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“Imperfection is beauty, madness is genius and it’s better to be absolutely ridiculous
than absolutely boring.”

Marilyn Monroe



ii

Abstract
A critical problem in fluid dynamics in porous media is describing the delay in fluid
flow as it passes through the internal porous network. Capillary phenomena become
predominant at the micrometre scale and significantly affect fluid displacement
and petroleum recovery in porous media, such as porous rocks or artificial devices
formed by heterogeneous microchannels with distinct wettability. Depending on the
wettability and heterogeneity of the walls, fluid flow can be retarded and confined in
the micropores. Here, the general objective is to determine the relationship between
the quantity of fluid trapped within a micrometric porous medium based on i) the
random geometric characteristics or ii) the wettable physical properties of the porous
medium. This thesis focused on describing the i) porous media and ii) its fluid
dynamics at the pore scale to model these phenomena. A natural porous medium
is emulated using a Pore Network Model (PNM) formed by randomly distributed
circles as solid walls to quantify the degree of randomness in the porous structure.
This characterisation follows the adoption of the Voronoi diagram within the PNM,
which uses the circle’s positions as a starting point. Performing a statistical analysis
of the Voronoi polygons allows for calculating the Shannon entropy, which measures
pore randomness. Moreover, Lattice Boltzmann Method (LBM) simulations using
the Explicit Force method are applied to address single-fluid flow or oil recovery
by fluid injection because they can model multi-component flows in porous media
with heterogeneous wettability at the micrometric scale. Initially, we studied the oil
extraction by varying the shape, size, and configuration of the obstacles forming the
hydrophilic PNM. Our results indicate that square shapes and small circles displace
more oil, while random configurations retain a certain amount of oil. Furthermore,
for the same porous structure, we observed that the addition of nanoparticles in
the injected fluid improves oil recovery. To investigate the effect of randomness on
fluid flow, we have designed PNMs based on circles ranging from perfectly ordered
to fully disordered models. Additionally, we have examined the effects of size and
porosity by varying the radius and the number of circles, respectively. Our simulations
demonstrate that entropic information is directly related to the degree of tortuosity
and permeability. The more disordered the obstacles or the higher entropic the PNM,
the more the flow experiences more significant tortuosity and improved permeability.
Based on the PNMs from the previous case, we study the effect of randomness on the
oil recovery process. Our results show that entropic information is closely related to
the amount of trapped oil. In other words, more disordered obstacles or PNMs with
higher entropy lead to an increase in the amount of oil trapped in the random pore
networks. Finally, the effect of heterogeneous wettability on the oil recovery process
is studied. To uncouple the effects of geometric structure, PNMs are designed with
ordered circles but with hydrophobic and hydrophilic materials in varying proportions.
Our results show that the hydrophilic surfaces of a PNM facilitate the oil recovery
process, while the hydrophobic ones tend to obstruct the process. In conclusion, a
purely physical process, such as the oil-trapped quantity or how tortuous or permeable
a flow is, can be inferred from an essentially geometric characteristic, such as the
morphology-topology of the porous media quantified by the Shannon entropy.

Keywords: Lattice Boltzmann Method ; Pore Network Models ; Shannon Entropy ;
Oil Recovery.
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Resumo
Um problema crítico na dinâmica de fluidos em meios porosos é descrever o atraso
no fluxo de fluido à medida que passa pela rede porosa interna. Fenômenos capilares
tornam-se predominantes na escala micrométrica e afetam significativamente o
deslocamento de fluidos e a recuperação de petróleo em meios porosos, como
rochas porosas ou dispositivos artificiais formados por microcanais heterogêneos
com diferentes molhabilidades. Dependendo da molhabilidade e heterogeneidade das
paredes, o fluxo do fluido pode ser retardado e confinado nos microporos. Aqui, o
objetivo geral é determinar a relação entre a quantidade de fluido retida em um meio
poroso micrométrico com base em suas i) características geométricas aleatórias ou ii)
propriedades físicas molháveis do meio poroso. Precisamos descrever i) meios porosos
e ii) sua dinâmica de fluidos na escala dos poros para modelar esses fenômenos. Para
quantificar o grau de aleatoriedade presente na estrutura porosa, um meio poroso
natural é emulado usando um Modelo de Rede de Poros (PNM) formado por círculos
distribuídos aleatoriamente como paredes sólidas. Um diagrama de Voronoi dentro
do PNM usa as posições dos círculos como ponto de partida. Realizar uma análise
estatística dos polígonos de Voronoi permite o cálculo da entropia de Shannon, que
fornece uma medida de aleatoriedade dos poros. Para abordar o fluxo de fluido
simples ou a recuperação de petróleo por injeção de fluido, são aplicadas simulações do
Método Lattice Boltzmann (LBM) usando o método da Força Explícita, pois podem
modelar fluxos multicomponentes em meios porosos com molhabilidade heterogênea
na escala micrométrica. Inicialmente, estudamos a extração de petróleo variando a
forma, tamanho e configuração dos obstáculos que formam o PNM hidrofílico. Nossos
resultados indicam que formas quadradas e pequenos círculos deslocam mais petróleo,
enquanto configurações aleatórias retêm uma certa quantidade de petróleo. Além
disso, para a mesma estrutura porosa, observamos que a adição de nanopartículas no
fluido injetado melhora a recuperação do óleo. Para investigar o efeito da aleatoriedade
no fluxo de fluido simples, projetamos PNMs com base em círculos que variam de
modelos perfeitamente ordenados à modelos completamente desordenados. Nossas
simulações demonstram que a informação entrópica está diretamente relacionada ao
grau de tortuosidade e permeabilidade. Quanto mais desordenados os obstáculos ou
quanto mais entropia o PNM, o fluxo experimenta maior tortuosidade e permeabilidade
aprimorada. A partir das PNMs geradas, estudamos o efeito da aleatoriedade no
processo de recuperação de petróleo. Nossos resultados mostram que a informação
entrópica está intimamente relacionada à quantidade de petróleo retido. Em outras
palavras, obstáculos mais desordenados ou PNMs com entropia mais alta levam a um
aumento na quantidade de petróleo retido nas redes de poros aleatórios. Finalmente,
estudamos o efeito da molhabilidade heterogênea no processo de recuperação de
petróleo. Para mitigar os efeitos da estrutura geométrica, os PNMs são projetados
com círculos ordenados, mas com materiais hidrofóbicos e hidrofílicos em proporções
variadas. Nossos resultados mostram que as superfícies hidrofílicas de um PNM
facilitam o processo de recuperação de petróleo, enquanto as hidrofóbicas tendem a
obstruir o processo. Em conclusão, um processo puramente físico, como a quantidade
de petróleo retida ou o quão tortuoso ou permeável é um fluxo, pode ser inferido a
partir de uma característica essencialmente geométrica, como a morfologia-topologia
dos meios porosos quantificada pela entropia de Shannon.

Palavras-chaves: Método de Redes de Boltzmann ; Modelos de Rede de Poros ;
Entropia de Shannon ; Recuperação Melhorada de Óleo.
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Chapter 1

Introduction

1.1 Motivation

Petroleum recovery

Reservoir characteristics are critical in oil extraction, influencing the feasibility,
efficiency, and strategies for recovering oil from underground reservoirs. Higher porosity
generally means more space for oil to accumulate, while increased permeability allows
oil to flow more easily through the rock. In addition, reservoirs are often heterogeneous
and formed by various rocks, meaning they have varying characteristics at different
locations. Understanding the random distribution of porosity, permeability, and fluid
content is crucial for optimising extraction (Islam et al., 2016). Crude oil production
from natural reservoirs typically (and currently) involves up to three distinct phases:
primary, secondary, and tertiary. These phases are designed to maximise crude
oil recovery from the reservoir, each employing different techniques and methods
(Morrow, 1990).

Primary recovery is the initial phase of crude oil production. It relies on the natural
reservoir energy to drive oil to the surface. This energy can come from the reservoir’s
pressure or natural forces, such as gas expansion or water drive. During primary
recovery, oil is typically displaced and flows to the surface under its reservoir pressure.
The efficiency of primary recovery varies depending on the reservoir characteristics
but often recovers only a fraction of the total oil in place. Primary recovery is the
most straightforward and least costly phase but is often insufficient to extract a
significant portion of the oil (Vishnyakov et al., 2020). Secondary recovery follows
primary recovery when the natural reservoir energy becomes insufficient to continue
lifting oil to the surface effectively. One standard method used in secondary recovery
is waterflooding. Water is injected into the reservoir to maintain pressure, displace
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oil, and push it towards production wells. This helps to increase the percentage of
oil recovered from the reservoir. Other secondary recovery techniques may include
gas injection (e.g., CO2 or natural gas) to maintain pressure or improve oil mobility
(Vishnyakov et al., 2020).

Tertiary recovery, also known as Enhanced Oil Recovery (EOR), is the final phase
of crude oil production and is employed when primary and secondary methods have
been exhausted. EOR techniques are designed to recover additional oil trapped in the
reservoir. They inject various substances into the reservoir to alter the properties of
oil present and injection fluid, reduce its viscosity, or displace it from rock pores more
effectively (Lake et al., 2014). Standard EOR methods include steam injection (e.g.,
steam flooding), chemical injection (e.g., polymer or surfactant flooding), and gas
injection (e.g., CO2 flooding). Each method has specific advantages and applications
depending on the reservoir characteristics. EOR methods can significantly increase
the percentage of oil recovery from the reservoir but are more complex and expensive
than primary and secondary recovery (Alamooti and Malekabadi, 2018).

The EOR using nanoparticles is an innovative approach to improve the efficiency
of recovering crude oil from reservoirs. Nanoparticles, which are particles with sizes
typically less than 100 nanometers, are used in EOR to alter the properties of crude
oil and the reservoir rock, making it easier to displace and recover the oil. Specifically,
nanoparticles can alter the wettability of reservoir rock surfaces, making them more
water-wet. This change in wettability helps to release oil that might be trapped in the
rock pores (Sheng, 2020). In addition, nanoparticles can also interact with crude oil
and reduce its viscosity. Lowering the oil viscosity makes it flow more easily through
the reservoir rock, increasing the chances of recovery (Pereira, Lara, and Miranda,
2016).

Each reservoir is unique, and a detailed assessment of its characteristics is essential
for successful oil extraction. Thus, choosing phase(s) to implement in a particular
reservoir depends on factors like reservoir characteristics, economics, environmental
considerations, and available technology. Primary, secondary, and tertiary recovery
methods may be employed to maximise oil recovery while ensuring efficient and
sustainable production.
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Microchannels and microfluidics

Microfluidics is a multidisciplinary field of science and technology that deals with
fluid behaviour, manipulation, and control at the microscale, typically in channels with
dimensions ranging from micrometers to millimeters (Bruus, 2008). It involves the
precise handling of small volumes of liquids, gases, or suspensions in microfabricated
systems, often referred to as microfluidic chips (lab-on-a-chip) or micro total analysis
systems (µ-tas), which are miniaturised platforms that integrate and automate various
laboratory functions and processes onto a single chip. These devices have gained
immense popularity in analytical chemistry, biotechnology, and biomedical engineering
due to their ability to perform a wide range of laboratory operations on a small scale
(Mark et al., 2010).

Lab-on-a-chip technology in microfluidics has revolutionised various fields by
offering miniaturised and integrated solutions for laboratory processes. These
microdevices, often containing complex microchannels, have diverse applications, from
the biomedical diagnostics pharmaceuticals industry to chemical and environmental
monitoring (Yilmaz and Yilmaz, 2018). Additionally, technology is finding novel
applications in EOR by enabling miniaturised and highly controlled experiments that
mimic subsurface conditions. These devices facilitate the study of fluid behaviour,
wettability effects, and interfacial tension within porous media at the microscale,
allowing for a better understanding of EOR mechanisms. The microchannels can
simulate reservoir conditions, investigate the impact of various injection fluids, and
optimise recovery strategies cost-effectively and timelessly. In addition, they enable
real-time monitoring of fluid displacement processes, making it possible to fine-tune
EOR methods and improve their effectiveness (Fani et al., 2022).

Understanding and controlling the effects of microchannel structure on flow
behaviour is crucial for designing and optimising microfluidic devices for various
applications, including lab-on-a-chip systems, microreactors, and microscale heat
exchangers. Manufacturers and designers use computational modelling, experimental
techniques, and microfabrication methods to tailor microchannel structures to meet
specific flow requirements. On the other hand, wettability effects in microfluidics are
a fundamental consideration in the design and operation of microfluidic devices and
systems. Researchers and engineers often leverage these effects to achieve specific
fluid handling and manipulation goals in various applications, including diagnostics,
biotechnology, chemistry, and materials science.
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1.2 Computational simulations

The third approach

Because of the impending development of computers dedicated to solving scientific
problems, computer simulation is often referred to as the third approach to scientific
research. Computer simulations are a complementary and alternative computational
methodology approach to traditional experimental and theoretical sciences (Kaufmann
and Smarr, 1995). It involves using computer programs and mathematical models
to mimic real-world processes, systems, or phenomena in a virtual, controlled
environment. This allows researchers to explore and analyse complex scenarios, make
predictions, and gain insights that might be challenging, costly, or impossible to
achieve through pure experimentation or theoretical calculations.

Computational simulation applications span various disciplines, from physics and
engineering to biology and social sciences. In physics and engineering, simulations
are used to model fluid dynamics, structural behaviour, and electromagnetic
phenomena, aiding in designing and optimising aircraft, buildings, and electronic
devices (Durán, 2018). In biology and medicine, simulations help understand complex
biochemical processes, drug interactions, and disease spread, contributing to drug
discovery. Simulations also play a crucial role in climate modelling, economics, and
urban planning, enabling researchers and policymakers to explore scenarios, make
predictions, and assess the impact of various decisions.

Computational fluid dynamics

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses
numerical methods and algorithms to simulate and analyse the behaviour of fluids,
such as gases and liquids, as they interact with various objects and boundaries (Chung
et al., 2002). CFD allows engineers and scientists to model and understand complex
fluid flow phenomena, making it a valuable tool in various industries, including
aerospace, automotive, energy, environmental science, and petroleum (Bates, Lane,
and Ferguson, 2005). CFD simulations provide insights that are often difficult or
impossible to obtain through experiments alone, making them valuable tools for
research, design, and problem-solving in various fields.
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CFD is a systematic approach to model and analysing fluid flow by mathematically
formulating the governing equations, such as the Navier-Stokes equations, which
are then discretised (Temam, 2001). Mesh generation divides the computational
domain into discrete elements, and numerical techniques like finite difference, finite
element, or finite volume methods approximate solutions (Drazin, Riley, and Society,
2006). Proper boundary conditions are essential in defining fluid interactions at
domain boundaries. CFD software and high-performance computing are employed to
solve these equations iteratively, simulating fluid flow, heat transfer, and turbulence.
Visualisation tools are used to interpret results, providing insights into flow patterns,
pressure, temperature distributions, and other critical parameters, aiding engineers
and scientists in optimising designs and processes.

Lattice Boltzmann method

The Lattice Boltzmann Method (LBM) is a computational approach for simulating
fluid flow and other physical phenomena. It has gained popularity as an alternative to
traditional CFD methods due to its simplicity and efficiency, particularly for modelling
complex fluid systems. LBM is based on a microscopic description of fluid flow, where
the fluid is divided into discrete particles that move and collide on a grid (Cercignani,
2013). This particle-based approach allows LBM to capture and interpret capillary
phenomena as microscopic interactions. LBM is inherently suited for mesoscale
simulations, an intermediate scale between the microscopic and macroscopic levels.
Instead of tracking individual molecules or particles (microscale), it represents fluid
behaviour using distribution functions on a lattice grid (Mohamad, 2011).

The LBM offers several advantages for simulating fluid flow and related
phenomena. Its inherent simplicity and parallelizability make it an attractive choice
for high-performance computing, enabling simulations of complex, multi-scale fluid
dynamics on modern computing platforms (Körner et al., 2006). LBM lattice-based
approach provides natural handling of irregular geometries and complex boundaries,
making it well-suited for applications involving porous media, microfluidics, and
complex flow as turbulence phenomena (Aidun and Clausen, 2010). LBM is also
employed in predicting heat and mass transfer in engineering processes and assessing
environmental factors, such as pollutant dispersion. Additionally, LBM excels in
simulating multiphase and multicomponent flows, including interface dynamics and
phase separation.
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LBM simulations are extensively applied in oil recovery to optimise the extraction of
hydrocarbons from subsurface reservoirs (Liu, Zhang, and Ghahfarokhi, 2021). These
simulations involve complex mathematical models considering reservoir geometry, fluid
properties, and production strategies. They enable engineers to predict and analyse
reservoir behaviour, optimise drilling and production techniques, and design EOR
processes like waterflooding and gas injection with surfactants (Pereira, Lara, and
Miranda, 2016). By simulating various scenarios, computational simulations help
maximise oil recovery, reduce production costs, and minimise environmental impact.
They make them indispensable tools for the oil and gas industry to pursue efficient
and sustainable hydrocarbon extraction.

1.3 Objectives

The general objective is twofold: to determine the relationship between the quantity of
oil trapped within a micrometric porous medium and the 1) geometric characteristics
or 2) physical properties of the porous medium. Specifically, geometry refers to the
randomness of the pore network, and physics pertains to the heterogeneous wettability
of the pore surfaces. In oil recovery through fluid injection, LBM simulations using the
Explicit Force method are applied to handle multi-component flows and heterogeneous
porous media. In the first case, Molecular Dynamics data serve as input parameters
for LBM simulations, with clay as the porous medium and the injected fluid is
brine (in four different solutions of nanoparticles). In the second case, experimental
measurement data are employed, where the injection fluid is water, and the porous
medium is either hydrophobic or hydrophilic crystal.

The specific objective is to quantify the degree of randomness present in the pore
structure of a porous medium. For this purpose, a natural porous medium is emulated
using a Pore Network Model (PNM) formed by randomly distributed circles as solid
walls. In our case, the coordinates of the circular centers form a set of obstacles
to fluid flow, in contrast to networks of narrow channels formed by the connection
between coordinates. A Voronoi diagram within the PNM uses the coordinates of
circular centers as a starting point, forming polygons around the circles. By performing
a statistical analysis of the Voronoi polygons, the Shannon entropy of the PNM is
calculated, providing a measure of pore randomness. Since the entropy value serves
as a unique parameter for random PNMs, the study focuses on assessing the effect of
randomness on three cases: a) tortuosity, b) permeability and c) oil recovery. Then,
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within random PNMs sharing the same entropy value, the effect of circle size and system
porosity on these same three cases is Investigated. Finally, the effect of the degree of
heterogeneity on oil recovery is studied using ordered (non-random) heterogeneous
PNMs composed of diverse hydrophobic and hydrophilic portions.

1.4 Thesis structure

The thesis follows this structure: first we present the motivations and theoretical
background, then the methodology for the study and finally, the method is applied
to the proposed systems of interest. The chapters are:

Chap. 1 Introduction: The motivations and background of the study, along with
the primary objectives.

Chap. 2 Lattice Boltzmann Method: Development of the LBM methodology
and the Explicit Forces method.

Chap. 3 Characterization of Pore Network Models: Development of the
Shannon entropy of PNMs and petrophysical parameters.

Chap. 4 Oil Extraction in Pore Network Models: Study of oil extraction in
simple PNMs and the using of nanoparticles in EOR.

Chap. 5 Effects of Randomness Porous Media on Fluid Dynamics: Study
of randomness in PNMs on tortuosity and permeability.

Chap. 6 Effects of Randomness Porous Media on Oil Recovery: Study of
randomness in PNMs on oil recovery.

Chap. 7 Effects of Heterogeneity Porous Media on Oil Recovery: Study
of heterogeneity in PNMs on oil recovery.

Chap. 8 Conclusions and Perspectives: Summary of the main results obtained
and prospects for further studies.
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Chapter 2

Lattice Boltzmann Method

Abstract

This chapter presents a Computational Fluid Dynamics (CFD) method called the
Lattice Boltzmann Method (LBM) derived from kinetic theory. The LBM methodology
is a numerical technique for simulating fluid dynamics and modelling complex fluid
behaviours. It has gained popularity in various fields due to its unique characteristics
and advantages over traditional CFD methods based on the Navier-Stokes equations.
Instead of solving the Navier-Stokes equations directly, the LBM simulates the
density/velocity of fluids through flow and collision processes in a discrete lattice, where
reticular cells or pseudoparticles emulate fluid flow. This allows for a more direct and
intuitive simulation of fluid flow at a microscopic level. LBM is inherently parallelisable,
making it well-suited for modern high-performance computing architectures. The
grid-based nature of LBM allows for straightforward distribution of computation across
multiple processors or cores, enabling faster simulations for complex fluid scenarios.
Since it operates on a discrete lattice grid, LBM can easily handle complex geometries,
such as irregular shapes and porous media. This is in contrast to some traditional
CFD methods that require complex meshing and refinement techniques to represent
complex geometries accurately. LBM can be adapted to handle a wide range of fluid
behaviours, from incompressible flows to some compressible cases and from laminar
to turbulent flows, simply by modifying the collision rules in the lattice cells. This
adaptability makes it a versatile method for various fluid simulation scenarios. It
also naturally handles multiphase flows, where multiple fluid phases interact with
each other, such as liquid-gas interfaces or droplet formation. Various methodologies
address multiphase flows such as Shan-Chen, colour gradient or free energy. Specifically,
here we present the Explicit Force method with its software, Taxila-LBM, to address
multiphase/multicomponent systems in homogeneous/heterogeneous porous media.
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Figure 2.1: Schematic representation of various methodological
approaches at different scales in space-time. From the quantum model to
the continuum through the atomistic and mesoscopic. Picture adapted

from (Kirch et al., 2020).

2.1 Introduction

Oil reservoirs have a complex geometric structure and a heterogeneous composition.
In addition, several fluids in different proportions or phases can move or be confined
inside a region. The natural reservoirs exhibit behaviours or characteristics that vary
over time and space scales (Popov et al., 2009). The structure is formed by diverse
rock pore sizes ranging from the nanoscale to the macroscale. Alternatively, fluid
displacement encompasses various phenomena, from molecular interactions at the
smallest scales to large-scale flow patterns in macroscopic systems (Drikakis, Frank,
and Tabor, 2019). A multiscale approach is necessary when a single-scale model, such
as the oil recovery process, cannot accurately describe the phenomenon of interest.
As illustrated in Fig. 2.1, a multiscale computational model is a mathematical and
computational framework that simulates and analyses complex systems or phenomena
at multiple space-time scales. Each methodology addresses a particular time and
length scale, and various resolutions can be linked through either a hierarchical
(top-down/bottom-up) or simultaneous multiscale strategy.

In the continuum model, a system is defined by the principal physical quantities,
mass, momentum, and energy that can be described using Partial Differential
Equations (PDEs), such as the Navier-Stokes equations that model fluid dynamics
(Landau and Lifshits, 1959). However, there are only analytical solutions for simple
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Continuum model Kinetic model Atomistic model
(macroscale) (mesoscale) (microscale)

ρ,v f(r,p) (ri,pi)

Figure 2.2: Methodological approaches (diverse models) to perform
fluid dynamics simulations at different scales.

cases. At the same time, for more realistic situations, the modelling equations can
only generate approximate solutions due to the equation’s non-linearity, the system’s
irregular geometry or the boundary conditions’ complexity (Drazin, Riley, and Society,
2006; Galdi, 2011). As a consequence, various numerical strategies were developed,
such as the Finite Difference Method (FDM), the Finite Volume Method (FVM)
and the Finite Element Method (FEM). These essentially convert the PDE into
an algebraic equations system (Scheid, 1988), where generally, the system is solved
iteratively until the results are according to the required precision (Press, 2007).

Molecular Dynamics (MD) is another computational simulation methodology to
study fluids at the atomistic level. In this context, fluids can refer to liquids or gases,
and the goal is to understand their properties, interactions and behaviour at the
atomic or molecular scale (Allen and Tildesley, 1989). The atomistic approach is
governed by Newton’s laws expressed in the Hamilton-Jacobi formalism and empirical
intermolecular interactions such as the Lennard Jones potential, van der Waals forces
or electrostatic fields (Leach, 2001). The temporal evolution of the position and
momentum of each particle is described by differential equations that are solved
numerically through the Verlet algorithm (Omelyan, Mryglod, and Folk, 2002). MD
applied to fluid dynamics can help to understand complex flow behaviours, explore
fluids in the presence of solid material, and complement experimental observations
that are difficult or inaccessible in a laboratory. However, the simulations are limited
by the system size and the time scale because emulating a system beyond nanometer
dimensions requires high computational cost and longer simulation time.

The kinetic model developed by Ludwig Boltzmann bridges the gap between
continuum and atomistic models that operate at extreme scales (see Fig. 2.2).
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This model operates on the mesoscopic scale and describes the system’s macroscopic
properties based on the collective behaviour of microscopic particles described by
kinetic equations (Mohamad, 2011). For example, the Boltzmann equation describes
the evolution of the velocity distribution, explaining macroscopic properties such
as pressure, temperature and viscosity. The LBM coming from the kinetic theory
can be approached through numerical analysis and computational simulations. The
equations arising from these numerical techniques can be locally solved, thus enabling
efficient parallel computation (Succi, 2001). This chapter presents the formalism
of the LBM methodology applied to CFD. Specifically, the explicit force method
addresses multiphase or multicomponent fluids of heterogeneous composition and
complex geometry on porous media (Porter et al., 2012).

2.2 Liouville equation

The kinetic theory was independently developed by Maxwell and Boltzmann. Both
contributions provided a significant foundation for understanding the behavior of
gases. Gibbs introduced the idea of a statistical ensemble to describe a macroscopic
system from a microscopic perspective, which was fundamental to the connection
between thermodynamics and statistical mechanics (Cercignani, 1988). The system
under consideration is the state of a gas that can be specified by 3N canonical
coordinates: q1, q2, . . . , q3N and their respective conjugate moments: p1, p2, . . . , p3N .
The system’s phase space represents the 6N -dimensional space or degrees of freedom
expressed by Γ = {qi, pi}. A state of the entire system formed by N particles represents
a point in Γ space referred to as the representative point (Soto, 2016). This contrasts
the kinetic model developed from individual particles in a 6-dimensional space or
degrees of freedom.

A very large (infinite) number of states of the gas corresponds to a given
macroscopic condition of the gas. For example, the condition that the gas is contained
in a specific volume is compatible with an infinite number of ways of distributing the
molecules within the volume; that is, we would not be able to distinguish between two
gases that exist in different states, but that satisfy the same macroscopic conditions
(Harris, 2004). Thus, when we speak of gas under certain macroscopic conditions,
we are not referring to a single system but to a collection of systems identical in
composition and macroscopic condition but existing in different states.
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According to Gibbs, we call such a collection of systems an ensemble that is
expressed geometrically by a distribution of representative points in Γ space, which
is generally a continuous distribution and can be conveniently described by a total
density function F(q,p,t), defined as follows:

F(q,p,t) d
3Nq d3Np (2.1)

where (q,p) is an abbreviation for (q1, q2, . . . , q3N ; p1, p2, . . . , p3N). Then, Eq. 2.1 is
the number of representative points at time t contained in the infinitesimal volume
element d3Nq d3Np of the Γ space centred on the point (q,p).

Given F(q,p,t) at an instant t, the motion dynamics determines the subsequent values
t+∆t. Let H(q,p) be the Hamiltonian of a collection of systems (Gibbs ensemble). The
equations that govern the motion of the systems are given by:

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

 i = 1, 2, . . . , 3N (2.2)

If we assume that the Hamiltonian does not depend on time derivatives, the
Eqs. 2.2 are invariant in time and determine the motion of a representative
point for the entire collection of systems. Therefore, the geometric locus of a
representative point is either a simple closed curve or a curve that never crosses itself,
implying that the geometric locus of two distinct representative points never intersects.

Considering the phase space composed of the position-momentum coordinates of
all the identical molecules of a certain gas (q,p), the system state at a time t can be
represented through the total density function (F), expressed as follows:

F(q,p,t) = δ(q1−q1(t))δ(q2−q2(t)) . . . δ(q3N−q3N(t))δ(p1−p1(t))δ(p2−p2(t)) . . . δ(p3N−p3N(t)) (2.3)

where the parametric functions qi(t) and pi(t) are solutions of Eq. 2.2 for each gas
molecule with index i, that is, a Dirac delta function represents a point or point
function in Γ space (Bradt and Olbert, 2008; Surmas, 2010).
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Then, from a process of derivation of the function F (see, Eq. 2.3) with respect
to the variables qi, pi and t, we can obtain the so-called Liouville equation that is
presented below:

∂F

∂t
+

3N∑
i=1

(
q̇i
∂F

∂qi
+ ṗi

∂F

∂pi

)
= 0 (2.4)

where the solution describes the path of the function F over the phase space (q,p)

driven by the functions q̇i(t) and ṗi(t) that are related to velocity and force respectively.

2.3 Kinetic model

According to the continuous hypothesis, density, pressure, velocity, and temperature
describe the fluid flow on a macroscopic scale. Microscopic details, such as the
representation of the fluid molecules and the molecular interactions, are irrelevant as
long as the constitutive relationships between mass, moment and energy are adequately
defined in the system modelling equations (Degond, Pareschi, and Russo, 2012).
Nevertheless, to clarify the details of the boundary conditions, we must decrease the
scale sufficiently until we can model the fluid flow as a set of molecules/particles without
any distinguishable internal structure but represented by material points (Bellomo and
Pulvirenti, 2013). Therefore, due to the characteristics imposed on the particle model,
the particle motion is governed by Newtonian dynamics, that is:

p = m
dr

dt

F =
dp

dt

 (2.5)

where r and p represent the position and momentum of a single particle of mass
m respectively, and F represents the total force applied on the particle due to the
gravitational force, the presence of other particles or solid walls (see, Fig. 2.3 a).
However, for this atomistic description to apply, we must know a priori the interaction
forces between two homogeneous/heterogeneous particles, as well as the interaction
between a particle and the solid wall (Jeans, 1982).
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a) b)

Figure 2.3: Dynamics of microscopic point particles. a) Position and
moment before and after applying forces on a single particle. b) Particles

probability density function in phase space.

In a multiscale analysis, we must recognise the differences between the boundary
conditions applied to the continuous and atomistic model. On a macroscopic scale,
parameters such as density, velocity, pressure, and temperature can be directly
imposed at the system boundary. In contrast, on a microscopic scale, macroscopic
parameters at the boundary are determined by statistical averages of microscopic
interparticle interactions that emulate the fluid and the solid edge (Cercignani, 2013).
However, calculating macroscopic parameters at the boundary requires modelling a
large number of particles to obtain reliable results, which means a high computational
cost regarding the simulation time and data storage (Cercignani, 2014). Although a
supercomputer could perform the simulation, the results would be contaminated due
to the errors in determining the position and momentum of many particles because
the computational error accumulated each time step increases.

If instead of following the evolution of each particle of a particular system, our
interest is to study the microscopic behaviour of different systems, but with similar
macroscopic characteristics, such as the number of particles or the total energy, we can
describe the microscopic systems using concepts of Statistical Mechanics that operates
on an intermediate mathematical scale called mesoscopic (Pathria and Beale, 2011).
In the kinetic model formulation, although the details of the interactions between the
particles are simplified, the atomistic details relevant to the continuous description of
the fluids, flow is conserved. Nevertheless, the particle’s trajectory in the phase space
(r 3,p 3) is unknown, where all the degrees of freedom of the particle’s movement are
ignored except for translational (Mohamad, 2011). Therefore, considering the atomistic
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and continuous conditions imposed, a system can be described by the function f(r,p,t),
defined as:

dN = f(r,p,t) dr
3 dp 3 (2.6)

where dN is the number of particles at instant t located inside the infinitesimal
hypervolume of the phase space dV = dr 3dp 3, f(r,p,t) represents the probability
density function of the particles (see Fig. 2.3 b).

Initially, Boltzmann derived the kinetic model by considering a monatomic gas
composed of rigid spheres called the Boltzmann gas. The number of molecules is very
large (N → ∞), the mass of each molecule is very small (m → 0), and the diameter
of each molecule is negligible (d → 0). However, the value of the total mass (≈ mN)
and the number of collisions (≈ d2N) are not null values (Krüger et al., 2016). A fluid
that obeys the Boltzmann model description comprises an infinite number of identical
point particles that interact with each other through a short-range potential. Then,
the potential generates only binary collisions in a period long enough for the collisions
to affect the flow dynamics.

2.4 Boltzmann transport equation

Rather than performing statistical analysis of all individual positions and moments
of each particle in Γ space of the Liouville equation (see Sec. 2.2), the Boltzmann
transport equation is based on the probability of the number of particles present in a
region of phase space (see Eq. 2.6). Especifically, f(r,p,t) is the probability of finding
particles located between r and r + ∆r with momentum between p and p + ∆p at
time t. If an external force F acts on a particle m, the particle momentum will change
from p to p + F∆t and the position from r to r + (p/m)∆t according to Newtonian
dynamics (see Fig. 2.3 a and Eq. 2.5).

In particular, if there are no collisions between particles during a time ∆t, the
number of particles N present in ∆r 3∆p 3 remains constant, regardless of whether an
external force is applied or not (see Fig. 2.3 b and Eq. 2.6), that is:
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∆N = 0

N(t+∆t) −N(t) = 0

f(r+∆r,p+∆p,t+∆t)∆r 3∆p 3 − f(r,p,t)∆r 3∆p 3 = 0

[
f(r+∆r,p+∆p,t+∆t) − f(r,p,t)

]
∆r 3∆p 3 = 0

f(r+∆r,p+∆p,t+∆t) − f(r,p,t) = 0

∆f = 0 (2.7)

In general, if collisions between particles occur, the rate of change between the final
and initial states of the distribution function (∆f/∆t) will be nonzero and equal to a
term called the collision operator (Ω). Then, applying the limit ∆t→ 0 we can obtain
the Boltzmann transport equation (Mohamad, 2011), as shown below:

lim
∆t→0

∆f

∆t
= Ω

df(r,p,t)

dt
= Ω(f)

1

dt

(
∂f

∂r
dr +

∂f

∂p
dp +

∂f

∂t
dt

)
= Ω

∂f

∂t
+
dr

dt

∂f

∂r
+
dp

dt

∂f

∂p
= Ω

∂f

∂t
+ v

∂f

∂r
+ F

∂f

∂p
= Ω

∂f

∂t
+

1

m
p · ∇rf + F · ∇pf = Ω (2.8)

where the nabla operators∇r and∇p correspond to the position and momentum vector,
respectively. Making Ω = 0, the Eq. 2.8 is mathematically equivalent to Liouville
equation (Eq. 2.4).
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The Boltzmann transport equation is integro-differential and does not have an
analytical solution (see Eq. 2.8), only approximate solutions based on the mathematical
expression of Ω that describes the collision process according to some statistical
distribution (Succi, 2001). The microscopic momentum change ∆p must necessarily
satisfy the macroscopic conservation equations during the collision between particles
(Sukop and Thorne, 2007), that is:

ρ(r,t) = m

∫
R3

f(r,p,t) dp
3

ρ(r,t) v(r,t) =

∫
R3

p f(r,p,t) dp
3

ρ(r,t) ε(r,t) =
1

2

∫
R3

p 2
o f(r,p,t) dp

3


(2.9)

where ρ, v and ε are the fluid’s density, velocity and energy, respectively, while po =

p −mv is the particle momentum relative to the fluid. In summary, the macroscopic
conservation of mass, momentum and energy are closely related to the microscopic
information m and p (see Eq. 2.9).

2.5 Boltzmann equation

There are two especial cases in the Boltzmann transport equation: a) if there are no
collisions between particles in the system (Ω = 0), the Eq. 2.8 becomes a homogeneous
equation sometimes called the Vlasov equation (Bertrand, Sarto, and Ghizzo, 2019),
while, b) if no external forces are applied to the system (F = 0), the Eq. 2.8 is
the same as an advective equation, commonly called an inhomogeneous Boltzmann
equation (Sukop and Thorne, 2007). Although some can solve both particular cases
analytical or numerical method, in the general case, approximations must be made to
describe the collision operator Ω, and to ∇pf as well.

2.5.1 The BGKW model for the collision term

Deriving a mathematical expression for the collision term Ω is highly complex.
However, Ω can be approximated by a reasonably simple expression, where the idea
is to linearise Ω around the local equilibrium. If we follow the principles of statistical
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mechanics, the details of a binary collision do not significantly influence the calculation
of the system mean values (Bhatnagar, Gross, and Krook, 1954). Therefore, the main
effect of Ω is to bring/keep the distribution function f to/in equilibrium (Welander,
1954). That is, the particle populations tend to a local equilibrium within a relaxation
time.

The BGKW model, named after its developers Bhatnagar, Gross, Krook, and
Welch, is a simplified kinetic model used in the study of gas dynamics and the
Boltzmann equation. It’s employed to approximate the collision term in the Boltzmann
equation for rarefied gas flows. In the BGKW model, the collision term Ω is
approximated using a single relaxation time approximation, and it is typically
represented by the following equation:

Ω(f) = −
1

τ

(
f − f eq)

(2.10)

where τ is the relaxation time, a parameter representing the time it takes for a
gas to reach local equilibrium after a collision. 1/τ is the collision frequency and
f

eq is the particle distribution function at equilibrium that can be derived from the
Maxwell-Boltzmann distribution function (Bhatnagar, Gross, and Krook, 1954).

2.5.2 Incorporation of external force fields

Applying an external force field over a system can be simplified using the methodology
developed by Martys et al. (Martys, Shan, and Chen, 1998). Since Ω is responsible for
keeping f near or in equilibrium, f does not differ much from f

eq , then the functions
with respect to momentum can be approximately equal up to third order. According
to Martys et al.:

∇pf ≈ ∇pf
eq

= − 1

m

(c− v)

c2
s

f
eq

(2.11)

where c = p/m is the microscopic velocity of the particles and cs is the velocity of
sound that comes from the isentropic thermodynamic relation cs = ∂p/∂ρ

∣∣∣
s
.
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Fluid dynamics equations

Navier-Stokes equation Boltzmann equation

∂v

∂t
+ (v · ∇)v =

µ

ρ
∇2v −

1

ρ
∇p

∂f

∂t
+ c · ∇f = −

1

τ

(
f − f eq

)
Characteristics:

• Second order PDE, due to: ∇2v
• Need to tread the nonlinear convective
term: (v · ∇)v

• Need to solve Poisson equation for the
pressure

• Interfacial tension and wetability are
introduced under geometric concepts.

Characteristics:

• First order PDE
• Avoids term convective, convection
becomes simple advection: c · ∇f

• The pressure is obtained from ideal
gas equation.

• Capillary phenomena are interpreted
as fluid-fluid/fluid-solid interactions.

Table 2.1: Comparison of continuum and kinetic models expressed by
the Navier-Stokes equation and the Boltzmann equation respectively.

2.5.3 The approximate Boltzmann transport equation

As the BGKW collision model is a simple linear equation, and the inclusion of forces
is reasonably straightforward, it is possible to derive an approximate version of the
Boltzmann equation with a mathematically feasible form for solving by substituting
Eq. 2.10 and Eq. 2.11 into Eq. 2.8, as shown below:

∂f

∂t
+ c · ∇f = −

1

τ

(
f − τ

τ ′
f

eq
)

(2.12)

1

τ ′
=

1

τ
+

F

m
· (c− v)

c2
s

where ∇ ≡ ∇r is the common nabla operator. Making F = 0, Eq. 2.12 becomes a
equation called the Boltzmann equation, as follow:

∂f

∂t
+ c · ∇f = −

1

τ

(
f − f eq)

(2.13)

Eq. 2.13 is the central equation for developing the LBM methodology applied in various
fields, particularly in CFD.
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Particles system Discrete position Discrete momentum
f(r,p,t) f(rj ,p,t) fi(rj ,t)

Figure 2.4: Phase space discretization process: Position discretization
and subsequent momentum discretization.

Mathematically, Eq. 2.13 is a first-order linear PDE but of the advective and
inhomogeneous type, where the zero-order term ( 1

τ
f) indicates the creation/destruction

of the dependent variable. In comparison, the inhomogeneous term ( 1
τ
f

eq
) suggests

the presence of sources/sinks in the system domain (Arfken, Weber, and Harris, 2011).
Regarding the solution of PDEs describing fluid dynamics, the Boltzmann equation
has convenient characteristics compared to CFD models based on the Navier-Stokes
equation (see, Tab. 2.1). Furthermore, since the Navier-Stokes equation can be derived
from the Boltzmann equation using the Chapman-Ensokg expansion (Chapman and
Cowling, 1970), Eq. 2.13 can replace macroscopic models in CFD simulations.

2.6 Lattice Boltzmann Method

Continuous variables such as the particles’ location, direction of motion, and time
evolution must be discretised to solve the Boltzmann equation from a numerical
approach (see Eq. 2.13). In the discretisation process of (r,p, t), phase space
discretisation generates a spatial grid and a lattice formed by the directions of motion
(see Fig. 2.4). In contrast, temporal discretisation generates the computational
simulation steps. Lattice nodes are mathematical points that represent particles and
are often called virtual particles, pseudoparticles or fictive particles.

The lattice generated by the momentum discretisation is called Boltzmann lattice
and is the fundamental basis of the LBM methodology. A lattice is formed by
ci = pi/m called lattice velocities with a certain statistical weight wi. In contrast,
the lattice configuration is determined by the phenomenon nature under study,
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such as fluid dynamics, heat transfer, electromagnetism, etc (Mohamad, 2011). The
Boltzmann lattices have a nomenclature expressed as DnQ`, where n indicates the
spatial dimension and ` is the number of directions for the particle displacements
(see details, App. A). Hence, the momentum discretisation converts the probability
distribution function into a set of functions {f0, f1, f2, . . . , f`−1}, then: f(r,p,t) → fi(r,t).

Therefore, the functions fi = fi(r,t) can be discretised in time and space by finite
differences using the following approximate derivatives:

∂fi

∂t
≈
fi(r,t+∆t) − fi(r,t)

∆t

∇fi ≈
fi(r+∆r,t+∆t) − fi(r,t+∆t)

∆r


(2.14)

where the positional derivative (or gradient) is calculated at the subsequent time t+∆t.

Substituting the approximate derivatives (Eq. 2.14) in the Boltzmann equation (see
Eq. 2.13) and considering the lattice velocities ci = ∆r/∆t, we obtain the fundamental
equation of the LBM methodology, as shown below:

fi(r+ci∆t,t+∆t) − fi(r,t) = −
∆t

τ

[
fi(r,t) − f

eq

i(r,t)

]
(2.15)

∆fi = Ωi∆t

where Eq. 2.15 represents a system of linear equations. The left side of Eq. 2.15
expresses the streaming process, while the right side the collision process.

The streaming process represents the advection or movement of distribution
functions from one lattice node to another based on their velocity vectors:
fi(r,t) → fi(r+ci∆t,t+∆t), see details in App. B. Suppose the displacement occurs
near a boundary condition. In that case, the streaming process requires some
modifications depending on the type of boundary, such as Bounce-back, Periodic,
Dirichlet, etc. (see App. B). The streaming process enables LBM to approximate the
behavior of fluid particles as they move through space and time, capturing the fluid
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flow dynamics.

The collision process represents the interaction and relaxation of distribution
functions within the lattice nodes: fi(r,t) → f ∗i(r,t) → f

eq

i(r,t). In this step, the
distribution functions are updated at each lattice node to account for particle
collisions. A relaxation process gradually brings the distribution functions closer
to the local equilibrium state, where the relaxation time τ determines how quickly
the distribution functions reach their equilibrium values. Since both processes can
be calculated independently and the collision occurs in the same space-time, this
approach naturally favours parallel programming in the collision case (Körner et al.,
2006).

In fluid dynamics, a driving force acting on a system can be implemented by
applying Dirichlet boundary conditions or modifying the collision operator Ωi.
The boundary conditions can be a pressure difference assigned to the inlet/outlet
boundary or velocity injection (or flow rate) assigned to the inlet boundary (see
App. B). Meanwhile, external field forces or internal capillary forces can be directly
incorporated into the collision operator. Martys et al. (Shan and Chen, 1993)
incorporate internal/external forces by modifying the collision operator Ω through
approximations of the momentum gradient ∇pf (see Sec. 2.5).

Similarly, as the Boltzmann transport equation (Eq. 2.8) of the continuous model
satisfies the conservation of mass, momentum and energy (see, Eq. 2.9), the set
of Boltzmann equations (Eq. 2.15) must satisfy conservation principles during the
collision process (Mohamad, 2011). In incompressible and isothermal fluids, the
conservation of mass and momentum can be expressed as follows:

ρ(r,t) ≈
`−1∑
i=0

fi(r,t)

ρ(r,t) v(r,t) ≈
`−1∑
i=0

fi(r,t) ci


(2.16)

where ` indicates the number of directions for the displacements, and i = 0 corresponds
to the possibility of no motion (particles remain in the same position).



Chapter 2. Lattice Boltzmann Method 23

2.6.1 Equilibrium distribution function

The equilibrium function f
eq is a fundamental component of the collision process in

the LBM methodology. The type of physical phenomenon under study determines
the mathematical form of f eq that depends on the system’s macroscopic variables1.
For example, in a collection of particles represented by a density ρ and moving with
a the collective macroscopic velocity v is similar to a fluid, and f

eq is computed
based on density and velocity. The formula for f

eq is usually derived from the
Maxwell-Boltzmann distribution function, which describes the statistical distribution
of particle velocities in a fluid (Sukop and Thorne, 2007), as shown below:

f
eq

(r,c) = ρ

(
mβ

2π

) 1
2
D

e−
1
2
mβ(c−v)2 (2.17)

where β is the thermodynamic beta constant, c is the microscopic velocity of the
particles and D = 1, 2, 3 is the dimensional space.

Expanding Eq. 2.17 into a Taylor series: e−x = 1− x+ 1
2
x2− 1

6
x3 . . . , the following

expression is obtained:

f
eq

(r,c) = ρ

(
mβ

2π

) 1
2
D

e−
1
2
mβ c2

[
1 +mβ(c · v)− 1

2
mβv2 +mβ(c · v)2 − . . .

]
(2.18)

The general form of a discrete equilibrium distribution function in a specific
direction i (Mohamad, 2011), can be written up in second order as follows:

f
eq

i(r,t) = wi ρ(r,t)

[
A + B(ci · v(r,t)) + C(ci · v(r,t))

2 + D(v(r,t) · v(r,t))
]

(2.19)

wi =

(
mβ

2π

) 1
2
D

e−
1
2
mβ c2i

where A, B, C, and D are constants determined based on the conservation principles
(mass, momentum and energy).

1LBM was initially applied to fluid dynamics, then to other fields such as diffusion, phase transition,
acoustic, electromagnetism, etc.
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Lattice d

D1Q2 1
D1Q3 2
D2Q4 2
D2Q5 3
D2Q9 3
D3Q19 3
D3Q27 3

Table 2.2: List of lattice dimension values for different lattice
configurations in: 1D, 2D and 3D.

The macroscopic quantities ρ(r,t) and v(r,t) represent some parameters of a particular
system, for example, concentration, temperature, electric or magnetic field, etc.
Meanwhile, the coefficient wi represented the statistical weight of the possible velocities
ci for the movement of particles (see Eq. 2.19). The configuration of the possible
directions of movement and their respective weight distribution is determined based on
the conservation principle of mass and momentum (Mohamad, 2011).

2.6.2 Bridge between micro and macro scales

In the streaming process, the particles flow through the lattice, and then there must be
a characteristic transport coefficient between the transported material and the medium.
This coefficient is a macroscopic quantity of a physical system that must be related
to the system’s microscopic quantities (Mohamad, 2011). Therefore, the connection
between the macroscale and microscale can be obtained through this coefficient using
the Chapman-Enskog expansion (Chapman and Cowling, 1970). In fluid dynamics,
there is a relationship between the kinematic viscosity of the fluid ν and the collision
frequency between particles or relaxation time τ (see Eq. 2.10), as shown below:

ν = c2
s

(
τ − ∆t

2

)
(2.20)

In order to normalise the velocity of sound as cs = 1/
√

3 , the microscopic velocity
c and the flow velocity v of the Maxwell-Boltzmann distribution must be normalised
by
√
RT (Mohamad, 2011). Consequently, the velocity of sound in the Boltzmann



Chapter 2. Lattice Boltzmann Method 25

eq

Figure 2.5: LBM algorithm: Main steps for the systematic application
of the LBM methodology.

model can be written as:

cs =
c
√
d

(2.21)

where d is the lattice dimension, dependent on spatial dimension and particularly
on the lattice configuration. Tab. 2.2 show the lattice dimension value for different
lattice configurations discussed in App. B.

In summary, LBM bridges the microscale, where individual particles behaviour is
described, and the macroscale, where collective fluid behaviour is observed. This bridge
allows the study and simulation of fluid dynamics across a wide range of length and time
scales, making LBM a versatile tool in various scientific and engineering applications.
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2.7 LBM implementation in Fluid Dynamics

The application of the LBM to simulate and study fluid flow and related phenomena,
such as flows in porous media, multiphase flows, heat transfer, etc. It involves
translating the mathematical and algorithmic principles of the LBM into computer
code (see Fig. 2.5). Alternatively, software that can simulate the behaviour of fluids.
Below is a list (main algorithm) of the key elements necessary for implementing the
LBM methodology:

a) Lattice. Due to their links structure and the statistical weight, the lattice
configurations applied to the fluid dynamics are D2Q9, D3Q19 and D3Q27 (see
App. A), preserve the isotropy and the Galilean invariance (Mohamad, 2011).

b) Macroscopic quantities. The conservation equations Eqs. 2.16 with
normalised mass (∆m = 1) describe the density and velocity of the fluid, as
shown below:

ρ(r,t) =
`−1∑
i=0

fi(r,t) (2.22)

v(r,t) =
1

ρ(r,t)

`−1∑
i=0

fi(r,t) ci (2.23)

where ` is the number of links of a given lattice configuration DnQ`.

c) Equilibrium distribution function. The constants in Eq. 2.19 are obtained
based on conservation principles and are a function of the speed of sound
(Mohamad, 2011). Given A = 1, B = (c2

s)
−1, C = 1

2
(c4
s)
−1 and D = −1

2
(c2
s)
−1.

Then, the equilibrium function Eq. 2.19 is rewritten as shown below:

f
eq

i(r,t) = wi ρ

[
1 +

(
ci · v
c2
s

)
+

1

2

(
ci · v
c2
s

)2

− 1

2

(
v · v
c2
s

)]
(2.24)

where the normalised microscopic velocity is c = ∆x/∆t = 1 and the lattice
dimension for lattice configurations D2Q9 is d = 3, then the speed of sound on
lattice is cs = 1/

√
3 (see Eq. 2.21).
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d) Discretized Boltzmann equation. A fluidic system with no external forces
is modeled by Eq. 2.15. Since c = 1, Eq. 2.15 is normalised with respect to time
(∆t = 1) and rewritten as follows:

fi(r+ci∆t,t+∆t) − fi(r,t) = −
1

τ

[
fi(r,t) − f

eq

i(r,t)

]
(2.25)

where external or internal forces are included in the collision term (right-hand
side of Eq. 2.25), the Explicit Force method, described in the next section, was
employed in this work.

In order to perform LBM simulations, intrinsic information about the system must
be available, including the density and kinematic viscosity of the fluid. It is also
important to know the driving force for the flow, whether it be the force of gravity,
pressure difference, or fluid injection.

2.8 Explicit Force method

The presented methodology can be easily and quickly implemented for single
component fluids flow in the absence of forces or other source terms. However,
implementing forces in the LBM methodology is not trivial since some modifications
must be made to represent the force terms properly. For example, in multi-component
or multiphase pore-scale systems, intermolecular forces between fluids and walls can
be easily incorporated by applying an attractive or repulsive force on the particles.
So, interparticle forces in LBM represent a more physical than geometric approach
than traditional CFD methods.

The Shan-Chen model is one of the most important LBM implementations (Shan
and Chen, 1993). Nevertheless, there are drawbacks to accurately studying various
multiphase systems, such as large spurious currents near interfaces, equilibrium
densities dependent on the viscosity and numerical instabilities for large viscosities.
The Explicit Force model proposed by Yu et al. (Yu, Yang, and Fan, 2011) and
expanded by Porter et al. (Porter et al., 2012) helps address these drawbacks. The
model can work with viscosity ratios higher than 1000 with lower spurious currents
at the fluid-fluid interfaces and allows equilibrium densities independent of the viscosity.

In this context, the description of multicomponent fluids flow can also be
represented by a particle distribution function, where, if collisions do not occur between
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Initially Equilibrium

Figure 2.6: Schematic representation of a thermodynamic equilibrium
process due to interfacial tension as a driving force. Case: a water
droplet immersed in air that a) initially has a square shape and c)

becomes circular when the system reaches equilibrium.

heterogeneous or homogeneous particles (Ω = 0), the streaming process is modelled by
an equation similar to Eq. 2.25, that is:

f ki(r+ci∆t,t+∆t) − f ki(r,t) = 0 (2.26)

where k represents the k-th fluid component (there are k linear equations).

Nevertheless, if during the streaming process, the particles are subjected to external
forces or collisions, Eq. 2.26 is nonzero and can be rewritten as follow:

f ki(r+ci∆t,t+∆t) − f ki(r,t) = Ω k
col

+ Ω k
for

(2.27)

where Ω k
col

represents momentum changes in the particle distribution arising from
collisions between particles of the same type, while Ω k

for
denotes momentum alterations

attributed to external or internal forces, including collisions between particles of
different types at the interface.

The collision term Ω k
col

and its respective equilibrium distribution function are
defined exactly the same as in the case of single fluids (see Eq. 2.10 and Eq. 2.24), as
shown below:

Ω k
col

= − 1

τ k
[
f ki(r,t) − f k

eq

i(r,t)

]
(2.28)
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Hydrophobic Hydrophilic

Figure 2.7: Schematic representation of the wettability phenomenon
expressed and quantified through the contact angle. Case: a water
droplet immersed in air and scattered over a solid horizontal surface

with a) hydrophobic and b) hydrophilic properties.

and

f k
eq

i(r,t) = wi ρ
k

[
1 +

(
ci · v

eq

c2
s

)
+

1

2

(
ci · v

eq

c2
s

)2

− 1

2

(
v
eq · veq

c2
s

)]
(2.29)

where τ k and ρ k(r,t) are the relaxation time and the fluid density k, respectively, and
v
eq

(r,t) is the system equilibrium velocity.

In their original work (Shan and Chen, 1993), Shan and Chen incorporated the
force F k by adjusting momentum p. In the Explicit Force of Yu et al. (Yu, Yang, and
Fan, 2011), the force term is directly included in the fundamental Boltzmann equation
via a new collision operator Ω k

for
(see Eq. 2.27). The forces operating on the particles

are given by:

Ω k
for

=
∆t

2

[
f k

F

i(r+ci∆t,t+∆t) − f k
F

i(r,t)

]
(2.30)

and

f k
F

i(r,t) =
F k · (ci − v

eq
)

ρ k c2
s

f k
eq

i(r,t) (2.31)

where f k F

i is the force distribution function, and F k is a force vector. External forces
on the system or other system internal forces can be incorporated into F k.
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2.8.1 Incorporation of Forces

To implement external or internal forces in a system using the Explicit Forces model, we
must have information on the physical parameters of the applied force at our disposal.
For example, body forces, such as the intensity of gravity, capillary forces, such as the
interfacial tension between fluids (see Fig. 2.6), and the wall’s wettability expressed
by the contact angle (see Fig. 2.7).

a) Gravity. External forces acting on the particles, such as the gravity force, are
expressed as follows:

F k = ρ k(r) g (2.32)

where g is the gravity vector acting on each particle.

b) Interfacial tension. The forces between heterogeneous particles, which give
rise to interfacial tension (fluid-fluid interaction), can be included in a similar
nearest-neighbour manner, as shown below:

F k = −ψ k
(r)

nk∑
k=1

∑
r′∈Nr

g k,k G(|r′−r|)
ψ k

(r′) − ψ k
(r)

|r′ − r|
(r′ − r) (2.33)

where ψ k is the effective mass function, and Nr are the lattice sites that are
not walls, whose direct path from r to r′ does not include walls. G is a Green
function, and the value of g k,k indicates the magnitude of the force.

c) Wettability. The wettability forces are produced between the fluidic particles
and a solid wall (fluid-solid interaction). Therefore, the forces that appear in the
vicinity of the solid are given by:

F k = − ρ k(r)

nm∑
m=1

g k,m
∑

r′∈Wm

(r′ − r) (2.34)

Wm represents the set of neighbouring wall nodes composed of material m, while
g k,m represents the intensity at intermolecular forces between fluid k and material
m. The positive forces represent non-wetting forces and vice versa.
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The coefficient g represents various body forces (gravitational, electrical or
magnetic), while coefficients g k,k and g k,m are related to capillary parameters. The
relationship between coefficients and parameters is not direct (except for g); a process
called parameter mapping must be performed to obtain the simulation coefficients
corresponding to the physical parameters (Coon, Porter, and Kang, 2014; Pereira,
Lara, and Miranda, 2016).

2.8.2 Taxila-LBM package

Taxila-LBM software based in Explicit Force method is a powerful parallel
implementation of the LBM methodology, tailored to simulate fluid flow in porous and
complex geometric environments (Coon, Porter, and Kang, 2014). This feature-rich
software offers a versatile array of capabilities. It excels in solving both single and
multi-phase systems, handling various mesh dependencies, including D2Q9, D3Q19,
and others, on 2D or 3D grids, and easily adapting to different models of connectivity.
Leveraging the Shan and Chen Lattice Boltzmann Method, Taxila LBM accommodates
multi-phase systems with varying phase viscosities and molecular masses (Porter et al.,
2012). Its flexibility extends to utilizing higher-order derivatives or multiple relaxation
times to enhance stability, accommodating multiple mineral/wall materials with
different wettabilities and contact angles, and supporting arbitrary, heterogeneous
boundary conditions.

Furthermore, Taxila-LBM exhibits impressive scalability, performing efficiently
on massively parallel systems with tens of thousands of cores while remaining
compatible with both multi/single-core desktops and laptops running MacOS or Linux.
Its modular, "object-oriented" Fortran-90 design facilitates seamless extension for
incorporating new features. In terms of technical components, Taxila-LBM leverages
PETSc (Portable, Extensible Toolkit for Scientific Computation) for advanced data
structures, communication, and parallel I/O. It can also integrate with PFloTran for
micro-scale reactive transport solutions, although complete open-source availability
for this coupling may be pending. However, it’s important to note that the current
version is designed for structured, regular meshes and does not yet support GPU
implementation or handle curved geometries or non-bounceback style interior boundary
conditions.
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Chapter 3

Characterization of Pore Network
Models

Abstract

One of the key problems in the dynamics of fluids in porous media is to describe the fluid
flow delay when it passes through the internal porous network. A strategy to describe
the relationship between the dynamics and the intrinsic pore obstruction structure
is to characterise the porous medium by considering its porosity, permeability and
tortuosity, among other features. Wettability also plays a significant role in fluid flow
phenomena, especially in porous media like rocks and soils, as well as in microfluidic
devices and various industrial processes. Where controlling and manipulating the
interaction between fluids and solid surfaces can have a significant impact on fluid
flow efficiency (accelerate or retard). Several pore network models (PNMs) have been
proposed to emulate the porous media of natural reservoirs. Creating a simple model
to emulate natural reservoirs involves simplifying the complex geological and fluid flow
processes while capturing the essential characteristics. Emulating a natural reservoir
using randomly distributed circles is a simplified geometric representation that can
provide insights into certain aspects of reservoir behaviour. The primary goal of this
chapter is to characterise the degree of randomness of PNMs using Shannon entropy.
Since the entropy value can be considered as a petrophysical parameter along with
porosity, tortuosity and permeability. In addition, tortuosity and permeability are
studied under hydrodynamic concepts, taking into account wettability.
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3.1 Introduction

Due to the porous media complexity found in nature, there are no purely analytical
solutions for fluid flow, except in artificial structures that emulate a natural
porous media designed by objects with regular geometry, for example, the flow
through equiradial spheres immersed in a cubic matrix (Sangani and Acrivos, 1982).
Preliminary porous media studies were based on simplifications that idealised complex
porous structures using models similar to random fractal structures (Balankin
and Elizarraraz, 2012) or disordered percolation structures (Andrade et al., 1995).
Although these models provided morphological information, such as the topology and
interconnectivity of the pore-scale structure, the use of this geometric information in
the modelling of structures to emulate real porous media hydraulically was not well
established. The main hypothesis was to assume a random distribution of the regions
that form the system structure, where the morphological characteristics of the regions
do not correlate. However, recent studies from percolation theory and fractal geometry
suggest that some porous materials exhibit correlations at different pore scales, where
the correlations could affect the porous structure’s global properties (Andrade et al.,
1995).

In nature, porous media properties such as permeability or tortuosity may vary
according to the porous region. For example, there may be highly permeable and
practically impermeable regions. In addition, the permeable regions may or may not be
connected to the impermeable ones (Dandekar, 2013). The inhomogeneous character
of an actual structure is basically due to cavities covering most of the porosity and
throats connecting the cavities. The cavities may have different proportions and are
generally located in groups and not homogeneously distributed. Even though porous
media modelling could contemplate geometric aspects such as heterogeneity and
interconnectivity of cavities and throats on a micrometric scale, we must also consider
physical aspects such as capillary phenomena within the porous material micropores.
Capillary effects become more prominent and significant as the dimensions of a system
are reduced to the microscale (Zhou et al., 2017).

In microfluidics, the morphological architecture of porous media and the wettability
of the fluid-solid system are crucial factors in fluid flow (Dandekar, 2006). Regardless
of the system metric scale, the random porous structure defines the flow path, and
the walls act as obstacles to the effective displacement of the fluid. At the microscale,
the degree of hydrophobicity or hydrophilicity of the pore walls, together with the
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a) Ordered System b) Random Effect c) Wetting Effect
(geometric) (physical)

Figure 3.1: The illustration shows the effect of randomness and
wettability of porous media on fluid dynamics. Case: flow or streamline
(red arrow) in a porous medium that a) initially is structurally ordered,
b) then the streamline is visibly affected by the obstacles randomness

and c) finally also by the walls wettability.

random distribution of pores, determine flow retardation and fluid entrapment within
the channel network (Fagbemi, Tahmasebi, and Piri, 2018).

The main objective of this chapter is to characterise random porous network models
(PNMs) using Shannon entropy. A statistical analysis is performed on the Voronoi
diagrams generated within the PNMs to quantify randomity. Subsequently, the most
relevant petrophysical parameters in fluid dynamics are reviewed: porosity, tortuosity
and permeability. The tortuous and permeable parameters are calculated based on
hydrodynamic concepts such as hydraulic tortuosity and Darcy permeability. To
demonstrate the effectiveness of the hydrodynamic method, our investigation focuses
on simple channels with a known analytical solution (Matyka and Koza, 2012; Neuman,
1977).

3.2 Random Pore Network Models (PNMs)

Undoubtedly, the geometric characteristics of the morphological architecture of
porous media are determinant and decisive for conducting fluid dynamics studies,
regardless of the system metric scale. Concretely, the structure plays a fundamental
role in flow obstruction, the path taken by the fluid, and the flow delay time.
Since solid parts behave as obstacles to fluid flow, the shape and location of the
obstacles must be considered when modelling a porous medium (Suxo and Miranda,
2017). For example, a change in the angular orientation of a polygonal obstacle
with respect to the flow direction can significantly impact the velocity field by
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distorting the streamlines. Additionally, changing the placement of obstacles can
dramatically alter the velocity field by disrupting the path of streamlines (see Fig. 3.1).

Consequently, if the tortuosity or permeability of porous media is calculated
according to hydrodynamic concepts such as hydraulic tortuosity and Darcy
permeability, the geometric shape and angular orientation of obstacles can modify the
tortuous or the permeable characteristics, perturbing the velocity field. Therefore,
circular objects instead of polygonal shapes are ideal as obstacles for systematically
studying porous media1 (James and Chatzis, 2004). This is due to the absence of
sharp edges and the isotropic orientation with respect to the flow. Furthermore, since
objects are defined by only two parameters (centre and radius), the design of PNMs
composed of circles are relatively straightforward. Commonly, a PNM is formed by
narrow channels interconnecting orderly or randomly distributed points, while in our
designed PNMs, the points are the coordinates of circles that act as obstacles to fluid
flow (Adloo and Abbasi, 2021).

The placement of obstacles determines the porosity, tortuosity and permeability of
porous media (petrophysical parameters) because the group configuration influences
more than individual geometry. Notice that if obstacles are placed randomly, there
is the possibility of finding different configurations with the same porous, tortuous or
permeable value (Merriam, 2012). In Statistical Mechanics, different configurations
of energetic molecules in an ideal gas can have the same value of volume, pressure,
or temperature (macroscopic parameters). Similarly, in Electromagnetism, different
configurations in the orientation of spins within a magnetic material can generate
the same magnetization vector (macroscopic parameter). Additionally, the degree of
randomness in spin orientation can define or classify the type of magnetic material
(diamagnetic, paramagnetic, or ferromagnetic). Therefore, porous media with random
configurations with the same petrophysical value must be identified before conducting
fluid dynamics simulations. The identification should focus on the entropy of the
obstacle distribution because obstacles form the porous medium, and the entropic
parameter represents the degree of randomness in any system, whether physical or not
(Zhou et al., 2014; Chen et al., 2016).

1In the three-dimensional case, spherical objects instead of polyhedral shapes are ideal as obstacles
to emulate natural porous media.
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Voronoi diagram Voronoi cell

ci

cj

Figure 3.2: Schematic of a Voronoi diagram: Voronoi diagram from
a set of points called nuclei (blue points) and a Voronoi cell with its
respective nucleus ci (red point) surrounded by neighboring cells cj .

3.2.1 Voronoi diagram

The primary strategy for determining the entropic parameter of porous media is
to divide the porous domain into subdomains using Voronoi diagrams (Senechal,
1993). These subdomains are polygonal and have a central nucleus called Thiessen
polygons or Voronoi cells (see Fig. 3.2). For example, if the PNMs are designed
by circular obstacles, the coordinates of the centers can generate two-dimensional
Voronoi diagrams; each circle generates a Voronoi cell, and the centres coincide with
the coordinates of the nuclei2 (Kim, Kim, and Sugihara, 2001).

In a Voronoi diagram, if the set C = {c1, c2, c3, . . . } represents the coordinates of
the cell nuclei, a Voronoi cell V(ci) is defined as "A region where any point r is closer to
the coordinate ci than to other coordinate cj". Mathematically, the geometric object
V(ci) is defined as:

V(ci) =
{
r ∈ R | : ‖r − ci‖ < ‖r − cj‖ , ∀ i 6= j

}
(3.1)

here, the points r form the diagram lines that satisfy the relation ‖r− ci‖ = ‖r− cj‖.
2In the three-dimensional case, the obstacles are spheres that generate polyhedral bodies called

Thiessen polyhedrons.



Chapter 3. Characterization of Pore Network Models 37

Expected value:

〈x〉 =
n∑
i=1

pi xi

pi = f(x∗i )∆x

Properties:

1. f(x∗i ) > 0

2.
n∑
i=1

f(x∗i )∆x = 1

f(x)

x0 xnx∗ixo

pi

∆x

f(x∗i )

Figure 3.3: Scheme of a discrete probability distribution function f(x∗i ):
Definition of expected value 〈x〉 and properties of f(x∗i ).

3.3 Shannon entropy

In principle, the degree of randomness of a porous medium (natural, artificial or
computational) can be quantified using Shannon entropy (Michalowicz, Nichols, and
Bucholtz, 2013). Also known as information entropy or simply entropy, the concept of
Information Theory was first introduced by Claude E. Shannon in his 1948 paper "A
Mathematical Theory of Communication." (Shannon, 1948). The information entropy
measures the uncertainty related to the information content; in essence, it quantifies
the level of surprise or unpredictability in an information source (Cover and Thomas,
1991). Events with low probability have higher information content, while events
with high probability have lower information content. The entropy is highest when all
outcomes are equally likely (maximum uncertainty) and lowest when one outcome is
certain (minimum uncertainty or predictability).

The information entropy, represented by H for a random variable x and distribution
function f(x∗i ) (see Fig. 3.3), measures the average information content associated with
the outcomes of that random variable. Mathematically, H is defined as:

H =
n∑
i=1

pi Ii (3.2)

Ii = ln

(
1

pi

)
where pi is the probability of occurrence i, Ii is the information content of i, and n is



Chapter 3. Characterization of Pore Network Models 38

the number of events. Notice that entropy H (Eq. 3.2) has a mathematical structure
similar to the expected value 〈x〉 (see Fig. 3.3), as both express averanges.

In our research, the source of information is the location of the circular obstacles
that form the PNMs. Thus, the entropy of PNMs is a purely geometric parameter
(just like porosity), as the physical information of PNMs does not intervene in the
calculation. Furthermore, since the analysis is stochastic, different configurations can
possess the same entropy value. The change in entropy reflected by the variation
in configuration can alter the physical parameters: tortuosity and permeability in a
fluid flow process (see Fig. 3.1). Therefore, entropy is important for fluid dynamics
in random PNMs and becomes another petrophysical parameter alongside porosity,
tortuosity and permeability.

3.3.1 Shannon entropy of a Voronoi diagram

Voronoi diagrams can be subjected to a statistical analysis based on some geometric
information of the polygonal cells, for example: perimeter, area, number of sides,
number of vertices, or the sum of the interior angles of the polygons (Tanemura, 2003;
Hinde and Miles, 1980; Crain and Miles, 1976). The chosen geometric information
is the random variable denoted by x, which generates the probability distribution
function f(x∗i ) (see Fig. 3.3).

To obtain the Shannon entropy of a Voronoi diagram, the following algorithm must
be executed:

1. First, define the discretisation value ∆x = `/n by choosing a reference value `
(e.g., a multiple of 〈x〉) and the number of partitions n of the value `.

2. Generate a discrete probability distribution function f(x∗i ) for the random variable
x, but normalised concerning 〈x〉.

3. Obtain the discrete probability set P = {p1, p2, p3, . . . , pn} using the following
relationship: pi = f(xi) ∆x (see Fig. 3.3).

4. Finally, calculate the Shannon entropy (H) using the set P = {pi} and Eq. 3.2.

Although the methodology to obtain the Shannon entropy was implemented
on Voronoi diagrams in the two-dimensional plane, the implementation in the
three-dimensional space is immediate but more complex, where the diagrams are
formed by polyhedrons instead of polygons (Koltun and Sharir, 2004).
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Figure 3.4: Design and statistical analysis of PNMs. a) Voronoi
diagrams generated within a PNM: First, from 64 points distributed
randomly without restriction, second, using non-superimposed circles
and finally, adding the restriction of a small space between circles. b)
Distribution functions and their respective entropy compared to the
Gamma distribution function. The functions and values are the average
of 1000 different random configurations in the three types of PNMs.

3.3.2 Characterization of a PNM using Shannon entropy

Characterising the degree of randomness of a two-dimensional PNM through Shannon
entropy is a purely geometric approach, because the analysis is based on the Voronoi
diagrams generated within the PNM. Since Voronoi cells collectively cover the entire
space of the PNM (pore and wall), the sum of their areas represents the physical
dimensions of the PNM. Therefore, the area of the Voronoi cells can be chosen as
a random variable3. If the area is normalized with respect to the average area, the
probability distribution function develops around unity and behaves like a Dirac delta
function in an ordered case.

To obtain the Shannon entropy of a PNM formed by circular obstacles, the following
algorithm must be executed:

3In the three-dimensional case, the volume of the Voronoi cells is chosen as a random variable
because the sum of their volumes covers the entire PNM.
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1. First, implement a periodic update of the computational random seed to generate
different random number distributions4. The Fortran language has a subroutine
that updates the computer’s random seed every second (Press, 2007).

2. Design a PNM with non-overlapping circles distributed randomly but separated
by a minimum distance more significant than a given circular diameter.

3. Construct a Voronoi diagram within the PNM according to Eq. 3.1 and based
on the circle centres as information. The Voro++ package generates the Voronoi
diagram (Rycroft, 2009).

4. Generate the function f(x∗i ) by choosing the area of the polygons as a random
variable but normalised by the expected value, that is, xi = Ai/〈A〉.

5. Finally, using Eq. 3.2, calculate the Shannon entropy of a random PNM formed
from circles.

Following the presented algorithm, three types of PNMs were designed
consecutively. First, 64 points will be distributed randomly without any restrictions.
Non-overlapping circles will be used instead of points, and finally, circles will be
separated by a given minimum distance (see Fig. 3.4 a). Due to the stochastic nature of
the problem, 1000 different PNMs (various configurations) were designed in each case.
Fig. 3.4 b presents only the average curve of function f(x∗i ) and its corresponding entropy
H. Furthermore, to compare the proposed methodology with analytical results, Fig.
3.4 b also presents the Gamma distribution function that models the point distribution
(Bourguignon et al., 2015; Khodabina and Ahmadabadib, 2010; Stacy et al., 1962). Fig.
3.4 shows a decrease in entropy as design constraints are imposed since a constraint
limits the number of configurations. In our work, the PNMs under analysis correspond
to the third case because restricting a given minimum distance between circles does
not create inaccessible empty space for fluid flow.

3.4 Petrophysical parameters of porous media

In general, a porous medium is a material composed of two phases, a solid matrix and
a system of pores that may or may not be interconnected with each other, where the
shapes and size of the pores are described geometrically, while the connection of the
pores topologically. The most relevant macroscopic quantities are porosity, tortuosity,

4Computers generate random numbers from the same random distribution because the random
seed is constant. For this reason, the numbers generated are called pseudo-random.
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and permeability describes porous media geometrically and topologically independently
of other effects (Schön, 2015). However, if the characteristics of the pore scale are
micrometric, tortuosity and permeability are affected due to the physical properties
of the porous media and the fluid passing through the pores, whereas the porosity is
essentially geometric.

3.4.1 Porosity

The most straightforward property of a porous media is the porosity, defined as the
fraction of space occupied by the connected pores5. However, if there are unconnected
or isolated porous regions, these regions are not considered because they do not allow
fluid flow (Scheidegger, 2020). The porosity φ can vary from 0 to 1 and is expressed
as follows:

φ =
S

pore

S total (3.3)

S
total is the total space of porous medium (solid + pores), and S pore is the space occupied

by pores (empty).

3.4.2 Tortuosity and permeability in microfluidics

While the wettability of the porous material is not relevant at the macroscale, the
effect of wettability becomes important at the microscale. The structure shape and
material wettability are determining factors for the flow of microfluidics. Specifically,
wettability is responsible for the surface of the porous medium becoming wet or the
liquid being trapped in the micropores. Additionally, the wettability effect may affect
the flow, changing the trajectory that the fluid undergoes compared to the trajectory
developed without considering the wettability (see Fig. 3.1).

Specifically, there is a change in the velocities field, depending on the degree of
hydrophobicity or hydrophilicity of the fluid-solid system. Besides the change with
respect to the velocity intensity, there is a modification in its streamlines, mainly in
the narrow parts of the porous media, due to capillary and adhesion processes (see
Fig. 3.1). Thus, since characteristics that define a porous media, such as tortuosity

5If the porous system is two-dimensional or three-dimensional, the space S is equal to the area or
volume respectively.
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Figure 3.5: Tortuosity in a channel of constant narrow width at
different angles of inclination. a) Fluid velocity field in the inclined
channels. b) Normalized stationary velocity relative to the case of
greater inclination. c) Comparison between analytical tortuosity and

simulated hydraulic tortuosity.

and permeability, may be in function of the velocities field, these would be strongly
affected due to wettability because this one information would reside in the velocities
field. Nevertheless, the fluid velocity field must reach a stationary state to obtain
the tortuous or permeable characteristics of porous media, taking into account the
wettability effect.

3.4.3 Hydraulic tortuosity

In fluid dynamics and porous media, tortuosity, represented by τ , explicitly refers
to measuring how much longer and convoluted the flow path is compared to the
straight-line distance between two points (Scheidegger, 2020). It quantifies the
complexity of the flow path within the medium, from a minimum value equal to unity
to high values indicating more sinuous and irregular paths (τ > 1). However, there is
an alternative method called hydraulic tortuosity that makes use of the velocities field
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rather than determining the streamlines (Duda, Koza, and Matyka, 2011), where this
one method simplifies work in cases such as complex geometries or three-dimensional
porous media. The fluid flow (velocity field) must reach a steady state to obtain the
system’s tortuosity, denoted by τ . Mathematically, τ is expressed as:

τ =

Nx∑
i

Ny∑
j

vij

Nx∑
i

Ny∑
j

v
eff

ij

(3.4)

vij is the velocity modulus inside the channel, and veffij is a velocity component with a
direction parallel to fluid injection (horizontal from right to left).

To verify the method’s effectiveness, we calculate the hydraulic tortuosity of simple
channels inclined at four different angles with respect to the horizontal line (see
Fig. 3.5 a). Previously, we calculated the velocity profile when the system reaches
a steady state using LBM simulations, where the injection velocity is the driving
force applied as a Dirichlet boundary condition (see details, App. B). Subsequently,
from the velocity field and the Eq. 3.4 we calculate the hydraulic tortuosity of the
channels. The physical system is multicomponent with brine and oil as the injected
and displaced fluids, respectively, within a hydrophilic clay channels (see details,
App. C). However, to emulate a single-component system, as an initial condition,
the channel starts filled with brine, and the presence of oil is almost negligible at the
end of the channel. In order to compare LBM simulations with analytical results,
strategically, only the central part of the channel is analyzed, avoiding the ends where
boundary conditions for multicomponent systems are applied.

The system reaches a stationary state in approximately 8µs in each case (see Fig.
3.5 b) and the velocity field at that time are presented in Fig. 3.5 a. While, in Fig.
3.5 c, we can see the results obtained in comparison with analytical results, which
come from An entirely geometric analysis whose result is equal to τ = 1/ cos θ (Duda,
Koza, and Matyka, 2011). In conclusion, comparing results suggests that the hydraulic
tortuosity method is valid. However, there is a substantial difference as the inclination
angle increases since the tortuosity decreases slightly, perhaps due to the hydrophilic
property of the clay channel (θ = 69◦).
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Figure 3.6: Hagen-Poiseuille flow by fluid injection. a) Scheme of a
channel formed by parallel plates. b) Fluid velocity field in the channel.
c) Normalized stationary velocity. d) Comparison of results between
the analytical and simulated velocity field, where the simulated profile

belongs to the channel center (L/2).

3.4.4 Darcy permeability

Permeability is a property of materials, especially porous or granular substances that
describes their ability to allow fluids (such as liquids or gases) to pass through them
(Chapuis and Aubertin, 2003). It measures the ease with which fluids can flow or
permeate through a given material under the influence of a pressure difference. It
is typically represented by the symbol k and expressed in units of area, such as
square meters (m2) or milidarcies (mD), a standard unit in the oil and gas industry.
Specifically, the concept of permeability can be defined by Darcy’s empirical law, which
uses the velocity field and the pressure profile (Bauer et al., 2019). Just like hydraulic
tortuosity, Darcy permeability must be calculated when the velocity and pressure of
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the flow reach a steady state. Mathematically, k is expressed as:

k = µ

Nx∑
i

Ny∑
j

vij

Ny∑
j

(
p
in

j − p
out

j

) (3.5)

p
in

j and p
out

j are the input and output pressures, respectively, µ is dynamic viscosity,
and vij is the velocity modulus inside the channel.

To test the Darcy method, we calculated the permeability of the Hagen-Poiseuille
flow, which consists of a fluid that circulates through a channel formed by two parallel
plates of length L and separated by a distance H, where L� H (see Fig. 3.6 a). In our
case, the driving force for fluid flow is generated by fluid injection at the left boundary
of the channel or Dirichlet boundary condition (see details, App. B). We performed
LBM simulations to calculate the Darcy permeability until we reached a steady state.
Thus, we obtain the Darcy permeability by Eq. 3.5 using the steady-state velocity
and pressure profiles (see Fig. 3.6 b and Fig. 3.6 c).

Suppose the Hagen-Poiseuille flow is generated by fluid injection. In that case,
the analytical solution of the velocity profile has a parabolic shape with a maximum
velocity relatively equal to v/vinj = 1.5 as show in Fig. 3.6 d (Mohamad, 2011). Then,
the permeability value of the Hagen-Poiseuille flow can be obtained analytically by
combining the solution of the Navier-Stokes equation and Darcy empirical law, whose
value is equal to k = H2/12 (Zhao et al., 2020). In conclusion, the analytical and
simulated velocity fields have the same parabolic character (see Fig. 3.6 d). However,
there is a difference in the permeability value; the simulated value (k = 2440mD) is
lower than the analytical one (k = 2730mD). Analytical permeability, derived from
the macroscopic continuum model, does not consider wettability. In contrast, Darcy
permeability uses LBM simulations that include wettability information. Therefore,
the hydrophilic characteristics of the clay plates (θ = 69◦) reduce permeability due to
fluid adhesion on the plates.
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Chapter 4

Enhanced Oil Recovery in PNMs

Abstract

To estimate the amount of oil that can be extracted from natural reservoirs,
understanding capillary phenomena such as wettability and interfacial tension at
rock-brine-oil interfaces is decisive. One of the nanotechnological applications in
the oil industry are nanoparticles as rock wettability modifiers for Enhanced Oil
Recovery (EOR). In addition, we must also consider the characteristics of fluid flow
and morphology of porous medi, such as pore connectivity, porosity, tortuosity and
permeability, for EOR processes. In this chapter, in order to explore the possible
applications of nanoparticles in EOR processes, we apply a multiscalar hierarchical
calculation protocol that combines the LBM methodology and data from MD, where
MD data is mapped as input parameters in LBM simulations. Our objective is twofold:
to study the porous structure effect and the nanoparticles inclusion effect on the oil
extraction process. More specifically, we study the brine injection dispersed with
or without nanoparticles into clay porous media previously filled with oil. We have
considered different functionalized SiO2 nanoparticles (hydroxylated, sulfonic acid and
polyethylene glycol). Regarding the porous structure, we study the oil displacement
process by injecting brine into porous media formed by obstacles that have the same
porosity value but different geometric considerations, varying the obstacles in: shape
(squares, hexagons, octagons and circles), size (circles of four different proportions)
and location (four random configurations of small circles). Our results indicate that
for constant porosity and the same injected fluid, square obstacles and small circular
obstacles displace more oil, while random configurations retain an amount of oil.
Furthermore, for the same porous structure, we observe that polyethylene glycol
nanoparticles are more effective in displacing oil with respect to the others.
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4.1 Introduction

There are still significant research groups focused on the optimization and development
of new processes for the oil recovery from natural reservoirs. In an oil extraction
process, 5 to 25% of the total can be recovered by natural depletion, while 10 to
20% additional oil can be recovered by water flooding or gas injection (Morrow,
1990). Therefore, the objective of the new methodologies is to recover the remaining
fraction of oil trapped in rock structures due to interfacial phenomena and capillary
forces. In this context, in order to estimate the amount of oil that could be recovered
from natural reservoirs, we must understand the mechanism of wettability at the
rock-brine-oil interfaces (Green, Willhite, et al., 1998; Donaldson and Alam, 2013).

The potential use of nanostructures as wettability modifiers for enhanced oil
recovery processes is one of the most promising applications in the oil & gas
industry (Suleimanov, Ismailov, and Veliyev, 2011). Where, these nanostructures
are economically viable to produce on a large scale with a certain degree of control.
In addition, their surface and interfacial properties can be adjusted for a given
natural reservoir (Munshi et al., 2008). In EOR processes, we must also consider
characteristics of the dispersed injected fluid of nanoparticles to extract oil, as well as
the mineralogy and morphology of the porous media, such as the rocks wettability,
the connectivity of the pores, the porosity, tortuosity and permeability of the system
(Tiab and Donaldson, 2015).

From experimental measurements or molecular dynamics simulations, we can
obtain data for the system under study, including the densities and viscosities of
the injected and displaced fluids, the interfacial tension between the fluids, and the
wettability of the porous structure. Then, the information obtained at the macroscale,
microscale or nanoscale is introduced into the field of the mesoscale within the LBM
methodology, where interfacial tension and wettability are treated as fluid-fluid and
fluid-solid interactions, respectively (Porter et al., 2012). The physical observables
obtained in the mesoscale, such as the density and velocity of the fluids, can be
compared with the macroscopic variables of the fluid dynamics applied to microfluidics
(Mohamad, 2011).

To perform simulations in microfluidics, the fluid flow is modelled using the
LBM methodology and the Explicit Force method (Porter et al., 2012), which
is a multicomponent interparticle potential LBM for immiscible fluids with large
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viscosity relationships, where external forces are directly incorporated into the discrete
Boltzmann equation. The Taxila-LBM development by Coon et al. (Coon, Porter,
and Kang, 2014), is an open source to solve the LBM model that incorporates external
forces directly and is written in Fortran, C++ and Python. Taxila-LBM uses PETSc
to abstract data structures and communications, allowing codes to achieve excellent
parallel performance.

Therefore, computational fluid dynamics (CFD) applied to fluid flow on a
microscopic scale plays an important role. In particular, the LBM methodology
can model fluid dynamics through complex porous structures. In addition, the
computational programming of the modelling is easy to use and can be implemented
in parallel computing. Initially, the LBM methodology was developed by McNamara
et al. (McNamara and Zanetti, 1988) and then applied as a powerful alternative
method to solve CFD problems, such as: fluids with immiscible components,
interfacial problems, fluid flow in penetrable media, fluid simulations of multiples
species and flows in fairly complex porous media (Porter et al., 2012). Currently,
the LBM methodology has even been extended to apply of semi-classical (Coelho,
Ilha, and Doria, 2016) and relativistic fluids (Mendoza et al., 2010). Here, we
study the petrophysical properties of the oil extraction process through the porous
structure of an artificial rock with controlled geometries using a hierarchical approach
that combines LBM simulations and data from MD (Pereira, Lara, and Miranda, 2016).

In this chapter, we study the oil extraction process in porous media through LBM
simulations. Still, since the system is multicomponent at micrometer scale, we apply
the Explicit Force method to address the interfacial tension and wettability. We study
the porous structure effect in the oil extraction and we determined the nanoparticle
inclusion effect in the enhanced oil recovery. In particular, we study the injection
of dispersed fluids of nanoparticles into clay porous structures filled with oil. We
have considered different nanoparticles (hydroxylated, sulfonic acid and polyethylene
glycol) dispersed in brine, as well as the case of without nanoparticles. Regarding
the porous structure, we study the oil displacement process by injecting brine without
nanoparticles into porous media that have the same porosity value, where the pores
have different geometric considerations based on the obstacles variation, such as: shape
(square, hexagonal, octagonal or circular), circles size in four different proportions
and circles distribution for four random configurations. Regarding the nanoparticles
inclusion, we verified the power of surfactants for oil recovery in diverse porous media,
such as: random structures, dead-end pores and three-dimensional cases.
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Figure 4.1: Basic porous structures formed by geometric objects and
designed to have the same porosity value (φ = 0.68), where the gray
regions represent a solid area and the white color represents the porous
space. Porous structures according to solid objects are classified into: a)
different shapes, b) different sizes and c) different random locations.

4.2 Methodology

The methodological approach on oil extraction is divided into two main parts: (1) we
study the porous structure effect on the oil recovery process and (2) we determinate
the nanoparticle inclusion effect on enhanced oil recovery. Firstly, in order to explore
the possible effects of the porous structure, we consider the role of obstacles in the
porous structure design, such as: (i) shape, (j) size and (k) location (see, Fig. 4.1).
Secondly, in order to explore the effectiveness of nanoparticles, we have considered
different nanoparticles added to the injected fluid, such as: (a) without nanoparticles,
(b) hydroxylated, (c) sulfonic acid and (d) polyethylene glycol (see, Tab. C.1). The
nanoparticles effect is tested in relatively complex porous media such as: (u) random
structure, (v) dead-end pores and (w) three-dimensional.
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4.2.1 Pore Netwok Models (PNMs)

In particular, because our main objective is to study oil extraction at microscale, the
porous systems (PNM) under study have micrometric dimensions. The system global
domain has a square shape with a lateral length equal to L = 5.7µm. In order to
emulate a porous media, different types of geometric objects are introduced as obstacles
to fluid flow within the domain. The porous structures are designed to generate the
same porosity equal to φ = 0.68, obtained by the Eq. 3.3. Specifically, we design: (i)
squares, hexagons, octagons and circles to vary the obstacles shape, (j) whereas we use
circles of different radius to vary the obstacles size and (k) finally we use small circles
to vary the obstacles location using random configurations (see, Fig. 4.1).

4.2.2 Oil extraction process in PNMs

Subsequently, from the porous structure under analysis, we proceed to performed oil
extraction studies within the PNMs. The physical system is composed of a porous
structure and the displaced and injected fluids that pass through the pores, where the
PNM structure is montmorillonite clay (MMT), the displaced fluid is light oil, and
the injected fluid is API brine (8% NaCl and 2% CaCl2). Where, (a) in addition to
the pure brine solution (NoNP), there are three types of SiO2 nanoparticle solutions:
(b) hydroxylated (NP-H), (c) functionalized with sulfonic acid (NP-SA) and (d)
functionalized with polyethylene glycol (NP-PEG2) (see Tab. C.1). Initially, the
confined oil occupies the entire pore space of the PNM. To generate fluid flow from
left to right, a brine solution is injected into the left contour of the PNM with an
injection velocity of v = 0.44m/s.

Due to the studies of oil extraction processes are approached completely through
LBM simulations (see, Chap. 2), the methodology requires physical information of the
fluids under study, such as densities and viscosities. Furthermore, since the physical
dimensions of the porous structure under analysis are micrometric, the fluid-fluid and
solid-fluid interactions are decisive in the fluids flow and the oil extraction process.
Therefore, the methodology also necessitates microscopic physical information, such
as the interfacial tension between immiscible fluids and the wettability of the porous
media, which is expressed as the contact angle. Specifically, microscopic information
is necessary when applying the Explicit Force method (see Sec. 2.8).

The information required for the LBM methodology is based on the work conduced
by Pereira et al. (Pereira, Lara, and Miranda, 2016), as presented in Tab. C.1. To
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Figure 4.2: Oil extraction process in PNMs with obstacles of different
form. a) Snapshot of oil extraction at time t = 12.8µs. b) Percentage

of oil extraction during the brine injection time.

study the effect of the porous structure on oil extraction, we use brine without the
addition of nanoparticles, where the density and kinematic viscosity of brine and oil are
ρb = 997 kg/m3, νb = 0.791× 10−6m2/s and ρo = 810 kg/m3, νo = 4.473× 10−6m2/s,
respectively, while the interfacial tension and the contact angle are γ = 0.043 kg/s2

and θ = 69o, respectively. For studying the effect of nanoparticles on enhanced oil
recovery, we use brine without nanoparticles and three types of SiO2 solutions. The
presence of nanoparticles modifies the density and kinematic viscosity of the brine,
as well as the interfacial tension and wettability of the system (see details in Tab. C.1).

The methodology developed by Pereira (Pereira, Lara, and Miranda, 2016) applies
a multiscale hierarchical calculation protocol that combines LBM simulations and data
generated by MD (see Tab. C.1), where the data mapped as LBM input parameters
are presented in Tab. C.2 (see details in App. C). Our LBM simulations are performed
from the mapped data shown in the Tab. C.2. In each LBM simulation, we obtain as
result the velocity field and the pressure profile of the system, as well as the density of
the fluid injected and displaced at each time step. Therefore, based on the displaced
fluid density, we proceed to study the oil extraction process as a function of time.
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Figure 4.3: Oil extraction process in PNMs with circular obstacles of
different sizes. a) Snapshot of oil extraction at time t = 8.5µs. b)

Percentage of oil extraction during the brine injection time.

4.3 Results

In microfluidic devices or porous media, the behavior of fluids is often characterized by
Reynolds, Mach, and Knudsen criteria, each with its own significance. The Reynolds
number (Re = v · L/νb) describes the relative importance of inertial forces to viscous
forces in microchannels. Low Re values indicate a dominance of viscous forces, leading
to predictable laminar flow, while high Re values may result in turbulent flow with
chaotic mixing. The Mach number (Ma = v/vs) relates to compressibility effects
and is particularly relevant when dealing with gases in microfluidics. At low Ma,
incompressible flow assumptions are valid, while at higher Ma, compressibility effects
become significant. The Knudsen number (Kn = Ma/Re) quantifies the ratio of
molecular mean free path to characteristic channel dimensions and is crucial in gas
flows at the microscale. When Kn is small, continuum assumptions apply, but as Kn
increases, rarefied gas effects become important, leading to deviations from traditional
fluid dynamics behavior1 (Landau and Lifshits, 1959).

1In our system under study, L = 5.7µm represents the lateral length of the PNM, v = 0.44m/s
denotes the injection velocity, νb = 0.791×10−6m2/s stands for the kinematic viscosity of the injected
fluid, and vs = 340m/s is the speed of sound (as mentioned in the physical parameters above).
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Figure 4.4: Oil extraction process in PNMs with small circular
obstacles of different random location. a) Snapshot of oil extraction
at time t = 22.8µs. b) Percentage of oil extraction during the brine

injection time.

Based on the outlined criteria, the parameters characterizing fluid flow in our
LBM simulations are as follows: Re = 3.17, Ma = 1.27× 10−3 and Kn = 4.03× 10−4.
These criteria indicate that the fluid flows fall into the following categories: laminar
regime (Re � 2000), velocities lower than the velocity of sound (Ma � 1), and slip
flow close to the continuous regime (0.001 < Kn < 0.1). Therefore, with a Reynolds
number of Re = 3.17, we derive the main lattice parameters (dimensionless) for LBM
simulations: the lateral length is L∗ = 256, the injection velocity is v∗ = 0.003, and
the kinematic viscosity is ν∗b = 0.243. Subsequently, the space-time scale factors are
∆x = L/L∗ = 2.22× 10−8m and ∆t = (∆x)2 · ν∗b/νb = 1.52× 10−10 s, respectively.

4.3.1 Pore estructure effect in oil extraction

To observe the effect of the porous structure on oil extraction, the porosity (φ = 0.68),
injection velocity (v = 0.44m/s), and other system components (brine-oil-clay) remain
unchanged throughout the entire process. The porous structures under investigation
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are classified into three cases based on obstacle design: (i) different shapes, (j)
varying sizes, and (k) random locations, with the first two cases having a uniform
configuration (see Fig. 4.1). In each case, there are four examples of porous structures,
and the LBM simulation process ends when one of the examples reaches 100% oil
extraction (see Figs. 4.2a−4.4a).

The porous structure effect on oil extraction is based on the geometric
characteristics and location of the obstacles, as described below:

a) Different shape: (refer to Fig. 4.2) The oil extraction process follows a
similar pattern in the four different shapes (square, hexagon, octagon, and
circle). In square shape proves to be the most efficient in achieving 100%

oil extraction from the PNM in the least amount of time, while the circular
shape is the least efficient. The results indicate that, as the number of edges of
the polygons (obstacles) decreases or the edges become more pronounced, the
velocity field near the surface of the obstacles increases. As analogously, the
electric field is more intense on sharp or pointed (metallic) surfaces. Therefore,
the polygonal edges of the obstacles facilitate and accelerate the fluids (brine
and oil) displacement passing through the PNM (see Fig. 4.2b).

b) Size variation: (refer to Fig. 4.3) The oil extraction process exhibits a
significant difference between circles of various sizes (bigger, big, small, and
smaller). In terms of time, smaller circles prove to be extremely efficient in
extracting oil from the PNM compared to bigger circles. The results indicate
that as the circle size decreases, the time required to extract 100% of the oil also
decreases (see Fig. 4.3b). This is because the velocity field near curved surfaces
is greater than that near plane surfaces. Therefore, smaller circles or obstacles
with greater curvature facilitate and accelerate fluid flow for oil extraction from
PNMs (see Fig. 4.3a).

c) Random location: (refer to Fig. 4.4) In contrast to the previous ordered cases,
the oil extraction process reveals that a certain percentage of oil remains trapped
inside the PNMs (formed by smaller circles), in all four random distributions.
The results show that, due to the randomness of the obstacles that form the
PNMs, approximately 10% of oil on average remains trapped in the pore
network, in all random cases. Fig. 4.4b shows that, all the curves exhibit
a horizontal trend when they reach approximately 90% extraction, and even
when doubling the extraction time compared to the ordered cases, the horizontal
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Figure 4.5: Enhanced oil recovery by using different nanoparticles
in a PNM with small circular obstacles of random configuration. a)
Snapshot of enhanced oil recovery at time t = 11.2µs. b) Percentage of

oil extraction during the brine injection time.

trend persists. While the inclination is not perfectly horizontal, indicating the
possibility of eventually extracting all the oil, the required injection time would
be too long for practical purposes. Therefore, PNMs with random characteristics
can retain oil within their internal pores (see Fig. 4.4a).

The quantity of extracted oil and the recovery time are closely related to the
arrangement of pores that form a PNM. As PNMs in the first two cases have an
ordered pore arrangement, there is the possibility of extracting 100% of the oil by
increasing the brine injection time. In contrast, PNMs with a random pore arrangement
have the ability to permanently retain a certain quantity of oil within their pores,
regardless of the injection time. While the PNM under study is hydrophilic clay, which
facilitates oil recovery, the narrow pores can confine oil due to the combined action of
brine-oil-clay interfacial forces. Therefore, random PNMs provide the ideal scenario for
testing the effectiveness of surfactants, sucha as nanoparticles, in oil recovery processes
(EOR). Surfactant techniques are typically employed as a tertiary recovery method
after primary and secondary recovery methods have been exhausted.
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Figure 4.6: Enhanced oil recovery in dead-end porous media, where the
figures show snapshot when fluid flow reaches stationary state t > 12µs
(oil: black region, brine: cyan region and clay: gray region). The oil
recovery amount using a) brine without NPs, b) brine with NP-H, c)
brine with NP-SA and d) brine with NP-PEG2 are 5.2, 7.3, 10.4 and

13.7% respectively.

4.3.2 Nanoparticles effect in EOR process

Using surfactants in EOR process refers to the application of surfactant chemicals
in oil reservoirs to improve the extraction of oil. Surfactants, have the property of
reducing the interfacial tension between oil and brine, making it easier to displace and
recover trapped oil in the PNM. Surfactants work by modifying the wettability of the
PNM’s surface and altering the capillary forces that trap oil in narrow channels, small
pores, and/or fractures. They also help in emulsifying and mobilizing oil droplets,
allowing them to flow more easily through the PNM’s channels. The EOR techniques
aims to recover additional oil that would otherwise remain permanently trapped in
the PNM’s pores.

To observe and verify the importance of using surfactants, various nanoparticles
are added to the injected brine solution. However, in order to isolate the effects of
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Figure 4.7: Enhanced oil recovery in a three-dimensional PNM formed
by orderedly located spheres (oil: black region, brine: cyan region and
clay: gray region), cases: brine without nanoparticles and with three
types of nanoparticle, NP-H, NP-SA and NP-PEG2. a) Snapshot of

enhanced oil recovery. b) Oil extraction as a function of time.

the injection of nanoparticle-dispersed fluid, the system porosity, injection velocity,
and other system variables remain unchanged throughout the entire study process.
The random PNM that retains the highest quantity of oil in Fig. 4.4a is used as the
porous medium under study to improve oil recovery. The first random PNM retains
approximately 11% of the oil after a brine injection without the use of nanoparticles
for a duration of 22.8µs. Then, LBM simulations based on the data from Tab. C.1
are presented in Fig. 4.5, where the chosen random PNM as a test field is subjected
to four types of injection, a brine solution without nanoparticles (noNP) compared to
three types of nanoparticles added to the brine solution: NP-H, NP-SA, and NP-PEG2
(refer to Tab. C.1).

The results in Fig. 4.5 demonstrate that the use of nanoparticles provides the
opportunity to extract 100% of oil from random PNMs, without the possibility of
any percentage of oil being permanently retained due to the randomness of the pores.
The brine solution without nanoparticles (noNP) is the least efficient for oil recovery,
whereas the inclusion of nanoparticles increases the recovery percentage. Among the
three types of nanoparticles, NP-PEG2 proves to be the most efficient, displacing
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100% of the oil. Next is NP-SA that displaces 96%, and finally, the least efficient is
NP-H, which manages to extract 91% (Alvim et al., 2017). The oil recovery time is
equal to 11.2µs, which is similar to the cases of PNMs with an ordered structure and
approximately half the time that was simulated in random PNMs.

Additionally, the same recovery process is studied, but applied to a dead-end type
porous medium (refer to Fig. 4.6). Dead-end pores are a type of pore structure within
a porous medium that lacks an outlet or connection to other neighboring pores or
conduits. Fluids trapped within these dead-end pores have limited mobility and are
more challenging to displace or extract during various processes, such as fluid flow
in porous media or enhanced oil recovery. The results exhibit a similar behavior to
that of random PNMs, where NP-PGE2 proves to be the most efficient, displacing
approximately 8.5% more oil than the case without nanoparticles (noNP). Specifically,
the NP-PEG2 displaces ≈ 14% of the oil, followed by NP-SA which displaces ≈ 10%,
then NP-H which displaces ≈ 8%, and finally, the noHP that only manages to extract
≈ 5% (Kirch et al., 2020).

Finally, a simple three-dimensional PNM formed by ordered spheres is used as a
test field (see Fig. 4.7) and two cases are studied: the injection of brine without
nanoparticles and with the addition of NP-PEG2. Because, the use 3D porous media
in oil recovery simulations allows for a more accurate, comprehensive, and realistic
modeling of fluid behavior in porous media, contributing to improved strategies for oil
extraction and reservoir management. These models also facilitate the identification of
flow patterns and bottlenecks that can affect the efficiency of oil recovery. The results
indicate that in both cases, whether with or without nanoparticles, it is possible to
extract 100% of the oil. However, the case with NP-PEG-2 is the most efficient because
it requires less injection time, although the difference is minimal. If the porous surface
area is increased, such as by using larger spheres, the difference in extraction times
would also amplify because the surface is hydrophilic.

4.4 Conclusions

In this chapter, to simulate the (enhanced) oil recovery through the injection of
brine with or without dispersed nanoparticles, a hierarchical multiscale computational
protocol was applied based on the combination of the Lattice Boltzmann method and
Molecular Dynamics data. The displacement of oil was studied using various simple
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two-dimensional PNMs (ordered and random), while keeping the system’s porosity
and injection velocity constant.

First, regarding the effect of the hydrophilic porous structure on the amount of
displaced oil, it is observed that porous structures composed of circles are the least
efficient compared to other shapes, with the circular shape being the most commonly
used computationally to emulate natural porous media. For the same geometric
shape but different sizes, the hydrophilic porous structure formed by small circles is
more effective compared to the larger ones. Therefore, since the physical reduction of
porous media is related to the increase in the simulation network, the expansion of
the network does not contribute to the oil extraction process. For hydrophilic porous
structures formed by small circles randomly placed, it can be concluded that randomly
porous structures better emulate the porous network found in oil reservoirs because
a certain amount of oil remains trapped even after brine injection that includes
surfactants. In our study, it was observed that the four random porous structures
retained an average of 10% of the oil.

Finally, the effect of nanoparticles on oil displacement in hydrophilic porous media
is analyzed under three different scenarios: random PNM, dead-end porous medium,
and three-dimensional PNM. In the first case, the injection of brine with nanoparticles
improved oil recovery. It was even possible to extract 100% of the oil from PNMs that
retained ≈ 10% after brine injection without nanoparticles. In the second case, the
same previous pattern is repeated, demonstrating the importance of using nanoparticles
in extreme cases like dead-end pores. The addition of nanoparticles improves recovery
by up to ≈ 11% compared to an brine injection without nanoparticles. In the last case,
the efficiency of using nanoparticles is confirmed, as the injection of brine without
nanoparticles takes longer to recover oil compared to the use of nanoparticles.
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Chapter 5

Randomness Effect of the PNMs on
Fluid Dynamics

Abstract

One of the key problems on fluid dynamics in porous media is to describe the
fluid flow delay when it passes through the internal porous network. A strategy to
describe the relationship between the dynamics and the intrinsic obstruction porous
structure is to characterize the porous medium considering its porosity, permeability
and tortuosity among others features. Several PNMs have been proposed to emulate
the porous media of the natural reservoirs. These models are usually constructed
from obstacles with circular shapes distributed randomly. Our main objective is
to characterize random PNMs through the Shannon entropy. For this purpose, we
performed a statistical analysis of the Voronoi diagrams generated within a PNM.
Based on the assumption that entropic information is a unique feature of the PNMs,
we determine: the tortuosity and the permeability using a hierarchical approach that
combines LBM simulations and data from MD. In our case study, we consider the
fluid-solid interface taking brine for the injected fluid and clay as the porous structure
material, respectively. Here, the fluid-solid internal forces are fully considered through
the wettability phenomenon. Regarding, the porous structure, we have designed circles
based PNMs ranging from perfect ordered model (zero entropy) to a fully disordered
ones (H = 1.92). Additionally, we have studied the effects of size and porosity by
varing the radius and number of the circles, respectively, in PNMs with the same
entropy value. Our simulations show that the entropic information is directly related
to the degree of tortuosity and permeability, where the randomness of the PNM can
lead to the fluid flow delay. In conclusion, the entropy can be characterized essentially
as a geometric parameter. From the fluid dynamics perspective, this allows one to
determine how tortuous or permeable a random PNM may be based on its entropy.
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5.1 Introduction

Fluids flow through porous media has been extensively studied and is common practice
in civil engineering, petroleum industry or applications of Lab-on-Chip technology
(Mark et al., 2010). In particular, the microfluids study is a multidisciplinary research
area that includes parts of the Physics, Chemistry, Biochemistry, Biotechnology, and
Electronics among others. Specifically, microfluidics is the science and technology that
involves the fluids behavior study, the controllled manipulation of fluids and the design
of devices or systems that can reliably and efficiently perform tasks in microchannels
with typical dimensions of tens to hundreds of micrometers (Bruus, 2008). Where
the velocities field, pressures and temperatura describe the fluid flow that crosses the
microchannels that form the system or porous media.

While a combination of Newton’s second law and Navier-Stokes hydrodynamics
can describe fluid displacement through porous media, the resulting differential
equations are often too complex to be applied to real-world problems. Since the
modeling is approximate because the analysis is performed at the macroscale,
neglecting the capillary effects that become predominant at the microscale (Zhao,
MacMinn, and Juanes, 2016). To study microfluidic systems repeatedly but under the
same physical-geometric conditions and input parameters, computational numerical
simulation is the best option instead of performing experimental measurements. Due
to the development of techniques for the geometric visualization-quantification of
porous media, as well as, due to the increase in computational capacity-velocity.
Furthermore, there is systematic progress in modeling fluid flow at the pore-scale
without the need for geometric idealizations in porous media design, while also
incorporating relevant physical information into the model.

An ideal numerical method for simulating fluid flows through complex geometries
or particularised structures is the Lattice Boltzmann Method (Mohamad, 2011;
Sukop and Thorne, 2007; Succi, 2001). The effectiveness and reliability of the
method has been confirmed and tested by analytical results in various studies that
model flows around solid obstacles with regular and irregular geometry at different
scales (Sangtani Lakhwani, Nicolleau, and Brevis, 2019). Furthermore, Boltzmann’s
methodological approach is very appropriate for conducting studies in the micrometric
domain, since microscopic capillary phenomena such as wettability can be easily
incorporated into the method (Porter et al., 2012). Hence, studies on the tortuous or
permeable characteristics of porous media using the LBM method are more realistic
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than studies focused solely on geometry. This is because the method incorporates the
information arising from the physical interactions within the fluid-solid system.

In this chapter, our focus is on the study of fluid dynamics within two-dimensional
PNMs. These PNMs are constructed using randomly distributed circular objects
to mimic natural porous media. Our primary aim in this chapter is to provide
a characterization that goes beyond traditional factors like porosity, tortuosity, or
permeability. Instead, we focus on the geometric characterization of random PNMs
using Shannon entropy. To obtain the entropic value based on Shannon stochastic
theory, we perform a statistical analysis from the Voronoi diagrams previously
generated within the PNM (see, Chap. 3). Subsequently, assuming that entropic
information is a unique feature of a random PNM, we proceed to study the randomness
effect on petrophysical parameters such as tortuosity and permeability, using a single
fluid described through a hierarchical approach that combines LBM simulations and
data from MD (see, Chap. 2). Concretely, we study the petrophysical parameters of
random PNMs made of clay filled with brine and injected the same fluid as the driving
force of the fluid flow.

5.2 Fluid dynamics in multiscale

Since a fluid at the macroscopic level is considered like a continuous material, this ones
are completely determined by parameters such as velocity and density at each point
of the material, where the Navier-Stokes equations obtained from a strictly theoretical
point of view, are responsible for modeling the system (Chung et al., 2002). Whereas,
from a microscopic perspective, a fluid may be represented by atomistic particles and
be described through Molecular Dynamics (Leach, 2001), where each discrete entity is
defined by its position and velocity governed through Newton laws and interatomic
potentials, that are the key point of the methodology. Therefore, between these ones
two levels of extreme scales, the Lattice Boltzmann Method operates in the microscale
and is constituted as a bridge between the macro and nano scales (Mohamad, 2011),
where the ends of its own domain are not well defined.

FromMD simulations, we can study phenomena such as wettability that involves the
fluids with the porous matrix (porous media). Furthermore, wettability’s infomation
obtained in the nanoscale (contact angle), we may introduce in the microscale within
the LBM methodology as microscopic forces or fluid-solid interactions (Pereira, Lara,
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Figure 5.1: Designs of two-dimensional PNMs formed by a random
distribution of circular geometric objects (obstacles) but without
overlapping objects, where the gray regions represent the solid structure
and the rest is the pore space (white region). The random PNMs
are classified as: a) Obstacle disorder variation, b) System entropic
variation, c) Obstacle size variation and d) System porosity variation.

and Miranda, 2016). Therefore, physical observables calculated in the microscale using
LBM (density, velocity and pressure), may be compared with the macroscopic variables
of the Navier-Stokes equations applied to microfluids.

5.3 Methodology

In general, the methodological approach is divided into two stages: (1)
mathematical-geometric and (2) physical-hydrodynamic; both stages are independent
topics but correlated with each other according to the main objective of the chapter.
Initially, to characterises the randomness of a PNM through Shannon entropy, we
performed a statistical analysis on the Voronoi diagram previously generated within
the PNM (see Sec. 3.3). Subsequently, we performed a fluid dynamics study to
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determine the randomness effect on petrophysical parameters such as tortuosity and
permeability of random PNM (see Sec. 3.4). In addition, as an application of the
entropic characterisation, we study the variation effect of both the system porosity and
the obstacles size on the tortuosity and permeability in PNMs with the same entropic
value. The first stage corresponds to the methodology developed in Chap. 3, while the
second corresponds to Chap. 2.

5.3.1 Design of PNMs under study

Since our general objective is to study the fluid flow over artificial porous media at the
microscale, all designed PNMs have micrometer dimensions. The global domain of the
porous system is two-dimensional and has a square shape with a lateral length equal
to L = 5.68µm. We introduce circles within the domain as obstacles to fluid flow to
emulate a natural porous medium. However, in order not to generate unconnected
or isolated regions, the obstacles must have a minimum separation distance equal to
or greater than ∆ ≥ 0.09µm. That is, for the purposes of our study, the fluid must
invade the entire pore network and there should be not empty spaces inaccessible to
the fluid. Therefore, the circles size defines the number of obstacles present in the
domain, only N = 64 circles of radius equal to r = 0.22µm can be introduced inside
the porous domain (see Fig. 3.4a).

For a systematic study of randomness (consequences and applications), we design
four different groups of PNMs with five successive cases in each group, as shown in
Fig. 5.1. Where, we perform the variation of a parameter without modifying the other
system variables: (a) obstacles disorder variation, from a perfectly ordered case to a
totally disordered case, (b) system entropic variation in the totally disordered case,
(c) obstacles size variation and (d) system porosity variation. The first two groups
provide ideal environments for characterising and studying the effects of randomness,
while the remaining groups are intended for studying other effects in models with a
constant entropic value (applications).

The structural design of the PNMs are based mainly on the configuration and
geometric characteristics of the obstacles, as described below:

(a) Obstacles disorder variation: The PNMs are designed using N = 64

circular obstacles of radius equal to r = 0.22µm, that is, the system porosity
and the obstacles size are constant throughout the study process. The system
porosity is calculated using the Eq. 3.3 and has a value equal to φ = 0.68 (see
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Figure 5.2: Obstacle disorder variation: Design and statistical analysis
of PNMs that present an obstacle disorder in five successive steps. a)
Voronoi diagrams generated within a PNM. b) Probability functions
for each disorder degree. c) The (averange) Shannon entropy for each
disorder degree and its respective spectrum or possible entropy values.

Sec. 3.4). Five types of PNM were designed according to the disorder degree
of the obstacles location, where we progressively disorganize an ordered system
by randomly locating 0, 8, 16, 32 and 64 obstacles (see, Fig. 5.2a). That is,
the ordered system evolves towards a totally random system.

(b) System entropic variation: The system under study is the same as
the previous case, but focused only on totally random PNMs (see, Fig.
5.2a). We design five random systems with different entropy values H =

1.60, 1.75, 1.90, 2.05 and 2.20 following the methodology developed for the
characterisation of PNMs (see Sec. 3.3). The possible entropic values of a
random PNM formed by 64 circles are between 1.55 < H < 2.25 approximately,
the average value obtained is equal to H = 1.92. Therefore the five chosen
entropic values cover the possible spectrum (see Fig. 5.2c).

(c) Obstacles size variation: To vary the size of the obstacles but without
modifying the system porosity and entropy, we designed five different PNMs
using N = 64, 50, 36, 22 and 8 circular obstacles that are located randomly,
where the circles radius are r = 0.22, 0.25, 0.30, 0.38 and 0.64µm, respectively
(see Fig. 5.3a). The system porosity has a value equal to φ = 0.68 calculated
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using Eq. 3.3 (see Sec. 3.4), while the system entropic value is equal to H =

1.90 obtained following the methodology of Sec. 3.3. The segmented horizontal
black line in Fig. 5.3c indicates the possibility of designing PNMs varying the
obstacles size but keeping the entropy and porosity of the system constant.

(d) System porosity variation: Similar to the previous case, in order to vary
the system porosity but without modifying the obstacles size and the system
entropy, we design PNMs using N = 64, 50, 36, 22 and 8 circular obstacles that
are randomly located, where the system porosity is φ = 0.68, 0.75, 0.82, 0.89

and 0.96, respectively (see Fig. 5.4a), calculated using Eq. 3.3 (see Sec. 3.4).
The circles radius is equal to r = 0.22µm, while the system entropic value
is equal to H = 1.90 obtained following the methodology of Sec. 3.3. As in
the previous case, the segmented horizontal black line in Fig. 5.4c indicates
the possibility of designing PNMs varying the system porosity but keeping the
system entropy and obstacles size constant.

Due to the stochastic definition of Shannon entropy (see Sec. 3.3), we perform 1000

different random configurations for each PNM design, which generates a spectrum
or possible entropic values of PNM (crosses in Figs. 5.2c−5.4c), where the average
represents the entropy of PNM (gray dots in Figs. 5.2c−5.4c). However, if we require
a PNM with a certain entropy value, there are the possibility of finding several PNMs
that have different random configurations but with the same entropy value (black dots
in Figs. 5.2c−5.4c).

5.3.2 Fluid dynamics in PNMs

Having previously defined the PNMs structural configuration, we proceed to performed
fluid dynamics studies within the PNMs. The physical system is conformed of a porous
structure and a single fluid flowing through the pores, where the PNM structure is
montmorillonite clay (MMT) and the fluid is API brine (8% NaCl and 2% CaCl2).
Initially, the fluid covers the PNM entire pore space, then, to generate a fluid flow
from left to right, the same fluid is injected as a driving force along the PNM left
contour, with an injection velocity equal to v = 0.44m/s.

Since the study of fluid dynamics is at a micrometer scale, we apply LBM
simulations based on the Explicit Force method (see Sec. 2.8). Therefore, the
methodology requires system physical information such as: density, viscosity and
wettability. The required data are presented in Tab. C.1 (see details in App. C) that
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Figure 5.3: Obstacle size variation: Design and statistical analysis of
PNMs formed by obstacles of five different sizes. a) Voronoi diagrams
generated within a PNM. b) Probability functions for each size. c)
The Shannon entropy of constant value H = 1.90 for each size and its

respective spectrum or possible entropy values.

Figure 5.4: System porosity variation: Design and statistical analysis
of PNMs that have five different porosities based on the obstacle number.
a) Voronoi diagrams generated within a PNM. b) Probability functions
for each porosity. c) The Shannon entropy of constant value H = 1.90
for each porosity and its respective spectrum or possible entropy values.
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come from the work performed by Pereira (Pereira, Lara, and Miranda, 2016), where
the density and viscosity of the fluid are ρ = 997 kg/m3 and ν = 0.791 × 10−6m2/s,
respectively, while the wettability of the system brine-clay expressed by the contact
angle is θ = 69o. In addition, we also apply the methodology developed by Pereira,
which consists of a multiscale hierarchical calculation protocol that combines LBM
simulations and data from MD, where the data are mapped as LBM input parameters
that are presented in the Tab. C.2 (see details in App. C).

In each fluid dynamics simulation through LBM methodology, we obtain as results
the velocity field and the pressure profile of the fluid that are necessary to determine
the hydraulic tortuosity and the Darcy permeability of the PNMs, using Eq. 3.4
and Eq. 3.5, respectively. However, since LBM simulations are applied to PNMs
designed through stochastic processes (randomly located obstacles), we performed 10

LBM simulations on the same PNM under study that maintains the same parameters
but of different random configuration. Therefore, the petrophysical parameters of a
PNM come from the average of 10 LBM simulations1 (see Figs. 5.5−5.8).

5.4 Results

In the geometric part, based on the Voronoi diagram that subdivides a random PNM
formed by circles into Voronoi cells (polygons), a statistical analysis is conducted on
the area of the polygons to calculate Shannon entropy (refer to Sec. 3.3). To generate
the entropy spectrum, representing all possible entropy values of the random PNM
under study, 1000 configurations of randomly distributed circles were designed while
keeping all geometric variables constant. In fact, within the entropy spectrum domain,
several different configurations can be generated that share the same entropy value.
This phenomenon is analogous to what occurs in Statistical Mechanics, where different
molecular kinetic energy configurations of an ideal gas can yield the same temperature
value (Pathria and Beale, 2011). In Electromagnetism, different arrangements of spin
orientations in a magnetic material can give rise to an identical magnetization vector,
a macroscopic parameter. Moreover, the degree of randomness in spin orientation
serves to characterize the nature of the magnetic material, distinguishing between
diamagnetic, paramagnetic, or ferromagnetic types (Jackson, 2007).

1Although there is the possibility of finding more than 10 PNMs of different random configuration
but with the same entropic value, the high computational cost of LBM simulations limits us to choosing
only 10 PNMs.
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Figure 5.5: Obstacle disorder effect : Disorder degree effect on fluid
dynamics. a) Snapshot of the velocity field of the fluid flow at steady
state. b) Disorder degree effect on the tortuosity of PNMs. c) Disorder

degree effect on the permeability of PNMs.

Figure 5.6: System entropy effect : Entropy variation effect on fluid
dynamics. a) Snapshot of the velocity field of the fluid flow at steady
state. b) Entropy variation effect on the tortuosity of PNMs. c) Entropy

variation effect on the permeability of PNMs.
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In the dynamic part, fluid dynamics simulations were conducted using the
LBM methodology on random PNMs characterized by a specific entropy value
(refer to Sec. 3.3). From the entropy spectrum, 10 random PNMs with different
configurations that share the same entropy value were selected. In other words, for
each random PNM identified by its entropy value, 10 fluid dynamics simulations were
conducted. Consequently, since the velocity field and pressure profile describe fluid
dynamics, the hydraulic tortuosity and Darcy permeability of a random PNM represent
the average values obtained from 10 different random configurations (refer to Sec. 3.4).

The results obtained in this chapter can be categorized into two main parts.
Initially, the random effect on fluid dynamics is verified in two successive stages: first
by increasing the degree of disorder among the obstacles, and then by varying the
system’s entropy when the obstacles are completely disordered (refer to Fig. 5.5 and
Fig. 5.6 respectively). Secondly, to evaluate the influence of other parameters such
as obstacle size and system porosity, random PNMs with identical entropy values are
employed (refer to Fig. 5.7 and Fig. 5.8 respectively).

a) Obstacles disorder effect: The effects of the degree of disorder on tortuosity
and permeability are studied in PNMs with identical porosity (φ = 0.68) and
obstacles of the same size (r = 0.22µm). With regard to the porous structure, an
increase in the disorder of the obstacles from 0, 8, 16, 32 to 64 predictably results
in an increase in the entropy value of the PNM under study, from H = 0, 0.81,
1.22, 1.65 to 1.92 respectively. This implies that the perfectly ordered case has an
entropy value of zero, whereas the completely disordered case has a value equal to
1.92, as show Fig. 5.2. Regarding fluid dynamics, the velocity field demonstrates
that increasing the disorder among the obstacles leads to the generation of more
intense regions (see Fig. 5.5a). This implies that disorder leads to greater
tortuosity in the flow, owing to the disordered collision between the fluid and
obstacles (see Fig. 5.5c). However, disorder leads to higher permeability because
the velocity is greater when the flow circumvents disordered obstacles compared
to ordered ones (see Fig. 5.5b).

b) System entropy effect: The system under study is the same as in the previous
case but focused solely on the completely random PNM. Five random PNMs
was designed with uniformly spaced entropy diferent values covering the entire
entropy spectrum, where the central value (H = 1.90) is close to the average
value (H = 1.92), as shown in Fig. 5.2 c. Then, the effects of increasing entropy
on tortuosity and permeability are analyzed in random PNMs. Regarding
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tortuosity, Fig. 5.6b shows a tendency to increase as observed in the previous
case, but to a lesser extent. Conversely, permeability does not exhibit significant
changes with increasing entropy, as show Fig. 5.6c.

c) Obstacles size effect: The effects of altering obstacle size on tortuosity and
permeability are studied in PNMs with the same porosity value (φ = 0.68) and
identical entropy values (H = 1.90). To maintain constant porosity and increase
the size of the obstacles from r = 0.22, 0.25, 0.30, 0.38 to 0.64µm, N = 64,
50, 36, 22, and 8 obstacles are used in the design, respectively (refer to Fig.
5.3a). Meanwhile, for entropy, configurations with the same entropy value are
selected from the spectrum. Fig. 5.7 represents tortuosity and permeability as
a function of size (circle radius), and the results indicate that as the size of the
obstacles increases, the PNM becomes more tortuous and permeable, as show
Fig. 5.7b and Fig. 5.7c, respectively. However, the permeability is more affected
compared to the previous cases.

d) System porosity effect: The effects of varying the system’s porosity on
tortuosity and permeability are studied in PNMs with obstacles of the same
size (r = 0.22µm) and identical entropy values (H = 1.90). To increase the
system’s porosity from φ = 0.68, 0.75, 0.82, 0.89 to 0.96, N = 64, 50, 36, 22,
and 8 obstacles of the same size are used in the design, respectively (see Fig.
5.4a). Meanwhile, for constant entropy, configurations with the same entropy
value are selected. Regarding the results, tortuosity demonstrates a tendency to
decrease towards its minimum value (τ = 1) as the system’s porosity increases
towards its maximum value (φ = 1), as illustrated in Fig. 5.8b. Meanwhile,
permeability increases dramatically and is more affected than in all previous
cases, as shown in Fig. 5.8c.

In summary, the quantification the randomness of the circles comprising a PNM
using a geometric parameter as Shannon entropy, allows for the study of the variation
in other physical parameters such as tortuosity and permeability that are related to
fluid dynamics. In other words, Shannon entropy can infer how tortuous or permeable a
random PNM can be. However, the most significant result is that Shannon entropy can
be considered as a parameter that characterizes the randomness of a PNM, at the same
level as porosity, tortuosity, and permeability parameters, which define the PNM. In
this context, different random configurations of obstacles can yield the same values for
porosity, tortuosity, permeability, and entropy. Analogously to what occurs within
an ideal gas in Statistical Mechanics, different molecular configurations related to
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Figure 5.7: Ostacle size effect : Size variation effect on fluid dynamics.
a) Snapshot of the velocity field of the fluid flow at steady state. b) Size
variation effect on the tortuosity of PNMs. c) Size variation effect on

the permeability of PNMs.

kinetic energy can yield the same values of temperature, pressure, volume, and entropy,
which are macroscopic variables defining the ideal gas. Similarly, in Electromagnetism,
various configurations of spin orientations within a magnetic material can generate the
same magnetization vector.

5.5 Conclusions

In this chapter, with objetive to investigate the effect of randomness in hydrophilic
porous media on fluid flow, computationally designed PNMs consisting of small
circles were created. Then, to obtain the Shannon entropy of a PNM, a strictly
geometric-statistical analysis was conducted on the Voronoi diagrams generated within
the PNMs. The obtained entropy value is unique and contains essential information
about the randomness of the pores, which is decisive in fluid dynamics studies. The
study determined that the degree of tortuosity and the level of permeability of a PNM is
closely related to the entropic information. Specifically, an essentially geometric feature
like Shannon entropy can infer (or predict) how tortuous or permeable a hydrophilic
PNM can be for fluid flow. Moreover, the study concludes that the Shannon entropy of
a random PNM can be equally significant as the petrophysical parameters of porosity,
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Figure 5.8: System porosity effect : Porosity variation effect on fluid
dynamics. a) Snapshot of the velocity field of the fluid flow at steady
state. b) Porosity variation effect on the tortuosity of PNMs. c) Porosity

variation effect on the permeability of PNMs.

tortuosity, and permeability. This significance arises from the fact that the entropy
parameter is the sole quantifier of the degree of randomness in a PNM.
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Chapter 6

Randomness Effect of the PNMs on
Oil Recovery

Abstract

Here, our primary goal is to determine the relationship between the
morphology-topology of the porous media at the micrometer-scale and the oil-trapped
quantity in rocks after fluid injection. The physical properties such as interfacial
tension and wettability at the water-petroleum-rock interfaces, should be understood to
estimate the amount of crude petroleum that could be extracted from natural deposits.
Additionally, petrophysical information of the porous media is crucial, especially the
shape, porosity, and pore distribution and their effects on the oil displacement due
to the brine injection process. In the previous chapter (see Chap. 5), we desinged
and characterised two-dimensional random PNMs through Shannon entropy to study
the random effect on fluid dynamics (single fluid). In this chapter, starting from the
PNMs designed in the previous chapter, we investigate the correlations between the
oil displacement process and the entropic information of the random PNMs, using
a hierarchical protocol that combines the LBM simulations and data from MD (two
fluids). We consider the brine-oil-clay interfaces, where brine and oil are the injected
and extracted fluid, respectively, while clay constitutes the PNMs structure. Thus, in
this work we explore oil recovery in four cases: varying circles order, system entropy,
circles size, and system porosity, while keeping the other parameters constant. Our
results show that entropic information is directly related to the oil-trapped quantity;
that is, a high degree of randomness can capture more oil, while size variation does not
produce significant changes, and a reduction in porosity means more oil capture. In
conclusion, a purely physical process such as the oil-trapped quantity can be inferred
from an essentially geometric characteristic, such as the morphology-topology of the
porous media quantified by Shannon entropy.
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6.1 Introduction

The first petroleum global crisis in 1973 (and the second in 1979) sparked a significant
research effort to develop new efficient methods/studies for oil recovery from natural
reservoirs. On average, 5 to 25% of the total existing oil in the reservoir can be
recovered by natural depletion (pressure gradients), whereas 10 to 20% more oil
can be extracted by water flooding, gas injection or thermal processes (Kemper,
2020). The remaining fraction is the target of the new methods/studies and is mainly
associated with the residual petroleum adsorbed on the rocky surface or trapped in the
microchannels of the reservoir (Amirpour et al., 2015). In this context, understanding
rock material’s wettability mechanism and porous structural morphology is paramount
to estimating the amount of crude petroleum in underground resources (Morrow, 1990).

The capillary phenomena, interfacial tension and wettability are determining
factors in diverse natural processes, microfluidics technology or petroleum industries,
such as, atmospheric carbon sequestration, Lab-on-a-chip design or enhanced oil
recovery, respectively (Robin, M., 2001). Specifically, the degree of wettability of the
porous material has a significant and dramatic impact on the displacement of fluids
over the porous structure channels, such as oil extraction by water invasion, where the
wetting characteristics of the walls and the interfacial tension of the fluids involved
play a crucial role (Du Plessis and Masliyah, 1988). Although the quantification
and efficiency of petroleum extraction are closely related to wettability, the physics
involved at pore-scale of immiscible fluids moving within porous media is not fully
understood (Iglauer et al., 2012).

Another critical problem in the physics of porous media is to understand/describe
the delay experienced by the fluids flow when going through the internal pores
network, that is, the obstruction to the flow due to the porous structure (Liang et al.,
2018). There is a need to understand/describe the extraction process of the captured
petroleum, mainly due to the geometric shape of the porous structure, which is beyond
wettable physical properties (Liu et al., 2023). To describe the properties of a porous
structure related to its ability to delay flow or capture fluids, an alternative commonly
used in the literature is to characterise the porous medium through petrophysical
parameters such as porosity, permeability or tortuosity among others (Rao, Kuznetsov,
and Jin, 2020). However, since there is an inherent randomness in the pore network
structure of a natural porous medium, the mentioned parameters cannot explain the
delay/capture due to the complex structure.
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Natural reservoirs can be computationally emulated using PNMs, which are
commonly constructed through a random distribution of circular or spherical
geometric obstacles. These PNMs are used to study the petroleum extraction process
from underground resources. In Chap. 4, we performed studies on PNMs designed by
diverse types of obstacles located in an orderly and randomly but keeping the porosity
constant. In the first case, the results showed that circular obstacles and circles with
a larger radius delay the fluids flow, but all ordered PNMs showed 100% petroleum
extraction. However, random PNMs constructed by smaller circles showed an average
recovery of only 90% with the remaining 10% permanently trapped within the porous
medium (Suxo and Miranda, 2017). The last result motivates the study of Chap. 5
that characterises random PNMs through Shannon Entropy, then adresses the flow
delay (a single fluid) through tortuosity/permeability in random PNMs designed with
the same entropic value.

In this chapter, we study the petroleum extraction process on random PNMs
characterized in the previous chapter using entropy-based design (see, Chap. 5).
Specifically, we determined the relationship between the degree of randomness of the
PNMs (quantified by Shannon entropy) and the amount of petroleum that can be
extracted or the percentage of petroleum trapped inside the PNM. Subsequently,
we study the extraction of petroleum as a function of the system porosity and
obstacles size, but we keep the system entropy (and other parameters) constant
in both cases. For this objective, we apply a multiscale hierarchical protocol that
simulates multicomponent fluids at the micrometer scale using the LBM methodology,
in combination with data or physical parameters that come from nanometer dimensions
of the MD (see Chap. 2). The physical system contemplates the brine-oil-clay
interfaces, where brine and oil are the injected fluid and extracted fluid, respectively,
while clay constitutes the PNMs.

6.2 Methodology

In general, this study was motivated by the results obtained in Suxo’s et al. work
(Suxo and Miranda, 2017), and is based on the previous two chapters, Chap. 4 and
Chap. 5. The first chapter qualitatively demonstrated that random PNMs tend to
trap oil in oil recovery processes, while the second chapter quantified the randomness
of various types of PNMs using an entropic value. Therefore, in this chapter, our
primary focus is on examining the relationship between the system’s entropic value
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and the quantity of oil trapped in the pores. All the PNMs studied in this chapter
were introduced in Chap. 5 (refer to Fig. 5.1).

According to the entropic value of the PNMs, the study is divided into two
parts: (1) PNMs with diverse entropic values and (2) PNMs that maintain the
constant entropic value. The first part has two cases: (a) progressive disordering
of the obstacles from an ordered state to a totally disordered state and (b) system
entropic variation in a totally disordered state; in both cases the obstacles size and
the system porosity are constants. The second part also has two cases: (c) obstacles
size variation but keeping the system porosity and entropy constant and (d) system
porosity variation but keeping the obstacles size and the system entropy constant (see
details, Fig. 5.1).

Once the geometric structural configuration of the PNMs has been defined, the
global system formed by the brine-clay-oil interfaces is subjected to the following
mathematical conditions. As an initial condition, the oil covers the entire pore space
of the PNM at steady state (zero velocity). As a primary boundary condition, the
brine velocity has a constant value in the left boundary, emulating a brine injection
or driving force for displace oil from PNM. Meanwhile, the upper-lower contours are
modelled as periodic boundary conditions, and the right boundary is free concerning
the velocity.

6.3 Oil recovery from random PNMs

When the oil recovery process is on a micrometer scale like the rock pore dimensions
of a natural reservoir, LBM simulations are ideal for addressing interfacial tension
between fluids and wall wettability. Because both capillary properties are modelled as
fluid-fluid and fluid-solid microscopic interactions within the Explicit Force method
exposed in Sec. 2.8 (Porter et al., 2012). In addition, the method has specific free
software called Taxila-LBM (Coon, Porter, and Kang, 2014). Thus, we apply the
multiscale hierarchical calculation protocol developed by Pereira that combines LBM
simulations and input data from MD (Pereira, Lara, and Miranda, 2016).

Random PNMs of clay form the physical system that emulates a natural reservoir
(MMT: Montmorillonite), with brine (API: 8% NaCl and 2% CaCl2) as injected fluid
and oil (light model) as displaced fluid. The data of the physical system are presented
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Figure 6.1: Obstacle disorder effect : Disorder degree effect on oil
recovery process. a) Final snapshot of the oil recovery process. b)
Percentage of oil extracted as a function of time. c) Relationship between

the percentage of oil extracted and the disorder degree.

in Tab. C.1 that come from Pereira’s et al. work (Pereira, Lara, and Miranda,
2016), where the densities and viscosities of brine and oil are: ρb = 997 kg/m3,
ρo = 810 kg/m3 and νb = 0.791 × 10−6m2/s, νo = 4.473 × 10−6m2/s, respectively,
while the interfacial tension and wettability (contact angle) are: γ = 0.043 kg/s2 and
θ = 69◦, respectively. In the simulations, an injection velocity equal to v = 0.44m/s is
applied to the system and the physical data mapped as input simulation parameters
are presented in Tab. C.2 (see details in App. C).

In a fluid flow simulation using LBM, we obtain the density of the injected and
displaced fluid, the flow velocity field and the system pressure profile. From the
density data of the fluids in the PNM, we perform calculations of the percentage
of oil recovered or the percentage of oil captured by the PNM. Nevertheless, since
the scenario of the LBM simulations is PNMs designed through stochastic processes
(randomly located obstacles), we necessarily perform several LBM simulations but in
different configurations of the same PNM under study. The percentage of recovered
oil is calculated using the average of several LBM simulations. Although there is
the possibility of finding many configurations of the same PNM model, the high
computational cost of LBM simulations limits us to choose only ten.
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Figure 6.2: System entropy effect : Entropy variation effect on oil
recovery process. a) Final snapshot of the oil recovery process. b)
Percentage of oil extracted as a function of time. c) Relationship between

the percentage of oil extracted and the system entropy.

6.4 Results

The results of the oil recovery process applied to a random PNM are divided into two
parts, depending on whether the entropy of the PNM is variable or constant. All the
random PNMs under investigation were introduced in Chap. 5 to study the effect of
randomness on fluid dynamics (refer to Fig. 5.1). At first, the influence of randomness
on oil recovery is examined in two consecutive stages: a) increasing the disorder of the
obstacles from perfect order to complete disorder, and then b) varying the system’s
entropy in the fully disordered scenario (refer to Fig. 6.1 and Fig. 6.2 respectively).
Secondly, to evaluate the influence of other parameters such as c) obstacle sizes and
d) system’s porosity, random PNMs with identical entropy values are employed (refer
to Fig. 6.3 and Fig. 6.4 respectively).

(a) Obstacles disorder effect: The effect of disorder on the oil recovery process
is verified, in PNMs with identical porosity (φ = 0.68) and composed of
circular obstacles of the same size (r = 0.22µm). The results from Fig. 6.1
show a decrease in the percentage of recovered oil as the obstacles in the
PNM become disordered. Fig. 6.1c indicates that in the perfectly ordered
PNM, 100% of the oil is recovered, while in the completely disordered PNM,
approximately 90% is recovered. In other words, approximately 10% of the oil



Chapter 6. Randomness Effect of the Pore Network Models on Oil Recovery 80

remains permanently trapped in fully disordered cases. Fig. 6.1b confirms the
permanent confinement of a certain percentage of oil, in PNMs with obstacles
exhibiting some degree of disorder. Only the curve of the perfectly ordered
PNM reaches 100%, while the other curves follow a horizontal trend before
reaching 100% (see Fig. 6.1b). Although the almost-horizontal curves could
eventually reach 100%, the time required for practical purposes is infinite.

(b) System entropy effect: In this stage, the study focuses on examining the
effect of entropy variation on oil recovery processes, in completely disordered
PNMs from the previous stage. The results from Fig. 6.2 show a decrease
in the percentage of recovered oil as the entropy of the PNM increases. Fig.
6.2c indicates that in the PNM with lower entropy, approximately 93% of the
oil is recovered, while in the PNM with higher entropy, approximately 88% is
recovered. This implies that within a fully disordered PNM with maximum
entropy, the quantity of trapped oil can potentially reach around 15%. Fig.
6.2b shows oil confinement in all cases, where all the curves become horizontal
before reaching 100%, as in the previous stage.

(c) Obstacles size effect: The effect of varying the size (circular obstacles) on
the oil recovery process is studied in PNMs with the same porosity (φ = 0.68)
and identical entropy (H = 1.90). The results from Fig. 6.3 show that the
percentage of recovered oil is not significantly affected by the variation in the
size of the obstacles comprising the PNM. The recovery of 89% of oil remains
nearly constant in all five cases (see Fig. 6.3c). Similar to the previous cases,
Fig. 6.3b shows oil confinement in random PNMs, which in this case confines
approximately 11% of oil.

(d) System porosity effect: The effect of varying porosity on the oil recovery
process is studied, in PNMs with obstacles of the same size (r = 0.22µm)
and identical entropy value (H = 1.90). Overall, the results from Fig. 6.4
show a slight increase in the percentage of oil recovery as the porosity of the
PNM increases. However, the extraction percentage increases dramatically
when the porosity is approximately 0.85, similar to the behavior of a step
function that divides the results into two nearly horizontal regions: 89% and
97%, respectively (see Fig. 6.4c). This unique behavior in Fig. 6.4c is due to
the maximum entropy value occurring when the porosity is approximately 0.85

(refer to Fig. 5.4).



Chapter 6. Randomness Effect of the Pore Network Models on Oil Recovery 81

Figure 6.3: Ostacle size effect : Size variation effect on oil recovery
process. a) Final snapshot of the oil recovery process. b) Percentage
of oil extracted as a function of time. c) Relationship between the

percentage of oil extracted and the obstacle size.

The confinement of oil within random PNMs is primarily a consequence of the
complex and unpredictable nature of the pore structure. In these media, pore sizes,
shapes, and connectivity vary randomly, leading to irregular fluid pathways. Capillary
forces, driven by the interplay between fluid surface tension, wettability of the surfaces,
and the size of the pores, play a crucial role in this entrapment. When oil encounters
such a porous environment, capillary forces can become dominant. If the capillary
forces are strong enough, they can prevent oil from moving freely through the pores.
This can occur when the pore sizes are on the order of the capillary length scale, causing
oil to be retained within smaller pores or isolated pockets. While the material of the
random PNMs under investigation is hydrophilic, which facilitates the extraction of
oil, the randomness of the PNM combined with the brine-oil-clay interfacial forces can
permanently confine oil.

6.5 Conclusions

In Chap. 5, it was determined that the Shannon entropy value of a PNM is unique
and contains information about the randomness of the pores, which is crucial in fluid
dynamics studies. In this chapter, it was observed that the oil recovery process is
also closely related to entropic information. Specifically, a fundamentally geometric
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Figure 6.4: System porosity effect : Porosity variation effect on oil
recovery process. a) Final snapshot of the oil recovery process. b)
Percentage of oil extracted as a function of time. c) Relationship between

the percentage of oil extracted and the system porosity.

characteristic like the entropy of a PNM can infer or predict the amount of oil that
remains permanently trapped within the PNM. In our study, the randomness of a
hydrophilic PNM formed by 64 small circles randomly distributed has the capacity to
trap oil in the range of approximately 7.5% and 12.5%.
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Chapter 7

Effects of Heterogeneity Porous Media
on Oil Extraction

Abstract

Capillary phenomena become predominant at the micrometer scale and have a dramatic
impact on the displacement of fluids in porous media, such as fluid dynamics studies
(single fluid) or petroleum recovery processes (multicomponent). Especially, in
porous rocks or artificial devices formed by heterogeneous microchannels of different
wettability. Depending on the degree of wettability and heterogeneity of the walls, the
fluids flow can be retarded and/or confined in the micropores. The LBM methodology
in combination with the Explicit Force method is ideal for addressing multicomponent
flows in heterogeneous porous media. Because physical parameters such as the
interfacial tension between fluids and the wettability of the porous surface can be
incorporated as microscopic interaction mechanisms. In this chapter, LBM simulations
are performed to study the tortuosity, permeability and oil recovery of heterogeneous
PNMs that possess extreme wettable characteristics: hydrophobic and hydrophilic.
The physical data of the system under study, such as: density, viscosity, interfacial
tension and wettability, come from a previous experimental work that are mapped
as input parameters in our LBM simulations. The results show that PNMs with
hydrophilic surfaces are more tortuous and less permeable than hydrophobic ones.
In relation to oil recovery, hydrophilic PNMs facilitate extraction, while hydrophobic
ones tend to obstruct the process.
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7.1 Introduction

The wettability phenomenon is critical factor in numerous natural processes and
industrial operations, encompassing oil extraction, carbon dioxide sequestration,
PDMS microfluidic chip, biomedical devices, chemical manufacturing, oil & gas
pipelines, mineral processing, soil mechanics, environmental cleanup and various
other applications (Zhang, Liu, and Jiang, 2019). Specifically, when dealing with
the immiscible liquid displacement within porous materials, significantly influences
the effectiveness of the displacement process (Anderson, 1987). For example, the
wettability of reservoir rocks affects how easily oil can be displaced by water or
other fluids. Rocks with favorable wettability for oil (oil-wet) tend to retain oil,
making it difficult to recover. Adjusting the wettability can improve oil recovery rates
(Jadhunandan and Morrow, 1995).

The effect of wettability on immiscible fluids flow within porous media arises
directly from the complex pore-scale physics. The progressive infiltration of the pores
is a direct function of the viscosity ratio between the displaced and invading phases,
the interfacial tension between the fluids and the degree of wettability of the walls
(Berg, 1993). Fluid flow is within the laminar regime similar to an infinitesimally
driven piston, where one phase is pushed completely by the other and the displaced
liquid can leave a thin film on the wall (wall-wet). When capillary forces are stronger
than viscous, the thin film adhered to the wall forms a fluidic ring that interrupts
the flow, the event is called rupture (Sarr, 1983). In addition to the complexity of
oil displacement via water injection, the non-uniform nature of reservoir wettability
properties further complicates the analysis (Robin, M., 2001).

Experimental results about immiscible fluids flow within simple microfluidic devices
indicate that porous media with hydrophilic characteristics can improve oil recovery.
The quantity of the displaced fluid increases when the porous medium is wetted by
the invading fluid. Wu et al. designed a random network of micrometric straight
channels to analyze the effect of wettability and homogeneity of the pores (Wu et al.,
2012). The report indicates that oil displacement was greater in hydrophilic devices.
Lee et al. implemented the fabrication of microfluidic devices with heterogeneous
wetting characteristics. The report shows that heterogeneity generates trapped oil
ganglia. If the percentage of hydrophilic surface is increased, the quantity of trapped
oil is lower (Lee, Lee, and Doyle, 2015). Trojer et al. demonstrated that increasing
the wettability of the porous medium leads to a more effective displacement (Trojer,
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Szulczewski, and Juanes, 2015).

Incorporating wettability into LBM involves introducing modifications to the
traditional LBM algorithm to consider fluid-solid interactions within porous media.
Models should describe how different wetting properties affect the interaction between
particles (homogeneous or heterogeneous) and solid surfaces (Tian and Qiu, 2022). Just
as interfacial tension should be described as fluid-fluid interactions that occur between
heterogeneous particles at the fluidic interface (Ansarinasab and Jamialahmadi, 2016).
Some models can introduces wettability by specifying appropriate boundary conditions
at the solid-fluid interfaces. For example, if a surface is hydrophobic, you might use
a slip boundary condition to mimic the reduced interaction between the fluid and the
solid (Akai, Bijeljic, and Blunt, 2018). Others can modify the collision operator to
account for wettability effects. This might involve introducing additional terms in the
collision step that account for the interaction between the fluid and solid surfaces,
which depends on the wetting properties (Yang et al., 2022).

In contrast to the previous chapters that use computational simulations data in the
LBM, this chapter employs experimental measurements data (Avendaño et al., 2019).
The data consist of water and oil as the invading and displaced phases respectively, in
porous media with extreme wettability characteristics: hydrophobic and hydrophilic. In
general, the oil recovery process in hydrophobic, hydrophilic, and heterogeneous PNMs
is studied, using LBM simulations following the methodology developed in Chap. 2.
Specifically, the effect of heterogeneity on oil recovery is studied, in heterogeneous
PNMs composed of hydrophobic and hydrophilic fractional parts.

7.2 Methodology

Wettability refers to the interaction mechanism of fluids in contact with solid surfaces,
which can significantly affect flow displacement and interfacial tension in narrow
channels. Its incorporation into the LBM can add complexity to the simulations
depending on the nature of the problem being modeled. The Explicit Force model
presented in Sec. 2.8, considers capillary effects to address multicomponent or
multiphase flows in heterogeneous porous media (Porter et al., 2012). The model
has its own software called Taxila-LBM to computationally emulate oil recovery from
reservoirs (Coon, Porter, and Kang, 2014).
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EXPERIMENTAL MEASUREMENTS DATAa

Water Oil Water-Oil-Glass
Glass

ρw ( kg
m3 ) νw (10−6 m2

s ) ρo ( kg
m3 ) νo (10−6 m2

s ) γw-o (kgs2 ) θw-g ( ◦)

Hydrophilic 29
Hydrophobic

997 0.903 845 21.065 33.8×10−3

149

aConducted by LMMP PUC-Rio (Avendaño et al., 2019).

Table 7.1: Summary of data from experimental measurements of oil
recovery processes by water injection, into glass porous media with walls

covered by a thin hydrophilic or hydrophobic layer.

7.2.1 Experimental data

In the continuum model, the Navier-Stokes equation requires the fluid density and
viscosity as input data, which typically come from experimental measurements at
the macroscale. However, at the mesoscale where capillary phenomena arise, the
LBM additionally requires the interfacial tension between fluids and wettability of
the porous medium as input data. In this chapter, experimental data from the
Laboratory of Microhydrodynamics and Flow in Porous Media (LMMP-PUC-Rio) are
used as input data. Avendaño et al. have all the necessary information for our LBM
simulations, as shown in Tab. 7.1 (Avendaño et al., 2019).

The experimental setup consists of glass micromodels (porous media) produced by
Dolomite Microfluidics (Dolomite, 2023). They have the same chemical composition
and structural geometry but differ in the treatment of the porous surface to create
hydrophobic and hydrophilic micromodels (θ = 149◦ and θ = 29◦ respectively).
Concerning the fluids, the invading phase comprises food-grade deionized water,
whereas the displaced phase consists of silicone oil (Drakeol 7, Agecom). The Tab.

MAPPING EXPERIMENTAL DATA

Water Oil Water-Oil-Glass
Glass

ρ∗w τw ρ∗o τo γ ∗w-o g w-o g w-g g o-g

Hydrophobic +0.049 −0.049
Hydrophilic

1.000 1.200 0.847 16.847 0.050 0.150
+0.065 −0.065

Table 7.2: Summary of the input parameters for the LBM simulations
that come from the mapping of experimental data (see Tab. 7.1).
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Hydrophilic surface Hydrophobic surface

Figure 7.1: Experimental data mapping that generates input
parameters for LBM simulations. Final snapshot of LBM simulations
for an oil bubble in the middle of water and confined by two parallel

plates, cases: a) hydrophilic and b) hydrophobic surface.

7.1 provides a summary of experimental measurements for the involved fluids, where
the density (ρ), kinematic viscosity (ν) and interfacial tension (γ) are the same in both
types of micromodels.

7.2.2 Mapping experimental data to LBM simulations

In numerical analysis, the physical units are usually transformed into dimensionless
units to facilitate numerical computation and discretization process (Scheid, 1968).
In LBM applied to fluid dynamics, discretization and transformation sets the density
equal to unity for the mass discretization, and the temporal discretization is subject
to the kinematic viscosity, while the spatial discretization is similar to traditional
numerical methods (see details in App. C). The fluid-fluid and fluid-solid interactions
related to interfacial tension and wettability respectively, must be calculated through
a process known as data mapping (Huang, Sukop, and Lu, 2015).

In Explicit Force method, data mapping generates the fluid-fluid interaction
parameter g k-k’ and two fluid-solid interaction parameters g k-m and g k’-m, related to
the invading and displaced phases respectively. The Taxila-LBM package can support
multiple immiscible fluids and a porous medium composed of different materials. In
our research, we have experimental data from a biphasic system in two extreme and
antagonistic scenarios, hydrophobic and hydrophilic case (see Tab. 7.1). The Tab.
7.2 shows the data mapping results from Tab. 7.1 expressed in dimensionless units
and calculated with reference to water. Meanwhile, Fig. 7.1 demostrates that the
experimental data can be reproduced using Tab. 7.1 as input data in the Taxila-LBM
software. Therefore, Tab. 7.1 can be used to study oil recovery by LBM simulations.
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Figure 7.2: Oil recovery by water injection on the left side into PNMs
with varied wettability for 4 time steps (oil: black region, water: cyan
region, hydrophobic: orange region and hydrophilic: gray region), cases:

a) Hydrophobic, c) Hydrophilic and b) Mixed.

7.3 Oil recovery in heterogeneous PNMs

7.3.1 Case study

In general, the oil recovery process is explored in three different scenarios based
on the wettability of the PNM: i) hydrophobic, ii) hydrophilic and iii) mixed or
heterogeneous, formed by a combination of the first two. Initially, the effect of
heterogeneity on oil recovery is assessed, using a PNM designed with one half being
hydrophobic and the other hydrophilic, referred to as mixed (see Fig. 7.2). Finally,
the effect of heterogeneity on the amount of extracted (or trapped) oil is studied,
using five heterogeneous PNMs designed with a random mixture of hydrophilic and
hydrophobic components in different proportions (see Fig. 7.3).

The PNM is square-shaped with sides measuring 3.00µm and consists of orderly
arranged circles, as show in Figs. 7.2-7.3. The petrophysical parameters: porosity (φ =
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Figure 7.3: Heterogeneity effect : Heterogeneity variation effect on oil
recovery process. a) Final snapshot of the oil recovery. b) Percentage
of oil extracted as a function of time. c) Relationship between the

percentage of oil extracted and percentage of heterogeneity.

0.60), tortuosity (τ = 1.23), and permeability (k = 20mD) are calculated according to
Sec. 3.4 and indicate that they do not vary significantly. The boundary conditions at
the top and bottom of the PNM are periodic, whereas a Dirichlet boundary condition
is applied on the left side as a driving force for the flow. A constant velocity of
0.45m/s is assigned to the left boundary to emulate an injection velocity. Except for
the wettability of the PNM, all other variables are held constant.

7.3.2 Results

The process of recovering oil from reservoirs exhibiting heterogeneity in wettability
refers to the fact that the surfaces of pores or channels may have varying degrees
of wettability with respect to oil (or injected fluids such as water). In other words,
some parts of the surface are more oil-wet (hydrophobic), while others are less so
(hydrophilic), which can impact the way oil moves through the porous structure and
its ultimate recoverability. In our research, we possess experimental data from a
biphasic system in two opposing and extreme scenarios, the hydrophobic (θ = 149◦)
and hydrophilic (θ = 29◦) cases, as show in Tab. 7.1.
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After performing the mapping of the experimental data (refer to Fig. 7.1 and
Tab. 7.2), the oil recovery process applied to heterogeneous PNM is studied using
LBM simulations. The Fig. 7.2 illustrates the oil recovery process in hydrophobic,
hydrophilic and mixed PNMs at four different time instants. The results obtained
indicate that hydrophilic surfaces enhance oil recovery, as shown in the bottom part
of Fig. 7.2. The mixed case demonstrates that the hydrophilic part promotes oil
displacement, in contrast to the hydrophobic part, which delays oil displacement (see
Fig. 7.2 b). The water injection appears to displace oil from hydrophilic surfaces,
while the oil tends to adhere on hydrophobic surfaces.

On the other hand, the Fig. 7.3 illustrates the oil recovery process from PNMs
with various degrees of heterogeneity, where the recovery curves over time follow a
similar pattern in all cases (see Fig. 7.3 b). In general, the results indicate that the
amount of oil recovered by water injection is affected by the degree of hydrophobicity
of the PNM, as a portion of the oil remains adhered to the hydrophobic surfaces (see
Fig. 7.3 a). Meanwhile, in hydrophilic PNMs invaded by water, 100% of the oil is
successfully recovered (see Fig. 7.3 c). This implies that the hydrophobic nature of a
PNM has the capacity to effectively trap oil, with the potential to retain as much as
approximately 5%, depending on the amount of hydrophilic material present within
the PNM (see Fig. 7.3 c).

7.4 Conclusions

Recovering oil from natural porous media that exhibit heterogeneity in wettability
can be a complex challenge and multidisciplinary that requires a combination of
geological, engineering, and chemical expertise. Heterogeneity in wettability means
that different regions of the reservoir rock have varying degrees of oil-wet or water-wet
characteristics. This heterogeneity can significantly impact the efficiency of oil
recovery processes. The choice of recovery method should be based on a thorough
understanding of reservoir characteristics and continual monitoring and adaptation of
strategies as the reservoir’s behavior evolves. Advanced reservoir simulation models
can help predict the behavior of fluids in reservoirs with wettability heterogeneity.
These computational models can optimize well placement, injection rates, and fluid
properties for maximum recovery.
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The results generated via LBM simulations confirm the experimental observations
that report: a better oil displacement in hydrophilic porous media (see Sec. 7.1). The
experimental data used in this chapter correspond to oil recovery in either hydrophobic
or hydrophilic micromodels, as manufacturing micromodels with both hydrophobic and
hydrophilic properties simultaneously is challenging. Meanwhile, the LBM simulations
were conducted on PNMs designed of hydrophobic and hydrophilic components to
emulate natural porous media, which are typically heterogeneous. Therefore, our
results obtained from a complex system like heterogeneous PNMs can reinforce the
experimental findings.
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Chapter 8

Conclusions and Perspectives

8.1 Conclusions

In Chap. 4, the effect of a) shape, b) size and c) distribution of (flow-obstructing)
solid objects on oil recovery was studied. The first two cases are ordered and the
last one is entirely random, in hydrophilic PNMs with constant porosity and identical
injection velocity. In the ordered cases, the results indicate that PNMs with square
objects displace all the oil in less time than PNMs with other geometries (hexagons,
octagons, and circles). While PNMs are formed by circular objects of different sizes,
PNMs with smaller radius circles displace all the oil before the others. However, the
four configurations of random PNMs formed by the smaller circles permanently retain
approximately 7% and 12% of the oil.

Despite significantly extending the injection time (up to ≈ 23µs), random PNMs
can permanently capture oil, whereas ordered PNMs can extract 100% of the oil in
relatively short injection times (≈ 10µs). Therefore, random PNMs are the ideal
scenario to test the effectiveness of different types of nanoparticles and study the effect
of nanoparticle inclusion on oil recovery (EOR process). The results show that the
nanoparticle NP-PEG2 dispersed in the injection fluid is more effective at displacing
the oil from random PNMs than the case without nanoparticles and the other two
nanoparticles (NP-H and NP-SA). Similar results were also found in dead-end type
PNMs and ordered three-dimensional PNMs.

The findings concerning trapped oil in random PNMs served as motivation for
investigating the impact of randomness on tortuosity, permeability and oil recovery.
In Chap. 3, a methodology is proposed to quantify the degree of randomness of PNMs
using Shannon entropy. Just like porosity, tortuosity and permeability, Shannon
entropy can be considered a petrophysical parameter that characterizes a random
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PNM. Analogously, the macroscopic variables volume, pressure, temperature and
entropy define an ideal gas in Statistical Mechanics. Therefore, Shannon entropy (and
porosity) is a purely geometric parameter but closely related to physical parameters
such as hydraulic tortuosity, Darcy permeability, and physical processes like oil
recovery (topics studied in Chap. 5 and 6).

In Chap. 5, randomly distributed circles are used to design random PNMs.
The study determines how the tortuosity and permeability of a hydrophilic PNM
are affected when: a) circles disorder, b) PNM entropy, c) circles size and d)
PNM porosity vary while keeping the other variables constant. The first study’s
results indicate that as the circles are disordered from an perfect order case to
a completely disordered case, tortuosity and permeability increase. The second
study also shows a slight increase in tortuosity and permeability as the entropy
of the completely disordered case increases. In the third study, there was also an
observed rise in tortuosity, with a more pronounced increase in permeability as
the size of the circles increased. Finally, the results of the fourth study indicate a
decrease in tortuosity and a dramatic increase in permeability as the porosity increases.

In Chap. 6, the same random PNMs introduced in Chap. 5 are employed for a
similar study. This chapter investigates the effect of the four variations on oil recovery.
The first study show a greater quantity of trapped oil as the circles become disordered.
In the perfect order case, 100% of the oil is recovered, while in the fully disordered
case, ≈ 10% remains trapped. The second study centred on the fully disordered case,
reveals a trapped oil rise as entropy increase. In the fully disordered case with higher
entropy, as much as around ≈ 13% of the oil can be retained. In the third study,
varying the size of the circles does not generate significant changes in oil recovery.
The quantity of trapped oil remains nearly constant, at ≈ 12%. Finally, the results
of the fourth study reveal a unique behavior as porosity increases. For porosities less
than 0.85, the quatity of trapped oil remains nearly constant at ≈ 12%, conversely,
for higher porosities, the amount of oil remains nearly constant at ≈3%. This ocurrs
because the entropy as a function of porosity is maximal at the point 0.85.

Natural porous media display random characteristics within their porous structure,
which can be heterogeneous and composed of various materials possessing diverse
physical properties. The studies in Chap. 4 to 6 focused on the randomness of
the porous structure of hydrophilic PNMs, whereas Chap. 7 addresses heterogeneous
PNMs. The Chap. 7 studies the effect of heterogeneity on oil recovery, where ordered



Chapter 8. Conclusions and Perspectives 94

heterogeneous PNMs were designed, composed of hydrophobic and hydrophilic portions
in different percentage proportions. The results show that approximately 5% of oil
remains trapped in the completely hydrophobic PNM, and this percentage decreases
as the proportion of hydrophilic material increases. In the fully hydrophilic PNM, oil
recovery reaches 100%. Investigating oil recovery in both random and heterogeneous
PNMs may offer an improved model for extracting oil from natural reservoirs.

8.2 Perspectives

In the study of oil recovery, we observe that the disorder of obstacles in a PMN is
capable of permanently retaining a certain quantity of oil, similar to what occurs
in a natural reservoir. While PMNs designed with randomly distributed circular
obstacles manage to describe some real-world characteristics, the design has two
significant constraints: obstacles are only in circular shape and it avoids obstacle
overlap. Therefore, for a more realistic study, complex porous media. Porous media
with complex geometry plays a significant role in the oil recovery process, especially
in enhanced oil recovery (EOR) techniques. These complex geometries can include
naturally occurring formations with irregular shapes, as well as artificially created
structures to improve oil extraction efficiency.

To computationally emulate complex three-dimensional porous media, digital
rocks are often used to understand and optimize fluid flow in reservoir rocks. It
involves creating high-resolution 3D models that replicate the microscopic structure
and properties of real rock samples. These digital rock models allow fluid flow,
permeability and other critical factors to be simulated within the rock matrix, helping
to make informed decisions about reservoir management and enhanced oil recovery
(EOR) techniques. Digital rock technology enables a deeper understanding of reservoir
behavior, reduces the need for physical core analysis, and ultimately contributes to
more efficient and cost-effective oil recovery strategies in the petroleum industry.

Another important aspect of fluid dynamics in porous media involves fluid-fluid
or fluid-solid interactions with chemical reactions. When dealing with reactive fluids
in LBM, the method is extended to account for chemical reactions. This involves
incorporating additional rules and variables into the lattice model, so that the
simulation can capture not only the fluid’s flow dynamics but also the chemical
transformations that may occur within the fluid. These reactions could include
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processes like combustion, dissolution, precipitation, and other chemical interactions.
Simulating reactive fluids with LBM can be useful in various scientific and engineering
fields, such as combustion modeling, environmental remediation, chemical engineering,
and more. It allows researchers and engineers to gain insights into the interplay
between fluid flow and chemical reactions, helping them design and optimize systems
in a virtual environment before implementing them in the real world.

Validation of Darcy’s Law using Lattice Boltzmann Method (LBM) simulations is
a crucial step in confirming the accuracy and reliability of this computational approach
in modeling fluid flow through porous media. Darcy’s Law, a fundamental principle
in fluid dynamics, describes the flow of a fluid through porous media and is based
on the proportionality between flow rate, permeability, and pressure gradient. To
validate Darcy’s Law through LBM simulations, one must ensure that the simulated
flow rates and pressure gradients in a porous medium align with the theoretical
predictions of Darcy’s Law. This involves comparing the LBM results with analytical
solutions for specific cases and verifying that the simulated permeability and hydraulic
conductivity values match those expected from the physical properties of the porous
medium. Successful validation serves as a strong endorsement of the LBM’s ability
to accurately model fluid flow in porous media and, by extension, its applicability in
various engineering and scientific fields.
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Appendix A

Boltzmann Lattice

In the LBM implementation, the phase space (position and momentum) and time
must be discretized (see, Fig. 2.4). On the one hand, the position discretization
generates the nodes where the particles are located. On the other hand, the velocity
discretization generates the possible directions or links towards the neighboring nodes
(Sukop and Thorne, 2007). Thus, the particles flow with lattice velocity ci from the
central node to the neighboring nodes through the links (streaming process).

In particular, the velocity discretization in value and direction designs a structure
called Boltzmann lattice, where each velocity value has a weighting factor wi according
to the direction i and the lattice configuration (see, Fig. A.1, A.2 and A.3). In fact, the
common terminology used to refer to a lattice configuration is DnQ`, where n represents
the dimensional space and ` is the number of links (Succi, 2001).

A.1 One dimensional

The lattice configuration D1Q3 has three lattice velocities {c0, c1, c2} which belongs
to the distribution functions {f0, f1, f2} and each one has its respective weight
{w0, w1, w2}, as show in Fig. A.1. For this arrangement, the total number of particles
may not exceed three. In the central node resides a stagnant particle f0, while, the
other two particles (f1 and f2) move either to the left or right of this node in the
streaming process.

We can also use an even simpler configuration called D1Q2 as it can be seen in
Fig. A.1. Different from the previous one, this configuration does not have stationary
particle in the center of lattice. For that reason, the weighting factors are changed in
number and value (see, Fig. A.1).
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Figure A.1: One-dimensional configuration of Boltzmann lattices and
their respective statistical weights, cases: D1Q2 and D1Q3.

Figure A.2: Two-dimensional configuration of Boltzmann lattices and
their respective statistical weights, cases: D2Q4, D2Q5 and D2Q9.

A.2 Two dimensional

The Fig. A.2 shows that the description of two-dimensional lattice configurations
is similar to one-dimensional ones but more structurally complex. The D2Q5 model
has five lattice velocities {c0, c1, c2, c3, c4}, where four particles (f1, f2, f3 and f4) are
emitted from the central node and one particle resides in the central node f0. Whereas,
the D2Q4 model has four lattice velocities and there are no particles in the central node.

Although the D2Q4 and D2Q5 models are used to describe phenomena such as
diffusion or advection, these models cannot describe fluids flow (Mohamad, 2011).
A commonly used alternative is the D2Q9 model, because the structure is specially
designed to address fluid dynamics. This model has the same particles as the D2Q5

model, with the addition of four particles (f5, f6, f7, and f8) that move along the
diagonals of the planar lattice (see, Fig. A.2).
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Figure A.3: Three-dimensional configuration of Boltzmann lattices
and their respective statistical weights, cases: D3Q19 and D3Q27.

A.3 Three dimensional

In general, two models are used to address problems in three dimensions: D3Q19 and
D3Q27 (see, Fig. A.3). Both models have a particle in the center of the lattice and
differ in 8 particles. The eight difference particles (f19, f20, . . . , f26) move along the
diagonals of the cubic lattice, while the other particles (f1, f2, . . . , f18) move identically
in both models.

The three-dimensional approach is more complex but more realistic than the
two-dimensional and one-dimensional cases (see, Fig. A.3). Nevertheless, both
three-dimensional models can address various physical phenomena including fluid
dynamics (Mohamad, 2011).
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Appendix B

Boundary Conditions

In the streaming process through any lattice Boltzmann configuration, if a central node
and its neighbors are within the system domain, the tracking particles displecement
from the central node to neighboring nodes is relatively simple (see, Fig. B.1).
Nevertheless, if a central node is close to a domain boundary, the particles interaction
flowing towards the boundary strongly depends on the type of boundary conditions
(Krüger et al., 2016). In Fig. B.2, B.3 and B.4 we can see a domain under different
boundary conditions.

In LBM simulations, a crucial and important issue is the accurate and appropriate
modeling of boundary conditions (Mohamad, 2011). Because, in order to recover the
desired macroscopic boundary conditions that satisfy the conservation principle, the
discrete distribution functions must be obtained from the boundary conditions. If the
microscopic rules are correctly defined, we can reach the boundary conditions within
the macroscopic structure (Sukop and Thorne, 2007).

B.1 Boundary periodic

The periodic boundary conditions are responsible for the connectivity between the
boundaries of the simulation domain. In many cases, it is not necessary to impose
a boundary condition on the system boundary, such as a solid wall that bounds the
region of space by imitating a closed box (Mohamad, 2011). Periodic conditions are
particularly useful when you want to isolate an observed phenomenon or when you
want to simulate conditions where external effects are negligible (Succi, 2001).

Then, in order to implement periodic conditions, we must connect the boundary
from right to left and/or from top to bottom. The result is an infinite system composed
of repetitions of this domain. One way to impose such a condition is to make the
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Figure B.1: Streaming process between nodes far from the system
boundary. a) Central node (red arrows) that interacts with its neighbors
(blue arrows) at time t. b) End of the interaction process between the

central node and its neighbors at time t+ ∆t.

particles (or particle distribution) leaving the dominion are reinjected on the opposite
border, as shown in Fig B.2.

B.2 Bounce-back boundary

The mirror boundary condition has the function to prevent any interference from the
border over the system. This is particularly useful when there is a solid wall the
opposite border. For example, to prevent the mass transfer across the border where
the periodic conditions are being used, the system can be equivalent to a parallel plate
system (Sukop and Thorne, 2007). The mirror boundary condition, along the border
can be imposed from a specular reflection process, wich mimics the opposite effect to
the Bounce-Back condition.

In the Bounce-Back boundary condition, the particles are reflected back in order to
ensure a non-slip condition on the wall with zero velocity. This method is commonly
used to consider walls and obstacles, where certain nodes in the network are marked
as walls, and therefore, are not part of the fluid (Mohamad, 2011). The particle
distribution functions in the nodes of the wall do not relax to equilibrium and do not
behave according to the evolution equation of Lattice Boltzmann (Eq. 2.15). But
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Figure B.2: Streaming process in the presence of periodic boundary
condition. a) A node (red arrows) that interacts with its neighbors (blue
arrows) through the periodic boundary (located on the right) at time t.
b) End of interaction process between the node and its neighbors (t+∆t).

even so, the non-slip condition is ensured.

The basic idea is very simple and states that the unknown distributions functions
assume the values of the functions that have opposite directions. For this purpose two
steps occur before in the wall (impact and rebound), as shown in Fig B.3.

B.3 Dirichlet boundary

The velocity boundary condition is more sophisticated than previous ones. This
condition introduces a macroscopic velocity (vo = vxı̂ + vy ̂) at the periphery of the
domain to be transmitted to the microscopic model. The macroscopic quantities are
defined through microscopic distribution functions (see, Sec. 2.6), then it is possible
to use Eq. 2.16 to consider the velocity boundary condition (Mohamad, 2011).

In contrast to the case of boundary conditions Bounce-Back, here it is assumed
that the edge of the domain and the lattice boundary, are satisfied in the periphery
as shown in Fig. B.4. The linkage of the macroscopic velocity to the microscopic
distribution is done by the current macroscopic density. The distribution functions
having a direction opposite to the velocity boundary and the density are unknown
quantity (Mohamad, 2011). The solution of these quantities must be related to the
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Figure B.3: Streaming process in the presence of a solid wall using
the Bounce-Back model. a) A node (red arrows) interacts with its
neighboring nodes (blue arrows) and the wall at time t. b) and c) are
intermediate steps before the end of the process. d) End of process, the
wall returns to the node the interactions in opposite sense (t+ ∆t).

macroscopic velocity and the other distribution functions.

Then, the conditions of conservation (mass and momentum) are satisfied by Eq.
2.16. While, to satisfy the condition of equilibrium, the distribution functions with
direction normal to the boundary must be equal to the equilibrium distribution function
(Mohamad, 2011), as show below:
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Figure B.4: Process streaming in the presence of a Dirichlet boundary
(boundary velocity) that has a velocity vo = vxı̂ + vy ̂. a) A node
(red arrows) interacts with its neighbors (blue arrows) and the velocity
boundary at time t. b) is the intermediate step before the completion
of the process. c) End of process, interactions missing in the node is
completed by solving the equations relating macroscopic and microscopic

quantities (t+ ∆t).

a) Mass and momentum conservations:

ρ =
8∑
i=0

fi = f0 + f1 + · · ·+ f8

ρv =
8∑
i=0

fi ci = f0 c0 + f0 c0 + · · ·+ f8 c8


(B.1)

b) Equilibrium condition:

f2 − f
eq

2 = f4 − f
eq

4 (B.2)

Therefore, the unknown distribution functions f2, f5, f6 and the density ρ are
obtained by solving Eq. B.1 and Eq. B.2. The results are presented in Fig. B.4.
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Simulation parameters

In a study of single-component fluid dynamics at macroscale, basically two physical
magnitudes of the system are required: the density and viscosity of the fluid (Drazin,
Riley, and Society, 2006). In contrast, in complex systems such as multi-component
fluids, heterogeneous porous media, or at the microscopic scale, at least two additional
magnitudes are necessary: interfacial tension between fluids and wettability of the
porous media walls (Drikakis, Frank, and Tabor, 2019). These physical magnitudes
can be obtained from experimental measurements or computational simulations such
as Molecular Dynamics in combination with First Principles (Avendaño et al., 2019;
Pereira, Lara, and Miranda, 2016).

C.1 Characteristic scale

The relationship between the LBM simulation parameters A∗ and physical magnitudes
A is defined in terms of a conversion factor CA, as shown below:

A = CAA
∗ (C.1)

where CA depends on the characteristic scale Γ determined by the set of variables
characterizing a physical system: space, matter and time (∆x,∆m,∆t).

The characteristic scale of the system under study can be determined by selecting a
physical magnitude, assigning its corresponding simulation parameter, and conducting
a simultaneous dimensional analysis of the system variables. For example, in a system
defined solely by its geometry dimensions, a representative length of the system L is
selected, and then the number of partitions N (≡ L∗) is conveniently assigned for the
simulation. Therefore, the ratio L/N generates the spatial characteristic scale ∆x.
Because the system depends only on length, CL is equivalent to the characteristic
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(∆x)3
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1
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(
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1

2

)

ρ = 1
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N
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ν∗

ν

∆m = (∆x)3
ρ

ρ∗

Figure C.1: Scheme for obtaining the characteristic scale Γ of a system
based on physical magnitudes and simulation parameters, case: study of

fluid dynamics using the LBM methodology.

scale. However, if the system depends on time and/or mass as well, the conversion
factors may depend on several variables (see 1st column of Fig. C.1).

In fluid dynamics, the system is defined by the dimensions of the porous medium
and the properties of the involved fluid, such as kinematic viscosity and density. If
the system is approached using the LBM, the spatial discretization is chosen according
to computational convergence criteria, the density value is set to 1, and viscosity is a
function of the relaxation time restricted to values greater than 1/2, where the three
parameters are dimensionless. Therefore, the characteristic scale Γ ≡ (∆x,∆m,∆t)

must be extracted based on the system properties and considerations of the LBM
methodology, as shown in Fig. C.1.

C.2 Taxila-LBM values

A single-component, incompressible, and isothermal flow on a macroscopic scale can be
described by the Navier-Stokes equations, where the system is entirely defined by the
density and viscosity of the fluid. On a microscopic scale, where capillary phenomena
such as interfacial tension and wettability become important, the LBM is an ideal
methodology for describing multi-component flows in heterogeneous porous media
with complex geometry. Within the LBM methodology, there are various qualitative
methods to address capillary phenomena in fluid flow through porous media,
such as Shan-Chen. Meanwhile, the Explicit Force method is quantitative and has
its own software called Taxila-LBM (Porter et al., 2012; Coon, Porter, and Kang, 2014).
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Density

Kinematic viscosity

Interfacial tension

Contact angle

ρ

ν

γ

θ

ρ∗

ν∗

γ∗

θ∗

ρ∗

τ

gk,k

gk,m

Figure C.2: Scheme of the conversion of physical magnitudes to
dimensionless simulation parameters and their subsequent conversion to

values of the Taxila-LBM software.

In numerical analysis applied to computational simulations, such as LBM
simulations, the physical magnitudes of the system (porous medium dimension and
fluid density-viscosity) are transformed into dimensionless simulation parameters
(see Fig. C.1). Furthermore, if the fluid is multicomponent and at the micrometric
scale, the Explicit Force method interprets the interfacial tension between fluids as
fluid-fluid interactions denoted as gk,k, and the wetting behavior of the porous medium
as fluid-solid interactions denoted as gk,m (see Fig. C.2).

Specifically, the fluid-fluid interaction force gk,k is related to the dimensionless
interfacial tension γ∗, which is obtained from the following relationship:

γ =
∆m

(∆t)2
γ∗ (C.2)

where, Cγ = ∆m/(∆t)2 is the conversion factor between the physical magnitude γ
and the simulation parameter γ∗ (see Eq. C.1).

Porter et.al has shown that for the Explicit Force method, there is a unique
relationship between the interfacial tension γ∗ and the interaction strength gk,k of
a binary mixture (k, k), which is independent of the chosen viscosity and viscosity
ratio (Porter et al., 2012; Coon, Porter, and Kang, 2014). They determine a simple
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quadratic fit rule that relates these two dimensionless quantities, as shown below:

1.361(gk,k)2 − 1.721 gk,k + (1.178 + γ∗) = 0 (C.3)

where, although the quadratic discriminant indicates that γ∗ > −0.862, the Eq. C.2
show that the value must necessarily be positive.

On the other hand, the gk,m parameter is obtained through simulations of fluids
in contact and confined between parallel plates. There are no external forces on the
system during the process until equilibrium (stationary state). The parameter value
gk,m is obtained from the simulation that is capable of reproducing the physical contact
angle (θ ≡ θ∗). Therefore, we must perform several simulations for different values of
gk,m (but keeping the values of ρ∗k, τk and gk,k constant) until obtaining the closest
value to θ (Pereira, Lara, and Miranda, 2016).

C.3 Example: Molecular Dynamics data

The physical information required for LBM simulations can come from experimental
measurements or computational simulations. For example, in the work performed
by Pereira et al., the data or physical magnitudes are generated via Molecular
Dynamics (Pereira, Lara, and Miranda, 2016). The physical system is composed of
a porous structure of montmorillonite clay (MMT), the displaced fluid is light oil,
and the injected fluid is API brine (8% NaCl and 2% CaCl2). In addition to the
pure brine solution (no-NP), there are three types of SiO2 nanoparticle solutions:

COMPUTATIONAL SIMULATIONS DATA a

Brine Oil Brine-Oil-Clay
System

ρb ( kg
m3 ) νb (10−6 m2

s ) ρo ( kg
m3 ) νo (10−6 m2

s ) γ b-o (kgs2 ) θb-c ( ◦)

no NP 997 0.791 810 4.473 0.043 69
NP-H 1026 0.867 810 4.348 0.038 64
NP-SA 1037 0.867 810 4.395 0.033 57
NP-PEG2 1034 0.854 810 4.384 0.029 50

aConducted by NanoPetro Group (Pereira, Lara, and Miranda, 2016).

Table C.1: Summary of molecular dynamics simulations performed for
the case of a brine solution (with and without nanoparticles) in contact

with oil confined between surfaces of the montmorillonite clay.
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MAPPING COMPUTATIONAL DATA

Brine Oil Brine-Oil-Clay
System

ρ∗b τb ρ∗o τo γ ∗b-o g b-o g b-c g o-c

no NP 1.000 1.230 0.894 4.628 0.100 0.190 −0.027 +0.027
NP-H 1.000 1.299 0.894 4.513 0.089 0.181 −0.031 +0.031
NP-SA 1.000 1.300 0.894 4.556 0.077 0.171 −0.033 +0.033
NP-PEG2 1.000 1.288 0.894 4.546 0.068 0.164 −0.034 +0.034

Table C.2: Summary of the molecular dynamics mapped parameters
for the Explicit Force model and LBM simulations.

hydroxylated (NP-H), functionalized with sulfonic acid (NP-SA) and functionalized
with polyethylene glycol (NP-PEG2), see details in Tab. C.1.

To obtain the characteristic spatial scale of the system, the physical dimension of
the porous medium is defined as a square with a side length of L = 5.68µm (physical
magnitude), discretized or divided into N = 256 parts (simulation parameter).
Meanwhile, for the temporal/material characteristic scale, brine is chosen as the
reference fluid. Thus, starting from the physical viscosity ν = 0.791× 10−6m2/s and a
relaxation time chosen as τ = 1.230 (simulation viscosity as ν∗ = 0.244), the temporal
characteristic scale is obtained. The material characteristic scale is obtained from the
physical density ρ = 997 kg/m3, with the simulation density assigned as ρ∗ = 1.

Finally, the dimensionless LBM parameters derived from the MD results are shown
in Tab. C.2. The characteristic scale is: ∆x = 2.22 × 10−8m, ∆t = 1.52 × 10−10 s

and ∆m = 9.91 × 10−21 kg. The methodology developed by Pereira et al. applies a
multiscale hierarchical calculation protocol that combines LBM simulations and data
generated by MD, where the data mapped as LBM input parameters (Pereira, Lara,
and Miranda, 2016).
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