w}∗: (A.42)
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