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Abstract

In the present thesis, the multiconfigurational time-dependent Hartree method is applied to study
flow properties of bosons trapped in annular geometry. This physical system provides a suitable
platform to investigate beyond meanfield features, since as one spatial dimensional problem, we
can explore di�erent interacting regimes, set a rather large range for parameter values without
excessive concern about the computational cost and explore relevant concepts, such as superflu-
idity. As a very important part of the present thesis, the multiconfigurational time-dependent
Hartree method for bosons (MCTDHB) is carefully described, providing all relevant derivations
up to the final equations of motion, as well as a prospectus of the numerical approach. As such,
this thesis also deals with topics of numerical analysis due to its method complexity. After the
MCTDHB derivation and its numerical implementation are shown, the superfluid properties of
a bosonic gas in annular geometry are studied with the most general approach proposed in ref-
erence [1], without any assumptions about the condensation status of the system. In addition,
the MCTDHB’s capability to provide correlation functions is exploited to characterize the loss
of superfluid fraction due to a potential barrier. Within the same goal to study bosonic flow
properties in a ring, persistent currents are also investigated, with two alternative derivations
for the metastability condition as energy local minimum. Besides, the dynamical decay of the
current is analyzed after quenching a potential barrier. Fluctuations of the number operator and
probabilities are calculated along the time evolution to provide information about the quantum
statistical distribution embedded in experimental measures, aiming to spot relevant information
on image observation of flowing states.

keywords: Multiconfigurational Hartree method; many-particle system; bosons; Bose-Einstein
condensation; superfluid.



Resumo

Nesta tese, o método de Hartree multiconfiguracional dependente do tempo é aplicado para es-
tudar a circulação de bósons armadilhados em geometria anular. Este sistema f́ısico oferece uma
plataforma adequada para investigar caracteŕısticas além do escopo de campo médio, uma vez que
sendo em uma dimensão espacial, podemos explorar diferentes regimes de interação, estabelecer
um longo alcance para valores dos parâmetros sem demasiadas preocupações com o custo computa-
cional e explorar conceitos relevantes, como a superfluidez. Como uma parte muito importante da
presente tese, o método de Hartree multiconfiguracional dependente do tempo para bósons (MCT-
DHB) é cuidadosamente descrito, fornecendo todas derivações relevantes até as equações finais de
movimento, bem como um prospecto para abordagem numérica. Assim sendo, esta tese também
trata de tópicos de análise numérica devido a complexidade do método envolvido. Após a derivação
do MCTDHB e sua implementação numérica serem mostradas, as propriedades superflúıdas de
um gás bosônico em geometria anular foram estudadas com a maior generalidade posśıvel pro-
posta na referência [1], sem qualquer suposição sobre o estado de condensação do sistema. Além
disso, a capacidade do MCTDHB de fornecer funções de correlação é explorada para caracterizar a
perda da fração de superfluido devido a um barreira. Ainda dentro do mesmo objetivo de estudar
propriedades de circulação bosônicas em um anel, correntes persistentes também são investigadas,
com duas derivações alternativas para condição de meta-estabilidade como um mı́nimo local para
energia. Ademais, o decaimento dinâmico da corrente é analisado após abruptamente introduzir
uma barreira como potencial. Flutuações do operador de número e probabilidades são calculadas
ao longo da evolução temporal para fornecer informações sobre a distribuição estat́ıstica quântica
em medidas experimentais, objetivando revelar informações relevantes sobre a observação por
imagem de estados com circulação.

Palavras-Chave: método de Hartree multiconfiguracional; sistemas de muitas part́ıculas; bósons;
condensação de Bose-Einstein; superfluido.



Acronyms

MCTDHB æ Multiconfigurational time-dependent Hartree method for bosons

GP æ Gross-Pitaevskii

IPS æ Individual particle states

QT æ Quantum tunneling

LL æ Lieb-Liniger

BEC æ Bose-Einstein condensate

TG æ Tonks-Girardeau

RDM æ Reduced density matrix
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Chapter 1

Introduction

Analytical solutions for quantum many-particle problems rapidly become scarce when a

few relevant assumptions are considered, such as interactions among the particles, peculiar

trapping potentials or time evolution of non-stationary states. Among the most popular

solvable examples are some interacting spin systems in thermal equilibrium present in

statistical mechanics textbooks [2,3], but adding the spatial description is a di�cult step.

For a bosonic system with traslational degree of freedom, an example of analytically

solvable model is the Lieb-Liniger(LL) gas [4,5], consisting of bosons confined in a periodic

one dimensional space. Despite the many-particle wave function can be obtained for the

ground and excited states, the computation of observables is not trivial and requires

multi-dimensional integrals of a complicated wave-function, with the dimension given by

the number of particles.

After more than fifty years of the LL model has been reported, there is still ongoing

research about it, for instance on approximations [6,7] and focusing on a narrow band of

the excitation spectrum, to reproduce solitons predicted in the meanfield theory [8], just

to mention a few. Besides, the hard core limit(impenetrable particles), which conducts

to the Tonks-Girardeau(TG) gas [9, 10], has been used in many one-dimensional studies

as an upper bound when analyzing the e�ect of strong interactions [7,11]. The LL model

illustrate well that in many-particle physics there are many gaps in our understanding yet

to be filled, from the fundamentals of quantum mechanics to collective phenomena, which

cannot be thought by reductionism [12], even knowing the many-body wave function.

The importance of collective phenomena, concomitantly with the limitations of analyt-

ical approaches, justifies the progressive use of numerical computation, which has became

7



CHAPTER 1. INTRODUCTION 8

almost indispensable on present research. Surely, any numerical method employed impose

limitations as well, though they generally are far less sti� than a pure analytical approach.

One of the main ingredients of many-particle systems complexity is a reservoir cou-

pling, in general, leading to the consideration of a thermal description. However, pro-

gressive improvement in cooling techniques of atoms [13–16] have provided clean and

controllable environments to study many-particle systems within a pure state instead

of a statistical ensemble description. This is important for both, approximation meth-

ods designing and experiments to study fundamental properties of quantum systems. A

Bose-Einstein condensate(BEC) [17–21] thus provide the idealization of this scenario, as

it exhibits a negligible thermal cloud, depicted in Fig.(1.1).

Even at zero temperature, systems of many identical particles, such as the BEC,

are not trivial to deal with. Usually, the second quantization formalism is adopted, in

which the type of particle statistics, fermions or bosons, are implied in the commutation

relations of operators that raise or decrease by one particle the state, called creation and

annihilation operators, respectively. Within this framework, an exact approach would

require a complete set of Individual Particle States(IPS), also named orbitals1, which

the particles can occupy through the action of the operators. All these elements yield

the number occupation basis of many-particle systems, also called Fock basis, which of

course is of infinite dimension and thus imply the first issue to approach the problem with

numerical methods. To overcome this drawback, the Hilbert space must be truncated.

This IPS basis truncation and the spanned Fock basis of occupation numbers are the core

elements of multiconfigurational methods.
1Methods employed here are also used in chemistry, from which came the designation of orbitals used

in the study of molecules.

Figure 1.1: Bose-Einstein condensation. Examples of atomic densities in three regimes
around the transition temperature. Figure taken from Ref. [22]
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As shall become clearer throughout this thesis, the truncation of many-particle system

Hilbert space is suitable because it o�ers an approach which can be progressively improved,

by raising the space dimension, di�erently from other methods that impose inflexible

constraints from the beginning, as is the case of meanfield description.

1.1 Multiconfigurational approach

Generally, a system of particles coupled to an complicated external environment can be

described by a density matrix, which the time-evolution is determined by a master equa-

tion after tracing out the environment [23,24]. A simpler case is the thermal equilibrium

with the environment, where the density matrix is represented by the statistical ensemble

theory, which is strictly defined in terms of the Hamiltonian of the system and Lagrange

multipliers [2, 3]. As the temperature decreases, the density matrix approach asymptot-

ically a projector operator to the many-particle ground state, that is, a pure state, as

all excited states probabilities goes to zero, regardless of the particle type, bosons or

fermions. Therefore, at low enough temperature, the many-particle system can be well

approximated by a pure state, which is the starting point for the intended numerical

approach envisaged in the previous section.

In the case of fermions, the anticommutation of their creation and annihilation oper-

ators, which implies the antisymmetry of the wave function under permutations of the

particles, prohibit more than one occupation per IPS, spreading the occupations requiring

at least the same number of particles for the IPS. The bosons, instead, allow for simul-

taneous occupation, and decreasing the temperature, typically concentrate particles in

the IPS with lowest single particle energy. Actually, for an ideal bose gas, all the par-

ticles shall occupy the lowest energy single particle state in the system’s ground state2.

Therefore, in ultracold many-particle systems, even for a large number of particles a small

number of IPS can be enough to describe bosons, while fermions restrict the analysis to

fewer particle numbers.

The arbitrariness of the IPS can be solved imposing a variational method to minimize

the many-body action, occasionally including time dependence, which would provide the

most e�cient spanned space to the problem, either to study dynamics or stationary states.
2Considering there are no degeneracies for the many-particle ground state
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This variational approach often yield the optimal IPS basis to the problem instead of a

particular choice. All these elements are part of the multiconfigurational time-Dependent

Hartree method(MCTDH), which started to be investigated firstly in molecular dynamics

in chemistry [25–29], though not necessarily including a formalism for identical particles.

Later, it was adopted in physics to describe systems of identical particles, first bosons [30]

and later fermions [31]. Since then, several studies were performed including comparison

to theoretical models [32,33], quench dynamics [34–42], fermions [43–47], quantum infor-

mation [34, 36] and condensate fragmentation [48–52]. Throughout this thesis, systems

of bosons are studied within Multiconfigurational Time Dependent Hartree Method for

Bosons(MCTDHB).

In contrast to the variational approach of MCTDHB, for some specific systems, the

IPS may be fixed to work just in the configuratinal space with diagonalization tech-

niques [53,54], reducing the numerical e�ort, for instance using momentum basis in trans-

lational invariant systems, or in the Bose-Hubbard model, where the IPS do not even

need to be specified, requiring only two numerical parameters instead, for neighbors site

tunneling and in-site interaction. Di�erently, in trapped systems, specially the ones with

no symmetry or in time dependent problems, the variational approach to the IPS show

advantages over a fixed choice [32].

Despite the general formulation with an arbitrary number of IPS mentioned so far, in

some occasions only one function is enough for the description, known as the meanfield

or macroscopic wave-function, and in this case it describes a BEC [20]. Many criteria for

Bose-Einstein condensation were studied over the time since the first formulation for ideal

gases [17, 18], which was generalized for interacting cases [55] and proved in the dilute-

limit [56,57]. Apart from the specific criteria for the validity and limitations of meanfield

description, since the first observation of BEC [19] it has been undoubtedly useful in

connection with most part of the experiments, at least providing assistant results for

dilute and weakly interacting limit.

A remarkable property of the MCTDHB is the containment of meanfield as a special

case, providing an easy way to compare results from both approaches. Therefore, the

number of IPS can be viewed as a straightforward generalization of meanfield description,

which can o�er progressive improvement in calculations as it is increased, eventually, until

a convergence criterion is achieved.
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1.2 Beyond meanfield features

One of the main purposes of the MCTDHB, besides the improving accuracy in the many-

particle state, is the accessibility to observables absent in the meanfield description, the

most important ones being the spatial mutual probability functions(also known as corre-

lations) and fragmentation in dynamics of nonstationary states. These key features are

related to the general definition of the p-order Reduced Density Matrix(p≠RDM) [58–61],

fl(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
) =

K
pŸ

i=1
�̂†(xÕ

i
)

pŸ

j=1
�̂(xi)

L
(N ≠ p)!

N ! , (1.1)

where the brackets È.Í denote the average with respect to a many-particle state. As will

be shown in the following chapters, the p≠RDM can also be related to the many-body

wave-function

fl(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
) =

⁄ Q

a
NŸ

i=p+1
dxi

R

b �ú(xÕ
1, ..., x

Õ
p
, xp+1, ..., xN)�(x1, ..., xN) . (1.2)

This form is particularly useful to see the relation with mutual probabilities by setting

the primed variables equal to the unprimed ones, which are important in understanding

the density measurement of a bosonic gas [59].

In meanfield description, the mutual probability obtained from Eq. (1.2) with x
Õ
k

=

xk for all k œ {1, ..., p} is rather meaningless since it is reduced to the p≠product of

the modulus squared of a single function, which translates to the mutual probability of

independent events of measuring particles in the respective positions. Moreover, any single

particle property holds information about all the other particles, and thus, the meanfield

description lacks correlation information about the many-particle system.

In addition, the 1≠RDM provide special information since it can be used to define

the condensation fraction according to Penrose-Onsager criterion [55]. The possibility to

compute it at any time instant of the many-particle state evolution presents one of the

major advantages of the MCTDHB when compared to other alternative methods.

As a final introductory remark on the advantages of the MCTDHB, we have the

possibility to decouple some concepts as condensation and superfluidity for an arbitrary

many-particle state [1]. As pointed out by Leggett [62] using the example of liquid 4He,

one concept does not imply the other, and with a method capable to tackle many-particle
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properties, we are able to study superfluid fraction through the moment of inertia [1,63,64].

1.3 Thesis outline

In this project, some applications of the MCTDHB are evaluated and contrasted with the

meanfield results whenever possible, highlighting the beyond meanfield behavior of many-

particle systems in one dimension. The main focus is to study many-body e�ects absent in

the meanfield theory and to obtain more accurate results in stronger interaction regimes,

specially analyzing the p≠RDM [61], which introduces the general concept of condensation

fraction [55] and provide correlation functions. Furthermore, the numerical solution of

MCTDHB equations can provide important features about many-particle physics until

now not fully understood and serve as basis for new experiments in a wider variety of

conditions than previously possible.

In the following, chapter 2 is devoted to analytical derivation of multiconfigurational

methods and Bose-Einstein condensation. In chapter 3, some particular details of MCT-

DHB numerical implementation is presented, emphasizing the memory allocation and

numerical representation of the multiconfigurational space elements. A study on the per-

formance of the implementation used here was evaluated with an additional analysis of

the parallelized codes [65]. Chapter 4 summarize some important results analyzed with

MCTDHB. Essentially, a work on superfluid fraction of few bosons in annular geometry

published in Physical Review A journal [64] is revisited, extending it with dynamical

studies about superfluid fraction and persistent currents on a ring trapped gas. Finally,

the conclusions and further perspectives are presented in chapter 5.



Chapter 2

Multiconfigurational time-dependent

Hartree method

An introduction to the MCTDHB is easier provided in the second quantization framework,

since the many-particle state is automatically symmetric due to the commutation rela-

tions of creation and annihilation operators. Some traditional quantum mechanics books

provide a comprehensive introduction to the theme [66,67], thus, this chapter starts with a

brief and not so rigorous review of the main concepts, aiming self containment. Therefore,

starting from the second quantization formalism, time-dependent IPS are introduced and

used as moving basis for the variational approach in the many-body action. After deriving

the equations of motion for the IPS and coe�cients of Fock basis expansion, discussions

about Bose-Einstein condensation and beyond meanfield observables are addressed.

2.1 Symmetrization of states for identical particles

For justification of the operators commutation relations for bosons and fermions, we can

start from the usual way to write a many-particle Hamiltonian with tensor products of

operators for each particle.

Suppose, for simplicity, a two-level Hamiltonian for two particles as

H = ‘

2(12 ¢ ‡z + ‡z ¢ 12) (2.1)

13
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where 12 is the 2x2 identity matrix and

‡z =

Q

ca
1 0

0 ≠1

R

db , (2.2)

is the third Pauli matrix. The most convenient basis, in a first moment, is given by ‡z

eigenstates, namely |‰+Í and |‰≠Í, which satisfy ‡z|‰±Í = ±1. Therefore, the basis for

the composed system of two particles can be written in the lexicographic ordering as

{|‰+Í ¢ |‰+Í, |‰+Í ¢ |‰≠Í, |‰≠Í ¢ |‰+Í, |‰≠Í ¢ |‰≠Í}, (2.3)

which are all eigenstates of the model example in Eq. (2.1).

For simplicity, the tensor product sign ¢ is usually omitted, and product states are

simply written as |‰aÍ ¢ |‰bÍ © |‰a, ‰bÍ. Thus, the operators are indexed as A ¢ B ©

A(1)B(2) to indicate in which space they act. This convention is adopted for the next

passages.

Nonetheless, for indistinguishable particles, we must additionally require that the two-

particle state is invariant under permutation, otherwise we would be able to label the

particles in the system, causing an inconsistency with the first assumption. For instance,

the overlaps È‰a, ‰b|�Í and È‰b, ‰a|�Í must be identical for any two-particle state |�Í

representing indistinguishable particles. With that noted, we cannot take arbitrary com-

binations of the states |‰+, ‰≠Í and |‰≠, ‰+Í in |�Í definition, but instead have constrained

combinations to respect the indistinguishability. Equivalently, we must require that |�Í

is eigenstate of the permutation operator P12.

The permutation operator P12 have the property P 2
12 = 14, which implies that its

eigenvalues are ⁄± = ±1. Therefore, for any indistinguishable state of two particles

|�Í, we must choose one of the two sings in ⁄± to have as eigenvalue for |�Í, that

is, P12|�Í = +|�Í or P12|�Í = ≠|�Í, which lead us to define two classes of particles,

symmetric or antisymmetric under permutations, that characterize bosons and fermions,

respectively.

However, the basis introduced in the set (2.3) does not follow the requirements for
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indistinguishable particles. By representing the projector operator in this basis yields

P12 =

Q

cccccccca

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

R

ddddddddb

, (2.4)

which is not diagonal. A suitable basis should only have eigenstates of P12, with one

of its eigenvalues, either plus or minus, and thus, any state represented in one of these

bases would automatically be eigenstate of P12, with a specific symmetrization rule. In

other words, we not only need P12 diagonalized, but also separate the sectors with ±1

eigenvalues.

A basis in which P12 is diagonal can be conveniently written as

Ó
|‰+, ‰+Í, (|‰+, ‰≠Í + |‰≠, ‰+Í)/

Ô
2, |‰≠, ‰≠Í

Ô € Ó
(|‰+, ‰≠Í ≠ |‰≠, ‰+Í)/

Ô
2

Ô
, (2.5)

where the left set in the union hold all symmetric states and the right set the antisymmetric

ones. As mentioned above, indistinguishable particles must be represented by one of those

sets, which give us a prescription to build bases from the default product state basis, by

diagonalizing the permutation operator and selecting the symmetric states for bosons and

antisymmetric ones for fermions.

For a general system with N spinless1 particles in free space with D-dimensions of

length L, the product basis becomes

� =
;

|k1, ..., kNÍ; ki“ = 2fini“ /L, i = 1, ..., N, “ = 1, ..., D
<

. (2.6)

The description of indistinguishable particles requires to convert the basis � in such

way to have all states as eigenstates of all possible permutation operators Pij. This can be

done with (anti)symmetrization operators (A)S, whose when applied to a product state
1Usually the spin degree of freedom is eliminated by polarization, which is many times termed spinless.
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yield a sum of all possible permutations of the labels ki,

S|k1, ..., kNÍ =
ÿ

P
|kP1 , ..., kPN Í, (2.7)

A|k1, ..., kNÍ =
ÿ

P
(≠1)n(P)|kP1 , ..., kPN Í, (2.8)

where P is a tuple of integer numbers obtained from permutations, such that its compo-

nents fulfill 1 Æ Pi Æ N with no repetitions, and n(P) give us the number of permutations

done over the trivial tuple P̃i = i. The basis for bosons or fermions are thus the outcome

of S and A over the states in � with a proper normalization factor. However, the states

in � that are already permutations from others must be ignored to avoid duplications in

the outcome of A or S.

The normalization factor for the antisymmetric case is easier to obtain, since in the

sum over all permutations, no repetitions of the same state can occur, thus there are N !

nonzero scalar products. In the symmetric case, if some ki is repeated ni times, then

ÿ

P
© ni!

ÿ

C(ni)

ÿ

P(N≠ni)
, (2.9)

where C(ni) is the sum over all di�erent possibilities to sort the equal kis, which must

have N !/(ni!(N ≠ ni)!) terms, and P(N ≠ ni) is the sum over permutation of kjs with

j ”= i. Therefore, in computing the scalar product we get N !ni! nonzero cases. The

generalization to more subset repetitions is straightforward. In summary, the basis states

of an indistinguishable particle system are

|k1, ..., kNÍA = 1Ô
N !

A|k1, ..., kNÍ, (2.10)

|k1, ..., kNÍS = 1Ô
N !n1!...nN !

S|k1, ..., kNÍ, (2.11)

excluding a subset of vectors {ki}i=1,...,N from Eq. (2.6) that are related by permutations

to avoid duplications in the outcome of A or S. As result, the basis for identical particles

systems are smaller, in agreement with the example in Eq. (2.5), since they are sectors of

the set of eigenvalues of permutation operators.

Trace calculation in the symmetrized or antisymmetrized basis must be evaluate care-

fully, because the sum must be done over necessarily di�erent |·ÍA,S states, which is not
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simply the free sum over all ki vectors. Nonetheless, for any operator O,

Tr(O) =
ÿ

|k̨ÍA,S

A,SÈk1, ..., kN |O|k1, ..., kNÍA,S =

1
N !

ÿ

k1,...,kN

(n1!...nN !)A,SÈk1, ..., kN |O|k1, ..., kNÍA,S, (2.12)

since in exchange to sum freely over all kis, the permutations of di�erent vectors ks are

present in the summation and yield the same result in the symmetrization or antisym-

metrization process. Note however, that N ! would simply exclude permutations over all

vectors, but those that are equal appears only once in the sum, such that we also need

the factor n1!...nN ! for the number of repetitions for each one of k1, ..., kN , respectively,

which only a�ects the symmetric(bosonic) case.

2.1.1 Symmetrization in position space

Linear combinations of states |k1, ..., kNÍA or |k1, ..., kNÍS are automatically antisymmet-

ric or symmetric, respectively. Hence, using them as basis for a generic state |�ÍA,S

representation, automatically encodes the symmetrization needed. The product state of

localized positions |x1, ..., xNÍ can be used to obtain the wave-function corresponding to

|�ÍA,S, where any di�erent order chosen in the positions xi will only produce an overall

sign. As a simple example,

Èx1, x2|
A

|k1, k2Í ± |k2, k1ÍÔ
2

B

= „k1(x1)„k2(x2) ± „k2(x1)„k1(x2)Ô
2

= ±
C

„k1(x2)„k2(x1) ± „k2(x2)„k1(x1)Ô
2

D

= ±Èx2, x1|
A

|k1, k2Í ± |k2, k1ÍÔ
2

B

, (2.13)

which demonstrate that no additional permutations are required in the positions. Finally,

Â(A,S)(x1, ..., xN) = Èx1, ..., xN |�ÍA,S (2.14)

is the corresponding wave-function, where |�ÍA,S is any normalized linear combination of

states of the either (2.10) or (2.11). Therefore, Â(A,S) is either symmetric or antisymmetric

under permutations of its arguments.
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As a final important remark, the symmetrization of the states can be done directly

with the wave function basis states, as shown between steps of Eq. (2.13), where there is no

actual di�erence in choosing for the permutation of positions(xi) or state labels(ki). These

permutations can be conveniently written as determinants for the antisymmetric case and

permanents for the symmetric case, whereas the first is known as Slater determinant [66,

68].

2.1.2 E�ect of symmetrization for bosons and fermions

An illustrative example of indistinguishability implications is a system with two ideal par-

ticles in free space, which is the smallest system to provide simple yet useful information.

The Hamiltonian is given by

H = p
2
1

2m
+ p

2
2

2m
. (2.15)

This system at thermal equilibrium have as density matrix

flA,S

T
= e≠—H

ZA,S
, ZA,S = TrA,S(e≠—H), (2.16)

with ZA,S being the canonical partition function, whereas the probability to have the

system at some arbitrary state |�Í is TrA,S(|�ÍÈ�|flA,S

T
) = È�|flA,S

T
|�Í. For the partition

function, the trace yields

ZA,S = 1
2!

ÿ

k1k2

1Ô
2!

3
Èk1, k2| ± Èk2, k1|

4
exp

A

≠—~2

2m
(k2

1 + k
2
2)

B
1Ô
2!

3
|k1, k2Í ± |k2, k1Í

4
,

(2.17)

where the plus sign indicate the symmetric(S) case and minus the antisymmetric(A) one.

ZA,S = 1
2

ÿ

k1k2

exp
A

≠—~2

2m
(k2

1 + k
2
2)

B3
1 ± ”k1k2

4

= 1
2

ÿ

k1k2

exp
A

≠—~2

2m
(k2

1 + k
2
2)

B

± 1
2

ÿ

k
exp

A

≠—~2
k

2

m

B

. (2.18)

The first term in this last equation is just the usual partition function without considering

identical particles divided by 2, and the second term incorporates the symmetry property.

Considering a very large dimension length L, the sums are approximated by integrals,



CHAPTER 2. MCTDHB 19

and

ZA,S = 1
2

3
L

2fi

42D⁄
dk1dk2 exp

A

≠—~2

2m
(k2

1 + k
2
2)

B

± 1
2

3
L

2fi

4D⁄
dk exp

A

≠—~2
k

2

m

B

, (2.19)

which are simply gaussian integrals and yields

ZA,S = 1
2

3
L

2fi

42D
A

2mfi

—~2

B
D

± 1
2

3
L

2fi

4D
A

mfi

—~2

B
D/2

,

ZA,S = 1
2

3
L

⁄T

42D

S

U1 ±
A

⁄TÔ
2L

B
D

T

V , (2.20)

where

⁄T =
A

h2

2fimkBT

B1/2

, (2.21)

is the DeBroglie thermal wavelength. Clearly, the symmetrization correction term with ±

sign is negligible for large systems and high temperatures, as limT æŒ ⁄T = 0. So ultracold

gases are suitable to explore these di�erences brought by identical particles consideration.

The conversion of the sum to an integral requires that the exponential in Eq. (2.18)

varies smoothly in the discrete steps of momentum, thereby, the decay imposed by its

argument cannot be abrupt. In this case, using the momentum minimal step ”k = 2fi/L

for validation of the above calculations, the relation

—~2

m
”2

k
=

AÔ
2fi⁄T

L

B2

π 1, (2.22)

must be valid.

Another interesting property is the probability density distribution of these two par-

ticles, to see the impact, if there is any, of the symmetrization properties. Therefore, we

need to calculate Èr1, r2|flA,S

T
|r1, r2Í, which as discussed in the last section, the coordinates

states are simple products without symmetrization, since it is already incorporated in the

basis.

TrA,S

A

|r1, r2ÍÈr1, r2|e≠—H

B

=
ÿ

|k1k2ÍA,S

---Èr1, r2|k1k2ÍA,S

---
2

exp
A

≠—~2

2m
(k2

1 + k
2
2)

B

= 1
2L2D

ÿ

k1k2

I

exp
A

≠—~2

2m
(k2

1 + k
2
2)

B

± 1
2

Ë
f(k1, k2) + f(k1, k2)ú

ÈJ

, (2.23)
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where

f(k1, k2) = exp
C

ik1 · (r1 ≠ r2) + ik2 · (r2 ≠ r1) ≠ —~2

2m
(k2

1 + k
2
2)

D

. (2.24)

With the same assumption as before, to justify the integration replacing the sum, we must

use the a Fourier transformation of a gaussian to obtain

⁄
dk1dk2f(k1, k2) =

A
2fim

—~2

B
D

exp
A

m

—~2 (r2 ≠ r1)2
B

. (2.25)

Gathering the results of the gaussian integrals with Eqs. (2.16, 2.23) yield

Èr1, r2|flA,S

T
|r1, r2Í = 1

2ZA,S(⁄T )2D

Ë
1 ± e≠2fi(r1≠r2)2

/⁄
2
T

È
. (2.26)

This result clearly show the di�erence between bosons and fermions, as bosons have

greater probability to be found near each other for |r2 ≠ r1| . ⁄T , and for fermions this

probability decreases to 0 when r2 = r1.

2.2 Number occupation basis: second quantization

The approach presented in the previous section rapidly increases its complexity as the

number of particles is raised, and working with an arbitrary number of particles can

become rather cumbersome. Within this scenario, the second quantization formalism is

very convenient in reducing many-particle systems complexity.

One important thing to note from Eqs. (2.10, 2.11) is the impossible single particle

labeling as result of the permutations, with either positive or negative signs, where the

single particle labels can be of any type.2 However, it is still possible to infer the number

of particles sharing the same label without identifying them, due to the way the states

in Eqs. (2.10, 2.11) are constructed, starting from a known product state with specific

labels. Therefore, by construction, we have a correspondence of

|k1, ..., kNÍA,S æ |n1, ..., ni, ...Í, (2.27)

for a new basis which only the number of particles for each label is used, known as Fock

basis.
2Although in the previous section the momentum was used to workout a specific example.
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The many-particle operators must follow an equivalent mapping, defining the action

rules in this new basis. For instance, a Hamiltonian should be mapped as

H =
Nÿ

i=1

C

h(ri, pi) +
ÿ

j>i

V (ri, rj)
D

æ Ĥ, (2.28)

where the Ĥ indicate the version acting on Fock states.

Before working out this mapping for the operators, a basic starting point is the in-

vestigation of Fock states |n1, ..., ni, ...Í, providing their construction process and most

important features. In the following, we start from the simplest assumption of all ni be-

ing positive integers and by analogy with quantum harmonic oscillator [66] two possible

algebras are derived, one for bosons (symmetric case) and other for fermions (antisym-

metric).

2.2.1 Creation and annihilation operators

Let |�(nj)Í be a many-particle state which has at least one well defined occupation eigen-

value, nj, representing the number of particles in a particular labeled IPS j. Therefore,

the annihilation operator in this state j must satisfy

âj|�(nj)Í = c(nj)|�(nj ≠ 1)Í, (2.29)

consequently, there is a commutation relation with the number operator specified by

[âj, n̂j] = âj, (2.30)

and using the adjoint in both sides yield

[n̂j, â†
j
] = â†

j
. (2.31)

This last commutation rule also implies

â†
j
|�(nj)Í = d(nj)|�(nj + 1)Í. (2.32)

Combining the results from Eqs. (2.29, 2.32), the constants c(nj) and d(nj) can be
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chosen such that â†
j
âj|�(nj)Í = nj|�(nj)Í. Therefore, the number operator can be written

as

n̂j = â†
j
âj, (2.33)

provided that the constants are c(nj) = Ô
nj and d(nj) = Ô

nj + 1.

Another inspection in Eq. (2.30), show two di�erent ways to expand the commutator

as

[âj, â†
j
âj] = [âj, â†

j
]âj, (2.34)

[âj, â†
j
âj] = {âj, â†

j
}âj ≠ â†

j
{âj, âj}. (2.35)

These formulas reveal two possible algebras for the creation and annihilation operators,

the first requires [âj, â†
j
] = 1, while the second {âj, â†

j
} = 1 and â2

j
= 0. Remarkably,

the one involving the anticommutator describes fermions as double annihilation automat-

ically produces zero, while the former is suitable for bosons since resembles the quantum

harmonic oscillator and allow for arbitrary positive integer numbers in any IPS j.

The complete set of commutation relation is obtained based on arguments that the

sequential action of two operator involving di�erent IPS shall produce equivalent states

by changing the ordering [66], which implies

âj âi|�Í = ⁄âiâj|�Í, (2.36)

â†
j
âi|�Í = ⁄âiâ

†
j
|�Í, (2.37)

â†
j
â†

i
|�Í = ⁄â†

i
â†

j
|�Í, (2.38)

for i ”= j. As the di�erence between the sides of the equations above are only permutations

of the initial ordering, then ⁄ = ≠1 for fermions and ⁄ = +1 for bosons. Finally, the set

of commutation relation becomes either

Ë
âj, â†

i

È
= ”ij,

Ë
âj, âi

È
= 0, (2.39)

for bosons or
Ó
âj, â†

i

Ô
= ”ij,

Ó
âj, âi

Ô
= 0, (2.40)

for fermions.
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As can be anticipated, the IPS which the set of operators for creation and annihila-

tion corresponds is still arbitrary, although must satisfy the completeness relation. As

a final remark, it is worth to note that the occupation number states defined in the

mapping (2.27) can be build from the vacuum state with

|n1, ..., ni, ...Í =
Ÿ

i

1
â†

i

2
ni

Ô
ni!

|0Í, (2.41)

where the vacuum state |0Í return zero under action of any annihilation operator. For

fermions, ni can only be 0 or 1, thus, the factorials in denominator are usually omitted. In

addition, fermions require a convention in the operator ordering in Eq. (2.41) that must

be self-consistently followed.

The total number of particles operator is straightforward defined as

N̂ =
ÿ

i

â†
i
âi, (2.42)

which as will be shown later is independent of the IPS basis of the operators âi.

2.2.2 Basis conversion and field operator

Usually a suitable basis for a specific problem is not known explicitly but through a

transformation of another. This is the case, for example, of the quantum harmonic os-

cillator subject to external forces, where a relevant basis to the problem is build with

coherent states [68]. If two individual particle basis are available, {|ÂkÍ}k and {|„jÍ}j,

they are related by the unitary transformation matrix U , with Ujk = ÈÂk|„jÍ, such that

|„jÍ = q
k Ujk|ÂkÍ and |ÂkÍ = q

j Uú
jk

|„jÍ. Therefore, a given IPS in one basis must be a

superposition of states in the other basis, and that must imply the same when creating a

particle in the second quantization formalism. Then, the relation for the operators are

â†
k

=
ÿ

j

Uú
jk

b̂†
j

=
ÿ

j

È„j|ÂkÍb̂†
j
, (2.43)

âk =
ÿ

j

Ujkb̂j =
ÿ

j

ÈÂk|„jÍb̂j, (2.44)

with âk and b̂k related to |ÂkÍ and |„kÍ respectively.

This operator basis expansion is a recurrent tool to represent a BEC in meanfield



CHAPTER 2. MCTDHB 24

approach. In the general case, there is a time-dependent creation operator related to the

state the condensation occurs, usually represented by the 0≠indexed pair â†
0(t) for the

operator and |Â0(t)Í for the condensate wave-function. However, once there is a static

complete individual particle basis for the problem, namely {|„jÍ}j, the many-particle BEC

state is

|�0(t)Í =

1
â†

0(t)
2

N

Ô
N !

|0Í = 1Ô
N !

Q

a
ÿ

j

È„j|Â0(t)Íb̂†
j

R

b
N

|0Í, (2.45)

at any time instant t. This expansion often appears in approximations imposing a trun-

cation of the coe�cients cj(t) = È„j|Â0(t)Í when only a finite number of IPS are relevant

in the expansion [69–71].

The Eqs. (2.43, 2.44) can also be used with position eigenstates, substituting j æ x

with the required adaptations, for instance, changing the sum to an integral and |„jÍ æ

|xÍ. Usually, instead of writing b̂x, �̂(x) © b̂x is introduced and

âk =
⁄

dxÂk(x)ú�̂(x). (2.46)

Using the completeness relation in spatial coordinates space, q
k Âk(xÕ)Âk(x)ú = ”(x≠x

Õ),

yields

�̂(x) =
ÿ

k

Âk(x)âk. (2.47)

Eq. (2.47) is usually the origin of the so called second quantization formalism, since seems

like an ordinary wave-function expansion though the coe�cients are replaced by operators

acting on Fock basis.

These derivations can also consider a time-dependent individual particle basis, pro-

vided that the states are mutually orthogonal and the completeness relation hold for any

instant. This will be required in the derivation of the MCTDHB.

Finally, the commutation or anticommutation relations are readily obtained using

either Eq. (2.39) or Eq. (2.40) with Eq. (2.47), respectively. Therefore,

[�̂(x), �̂†(xÕ)] = ”(x ≠ x
Õ), [�̂(x), �̂(xÕ)] = 0, (2.48)

for bosons and

{�̂(x), �̂†(xÕ)} = ”(x ≠ x
Õ), {�̂(x), �̂(xÕ)} = 0, (2.49)
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for fermions.

The basis conversions rules derived here show an interesting result when used in the

total number operator, defined in Eq. (2.42). Substituting Eqs. (2.43, 2.44) in Eq. (2.42)

yield

N̂ =
ÿ

k

S

U

Q

a
ÿ

j

È„j|ÂkÍb̂†
j

R

b
A

ÿ

i

ÈÂk|„iÍb̂i

BT

V

=
ÿ

ij

C

È„j|
A

ÿ

k

|ÂkÍÈÂk|
B

|„iÍb̂†
j
b̂i

D

=
ÿ

i

b̂†
i
b̂i, (2.50)

where the completeness relation and orthogonality of the IPS were assumed. Additionally,

similar calculations using the conversion relation for the field operator in Eq. (2.46) imply

N̂ =
⁄

dx�̂†(x)�̂(x). (2.51)

2.2.3 Many-body wave function through field operators

The wave-function, by definition, must satisfy the many-body Schrödinger equation of

the system, hence, to obtain it from the second quantization formalism, there must be a

scalar function of N variables, Â(x1, ..., xN), that is either symmetric or antisymmetric

under the bosonic or fermionic commutation rules respectively, summarized by Eqs. (2.48,

2.49). The function

Â(x1, ..., xN ; t) = 1Ô
N !

È0|�̂(x1)�̂(x2)...�̂(xN)|�(N); tÍ, (2.52)

is the one to fulfill the requirements, as shown in Ref. [66]. Moreover, a reciprocal version

to obtain the state |�(N)Í from the many-body wave function is

|�(N); tÍ =
⁄ A

NŸ

i=1
dxi

B
1Ô
N !

�̂†(xN)...�̂†(x2)�̂†(x1)|0ÍÂ(x1, x2, ..., xN ; t). (2.53)

The Eqs. (2.52, 2.53) demand an ordering convention when working with fermions, as

already mentioned before in the definition of Fock states. Nonetheless, in this way written

here, both equations are valid for bosons and fermions [66].



CHAPTER 2. MCTDHB 26

2.2.4 n-point Green’s function relation to the wave-function

The Eqs. (2.52, 2.53) can also be used to prove the compatibility of operators introduced

in the second quantization formalism, for instance, by reproducing the known formulas

with the many-body wave function. For this compatibility proof, the expression

È�(N)
A

; t|�†(yÕ
1)...�†(yÕ

n
)W (yÕ

1, ..., y
Õ
n
; x

Õ
n
, ..., x

Õ
1)�(xÕ

n
)�(xÕ

1)|�
(N)
B

; tÍ, (2.54)

for a general n-body operator density plays an important role. Moreover, if W = 1, this

expression has crucial importance in the interpretation of reduced density matrices and

correlation functions, as will be discussed later. Usually, when W = 1 this expression is

also named n≠point Green’s function.

In order to show the relation of Eq. (2.54) to the system’s wave-function, let |�(N≠1)Í =

�̂(xÕ
1)|�(N)Í represent a generic state, omitting for simplicity the time dependence. Using

Eq. (2.53),

|�(N≠1)Í =
⁄ A

NŸ

i=1
dxi

B
1Ô
N !

�̂(xÕ
1)�̂†(xN)...�̂†(x2)�̂†(x1)|0ÍÂ(x1, x2, ..., xN). (2.55)

Following one of the commutation rules of Eq. (2.48) or Eq. (2.49),

�̂(xÕ
1)�̂†(xN)...�̂†(x2)�̂†(x1)|0Í =

1
”(xÕ

1 ≠ xN) ± �̂†(xN)�̂(xÕ
1)

2
...�̂†(x2)�̂†(x1)|0Í

= ”(xÕ
1 ≠ xN)

1Ÿ

i=N≠1
�̂†(xi)|0Í ± �̂†(xN)�̂(xÕ

1)...�̂†(x2)�̂†(x1)|0Í,

(2.56)

where the minus sign is valid for fermions while the plus sign for bosons, and the product,
r, must be done stacking operator with decreasing index from left to the right, until hit

the vacuum. Proceeding with similar steps until �̂(xÕ
1) hits the vacuum yield

�̂(xÕ
1)�̂†(xN)...�̂†(x2)�̂†(x1)|0Í =

Nÿ

j=1
(±1)N≠j”(xÕ

1 ≠ xj)
1Ÿ

i=N
i”=j

�̂†(xi)|0Í. (2.57)
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This last equation can be inserted in Eq. (2.55) to obtain

|�(N≠1)Í =
Nÿ

j=1
(±1)N≠j

⁄
Q

cca
NŸ

k=1
k ”=j

dxk

R

ddb
1Ô
N !

1Ÿ

i=N
i”=j

�̂†(xi)|0Í
⁄

dxj”(xÕ
1 ≠ xj)Â(x1, ..., xN),

(2.58)

where for each summation term is possible to separate the integral corresponding to the

missing operator, thereby, integrating only the delta with the wave-function. After this

integration is calculated, the j-th argument of Â will be replaced by x
Õ
1, with all others

una�ected,

|�(N≠1)Í =
Nÿ

j=1
(±1)N≠j

⁄
Q

cca
NŸ

k=1
k ”=j

dxk

R

ddb
1Ô
N !

1Ÿ

i=N
i”=j

�̂†(xi)|0ÍÂ(x1, ..., xj≠1, x
Õ
1, xj+1, ..., xN).

(2.59)

A final step is a rearrangement of the variables for each j. First, in the wave-function

Â, the variable x
Õ
1 can be moved one position at a time until occupying the first argument.

As consequence of moving this way, j ≠ 1 successive exchanges with neighbor arguments

are required, and yield a overall factor of (±1)j≠1 due to these permutations, thereby

|�(N≠1)Í =
Nÿ

j=1
(±1)N≠1

⁄
Q

cca
NŸ

k=1
k ”=j

dxk

R

ddb
1Ô
N !

1Ÿ

i=N
i”=j

�̂†(xi)|0ÍÂ(xÕ
1, ..., xj≠1, xj+1, ..., xN),

(2.60)

with the permutation factor (±1)j≠1 merged into the previous (±1)N≠j. Moreover, all

the integration variables xk, with k > j, can be relabeled decreasing one index, with

k æ k ≠ 1, resulting in the integration variable indexes always between 1 and N ≠ 1,

|�(N≠1)Í =
Nÿ

j=1
(±1)N≠1

⁄ A
N≠1Ÿ

k=1
dxk

B
1Ô
N !

1Ÿ

i=N≠1
�̂†(xi)|0ÍÂ(xÕ

1, x1, ..., xN≠1), (2.61)

which has no dependence on j, and finally

|�(N≠1)Í =
Ô

N(±1)N≠1
⁄ A

N≠1Ÿ

k=1
dxk

B
1

Ò
(N ≠ 1)!

1Ÿ

i=N≠1
�̂†(xi)|0ÍÂ(xÕ

1, x1, ..., xN≠1).

(2.62)

The factor (±1)N≠1 in this last equation is particular to the choice of setting the first

variable of the wave function, although, in general, the required assumption is to fix one
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arbitrary argument of Â to hold x
Õ
1. Nevertheless, with x

Õ
1 as the first argument the

expression is apparently more convenient to interpret, as it is very similar to the initial

one to a system of N ≠ 1 particles, Eq. (2.53), apart of the numerical factors before the

integration and the additional label x
Õ
1.

The original goal of computing Eq. (2.54) now follows straightforward calculations in

applying �̂(xÕ
2)�̂(xÕ

1)|�(N)Í = �̂(xÕ
2)|�(N≠1)Í, basically repeating the steps above,

|�(N≠2)Í © �̂(xÕ
2)|�(N≠1)Í =

Ô
N(±1)N≠1

S

U
⁄ A

N≠1Ÿ

k=1
dxk

B
1

Ò
(N ≠ 1)!

�̂(xÕ
2)�̂†(xN≠1)...�̂†(x1)|0Íf (1)(x1, ..., xN≠1)

T

V , (2.63)

where f (1)(x1, ..., xN≠1) © Â(xÕ
1, x1, ..., xN) ease the calculations since x

Õ
1 plays no impor-

tant role. For the expression inside square brackets, following very similar passages done

starting from Eq. (2.55) yield

|�(N≠2)Í =
Ò

N(N ≠ 1)(±1)N≠2(±1)N≠1

⁄ A
N≠2Ÿ

k=1
dxk

B
1

Ò
(N ≠ 2)!

1Ÿ

i=N≠2
�̂†(xi)|0ÍÂ(xÕ

1, x
Õ
2, x1, ..., xN≠2). (2.64)

Therefore, for the general case,

�̂(xÕ
n
)...�̂(xÕ

1)|�(N)Í =
Û

N !
(N ≠ n)!(±1)(N≠(n+1)/2)n

⁄ A
N≠nŸ

k=1
dxk

B
1

Ò
(N ≠ n)!

1Ÿ

i=N≠n

�̂†(xi)|0ÍÂ(xÕ
1, ..., x

Õ
n
, x1, ..., xN≠n). (2.65)

Back to Eq. (2.54), using Eq. (2.65) with the proper labels A and B in the wave

functions,

È�(N)
A

; t|�†(yÕ
1)...�†(yÕ

n
)W (yÕ

1, ..., y
Õ
n
; x

Õ
n
, ..., x

Õ
1)�(xÕ

n
)...�(xÕ

1)|�
(N)
B

; tÍ =

N !
Ë
(N ≠ n)!

È2

⁄ A
N≠nŸ

k=1
dykdxk

B S

UÈ0|�̂(y1)...�̂(yN≠n)�̂†(xN≠n)...�̂†(x1)|0Í

ÂA(y̨Õ, y1, ..., yN≠n; t)úW (y̨Õ; x̨
Õ)ÂB(x̨Õ, x1, ..., xN≠n; t)

T

V, (2.66)
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where the notation z̨
Õ © (zÕ

1, ..., z
Õ
n
) was introduced for brevity.

The calculation of the operator average È0|�̂(y1)...�̂(yN≠n)�̂†(xN≠n)...�̂†(x1)|0Í is

provided in Ref. [66, ch. 21, p. 548], by adapting the general result

È0|�̂(y1)...�̂(ym)�̂†(xm)...�̂†(x1)|0Í =
ÿ

{Pi}
(±1)n({Pi})”(yP1 ≠ x1)”(yP2 ≠ x2)...”(yPm ≠ xm), (2.67)

where {Pi} is the set of all permutations of the tuple (1, 2, ..., m), and n({Pi}) is the

number of permutations done. When substituting this result above, the integrals over

xk can be evaluated, meanwhile, for each term in the sum over permutations, the un-

primed arguments in ÂB will be shu�ed. Notwithstanding, the wave-function ÂB is also

symmetric(+1) or antisymmetric(≠1) under permutations by construction in Eq. (2.52),

therefore, this can be used to eliminate the (±1)n({Pi}) factor to produce

È�(N)
A

; t|�†(yÕ
1)...�†(yÕ

n
)W (yÕ

1, ..., y
Õ
n
; x

Õ
n
, ..., x

Õ
1)�(xÕ

n
)...�(xÕ

1)|�
(N)
B

; tÍ =

N !
Ë
(N ≠ n)!

È
⁄ A

N≠nŸ

k=1
dyk

B

ÂA(y̨Õ, y1, ..., yN≠n; t)úW (y̨Õ; x̨
Õ)ÂB(x̨Õ, y1, ..., yN≠n; t), (2.68)

which complete the desired result for the moment.

In this assessment of a general n-body operator density some interesting features are

now more evident. Apart from the primed variables, the others are simply integrated

out in the wave-functions, which is usually addressed as a partial trace. The function

W is rather general and can represent even non-local operators from ordinary quantum

mechanics, which will be used in the following to show the compatibility with usual

results starting from the second quantization formalism. Finally, ignoring the factorials,

for W = 1 and y̨
Õ = x̨

Õ, the mutual probability of finding particles at x
Õ
1, ..., x

Õ
n

is obtained.

2.3 Many-body operators in second quantization

The many-body operators can be divided in classes considering the number of particles

required to evaluate them. The most common ones are the single and two particle op-

erators, which are related to free particles and their pairwise interactions respectively.

However, in principle, general n-interacting particle operators are possible.
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2.3.1 many-body extension of single particle operators

The extension of single particle operators to a many-body system can be done through its

eigenstates. The indistinguishability of the particles requires only the occupation number

in each eigenstate, hence, for a set of eigenvalues Ÿi of an one-body operator K, the

many-body extension is

K̂ =
ÿ

k

Ÿkâ†
k
âk, (2.69)

which, using the conversion rules in Eqs. (2.43, 2.44), can be expressed in a general IPS

basis {|„iÍ} as

K̂ =
ÿ

kij

ŸkÈ„i|ÂkÍb̂†
i
ÈÂk|„jÍb̂j. (2.70)

The completeness relation for the single particle eigenstates {Âk} yields

K̂ =
ÿ

ij

È„i|K|„jÍb̂†
i
b̂j. (2.71)

In addition to the general formula above, the same can be done in terms of the field

operator. Generally, the projection on position of the single particle operator K in-

volves terms containing analytic functions of x and derivatives. Specifically, Èx|K|„Í =

K(x, Ò)Èx|„Í, thus, using the unitary operator as projection in position space implies

K̂ =
ÿ

ij

⁄
dxÈ„i|xÍÈx|K|„jÍb̂†

i
b̂j =

⁄
dx

A
ÿ

i

„i(x)úb̂†
i

B

K(x, Ò)
Q

a
ÿ

j

„j(x)b̂j

R

b ,

K̂ =
⁄

dx�̂†(x)K(x, Ò)�̂(x). (2.72)

The precise proof for the equivalence of this operator K̂ in second quantization for-

malism is obtained using overlap with two arbitrary many-body states. With Eq. (2.68),

replacing W (yÕ
1, x

Õ
1) = K(yÕ

1, ÒyÕ
1
)”(yÕ

1 ≠ x
Õ
1) and integrating in both y

Õ
1 and x

Õ
1 yield

⁄
dy

Õ
1dx

Õ
1È�

(N)
A

; t|�†(yÕ
1)K(yÕ

1, ÒyÕ
1
)”(yÕ

1 ≠ x
Õ
1)�(xÕ

1)|�
(N)
B

; tÍ =

N
⁄ A

NŸ

k=1
dyk

B

ÂA(y1, ..., yN ; t)úK(y1, Òy1)ÂB(y1, ..., yN ; t), (2.73)

which is actually obtained after relabeling y
Õ
1 in the right side of equal sign. This is

exact the same expression obtained when evaluating the overlap of two arbitrary wave-
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functions with the operator K added up over all the particles positions, whereas due to

the indistinguishability of the particles, K can act only in the first argument.

2.3.2 Many-body extension of interaction operators

An important point to note in the expression of single particle operators in Eq. (2.71)

is the number of creation and annihilation operators. For a single annihilation operator

to the right, any state that is not the vacuum can produce a nonzero expectation value.

Intuitively, for a two-body interaction operator four field operators are needed in total,

two of creation type and their adjoint.

From the position space representation of an interaction potential V (x1, x2), its ex-

tension to second quantization formalism is

V̂ = 1
2

⁄
dx1dx2�̂†(x1)�̂†(x2)V (x1, x2)�̂(x2)�̂(x1). (2.74)

In addition, V is usually required to have translational invariance, thus V (x1, x2) ©

V (|x1 ≠ x2|). This expression can be verified with similar steps evaluated for single

particle operators above, just setting W (yÕ
1, y

Õ
2; x

Õ
2, x

Õ
1) = 1

2V (yÕ
1, y

Õ
2)”(xÕ

1 ≠ y
Õ
1)”(xÕ

2 ≠ y
Õ
2),

integrating over all primed variables as well and adjusting some labels in integrations yield

È�A; t|V̂ |�B; tÍ = N(N ≠ 1)
2

⁄ A
NŸ

k=1
dyk

B

ÂA(y1, ..., yN ; t)úV (y1, y2)ÂB(y1, ..., yN ; t),

(2.75)

which matches the exact same expression of the expectation value of two-body operator

with wave-functions, considering identical particles. Another form can be obtained using

the conversion rule in Eq. (2.47),

V̂ = 1
2

ÿ

k,l,q,s

â†
k
â†

s
âlâqÈ„k, „s|V |„q, „lÍ, (2.76)

which accepts any complete IPS basis {|„kÍ} and is valid for both fermions and bosons

within this strict ordering of indexes in operators and IPS.

Theoretically, general n≠body interaction functions can be defined, although, there

are no evidences that they are present in atomic systems. In ultracold regimes, as the

precise potential function V (x1, x2) is unknown, it is usually replaced by an e�ective

contact interaction based on the scattering length of atom pairs. Such assumption, min-
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imally demands that the interactions in the gas are well represented by pair collisions,

whereas, no more than two particles are scattered at the same time, and wave-functions

of outgoing particles from a collision event must assume their asymptotic form before

another scattering process. This approximation requires a minimal diluteness of the gas,

and when not fulfilled, 3≠body interaction terms are phenomenologically introduced to

attenuate this problem. Nevertheless, it does not mean that there exists theoretically

such an interaction, but instead, it tries to emulate 3-body simultaneous scattering. For

a more elaborate discussion see Refs. [72, 73], especially the note listed as reference five

in [72].

2.4 Reduced density matrices and correlations

A preliminar discussion about the p≠order Reduced Density Matrix(p≠RDM) was made

in the introduction, as a tool to provide information beyond meanfield approach. In the

scope of this thesis it is defined as

fl(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
; t) =

K
pŸ

i=1
�̂†(xÕ

i
)

pŸ

j=1
�̂(xi)

L
(N ≠ p)!

N ! , (2.77)

where the average is over an arbitrary time dependent state and the out-bracket terms

provide unit trace due to the relation with the many-body wave-function, as derived in

Eq. (2.68). This relation to the many-body wave-function is obtained simply setting

W = 1 in Eq. (2.68), which yields

fl(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
; t) =

⁄ Q

a
NŸ

i=p+1
dxi

R

b Âú(xÕ
1, ..., x

Õ
p
, xp+1, ..., xN ; t)Â(x1, ..., xN ; t).

(2.78)

The unit trace follows immediately from the normalization of the wave-function,

⁄ A
pŸ

i=1
dxi

B

fl(p)(x̨|x̨; t) = 1. (2.79)

where x̨ is short for x1, ..., xN .

In addition to the probabilities distribution information, the p≠RDM contains all

necessary information to evaluate any p≠body operators through traces, a property that

specifically legitimize calling it by density matrix, which shall not be confused with a
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statistical ensemble density matrix, since there is still a pure many-body state underneath

its definition. For instance, from Eqs. (2.78, 2.73),

ÈK̂Í = N
⁄

dx

5
K(x, Òx)fl(1)(x|xÕ; t)

6

xÕ=x
, (2.80)

and similarly, using Eq. (2.75),

ÈV̂ Í = N(N ≠ 1)
2

⁄
dx1x2

5
V (x1, x2)fl(2)(x1, x2|xÕ

1, x
Õ
2; t)

6

xÕ
1=x1

xÕ
2=x2

. (2.81)

The p≠RDM also provide a discrete form. Once introduced an IPS basis {|„kÍ}k, with

âj being the corresponding operator to destroy a particle in the state |„jÍ, then

fl(p)
i1,...,ip,j1,...,jp

(t) © Èâ†
i1 ...â†

ip
âj1 ...âjpÍ(N ≠ p)!

N ! . (2.82)

also with unit trace, which is the sum over all ik, for k = 1, ..., p and jk = ik. The

proof is straightforward using the conversion rule Eq. (2.46) and Eq. (2.79). In addition,

throughout the text, the tilde will denote the unnormalized p≠RDM, with

fl̃(p) = N !
(N ≠ p)!fl

(p). (2.83)

In the following, some properties from the 1≠RDM are worked out, which are very

important in the concepts of condensation, fragmentation and long-range order.

2.4.1 Natural occupations, condensation and fragmentation

The 1≠RDM is of special interest due to its relation to IPS bases. In order to show its

importance concerning the Bose-Einstein condensation, it is relevant to define the first

order coherence operator for an IPS basis representation, which is the second quantization

version of the projection |ÂlÍÈÂk| for two generic states labeled by l and k. Substituting

K æ |ÂlÍÈÂk| in Eq. (2.71), the first order coherence is given by

Ĉ
1
|ÂlÍÈÂk|

2
=

ÿ

ij

È„i|ÂlÍÈÂk|„jÍb̂†
i
b̂j = â†

l
âk, (2.84)

where the conversion rules (2.43, 2.44) were used and âk is the destruction operator in state



CHAPTER 2. MCTDHB 34

|ÂkÍ. With Ĉlk © Ĉ(|ÂlÍÈÂk|) for simplification, its average is one of the terms contained in

an unnormalized discrete 1≠RDM, in particular, ÈĈkkÍ = Èâ†
k
âkÍ is the average occupation

in single particle state |ÂkÍ. Calling this operator first order coherence is motivated by

its average being the o�-diagonal terms of fl̃(1).

The natural single particle states, also known as natural orbitals, by definition are

those whose the first order coherences vanishes, thus, related to diagonalization of the

1≠RDM. In terms of the normalized 1≠RDM fl(1), its eigenvalues {pk} are positive due

to hermiticity and constrained by the fixed total number of particles through Eq. (2.50),

1 = Tr
A

fl(1)(t)
B

=
ÿ

k

pk(t), (2.85)

The determination of the natural occupations and orbitals requires the transformation

matrix of the diagonal representation. First, introducing the unitary matrix U , which

transforms the discrete 1≠RDM fl(1) to a diagonal form as

fl(1)
kl

(t) =
ÿ

i

Uki(t)pi(t)U †
il
(t), (2.86)

then, the eigenvalues can be equivalently written as

pj(t)”ij =
ÿ

kl

U †
ik

(t)fl(1)
kl

(t)Ulj(t). (2.87)

With the definition in Eq. (2.82),

pj(t)”ij = 1
N

ÿ

kl

U †
ik

(t)Èâ†
k
âlÍUlj(t) = 1

N

KA
ÿ

k

U †
ik

(t)â†
k

B A
ÿ

l

Ulj(t)âl

BL

, (2.88)

pj(t)”ij = 1
N

Èĉ†
i
(t)ĉj(t)Í, (2.89)

where the conversion rules (2.43, 2.44) were applied. This last equation proves that, for

this set of operators {ĉi(t)}, indeed the first order coherence vanishes at every instant t,

although their underlying IPS, which are the natural orbitals, remains to be specified.

The complete specification of the natural orbitals is determined by the spatial pro-

jection of the 1≠RDM [(2.77), p = 1]. With the field expansion in Eq. (2.47), it can be

written as

fl(1)(x|xÕ; t) =
ÿ

k,l

fl(1)
kl

(t)„ú
k
(xÕ)„l(x). (2.90)
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Using Eq. (2.86), we can regroup the terms in a convenient way to obtain

fl(1)(x|xÕ; t) =
ÿ

i

pi(t)
C

ÿ

k

Uki(t)„k(xÕ)ú
D C

ÿ

l

Uú
li
(t)„l(x)

D

. (2.91)

Apart of the di�erent summation index, the terms inside square brackets in this last

equation are conjugate of each other. Therefore, the set {Âi(x, t)}, where,

Âi(x, t) =
ÿ

l

Uú
li
(t)„l(x), (2.92)

provides the IPS which the operators {ĉi(t)} refers to, as such, classifying them as the

natural orbitals. The completeness of the initial set of IPS {„k(x)} implies the same

condition for the natural orbitals, since they are related by an unitary transformation,

and it is straightforward to verify the property

Uji(t) =
⁄

dxÂi(x, t)ú„j(x) = ÈÂi|„jÍ. (2.93)

The natural orbitals also provide fl(1)(x|xÕ; t) in diagonal form, but in continuum

means, as

fl(1)(x|xÕ; t) =
ÿ

i

pi(t)Âi(xÕ, t)úÂi(x, t) , (2.94)

and therefore, also satisfies the eigenvalue equation

⁄
dx

Õfl(1)(x|xÕ; t)Âk(xÕ; t) = pk(t)Âk(x; t) . (2.95)

Eventually, the proof of zero coherence can be done using the spatial projection of

1≠RDM, with Eq. (2.46) for the conversion of ĉ to the field operators and using Eq. (2.95),

1
N

Èĉ†
k
(t)ĉl(t)Í =

⁄
dx

⁄
dx

ÕÂk(xÕ; t)Âl(x; t)ú È�̂†(xÕ)�̂(x)Í
N

= pk(t)”kl , (2.96)

Within this general approach, we can define the average fraction of BEC particles

according to the Penrose-Onsager criterion [55], by the largest value of the set {pk(t)}.

Conversely, if more eigenvalues have the same magnitude of the first one, taking into

account the total number of particles, the many-particle state is said to be fragmented.

As a final remark, the Refs. [60, 61, 69] provide relevant discussions about the subject of
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this section though the normalization convention for p≠RDM may change.

2.4.2 Correlations and fluctuations

Correlations in a generic statistical sample are related to simultaneous variations around

the mean of two di�erent variables weighted by their variances. This approach can be

extended for any pair of observables, but a very relevant one is the spatial distribution

probability of simultaneously find particles, since there is a stark contrast with the mean-

field description.

The spatial p≠order correlation function, g(p) follows the general definition

g(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
; t) =

fl(p)(x1, ..., xp|xÕ
1, ..., x

Õ
p
; t)

Òrp

i=1 fl(1)(xi; t)fl(1)(xÕ
i
; t)

, (2.97)

which is the same as in the Ref. [61], with fl(1)(x; t) © fl(1)(x|x; t). In the case the primed

variables are equal to the unprimed ones, it reduces to

g(p)(x1, ..., xp; t) = fl(p)(x1, ..., xp; t)
rp

i=1 fl(1)(xi; t) , (2.98)

where the simplification on the explicit arguments f (p)(x1, ..., xp) © f (p)(x1, ..., xp|x1, ..., xp)

was used for both g(p) and fl(p). This formula shows that g(p) in this case is reduced to

the mutual probability weighted by the independent probabilities.

A first important case to analyze is the pure condensate state, when an unique eigen-

value of fl(1) is one or at least much larger than the others, such that for practical purposes

p0 ¥ 1 and pk ¥ 0 for k > 0 in Eq. (2.94). Consequently, the many-body state describing

the system must have only one occupied IPS, corresponding to ĉ0, such that Èĉ†
0ĉ0Í = Np0.

Therefore, in the definition of the p≠RDM, expanding the field operator in this basis of

natural orbitals will be equivalent to substitute

�̂(x) æ ĉ0Â0(x), (2.99)

whereas the correlation function becomes simply

g(p)
BEC

(x1, ..., xp) = 1. (2.100)
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This result is an extension of the long-range order mentioned in books for the case

g(1) [21]. Moreover, it also shows that in a BEC, all particles work as independent variables

in statistical distribution means, represented by the same wave-function Â0(x), and this

wave-function is usually regarded as the classical counterpart of the field operator, thereby,

named as a meanfield approach. However, this shall not be confused with
Ô

NÂ0(x) ©

È�̂(x)Í, which would necessarily require fluctuations in the total number of particles.

This issue is addressed in Refs. [74, 75], and there is no possibility that this approach

fundamentally describes a pure many-particle state, regardless of whether it provides a

good approximation.

2.5 MCTDHB equations of motion

In the previous sections in this chapter, the general framework of second quantization was

reasonably explored, focusing in some features interesting for this project. Despite the

generality of most passages, without distinguish between bosons and fermions, starting in

this section and throughout the rest of the thesis, the particles will be treated exclusively

as bosons with no further mention to fermions.

The main idea in the MCTDHB is the extension of the many-particle state implied

in the meanfield approach, by allowing more IPS to include quantum depletion. From

this starting point, all possible Fock states are considered for the many-particle state

expansion, thereby, justifying the multiconfigurational name, with a configuration under-

stood as a particular arrangement of occupation numbers respecting the total number of

particles.

2.5.1 Individual particle states and configurational basis

Any many-body state can particularly be represented in the Fock basis, in terms of the

states defined in Eq. (2.41), at any time instant t through basis expansion with a set of

time-dependent coe�cients, such that

|�; tÍ =
ÿ

n̨œ�(N)
Cn̨(t)|n̨Í, (2.101)

with �(N) = {n̨ œ N
Œ; q

i ni = N}, considering an infinite IPS basis whose the occu-
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pation numbers corresponds. The elements of the set in �(N) are called configurations,

which are arrangements of particles in the IPS.

Despite the completeness of the IPS set, according to the expansion in Eq. (2.101), they

remain the same during any dynamical process, eventually consuming many configurations

to accurately describe |�; tÍ. As example, in a dynamical process that squeeze or broaden

an harmonic trap, the initial basis can become inappropriate if it was chosen for a fixed

harmonic trapping parameter, while the physical process is simply a scale transformation,

and consequently, require occupations in a larger number of states. A basis that adaptively

squeeze or broaden its states according to the system’s trap in this example would be more

appropriate, and intuitively, less states are required in Eq. (2.101).

In addition to the intuitive example mentioned above, in a numerical approach the

set �(N) will be truncated as will be described in the next chapter, thus, the IPS basis

should be the best possible at any time instant of the evolution. Therefore, a generic

time dependence is introduced to provide a time adjustable basis and the corresponding

operators are

âk(t) =
⁄

dx„k(x, t)ú�̂(x), (2.102)

with {„k(x, t)} satisfying orthonormality and completeness at every time instant t. The

expansion then becomes

|�; tÍ =
ÿ

n̨

Cn̨(t)|n̨; tÍ, (2.103)

where

|n̨; tÍ ©
Ÿ

k

5
â†

k
(t)

6
nk

Ô
nk!

|0Í. (2.104)

The set of configurations used in the expansion (2.103) is no longer stated for simplicity.

Numerically, this set of configurations will even be finite with a possible enumeration, but

this will be approached later, and at this point, this omitted information will not harm

the next passages.

In view of preserving the generality of the method for an arbitrary problem, the time

dependence is established by minimization of Schrödinger action.
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2.5.2 Action minimization

The equations of motion for the set of IPS and coe�cients used in the expansion must be

derived by minimization of

S
5
C, {„k, „ú

k
}

6
=

⁄
dt

C

i~È�(t)|�̇(t)Í ≠ È�(t)|Ĥ(t)|�(t)Í≠
ÿ

k,l

µkl(t)È„k; t|„l; tÍ
D

, (2.105)

where µkl(t) are Lagrange multipliers to ensure orthonormality of the IPS at all times,

even if the set is truncated and not complete. The many-particle Hamiltonian is written

in terms of the time dependent operators as

Ĥ(t) =
ÿ

l,k

C

È„l; t|T |„k; tÍâ†
l
(t)âk(t) + 1

2
ÿ

s,q

â†
l
(t)â†

k
(t)âs(t)âq(t)È„l, „k; t|V |„q, „s; tÍ

D

.

(2.106)

With the action properly set in Eq. (2.105), it needs to be minimized with respect to

the coe�cients and IPS independently. Using infinitesimal variations, this corresponds to

vanishing functional derivatives,

”S
5
C, {„k, „ú

k
}

6

”C
= 0,

”S
5
C, {„k, „ú

k
}

6

”„ú
j

= 0. (2.107)

Therefore, the first requirement is to fully specify Eq. (2.105) in terms of all functions

„k(x, t) and complex coe�cients Cn̨(t). Before proceeding with additional manipulations,

it is worth to introduce the following useful formulas for the next steps [76],

d

dt

C
Ÿ

i

fi(t)
D

=
ÿ

i

dfi

dt

Ÿ

j ”=i

fj(t), (2.108)

”

”„ú
k
(x, t)È„j; tÕ|T |f ; tÕÍ = ”(t ≠ tÕ)

⁄
dx

Õ”kj”(x ≠ x
Õ)

Ë
Tf(xÕ, tÕ)

È
= ”kj”(t ≠ tÕ)Tf(x, t),

(2.109)

”

”„ú
k
(x, t)È„j, „l; tÕ|V |g, f ; tÕÍ = ”(t ≠ tÕ)

⁄
dx

Õdx
ÕÕ
I

5
”kj”(x ≠ x

Õ)„l(xÕÕ, t)ú + ”kl”(x ≠ x
ÕÕ)„j(xÕ, t)ú

6
V (xÕ, x

ÕÕ)g(xÕ, tÕ)f(xÕÕ, tÕ)
J

= ”(t ≠ tÕ)
5
”kjg(x, t)È„l; t|WV (x)|f ; tÍ + ”klf(x, t)È„j; t|WV (x)|g; tÍ

6
, (2.110)
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where the exchange symmetry of the potential, V (x1, x2) = V (x2, x1), and the e�ective

single particle operator

Èx1|WV (x)|x2Í © ”(x2 ≠ x1)V (x, x2) (2.111)

were used to simplify the last equation.

One tricky part is the computation of the time devirative of the state |�; tÍ, due to

time dependence of the operators, therefore,

ˆ

ˆt
|�; tÍ =

ÿ

n̨

ˆCn̨

ˆt
|n̨; tÍ + Cn̨(t) ˆ

ˆt
|n̨; tÍ, (2.112)

where

ˆ

ˆt
|n̨; tÍ = ˆ

ˆt

Ÿ

i

1
â†

i
(t)

2
ni

Ô
ni!

|0Í (2.113)

=
ÿ

i

1Ô
ni!

C
ˆ

ˆt

1
â†

i
(t)

2
ni

D
Ÿ

j ”=i

1
â†

j
(t)

2
nj

Ò
nj!

|0Í (2.114)

=
ÿ

i

(1 ≠ ”0ni)
Ô

ni

C
ˆâ†

i
(t)

ˆt

D 1
â†

i
(t)

2
ni≠1

Ò
(ni ≠ 1)!

Ÿ

j ”=i

1
â†

j
(t)

2
nj

Ò
nj!

|0Í (2.115)

=
ÿ

i

(1 ≠ ”0ni)
Ô

ni

C⁄
dx

ˆ„i(x, t)
ˆt

�̂†(x)
D 1

â†
i
(t)

2
ni≠1

Ò
(ni ≠ 1)!

Ÿ

j ”=i

1
â†

j
(t)

2
nj

Ò
nj!

|0Í (2.116)

=
ÿ

i

(1 ≠ ”0ni)
ÿ

k

Ô
ni

K

„k; t

-----
ˆ

ˆt

----- „i; t

L

â†
k
(t)

1
â†

i
(t)

2
ni≠1

Ò
(ni ≠ 1)!

Ÿ

j ”=i

1
â†

j
(t)

2
nj

Ò
nj!

|0Í,

(2.117)

with Eq. (2.108) used from the first to second line and the field operator conversion rules

used back and forth in the last two lines. The Kronecker delta only avoids deriving states

with ni = 0. Due to bosonic commutation rules in Eq. (2.39),

âi(t)
1
â†

j
(t)

2
m

= m”ij

1
â†

j
(t)

2
m≠1

+
1
â†

j
(t)

2
m

âi(t), (2.118)

which implies
ˆ

ˆt
|n̨; tÍ =

ÿ

ik

K

„k; t

-----
ˆ

ˆt

----- „i; t

L

â†
k
(t)âi(t)|n̨; tÍ. (2.119)
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As a final remark on these passages, the Kronecker delta factor is no longer needed since

if ni = 0, âi(t) will act directly on vacuum state.

The equations for the coe�cients are the easier ones to obtain compared to the IPS. It

is important to note though, that only the state |�; tÍ depends on the coe�cients, thus,

to compute the variations with respect to them, we can suitably express the action as

S
5
C, {„k, „ú

k
}

6
=

⁄
dt

Y
]

[
ÿ

n̨Õ
Cn̨Õ(t)ú

C

i~ˆCn̨Õ(t)
ˆt

+

ÿ

n̨

A

i~
K

n̨Õ; t

-----
ˆ

ˆt

----- n̨; t

L

≠ Èn̨Õ; t|Ĥ(t)|n̨; tÍ
B

Cn̨(t) ≠
Mÿ

k,l=1
µkl(t)È„k; t|„l; tÍ

DZ
^

\, (2.120)

which after evaluating the functional derivatives with respect to the coe�cients yields

i~ˆCn̨Õ(t)
ˆt

=
ÿ

n̨

A

Èn̨Õ; t|Ĥ(t)|n̨; tÍ ≠ i~
K

n̨Õ; t

-----
ˆ

ˆt

----- n̨; t

LB

Cn̨(t). (2.121)

The second term inside the parentheses seems unusual for a typical Hamiltonian time-

evolution, but it came from the fact that the basis is time-dependent. Nonetheless, it can

be removed with a proper unitary transformation, as will be done later.

The derivation of the IPS equations requires some extra passages. Firstly, gathering

Eqs. (2.112, 2.119) to evaluate the first term in Eq. (2.105),

K

�; t

-----
ˆ

ˆt

----- �; t

L

=
ÿ

n̨Õ
Cn̨Õ(t)ú ˆCn̨Õ(t)

ˆt
+

ÿ

ik

K

„k; t

-----
ˆ

ˆt

----- „i; t

L
ÿ

n̨,n̨Õ
Èn̨Õ; t|â†

k
(t)âi(t)|n̨; tÍCn̨Õ(t)úCn̨(t). (2.122)

The last term can be simplified with the definition of the discrete unnormalized 1≠RDM,

hence,

K

�; t

-----
ˆ

ˆt

----- �; t

L

=
ÿ

n̨Õ
Cn̨Õ(t)ú ˆCn̨(t)

ˆt
+

ÿ

ik

K

„k; t

-----
ˆ

ˆt

----- „i; t

L

fl̃(1)
ki

(t), (2.123)

where fl̃(1)
ki

(t) = È�; t|â†
k
(t)âi(t)|�; tÍ. Secondly, the expectation value of the Hamiltonian

in terms of discrete 1≠ and 2≠RDMs is

È�; t|Ĥ(t)|�; tÍ =
ÿ

l,k

C

È„l; t|T |„k; tÍfl̃(1)
lk

(t) + 1
2

ÿ

s,q

fl̃(2)
lksq

(t)È„l, „k; t|V |„q, „s; tÍ
D

. (2.124)
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The next and final step is to compute the functional derivative over the parts in Eqs. (2.123,

2.124), thus

”

”„ú
m

(x, tÕ)i~
K

�; t

-----
ˆ

ˆt

----- �; t

L

= i~”(t ≠ tÕ)
ÿ

i

fl̃(1)
mi

(t)ˆ„i(x, t)
ˆt

, (2.125)

while for the Hamiltonian part

”

”„ú
m

(x, tÕ)È�; t|Ĥ(t)|�; tÍ = ”(t ≠ tÕ)
ÿ

k

C

fl̃(1)
mk

(t)T„k(x, t) +

ÿ

sq

fl̃(2)
mksq

(t)È„k; t|WV (x)|„s; tÍ„q(x, t)
D

, (2.126)

whose the interaction part is obtained using Eq. (2.110) and also the commutation

rules of bosonic operators inside fl̃(2) definition with some index relabeling. Substitut-

ing Eqs. (2.123, 2.124) in the action definition in Eq. (2.105), then, with the results

provided by Eqs. (2.125, 2.126) give us

0 = ”S
”„ú

m
(x, tÕ) = i~

ÿ

i

fl̃(1)
mi

(tÕ)ˆ„i(x, tÕ)
ˆtÕ ≠

ÿ

l

µml(tÕ)„l(x, tÕ)

≠
ÿ

k

C

fl̃(1)
mk

(tÕ)T„k(x, tÕ) +
ÿ

sq

fl̃(2)
mksq

(tÕ)È„k; tÕ|WV (x)|„s; tÕÍ„q(x, tÕ)
D

. (2.127)

The two Eqs. (2.121, 2.127) obtained still need some refinements to be more suitable

for a numerical approach, which will be worked out in the following. First, this last

equation for the IPS is the spatial projected version of

0 = i~
ÿ

i

fl̃(1)
mi

(t) ˆ

ˆt
|„i; tÍ≠

ÿ

l

µml(t)|„l; tÍ≠
ÿ

k

C

fl̃(1)
mk

(t)T |„k; tÍ+
ÿ

sq

fl̃(2)
mksq

(t)WVks
(t)|„q; tÍ

D

,

(2.128)

where the primes in time were dropped from the notation and the matrix operator WVks
(t)

have the property Èx|WVks
(t)|f ; tÍ = È„k; t|WV (x)|„s; tÍf(x, t). The Lagrange multipliers

µml(t) can be obtained by taking the product of the above equation with È„j; t|, demanding

the orthonormality condition at any time, È„j; t|„n; tÍ = ”jn, therefore,

µmj(t) = È„j; t|
I

i~
ÿ

i

fl̃(1)
mi

(t) ˆ

ˆt
|„i; tÍ ≠

ÿ

k

C

fl̃(1)
mk

(t)T |„k; tÍ +
ÿ

sq

fl̃(2)
mksq

(t)WVks
(t)|„q; tÍ

DJ

,

(2.129)
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and Eq. (2.128) for the IPS can be written in terms of a projector as

0 =
A

1 ≠
ÿ

l

|„l; tÍÈ„l; t|
B I

i~
ÿ

i

fl̃(1)
mi

(t) ˆ

ˆt
|„i; tÍ ≠

ÿ

k

C

fl̃(1)
mk

(t)T |„k; tÍ +
ÿ

sq

fl̃(2)
mksq

(t)WVks
(t)|„q; tÍ

DJ

. (2.130)

Another simplification can be done using the inverse of the matrix fl̃(1)(t) to obtain

0 =
A

1 ≠
ÿ

l

|„l; tÍÈ„l; t|
B I

i~ ˆ

ˆt
|„j; tÍ ≠ T |„j; tÍ ≠

ÿ

mksq

1
fl̃(1)(t)

2≠1

jm
fl̃(2)

mksq
(t)WVks

(t)|„q; tÍ
J

, (2.131)

which isolate the time derivative from the density matrix.

The final step working in these equations is the proof that we can always consider the

projector acting on the time derivative as zero, that is equivalent to È„l; t|i~(ˆ/ˆt)|„j; tÍ =

0, for all l and j. Aiming the proof, let {|›i; tÍ}i be another time moving basis related to

the selected IPS by a unitary transformation U(t), such that

|„j; tÍ =
ÿ

i

Uji|›i; tÍ. (2.132)

Therefore, in order to have a zero projection of the time derivative,

0 =
K

„l; t

-----i~
ˆ

ˆt

----- „j; t

L

(2.133)

0 = È„l; t|
ÿ

i

A
ˆUji

ˆt
|›i; tÍ + Uji

ˆ

ˆt
|›i; tÍ

B

(2.134)

0 =
ÿ

ik

A
ˆUji

ˆt
Uú

lk
È›k; t|›i; tÍ + UjiU

ú
lk

K

›k; t

-----
ˆ

ˆt

----- ›i; t

LB

, (2.135)

where we can use the unitarity of U(t), multiplying by Uln(t) and summing in l to obtain

0 =
ÿ

ik

A
ˆUji

ˆt
”knÈ›k; t|›i; tÍ + Uji”kn

K

›k; t

-----
ˆ

ˆt

----- ›i; t

LB

, (2.136)

ˆUjn

ˆt
= ≠

ÿ

i

Uji

K

›n; t

-----
ˆ

ˆt

----- ›i; t

L

. (2.137)
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To complete the proof, it is straightforward to show that the matrix D(t), which

Din(t) = i
⁄

t

0
dtÕ

K

›n; tÕ
-----
ˆ

ˆt

----- ›i; tÕ
L

, (2.138)

is Hermitian using integration by parts and orthonormality È›n; tÕ|›i; tÕÍ = ”ni. Thus, using

the Dyson series which commonly appears in time-dependent pertubation theory [66,

Section 14.6, p. 338-340], we can express the solution for U(t) as

U(t) = U(0)T exp
5
iD(t)

6
, (2.139)

with T the time-ordering operator. This last equation finishes the proof, since it shows

that U(t) is indeed unitary due to D(t) hermiticity. Thereby, due to the equivalence of

the spanned space, we can always impose this constraint in a variational approach for the

action minimization. As a result, Eq. (2.119) will vanish, which implies a simpler form

for the equations of motion (2.121, 2.131), such that, the final equations of MCTDHB

can be written as

i~ ˆ

ˆt
|„j; tÍ =

A

1 ≠
ÿ

l

|„l; tÍÈ„l; t|
B I

T |„j; tÍ +
ÿ

mksq

1
fl̃(1)(t)

2≠1

jm
fl̃(2)

mksq
(t)WVks

(t)|„q; tÍ
J

,

(2.140)

i~ˆCn̨Õ(t)
ˆt

=
ÿ

n̨

Èn̨Õ; t|Ĥ(t)|n̨; tÍCn̨(t). (2.141)

whereas the spatial projection of WVks
(t) is given by (see its first definition in Eq. (2.111)),

Èx|WVks
(t)|Â; tÍ = È„k; t|WV (x)|„s; tÍÂ(x, t) =

⁄
dx

Õ„ú
k
(xÕ, t)V (x, x

Õ)„s(xÕ, t)Â(x, t).

(2.142)

These final equations do not terminate all the underlying details, but at this stage,

a few points are important to emphasize. The summation indexes were left unspecified

during all the derivation, just to be as general as possible and not overcharge the notation.

As such, a point to emphasize is the projector featuring in Eq. (2.140),

Q(t) = 1 ≠
ÿ

l

|„l; tÍÈ„l; t|, (2.143)

which is zero if the IPS form a complete set, as such, implying all time derivatives to be
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zero as well. This should be expected since for a complete set there is no need to include

a time moving basis. However, this is not the case numerically, where a small number

of functions can be used. Therefore, the number of IPS will be the main approximation

parameter to tweak in the MCTDHB to improve accuracy of the results.

The meanfield approach can be easily obtained by constraining the number of IPS to

1, which also imply a single configuration and thus only one coe�cient. Due to normal-

ization, the time evolution of the coe�cient is trivial, and the single IPS is then subject

to

i~ˆ„0(x, t)
ˆt

= T (x, Ò)„0(x, t) + (N ≠ 1)
5⁄

dx
ÕV (x, x

Õ)
---„0(xÕ, t)

---
2
6

„0(x, t), (2.144)

where the density matrices are reduced to fl̃(1)(t) = N and fl̃(2)(t) = N(N ≠ 1) and the

projector is no longer required since the final equation is already norm conservative. This

is the well known GP equation, which governs the dynamics in a meanfield approach.

The equations of MCTDHB (2.140, 2.141) are rather complicated, even to solve numer-

ically, because they involve systems of ordinary di�erential equations and partial integral-

di�erential equations, all coupled to each other. Analytically, there is no hope to solve

these equations, unless in the meanfield case with a single IPS. In the next chapter, the

numerical integration techniques are described.



Chapter 3

Numerical implementation of

MCTDHB

The numerical implementation is a challenging task, with two main relevant obstacles

to overcome. The first is an e�ective way to enumerate the configurations after the

truncation of the IPS basis. The second is a proper choice of algorithms to integrate the

equations for coe�cients and IPS altogether. The numerical approach for these problems

and the pursue of a general algorithm implementation in which one can easily change all

the parameters without need to access the source code is the most time consuming part

for a project based on MCTDHB.

3.1 Finite multiconfigurational basis

With the truncation of the IPS basis, the set of all configurations will be finite and can

be enumerated. Therefore, the space dimension can be addressed as the total number

of possible arrangements of N identical particles in M di�erent states, which can be

evaluated by permuting the circles and sticks all together in Fig. (3.1), but removing self

Figure 3.1: Illustration of a generic configuration with particles as circles and IPS sepa-
rated by vertical dashes.

46
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permutations of both,

Nc(N, M) =
A

N + M ≠ 1
M ≠ 1

B

= (N + M ≠ 1)!
N !(M ≠ 1)! , N, M Ø 1. (3.1)

The many-particle Ansatz required in the Schrödinger action, Eq. (2.105), must be

adapted with a notation for the finite number of configurations. With the IPS basis

having M functions, the many-particle state becomes

|�; tÍ =
Nc(N,M)≠1ÿ

—=0
C—(t)|n̨(—); tÍ, (3.2)

where n̨(—) œ �(N, M), with

�(N, M) =
I

n̨ œ N
M ;

M≠1ÿ

i=0
ni = N

J

, (3.3)

— an enumeration index and |n̨(—); tÍ encoding a time dependence due to the operators

â†
k
(t) used in their definition,

|n̨(—); tÍ ©
M≠1Ÿ

k=0

5
â†

k
(t)

6
n

(—)
k

Ò
n(—)

k
!

|0Í. (3.4)

Regarding the numerical implementation to handle this multiconfigurational space,

there are two main issues which will be detailed in the next chapter. First, we need to

enumerate the configurations, that is, to establish an unambiguous relation between —

and its configuration n̨(—). This problem is equivalent to develop a hashing function, and

it was worked out in Refs. [77, 78]. Second, we need functions to act with the creation

and annihilation operators, to handle the many-particle Hamiltonian.

3.2 Enumeration of configurations - Hashing Func-

tion

Sorting Fock states is a recurrent problem in numerical approach of many-particle sys-

tems, with some examples directed to particles confined in optical lattices within the

Bose-Hubbard model [54,79] and spin systems [80–82]. Nevertheless, the first general and
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Figure 3.2: Example to illustrate the process of IPS occupations with N = 3 and M = 5
for the specific final state |0, 1, 0, 2, 0Í. The total cost of this configuration is Nc(3, 3) +
Nc(2, 3) + Nc(1, 1) = 17 where the terms being added are presented following the order of
arrows.

ideal hashing function was obtained in Ref. [77], only considering the particles type, which

is characterized by an one-to-one mapping between configurations and integer numbers

for a fixed arbitrary number of IPS. Later, an equivalent work [78] showed the same map-

ping with some additional details on handling operators. In the following, an alternative

derivation of this hashing problem is presented for bosons attributing a metric to rank

configurations.

Given an enumeration for the IPS from 0 to M ≠ 1, if we take one with number k

where 0 Æ k Æ M ≠ 1, there are other k IPS below it, since we are counting the number

zero. Thus, to end up with a vector of integer numbers representing a configuration, we

can think that we have to distribute particles from a basket to the IPS. In this way, to put

a new particle in a selected state k, a cost is defined by the total number of configurations

of remaining particles in the basket over all previous IPS, from 0 to k ≠1. In other words,

this cost is equivalent to the number of possibilities to set up the particles from the basket

in k states, which is just the multiconfigurational space dimension with these k states.

The distribution process described above, executed from the highest to lowest indexed

state, provides a raking for the configurations. When the basket has none particle left,

the process is finished and the total cost will be the index of the configuration. In Fig. 3.2

a practical example is depicted, where the combination function defined in Eq. (3.1) plays

a crucial role being used to compute the costs for every particle moved to the states.

The procedure described above, indexing of a generic object (all vectors in the set (3.3)),

is called hashing [83]. The specific method suggested here yields an ideal hashing as will
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be shown below, since it has no index collisions, because every index corresponds to an

unique configuration, and the number of indexes required is the size of the configurational

space.

3.2.1 Ideal hashing derivation

First, by definition, there is no cost to add particles in the state number 0, thus, for

completeness, we can extend the definition in Eq. (3.1) such that

Nc(n, 0) © 0, (3.5)

for any n œ N. Second, we can write a rigorous formula for the hashing function based

on the discussion in the last section as

I(n̨) =
M≠1ÿ

m=1

nmÿ

k=1
Nc

A

N ≠ k + 1 ≠
M≠1ÿ

i>m

ni, m

B

. (3.6)

This general formula has some nested terms inside the arguments of Nc that deserve some

attention. The part q
i>m ni account for the particles already distributed in higher ranked

states, such that, N ≠ q
i>m ni would be the remaining particles in the basket. However,

this is actually correct for the first particle to be set in state m, if more particles occupies

the same state, the remaining particles in the basket is updated by ≠(k ≠ 1) part.

A second important point, besides the general formula in Eq. (3.6), is the proof that

indeed no collisions can happen, that is, two di�erent configurations cannot produce the

same index, one of the properties of ideal hashing.

Taking advantage of the construction process, suppose two configurations n̨(1) and n̨(2)

are di�erent, thus, we can assume there is an index j which is the highest ranked state

to provide di�erent occupation numbers, as such, n(1)
i

= n(2)
i

for all i > j. Consequently,

j Ø 1 due to the common total number of particles constraint, which implies that n(–)
0 =

N ≠q
M≠1
i=1 n(–)

i
, thus if j = 0 we would have n(1)

0 = n(2)
0 , contradicting the first assumption.



CHAPTER 3. NUMERICAL IMPLEMENTATION OF MCTDHB 50

Without hamper the proof generality, we can take n(1)
j

> n(2)
j

, then

I(n̨(1)) ≠ I(n̨(2)) =
jÿ

m=1

S

WU
n

(1)
mÿ

k=1
Nc

A

N ≠ k + 1 ≠
M≠1ÿ

i>m

n(1)
i

, m

B

≠
n

(2)
mÿ

l=1
Nc

A

N ≠ l + 1 ≠
M≠1ÿ

i>m

n(2)
i

, m

BT

XV

Ø Nc

Q

aN ≠ n(2)
j

≠
M≠1ÿ

i>j

n(2)
i

, j

R

b ≠
j≠1ÿ

m=1

n
(2)
mÿ

l=1
Nc

A

N ≠ l + 1 ≠
M≠1ÿ

i>m

n(2)
i

, m

B

,

(3.7)

where the term inside square brackets for m = j in the first line produces at least one

positive outcome for k = n(2)
j

+ 1, which is the one maintained outside the sum with

all other possible positive contributions dropped. It is also worth to note the change of

n(1)
i

= n(2)
i

inside Nc first argument, since i > j. Moreover, still inside the first argument

of Nc outside the sums, we must have q
M≠1
i=j

n(2)
i

< N , otherwise n(1)
j

could not be greater

than n(2)
j

, which contradicts the previous hypothesis.

For continuing the proof, the following properties

Nc(n, m ≠ 1) =
3

m ≠ 1
n + m ≠ 1

4
Nc(n, m) < Nc(n, m), (3.8)

Nc(n ≠ 1, m) =
3

n

n + m ≠ 1

4
Nc(n, m) Æ Nc(n, m), (3.9)

are required to show that Nc monotonically increases with both arguments. Therefore, the

maximum value of the nested sum in inequality (3.7) occurs when all remaining particles

are set in state j ≠ 1, thus

I(n̨(1)) ≠ I(n̨(2)) Ø Nc (ñ, j) ≠
ñÿ

l=1
Nc (ñ ≠ l + 1, j ≠ 1) , (3.10)

where

ñ = N ≠
M≠1ÿ

i=j

n(2)
i

> 1, (3.11)

is the number of remaining particles in states with number m < j. If j = 1, we trivially

obtain I(n̨(1)) ≠ I(n̨(2)) Ø Nc(ñ, 1) = 1 and the proof ends. In the another case, j > 1,

with the following formula [84, section 0.15]

A
n + m + 1

n + 1

B

=
mÿ

k=0

A
n + k

n

B

, (3.12)
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we can adapt it for Eq. (3.1) so that

Nc(ñ, j) =
ñÿ

k=0
Nc(k, j ≠ 1). (3.13)

Finally using the above equation back in inequality (3.10) yield

I(n̨(1)) ≠ I(n̨(2)) Ø
ñÿ

k=0
Nc(k, j ≠ 1) ≠

ñÿ

l=1
Nc (ñ ≠ l + 1, j ≠ 1) = Nc(0, j ≠ 1) = 1, (3.14)

which not only proves that the hashing has no collisions but also spot further information

about the ordering of the configurations.

As a final and easier step, the maximum index must be equal to the configurational

space dimension. As Nc monotonically increases with both arguments, from Eq. (3.6),

the largest index is given by

IMAX = I(0, ..., N) =
Nÿ

k=1
Nc(N ≠k+1, M ≠1) =

Nÿ

k=1
Nc(k, M ≠1) = Nc(N, M)≠1, (3.15)

where Eq. (3.13) was used to obtain the last equality, with the ≠1 due to enumeration

starting at 0. This finally completes the proof that Eq. (3.6) provides an ideal hashing

function.

As a final remark, in Refs. [77,78] an alternative approach using an equivalence to the

problem involving fermions is used. In that case, di�erently of what was presented here,

the basic structure is a vector with separators position, as depicted in Fig. (3.1).

3.2.2 Hashing algorithm

The previous section provide all the ingredients to implement two algorithms, the first

to convert a given input configuration to its index and the second to set all occupations

from a configuration index. The later case demands some additional e�ort as it is the

inverse mapping, due to a look up for which state can be occupied according to its rank.

Nevertheless, all the details unfold from the general hashing function, Eq. (3.6), and the

increasing behavior of Nc with both arguments.

The pseudo-code to compute the index of a configuration is provided in algorithm (1),

which essentially evaluate Eq. (3.6) backwards and for each state add the costs using

Eq. (3.1) until none particles are left.
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Algorithm 1 Get index of a configuration
Require: N > 0, M > 0, occupation vector n̨

1: k Ω 0
2: s Ω N
3: for m = M ≠ 1..1 do
4: j Ω n[m]
5: while j > 0 do
6: k Ω k + Nc(s, m)
7: s Ω s ≠ 1
8: j Ω j ≠ 1
9: end while

10: end for
11: return k

Algorithm 2 Build configuration n̨ from index —
Require: N > 0, M > 0, Nc(N, M) > — Ø 0

1: for i = 0..M ≠ 1 do

2: n[i] Ω 0
3: end for

4: k Ω —
5: m Ω M ≠ 1
6: s Ω N
7: while k > 0 do

8: while k ≠ Nc(s, m) < 0 do

9: m Ω m ≠ 1
10: end while

11: k Ω k ≠ Nc(s, m)
12: n[m] Ω n[m] + 1
13: s Ω s ≠ 1
14: end while

15: if s > 0 then

16: n[0] Ω n[0] + s
17: end if

The inverse hashing, assembling of a configuration from its index, is provided in al-

gorithm (2). The outermost while loop iterate until the initial index is consumed by the

costs to populate the states. In this iterative process, we must find the maximum state

number m still satisfying Nc(s, m) Æ k, which means that at this iteration stage, k is

larger than the space dimension with remaining particles s distributed in states with in-

dex from 0 to m ≠ 1, as such, allowing to populate the state m. This process is repeated

until k = 0, whereas, the rest of particles, if any, are set in the costless state, the one with

number 0.

A worth point to be emphasized is the arbitrariness of the IPS enumeration, which is

hold as an input features in a numerical approach. For instance, they generally nor are



CHAPTER 3. NUMERICAL IMPLEMENTATION OF MCTDHB 53

energetically sorted neither the state number 0 hold the majority of particles. Moreover,

the IPS used in the computation of time dynamics are not necessarily the natural ones

defined in Sec. 2.4, though they are related by an unitary transformation.

Aiming the solution of the MCTDHB Eqs. (2.140, 2.141), some important numerical

obstacles will be discussed in more details. The first one is the ine�ectiveness of storing

the Hamiltonian defined in Eq. (2.106), since it must be updated at every time step

which impose a hard computational penalty. With the hashing algorithms provided in

this section, we can actually work with a routine to apply the Hamiltonian using only

the coe�cients as input. Moreover, we can store mappings with the action rules of the

creation and destruction operators, as explored in the following.

3.3 Relevant numerical improvements

Once the enumeration of configurations is properly defined, as well as the hashing al-

gorithm, the next step is how to act with operators of second quantization formalism

numerically. The goal is to take as input a vector of complex coe�cients C from the

finite expansion of a many-particle state as defined in Eq. (3.2), and compute expectation

values involving â/â†, since by construction, all operators are reduced to this combination

multiplied by complex numbers.

In view of the equations derived in the previous chapter, only up to 2≠body operators

are needed. Therefore, we can focus in the properties of the 1≠ and 2≠RDMs as well as

the Hamiltonian. The unnormalized discrete 1≠RDM in the truncated space is

fl̃(1)
kl

(t) = È�; t|â†
k
(t)âl(t)|�; tÍ =

Nc(N,M)≠1ÿ

—,“=0
Cú

“
(t)C—(t)Èn̨(“); t|â†

k
(t)âl(t)|n̨(—); tÍ, (3.16)

while the 2≠RDM becomes

fl̃(2)
klqs

(t) =
Nc(N,M)≠1ÿ

—,“=0
Cú

“
(t)C—(t)Èn̨(“); t|â†

k
(t)â†

l
(t)âq(t)âs(t)|n̨(—); tÍ. (3.17)

In appendix A, the rules to compute the elements of fl̃(1) and fl̃(2) are summarized, which

are readily obtained from the bosonic commutation relations. Finally, the Hamiltonian

is essential for evolution of the coe�cients in Eq. (2.141), thus, a numerical routine to
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evaluate C̃ such that

C̃(t) = H(t) · C(t) , C̃“ =
Nc(N,M)≠1ÿ

—=0
H“—(t)C—(t) , (3.18)

is required, where H is the matrix representation of Ĥ in the configurational space with

H“—(t) = Èn̨(“); t|Ĥ(t)|n̨(—); tÍ with Ĥ defined in Eq. (2.106). It is worth to emphasize

again that the matrix will not be stored since it must be updated according to the time

evolution, instead, the hashing algorithms are used whenever needed for the action of

operators.

In the computation of the operators described above, Eqs. (3.16, 3.17, 3.18), we need

to perform just the sum in —, whereas for each — there is a unique value for “, the one

corresponding to the configuration after replacing the particles due to the action of the

creation and annihilation operators. Therefore, for — running from 0 to Nc(N, M)≠1, we

need three steps to perform the operation required. First, obtain the configuration corre-

sponding to — using algorithm 2. Second, reconfigure the occupation numbers according

to the action of creation/annihilation operators. Finally, use this new configuration to

compute the corresponding index “ using algorithm 1 and do the multiplication of coef-

ficients, with the corresponding rules given in appendix A.

In a naive computation, we must use the algorithms 2 and 1 Nc(N, M) times for

every element of the density matrices, that results in a total of M2Nc(N, M) calls of both

functions to setup all the elements of fl̃(1) and M4Nc(N, M) for fl̃(2)1. The setup of C̃

from the Hamiltonian action requires a similar number of operations of fl̃(2) due to the

sum over the IPS in Ĥ definition in Eq. (2.106).

This naive approach can be improved as shown in the following, whereas new structures

to avoid such number of calls for the hashing algorithms are defined. Although these

improvements are not related to physics, as will be shown, they are critical to make

possible calculations with larger configurational spaces. Moreover, some balance between

memory consumption and execution time must be achieved due to the inherent numerical

complexity of the MCTDHB, otherwise relevant physical problems may be unfeasible due

to ill use of resources.
1Actually, this number can be halved if one use hermiticity, and reduced even more using the commu-

tation relations in the case of fl̃(2). Moreover, when the indexes of the creation and annihilation operators
are the same no calls of the conversion algorithms are need at all.
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Figure 3.3: Time to compute all elements of fl̃(1). The red squares correspond to an
implementation that uses just the conversion algorithms 2 and 1 and the black circles
make use of a hashing table to store and sort the configurations, which restrict to use
only algorithm 1. In the left panel was fixed three IPS while varying the number of
particles and in the right panel was varied the number of IPS with five particles.

3.3.1 Hashing table

A first improvement is to build once all occupation vectors and maintain them stored

during all operations, defining a hashing table. For instance, they can be stored along

rows of a matrix of integers, with the row number being the index of the respective

configuration. This hashing table demands storage of MNc(N, M) integers in exchange

of avoiding calls of algorithm 2 when computing fl̃(1) and fl̃(2).

The time required to set all fl̃(1) elements is shown in Fig. 3.3 using two di�erent

implementations, the first using both algorithms 2 and 1, and the second using a hashing

table (all configurations previously set in memory) and algorithm 1. The basic di�erence

between the two implementations is the call of algorithm 2 face to a memory access of the

hashing table. As can be noted in Fig. 3.3, the performance gain is critical, highlighted

by the logarithmic scale, for both cases, when either varying the number of particles or

the number of IPS. Moreover, in the left panel, the time required with respect to the

number of particles has a clear linear relation in logarithmic scales, which indicates a

power law of the form · = bNa, with · the time and N the number of particles, which

will be investigated later.

The values of the time demanded in Fig. 3.3 are not specially relevant, since it depends

on the hardware used and whether or not a parallel implementation is possible. The

relevant part is the information on how the time demanded scales with the optimizations.
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As we can see, the hashing table provided a time reduction of about 100 in the the most

demanding cases with larger number of particles (left panel) or IPS (right panel).

Other routines, to build the two-body density matrices and to apply the Hamilto-

nian using the multiconfigurational basis shall benefit even more from the hashing table,

because they require much more operations. Therefore, both fl̃(2) and the Hamiltonian

action routine will be the focus for the next improvements.

3.3.2 Second quantization operators mapping routines

The next step is to set the computational routines of Eqs. (3.16, 3.17, 3.18) completely

free from calls of the algorithm 1 as well. For this aim, it is necessary to define a structure

where given an index it has stored all possible jumps2 of one and two particles among the

IPS, corresponding to the action of one and two pairs of creation/annihilation operators

respectively. This procedure is equivalent to store just column numbers of nonzero ele-

ments of a sparse matrix, where all forbidden transitions (annihilation operator in empty

states) are ignored. Despite the underneath sparse matrix itself is time-dependent, the

location of zeros is not.

In a single particle jump, one has at most M di�erent states to remove a particle and

M di�erent states to place it back, which implies that for every configuration there are at

most M2 possible transitions. Thus a straightforward way to map all these transitions is

to define a triple indexed structure, which stores integers, where the first index is from the

configuration number, and the other two are IPS numbers, one from where the particle

is being destroyed and other where it is being created. This one-particle jump mappings

would require Nc(N, M)M2 new integers to store.

It is worth pointing out that the memory cost for this one-particle jump mapping is

greater than the first improvement of the hashing table, where in that case was stored all

the occupation numbers and therefore had a cost of Nc(N, M)M integers. This justify

why there was no concern about memory cost at that stage. Moreover, the Nc(N, M)M2

integers wastes some memory because there are configurations with some empty IPS,

which actually do not have M2 possible transitions. Therefore, in the implementation

used in this project, the forbidden cases are ignored and this raw estimative is an upper

bound. More details about how to do this is given in the following when double jumps
2Jump here means the simultaneous destruction and creation of particle in di�erent states.
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Figure 3.4: In the left, a possible configuration for M = 5 and N = 4. In the right the
arrows indicate all possible ways to remove two particles from the single particle states,
that is four.

mappings are introduced.

Analogously, a structure that maps double jumps can also be implemented, when two

particles are moved to di�erent IPS. If we follow the same naive idea presented for the

one-particle jump, for each configuration there would be at most M2 possibilities to take

two particles from the occupation numbers, and for each one of these possibilities, there

are again M2 ways to replace them. Following this naive way, we would end up with the

additional memory requirement of Nc(N, M)M4 integers. Nevertheless, it is possible to

attenuate this demand.

A thorough inspection over configurations shows us that M2 possibilities to take two

particles from the IPS (equivalent to the action of two annihilation operators) is not true

for the most part of the configurations because there are many configurations with empty

IPS. The real number of possibilities can be obtained as follows: for every non-empty IPS

k, we search for s Ø k non-empty as well, and whenever we find such numbers, we will

have M2 possible IPS to replace these particle taken from k and s.

In Fig. 3.4 is illustrated for a simple case, given a specific configuration, the possible

ways to remove simultaneously two particles by the action of two annihilation operators.

The arrows conducts to the possible outcomes, where for each one, we have M2 possibilities

to replace the particles removed. Originally, the naive way would store a lot of useless

information since it considers a bunch of forbidden transitions, consisting on removal from

empty states. For instance, in the case represented in Fig. 3.4, it would require 54 = 625

possibilities, while there are only 4 ◊ 52 = 100 real possibilities.
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In summary, to save memory for this structure of double jump mappings, we cannot

allocate those forbidden transitions. To overcome this problem, a structure like a hashing

table must be defined, though each line of the table has a variable number of elements,

where the line number corresponds to an index of a configuration. Its elements are integers,

indexes of other configurations that are outcomes of all possible jumps of two particles.

A possible way to sort the elements for each line in the table is starting with the IPS

k = 0 up to k = M ≠ 1, we take k Æ s < M and for each possible simultaneous removal

of particles in k and s, we allocate a stride of M2 integer numbers that corresponds

to new configurations indexes obtained for every possible way to replace the particles

removed. Therefore, if one wants to know the configuration index “, that is a result of

rearranging two particles of another configuration n̨(—) from IPS i and j Ø i to q and

l IPS, it is required to check out how many strides must be ignored. In this case, the

number of strides is the number of possible simultaneous removal from IPS k and s for

every k = 0, ..., i and s = k, ..., j ≠ 1.

For example, suppose in Fig. 3.4 we are interested in the transitions that come from

removing the last two particles, thus we need to skip 3 strides. In other words, in our

table, in the line corresponding to the configuration in the figure, we need to skip the

3 ◊ 52 elements to get the indexes of configurations we are interested. In the following we

compare the performance between implementations that uses only hashing table and the

ones that uses jump mappings.

In Fig. 3.5 the performances of two routines to setup fl̃(2) are compared. The first, uses

the hashing table of configurations and algorithm 1. The second, does not use any of the

algorithms for conversion between indexes and configurations, instead, it uses the hashing

table and jump mappings explained above. The hashing table is still required to exclude

forbidden transition in the rules given in appendix A. For large number of particles, we

see a good performance gain, while for large number of IPS, there is a slight improvement,

indicating that the use of algorithm 1 is not the bottleneck in this case.

A careful inspection in algorithm 1 show us that it need to remove all particles from the

configuration and thus demands the total number of particles as operations. Therefore, it

is expected that the gain in performance using jump mappings is bigger for large number

of particles than for large number of IPS. In other words, it is harder to empty many

particles from a few IPS than a few particles from many IPS.
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Figure 3.5: Time to compute all elements of fl̃(2). The red squares correspond to an
implementation that uses hashing table of configurations and calls of algorithm 1 while
the black circles refers to one that uses direct jump mappings between configurations
related by the action of the creation/annihilation operators and dismiss completely the
use of algorithms 2 and 1. In the left while varying the number of particles, three IPS
were used, and in the right, varying the number of IPS, five particles were used.

Another very important routine to check the performance gain is the time to act with

the Hamiltonian over a state expressed in the configurational basis, that is to compute

Eq. (3.18). In the same way that was done for fl̃(2), in Fig. 3.6 we compare the time de-

manded in Eq. (3.18) using two routines, again one using the hashing table and algorithm

1 and other using the hashing table and jump mappings. Similarly, there is again a clear

improvement varying the number of particles (left panel), but this time, there is also a

substantial gain varying the number of IPS.

In all comparisons between the routines that used the algorithm 1 with the hashing

table and those that use mappings, when varying the number of particles, there is an

evident constant slope behavior in the logarithmic scale, at least for large number of

particles. This reveals that the time demanded with respect to the number of particles

can be written as a power law in the form

·M(N) = bMNaM , (3.19)

where M is the number of IPS fixed. The parameters can be extracted from curve fitting,

where aM is the slope in the logarithmic scale plot. Since the study varying the number of

particles in all cases presented here were carried out with M = 3, the index M is dropped



CHAPTER 3. NUMERICAL IMPLEMENTATION OF MCTDHB 60

101 102 103

Number of particles

100

101

102

103

ti
m

e
(m

s)
Alg1 + hashing table

hashing table + J-mappings

5 10 15 20 25
Number of IPS

10�1

101

103

105

1.1�104

7.5�104

Figure 3.6: Time required to act with the Hamiltonian operator in the configuration basis
as in Eq. (3.18). As done for fl(2) in Fig. 3.5 the red squares correspond to a routine that
uses hashing table and algorithm 1 and the black circles to one that uses mappings instead
of algorithm 1. Three IPS and five particles were used in the left and right sub-figures
respectively.

fl(2) H
a b a b

hashing table 2.835(5) 6.33(9) ◊ 10≠6 2.791(5) 2.13(3) ◊ 10≠5

jump mappings 2.34(3) 6.4(6) ◊ 10≠6 2.000(2) 2.40(2) ◊ 10≠4

Table 3.1: Fitted parameters, for implementations using hashing table and jump map-
pings, with M = 3 IPS using data with N > 100 particles,in the left panel of Figs. (3.5,
3.6).

from parameters in the following.

A linear curve fitting was evaluated for the most time demanding routines, fl̃(2) and H ·

C, with the values for the parameter shown in Tab. 3.1. The most important feature is that

the mappings reduced the exponents(a) for both cases, what shows that the improvement

is more expressive as larger is the number of particles.

In spite of all improvements the jump mappings brought, the limitations in terms of

the additional memory demanded must be estimated. Indeed, all the gain in time had a

cost in memory, as showed in Fig. 3.7. From the left panel, the case we vary the number

of particles, we see that this cost is relatively cheap, some hundreds of megabytes (MB),

right the case the performance gain was more expressive. The case in the right panel

shows that we cannot ignore the memory consumption since it demanded up to some

thousands of MB, thereby indicating that a possible limitation may come up if we go

beyond M = 25 IPS with N = 5 particles.
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Figure 3.7: Memory allocation for the jump mappings structure of creation/annihilation
operators and hashing table for the number of particles and IPS as used in previous
figures, measured in megabytes (MB). Three IPS and five particles were used in the left
and right sub-figures respectively.

a b
hashing table 1.9953(2) 8.288(5) ◊ 10≠6

jump mappings 2.0004(1) 1.3158(1) ◊ 10≠4

Table 3.2: Fitted parameters of power law for the memory consumption as function of N
for M = 3 fixed, for the left panel of Fig. 3.7.

It is worth to highlight the very similar behavior between the memory cost in Fig. 3.7

and time execution in Fig. 3.6, where again a constant slope can be identified in the

logarithmic scale plot with respect to the number of particles. The results of the fitting

parameters according to Eq. (3.19) for memory consumption are shown in Tab. 3.2.

This survey on the numerical implementation details to handle the action of operators

is important to establish application constraints. The profiled results showed here did not

take into account the e�ects of parallelization, which are common in modern processors.

A work to complement this study with a parallel implementation is provided in Ref. [65].

So far, all these subjects discussed were needed independent of what will be done with

the IPS, which are the next subject. Before exploring them, an application is done with a

physical system in the next section, using diagonalization techniques in the multiconfigu-

rational space, with the IPS fixed as plane waves. This will demonstrate, without taking

in account the variational method, a consistency test with respect to an exact solvable

model.
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3.4 Fixed IPS basis test - Lieb-Liniger gas

Before using the time-dependent approach with Eq. (2.140) for the IPS, with all the expla-

nation of the previous sections, a test using Exact Diagonalization(ED) of the Hamiltonian

in the multiconfigurational space [53,54,79,80] is evaluated, considering the IPS fixed.

For the Hamiltonian diagonalization, the Lanczos iterative algorithm was used to

compute approximately the ground state energy of a LL gas [4,5], aiming an easy way to

compare the numerical solution with an analytically solvable model. The LL Hamiltonian

in Schrödinger formalism is given by [4–8]

S

U≠ ~2

2m

Nÿ

i=1

ˆ2

ˆx2
i

+ g
Nÿ

i,j>i

”(xj ≠ xi)
T

V Â(x1, ..., xN) = EÂ(x1, ..., xN), (3.20)

where the wave function is subject to periodic boundary conditions Â(x1, ..., xk+L, ...xN) =

Â(x1, ..., xk, ...xN), ’k = 1, ..., N and g is the contact interaction strength.

The energies can be computed indirectly through the solution of a system of nonlinear

equations. Here the same convention of Refs. [6,8] are adopted for these equations, which

can be written as

I

kj = 2fi

L
Ij ≠ 2

L

Nÿ

i=1
arctan

A
kj ≠ ki

mg/~2

BJ

jœ{≠ N≠1
2 ,...,

N≠1
2 }

, (3.21)

where for the ground state energy we must take Ij = j ≠ (N + 1)/2 and the energy is

related to the numbers kj by

ELL

0 (g) = ~2

2m

Nÿ

j=1
k2

j
. (3.22)

Despite the relation in Eq. (3.22) looks like the kinetic energy of an ideal gas, it is worth

to remind that these kj depend on the contact interaction parameter g. However, in the

limit g æ Œ, it is well known that the LL gas will be described by a Tonks-Girardeau(TG)

gas [9], whose solution indicate that the energy will be given by the corresponding ideal

Fermi gas, but with some care in choosing the momentum in the Slater determinant,

because for an odd or even number of particles the fermions wave function must satisfy

periodic or antiperiodic boundary conditions, respectively [10].

In Fig. 3.8, the ground state energy obtained from numerical diagonalization for 5 par-

ticles limited to 11 and 21 IPS are compared with the exact analytical solution computed
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Figure 3.8: Ground state energy of the LL gas with five particles computed using numerical
diagonalization (crosses and open circles) and the analytical form (full line).

from Eqs. (3.21, 3.22). The IPS in the numerical computation were chosen as periodic

plane waves „n = eiknx/
Ô

L where kn = 2fin/L with n = ≠5, ≠4, ..., 4, 5 (eleven IPS) and

n = ≠10, ≠9, ..., 9, 10 (twenty one IPS). The numerical diagonalization was computed ap-

proximately using Lanczos algorithm for tridiagonal decomposition [85–87] together with

LAPACK library [88] to diagonalize the resulting tridiagonal matrix.

The implementation of Lanczos iteration was done with complete re-orthogonalization,

to enforce the orthogonality of the output eigenvectors [89,90] and the number of iteration

was restricted to 1/8 of the dimension of configurational space given by Eq. (3.1), since

Lanczos algorithm o�er good precision with small number of iterations for the smallest

eigenvalue as shown in Refs. [53,87].

We can see that the deviation of the numerical solution from the exact analytical

one in Fig. 3.8 grows with the interaction and diminishes as we increase the number

of IPS. From the TG gas solution, the wave-function is not equal to the corresponding

wave-function for the system of ideal fermions. Instead, it is necessary a symmetrization

function, since the problem refers to bosons, as pointed out in Refs. [9, 10]. Therefore,
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despite the fermions occupy exactly 5 IPS in the ground state, this is not true for the

bosons, what can be at first sight counter intuitive.

There are two other important things to appoint about the convergence in this exam-

ple. The first is about the observable being analyzed, the energy, which requires up to

two-body features through the density matrix. The convergence for observables behaves

di�erently depending upon the order of the RDM required, but generally, the conver-

gence is slower as higher is the order. The second point is about the simplification of

the configurational space due to translation invariance, which implies that the natural

IPS are exactly the plane waves. Therefore, we could have separated sectors of the full

Hilbert space with definite total angular momentum, allowing a larger number of IPS.

Nonetheless, this example serves as an initial consistency test.

These results on the LL model, show us that the number of IPS plays the main

role in the accuracy and assert the consistency of the multiconfigurational space part.

Nevertheless, in this model is rather simple to choose the IPS, since it is periodic and

no trap potential is present. It will not be the case for most of the current applications

being studied and worked experimentally. Therefore, the following sections discuss the

remaining numerical details of the MCTDHB with full time dependence, including the

IPS.

3.5 Integration of MCTDHB equations

Most part of the technical points about the numerical implementation of the multiconfig-

urational space were discussed in the previous sections, but additional information is still

necessary to provide accuracy metrics during time evolution and the specific protocol to

handle the di�erential equations, which are approached in the following.

3.5.1 Coe�cients and IPS integration protocol

Several works that applied MCTDHB numerically mention the same approach to evaluate

Eqs. (2.140, 2.141) , among them, the default integration methods used were treated in

more detail in Refs. [30, 91–93]. The consensus is that despite separately the IPS and

coe�cients may be highly oscillatory in time, the coupling between them promoted by

fl̃(1)(t), fl̃(2)(t), È„l; t|T |„k; tÍ and È„l, „k; t|V |„q, „s; tÍ do not change as fast. Therefore,
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the IPS and coe�cients can be propagated independently for a period · at which the

coupling quantities are updated.

Since the evolution during this period · can be done independently, di�erent integra-

tors may be designed separately for the IPS and coe�cients. The system of Eqs. (2.141)

is the easier one to solve because it is linear and consist of ordinary equations, thus,

there is no many obstacles to choose an integrator. Here, two methods were applied, the

Fourth-Order Runge-Kutta(RK4) [94] and Short Iterative Lanczos(SIL) [93, 95]. For the

IPS, Eq. (2.140), one approach was to use Split-Step(SS) with Fast Fourier Transforms(SS-

FFT) [96] or with Crank-Nicolson Finite Di�erences(SS-CNFD) [97–99], and the other us-

ing Discrete Variable Representation(DVR) [100–102] underneath a Fifth-Order RK(RK5).

A first thing to mention is about the time domain. In the form the action was proposed

in Eq. (2.105), the resulting equations (2.140, 2.141) are prepared to study dynamics.

However, we can exploit them turning the time purely imaginary, t © ≠iT with T œ R.

This trick allows us to collect the ground state of the system, provided that we constantly

renormalize the IPS and coe�cients during this propagation on imaginary time. Generally,

the evolution in real time is more di�cult and some specific cares are needed, thus a

separate discussion will be done in the following.

The coe�cients are usually integrated with SIL, since it is robust3 and preserve the

norm in exact arithmetic, what is seen as a major advantage for unitary time evolution.

Besides, we may adaptively choose the order increasing the number of Lanczos iterations.

The RK4 also performed well in many cases to integrate the coe�cients, because the

norm showed an oscillatory behavior in real time. Although, as drawback, RK4 may

present instabilities depending on the problem and time step size. For imaginary time,

used to obtain the ground state, the norm conservation is no longer an advantage and the

preference is a matter of implementation complexity. The codes used in this project have

both methods available.

The IPS must be carefully analyzed and treated di�erently for real and imaginary

time. First, the Eq. (2.140) has to be adjusted for real time integration to correct the

loss of orthogonality and a possible singularity of fl̃(1)(t), which needs to be inverted. The

solution for these issues are given in Ref. [91, 93] and will be detailed in the next section

carefully. In summary, as the DVR method is able to tackle together the linear and
3A robust integrator means here a stable and accurate to a given order independently of the initial

conditions.
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nonlinear part simultaneously, it preserves better the orthonormality, while the split-step

methods evolve separately the linear and nonlinear part, with the projection operator

present only in nonlinear one. Therefore, for split-step case, while it evolves the linear

part of the equations, they are not being projected, what certainly accelerate the loss of

orthogonality.

Regarding this brief discussion, the coe�cients’ integrator generally chosen for real

time is SIL while for imaginary time both, RK4 and SIL are used. For the IPS, the usual

integrator for real time is DVR-RK5, while for imaginary time either SS-FFT or SS-CNFD

can also be applied. Despite there are no more comments about the coe�cients’ equation,

some details about the IPS need to be deeper approached, specially for real time.

3.5.2 Specific issues of real time evolution

Imaginary time evolution requires a renormalization process, as mentioned before, and

specifically, the IPS must be re-orthogonalized as well due to norm loss. These steps must

be done manually, since it is an intrinsic feature of imaginary time methods. Nevertheless,

in real time, the exact arithmetic show us that the norm and orthogonality conservation

are direct implications of Eqs. (2.140, 2.141), and it should be sustained up to some

accuracy in the numerical approach.

As result of numerical finite precision, the overlap matrix

Okl(t) = È„k; t|„l; tÍ, (3.23)

is usually not equal to the unit matrix 1M. As consequence, the projection operator in

Eq. (2.143) must be generalized to the case where the set {|„k; tÍ}kœ{1,...,M} is not perfectly

orthogonal. This problem is reported in Refs. [91,93], and the generalization of Eq. (2.143)

is

Q̄(t) = 1 ≠
Mÿ

i,j=1
|„i; tÍO≠1

ij
(t)È„j; t|. (3.24)

Another problem that arises is the possibility of fl̃(1)(t) becoming singular either during

the time evolution or due to the initial state being a perfect BEC, in which case fl̃(1)(t)

has just one nonzero eigenvalue equals to the total number of particles. That imposes the

ambiguity on how an unoccupied state evolves, since it is not needed on the description.

This problem can be bypassed in two steps.
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In the case there are one or more unoccupied states initially, corresponding to zero

eigenvalues of fl̃(1)(t), the IPS are maintained fixed in time and just the Eq. (2.141) is

propagated, until the states get occupied up to some threshold. The reason is that the

time change in the IPS is only required because they are not a complete set, and if there are

unoccupied states, the IPS are already good enough for the description. This emphasize

that the variational approach to them is only taken into account from the beginning due

to the ignorance of which is the best set of IPS to describe the problem.

A simple example that is similar to this problem is a coherent state expressed in terms

of the number eigen-basis of the quantum harmonic oscillator. This expansion requires

an infinite number of well defined number-states, despite the wave function is a displaced

gaussian, which oscillates around the center of the trap when propagated in time. There is

an exact moment when its overlap with the ground state is one, thus, all excited states are

not needed at this instant. As the time elapses, the overlap with excited states increases

through the coe�cients in the expansion, and eventually, if there is only a finite number

of basis states we will need to adapt them variationally.

There are occasions when fl̃(1)(t) becomes singular at some time during the evolution.

To circumvent this problem, a regularization is imposed, as suggested in Refs. [91, 93],

where we must use

fl̃(1)
reg = fl̃(1) + ‘ exp (≠fl̃(1)/‘), (3.25)

for numerical purposes with ‘ œ [10≠8, 10≠12] usually. This procedure implies a minimum

occupation (lower bound for fl̃(1) eigenvalues), which shall not be harmful for the many-

particle state dynamics.

3.5.3 Control parameters and self-consistency

There are some remaining questions about the numerical methods described. In imaginary

time case, the stopping criteria and consistency of the ground state obtained still need to

be specified, while in real time, conservation of orthonormality and energy are important

to monitor during time evolution. The energy is especially important in both contexts,

computed by

E = ÈĤÍ =
Mÿ

k,l=1

S

Ufl̃(1)
kl

(t)Tkl(t) +
Mÿ

n,m=1
fl̃(2)

klnm
(t)Vkl,nm(t)

T

V , (3.26)
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where the abbreviations Tkl(t) = È„k; t|T |„l; tÍ and Vkl,nm = È„k, „l; t|V |„n, „m; tÍ were

used starting from Eq. (2.106). For numerical purposes, it is important for dynamics

since it must be conserved, and for ground state indicating when to stop the numerical

iterations.

Specific for imaginary time propagation, the first parameter adopted is the numerical

residue of the eigenvalue equation. With the Hamiltonian matrix in the configurational

space H, where we recall that its elements are H“— © Èn̨(“)|Ĥ|n̨(—)Í, the residue is measured

using

RE = ÎH · C ≠ ECÎŒ/N, (3.27)

with ÎvÎŒ © max |vi| and E computed using Eq. (3.26). By using Eq. (3.26) we have

a consistency test including the density matrices, moreover, this norm chosen is more

sensible to all components of the coe�cients vector. The tolerance is typically set to

RE < 10≠4.

The main parameter to define the stop criteria in imaginary time is the relative energy

variation in one step. Given the a time step ”· we can define

�E(·) ©
-----

5
E(· + ”·) ≠ E(·)

6
/E(·)

-----. (3.28)

The range of values used is �E(·) œ [10≠8, 10≠14], with the minimum of 10≠14 reserved

for specific cases since it is near the numerical roundo� error.

For some specific trap potentials, which the Virial theorem could be developed, it was

used as accuracy indicator of the ground state obtained. The virial theorem derivation

here is based on a scale transformation in the IPS, where „k(x, t) æ „k(–x, t), and the

corresponding energy Ẽ(–) computed with „k(–x, t) must have a minimum in – = 1, thus

implying ˆẼ/ˆ–|–=1 = 0. This yields an equation in the form

—kK + —trVtr + —intVint = 0, (3.29)

where K, Vtr and Vint are the averages of kinetic, potential and interacting operators

respectively, with the coe�cients — depending on the Hamiltonian. Obviously the relation
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is not zero at finite precision arithmetic, what lead us to define the following residue

Rvir =
-----

1
Ẽ(–)

ˆẼ

ˆ–

-----
–=1

. (3.30)

For real time propagation, three criteria were established to be verified at each time

step, and in case they are not fulfilled, the program exits with an error. The first is

the energy conservation, and similarly to the definition for the imaginary time, the re-

striction �E(t) < 10≠2 is demanded from the definition in Eq. (3.28). The second is the

conservation of coe�cients vector L2-norm, with the norm residual given by

RC(t) =
---1 ≠ ÎCÎ2

---, (3.31)

where the tolerance is RC(t) < 10≠6. The third is the conservation of IPS L2-norm

and mutual orthogonality. Actually, this is implemented on average using the trace and

o�-diagonal elements of overlap matrix as

Rortho(t) =
---1 ≠ Tr

1
O(t)

2
/M

--- +
ÿ

k ”=l

---Okl

---/M, (3.32)

with the maximum accepted value set to Rortho(t) < 10≠4.

In Tab. 3.3, an output example is showed for a system of N = 50 particles harmonically

trapped, using MCTDHB with M = 4 IPS subject to contact interaction in one dimension.

The energy is measured in units of ~Ê, where Ê is the trap frequency, and distance in

units of harmonic oscillator length l0 =
Ò
~/(MÊ). These quantities are printed as the

program runs, showing an overview of convergence.

The RE is initially zero because the initial coe�cients are obtained from a fixed IPS

diagonalization, equivalent from a ED method, with the IPS defined by the first four quan-

tum harmonic oscillator eigenstates. Nevertheless, as the IPS are evolved in imaginary

time, a better basis is obtained and the final result, besides being an eigenstate within

the numerical tolerance, it also has a smaller energy. This summarize the advantage of

MCTDHB over ED, with the basis capable to adapt for the problem.
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Progress E/N Rvir RE n0
0% 5.8318116 0.509324 0.00000 63%

10% 5.2804467 0.092422 0.00181 66%
20% 5.2142280 0.033389 0.00754 84%
30% 5.1856275 0.003957 0.00141 94%
40% 5.1832663 0.001204 0.00024 95%
60% 5.1828232 0.000415 0.00004 96%
70% 5.1828088 0.000192 0.00002 96%
80% 5.1828060 0.000089 0.00001 96%
90% 5.1828054 0.000043 0.00000 96%

100% 5.1828053 0.000022 0.00000 96%

Table 3.3: Imaginary time propagation output for 50 particles in 1D harmonic trap. All
quantities are in dimensionless units with trap frequency Ê = g1D = 1. M = 4 IPS were
used, which were integrated with SS-CN scheme. The final converged values, particularly
the energy and n0 are suitable for reproduction.

3.6 Final remarks about the codes developed

The codes were basically split in two parts, one to compute integration of Eqs. (2.140,

2.141) and another for post convergence analysis for computation of all relevant observ-

ables, where the first was developed in C language and the later in python. The codes were

generally designed to solve the many-particle problem for any number of particles and IPS

in one dimension, which are treated just as a regular user defined parameter, therefore,

providing a very general package to study a reasonable range of physical systems.

Despite the equations were described in a generic way without specifying the number

of spatial dimensions, the results presented in this thesis are restricted to one dimension

and contact interaction. Thus, the supplementary definition of the interacting part in

Eq. (2.142) is reduced to

Èx|WVks
(t)|Â; tÍ =

⁄
dxÕ„ú

k
(xÕ, t)g1D”(x ≠ xÕ)„s(xÕ, t)Â(x, t) = g1D„ú

k
(x, t)„s(x, t)Â(x, t) ,

(3.33)

where g1D is the e�ective contact interaction strength in one dimension, which experimen-

tally is related to the trap squeezed dimension and scattering length of the atoms [103].

Moreover it is also assumed that we can sweep this parameter g1D, either using the

transversal trap producing the one dimensional geometry or with Feshbach resonances [104–

106].
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Application of MCTDHB

The previous chapter summarized the most challenging part, the full derivation and nu-

merical implementation of MCTDHB equations, which consumed appreciable e�orts. Af-

ter several tests, some of them comparing to the available codes in Ref. [107] and repro-

ducing some results of Ref. [33], relevant studies were evaluated in a ring geometry. Part

of the findings presented in section 4.2 below were published in Ref. [64], but besides, new

unpublished results regarding dynamics are shown starting in section 4.3.

Bose gases trapped in an annular geometry are remarkable to study beyond meanfield

features, since we can a�ord much more IPS than a typical two or three dimensional

systems, as such, allowing to study strong interacting regimes and dynamical process

with high fragmentation. This specific theme is also justified by the recent interest in

quantum analogs and possible applications [108–112]. In the following, after a brief show

of interesting yet simple results about deviation of the meanfield description, some features

studied in the ring are superfluidity, persistent currents and its dynamics in the presence

of a potential barrier.

4.1 Preliminary meanfield and MCTDHB di�erences

The MCTDHB proposes to tackle the quantum many-particle problem with more degrees

of freedom than the meanfield approximation, where in the latter, there is a single state

|„0; tÍ governed by the GP equation (2.144). Therefore, the GP equation is a particular

case when the expansion in Eq. (3.2) has only one term, C—(t) = ”0—, with |n̨(0); tÍ =

|N, 0, ... 0; tÍ, whereas the density matrices are consequently reduced to fl̃(1)
kl

(t) = ”k0”l0N

71
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Figure 4.1: Comparison between energies from MCTDHB with 4 IPS, MCTDHB(4), and
from meanfield for a system harmonically trapped as function of interaction strength
parameter g1D. Both axes are shown in dimensionless units which are normalized by
harmonic trap parameter.

and fl̃(2)
klqs

(t) = ”k0”l0”q0”s0N(N ≠ 1).

Since the GP equation is a restriction of the MCTDHB which comes from a varia-

tional approach, the GP energy must be an upper bound. This condition is verified in

Fig. 4.1, which shows the energy obtained from both methods as function of the interaction

strength, g1D, for 2 and 10 particles in an harmonic trap described by the dimensionless

Hamiltonian

ĤHO ©
⁄

dx �̂†(x)
A

ˆ2

ˆx2 + x2

2 + g1D

2 �̂†(x)�̂(x)
B

�̂(x). (4.1)

As could be anticipated, the agreement of both methods is better for weak interaction

values, whereas the meanfield prediction for the energy grows above the MCTDHB values,

as it should be according to the arguments above. Moreover, the relative deviation is

smaller for 10 particles, with roughly 19% for g1D = 10, while for this same value of g1D,

the meanfield prediction is approximately 98% above the MCTDHB for 2 particles.

Fig. 4.1 provides only a glimpse of the di�erences from the meanfield based on the vari-

ational theorem, which states that more degrees of freedom reduces the energy. Nonethe-

less, it also reveals a better description by the meanfield approach raising the number of

particles. Apart from the particular case, this is an usual phenomenon and shows that

the MCTDHB is more important for few particles systems.

Another consistency test is presented in Ref. [33], where an investigation of the Gross-

Pitaevskii limit as proposed by Lieb [56, 57] is studied in one dimension. Despite there
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Figure 4.2: Convergence to mean field energy and condensate fraction (largest eigenvalue
of fl(1)) for various values of G = g1D(N ≠ 1). The meanfield values to the energy are
depicted by dashed lines with the corresponding color for each G. The full lines connecting
the points only serve as guides.

is no convergence in the overlap of the many-particle state with a macroscopic occupied

state, the energy converges to the meanfield approximation.

The GP limit is defined with N æ Œ and g1D æ 0 constrained to g1D(N ≠ 1) © G

being fixed in the process. The convergence of energy and condensate fraction, that is

the largest eigenvalue of fl(1), can be observed in Fig. 4.2, where again an harmonically

trapped system is considered. Since G is fixed, g1D varies according to N , but N was

choose to the figure horizontal axis. The calculation changing the value of N was done

adapting the number of IPS as the GP limit became closer, where for the extreme case

with 1000 particles, M = 3 IPS were used, and for the most fragmented case, N = 6 and

G = 45, M = 15 IPS were required.

Despite Fig. 4.2 provides a general outlook of the approximation to the meanfield de-

scription, it would be interesting to know how fast the convergence occurs, an information

that may also help in the choice of the number of IPS in MCTDHB. The convergence

behavior is better illustrated in Fig. 4.3, with the di�erence of MCTDHB and meanfield

results plotted in log scale, for G = 7.5 and G = 45. A linear relation can be clearly

identified for a large number of particles, a sector where a linear fitting was calculated

with the resulting parameters provided in the figure legends. Interesting, the slope co-

e�cient is almost independent of the meanfield parameter G, which appears to have a

deeper impact in the bias coe�cient. Similar results are shown in Ref. [33].
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(a) G = 7.5 (b) G = 45

Figure 4.3: Fitting for the relative di�erence from both methods where ”EG(N) =
1 ≠ E(MC)

G
(N)/E(GP )

G
, based on values shown in Fig. 4.2. To investigate the asymp-

totic behavior, just the points which overlap with the full blue line part were used to fit
the parameters, with the dashed part only an extension provided for completeness.

The depletion induced by the interaction strength explored here is not the unique

process which cause deviations from meanfield. The trap potential can play an important

role as well, particularly in time-dependent cases. Nonetheless, the fragmentation induced

by the trap usually requires a smaller number of IPS in the description than for strong

interaction regimes. This e�ect is mostly related to the origin of each operator. While

the first is of one-body nature the second involves pairs, which usually influences high

order correlation functions, contrary to the trap potential, which all information must be

contained in 1≠RDM. An example of trap induced fragmentation that was reproduced

with this thesis codes is provided in Ref. [113].

With these tests presented here, along with all control parameters established in the

previous chapter, the codes were widely tested, in all cases behaving as expected. The

next step was to evaluate relevant studies that could generate an impact in some field. In

the following sections, the problem of superfluid fraction of few bosons in the presence of

a weak link is worked out beyond mean field approximation, highlighting the discrepancy

to the GP prediction and addressing correlation as a candidate to explain the loss of

superfluid fraction, what is not feasible in the mean field approach.
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4.2 Superfluid fraction in annular geometry

The concepts of superfluidity [1, 62, 114] and Bose-Einstein condensation [19, 20] have

dominated the research of cold bosonic systems. The presence of one does not necessarily

imply the other, whereas superfluidity is related to dissipationless flow due to a mini-

mum required energy to create excitations, Bose-Einstein condensation is characterized

by majority occupation of one single particle state. Superfluid systems with a very small

condensation fraction around 10%, like liquid helium, are well known [55, 115], thereby

characterizing independent e�ects.

Nevertheless, many reports explore the superfluidity features of a BEC, as dilute

cold bosonic gases are able to present both phenomena simultaneously [116]. Especially,

persistent flow, a hallmark of superfluidity, has been reported for a BEC trapped in a ring

shape format early in Ref. [117] and later in Ref. [118] in the presence of a tunable weak

link. This boosted the interest to quantitatively study properties of the system due to

a possible connection and quantum analogy with superconducting quantum interference

devices (SQUID) [119].

Ring geometries provide a suitable platform to study persistent currents and quan-

tum coherence. In the last few years, there has been much interest in annular conden-

sates, especially in the context of the atomtronics [109,120]. Many works studied several

properties on imposing rotation for a BEC confined in a ring shape geometry, observing

hysteresis (“swallow tail loops”) [121–124], excitation mechanisms [125–127], spin super-

flow [128,129] and superfluid fraction [63]. Former theoretical studies rely mostly on the

GP equation that set a clear limitation on controlling the interactions to suppress the

depletion from the condensate [130,131]. Here, this theme is studied in both approaches,

meanfield and MCTDHB, highlighting their di�erences, with the MCTDHB also allow-

ing an independent characterization of superfluidity and condensation as well as beyond

meanfield features.

In the following, a beyond meanfield study on the superfluid fraction of a gas of few

bosons at zero temperature in the presence of a tunable weak link moving in a periodic

system (an e�ective ring) is performed using the MCTDHB to show the loss of the su-

perfluid fraction under a wide range of the physical parameters. For di�erent rotating

frequencies, we will found that the ground state energy remains periodic but with a dif-

ferent profile depending on the barrier height, and this periodicity implies a decrease on
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the current fraction for fast rotating barriers. With the rotation frequency close to zero,

our results show that increasing su�ciently the barrier, the superfluid fraction eventually

drops to zero regardless of the interaction strength and number of particles. Also, the

condensate fraction depends almost exclusively on the interaction strength, which shows

independence of superfluidity and condensation. Eventually, the correlation functions are

proposed to explain the superfluidity behavior.

4.2.1 Model and methods

The specific form of a barrier is generally unknown from an experimental perspective,

though we must be able to define it through its thickness and height. As most of the

experiments use lasers to physically implement a barrier [118], the height in the model

plays the principal role as it is directly related to the laser beam intensity, while the

thickness is determined by the laser beam width. An approach based on Dirac delta

function for the barrier has been reported [11], which implies zero thickness. In any case,

for a barrier rotating with velocity v, in the laboratory frame we thus have the one-body

term of the Hamiltonian in the general form

h(t) = ≠ ~2

2m

ˆ2

ˆx̄2 + U(x̄ ≠ vt) ; x̄ œ (≠fiR, fiR], (4.2)

for a ring of radius R, where a specific form for U is chosen ahead. The two-body part

is assumed to be described by an e�ective contact interaction V (x̄ ≠ x̄Õ) = g1D”(x̄ ≠ x̄Õ),

where g1D is related to the transverse harmonic trap frequency and the scattering length

of the atoms [103]. Using the unitary transformation to move to the rotating frame,

exp (vtˆ/ˆx), the time dependence of Eq. (4.2) is removed, resulting in the following

many-body Hamiltonian in the second quantization formalism

Ĥ =
⁄

fiR

≠fiR

dx

Y
]

[�̂†(x)
S

U ~2

2m

A

i
ˆ

ˆx
+ mv

~

B2

+ U(x)
T

V �̂(x) + g1D

2 �̂†(x)�̂†(x)�̂(x)�̂(x)

Z
^

\ ,

(4.3)

where x = x̄ ≠ vt.

For numerical simulation purposes, the following system of units is assumed: length

measured in units of (fiR), density probability/particle in units of (fiR)≠1 and energy

by ~’, where ’ = (~/2mfi2R2). Moreover, we introduce the dimensionless parameters
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� = mRv/~ and “ = 2mfiRg1D/~2. In numerical computations, all these transformations

yield the orthonormalization condition for the set of IPS
s 1

≠1dx„ú
l
(x, t)„k(x, t) = ”lk, where

x must be interpreted in units of fiR in the integral.

4.2.2 Energy spectrum and superfluid fraction definition

In the absence of a barrier, the single-particle energy levels as a function of � are parabolas

given by Ej/(~’) = (j ≠ �)2fi2, each one defined by the winding number of the phase (j),

centered at �j = j, and crossing each other at �̃j = (j + 1/2) [123].

As a first approach, we use the GP equation once the interaction is included in the

15

20

25

30

35

E
(G

P
)

j
/(

h̄
�)

j = 2j = �1

j = 0 j = 1

So
lito

n Bran
ch

(A)

�0.25 0.00 0.25 0.50 0.75 1.00 1.25
�

2

4

6

8

10

12

E
(G

P
)

j
/(

h̄
�) j = 2j = �1

j = 0 j = 1

(B)

Figure 4.4: Energy per particle from the GP equation as a function of � for di�erent
winding numbers (j) with (A) “(N ≠ 1) = 50 and (B) “(N ≠ 1) = 10. In both cases the
soliton’s energy is depicted in blue,where the dotted part has winding number j = 1 and
the full line j = 0, connecting the parabolas with corresponding winding numbers. Other
values of winding numbers are shown in gray. The red dots are used in Fig. 4.5 to show
examples of the soliton phases.
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description. In this case, still in the absence of the barrier, there are two kinds of analytical

solutions. One with constant density, which results in the same energy of single-particle

case, with the addition of an interaction contribution, yielding E(GP )
j

/(~’) = (j ≠�)2fi2 +

“(N ≠ 1)/4 as average energy per particle. The other is a soliton given in terms of Jacobi

elliptic functions [132,133] that exists for a finite range of values of �, where the extension

of this range depends on the interaction strength (In the Appendix B the soliton solutions

are derived)1. Fig. 4.4 shows an energy landscape of the analytical solutions of the GP

equation with the soliton energy branch connecting two parabolas of constant density,

where the dotted lines have winding number j = 1 and the filled line j = 0. Other

winding number energies are shown in light gray.

In Fig. 4.5 the phase of solitons are presented for some values of the dimensionless

rotation �. The soliton solutions exhibit a transition between di�erent winding numbers

and for increasing � a discontinuity in phase occurs at � = 0.5, going from j = 1 to j = 0.

Moreover, these solutions yield what is known as a “swallow-tail” loop in the energy shown

in Fig. 4.4(A) and (B), which is related to a hysteretic behavior [121–123,134]. The soliton

branch in Fig. 4.4 is an excited state and will not be further discussed here, since the aim

of the present work is to measure the superfluid fraction of the ground state. In addition,

Fig. 4.4 reveals that the ground state energy has a periodic behavior with respect to the

rotation �, with kinks where the parabolas cross each other at �̃j = (j + 1/2). This
1The soliton solution are also used in results showed in the next section, but with a di�erent aim, so

the notation in appendix B is not fully compatible with the units defined above
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Figure 4.5: Phase profile of the soliton solution Ï(x) for some values of � corresponding
to the red dots in 4.4(B). An abrupt transition occurs at � = 0.5 that implies a transition
in the winding numbers, from j = 1 to j = 0.
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periodic structure remains even in the presence of a barrier but with soft peaks instead

of kinks at �̃j, as will be shown later. An important fact is that we can relate the mass

current circulation with the energy, and use this periodicity to understand what happens

to the current under action of fast rotating barriers.

Superfluid fraction derivation

Here, a derivation of mass current by looking at the time variation of the number of atoms

within the range [x1, x2] ™ [≠fiR, fiR] is presented, based on

d
dt

⁄
x2

x1
dx È�(t)|�̂†(x)�̂(x)|�(t)Í = i

~

⁄
x2

x1
dx È

Ë
Ĥ, �̂†(x)�̂(x)

È
Ít, (4.4)

where È·Ít means the expectation value for an arbitrary time-dependent many-body state

|�(t)Í. Using Eq. (4.3) with the usual commutation relation for the boson field operator

[�̂(x), �̂†(xÕ)] = ”(x≠xÕ) to evaluate the commutator of the Hamiltonian with the density

operator, the only terms that contribute are those carrying a derivative, and yield

Ë
�̂†(x)�̂(x), Ĥ

È
= ≠ ~2

2m

Q

a�̂†(x)ˆ2�̂(x)
ˆx2 ≠ ˆ2�̂†(x)

ˆx2 �̂(x)
R

b

+ i~v

Q

a�̂†(x)ˆ�̂(x)
ˆx

+ ˆ�̂†(x)
ˆx

�̂(x)
R

b . (4.5)

It is straightforward to factor out the derivative with respect to x, and further using

Eq. (4.5) in Eq. (4.4) yields

d
dt

N([x1, x2]; t) = ≠
5
ÈĴ(x2)Ít ≠ ÈĴ(x1)Ít

6
, (4.6)

where N([x1, x2]; t) .=
s

x2
x1 dxÈ�(t)|�̂†(x)�̂(x)|�(t)Í is introduced and the particle number

current operator Ĵ(x) is given by

Ĵ(x) = ≠ i~
2m

Q

a�̂†(x)ˆ�̂(x)
ˆx

≠ ˆ�̂†(x)
ˆx

�̂(x)
R

b ≠ v�̂†(x)�̂(x). (4.7)

The 1-RDM fl(1)(x|xÕ; t) can be used within its diagonal representation in Eq. (2.94)

to provide a formula for the average of current operator related to the natural orbitals.
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Specifically, the average current becomes a superposition as ÈĴ(x)Ít = q
k jk(x, t), where

jk(x, t) = ≠
C

i~
2m

A

Âú
k

ˆÂk

ˆx
≠ Âk

ˆÂú
k

ˆx

B

+ v|Âk(x, t)|2
D

Npk(t), (4.8)

with pk(t) the respective eigenvalues of fl(1).

For the ground state, the current ÈĴ(x)Ít must be independent of position and time,

because the density is not time dependent. If we further average it over a period in the

counter direction of the barrier velocity, yields

ÈflsÍ(v) .= ·
1

2fiR

⁄ ≠fiR

fiR

dx

A
ÈĴÍ
N

B

, (4.9)

where · = 2fiR/v is the period of barrier rotation. This quantifies the mean fraction

of particles that go through the counter direction of the barrier in one period, that is

from fiR to ≠fiR indicated by the limits of integration taken. Therefore, if ÈflsÍ(v) takes

the value 1, means a perfect superfluid since all the particles are flowing with velocity

≠v in the rotating frame, that is, they remain at rest for an observer in the laboratory

frame. Relations with other observables can be established, for instance, using the average

momentum per particle

ÈflsÍ(v) =
A

1 ≠ Èp̂Í
mv

B

, p̂ = ≠ i~
N

⁄
fiR

≠fiR

dx �̂†(x) ˆ

ˆx
�̂(x), (4.10)

and a relation with the energy, by taking the derivative with respect to the barrier velocity

ÈflsÍ(v) = 1
Nmv

ˆE

ˆv
, E = ÈĤÍ. (4.11)

The equation above can also be identified by the ratio between the moment of inertia

of the atoms and the moment of inertia of a rigid body. Using v = ÊR, yields

ÈflsÍ(Ê) = 1
NmR2

A
1
Ê

ˆE

ˆÊ

B

= I(Ê)
Icl

. (4.12)

The superfluid fraction at rest (or simply superfluid fraction), denoted here by ÈflsÍ0

can be defined by taking the limit of v æ 0 in any of the Eqs. (4.9, 4.10, 4.11, 4.12) and

was studied in this way in previous works [1,62,63,135]. With the dimensionless system of

units and parameters introduced at the end of section 4.2.1, we have a suitable expression
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for numerical calculations, defining ‘
.= E/(~’),

ÈflsÍ(�) =
A

1
2fi2N�

ˆ‘

ˆ�

B

, ÈflsÍ0
.= lim

�æ0
ÈflsÍ(�). (4.13)

For arbitrary rotation values, ÈflsÍ is not necessarily positive. This occurs because of

the quantization of angular momentum states, which can possibly change the majority

occupation of some definite momentum quantum number to another, for instance, in the

transition point between the parabolas showed in Fig. 4.4. At these points, the particles

eventually flow quicker than the barrier.

In the following, the MCTDHB was applied to find the ground state through imaginary

time propagation for several parameters, first focusing in the e�ect of rotation. Fig. 4.6

illustrates the behavior of the ground state energy in panel (A) and the current fraction in
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Figure 4.6: Ground state energy (A) and current fraction (B) for 11 particles as a function
of dimensionless rotation velocity � in the rotating frame. The ground state energy
remains periodic as it was in Fig. 4.4 but with a di�erent landscape depending on the
barrier height ⁄, and this periodicity implies a decrease on the current fraction for fast
rotating barriers. We used “ = 10 and M = 5 IPS in the MCTDHB method.
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panel (B) as a function of the dimensionless barrier frequency � for two di�erent barrier

heights, where the specific form used in Eq. (4.2) was

U(x) =

Y
_]

_[

(~’⁄) cos2
3

x

2R‡

4
if |x| Æ fiR‡

0 if fiR Ø |x| > fiR‡
, (4.14)

where ⁄ denotes the barrier height in dimensionless units and the width was taken fixed

at ‡ = 0.1.

The energy of the ground state in Fig. 4.6(A) has a period 1 with respect to dimen-

sionless rotation frequency for both cases of weak and strong barriers, while the di�erence

relies on the maximum that occurs at �j = j, that is sharp or smooth depending on the

height ⁄. The superfluid fraction in Fig. 4.6(B) was computed using Eq. (4.13) with finite

di�erences to take the derivative. It shows a periodic behavior with a damped amplitude

as function of �, due to the periodicity of energy. According to Eq. (4.13), the amplitude

is damped by a factor of 1/�. In the regions where ÈflsÍ(�) < 1, the average momentum

must increase together with the barrier velocity according to Eq. (4.10). Indeed, that is

what occurs in the lower panel of Fig. 4.7 that shows the angular momentum distribution

for some values of �. Moreover, there is a critical dependence of the superfluid fraction

Figure 4.7: Probability distribution as a function of position (upper panel) and angular
momentum distribution (lower panel) for barrier height ⁄ = 1000. From left to right
� = 0, 0.5, 1.0, corresponding to red crosses in Fig. 4.6. As used in Fig. 4.6, here “ = 10,
N = 11 particles and M = 5 IPS.
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on the barrier height as � goes to zero, which is explored in the following.

4.2.3 Barrier e�ect on superfluid fraction

Numerical calculations of the superfluid fraction were carried out here using Eq. (4.13),

finding the ground state by imaginary time propagation for � = 0 and � = 0.02 to

approximate the derivative in � = 0.01 and thus obtain ÈflsÍ(0.01). As shown by Fig. 4.6,

the slope of current fraction goes to zero as � æ 0, therefore, the value at � = 0.01

could be used as the proper superfluid fraction, since the di�erence ÈflsÍ0 ≠ ÈflsÍ(0.01) is

very small. To assure this method validation, the result was compared with Eq. (4.10)

calculated at � = 0.02, to check if there was no appreciable (less than 1%) variation on

the estimation of superfluid fraction using an extrapolation.

In Fig. 4.8, the decrease of superfluid fraction for an increase of the barrier height

⁄ is shown for di�erent number of particles and interaction strengths. The tunneling of

particles through the barrier becomes harder as the barrier height is increased, with the

atoms acquiring momentum more easily as higher is the barrier, which can eventually drag

all the particles. This easy momentum gain for large values of ⁄ is responsible for the loss

of superfluid fraction ÈflsÍ0, as it imposes a rigid body rotation according to Eq. (4.12). It

can also be noted that the superfluid fraction decreases more rapidly for fewer particles

Figure 4.8: Decrease of superfluid fraction for di�erent number of particles and interaction
strength (“) due to increasing of the barrier height (⁄). All the cases share the common
feature to be a perfect superfluid as the barrier becomes vanishing small, soon or later
depending on the number of particles and interaction strength. For very high barriers all
particles are dragged together, imposing a rigid body rotation to the system. The number
of IPS was chosen as needed to converge the results, where for “ Æ 10, M = 5 was used
while for “ = 30, M = 9 was used.
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Figure 4.9: Probability distribution of position(upper panel) and angular momen-
tum(lower panel) for five particles, � = 0, “ = 30 and di�erent barrier heights ⁄ = 10, 200
and 10000 in the left, center and right columns respectively. The density distribution van-
ishes for ⁄ > 103 at the peak of the barrier in x = 0, despite that there is just a slight
increase on the width of the angular momentum distribution. As mentioned in Fig. 4.8,
for “ = 30 we needed nine IPS in simulations.

and smaller interaction strength, however, these parameters have a small impact in the

general form of the curves ÈflsÍ0 as a function of ⁄.

As can be seen in the upper panel of Fig. 4.9, the barrier height ⁄ influences mostly the

density at its peak, while the e�ect over the momentum distribution is a slight increase

in its variance, but preserving the average angular momentum ÈL̂Í = 0, as can be checked

in the lower panel. Therefore, the angular momentum distribution is not very revealing

about the behavior of the superfluid fraction at rest, di�erently from the case for nonzero

rotation shown in the lower panel of Fig. 4.7. Nonetheless, the density drastically changes

as the barrier height increases, hence a more detailed study of 1≠RDM is suitable to

complete the analysis.

It is worth noting that this loss of the superfluid fraction due to the increase in the

barrier height is not related to the condensate fraction. As can be inferred from Table 4.1,

the condensate fraction depends mostly on the interaction strength and is minimally

a�ected by the barrier height, particularly for small values of “.

The di�erence between the MCTDHB and the mean field theory was evaluated in
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Interaction strength (“)
N 1 10 30
11 0.9936 / 0.9920 0.92 / 0.89 -
8 0.9946 / 0.9935 0.92 / 0.88 -
5 0.9962 / 0.9956 0.91 / 0.88 0.75 / 0.70

Table 4.1: maximum/minimum condensate fraction computed over the set of values ⁄ used
along the curves in Fig. 4.8. The maximum and minimum values for each case have little
influence from the barrier height whereas the superfluid fraction maximum and minimum
values go from 1 to 0 respectively. For “ = 30, only calculations with five particles were
feasible due to the code limitations when Ref. [64] was published. The number of IPS
used follows the ones mentioned in Fig. 4.8 depending on “.
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Figure 4.10: Comparison between the superfluid fraction predicted by mean field GP
equation (blue dashed line) and the MCTDHB with nine IPS (full red line) for five particles
and “ = 30, as function of barrier height ⁄. ” indicate the gap between the curves.

terms of the superfluid fraction in Fig 4.10. In this case, the same values are predicted in

the limits ⁄ æ 0 and ⁄ æ Œ, nonetheless, between these values, a large gap ” is found

between the superfluidity curves. For instance, the values ⁄̄ where ÈflsÍ0 goes below 0.6

are ⁄̄MCTDHB ¥ 468 and ⁄̄GP ¥ 1160, resulting in an appreciable di�erence of ” ¥ 692.

In another way, to explore this di�erence, ⁄̄MCTDHB < ⁄̄GP/2 to have less than 60% of

superfluid.

Since the MCTDHB provides many-body quantities beyond mean field approach, it

was used to investigate how the tunneling amplitude is a�ected by the barrier height,

that is, the transition amplitude for the system to move a particle from x to xÕ. This

can be achieved with |È�̂†(xÕ)�̂(x)Í|2 weighted by the probabilities to find these particles
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in respective positions x and xÕ. This is directly related to the first order correlation

function, which from the general definition in Eq. (2.97) is simply

g(1)(x|xÕ) = fl(1)(x|xÕ)
Ò

fl(1)(x)fl(1)(xÕ)
, (4.15)

where the notation with vertical bars was introduced in section 2.4 to separate the argu-

ments of the field operators creating or destroying particles in p≠RDM definition.

The values of g(1) shall be drastically a�ected by the barrier and must have an abrupt

variation as xxÕ > 0 changes to xxÕ < 0, since the tunneling must be much harder if the

shortest distance between two points has the barrier in the middle. Reminding that the

system is periodic, this discussion applies just at the vicinity of either x or xÕ being zero,

because if (x/fiR)(xÕ/fiR) = ≠1, they are actually the same point in the ring.

The e�ect of barrier height mentioned above is in agreement with the images in

Fig. 4.11 that maps |g(1)(x|xÕ)|2 values to colors. In panel (A), in the presence of a

weak barrier, it depends approximately only on |x≠xÕ|, while in panel (B) this symmetry

is lost, with an abrupt variation near at the barrier peak, x or xÕ approximately zero.

Therefore, high barriers split the image in four square blocks, with the darker regions

(small normalized tunneling probabilities) located on xxÕ < 0. This is consistent with

previous studies in Ref. [136], despite the di�erent boundary conditions and interaction

regimes.

It is important to stress the relevance of applying a method that allows us to compute

such many-body quantities, as |g(1)(x|xÕ)|2 would be identical to 1 for all x and xÕ in case

one uses the GP equation, that corresponds to just one eigenstate of fl(1)(x|xÕ). There-

fore, this first order correlation function, besides its relation to the tunneling amplitude,

provides us a measure of how well the system can be described by a product state that

corresponds to the meanfield approach.

Correlation functions became more important in the past few years due to experi-

mental advances for measuring them [137, 138]. Recently, hybrid techniques of experi-

mental methods and machine learning algorithms show promising results towards facili-

tating the correlations measure processes [139]. In this scenario the MCTDHB provides

a more general and flexible platform to calculate correlations, specially for system with

few particles, whereas some other approaches based on Bogoliubov description on top
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Figure 4.11: |g(1)(x|xÕ)|2 mapped to colors in the ring, for 5 particles and “ = 30. Values
of barrier height used are ⁄ = 10 in (A) and ⁄ = 104 in (B) but sharing the same color
scale. Here, nine IPS were used in the numerical simulations.

of a meanfield state implies restrictions on interaction strength and many-body state

fragmentation [140,141].

In the following, a collection of results about dynamical properties of persistent cur-

rents are shown within the same physical system of bosons trapped in a ring geometry.

4.3 Dynamical properties of persistent currents

Persistent currents are characterized by frictionless flow of a gas within its container,

which is the annular trapping potential in the present case. This e�ect was experimentally

observed first in Ref. [117] and later in Ref. [118] including a potential barrier emulating

a defect in the trapping container to analyze the current decay. The latter provides a
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probability function for observing or not the flow imposed to the initial state depending

on the interaction and barrier height [118, Fig. 2], which motivates the study presented

in the following.

Although the ground state for a nonrotating trap have zero circulation, the persistent

flow is associated with the presence of metastable states, which are local minima of the

energy as function of the angular momentum. These metastable states are separated by

local maxima, which depend on the system’s configuration and can provide extremely long-

lived quantized currents, robust against perturbations, with duration near one minute in

experiments [118,142]. Fig. 4.12 illustrates qualitatively the energy landscape of low-lying

states with respect to angular momentum per particle with arrows indicating the decay

processes.

The energy spectrum depicted in Fig. 4.12 contains only the lowest energy state for

each angular momentum, which is also known as the yrast line2. Apart from the quali-

tative illustrations, the first rigorous formulation for these energy minima with periodic

dependence on angular momentum was first pointed out by Bloch decades ago [144], how-

ever, only recently the full spectrum was obtained, including all excitations [145]. The

yrast spectrum was also investigated in binary mixtures [146] and in the Tonks-Giradeau

regime [147].

With the inclusion of a container defect through a potential that breaks the transla-
2The origin of the term comes from Swedish yr meaning dizzy, with yrast denoting its superlative [143].

Figure 4.12: Energy landscape and metastability illustration of persistent currents in a
ring. (a) the energy minima corresponds to metastable states with integer quantized
angular momentum per particle. The green arrow indicate the possible decay to lower
values. (b) A zoomed frame to the global and first local minima. The local maximum
serve as a barrier preventing the flow to decay to global minimum, with the Thermal
Activation(TA) and Quantum Tunneling(QT) decay processes indicated by black and red
arrows respectively. Illustrations taken from Refs. [127,142].
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tional symmetry, it is no longer possible to separate the angular momentum values, which

will be mixed. Therefore, if an initial state with a quantized circulation is prepared, by

introducing the potential with a quench for instance, not only it will pump energy in the

system, but also can couple to states near the local maximum in Fig 4.12, eventually eas-

ing the decay to lower circulation values. Before discussing in details the approach used

here, we need to be aware of one-dimensional description limitations and try to address

in which conditions the results are valid.

4.3.1 Discussion about decay processes

In the scope of this thesis, only the quantum tunneling will be considered as our formalism

is valid for negligible thermal e�ects. Nevertheless, some recent works studied this problem

trying to simultaneously take into account finite temperatures [126, 127], which is still

interesting to contrast with exclusive zero temperature e�ects.

The superflow interrupting agent proposed here is a potential barrier that is raised

in a specific point of the ring, which must have a width much smaller than the ring

circumference. The experimental protocol to realize this physical setup was first de-

tailed in Ref. [118], where angular momentum is induced in the atoms to produce the

initial flowing state and then the barrier is suddenly raised. A large collection of works

approached the problem [126, 127, 148–151], however, most part of these references use

techniques to approximately handle all its properties, for instance, including tempera-

ture and ring thickness. Generally, the truncated Wigner approximation and stochastic

projected Gross-Pitaevskii equation are used, mainly to include finite temperature e�ects.

The approach suggested here is much simpler, since neither temperature nor two-

dimensional e�ects such as vortices are present. These assumptions reduce a bit the

experimental appeal of the results, but with a simpler model we aim to study intrinsic

many-body properties, which can be interesting with refinement of trapping and cooling

techniques. These refinements are not challenging to achieve as high resolution traps were

reported recently, using the Digital Micromirror Devices(DMD) [112, 152, 153]. Fig. 4.13

shows some examples of BECs clouds generated with DMD based traps.
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Figure 4.13: Examples of BEC images with traps designed with DMD taken from
Ref. [112]. The scale white bar in the bottom of each frame corresponds to 20µm. In
(c) we have the interesting case for this section with a ring of 110µm diameter and 10µm
radial width.

4.3.2 Analytical stationary analysis of persistent currents

Before diving into MCTDHB dynamical properties of the devised system, by quenching

a barrier in an initial superflow state, a detailed derivation of the stability condition is

provided using meanfield with small fluctuations in the Bogoliubov description.

The Hamiltonian represented in the momentum IPS basis for a periodic system is

Ĥ =
ÿ

n

‘nâ†
n
ân + g1D

2L

ÿ

mnk

â†
m+k

â†
n≠k

âmân, (4.16)

with g1D representing the one-dimensional reduction of a contact interaction strength and

the single particle energies given by

‘n = ~2

2mL2 (2fin)2, (4.17)

with L the length of the periodic system, for every n œ Z with the corresponding single

particle functions

„n(x) = 1Ô
L

e2fiix/L © 1Ô
2fiR

eix/R. (4.18)

Di�erently of the standard approaches in the books [20, 21], here we need to consider

small fluctuations for a majority occupation in an specific angular momentum mode j ”= 0,

which represents the metastable persistent current state, instead of the zero momentum

state.

Aiming the Bogoliubov approximation, we must keep only quadratic terms for âk and

their Hermitian conjugates for every k ”= j. This means that in the interaction part of the

Hamiltonian will only remain terms containing at least two operators with the majority
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occupied state index j, thereby,

ĤB = ‘j â
†
j
âj + g1D

2L
â†

j
â†

j
âj âj +

ÿ

k ”=0
‘j+kâ†

j+k
âj+k +

g1D

2L

S

U4â†
j
âj

ÿ

k ”=0
â†

j+k
âj+k + âj âj

ÿ

k ”=0
â†

j+k
â†

j≠k
+ â†

j
â†

j

ÿ

k ”=0
âj≠kâj+k

T

V . (4.19)

The second term containing four operators in j needs additional attention for consis-

tency with the total number of particles in the system, since

â†
j
âj = N ≠

ÿ

k ”=0
â†

j+k
âj+k. (4.20)

In order to preserve only quadratic terms in fluctuations,

â†
j
âj â

†
j
âj = N2 ≠ 2N

ÿ

k ”=0
â†

j+k
âj+k, (4.21)

â†
j
â†

j
âj âj + â†

j
âj = N2 ≠ 2N

ÿ

k ”=0
â†

j+k
âj+k, (4.22)

â†
j
â†

j
âj âj = N(N ≠ 1) ≠ 2

3
N ≠ 1

2

4 ÿ

k ”=0
â†

j+k
âj+k, (4.23)

where in the last line â†
j
âj is replaced using Eq. (4.20). The steps above starting from

Eq. (4.20) are completely general, but in the scope of the Bogoliubov description we need

a very large number of particles to e�ectively validate our assumption of small fluctuations

on top of a condensate state. Therefore, with N ∫ 1, we can simplify N ± O(1) æ N

and obtain

â†
j
â†

j
âj âj = N2 ≠ 2N

ÿ

k ”=0
â†

j+k
âj+k. (4.24)

The second part of the Bogoliubov description is the substitution of â†
j
âj and â†

j
â†

j
âj âj

using Eqs. (4.20, 4.24) in the Hamiltonian ĤB. In addition, the remaining factor âj âj

as well as its Hermitian conjugate are simply replaced by N , since they are already

multiplying quadratic terms in fluctuations. Therefore,

ĤB = N
3

‘j + G

2

4
+

ÿ

k ”=0

51
‘j+k ≠ ‘j + G

2
â†

j+k
âj+k + G

2
1
â†

j+k
â†

j≠k
+ âj≠kâj+k

26
, (4.25)

with G = Ng1D/L, which is the meanfield energy interaction parameter.
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Here, we can follow similar steps of Ref. [20, Section 8.1.1], where we must first separate

in the sum the positive and negative momenta, such that

ĤB = N
3

‘j + G

2

4
+

ÿ

k>0

Ë
⁄(k)

+ â†
j+k

âj+k + ⁄(k)
≠ â†

j≠k
âj≠k + G

1
â†

j+k
â†

j≠k
+ âj≠kâj+k

2È
,

(4.26)

with ⁄(k)
± = ‘j±k ≠ ‘j + G. Thus, our problem is reduced to set the Hamiltonian

ĥB = ⁄+â†â + ⁄≠b̂†b̂ + G(â†b̂† + b̂â), (4.27)

in a diagonal form. However, di�erently from Ref. [20] where ⁄+ = ⁄≠, some additional

steps will be required.

Introducing the Bogoliubov transformation as

â = u–̂ ≠ v—̂†, b̂ = u—̂ ≠ v–̂†, (4.28)

where the numbers u and v are assumed reals and due to the bosonic commutation

relations, they must satisfy

u2 ≠ v2 = 1. (4.29)

Substituting the transformations (4.28) in ĥB yield

ĥB = –̂†–̂
1
u2⁄+ + v2⁄≠ ≠ 2uvG

2
+ —̂†—̂

1
v2⁄+ + u2⁄≠ ≠ 2uvG

2
+

1
–̂—̂ + –̂†—̂†

2 Ë
G(u2 + v2) ≠ uv(⁄+ + ⁄≠)

È
+ v2(⁄+ + ⁄≠) ≠ 2uvG. (4.30)

The complete determination of u and v is obtained with the term inside squared

brackets being zero,

G(u2 + v2) ≠ uv(⁄+ + ⁄≠) = 0, (4.31)
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which, together with Eq. (4.29) is solved by3

u2 = 1
2

A
⁄+ + ⁄≠

2‘̃
+ 1

B

, v2 = 1
2

A
⁄+ + ⁄≠

2‘̃
≠ 1

B

, (4.32)

where

‘̃ =
ı̂ıÙ

A
⁄+ + ⁄≠

2

B2

≠ G2. (4.33)

With these expressions for u and v, Eq. (4.30) can be simplified as follows

ĥB = –̂†–̂
1
u2⁄+ + v2⁄≠ ≠ 2uvG

2
+ —̂†—̂

1
v2⁄+ + u2⁄≠ ≠ 2uvG

2
+ v2(⁄+ + ⁄≠) ≠ 2uvG

(4.34)

ĥB = v2(⁄++⁄≠)≠2uvG+–̂†–̂

C

(u2 + v2)
A

⁄+ + ⁄≠

2

B

+ (u2 ≠ v2)
A

⁄+ ≠ ⁄≠

2

B

≠ 2uvG

D

+

—̂†—̂

C

(u2 + v2)
A

⁄+ + ⁄≠

2

B

≠ (u2 ≠ v2)
A

⁄+ ≠ ⁄≠

2

B

≠ 2uvG

D

(4.35)

ĥB = v2(⁄+ + ⁄≠) ≠ 2uvG + –̂†–̂

C

(u2 + v2)
A

⁄+ + ⁄≠

2 ≠ 2G2

⁄+ + ⁄≠

B

+
A

⁄+ ≠ ⁄≠

2

BD

+

—̂†—̂

C

(u2 + v2)
A

⁄+ + ⁄≠

2 ≠ 2G2

⁄+ + ⁄≠

B

≠
A

⁄+ ≠ ⁄≠

2

BD

(4.36)

ĥB = v2(⁄+ + ⁄≠) ≠ 2uvG + –̂†–̂

C

(u2 + v2)
A

2‘̃2

⁄+ + ⁄≠

B

+
A

⁄+ ≠ ⁄≠

2

BD

+

—̂†—̂

C

(u2 + v2)
A

2‘̃2

⁄+ + ⁄≠

B

≠
A

⁄+ ≠ ⁄≠

2

BD

(4.37)

ĥB = v2(⁄+ + ⁄≠) ≠ 2uvG + –̂†–̂

C

‘̃ +
A

⁄+ ≠ ⁄≠

2

BD

+ —̂†—̂

C

‘̃ ≠
A

⁄+ ≠ ⁄≠

2

BD

. (4.38)

The last step is to recover the momentum, by indexing all elements used in this
3This solution is valid taking the same sign of the square root for both u and v as can be directly

verified by substitution in Eq. (4.31). If di�erent signs are chosen it will not solve the equation. Moreover,
as ĥB is invariant under changing simultaneous the sign of u and v, we can stick only with the positive
roots.
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derivation with the momentum k back in Eq. (4.26),

ĤB = N
3

‘j + G

2

4
+

ÿ

k>0

Ë
v2

k
(‘j+k + ‘j≠k ≠ 2‘j + 2G) ≠ 2ukvkG

È
+

ÿ

k>0

;
–̂†

k
–̂k

5
‘̃k +

3
‘j+k ≠ ‘j≠k

2

46
+ —̂†

k
—̂k

5
‘̃ ≠

3
‘j+k ≠ ‘j≠k

2

46<
, (4.39)

where the ⁄(k)
± was replaced by its definition. For a final simplification, we can use the

definition of ‘n in Eq. (4.17). For instance, we can apply the property ‘j+k ≠ ‘j≠k =

≠(‘j≠k ≠ ‘j+k) and define —̂k © –̂≠k since they are independent operators to finally write4

ĤB = N
3

‘j + G

2

4
+

ÿ

k ”=0

Ë
v2

k
(‘k + G) ≠ ukvkG

È
+

ÿ

k ”=0
–̂†

k
–̂k

5
‘̃k +

3
‘j+k ≠ ‘j≠k

2

46
, (4.40)

whereas, just for completeness,

‘̃k =
Ò

(‘k + G)2 ≠ G2. (4.41)

Throughout all these steps, the di�erence from the traditional Bogoliubov formalism

provided in the textbooks [20, 21] is the additional term inside the last square brackets,

defining shifted quasi-particle energies, whereas Eq. (4.41) is the usual spectrum for a

uniform gas. The explicit form of the quasi-particles excitations is

‘(j)
k

=
A

~2

mR2

B

jk +
Ò

(‘k + G)2 ≠ G2, (4.42)

with R = L/(2fi) the radius associated with the circumference length L.

In the equation above, the possibility of ‘(j)
k

to be negative for some k < 0 indicates

an energetic instability of the system, with small fluctuations being able to decrease the

energy. Therefore, the system is stable if

Ò
(‘k + G)2 ≠ G2 >

A
~2

mR2

B

j|k|, (4.43)

‘2
k

+ 2G‘k >

A
~2

mR2

B2

j2k2, (4.44)

G >

A
~2

mR2

B A

j2 ≠ k2

4

B

. (4.45)

4Note that the sums were extended for all k ”= 0 instead of k > 0 from previous steps
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The largest possible result on the right side of this inequality occurs for k = 1. There-

fore, with some additional manipulations and using the elementary parameters of the

Hamiltonian, we obtain the condition

Ng1D

2fi

3
mR

~2

4
> j2 ≠ 1

4 , (4.46)

for the persistent current with charge j to be energetically stable.

In experiments, the two most easier parameters to tune are the number of particles

N and the interaction g1D, but not restricted to them, one can also change the ring

radius. Another notable feature about this final result is the dependence on the meanfield

parameter Ng1D instead of an arbitrary dependence on N and g1D separately.

Another possible derivation of this result can be done entirely with the GP equation,

which is shown in appendix B. The advantage of this other approach is the possibility to

draw the yrast line within the meanfield description, since in the calculation is possible to

obtain an arbitrary GP solution with a fixed average momentum. Moreover, it provides

a slightly di�erent condition as pointed by Eq. (B.31), which in accordance with the

notation introduced here is

(N ≠ 1)g1D

2fi

3
MR

~2

4
> j2 ≠ 1

4 . (4.47)

The only di�erence is the adaptation N æ (N ≠ 1) in Eq. (4.46), although they become

equivalent with the assumption of large number of condensed particles required in the

Bogoliubov description.

In the following, the relation (4.47) is preferred to establish the stability condition for

the persistent currents, since if it holds, condition (4.46) is also satisfied as N > N ≠ 1

and it provides a better self-consistency to compare with numerical results as for N = 1

there cannot be metastability.

4.3.3 Yrast spectrum

As mentioned before, without a potential to break the translational symmetry, we can

simultaneously obtain the spectrum for energy and angular momentum, thus, in a first

moment, the latter can be fixed to reduce the configurational space. The most general

approach to this problem is presented in Ref. [145], with a rather large number of states
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Figure 4.14: From (a)-(e) all configurations with total angular momentum LM = 0 for a
system of 3 particles and 5 IPS. The bare configurational space have dimension Nc(3, 5) =
35, thus, 7 times larger than the LM = 0 sector.

obtained. However, the most important for this thesis is the lowest energy band with

respect to angular momenta, that is the yrast line.

Here, two approaches are used to calculate the yrast spectrum. The first is by explicit

diagonalization of the Hamiltonian in Eq. (4.16) and the second is using the GP equa-

tion with constrained angular momentum as presented in appendix B. As stated in the

appendix, the GP formalism lacks correlations and multiple IPS occupations, thus, it can

only provide the yrast line with respect to the average angular momentum, whereas only

in integer average momenta per particle the GP solution is actually an angular momentum

eigenstate.

The specific reason to go for diagonalization of Hamiltonian (4.16) instead of the

MCTDHB with imaginary time propagation is to avoid extra computational cost due to

analytically knowing the natural IPS. As a many-particle eigenstate |�(LM)Í of Hamilto-

nian (4.16) has a definite total angular momentum LM , it implies È�(LM)|â†
l
âk|�(LM)Í =

nl”kl, thus according to the discussion in section 2.4.1, the plane waves are actually the

natural orbitals. Therefore, the IPS are frozen and the underlying multiconfigurational

space is separated in sectors for each total total angular momentum, from which the blocks

in Hamiltonian matrix are diagonalized separately. See Fig. 4.14 that lists examples of

configurations with LM = 0. Besides, in this case we can store the matrix with a sparse

algorithm suitable for parallelization.

With the tweaks mentioned above to work in sectors of the multiconfigurational space,

much larger spaces are achievable, where the IPS are truncated by assuming a maximum

single particle momentum modulus, lmax, for the set of plane waves (4.18). Therefore, the

respective total number of IPS becomes 2lmax + 1. For instance, this approach allow us

to use approximately three times more IPS than the naive treatment with the MCTDHB

within the same execution time.

In Fig. 4.15 the yrast spectrum is compared with the di�erent methodologies described

in this section. In all three cases, we have the same GP interaction parameter fixed, thus,
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Figure 4.15: Example of yrast spectrum for di�erent number of particles and the meanfield
using g1D(N ≠ 1)mR/(2fi~2) = 3.75 as GP interaction parameter, which is the threshold
to support persistent current with charge j = 2 according to Eq. (4.47). The full line
correspond to the analytical solution based on the appendix B. In ED cases, the value
g1D used in Eq. (4.16) was adapted according to the number of particles to respect the
same meanfield interaction parameter.

when the number of particles is changed in the Exact Diagonalization(ED) case, g1D is

adapted accordingly. For the value g1D(N ≠ 1)mR/(2fi~2) = 3.75 chosen, which is the

threshold to provide persistent currents with charge j = 2, we can clearly see the local

minimum in LM/(N~) = 1, as expected at least for the full line. Remarkably, even for

low number of particles (N = 5) the local minimum persists, despite there is a large o�set

of the entire curve. Nearby LM/(N~) = 2 we can also see a vanishing slope from the left

for the ED case (see the inset axes), which is rather surprising because we are far from a

number of particles being much larger than unit.

The local minimum existence in LM/(N~) = 1 is robust with respect to the number of

particles, despite derived in the meanfield approach, thus, there is no need to exhaustively

repeat the computations to every number of particles being worked out. Nonetheless,

specific values of the energy cannot be taken from meanfield computations, as there can

be a large o�set compared to ED.



CHAPTER 4. APPLICATION OF MCTDHB 98

4.3.4 Potential barrier e�ect on persistent currents

After an analytical derivation for the persistent current stabilization condition and the

exemplification by calculating explicitly the yrast spectrum in the last section and ap-

pendix B, we can now return to the original question about the e�ect of a potential barrier

over the flow in a ring. The main purposes is to explore beyond meanfield dynamics by

quenching a potential barrier on an initial state with integer angular momentum per

particle.

By introducing a potential that breaks the translational symmetry, the spectrum

showed in Fig. 4.15 is no longer possible since we cannot fix the angular momentum.

Nevertheless, qualitatively, for small enough barriers a similar shape should appear if

one instead uses the average angular momentum to display as horizontal axis. Moreover,

the potential introduced shall dynamically pump the energy in the system, easing the

tunneling among the plane wave states. As a final introductory remark, another point to

investigate is the implications of the barrier’s shape, which may deeply influence transition

probabilities between states with di�erent angular momenta.

The Hamiltonian model is the same presented in Eq. (4.3). First, according to

Fig. 4.6(A), the Lagrange multiplier is adjusted to produce a state with unit angular

momentum per particle without single particle potential(U = 0) through imaginary time

propagation. At this stage, the Lagrange multiplier is only a tool for the numerical

method, since otherwise the state would go to global minimum, thus it shall not be in-

terpreted as rotation when evaluating dynamics. The classification of whether it will be

a persistent current state or not, in meanfield level, is defined according to the criterion

in Eq. (4.47), which according to the discussion in the previous section provide a good

agreement even for small number of particles.

Once the stationary current state is prepared, it is used as initial condition for real

time evolution. At this stage, the Lagrange multiplier is no longer needed, thus the

system’s Hamiltonian taken from Eq. (4.3) is used with v = 0 to study the dynamics with

U describing the potential barrier. Similar to the barrier used before, here,

Ub(x) =

Y
_]

_[

(~ÊR⁄) cos2
3

x

2R‡

4
if |x| Æ fiR‡

0 if fiR Ø |x| > fiR‡
, (4.48)
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with ÊR © ~/mR2 set the frequency and time scales, for instance, with · = 1/ÊR
5.

In this way, ⁄ and ‡ are the dimensionless parameter to control the barrier height and

width, respectively. As before, the width is fixed for the barrier as ‡ = 0.1 in the

following. Naturally, a suitable parameter to compare with superflow condition (4.47) is

“R = (N ≠ 1)g1D/(~ÊRR), thus, as done before, within the MCTDHB we can adjust g1D

when analyzing di�erent number of particles, maintaining the initial states in the same

regions of stability.

In addition to the barrier defined above, to compare with other type of translational

symmetry breaking potentials, a lattice potential is used. The lattice is defined by

U (k)
l

(x) = (~ÊR⁄) sin2
A

kx

2R

B

, k œ N, (4.49)

where k is the number of peaks in the lattice.

In Fig. 4.16 the average population in the plane-wave state with unit angular mo-

mentum is shown after quenching the potential (4.48) in frames (a) and (b), while the

lattice potential (4.49) is used in (c), where ĉl is the destruction operator for „l(x) ©

eilx/R/
Ô

2fiR. First, in frames (a) and (b) ⁄ = 1 was used while the interaction varies
5This system of units is di�erent from before for the interaction parameter better agree with the

condition derived in Eq. (4.47). The conversion is simple though, only a factor of 2fi2
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Figure 4.16: Average population on l = 1 state exploring di�erent parameter values and
number of particles. (a) The barrier Ub is used with ⁄ = 1 and “R = 10. (b) Same case of
(a) but with “R = 1. Finally in (c), the lattice potential U (k)

l
is used with ⁄ = 0.1, “R = 10

and two values for k. For this case with a lattice, only 11 particles is showed, which can
be compared with the full green line in (a). As the dimensionless interaction parameter
used here is “R = (N ≠ 1)g1D/(~ÊRR), the GP result is independent of the number of
particles. The number of IPS needed were 5, 9 and 11 for the number of particles 41, 11
and 5 respectively. The time scale is given by · = mR2/~.
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from 10 in (a) to 1 in (b) for the dimensionless meanfield parameter “R. Once again, as

the number of particles change for the di�erent lines in a same frame, thus g1D must be

adjusted accordingly to maintain “R. In order to have the same initial energy pumped in

the system, the lattice U (k)
l

used in frame (c) have ⁄ = 0.1, since the initial energy per

particle introduced by a generic potential quench U(x) is easily obtained by

⁄
fiR

≠fiR

dxfl(1)(x)U(x) = 1
2fiR

⁄
fiR

≠fiR

dxU(x), (4.50)

as the single particle probability fl(1)(x) is constant.

Among some important features to mention about Fig. 4.16, the first is the good

agreement with GP description in frame (b), with the orange line corresponding to 41

particles completely overlapping the blue. This agreement was expected by raising the

number of particles with fixed meanfield interaction parameter as discussed in section 4.1,

especially for small values of “R. In contrast with the case in (a), which has stronger

interaction, in (b) we see an almost linear decay of the population in the state with

angular momentum 1, and this can be attributed to the respective values of interaction

being in di�erent regimes according to Eq. (4.47). Note that the “R minimal value for

the first local minimum to appear is 3fi/2, thus in the case presented in (b), there is no

energy barrier for the transition to zero circulation state. Therefore the main di�erence

between (a) and (b) is the amount of particles that continues to flow.

Another important point in Fig. 4.16 to emphasize is the lattice potential case in (c).

Despite the energy added to the system be the same, the fraction that continues to flow

is much bigger than the full gree line in (a), which share all parameters but the barrier

form. Thus, the energy injected initially in the system is definitely not the unique feature

to consider.

In summary, in the case presented above with two types of symmetry breaking po-

tentials we could fulfill some expectations, as the better concordance with GP for weaker

interactions and larger number of particles, besides the faster loss of particles in the flow-

ing state for interactions below the minimum value provided by (4.47). Nonetheless, we

can go beyond to provide more information about many-body observables.

Before proceeding to additional features accessible within MCTDHB, the case with 11

particles (full green line) in Fig. 4.16(a) was explored in more detail in Fig. 4.17, changing

the barrier height ⁄. Generally, by increasing ⁄ the current decays faster, however for
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Figure 4.17: E�ect of barrier height according to Ub in Eq. (4.48) for a system with 11
particles. In panel (a) “R = 10 and in (b) “R = 1. The green lines of each panel correspond
to the ones in the same panels of fig. 4.16.

the cases which the interaction is below the condition (4.47), in Fig. 4.17(b), besides the

initial faster loss of particles in the circulating state, there is a return to the initial value

as shown by the purple line at t ¥ 19· . This period with increasing number of flowing

particles are generally not present with temperature included in the formalism, where the

momentum of the systems only decreases in time.

The previous figures only provide part of what can be extracted from MCTDHB,

and we can provide more information useful in experimental measures. Starting from

Ref. [118], we can assume that independent measurements can identify the presence of

a ring structure after releasing the atoms if they were in a state with quantized flowing.

Actually, the images can be blurry, because generally there is only a fraction of atoms

still flowing, with the rest carrying no momentum (see inset axes of Fig. 2 in Ref. [118]).

Therefore, after many experimental runs one can count the number of states in which the

persistent flow was observed, even addressing a flow probability.

To better understand the distribution when measuring the fraction of flowing particles,

the fluctuation of operators is used here, defined as

”Ô © Ô ≠ ÈÔÍ, (4.51)

for a generic operator Ô. Therefore, the standard deviation is simply
Ò

È(”Ô)2Í, which

can be used as dispersion for quantum expectation values. Here we look at the dispersion

of the occupation numbers in the state with l = 1 angular momentum per particle, which
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Figure 4.18: Time evolution of occupations for a system with 11 particles after a quench
of the barrier Ub with ⁄ = 1 and interaction (a) “R = 10 and (b) “R = 1. The full green
lines up to t = 20· are the same of Figs. 4.16 and 4.17 respective panels. The filled area
corresponds to

Ò
È(”ĉ†

1ĉ1)2Í interval upwards and downwards. The black dotted line is
the condensation fraction according to the largest 1≠RDM eigenvalue and the blue line
corresponds to the outcome of GP equation.

provide information on how likely di�erent measurements will produce the same outcome.

In Fig. 4.18 in addition to the average occupation in l = 1 state, the fluctuations are

provided as a filled green interval plot, with one standard deviation up and downwards.

The condensation fraction and the outcome of the GP equation are also shown to highlight

a visualization of the di�erent concepts. First, it is worth to remind that the black dotted

line must start with the full green line since in the absence of the barrier the plane waves

must be exactly the natural orbitals as discussed previously. Once the dynamics start,

they become distinct concepts, whereas the natural orbitals are eventually superposition

of plane waves. Moreover, the full blue line disconnect from the other two as the time

increases, with meanfield failing to describe both. Note also that with an unique IPS

in the GP description, the standard deviation is always zero, in other words, it cannot

describe any fluctuations in measurements.

It is worth to emphasize that, in absence of temperature e�ects, Fig. 4.18 provide

almost all relevant information6 to reconstruct the statistical distribution of measuring

the number of particles that are still flowing in the ring at every time instant. Another

important point to stress is the visualization as a symmetric interval in the upper and
6In this case, this statistical distribution is discrete in the interval [0, 1] and to fully determine it we

would need all higher order moments, such as
Ò

È(ĉ†
1ĉ1)nÍ, with arbitrary n.
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lower parts of the full line, which is only a tool to show simultaneously the standard

deviation with the average, but the actual form of the distribution generally neither is

symmetric nor is a gaussian.

Finally, the momentum distributions are shown in Fig. 4.19 for t = 0 in (a) and

t/· = 37.5 in (b) with the same parameters used in Fig. 4.18(b). In the centered axes,

the mutual probability to find particles with angular momentum l and lÕ are mapped into

colors, while in the top and right axes the discrete single particle momentum distribution,

Èĉ†
l
ĉlÍ/N , are shown for each case. The specific time instant t/· = 37.5 is where the

maximum uncertainty occurs according to Fig. 4.18(b), and thus, where the many-body

e�ects are pronounced. For instance, at this moment, the most probable state to find

a particle is l = ≠1 with roughly 0.6 probability, nonetheless, the mutual probability

is around 0.5 for l = lÕ = ≠1, which is larger than 0.36 produced approximately by

the multiplication of the results of single particle distributions. This show us that the

probability distribution have correlated events to find more particles in l = ≠1 state. The

mutual probabilities are obtained with Eq. (2.82) for p = 2, where the operators must

corresponds to plane waves as in Eq. (4.18)7.

As a final remark, the specific momentum distribution as shown in Fig. 4.19 is crucial

to understand the specific protocol to detect the current proposed in Ref. [118]. Even

if a ring shape cloud is observed after releasing the atoms, this may not mean that the

majority of the particles have the same flow direction than initially. For instance, the
7This is equivalent to take Fourier transform of the field operators in the ring domain

Figure 4.19: Mutual probability in momentum space for two instants (a) t = 0 and (b)
t/· = 37.5 for the same parameters presented in Fig. 4.18(b). The additional axes at top
and right of panels (a) and (b) show the single particle momentum distributions.
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momentum direction can change, with the largest fraction occupying the state l = ≠1.

Therefore, depending on the experimental circumstances, quantum fluctuations can play

an important role in observing or not the flowing with the protocol suggested in Ref. [118],

whereas the MCTDHB o�ers a good opportunity to access quantum fluctuations.



Chapter 5

Conclusions

Properties of bosonic gases were studied within the MCTDHB, which provides several

new features beyond meanfield description with a very general methodology. As one of

the approaches to study many-particle systems, the MCTDHB has a notorious advantage

for time-dependent problems as it is inherently derived for this purpose and o�ers the

capability to study many-particle systems with arbitrary precision, only limited by the

numerical resources. Some other alternatives, as Monte Carlo and perturbative approx-

imations, do not have the same appeal to study initial condition problems as showed

here.

The numerical part development is one of the most challenging features in the under-

standing and implementation of MCTDHB. As such, the theme frequently confront us

with numerical analysis techniques amid the physics, but such interdisciplinary concepts

are inevitable for whoever wants to completely understand the method and implement it.

Therefore, all proofs in the method’s derivation and details of the numerical implementa-

tion were carefully provided in chapters 2 and 3, which are regarded as essential part of

the theme.

Despite the constraints are technical, only depending on available resources, the lim-

itations come up very quickly as the configurational space increases and in practice we

cannot smoothly cover all possible regimes. For instance, the MCTDHB better suits for

relatively small number of particles and in one spatial dimension, where we a�ord more

liberty to explore strong interacting cases and better analyze the fragmentation. Nev-

ertheless, even for a large number of particles, for instance N > 1000, it is possible to

consider small fragmentation processes with few IPS, typically M = 3, in such way to

105
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complement the meanfield description with a small fraction of depletion of the condensed

state.

After all the numerical background is set, the MCTDHB can be easily adapted for

a large variety of problems by changing the trapping potential, boundary conditions or

the interatomic interactions. The results presented here were particularly focused in the

flow properties of few bosons trapped in an annular geometry, eventually, using a barrier

as potential. Nevertheless, the object of study can be easily switched, for instance with

other type of single particle potentials as harmonic traps or double wells, possibly with

an arbitrary time-dependence. Therefore, the MCTDHB is very adaptable for di�erent

physical setups not restricted to the ones investigated here.

Among the main results, initially, the superfluid fraction was computed for a bosonic

gas analyzing all the parameters independently of the condensation fraction, in contrast

to many other works where full condensation is commonly assumed. Here, the Leggett’s

suggestion of the superfluid fraction of an arbitrary many-particle system was adopted [1]

and it could provide a computation methodology without any initial approximations, such

as estimation of the sound velocity as the threshold for creating excitations. Moreover,

details exclusive from many-particle features were explored, such as the translational sym-

metry breaking by the barrier observed in the first order correlation function, which is

directly related to particles tunneling through space points. Consequently, this approach

presented here can increase the interest in beyond meanfield features in superfluid char-

acterization.

In a second part of the results about the particles flow in a ring, an energetic stability

condition for persistent currents was derived with two analytical methods, one using the

Bogoliubov Hamiltonian for small fluctuations and the other only with soliton solutions

of GP equation (appendix B). Interestingly, in the full numerical calculation the local

minima appears in accordance with the condition derived in meanfield even for a small

number of particles. Despite the energy values have an increasing o�set with respect to

meanfield results for the yrast line as the number of particles decreases, the local minima

remain as predicted by meanfield calculations. This investigation reveals that some results

from meanfield can still provide relevant information about systems with few particles.

With the characterization of persistent current condition, the time dynamics after

quenching a single particle potential in the form of a barrier was investigated. The
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stronger interacting cases, which fulfilled the condition to persistently flow, show a smaller

depletion of particles from the initial state with unit angular momentum per particle.

Besides the average occupation values, the standard deviation was also analyzed to provide

more information about the quantum statistical distribution. Remarkably, in some time

periods rather large values of standard deviation were observed, which is a very important

feature to consider when analyzing experimental measurements, particularly depending

on how long the barrier was maintained raised. Despite these results provide a new path

to interpret the flow probability introduced in Ref. [118], it may be di�cult to separate

the quantum and thermal e�ects in experimental measures, thus, with cooling techniques

refinements and traps closer to an ideal ring, these intrinsic quantum e�ects may be

observed more clearly.

In summary, the MCTDHB can provide a deeper understanding of various phenomena

and a more accurate description than the meanfield does. Surely, for stationary states, it

may not be the ideal method as there are other very relevant alternatives mentioned before,

but it still provides a remarkable flexibility related with trap potentials and a straight-

forward methodology for computing density distributions. Finally, for time-evolution

dynamics, it is the most promising method to the best of our knowledge, only constrained

by the numerical resources available.

5.1 Future perspectives

A thorough numerical implementation of the MCTDHB is a very time-consuming task, in-

cluding reproducing some results and evaluating some consistency tests. Thus, additional

e�orts should be directed in improving analytical techniques for many-particle systems,

at least for specific limits to provide an additional support for the numerical results.

The current known tools are deeply connected with the meanfield description yet, as the

Thomas-Fermi approximation, soliton solutions of GP equation and Bogoliubov Hamil-

tonian. This last one is the closest we currently have that works for small fluctuations,

however, it is still not suitable for cases with large fragmentation which are commonly

studied in MCTDHB. A survey of methods applicable in this case must be examined.

Related to the numerical method, there is already a version ready to handle binary

mixtures, although this version was not submitted under enough tests to be applicable in
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any specific theme. This generalization for mixtures was possible only after spending some

time in two-component BECs in the meanfield level as can be consulted in Ref. [154]. As

soon as some results are obtained, the main goal is to study correlations and entanglement

involving mixtures, trying to extent quantum information topics to systems of neutral

atoms.

Finally, a version that could be applied in two and three dimensions is being developed,

again, after working in a simpler problem within GP equation [155]. Nonetheless, the

numerical implementation must be carefully designed since the calculations will be very

demanding and to study relevant themes we usually need a suitable configurational space

and number of IPS that must be feasible.



Appendix A

Matrix elements for the reduced

two-body density matrices

We follow Ref. [30], and present the reduced one-body and two-body density matrices

explicitly, addapted to our notation. Starting with a — configuration, —b

a
is a resulting

configuration index where one particle from the a-th orbital is removed and then added

to the b-th orbital. Analogously, starting from a — configuration, —cd

ab
is a resulting con-

figuration index where, two particles are removed from the a-th and b-th IPS and then

added to the c-th and d-th orbital, respectively. Sums over — index ranges from 0 to

Nc(N, M) ≠ 1.

fl̃kk =
ÿ

—

Cú
—
C—nk, fl̃ksks =

ÿ

—

Cú
—
C—nkns,

fl̃kl =
ÿ

—

Cú
—
C

—
l
k

Ò
(nl + 1)nk, fl̃kkqq =

ÿ

—

Cú
—
C—

qq
kk

fl̃kkkk =
ÿ

—

Cú
—
C—(n2

k
≠ nk), fl̃kkql =

ÿ

—

Cú
—
C

—
ql
kk

Ò
(nk ≠ 1)nk(nq + 1)(nl + 1),

fl̃kkkl =
ÿ

—

Cú
—
C

—
l
k
(nk ≠ 1)

Ò
nk(nl + 1), fl̃ksqq =

ÿ

—

Cú
—
C—

qq
ks

Ò
nkns(nq + 1)(nq + 2),

fl̃ksss =
ÿ

—

Cú
—
C—

s
k
ns

Ò
nk(ns + 1), fl̃kssl =

ÿ

—

Cú
—
C

—
l
k
ns

Ò
nk(nl + 1),

fl̃ksql =
ÿ

—

Cú
—
C

—
ql
ks

Ò
nkns(nq + 1)(nl + 1).
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Meanfield yrast line

The standard GP time dependent GP equation for the single particle macroscopically

occupied state is

i~ˆÂ

ˆt
= ≠ ~2

2M

ˆ2Â

ˆx2 + (N ≠ 1)g1D|Â(x, t)|2Â(x, t), (B.1)

where g1D is the e�ective contact interaction strength from V (x, xÕ) = g1D”(x ≠ xÕ), and

here we impose the conditions for a ring with length L = 2fiR,

x œ
5
≠L

2 ,
L

2

6
; Â(≠L/2, t) = Â(L/2, t); and

⁄
L/2

≠L/2
dx|Â(x, t)|2 = 1. (B.2)

The corresponding energy per particle functional is then given by

E =
⁄

L/2

≠L/2
dx

S

U ~2

2M

-----
ˆÂ

ˆx

-----

2

+ (N ≠ 1)g1D

2 |Â(x, t)|4
T

V . (B.3)

To construct the Yrast line, the angular momentum of the system must be fixed in

the stationary form of Eq. (B.1) obtained from Â(x, t) = Â(x)e≠iµt, which in the case of

mean-field approach, this is only possible in terms of angular momentum average. For

that, we must introduce the Lagrange multiplier � with the term ≠�lz = i~�Rˆ/ˆx in

the right side of Eq. (B.1). An important property to note is the equivalence to impose

a rotation in the system, and this derivation presented here provide the results used in

section 4.2, for instance, to plot the soliton branches in Fig. 4.4 for the energy with respect

to the Lagrange multiplier and the respective phases in Fig. 4.5.

A natural choice to obtain Eq. (B.1) in dimensionless units is defining the time scale
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based on the frequency Ê, such that ML2Ê = ~. Thus, with position in units of L and

energy in units of ~Ê we have

µÂ(x) = ≠1
2

ˆ2Â

ˆx2 + iv
ˆÂ

ˆx
+ –|Â(x)|2Â(x), (B.4)

with – © (ML/~2)(N ≠ 1)g1D and v = �/(2fiÊ). Applying the Madelung transformation

in the field Â(x), with Â(x) =
Ò

fl(x)ei�(x), one may arrive in the equations after separating

the real and imaginary parts

0 =
Ë
�Õ(x) ≠ v

È 3Ò
fl(x)

4Õ
+ 1

2

Ò
fl(x)�ÕÕ(x), (B.5)

0 =
Ò

fl(x)[µ + v�Õ(x)] + 1
2

3Ò
fl(x)

4ÕÕ
≠ 1

2[�Õ(x)]2
Ò

fl(x) ≠ –
3Ò

fl(x)
43

, (B.6)

where primes were used to simplify the derivatives with respect to x.

Eq. (B.5) can be integrated once after multiplied by
Ò

fl(x), as result

�Õ(x) = v + A

fl(x) , (B.7)

with A being the integration constant. Substituting Eq. (B.7) above in Eq. (B.6) yield

0 =
A

µ + v2

2

B Ò
fl(x) + 1

2

3Ò
fl(x)

4ÕÕ
≠ A2

2fl(x)2

Ò
fl(x) ≠ –

3Ò
fl(x)

43
. (B.8)

With the temporary substitution f = Ô
fl in the equation and also multiplying it by f Õ(x)

produce

0 = (2µ + v2)
Ë
f(x)2

ÈÕ
+

Ë
f Õ(x)2

ÈÕ
+ A2

C
1

f(x)2

DÕ

≠ –
Ë
f(x)4

ÈÕ
. (B.9)

Thus, after the integration and the back substitution of f = Ô
fl, we obtain

C
flÕ(x)

2

D2

= U(fl) = –fl(x)3 ≠ (2µ + v2)fl(x)2 + Bfl(x) ≠ A2, (B.10)

where B is just another integration constant.

A thorough analysis of Eq. (B.10), show us that the roots of U correspond to critical

points of the density fl, and that flÕÕ(x) = dU/dfl, therefore, the solution must be con-

strained in an interval where U > 0, bounded by two roots a1 and a2, both positives since

fl Ø 0. Moreover, – is responsible for U asymptotic behavior, which here we are consid-
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a1 a2 a3

�

U(�)

Figure B.1: Illustration of the region for solutions of fl according to Eq. (B.10). The
vertical hatched is the valid region for fl values, while the crossed hatched region is the
forbidden one, since only provide a minimum value by a3, but no maximum.

ering positive(repulsive interaction). Therefore, we can conclude that all three roots of U

must be positive, denoted by a1 Æ a2 Æ a3, with a1 Æ fl Æ a2 as depicted in Fig. B.1. No-

tably, if a1 = a2, the density fl is constant and we shall recover the plane wave solutions.

The equation for the density can then be written as

C
flÕ(x)

2

D2

= –(fl(x) ≠ a1)(fl(x) ≠ a2)(fl(x) ≠ a3), (B.11)

with the correspondence to previous variables given by

–a1a2a3 = A2, (B.12)

–(a1 + a2 + a3) = 2µ + v2, (B.13)

–(a1a2 + a1a3 + a2a3) = B. (B.14)

Eq. (B.11) can now be integrated, assuming that at x = 0 we have a minimum for fl,

which implies that fl(0) = a1, and then

2x =
⁄

fl(x)

a1

d’
Ò

–(’ ≠ a1)(’ ≠ a2)(’ ≠ a3))
, (B.15)
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which yields

fl(x) = a1 + (a2 ≠ a1)sn2
3

x
Ò

–(a3 ≠ a1), Ÿ
4

, Ÿ2 © a2 ≠ a1

a3 ≠ a1
œ [0, 1], (B.16)

where the Jacobi elliptic function sn corresponds to the inverse of the incomplete elliptic

integral of first kind F („, m) as [84]

sin „ = sn
3

F („, m), m
4

, F („, m) =
⁄

„

0

d◊Ô
1 ≠ m2 sin2◊

. (B.17)

To completely determine the solution, Eq. (B.7) must be integrated, which results in

�(x) = vx ±
Û

a2a3

a1(a3 ≠ a1)
�

3
1 ≠ a2

a1

----am(x
Ò

–(a3 ≠ a1), Ÿ), Ÿ
4

,

�
3

n
----„, m

4
=

⁄
„

0

1
1 ≠ n sin2◊

d◊Ô
1 ≠ m2 sin2◊

, (B.18)

where � is known as the incomplete elliptic integral of third kind and the function am is

known as the Jacobi amplitude and is simply given by am(u, m) = sin≠1[sn(u, m)] [84].

The plus/minus sign that appears in Eq. (B.18) arise from Eq. (B.12).

Finally, we must impose the periodic boundary conditions and the unit norm. For

the first constraint, we must use that sn(u, m)2 is a periodic function with period 2K(m),

where K(m) = F (fi/2, m) is the complete elliptic integral of first kind. Within the

dimensionless variable x œ [≠1/2, 1/2] we must impose

2nK(Ÿ) =
Ò

–(a3 ≠ a1), ’n œ N, (B.19)

where n indicate the number of minima fl will display. Thus for n > 1, we have what is

known as soliton train solution, due to the multiple peak structure that appears in the

density. The phase in Eq. (B.18), albeit of the periodic conditions, it may just fulfill the

complex exponential periodicity, what implies that �(1/2) di�ers from �(≠1/2) by an

integer multiple of 2fi,

2wfi = �(1/2) ≠ �(≠1/2) = v ± 2n

Û
a2a3

a1(a3 ≠ a1)
�

3
1 ≠ a2

a1

----
fi

2 , Ÿ
4

; ’w œ Z. (B.20)
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Next we apply the unit norm condition as
s

dxfl(x) = 1 and using Eq. (B.19) we obtain

a3 = 1 + 4n2

–
K(Ÿ)E(Ÿ), (B.21)

where E(Ÿ) denotes the complete elliptic integral of second kind. Analogously to the form

of Eq. (B.21), we can use it in Eq. (B.19) and then in the Ÿ definition to obtain a1 and

a2 also as function of Ÿ and n as

a1 = 1 ≠ 4n2

–
K(Ÿ)

5
K(Ÿ) ≠ E(Ÿ)

6
> 0, (B.22)

a2 = 1 ≠ 4n2

–
K(Ÿ)

5
(1 ≠ Ÿ2)K(Ÿ) ≠ E(Ÿ)

6
, (B.23)

a3 = 1 + 4n2

–
K(Ÿ)E(Ÿ). (B.24)

With the set of equations (B.22)-(B.24) and (B.20) we have as free parameters Ÿ

, n, w and the sign in (B.20), where once these are fixed, all the others are readily

obtained, including the Lagrange multiplier v. Moreover, we note that Eq. (B.22) impose

an upper bound to Ÿ value, which depends on the soliton train number and dimensionless

interaction strength –. Another remarkable property is when Ÿ = 0, implying a1 = a2 = 1

and a3 = 1 + n2fi2/–. Consequently, one straightforwardly obtain

If Ÿ = 0 ∆ v± = 2wfi û
Ô

– + n2fi2, �(x) = (2wfi)x, fl(x) = 1, (B.25)

which characterize just an momentum eigenstate given by a plane wave.

The angular momentum and energy per particle are key quantities to study the yrast

line, though the integrals are rather cumbersome. The angular momentum per particle

as well as its plane wave limit are given by

LM

N~ = 1
2fi

⁄ 1/2

≠1/2
fl(x)�Õ(x) = 1

2fi

Ë
v± ± Ô

–a1a2a3
È

≠≠≠≠≠≠æ
k=0

w. (B.26)

while from Eq. (B.3), the energy can be written as

A
ML2

~2

B

E = µ + v±

⁄ 1/2

≠1/2
fl(x)�Õ(x) ≠ –

2

⁄ 1/2

≠1/2
fl(x)2 ≠≠≠≠≠≠æ

k=0

1
2(2wfi)2 + –

2 , (B.27)

The energy can also be integrated analytically for an arbitrary value of Ÿ, though the
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Figure B.2: Angular momentum and energy per particle as function of the elliptic param-
eter Ÿ for various winding numbers w and sign choice for the phase in Eq. (B.18). The first
column, frames (a) and (c), correspond to the case of a simple soliton(n = 1), and frames
(b) and (d) to a double soliton(n = 2). All frames have in common the dimensionless
interaction parameter – = 500.

final formula is intricate and thus omitted here. Note, however, that the second integral

is just proportional to the angular momentum, a fact that will be used in the persistent

current stability condition below.

In Fig. B.2, the angular momentum and energy are shown as continuous function of

the elliptic parameter, in terms of 1 ≠ Ÿ2, in which case ease the visualization in log scale

since Ÿ can be very close to 1. The energy is subtracted from the interacting part of

the plane wave solution, that is –/2, and divided by (2fi)2 to better display the result as



APPENDIX B. MEANFIELD YRAST LINE 116

Figure B.3: Two energy branches of soliton solutions with n = 1 and n = 2. The Yrast
line is the lowest energy state as function of angular momentum, corresponding to n = 1,
whereas the crosses indicate the winding number and sign transition. The dimensionless
interaction parameter is the same of Fig. B.2, – = 500

k æ 0 according to Eq. (B.27), whereas we must obtain w2/2 in this limit.

Finally, to properly define the yrast line within the meanfield approach, we must define

a parametric curve using Ÿ to plot the energy as function of momentum, connecting the

line segments for each w, which results in Fig. B.3. As can be noted, the soliton trains,

i.e n > 1, are excitations and therefore the Yrast line corresponds to n = 1.

The persistent current criterion is established based on the cusp presented in the

transition between di�erent signs for a fixed w, as illustrated in Fig. B.3, where there

must be a sign inversion in the derivative of the energy with respect to the angular

momentum. Therefore, with ‘ = (ML2/~2)E the dimensionless energy and l = LM/(N~)

the dimensionless angular momentum per particle we have

A

lim
læw+

ˆ‘

ˆl

B A

lim
læw≠

ˆ‘

ˆl

B

< 0. (B.28)

Since ˆ‘/ˆl = 2fiv±, we can use the limit k æ 0 that conducts to the plane waves in
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Eq. (B.25) to obtain

Ë
2fiw +

Ô
– + fi2

È Ë
2fiw ≠

Ô
– + fi2

È
< 0, (B.29)

–

4fi2 > w2 ≠ 1
4 . (B.30)

The result with respect to the system’s bare parameters becomes (R = L/(2fi))

(N ≠ 1)g1D

2fi

3
MR

~2

4
> w2 ≠ 1

4 , (B.31)

which is almost the same result of Eq. (4.46) apart from parameters labels and the factor

(N ≠1). This discrepancy in the number of particles appearing in the formulas is natural,

since in the Bogoliubov development, at some stages, we had to consider N ≠ O(1) © N .

In this case, with N ∫ 1 the formulas become identical.

As a final remark, among some important features to comment in this meanfield

workout of yrast line, at least one deserve some attention. The yrast line built here

considered the average angular momentum, thus, the states have broken translational

symmetry. The GP equation is only capable to produce eigenstates of angular momentum

in integer multiples of the number of particles, since all occupies the same state. In a

many-body calculation, this line is actually composed by discrete points.
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