• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.43.2019.tde-30012019-142128
Document
Author
Full name
Karel Montero Rey
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Cornejo, Daniel Reinaldo (President)
Barthem, Vitoria Maria Tupinambá Souza
Béron, Fanny
Chitta, Valmir Antonio
Quivy, Alain Andre
Title in Portuguese
Estudo de anisotropias e processos de magnetização em nanofios de Ni e nanotubos de NiB
Keywords in Portuguese
Magnetismo
Materiais nanoestruturados
Nanofios
Nanotubos
Abstract in Portuguese
O estudo e conhecimento do magnetismo é muito importante para a nossa sociedade, devido ao grande número de aplicações que envolvem as propriedades magnéticas. Por isso, umas das problemáticas vigentes em física do estado sólido é o estudo, conhecimento e controle deste tipo de propriedades em diferentes tipos de materiais, dentre os quais encontramse materiais de dimensões nanométrica como nanofios e nanotubos. No presente trabalho temos como objetivo a realização de estudos sobre propriedades magnéticas tais como anisotropia e magnetização em sistemas formados por nanofios de Ni eletrodepositados em alumina nanoporosa, e nanotubos de NiB crescidos em membrana porosa de policarbonato. A caracterização microestrutural das amostras de nanofios de Ni foi realizada por difração de raios X, microscopia eletrônica de varredura, microscopia de força atômica e microscopia eletrônica de transmissão de alta resolução. Os resultados mostraram que os nanofios de Ni tinham diâmetros de aproximadamente 60nm, são policristalinos com estrutura predominante fcc, embora também foram encontrados grãos minoritários de estrutura hcp. O tamanho de grão esteve na faixa entre 5 e 15 nm, aproximadamente. Por outro lado, os nanotubos de NiB estavam formados por uma liga amorfa de composição Ni80B20, com a presença de uma porção minoritária de pequenos cristalitos de NiB. Os nanotubos tinham comprimentos de 20 ?m aproximadamente, diâmetro externo de 400 nm e espessuras das paredes na faixa entre 50 e 160 nm. Todas as amostras foram caracterizadas magneticamente a partir de medidas de ciclos de histerese, curvas de remanências isotérmica e desmagnetizante (para a obtenção de curvas ?M) e curvas de inversão de primeira ordem (para o cálculo das distribuições FORC). Um novo modelo fenomenológico para estudar anisotropias, desenvolvido em nosso grupo de pesquisa, permitiu a determinação das constantes de anisotropias K1 (constante de anisotropia magnetocristalina de segunda ordem) e Ku (constante de anisotropia uniaxial) nos sistemas de nanofios de Ni. Os resultados mostraram que a constante de anisotropia K1 cresce conforme aumenta o comprimento dos nanofios, ficando próximo e até superior ao valor correspondente ao Ni massivo. O processo de nucleação e propagação de paredes de domínios transversais foi confirmado como mecanismo de inversão da magnetização nos nanofios, por meio da aplicação de um modelo analítico que determina o campo de nucleação do sistema. A importância das interações dipolares no comportamento magnético global destes sistemas foi evidenciada pela determinação das curvas ?M e das distribuições FORC. No caso dos nanotubos de NiB foi determinado que o mecanismo de inversão da magnetização corresponde à nucleação e propagação de vórtices, como acontece em outros sistemas similares. No entanto, foi observado que a espessura da parede do tubo tem um papel importante, porque foi verificado que a coercividade dos nanotubos decresce se a parede deles é suficientemente grossa em comparação com o tamanho de parede de domínio do Ni. Também para estes sistemas, as curvas ?M e das distribuições FORC mostraram a predominância de interações desmagnetizantes.
Title in English
Study of the anisotropies and magnetization process in Ni nanowires and NiB nanotubes
Keywords in English
Magnetism
Nanostructured materials
nanotubes
nanowires
Abstract in English
The study and knowledge of magnetism is very important for our society, due to the large number of applications involving magnetic properties. Therefore, one of the current problems in solid state physics is the study, knowledge and control of this type of properties in different types of materials, among which are materials of nanometric dimensions such as nanowires and nanotubes. In the present work, we have carried out studies on magnetic properties such as anisotropy and magnetization in systems formed by Ni nanowires electrodeposited in nanoporous alumina, and NiB nanotubes grown in polycarbonate porous membrane. The microstructural characterization of Ni nanowire samples was performed by X-ray diffraction, scanning electron microscopy, atomic force microscopy and high resolution transmission electron microscopy. The results showed that Ni nanowires had diameters of approximately 60 nm, are polycrystalline with predominant fcc structure, although a minor fraction of hcp structure was also found. The grain size was in the range between 5 and 15 nm, approximately. On the other hand, the NiB nanotube samples were formed by an amorphous alloy of Ni80B20 composition, with the presence of a minor portion of small NiB crystallites. The nanotubes had lengths of approximately 20 µm, external diameter of 400 nm and wall thicknesses in the range of 50 to 160 nm. All the samples were magnetically characterized by measurements of hysteresis cycles, isothermal and demagnetizing remanence curves (to obtain ?M curves) and first-order reversal curves (for calculating FORC distributions). A new phenomenological model to study anisotropies, developed in our research group, allowed the determination of the anisotropy constants K1 (second order magnetocrystalline anisotropy constant) and Ku (uniaxial anisotropy constant) in the Ni nanowire systems. The results showed that the anisotropy constant K1 increases as the nanowire length increases, being close to and even higher than the Ni bulk value. The process of nucleation and propagation of transverse domain walls was confirmed as the mechanism for magnetization reversal in nanowires. This result as obtained by applying an analytical model that determines the nucleation field of the system. The importance of the dipolar interactions on the global magnetic behavior for these systems was evidenced by the determination of the ?M curves and the FORC distributions. In the case of NiB nanotubes, it was determined that the magnetization reversal mechanism corresponds to the nucleation and propagation of vortices, as in other similar systems. However, it has been observed that the wall thickness of the tube plays an important role because it has been found that the coercivity of the nanotubes decreases if their walls are thick enough compared to the Ni domain wall size. Also, for these systems, the ?M curves and the FORC distributions showed the predominance of demagnetizing interactions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-01-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.