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O glaube, mein Herz, o glaube:
Es geht dir nichts verloren!
Dein ist, ja dein, was du gesehnt!
Dein, was du geliebt,

Was du gestritten!

O glaube
Du wardst nicht umsonst geboren!

Hast nicht umsonst gelebt, gelitten!

Was entstanden ist

Das muss vergehen!
Was vergangen, auferstehen!

Hor’ auf zu beben!

Bereite dich zu leben!

O Schmerz! Du Alldurchdringer!
Dir bin ich entrungen!
O Tod! Du Allbezwinger!

Nun bist du bezwungen!

Mit Fliigeln, die ich mir errungen,
In heiflem Liebesstreben,
Werd’ ich entschweben

Zum Licht, zu dem kein Aug’ gedrungen!

Sterben werd’ ich, um zu leben!
Aufersteh’n, ja aufersteh’n
wirst du, mein Herz, in einem Nu!
Was du geschlagen

zu Gott wird es dich tragen!

-Gustav Mabhler, Die 2. Sinfonie-

1l






Resumo

O nosso objetivo é estudar as deformagdes integraveis da teoria de supercordas em AdSy x

UOSp(2,2/6)

SO(,3)xU(3)" Estudamos

CP? formulada como um modelo sigma ndo-linear no supercoset
a deformacao de Yang-Baxter deste modelo e determinamos os backgrounds deformados
nos quais a supercorda se propaga para algumas escolhas da matriz r. Para isto propomos
algumas matrizes r que satisfazem a equacdo classica de Yang-Baxter (CYBE) e deter-
minamos os duais gravitaciondis da teoria ABJM ndo comutativa, da sua deformacgdo de

dipolo com um parametro e o seu limite ndo relativistico, que corresponde ao espaco-tempo

de Schrodinger.

Palavras-chave: Supercordas; Modelo sigma ndo-linear; Integrabilidade; Deformacgdes

integraveis; Matriz r.
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Abstract

Our aim is to study integrable deformations for the superstring theory in Ad.S; x CP? formu-

UOSp(2,2/6)

lated as a o-model on the supercoset SO(.3)xU3)"

We study the Yang-Baxter deformation
of this model and determine the deformed backgrounds on which the string propagates for
some choices of r-matrix. To this end we propose some r-matrices that satisfy the classical
Yang-Baxter equation and show the gravity duals of the non-commutative ABJM theory,

its one-parameter dipole deformation and its non-relativistic limit which corresponds to the

so-called Schrodinger spacetime.

Keywords: Superstrings; Nonlinear sigma model; Integrability; Integrable deformations;

r-matrix.
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Chapter 1

Introduction

The AdS/CFT correspondence conjectures that certain gauge theories have a dual descrip-
tion in terms of string theories. The first case of the AdS/CFT correspondence states that
N = 4 supersymmetric Yang-Mills theory on a four-dimensional flat spacetime is dual to
type IIB superstring theory propagating in AdSs x S° [1].

Many features of the AdS/CFT correspondence have been studied along the time in-
cluding its integrability properties. On the string theory side, since it is formulated as
two-dimensional field theory, the notion of integrability is associated to the existence of a
Lax connection which ensures the existence of an infinite number of conserved charges.
In the case of AdSs x S® superstrings the theory is described as a o-model on the super-

coset o022l 5 [2]. The Z,-grading of the psu(2,2|4) superalgebra is a fundamental

SO(1,4)x50(5)
ingredient to obtain the Lax connection and thus to prove its integrability [3|].

Recently, techniques to deform integrable theories keeping their integrability have been
developed. One of them is based on r-matrices that satisfy the Yang-Baxter equation.
These deformations were proposed by Klimcik as a way to obtain an integrable deforma-
tion of the Principal Chiral Model (PCM) [4,5]. In this case, the type of r-matrix that
was considered is called Drinfeld-Jimbo r-matrix [6,[7]] and satisfies the modified classical
Yang-Baxter equation. These deformations were also applied for the case of a symmetric
coset o-model [8], and furthermore to the AdSs x S® o-model [9,/10]. The supercoset
construction was made in [11,{12] whose background is called 1)-deformed AdS5 x S°. The

important feature of this deformed background is that it does not satisfy the type IIB super-

gravity field equations. This fact led to postulate the existence of generalized supergravity
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equations [13]14]]. In a recent work [15]], it was shown that the stardard supergravity equa-
tions are satisfied by an 7-deformed background if the Drinfeld-Jimbo r-matrix associated
to this deformation is constructed in a specific form. Furthermore, Yang-Baxter deforma-
tion of the AdS5 x S° in the pure spinor formulation was developed recently in [16].

It is possible to consider also an r-matrix that is solution of the classical Yang-Baxter
equation (CYBE). In this case, the deformation of the symmetric coset o-model was ob-
tained in [17]. Moreover, this was studied for superstrings in AdSs x S° in [18]. The
interesting property of these deformations is that they lead to several known backgrounds
of type IIB supergravity [[19-22]: Lunin-Maldacena-Frolov [23,[24]], Hashimoto-Itzhaki-
Maldacena-Russo [25,26] and Schrodinger spacetimes [27-29], which can be also ob-
tained via TsT transformations [30]]. In these cases, the r-matrices are all abelian. These
results were extended to the nonabelian case [31] and it was conjectured in [32]] that defor-
mations using solutions of the CYBE are equivalent to nonabelian T-duality transforma-
tions [33,34].

There is another type of integrable deformation known as A-deformation, which was
first introduced by gauging a combination of a PCM and a Wess-Zumino-Witten (WZW)
model [35]], and extended to string theory in symmetric spaces [36] and AdS5 x S° [37],
as well as to the pure spinor formulation in [38]. Due to a work by Klimcik [39-42], it
is conjectured that the 7- and A-deformations are related by an extension of nonabelian
T-duality known as Poison-Lie T-duality [43}44].

Another well-known example of the AdS/CFT correspondence is the duality between
N = 6 superconformal Chern-Simons theory in three dimensions (ABJM theory) and type
ITA superstrings in AdSy x CP? [45]]. The string theory is partially described by a nonlinear
o-model on the supercoset UOSP(2,2|6)/ (SO(1,3) x U(3)) [46,47]. The superalgebra
uosp(2,2/6) has a Z,-grading which allows to show the integrability of the model [46].

Only recently Yang-Baxter deformations of the nonlinear o-model on this supercoset
were considered. In [48], a solution of the CYBE for an abelian r-matrix, in which only
the CP? subspace was deformed, was found. This deformation leads to a three-parameter
deformation of the AdS, x CP? background that can be obtained also by using TsT trans-

formation [49]. Thus, inspired by that work, our aim is to study other possible integrable
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deformations of this background. The r-matrices associated to this deformation are con-
structed in terms of combinations of generators of the superalgebra uosp(2,2/6). We pro-
pose a Drinfeld-Jimbo (DJ) r-matrix which involves only the Cartan basis of the superal-
gebra. In this case, the DJ r-matrix has only bosonic generators of the Cartan basis, which
is the first step to construct the 7-deformed AdS, x CP? background. In addition to this,
we also provide some unimodular nonabelian r-matrices based on the classification given
in [50].

Besides that, we provide the r-matrices that lead to the gravity duals of noncommutative
ABJM theory as well as its one-parameter dipole deformation. These backgrounds were
found initially by performing TsT transformations on the AdS; x CP? background [49].
In addition to this, we also present the r-matrix that leads to the gravity dual of the non-
relativistic limit of ABJM which corresponds to the Schrodinger spacetime. We expect this
result is compatible with the one obtained via a certain class of TsT transformations called
null Melvin twists [51]].

This thesis is organized as follows. In Chapter 2] we review the Green-Schwarz for-
malism for superstrings. We start with the case of flat space and present the symmetries of
the theory. Then, we generalize it to curved backgrounds and present the Green-Schwarz
action as a nonlinear o-model. We focus on the case of superstrings in AdSs x S° and
examine in detail its psu(2,2|4) superalgebra. We derive the corresponding Lax pair to
show that the type IIB superstring theory in AdS5 x S is integrable. In the Chapter [3| we
review Yang-Baxter deformations and explain the relation between r-matrices and integra-
bility. We present the Lagrangian of the Yang-Baxter deformed o-model in terms of the R
operator associated to the r-matrix. For models with Z,-grading we compute in detail its
equations of motion and symmetries. We review the construction of different r-matrices
leading to integrable deformations of the AdSs x S° background. In Chapter[d], we discuss
the Yang-Baxter deformation of the AdS; x CP?® s-model. We review the supermatrix
realization of the uosp(2,2|6) and its Z,-grading. Then, we discuss a nonlinear o-model
describing superstrings in AdSy x CP?. After that we present the Yang-Baxter deformation
of AdSy x CP? and discuss in detail its x-symmetry. Finally, we compute some deformed
backgrounds generated by r-matrices: the gravity dual of noncommutative ABJM theory

as well as the gravity dual of the one-parameter dipole deformation and the non-relativistic
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limit of ABJM theory. In Chapter [5| we discuss some future perspectives along the lines of

our work.



Chapter 2

The o-model description of superstrings

This chapter is dedicated to the study of superstring theory as a nonlinear o-model. First,
we review superstrings on a flat space and its generalization to curved spaces. Then, we
introduce the supercoset formulation of the superspace in order to write the Green-Schwarz
action as a nonlinear o-model. In this context we study the Green-Schwarz formalism for
AdSs x S° along the lines of [52]]. We start by describing the AdSs x S° background
and the Green-Schwarz-Metsaev-Tseytlin action based on the supercoset formulation of

the psu(2, 2|4) superalgebra. Finally, we discuss its integrability properties.

2.1 Type II superstrings in flat space

In order to have a supersymmetric theory fermionic fields must be introduced, either as
worldsheet fermions, giving rise to the Ramond-Neveu-Schwarz (RNS) superstring theory,
or as spacetime fermions, corresponding to the Green-Schwarz (GS) superstring theory.
The GS formalism is more convenient since it can be applied to any curved background so
let us start describing briefly this formalism in flat spacetime.

Supersymmetry can be introduced by generalizing the bosonic string action [53,54],

1

Si=—5- d? o/=gg™ TP T1 (2.1)
™ JIm

where

" = 0, X™ —i6450"* (™) o5 0ab””, (2.2)
X™ are bosonic coordinates with m = 0,1,...,9, (™), 5 are the 16 x 16 gamma matrices

5
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and M is the two-dimensional worldsheet with metric g,;,. The Grassmann coordinates are
Majorana-Weyl fermions 6 with spinor indices A, B = 1,2 and a, 5 = 1, ..., 16. These
fermionic coordinates may have chiralities chosen independently. If #! and #* have oppo-
site chirality, the theory is called type IIA, otherwise we refer it as type IIB superstrings.
In order to have the correct number of physical fermionic degrees of freedom we need
to implement a local fermionic symmetry called xk-symmetry by adding to (2.1)) an extra

supersymmetric term known as the Wess-Zumino (WZ) term,

1 _ _ _ _
Sy = —— f d? o {—€™(0'y™0,0") (02 0s0%) + €0, X1 (01 7™ 00" — 624 0,0%)},
M

s

(2.3)
where €% is the Levi-Civita tensor. Thus, the supersymmetric action invariant under x-
symmetry is

Sas = S1 + Ss. (2.4)

The WZ term S, is independent of g, therefore it does not contribute to the energy-

momentum tensor.

2.2 Type II superstrings in a curved background

In this section we study the GS superstrings action as a nonlinear c-model on a coset

superspace [S5-57]].

2.2.1 Green-Schwarz c-model

In a curved background, the Green-Schwarz o-model is

1

Sas = =3 | (V95" Gun(2) + M Bu(2)0,2V 0,2, 2.5)
M

where ZM = {X“, 0, g% }ﬂ are N = 2, D = 10 curved supercoordinates, with j =
0,...,9and a,& = 1, ..., 16, and G ;n and B,y are the background superfields. The first

term in (2.5) corresponds to the kinetic term and the second one is the WZ term.

I'A little change of notation was made here with respect to the previous section, we use hats instead of

bars to discriminate the chirality of the spinorial coordinates.



CHAPTER 2. THE 0-MODEL DESCRIPTION OF SUPERSTRINGS 7

At each point of this curved superspace we can define the supervielbein E4;(Z), where
A = {m, a, &} are the flat indices with m = 0, ..., 9. Then, G and By, can be written

Gun(Z) = ES(Z)EN(Z)mn,  Bun(Z) = Exj(Z)ER(Z)Bap(Z),  (2.6)

where 7,,,, is a flat metric on each point Z of the superspace. Also, an orthonormal basis
can be defined as

J4 = B dzM, J = E40,72M, (2.7)

where a = {0, 1} are the indices of worldsheet coordinates ¢ = (7, o) such that we can
write on the worldsheet,

J4 = JAdo" (2.8)
In this terms we write the GS action (2.5) as
1
Sas = =5 J & o (V=99" I T N + € Bap 1 1) . (2.9)
In particular, the WZ term can be expressed as

Sy = —JBAB JA A JE = —f B, (2.10)
M

which represents the integral of a two-form.

The type II GS action in flat space (2.4) can be recovered by taking

Jm =TT, J% =0,0% J¥=0,0% (2.11)

~ ~

Bma = (6’Vm>aa Bmd = _(GVm)dv Bad = (07171)0{ (e,ym)& (212)

2.2.2 Supercoset formulation

One of the main motivations to study the GS superstring as nonlinear o-model on a su-
percoset is that it allows us to manage algebraically the symmetries and properties of the

theory as well as the demonstration of its integrability.

Coset spaces

This section introduces some notions about cosets and it is based on references [58-60].

A space M is said to be homogeneous if it admits as an isometry the transitive action of
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a group G, i.e. any point of the space can be reached from any other by the group action.
Thus, it is natural to label a point X on M by parameters describing elements of G which
move X to X’. The subgroup H — G which leaves a point X on M fixed is called the
isometry subgroup. Hence, there exists a redundancy when labelling M in terms of G.
In order to describe M correctly we must identify those elements of the group that leave
a point X on M fixed, which means to describe M in terms of the coset G/H. This
equivalence is defined by the right action of G/H : g ~ gh, with g € G but not in H, and
with h € H.

If G is a Lie group we say that M is a coset manifold, then M has a Riemannian
structure parametrized by coordinates.

The Lie algebra g of G can be split as

g=tob, (2.13)

where 0 is the Lie algebra of H and £ = g/ contains the coset generators that remain in

G/H. Thus, any element g € GG can be expressed in the following form,
g =exp (y"K,)exp (¢'H,), H,eh, K, €t (2.14)

where y™ are the coordinates on the coset with m = 1,...,dim G — dim H and z° are
parameters of H withi =1,...,dim H.

This suggests a natural parametrization of the coset space by choosing the representative
exp (y"K,,) € G/H, (2.15)

which corresponds to z° = 0.

The Lie algebra-valued one-form

Jy) =9 '(y)dgly), gly)eG (2.16)

can be spanned in terms of the generators of g,
J(y) = J"™(y) K + W' (y) H;. 2.17)

Here J"(y) = J™(y)do® is a vielbein on G/H and w'(y) = w!(y)do® is the spin-
connection in terms of another set of coordinates ¢®. This one-form J satisfies the zero-

curvature condition,

dJ+JAJ=0 (2.18)
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by construction.

The simplest coset is the S? sphere. It can be written as the coset space %8;’ where

SO(3) is the global symmetry group and SO(2) is its local isometry. In general, an n-

sphere is described as

SO(n+1)
St ———— 2.19
SO 2.19)
Another useful and important construction is the coset for AdS spaces,
SO(2,n—1)
AdS, = ——"——7, 2.20
SO(1,n—1) (2:20)
and the n-dimensional complex projective space CP"
SU(n + 1)
CP'= —~. 2.21

Green-Schwarz supercoset o-model

The generalization to a supercoset consists in extending the numerator of the coset G/H to
a supergroup such that it contains G as its bosonic subgroup. There exists a classification
of Lie superalgebras, given in [[61,62], in which we can identify the bosonic subalgebras.
The Maurer-Cartan one-form .J, in the case of a supercoset G/H EI, can be written in
the same way as in (2.17)),
J=J K4+ JHp, (2.22)

where Ky € g/hand Hy e hwithA=1,...,dimG —dimH and I = 1,...,dim H. We

can write (2.22) as
J=JtdZM K, + JL,dZM H;. (2.23)

By taking d Z = 0,Z™ d 0® where a = {0, 1} are the indices of worldsheet coordinates

0® = (1, 0) such that we can write

J = Ji0.2M, (2.24)

Then, if the target space is a supercoset the kinetic term for the GS superstring (2.9) can be

constructed.

>Henceforth G refers to a supergroup with superalgebra g.
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A o-model on a superspace contains a term that can be constructed from a closed
three-form Q®), i.e. dQ®) = 0, whose pullback on the worldsheet is built in terms of the

Maurer-Cartan one-form [[55,/63],
Q¥ =Str JAJ A J = fapcJd A JB A JC, (2.25)

where fa4pc are constants. This three-form is closed by construction due to the zero-
curvature condition and the Jacobi identity. We can define Q©®) = d B®. The WZ term is
the integral of 2® on a three-dimensional manifold whose boundary is the string world-

sheet,
Swz = —J B, (2.26)
M

which has the same form as in (2.10) for GS superstring.

It was shown that this approach reproduces the type II GS superstrings on flat spacetime

SUSY (N'=2)

as a nonlinear o model on the 50(1.9)

coset, being SO(1,9) the Lorentz subgroup of
the N’ = 2 super Poincaré group ten dimensional flat space.
Lie superalgebra

A superalgebra V is defined as a Z,-graded vector space. It can be written as V = VO @
V) where dim(V®) = m, and dim(V) = n, for m,n > 0. The subalgebra V© is
called even or bosonic and V™ is called odd or fermionic.

A Z,-graded superalgebra g = g(© @ gV is a Lie superalgebra if it is equipped with a

graded commutator defined as
[A,B] = AB — (-1)“I¥F1 B4, (2.27)
that satisfies the Jacobi identity,
(~)FIOILA B, €]+ (~)IIB, [C, AT + (-)PIC [4, Bl =0, @289
where [a], [8], [y] correspond to the gradings of A, B, C € g® fora = 0, 1

0 if «iseven,
o] = (2.29)

1 if ois odd.
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Symmetric coset space

A Lie superalgebra g with an automorphism €2 of order two, i.e. Q : g — gwith Q* = I'is
split in the same way as in (2.13),
g=toh, (2.30)

such that
[b,b] = b, [b, €] < &, [t,€¢ch. (2.31)

From the first relation in (2.31)) b is a subalgebra of g; the second one indicates that g is
reductive, and the third one that it is symmetric [59]]. A superalgebra g with these properties
defines a symmetric space with Z,-grading.

There are superalgebras with an automorphism of order four, such that Q* = I, which is
induced by a Z4-grading instead of a Z,. This defines semi-symmetric spaces like Ad.S5 x

S® and AdS, x CP? cases which we will consider in the following section and in Chapter@

2.3 Superstrings in AdS; x S°

The AdSs x S° background is a solution of the type IIB supergravity equations together
with a constant dilaton and a F}; flux. This background plays a crucial role in the AdS/CFT

correspondence since it is dual to A/ = 4 SYM theory in four-dimensions [1,[64].

2.3.1 The AdSs x S° background

From (2.20) and (2.19), for n = 5, we have
SO(6)

SO(2,4) 5 SO(
S _—O( . (2.32)

AdSy = 227
5 SO(1,4)’ SO(5)

Thus, AdSs x S° is written as the coset

SO(2,4)  SO(6)

Ad b = .
5% 5" = 551.4) * 50()

(2.33)

We need to look for a supergroup having SO(2,4) x SO(6) as its bosonic subgroup in order
to describe superstrings in this background. Indeed, from the Nahm classification [[62]] we

find that this bosonic group is part of the supergroup PSU(2,2|4).
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2.3.2 The Green-Schwarz-Metsaev-Tseytlin action

Metsaev and Tseylin constructed the type IIB Green-Schwarz superstring in AdSs x S° as
a nonlinear c-model with target space given by the supercoset [2]

PSU(2,2]4)

SO(1,4) x SO(5)° 2.34)

The psu(2, 2|4) superalgebra

In order to introduce the supermatrix realization of the psu(2, 2|4) superalgebra let us con-

sider the general linear Lie superalgebra gl(m|n). It is defined as the set of supermatrices

X 0
M = , (2.35)
n Y
where X is an m x m-matrix and Y is an n x n-matrix, both of even grading, and 6 is an

m x n-matrix and 7 is an n X m-matrix, both of odd grading. The operations of supertrace

and supertranspose are defined as

XT _nT
SuM=uX—twYy, M= . (2.36)
or  y7T
The special linear Lie superalgebra sl(m|n) is defined as

sl(m|n) = {M € gl(m|n); StrM = 0}. (2.37)

In particular, the s[(4|4) superalgebra is defined by (4[4) x (4]4) supermatrices M as in
with vanishing supertrace which are constructed in terms of 4 x 4 blocks. Then, in
order to define the su(2, 2|4) Lie superalgebra M must also satisfy the following condition
[52],

MH + HM' =0, (2.38)

where the Hermitian matrix H is defined as

Y 0 _ Lys 0
H = with X = . (2.39)
0 ]4><4 O _]2><2

The condition (2.38)) acts on M as follows

X 0 —yxt —xg
= : (2.40)
S Y ot vt
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which implies that
X = _¥X¥, YT =Y, n' = —%6. (2.41)

From these conditions, the matrix blocks X and Y span the unitary algebras su(2,2) and

su(4), respectively. The bosonic superalgebra of su(2,2|4) is then given by
su(2,2) @ su(4) du(l), (2.42)

where u(1) is the center factor | By definition, the projective psu(2,2|4) superalgebra
corresponds to the quotient algebra of su(2, 2|4) over u(1).
The most important property of psu(2,2|4) is that it has a fourth-order automorphism

Q: M — Q(M) defined as

JXTJ —JotJ 0 —Ioxo
QM) = L J= . (2.43)
JntJ  JviJ Ly 0

This definition satisfies Q*(M) = M, that is Q% = I. So the linear map (2 has eigenvalues
+1, 4+4. Thus, if we denote .A®) as the eigenspace associated to the eigenvalue i* (k =

0,1,2,3), we can write
A® = LM e psu(2,2[4), QM) = "M} . (2.44)
This automorphism allows to decompose psu(2,2|4) in a direct sum of four subspaces,
implying that this superalgebra has a Z,-grading
psu(2,2/4) = AQ @ AV @ AP @ AP, (2.45)
where the subspaces satisfy
[AW AM] € A®F™) modulo  Z,. (2.46)
This happens because
Q ([A®), AM]) = grrm[AB) Al (2.47)

For a supermatrix M € psu(2,2|4) its projection M*) e A®) is given by

M® = i(M +ERQ(M) + QA (M) + *Q3(M)). (248)

Here the projections M () and M are even, while M) and M ®) are odd.

3The center of a group is defined as Z(G) = {z € G|Vg € G, zg = gz}
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Constructing the action

The Maurer-Cartan one-form is defined as A = —g~'d g, where g(7,0) is an element of
the supergroup PSU(2,2|4) and A takes values in psu(2,2|4). Due to the Z,-grading, A

splits as
A=—gldg = A® £ AV £ A® 4 AG) (2.49)

and satisfies the zero-curvature conditiond A — A A A = 0, which is written in components

as
Z = 0,45 — 03A0 — [Aa, Ag] = 0. (2.50)

Also there is a local symmetry which corresponds to right-multiplication of the coset rep-

resentative g by h(7,0) € SO(1,4) x SO(5) (2.34)
g — gh, (2.51)

under which the projections of the currents transform as

AO 5 7T AO R — 1t d
' ' (2.52)
AW S p7 A, =1,2.3,
where the component A(®) transforms as a gauge field so we can interpret it as the SO(1, 4) x
SO(5) gauge sector[] while the components A", A® and A® transform according to the
adjoint representation of SO(1,4) x SO(5). Then, any gauge invariant action in the super-

coset cannot contain A, but depends exclusively on the coset elements.

The action for the sigma-model of type 1IB superstrings in AdSs x S° is
S = JdQ oL, (2.53)
and the density Lagrangian £ in terms of A, is then
L= —% [wﬁ Str <A§>A(;)> + ke Str (A(O})A(ﬁ?’)ﬂ , (2.54)

where v is related to worldsheet metric .5 as 7 = g#,/—g such that dety = 1 and

P is the Levi-Civita tensor Pl

4Since [A(D), AO)] = A©) in [2.46).
SHere o and /3 denote worldsheet coordinates, so you should not confuse them with spinorial indices.
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The first term in (2.54)) corresponds to the bosonic kinetic term and the second term is
the WZ term, which has contributions from the odd components of A, and thus it contains
the fermionic degrees of freedom of the theory. The parameter ~ must be a real constant

number to guarantee the reality of the Lagrangian.
Equations of motion
By taking the variation of the Lagrangian (2.54) we obtain
5L = —% 2027 s (642 A7) + we? str (540 AT + AVsAP) | @59)
From equation (2.48)) and the following property
Str(QF (M) My) = Str(MQ*%(My)), (2.56)
we can write the first term of (2.53) as follows

S(FAPAY) — isw (5AQA§32> — Q(6A)AY + Q*(54,) AP — 93(5AQ)A<B2>>

(2)
str (64.45) . (2.57)
In a similar way the second term is
af
aB (1) 4B MsA®Y _ € (1) _ 40
O str (0ADAP + ADSAP ) = - sur (94, (4 - AD)). (2.58)

Thus, we write the variation of the Lagrangian (2.54) as follows

0L = —Str (§AAY), (2.59)
where
A = o8 g® L s (g0 40 5 60
If we consider the variation of A,
0Ao = =6 (9 ' 0ag) = —g '0g9As — g7 0a(d9), (2.61)

we can write the variation for the Lagrangian in (2.59) as

SL = —Str[g7'6g (Gl — [Aa, A*])], (2.62)
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such that the equations of motions are
E = 0, A —[A,, A%] = 0. (2.63)
The grading 2 component of (2.63) is

£ = o, <,YaBA(52)> VL [A((Xo)’A(Bz)] + %/{eo‘ﬁ ([AS)’A(BU] _ [Ag?)),A(ﬁs)]) =0,

(2.64)
while the grading 1 and grading 3 components of (2.63)) are given, respectively, by
W =427 [ AP, AP | + ket | 4D, 4P| =0, (2.65)
B = ~eB [A((xl)’A(ﬂZ)] _ 0B [A,(f),AEgl)] —0. (2.66)
Let us define
off 1 af af
P =3 (v + ke*?) (2.67)
such that the equations of motion (2.63]) and (2.66)) can be written as
g = pod [AS’,A(;’)] 0, (2.68)
£9 = Py 4, 40| 0. (2.69)

By varying the Lagrangian (2.54) with respect to v* gives rise to the Virasoro con-

straint

1
Str (A@Ag)) — 57" Str <A§2)A§Q)> ~0. (2.70)

These constraints represent the reparameterization invariance of the string action with re-
spect to worldsheet diffeomorphisms.
K-symmetry

Since the global symmetry acts from the left we construct the x-symmetry as a transforma-

tion from the right on g [65]
9G, G = expe, (2.71)

where € = ¢(7, 0) is a local fermionic infinitesimal parameter taking values in psu(2, 2|4).

Unlike the global symmetry case, the string action is not invariant for an arbitrary form of
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the e parameter. Then, we have to find the conditions on € which guarantee the invariance
of the action.

The transformation of the Maurer-Cartan one-form under the x-symmetry transforma-
tions (2.71)) is given by
A=—g7ldg — —(ge) " d(ge)
= e “Ae‘ —de, (2.72)
so we write the transformation of A as[]

d0A=—de+[A¢€]. (2.73)

Let us consider € = ¢ + ¢®) in the fermionic sector, such that the above transformation

is written as
5. A0 — [A(s)7 6(1)] + [A(l), 6(3)] ’ (2.74)
5. A3 = [A(l)’ 6(1)] + [A(3), 6(3)] , (2.75)
5.AD — — e 4 [A(O), €(1>] + A(2)7€(3)] , (2.76)

5614(3) =—de® + [A(Q), 6(1)] + A(O), 6(3)] ) (2.77)
The variation of the Lagrangian (2.54) with respect to € reads
5L =6~ Str <A53>A§f>) + 2% Str (66A§)A(52)>

+ ke sir (6,40 AF — 54D 7)) (2.78)

By using (2.75)), we express the second term in as
str (642 AF) =St ([AD, €] AG 4 [4F), €] AT)
= sur (AP, 4D | e+ |4, 4P| @) (2.79)

(07

Similarly, by using (2.76)) and (2.77), the third and fourth terms become

;>] e<3>> , (2.80)

A
tr (84D AL) = Str (=0ae® A + [ 4D, AP | 0 4 [4D A0 D) @81y

Str (5,40 AF) =Str (—2,eV AP + [ 4T, A0 D)+ [ 4D,

SWe use here the Baker-Hausdorff formula

1
XYe X =Y +[X,Y] + 5 PO +
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Putting (2.79), (2.80) and (2.81)) into (2.78)) we find the variation of the Lagrangian (2.54)

under ¢

1
0L = = 5[0 str (AP AP ) + 2977 s (5,42 A7)

+ ke s (6,404 ~ 5,49 AD)

_ %[maﬁ Str (A§>Ag>) — 2977 sur
+ ke Sir (2,AP eV — 0, AP + |

+ [A(Bl), A<2>] e 4 [A(;), Ag])] 43))]. (2.82)

«

In order to reduce this expression we use the zero-curvature condition (2.50) and the Z,

decomposition to compare the terms of grading 1 and 3 which gives

e, AY) = o [Aff), A(”] +of [Af), Ag”] , (2.83)
€0, AP = ¢f [Ag ), A(3)] [Agp, Ag>] . (2.84)

By using these identities, the variation of the Lagrangian (2.82)) is

5L — —;W“ﬁ Str (Ag)A(;’) +2Sr (P [A DA } + pos [A(;), A§3>] e<3>) ,
(2.85)
where P¢” are defined in (2.67).

If we consider the Virasoro constraint (2.70)), the first term in (2.83)) is zero, whereas the
last two terms vanish due to the equations of motion and (2.69). This is an on-shell
cancellation. In order to (2.85)) be zero off-shell, and then represent a symmetry of (2.54),
we need to find an appropriate form for 6.7*".

The orthogonality of Pio_‘ﬂ implies that k = +1, satisfying the following relations
Py P =t prpli=pP PePl=o. (2.86)

By defining the projection A¢ of any vector A* as A} = Pio_‘ﬁ Ag, the variation in (2.85)

can be written as
1
0L = —564" Str (A2AD) + 28 ([AD" AL | eV 4 |49 AQ)| ). 2.87)
Now, we consider the following ansatz for the components of the fermionic parameter e

e =A@ M g (W y@ (2.88)

€® =A@ B 4 € C“Af;, (2.89)
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where ng_f ) are new independent parameters of the x-symmetry transformations. The even

traceless component A® can be expressed as a supermatrix

mivi 0

A _ , (2.90)

in terms of the SO(5) Dirac matrices 7*. The coefficients n’ are chosen to be purely
imaginary, while m® are real for i = 1,...,4 and imaginary for i = 5. After using the
projector, we write the following product,
miml Ly, 47 0
AR Ag) - (M0 ) 291)
0 NoaMsy5 {757}
Since Pio_"B Aps = 0, A4 and A,. must be proportional to each other. This allows us to

write

A(QlAgl _ [ Maxmis 0
- 0 nza+nfi+

1 1 : , o
:gT Str <A&?Agi)) + 3 (m’aim}gi + n’ain’ﬁi) I, (2.92)

where /g is the identity matrix and T is the diagonal matrix defined as Y = diag(ly, —1I).

The product (2.92)) appears in after substituting the ansatz given in (2.88)) and (2.89).
It allows us to write the variation as

50— %567“5 Str ( A® A?) n ;lStr (ASZA(;_)> Str (T [m(j)ﬁ , A(j)“])
+ s (A28 ) st (1 [597 497, 2.93)

Then, it is possible to deduce the transformation of the worldsheet metric 7v* under the

K-symmetry,
1 [e% «
57? =1 Str (T( [/i(f) ,A(f)ﬁ] + [n(j)ﬂ,A(j) ]

- [n(j")“, A@ﬁ] + [/@@ﬁ , A(f’)a] )) (2.94)

By using the fact that the supertrace become a regular trace with an insertion of T and the

identity P{7 P{* = P} P$%, we finally obtain

1
by = S ([F&S})Q,AS})B] + [KG’)“,A‘E’W]) . (2.95)
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2.3.3 Integrability of AdS5 x S° superstrings

In this section we review some notions on integrability before introducing it for super-

strings in AdSs x S°.

Lax pair and conserved quantities

The central object to study integrable systems is the Lax pair defined by a pair of matrices
L and M, built in such a way that

dL

is equivalent to the equations of motion of the system. The equation (2.96) is called the Lax
equation and [M, L] denotes the commutator of the matrices M and L. The importance
of the Lax representation is that, once found, it allows us to construct the set of conserved

quantities of the system [|66],
I, = trL*, k=1,...,n, (2.97)

which are in involution, i.e. their Poisson bracket vanishes, {I}, I;} = 0.

Integrability of two-dimensional field theory

A field theory has an infinite number of degrees of freedom, thus in order to guarantee
its integrability we need to have an infinite number of conserved quantities which leads to
an infinite set of powers of the Lax matrix L. To this end we introduce a spectral

parameter, A. It allows us to have families of matrices M (7, \) and L(7, \), satisfying
O-L(t,\) = [M(T,\), L(T, \)] . (2.98)
In this case the invariants are
I,(\) = tr L*(7, )), keZ. (2.99)

In two dimensions, with coordinates (7, o), the equations of motion of ¥ = W (1, o, \) for

an integrable field theory can be written as

0,V = L.(1,0,\)¥,
(2.100)
0oV = Ly(1,0,\)V,
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which implies, for consistency, the zero-curvature condition,
OgLr — 0L, + Ly, L] =0 (2.101)

for all values of the spectral parameter A\. A matrix L, with a = {7, 0} satisfying (2.10T)
is called Lax connection. This allows to define the monodromy matrix,

2
T(1,\) = éx_pj doL,(7,0,)), (2.102)
0
where éxp denotes path-ordered exponentiation in which it was assumed that the fields are
periodic in o with period 27. Then, the invariants can be constructed as the trace of powers

of the monodromy matrix,

I(\) = T (1, \), (2.103)

since it satisfies

0, T(,\) = [L.(r,0,\), T(r, )]. (2.104)

This equation has a structure similar to (2.98). Expanding in A we obtain an infinite set of
conserved quantities, as required for integrability in field theory. Then, it is the monodromy

matrix which plays the role of the Lax matrix in the field theory framework.

Classical integrability of AdS5 x S° superstrings

In 2003, Bena, Polchinski and Roiban showed that the Green-Schwarz superstring on

PSU(2,2/4)

SO(1,1)<50() Supercoset, is classically

AdSs x S°, described by a nonlinear o-model on
integrable [3]. Due to the Z4-grading of this supercoset the structure of the Lax connection
in terms of the components of the Maurer-Cartan one-form (2.49)) can be assumed to have

the following form
Lo = LAY + 0 AD + loyase® AP + 03 A0 + 0,AD), (2.105)

where /; are constants to be determined by requiring that (2.103) satisfies (2.101).

Let us write the zero-curvature condition of L,, for each grading. First, for L&O),

200, AF — e (| AP, AP | + (6~ 6) 4D, AD | + 2030, [ A, AP]) = 0.
(2.106)
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This condition gives

by =1, G—06,=1 U3y = 1. (2.107)
For Lg) we have

0 P0, AT + 0,0, (7P AD)
1 1
(e oly + 7 lota) [ AL, AD | = S | AD, AP | - St [ AP, 4D 0.

(2.108)

The equation (2.108) can be put into the form of the equations of motion (2.64)) if the

following relations hold

2 2 _
gi”g—gl — —k, -6 _ (2.109)
2

For L and LY we have
Lo 0,A5) — oty | A9, AP | Pyt [ AR, AP |+ 928000, | 42, 4P| = 0,

Eﬁw%A?—fw%&LﬁmA?}—3Wﬂﬂﬂgﬁﬁq+vw&&ﬁﬁ%A9]:0

2.110)
The zero-curvature condition (2.50) of A and A®) allows to write (2.110) as
<7aa _ 51%2;4 ls Eaﬁ) [42.49] = o (2.111)
<'y°‘5 P Ui eaﬁ) 42,49 = 0. 2.112)

These equations will be equal to the equations of motion for A% ([2.65) and A® (2.66)

provided
€1€4 — 63 64 - 6163
B — =K. 2.11
Gty " 7 (@113
From (2.109) we find
20, = 03 + (3. (2.114)

This equation also follows from if (3¢, = 1. From (2.107), (2.109) and (2.113)), we
get

K2 =1, (2.115)
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which is the condition for xk-symmetry. This is an important result because the integrability

of the equations of motion implies k-symmetry.

Finally, we can write the coefficients ¢; in terms of a spectral parameter z as

1 1 1 1 1
50 = 1, El = — <22 + —) s fg = ——— <Z2 — —) s 63 =z, 64 = -, (2116)
2 22 z

which allows write the Lax connection (2.1035)) in terms of z.



Chapter 3

Yang-Baxter deformations of

semisymmetric o-models

In this chapter we study a family of integrable deformations known as Yang-Baxter de-
formations. The main characteristic of this type of deformations is that integrability is
preserved from the outset. This is due to the algebraic procedure which relies on the pos-
sibility of defining a r-matrix.

To start we introduce some brief comments on how these deformations emerged. Then,
we discuss the connection between the r-matrix and the integrability of the Yang-Baxter
deformed models and give a short classification of r-matrices for the case of AdSs x S°
background. After that, we present the Lagrangian for an Yang-Baxter deformed o-model
with Z,-grading and discuss its main properties. Finally, we show some examples of de-
formed backgrounds obtained by using particular choices of r-matrices which are equiva-
lent to those computed via TsT transformation of the AdS5 x S® solution.

The first evidence for integrable deformations was found in the SU(2) Principal Chiral
Model (PCM) [67] which is known to be integrable. Klimcik generalized this for any
compact Lie group in [4] and showed its integrability in [S]]. This model is called Yang-
Baxter o-model. Delduc, Magro and Vicedo considered the extension to a symmetric coset

space in [8]] and to a semisymmetric coset in [9}/10].

24
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3.1 The r-matrix and integrability

Along the lines of [68-72] let us define a Poisson-Lie group as a Lie group G equipped
with a Poisson structure. A Lie algebra g is defined by the operation [-,-] : g®g — ¢
known as the Lie bracket where ® denotes the tensor product. The Poisson structure, i.e.
the Poisson bracket {-, -}, can be defined on the dual g*, but it is not necessarily a Lie
algebra. If amap r : g — g®g is defined, an algebra with this map is called bialgebra,
and it is a Lie bialgebra if also g* is a Lie algebra. This is because 'r : g* ® g* — g* plays
the role as the Lie bracket on g*, which in turn allows us to identify g* with g by means of
its scalar product. So, given r, it is possible to define a Lie bialgebra (g, r) with a Poisson

structure. The requirement that this 7-map connects with the Poisson bracket leads to [71]
{(LPLY =[L®1+1®L,r|€eg®g, (3.1)
where 7 is the r-matrix. Let us consider the following expression
{LSL} ={Li, Ly}, (3.2)
where L1 = L®1and L, = 1® L. Since
tr{Ly, Lo} = {tr L,tr L}, (3.3)
it is possible to write
w{Ly, Ly} = {wL" w L}, kleZ,. (3.4)
Then we find

{oLF oL} =w{L}, L5} = klw (LY "L {Ly, Lo})
=kl (L§ 'L [Ly + Lo, r]) = 0. (3.5)

The latter result allows us to identify L as the Lax matrix and to establish that all the

invariant we can construct from it are in involution.

r-matrix
The r-matrix is defined in terms of wedge product of 7; € g as

1 ..
r= 57””Ti A Tj, (3.6)
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which belongs to g ® g. The wedge operation is defined as
T AT =T,0T,~-T,®T, cg®g. (3.7)

Due to its definition (3.6), the r-matrix is skew-symmetric.
A new operator R : g — g exists due to the presence of the r-map and can be under-

stoodas R: g+ gQ®g A g. It is defined as
RM)=tr;(r(1®M)), Meg, (3.8)

where tr, is the trace on the second subspace.
The existence of the r-matrix in a Poisson-Lie bialgebra allows to define a Lie bracket on

g in terms of the R operator,
[M,N]g = [R(M),N] +[M,R(N)],  M,Neg, (3.9)

which must satisfy the Jacobi identity to be well-defined. The Jacobi identity for (3.9)

leads to the so-called Yang-Baxter equation (YBE) [68]]

c=10 CYBE
c=+1 mCYBE

where M, N € g. In (3.10), CYBE refers to classical Yang-Baxter equation and mCYBE

to modified classical Yang-Baxter equation.

3.2 r-matrices of the Yang-Baxter equation

Let g be any Lie algebra, then g = n, @ h ® n_, where n, are maximal nilpotent sub-
algebras of g and b is a Cartan subalgebra. The subalgebras n, and n_ are generated by
the positive and negative root vectors. The subalgebra of g is by = h @ n, is called
Borel subalgebra. To identify the roots of g we introduce a Cartan-Weyl basis, composed
of the Cartan generators h; € b, positive e; € n, and negative f; € n_ roots. The Cartan

generators and the simple roots satisfy the defining relations

[hz‘7€j] = a45€5, [hmfj] = _aijfja [eiafj] = 5ijhj7 (3.11)
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where a;; are the elements that compose the Cartan matrix (a;;). We now define the non-
simple roots such that if e, and e, are two positive roots commuting to give a further

positive root e, then

[ea; eb] = Nabcea [fa;fb] = - abcfa (312)

where N, are constants.

A typical solution of the mCYBE is the Drinfeld-Jimbo type solution [68],
D) =iej /\fj- (313)

The associated linear R-operator is defined by its action on the Cartan generators and the

positive and negative roots
R(e,) =ieqs, R(f,)=—if,, R(h;) =0, (3.14)

and satisfies the mCYBE (3.10) with ¢ = 1.

On the other hand, some solutions of the CYBE are

¢ abelian r-matrices

Tap = hl A\ hj7 [hl, hj] = O, (315)

otherwise r-matrices construced by non-commuting generators are called nonabelian.

¢ Jordanian r-matrices

3
Jor

— 0, (3.16)

Tyor = i AN ej, T
¢ abelian Jordanian r-matrices

TA] = € A €, riJ = 0. (3.17)

3.3 Yang-Baxter deformed o-model

The action of the Yang-Baxter deformed o-model with Z,-grading is [9}/18,/50],

1 2\2
S = —MJ& o PP Str (Aado

T (3.18)

1
— A
1—nR,od " ) ’
where P;"B = 2(v*? + ke*?), v*F is the worldsheet metric with dety = —1, €' = 1, ¢ is

the constant in the YBE (3.10) and A, = g~'0,g are the components of the Maurer-Cartan
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one-form which take values on g. The operators d and d correspond to projections on the

Z, grading, given by
d= P, +2) %P, — P, d=—P + 27 2P, + P, (3.19)

with the property Str(M dN) = Str(dM N) where 7 = /1 — ¢n? and 1 is the deformation

parameter. In equation (3.18), o denotes the function compositionﬂ and IR, is defined as
Ry(M) = Ad;" o RoAdy(M) = g~'R(gMg~")g, (3.20)
with
R(M) =Stry(r(1® M)) = 17 Stry (T; @ T;M — (-1)PT; @ T, M)
=r' (T; Str (T;M) — (— 1)U T; Sr (T, M) (3.21)
where [¢] and [j] represent the gradings of 7; and 77, respectively. The R operator satisfies
Str(M R(N)) = —Str(R(M) N). (3.22)

It is also convenient to define the following currents:

1
= A =071A o= Pa'8
Ja 1—77Rgod @ @ ) JJ_r + JBa
- 1 . - -
J, = — A, =0"'4,, J¢=P*¥],. (3.23)
1+nRyod * £ 0
where the operators O and O are
O=1-1R,0d, O=1+nR,o0d. (3.24)

Undeformed action

The undeformed action corresponds to taking 7 = 0 in (3.18). Indeed, when 7 vanishes,

the Lagrangian becomes
1
L= —5 P27t (Aud]y—g 0 Ag) (3.25)

with d|,—o = P, + 2P, — P;. When applying each projector on Az and taking into account

the Z,-grading we get
1
L=-; [70‘5 Str (Ag>Ag>) + ke Str (AgUA(;”)] , (3.26)

which is precisely the Lagrangian (2.54).

I'The function composition is defined as f o g(z) = f(g(z))
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Derivation of the equations of motion

In order to find the equations of motion let us vary the Lagrangian of the action (3.18)

1 (]' C 2)2 a3
r— VTN p A d Str(A,,dod.Js)}. 27
) 5 (1 . 2) - {Str(5 s ng) + tr( od 5)} (3.27)

The variation of 0 A, is

040 = —g '0gJa+ g 0g(nRy 0 dJ.) + g 0u(99 " d9),
= —g_légja + g_lég(nRg o Jja) + ja(g_lég) — (nRy o Jja)g_lfsg + 6a(g_15g),

= [ja,g_lég] - [nRg odja,g_lég] + du(g10g). (3.28)

In order to calculate the 6.J3 in (3.27), we can use the properties of the R operator, so by
using (3.20) the variation of R, is

SRy(M) = Ry(6M) + [Ry(M), g "6g] — Ry ([M, g7 "dg]) . (3.29)
For M = dAg in (3.29) we get

5 ((Byod) (49)) = (Ryod) (645) + [ (R, 0 d) A5,97'6g] = By ([dAs,97'09]).
(3.30)

and using this relation repeatedly we get
s((red) a0) = (Reod) @0+ S (myod) [ (Ryod)™ (40).07'0]
k=0

=5 (R d) By ([do (Ryo 05450 07'50] ) 63D
k=0

for n > 0. By multiplying by n™ on both sides of the above equation and summing in n

from 0 to oo, we obtain

1
0| ———=Ap | =
1—nRyod

1 Ryod -1
_ b ey | mBeod sl am li e )
1 —-nRyod 1—-nRyod 1 —-nRyod
(3.32)
then we find the variation of J3,
- 1 7 -1 7 ~1
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By replacing (3.28)) into (3.33) we obtain

_ 1 -1 “15 1 7 ~1
0Jg = 1k od (55(9 69) + [Js, 9 '0g] —nRy 0 [dng 59]) . (3.34)
Then, by plugging (3.28)) and (3.34)) into (3.27), we obtain
o 1 (1 + 0772)2 a3 —1 o T 77 —1
5L — — §m{P_ Str (2a(g~10g) , dJs) + P*° Str <[Ja + Ry 0 dJa, g 59} ,djﬁ)
+ P Str (dja, 05(97"8g) + [Js, g"0g] — nRy o [dJs, g*lag]) } (3.35)

Now, by using the properties of the projectors PP Jsz = J2 in the first term and using
(2.86) in the second and third terms, and neglecting the total derivative terms, we have

5L = —i%{ — Str (97169, doaJ*) + Str ([Ji,gflag] ,dJU,>

+ Str ([dJJ_, nk, o chi] ,g_159> — Str (ci&ajf, g_159>
+Str (dji, [, g—159]> + Str (nRchjg, [dJ,_, g_15g]) } (3.36)
where in the last term we used the skew-symmetry of the 1, operator (3.22). Then after

some simplifications we get
oL ~ { str (9789 (d(0at2) +d (072) + | e d (1) | + [0 d (J2)])) J3:37)
The equation of motion is then given by

€=d(0,J%) +d(0uT3) + | Trard (1) | + [T d (J2) | =0, (3.38)

Zero-curvature condition

By definition the left-invariant one-form A = ¢! d g satisfies the zero-curvature condition

Z which, in components, is

1
Z = §€aﬁ(aa145 - 861404 + [Aom AB]) = O (339)

Plugging the relation into the above expression one can recast it into the following
form,
z = p {aajﬁ — 0pJa — R, 0adJs — nR,05d T + [Ja, Jﬁ]
o nRyds| + [nRod T, 5| = |y AT nRydTs | |,
= 0aJ? = 0a MR — R Pad T + | T2, T ]
| TewnRods?| = [Ty dJe| = [nR,dT.a Ry 2] =0, (3.40)
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and by using (3.10) for the operator R, because it is also a skew-symmetric solution of the

YBE, and (3.38)) the zero-curvature condition becomes

Z

Cud? = 0t [T 2| 4 Ry (€) e [ 12, dT o] = 0. (3.41)

Let us remark that the field equations on the odd sector £ = 0 and £®) = 0 simplify if

we consider the following combinations:

Pio(1—nR,)(E)+ P(2)=—4 [j(+20)“ Jf(g)] |

Pyo(1+0R,)(E) — Py(2) = —4 [J(_QO{, J;‘f“)] . (3.42)
And, as a consequence, one can write the field equations in the odd sector as

e — [jfo)n Ja(3)] —0, &= [Jg’ jia(l)] 0, (3.43)

which have the same form as those of the undeformed model written in terms of unde-

formed currents (2.63).

Virasoro constraints

The action (3.18) in terms of the deformed currents (3.23) gives

1(1+cn?)? o o
5= _ijdazﬁ P — ke*?){Str(Ju,d o Jg)) — Str (nRy o dJy, d o Jg)}.

By using (3.19) the part of the action proportional to the metric takes the form,

1(1+em?)*1 ) 2
=—-+ 7 - [dog?yB st ( (2) ()). 44
Sy 2<1_C772)772f oy Str ( J; JB (3.44)

The Virasoro constraint is

05

Twg=—2—=
B 5’}/0"3

0, (3.45)
where T3 is the energy-momentum tensor, implies that

1
Str(JPJP) — 5%57”5 Str(JPJP) = 0. (3.46)

Finally, taking the projector on (3.46)) we get

Str(J°@ @y =0, su(JP ) =0, (3.47)
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The Lax connection

From (3.38) and (3.41)) we find the deformed Lax pair

7(0) Jo 1 2 Jo Jo
L2 = JOU /T rapio® )\‘QﬂL(m AW T 2@ (3.48)

|
M = SO AT e e +C’7 M AT e ® (3.49)

where A is the spectral parameter. So the Lax connection is constructed by the linear

combination of these equations,
Lo=Lio+ M_,, (3.50)

and it satisfies the zero-curvature condition.

The results above are valid for any o-model with Z,-grading.

3.4 Yang-Baxter deformations of AdSs x S°

The deformed action to describe type IIB superstring theory in AdSs x S° is (3.18) since
it possesses a Z4-grading; thus, we apply the same formulae we computed in Section [3.3]
The equations of motion arising from the Lagrangian of the action (3.18]) are given by

(3.38)), the zero curvature condition Z = 0 in terms of jf_‘ and J¢ is (3.41), the Virasoro
constraint is and the Lax connection is (3.50).

K-=symmetry

In this case, let us consider the following infinitesimal right translation of the coset repe-

sentative g,

69 = g[(1 —nRy) €V + (1 +nR,) ], (3.51)
The variation of the action (3.18)) it, is given by

(1+cn?)?
2(1 —en?)
(14 en?)?

30— o) Jd(ﬂ Str (€W Py o (1 +7R)E + P o (1-nR)E).  (3.52)

0,8 = Jda2 Str (e€)
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Using the identities (3.42)) and the zero curvature condition in terms of the deformed current

P(Z) = P;(Z) = 0, the variation of the action can be written as follows

1 2\2 _ _
5,8 = —2% Jd02 Str (é” [Jiii, Jj_‘“)] +e® [Jfg, Jf(?’)]) . (3.53)

In a very similar to the undeformed case (2.88)) and (2.89), an ansatz for the transformation

parameters 1) and €®® can be taken as,

(v = (JS”%% 4 HQJEQ)‘“) , (3.54)
e — (JORE, + T, (3.55)

where /{Srl) and £

are the vectors corresponding to 1 and 3 grading. From now on, the
computation is totally parallel to the procedure leading to equation (2.92)) and (2.93). We
obtain
1 2\2 o
5,8 _ (Lt on’)” Jdﬁ{ Str (J_<2) Jf(z)) Str (T [JSQ, m(l)D
4(1 — cn?)

+ Str (ﬁ“”’fﬂ”) Str <T [Jiiz, zmﬂ?’g]) } (3.56)

where T is the diagonal matrix defined as T = diag(/4, —I4). The vanishing of the total

variation of the action off-shell, with respect to g and v** gives the following condition:

5770 = L s (e [ I w [0 090]) . as)

for the transformation of the metric v*? in order to ensure x-symmetry, .

3.4.1 r-matrices for AdS; x S°

The construction of the r-matrices can be done in terms of a basis of gl(4|4) since it is
possible to write the generators of psu(2,2|4) in terms of combinations of the generators
of gl(4]4). This is developed in Appendix

Drinfeld-Jimbo r-matrix

The DJ r-matrix (3.13)) can be written as

oy =iy By By (—1)P0 (3.58)

1<i<j<8
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where [i] is the grading associated to the index i, such that [i] = 0 for¢ = 1,...,4 and
[i]] = 1fori = 5,...,8. In this basis is easy to see that the positive and negative roots

are Iy;; with 7 < j and Ej; with 7 > j, respectively, and the 12 operator associated to this

r-matrix in (3.14)) is
.

R(Eij) =40 if i=7- (3.59)

—iEij if ¢ >j
Abelian r-matrix

An abelian r-matrix (3.15]) can be written in terms of diagonal elements

such that any linear combination of them also satisfies the CYBE. In terms of the associated

linear R-operator it only acts on the Cartan generators

RAb(Ez’z’> = —Ejj, RAb(Ejj) = E“ (361)

Jordanian r-matrix

The Jordanian r-matrix (3.16)) can be written in general as [/18]]
rior = Eij A (B — BEj;) =7 Y, Ea A Egj, (3.62)
i<k<j

forl <7< j <mwithy = a+ for~vy = 0. The action of the linear R-operator is

Rio(Ej;i) = —akby+ BEj;,  Rio(Ejr) = —vE, (3.63)
Rio(Err) = (g — Borj)Eij,  Rior(Eki) = vEkj, (3.64)

where ¢ < j < k and the nilpotency is (Ry,;)"” = 0 for n > 3.
When o = § = cand v = 2¢, the Jordanian bosonic r-matrix is obtained from the
Drinfeld-Jimbo r-matrix (3.13) through a twisting [18,/73]. Moreover, unimodular Jorda-

nian r-matrices including fermionic generators were obtained recently in [[74].
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Abelian-Jordanian r-matrix

Another type of r-matrix can be constructed from bosonic commutating positive or nega-

tive roots generators. These matrices are referred as abelian-Jordanian type (3.17)
ra; = Eij A Ey with 1<, k<l,g#k, i#lL (3.65)
The associated linear R-operator is given by
Raj(Ew) = Eij, Raj(Ej) = —Ey. (3.66)

In this case, the nilpotency is (R4;)" = 0 forn > 2.

Unimodular nonabelian r-matrix

It is possible to construct several nonabelian r-matrices but, as was remarked in [50], based
on a classification in [75] only a subset of the possible r-matrices satisfy the unimodularity
condition,

I [T;,T;] = 0, Tieg. (3.67)

Notice that this condition is trivially satisfied for abelian r-matrices. For the nonabelian
case, however, unimodularity is a more subtle issue. In [50] it is given a list of the unimod-

ular nonabelian bosonic r-matrices that solve the CYBE. These r-matrices have the form

r=anrbt+cnad (3.68)

and are called rank four r-matrices. In (3.68)) a, b, ¢ and d are linear combinations of the
generators 7; such that [a,b] = [c,d] = 0. The list of r-matrices in terms of the s0(2,4)

generators p,,, k,, my,, and D with i, v = 0, ..., 3 given in Appendix [Bis

r1=p1 Ap2+ (po+p3) A (Mo — mas),

T2 = p1 A P2+ (po +p3) A (P3 + Mo — maz),

T3 = p1 A (Mog — maz) + (po + p3) A (p2 + mo1 — ma3),

Ty = (p1 — Moz + mag) A (ko + k3 + 2p3 — 2mas) + 2(po + p3) A (p2 + moe1 — ma3),
75 = p1 A (Mo2 — ma3) + (po + p3) A (D + mos),

Te = P1 A Mo3 + 2po A p3,
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r7 = Moz A M2 + 2py A p3,

Ts = p1 A P2 + (po + p3) A M,

T9 = p1 A P2+ (po + p3) A (p3 + maa),

10 = p1 A P2+ ps A (po + maa),

T11 = P1 A P2+ P3 A My,

T12 = P1 A P2+ po A (3 + maz),

T13 = P1 A P2+ Po A Mz,

T14 = P1 A P2 + Mi2 A M3,

T15 = p1 A p3 + (Mo — maz) A (po + ps),

716 = P1 A Pp3 + (D2 +mo1 — mas) A (po + p3),
ri7 = p1 A (p3 + Moz — Ma3) + (Po + p3) A (P2 + mo1 — mu). (3.69)

However, unimodular nonabelian r-matrices cannot be constructed for the compact algebra

su(4) of S°, thus we cannot define this type of r-matrix in this subspace [76].

3.4.2 Deformed Backgrounds generated by r-matrices

Here we list some backgrounds that can be obtained by deforming AdSs x S°. They result

from the choice of different types of r-matrices we presented above.

Yang-Baxter deformation of AdS; x S°

For ¢ = 0 and switching off the fermionic degrees of freedom, so that d = 2P, the

deformed Yang-Baxter o-model Lagrangian of the action (3.18)) can be written as

L= —5(70‘5 — eaﬁ) Str (AaPQ o (’)71145) , (3.70)

where the operator O~! depending on the deformation parameter 7 is given by

,1 1

- 3.71
]_—QT]RQOPg, ( )

and R, was defined in (3.20). In order to extract the background fields from the Lagrangian

(3.70) we need to define a basis for the coset (2.33)),

50(2,4) @ so0(6)
50(1,4) ®@so(5)

= spang {K,,}, m=1,...,10, (3.72)
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With this, the action of the projector P, on the components of the Maurer-Cartan one-form
is

Py (A,) = EJMK,,, (3.73)
and

Py (Ry(Kp)) = A, K, (3.74)

Moreover, the projected action of the operator (3.71) can be computed in a similar way
P, (O7NKy)) = C,"K,, (3.75)

where the projector on the coset is

ZStrKX

Str (K, K,,) (3.76)

m

Combining equations (3.71)), (3.74) and (3.75)) we can find the relation between the coeffi-

cients A, and C

Kp = (C,"K, —2nC,"A,PK,) , (3.77)

or in matrix notation,

C=(I-2nA)"", (3.78)

which can be solved for C.

We can rewrite the deformed Lagrangian (3.70) as

1
Lo () B O S (k) 379

or

_ aff min af mrn
L= =5 (Y Clmm ES"Eg" = € Clo B ES'") (3.80)

where N is a constant due to the supertrace in (3.79), the coefficients C',,,,) and CY,,,,,) are
the symmetric and antisymmetric parts of the matrix and E" represent the coeffi-
cients in front of each of generators in (3.73).

Gravity dual of SYM on non-commutative spacetime

To evaluate the Lagrangian (3.70)), let us take the following coset parametrization,

g = exp [pox’ + piz' + paa® + psz®|exp [~Dlog 2] € SO(2,4)/50(1,4). (3.81)



CHAPTER 3. YB DEFORMATIONS OF SEMISYMMETRIC 0-MODELS 38

The abelian Jordanian r-matrix [20]]

TAJ] = [p2 A P3 + VDo A P1, (3.82)

where p,, is defined in Appendix [B|and j, v are constant parameters.

The procedure to compute the deformed background is the following. First, we com-
pute the Maurer-Cartan one-form A = g~'dg and the coefficients £ from by
using the projector P, on the components of A. Then, we compute the coefficients A, by
applying the projector P, on the action of the operator R, (3.20) on the generators of the
coset K,,. The coefficients C,,,,y and Cf,,,) can be identified from the matrix C in (3.78).
Finally, we can compute the deformed Lagrangian (3.80) explicitly and extract the metric
from the symmetric part and B-field from the antisymmetric part.

In this case, the metric and B-field are

2 2 d 2
ds* = S (daf + dad) + o (dad +dad) + —- +d 3, (3.83)
a/2 az
B:—Z4+a,4dxg/\dx1~|——z4+a4d332/\d333, (3.84)

with 2nu = a?, 2nv = a’?. This background was first obtained via TsT transformations of
AdSs x S° [49].
In the following, the procedure to compute the metric and B-field will be the same only

with different choices of coset parametrization and r-matrix.

~-deformed AdSs x S° with three parameters

To evaluate the deformed Lagrangian (3.70)), let us adopt the following coset parametriza-
tion

9= Mor, ¢2,93)2(C)gr(r) € SU(4)/SO(5). (3.85)

where the matrices A, = and g, are defined as

A(¢1, P2, ¢3) = exp [% (p1h1 + P2ha + P3hs) |, (3.86)
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cos % sin % 0 0 cosh % 0 0 sinh g
i € ¢ r . r
—sinz cosz 0 0 0 coshf —sinhZ 0
2(¢) = i ; ¢ | gr(r) = : 27« 7”2
0 0 cos3 —sing 0 —sinh 5 cosh 5 0
0 0 sin % cos % sinh % 0 0 cosh g
(3.87)
The abelian r-matrix [[19]
Tap = ,u3h1 VAN hQ + ,Lblhg A hg + /I,th A\ hl, (388)

where y; are constant parameters, and h; (i = 1,2, 3) are the Cartan generators of su(4).

With the following coordinate transformation
p1 = sinrcos(, p2 = sinrsin (, pP3 = COST, (3.89)

the metric and B-field are

3 3 2
ds® = dsas, + Y (d pf + Mp} d¢?) + Mpip3p; (Z o d¢i> , (3.90)
i=1 i=1
B = M(3spip3ddr A doa +A1p505d 6o A dds +Jop3pides Ader),  (391)
where
M =1+ 33pips + A paps + A3 pspi, (3.92)

and the relation between parameters is: 8nu; = 1, 8o = Y2 and 8nug = 3.
If we consider 47, = 42 = 43 = 4 in (3.90) and (3.91) we get the Lunin-Maldacena

background. This background was first obtained via TsT transformations of AdSs x S% [49]

Gravity dual of the non-relativistic limit of SYM: Schrodinger spacetime

We are now ready to parametrize bosonic group elements of PSU(2, 2|4). The group ele-

ments of SO(2,4) and SO(6) are parametrized as

Ja = €Xp (xlpl + 2%py + 23pg + xopo) exp (—Dlog 2)

=exp (z'p1 + 2°po + 2 py + 2 p_) exp(—Dlogz) € SO(2,4), (3.93)
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gs = exp (P1ha + Pahs + P3hg) exp (—(ny3) exp (—%T7f> € SO(6). (3.94)

The light-cone coordinates and the associated generators are given by

0 .3
R i Do = p3
xt = : = : 3.95
Thus, a bosonic element g of PSU(2, 2|4) is represented by
g = gags € S0(2,4) x SO(6) = PSU(2,2|4). (3.96)
The abelian r-matrix [21]]
i
T'ab = _Ep_ A\ (h4 + h5 + h6), (397)

where p_ = pgy — ps is defined for a particular representation of s0(2, 4) and 3 is a constant
parameter.
In order to write the metric and 5-field in a convenient form we make the following

change of coordinates

1

¢1=x+§<w+¢), r=p, (3.98)
1 1

¢3 = X, (3.100)

and then we get

—2dztdz™ + (dx')? + (dz?)? + d 22 dzt)?
ds? = 227 OF (;) (do7)” +d2 gl ;) +d s, (3.101)
B, .
Bf;d:v A (dx + w). (3.102)

Here, the S® space is written in terms of the coordinates (x, u, v, 0, ¢)

dsis = (dy +w)? + d sipe,

dsépz = dp? +sin® (Jf + 03 + cos? ,uag) , (3.103)
where

o = %(Coswdﬁ—i—sinwsined(ﬁ),
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o9 = %(Coswdﬁ—sinwsinedgb),

1
o3 = §(d¢+0089d¢), w = sin® j1 o3. (3.104)

This background was first obtained via a TsT transformations called null Melvin twist of

AdSs x S5 [51].

Until now we have obtained backgrounds by using only abelian r-matrices which sat-
isfy trivially the unimodularity condition, and then the backgrounds derived above are stan-
dard supergravity backgrounds since they coincide with those obtained via TsT transfor-
mation.

On the other hand, nonabelian r-matrices do not lead, in general, to standard supergrav-
ity backgrounds [50]. The classification of nonabelian r-matrices given in (3.69), which
satisfy the unimodularity condition, leads to standard supergravity backgrounds, some of
them were computed in [S0]. In [76], non-unimodular r-matrices were considered, leading
to deformed backgrounds which are solutions to the generalized supergravity and some of
them reduce to the original AdSs x S° background after performing a generalized TsT
transformation.

The Drinfeld-Jimbo r-matrix including fermionic roots can be constructed by using
Dynkin diagrams associated to a Cartan-Weyl basis [10]. Choosing different configurations
of Dynkin diagrams lead to different deformed backgrounds . For some particular example
of DJ r-matrix, the metric and B-field were constructed in [[11] and the Ramond-Ramond
fluxes in [[12]]. These background fields do not solve the standard supergravity equations
but a set of generalized type supergravity equations [13,/14]. For the AdSs x S® and
AdSy x S% x T, Seilbold and Hoare found in [15] that the unimodularity condition is

satisfied if and only if all the simple roots are fermionic.



Chapter 4

Yang-Baxter deformations of the

AdS, x CP3 g-model

In this chapter we consider deformations of superstrings in the AdS; x CP? background.
The o-model admits a supercoset description with Z,-grading and it is integrable. Then we
can apply the same procedures described in Chapter [3to study its integrable deformations.

We start describing the AdS, x CP? background as a supercoset and the Z,-grading
of the superalgebra uosp(2,2/6). Then, we review the supercoset description of type ITIA
superstrings in AdS, x CP?. In the following, we discuss this in the context of the Yang-
Baxter deformation. We propose some r-matrices for AdS,; x CP* which include the
bosonic DJ r-matrix as well as one abelian Jordanian r-matrix, two mixed r-matrices and
some examples of nonabelian r-matrices based on the classification in [S0]. Finally, we

calculate some deformed backgrounds associated to the gravity dual of ABJM theory.

4.1 Superstrings in AdS, x CP’

The AdS, x CP? background is a solution of Type IIA supergravity equations of motion
together with a constant dilaton, an F5, and an F) flux. Due to the AdS/CFT correspon-
dence this background is dual to N’ = 6 SU(N) x SU(N) Chern-Simons theory in three
dimensions with N, k — oo and N /k large, where N is the rank of the gauge group SU(N)

and £ is the level of the Chern-Simons action [45]].

42
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4.1.1 The AdS, x CP? background

For this background, from (2.20), for n = 4, and (2.21)), for n = 3, we get

s, = S02:3) _ Spld cpi_ SUM) _ 50(6)

)
SO(1,3) = SO(1,3) ~UE) T UB)

4.1)

so the bosonic background is

5 _ Sp(4) x SO(6)
AdSs x CP = o5 T @) (4.2)

When adding fermions we need to extend the numerator of the coset (4.2)) to a supergroup
that contains it as its bosonic subgroup. In this case, due to the isomorphism Sp(4) ~
USp(2,2), the supergroup UOSp(2,2|6) allows us to write the supercoset as [77]]

UOSp(2,2[6)
SO(1,3) x U(3)°

4.3)

4.1.2 The Arutyunov-Frolov-Stefanski action

Arutyunov and Frolov [46]] and, in parallel, Stefanski [47]] proposed a way to investigate
the dynamics of type ITA superstrings in AdS, x CP?. The main idea was to follow the
Green-Schwarz-Metsaev-Tseytlin approach for type 1IB superstrings in AdS5 x S°, where
the supercoset o-model formulation gives an alternative to the GS formalism. Thus, type
ITA superstring theory in AdS, x CP? can be described as a o-model on the supercoset
UOSp(2,2|6)/(SO(1,3) x U(3)). In ten dimensions, superstring theory requires spinors
with 32 components in total. This supercoset description lacks 8 fermionic components and
then does not describe the full superstring. It was shown that these components have been

gauged away in this o-model so the coset description has partially fixed k-symmetry [46].

The uosp(2, 2|6) superalgebra and its Z,-grading

The 0sp(4/6) superalgebra can be realized in terms of 10 x 10 supermatrices. Such super-

matrices are of the form
X 0

n Y

M = , 4.4)

where X and Y are 4 x 4 and 6 x 6 bosonic matrices, and 77 and € are 6 x 4 and 4 x 6

fermionic matrices. The supermatrices M belong to uosp(2, 2|6) if they obey the following
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conditions [77]]

C 0 C 0
et [ M =0,
0 [6><6 0 [6><6
4.5)
0 0
Mt 7 M =0,
0 —Isxs 0 —Isxe
where the supertranspose of a matrix M is defined as
Xt ot
M — . (4.6)
ot Y!
In condition @.5)), C, and 7, are
0 0 0 1 10 0 O
0 0 -1 0 0 01 0 O
04 = ) V= 3 (47)
0 1 0 O 00 -1 0
-1 0 0 0 00 0 -1
C, denotes the real skew-symmetric matrix satisfying C? = —1I;,4 while 7, is part of

the SO(1, 3) Clifford algebra. The first condition in (4.5]) defines the algebra osp (4/6),
whereas the second gives a real section of 0sp (4|6) denoted by uosp(2, 2|6). From the first

condition in (4.5) we get,
X'=-—Ccxcyt, Yi=-Y, 0'=-n0C;"' n'=0C40, (4.8)

and from the second one,
X*=(’C)X(’C)™, Y =Y, 0" =(°Cl, n*=-n(1"Cs).  (49)

The conditions on the bosonic matrix X show that it belongs to usp(2, 2), the unitary form
of sp(4). For Y, these are the conditions for the s0(6) algebra. We also notice that the
generic matrix M contains 96 real fermionic components but the condition on 6 and 7
reduce this number to 24.

The superalgebra wosp(2, 2|6) admits a fourth order automorphism [46]] with stationary
subalgebra so0(1,3) @ u(3). This automorphism can be used to define a Z,-grading such

that uosp(2, 2|6) decomposes as a direct sum of four subalgebras,

uosp(2,2(6) = AV @ AV @ A® @ A®), (4.10)
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where each subspace is an eigenspace of ()
Q(A®R) =iFA® AW, A ¢ AR mod Z,, (4.11)

similar to the AdS5 x S° case.

Constructing the action

Let g be an element of the supercoset (4.3)) belonging to the supergroup UOSp(2,2(6). We

use ¢ to build the Maurer-Cartan one-form A defined as follows,
A=—g7tdg=A0 4+ A® L A® L AB) - Acuosp(2,2/6), AW e AW4.12)
By construction A satisfy the zero-curvature condition
Z = 0,A — 0pAa — [Aa, Ap] = 0. (4.13)

The supercoset description of type ITA superstring theory in AdS, x CP? has the action [46]]

S = Jd2 oL, (4.14)
with Lagrangian density
1

L= =5 |y su (APAL) + ke s (ADAP) | (4.15)

where v*? is related to worldsheet metric Ja as o8 = gof 4/—g such that dety = 1. The
first term of corresponds to the kinetic term. The second term, proportional to the
parameter k, is the WZ term and has contributions only from the odd components of A,
and thus it contains the fermionic degrees of freedom of the theory.

The equations of motion derived from this Lagrangian are
E = 0, A —[A,, A%] =0, (4.16)

where

1
A% = 428 A% e ( AD AS’)) _ (4.17)

The equations of motion £ in (4.16) can be projected on the subspaces of the Z, automor-

phism. The grading 2 component of {.16) is

1
o0 (247) [0 47 (048] - [0 7] <0

(67
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while the grading 1 and grading 3 components of (4.16)) are given, respectively, by

W = [Ag>,A<2)] + kP [A@ A;”] 0, 4.19)
£B) = ob [AS),A(;] €of [AQ,A(B”] 0. (4.20)

Using the tensor Pgﬂ defined in (2.67)), the equations of motion (4.19) and (4.20) can be

written as
e = pe? 4@, 49| o, @.21)
£9 = P | A, AP | ~0. (422)
By varying the Lagrangian (4 with respect to 70‘5 gives rise to the Virasoro constraint
1
Str <A§3‘>A<;)> — $7as7" St (Af)Aff)) ~0. 4.23)
So the construction of the coset sigma model goes along similar lines as for the Ad.S5 x
S5 superstrings Sectionm The next step is to study the k-symmetry in the action (#.14).
K symmetry

The - symmetry transformations can be understood as the infinitesimal right local action

of a element G = exp ¢ from UOSp(2,2|6) on a coset representative g,
0g=g (6(1) + 6(3)) ;o oe=€el) 4@, (4.24)
The variation of the action (4 it, is given by
0gS = fda2 Str (e€) ,

Using the identities (4.21)), (4.22)) and the zero curvature condition P;(Z) = P3(Z) = 0,

the variation of the action can be written as follows

5,8 = J da2{597a5 Str <A§)Ag)) _4Str (e(l) [AP“,ASZ] +e® [AE””,ASL]) }
(4.25)
Under s-symmetry transformations the action should remain invariant off-shell. The cru-
cial point of this construction is the ansatz for the transformation parameters ¢!) and

) [46],

1
= ADAD R 4 L AD AP + AV RVAG — st (mﬁfmgj) K (4.26)
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, 1
e = AL AR+ kETAZLAR) + ALRCTAT) — s <2A531A(;j) K7, (427)

-

where ¥ = diag(/ly, —Is) and /f(f), k&)

are the vectors corresponding to 1 and 3 grading.
From now on, the computation is similar to the procedure leading to equation (2.92)) and
(2.93). The vanishing of the total variation off-shell of the action , with respect to g and

78, gives the transformation of the metric v in order to ensure x-symmetry,
1 1
07 = St (AP [nss, AL?]) + 5 St (AR k22, A9 ]). (4.28)

It is worth to mention that for the derivation of the x-symmetry we used the fact that
Piaﬂ is an orthogonal projector, and then, the realization of this symmetry required that

Kk = +1.

4.1.3 Integrability of AdS, x CP? superstring
The equations of motion (4.16]) admit the Lax connection,
Lo = LA + 6 AD + loyage™ AP + £3,ALD + 0, AT, (4.29)

where /; are constants to be determined by requiring that (4.29)) satisfies (2.101]). The pro-
cedure to find the Lax connection explicitly in terms of a spectral parameter 2 is completely
analogous to the one discussed for the superstring in AdSs x S® (2.103)) and requires that

x = +1. Thus, the Lax connection is

1 1 1 1 1
Lo=AD 4 (224 S ) AD — — (22— — ) 4,5 A® 1240 + —A® - (4.30)
2 22 2K z2 P z

However, as we mentioned before, the o-model for AdS, x CP? does not contemplate
all the fermions of type IIA superstrings. The analysis of the Lax pair for the complete
theory, which includes the non-coset fermions, i.e. fermions that are not in the supercoset

o-model, was done in [78-81]].

4.2 Yang-Baxter deformations of AdS; x CP’

All the results presented in Section can be applied to AdS, x CP3. The Lagrangian
density of the Yang-Baxter deformed o-model with Z,-grading gives the action

(]‘ + 0772)2 J 2 af 1
S=—————"|d°c P Str | Aydo ———— Ay |, 4.31
2(1 —cn?) 7=t Ol—nRgod A (4.31)
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where P{” = 1(v% + ke®®) and c is the constant in the YBE (3.10). The operators d and

d are defined by the combination of projectors
d=P +202Py— Py, d=—P, +2) %P, + P, (4.32)

satisfying Str(M, dN) = Str(dM, N) where /) = /1 — ¢n? and 7 is a deformation param-

eter. We define the currents as

1
= A =0"'A a — pos

Ja 1—77Rgod @ O s ‘]i + ‘],37
- 1 - - -
Jy=— A, =0""A,, J =P Jg, 4.33

1+ 7R, o0d T (439

where the operators O and O are
O =1-1R,0d, O=1+nR,0d. (4.34)

Thus, the equation of motion becomes
€= d(0,J%) +d(0uT}) + | Jawsd (1) | + [T d (J) | =0, (4.35)
and the zero curvature condition is now
2= 0,09 — 0% + [Ja,, ij] +0Ry(E) — e [dJS‘, Jja+] —0, (4.36)
while the Virasoro constraint is
Str(J*® @y =0, su(JUP ) =0, (4.37)

These results reduce to the ones for the undeformed case [46] whenn = 0 .

Due to the Z,-grading of this o-model the Lax pair can be constructed in the same way
as was done for the deformed AdS; x S° (3.49).
K-symmetry

To show that the deformed action (4.37)) is invariant under x-symmetry let us consider an

infinitesimal right translation, g = ge, with

e=(1—-nRy)eW + (1 +nR,)e®. (4.38)
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¢ and €®), whose expressions will be determined below, take values in A® and A®

respectively. Then, the variation of the action (4.31)) with respect to g reads

(L+en’)® [ o W) e 3) g
5yS = 50 ) d?o [Str (1 —nRy)e™M, EP) + Str ((1 4+ nRy)e, EW)] . (4.39)
By using the following property of the R operator Str(M, R(N)) = — Str(R(M), N), we
can write (4.39) as
5,5 = L) d®o [Str (W, Py o (1+nR,)E) + Str (6¥), P o (1 — nR,)E) |4.40)
9 _2(1_0772) » 13 Nivg y L1 nNitg e

where € is given in (4.35). By considering the combinations given in (3.42))
Pro(1=nR,)(E) + P(Z) = =4 | T2, 120
Pyo (1+0R,)(€) - Py(2) = 4|12, 71V, (4.41)

and the zero curvature condition P;(Z) = P3(Z) = 0, we get

0g5 = _2% JdQ o Str <e(1) [J(E{Q,), ji(l)D + Str <€(3), [Jfﬁ, Jf(g)]> )

_ 2% fd2 o {Str ([JS’_), e<1>] J “)) + Str ([Jfﬁ, e<3>] , Jf(3))} . (4.42)

Now, we propose the following ansatz for ¢ and ¢, inspired by the form they take in

the undeformed case (4.26)) and (4.27),
|
= SIS 4 kIR I + IR D - S su (ZJ J(2)> K8
1
O = JATER 4 kT JATE + TR T - s (2Ja+Jg2+>> K0 (4.43)

where ¥ is a diagonal matrix ¥ = diag(l, —I5). The x5 and x*° are the x-symmetry
parameters which are assumed to be independent of the dynamical fields of the model. The
automorphism 4 acts on 6(1) and € above, and in order to e € AM and €®) € A®)

need x5° € AW and *” € A®). Then, the commutators in #42) can be written as
1
|2, e“)] _ lJ(”Jﬁ J = < s (2202 2, mﬁi]
1 oy ~
[Jﬁﬁ, e<3>] lJﬁJﬁ”J@) S St (2J}2 Jg?) 72, &5_] . (4.44)

Here some terms cancel each other due to the cyclicity of the indices «, § and d. Using the

following identity

A? = éStr(ZAQ)A + %Str(AQ)ZA, (4.45)
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we can write
1 1
IR — = su (2202) 2 - S st (1252 22,

2) 7(2 2) 1 2 2 1 2)
JELIELIE — S su (2272 I8 - < Su (28

+

) 2J@, (4.46)

+

so the commutators (4.44)) reduce to

1
[in),e“)] - [g s I)sI2, ++] - 8Str(Jg2 J )[ZJa , ++]

1 o ~
|2, 69| = < su(JFLY) |22 k2| (4.47)
Then, the variation of the action (4.42)) under x-symmetry becomes
(1+ en?)? 1 2) 7(2 2 za(l
(SgS = —2W d2 O'{ — gStr (J/éjjéj) X Str([ZJ ) /€++:| J+( ))

-3 Lstr (JRI) x st (|22 w2 ] @),

= (1—|——C77)) de 0'{ Str (ZJ(Q [’f++v joz }) Str <Jé22J(§3)>

4(1 — en?
S (SIZ 62, 029 s (J272) . (4.48)
On the other hand, the variation of the action (#.31) with respect to 7 is
5,8 = ;8+—EZ; J &0y s (JEIP) s (JOIP) ) @49

By adding (4.48)) and (4.49) and requiring that the total variation of the deformed action
@.31) vanishes off-shell we can deduce the transformation of the worldsheet metric v

under x-symmetry,

598 — L1~ ) sur (zjﬁ [/m, Jo ] +nJ? [n‘iﬂ,, J§<3)]> . (4.50)

2

4.3 r-matrices for AdS, x CP?

Based on the classification shown in Section we present here some solutions of the

YBE for AdS, x CP3.

Drinfeld-Jimbo r-matrix

A typical solution of the mCYBE is the Drinfeld-Jimbo type solution which is constructed

in terms of the positive and negative roots of the superalgebra. The DJ r-matrix of uosp(2, 2|6)
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at the bosonic level is just the sum of the usp(2,2) and s0(6) DJ r-matrices, respectively.

The DJ r-matrix associated to usp(2, 2) is
Tpy = €1 A 1+ e A fo, 4.51)
and for s0(6) is
Fog =€ A fit+én fotésnfs (4.52)

where e;, f;, & and f; are the bosonic roots of usp(2,2) and so(6) defined in Appendix @
The R operator corresponding to this DJ r-matrix is defined by its action on the Cartan

generators, the positive and the negative roots,

Rei = iei, sz = —Zf“ Rhl = 0, (453)

Ré; =ié;,  Rfi=—if;,  Rh;=0, (4.54)

which satisfies the mCYBE with ¢ = 1.

Abelian r-matrix

An r-matrix of this type is constructed by commuting generators and satisfy the unimodu-
larity condition trivially. It can be built in terms of the Cartan generators L, L3 and M3 of
CP® [48]

r= L AN M+ pusLs A Mg+ pusls A L, (4.55)

where the y1;’s are constant parameters.

Abelian-Jordanian and mixed r-matrix

Abelian-Jordanian r-matrices are abelian and nilpotent and one example for AdS} is
T'Zpl/\PQ, (456)

where P, and P, are the AdS, generators given in Appendix
Two examples of r-matrices which are composed by generators of isometries of both
subspaces, AdS, and CP3, are
r= %PZ A Ms, 4.57)
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1
r= EPf A (1L + PaLs + BsMs), (4.58)

where «, [3; are constants and P, and P. = Py, — P, are AdS, generators given in Ap-

pendix [E{and L, L3, M5 are Cartan generators of CP?.

Unimodular nonabelian r-matrix

A list of unimodular nonabelian r-matrices for s0(2,4) is given in (3.69). From it, rg, 713
and ry5 are written in terms of a subset of generators that can be embedded in so(2, 3) and

thus be used to construct deformations of AdS,, ﬂ

Tg :PQAM01+2P0AP17 (459)
13 :P1 AN P2 + PO AN Mlg, (460)
T15 =P1AP2+(M01—M12)A<P0+P2). (461)

Also, we could consider generators of isometries of CP2, which obviously commute with

those of 50(2, 4), in order to construct unimodular nonabelian deformations of AdS, x CP?,

7’1:P1A5A+(P0+P2>A(MOl—Mlg), (462)
T'QZPl/\SA—F(PO—l—PQ)/\(P2+M01—M12) (463)
T7 =M02 /\SA+2P0/\P2, (464)

where S, is any standard generator of isometries of CP?.
The complete classification of this type of r-matrices has not been done yet. The r-

matrices we considered above are some examples of those that can be used to deform

AdSy.

4.4 Deformed Backgrounds generated by r-matrices

In this section we will compute the backgrounds of some of the r-matrices we proposed.

'As was mentioned at the end of Section [3.4.1] it is not possible to construct unimodular nonabelian

r-matrices for compact Lie algebras [[76]



CHAPTER 4. YB DEFORMATIONS OF THE AdS, x CP? s-MODEL 53

4.4.1 Gravity dual of ABJM on non-commutative spacetime

The non-commutative deformation of the ABJM three-dimensional theory corresponds, on
the string theory side, to a deformation of the AdS, space.

Coset construction of AdS,

The corresponding coset for AdS; is

USP(2,2) _ SO(2,3)

AdS, = ~ ) 4.65
YT 50(1,3) 0 SO(1,3) (4.63)
In terms of its algebra the coset for AdS, can be written as
50(2,3)
2,3) = —~ 1,3 4.66

where s0(1, 3) corresponds to the local isometries. In order to write an appropriate coset
parametrization of (4.65)), we consider the following basis

50(2,3)
s0(1,3)

= spang { K., }, m=1,..,4 (4.67)
where we have renaming the generators using the notation in Appendix [E}
Ky = Moy, Ky = My, K3 = My, Ky = iM3y. (4.68)

The so(1,3) generators are {H,} = { Mg, Moo, Mos, Mia, Mis, Mas}. We will use (4.68)
to parametrize AdS,. An appropriate representative coset, which will allow us to get the

desired AdS, metric, is [|82]
g = exp [xoPo + 1Py + 2P| exp[—log zD] € SO(2,3)/SO(1, 3), (4.69)

where P, and D are the translation and dilation generators respectively, defined in Ap-
pendix [E| Then, we can write a Lie algebra element of s0(2, 3) by using the Maurer-Cartan
one-form.

Any X € s0(2,3) can be written as

tr (K, X) tr (H,X)
X = e g 470
Ztr KK, +;tr(HaHa) (470)

with K, € s0(2,3)/s0(1,3) and H, € so(1, 3). The projector into the coset can be defined

as

_ tr(H,X) . tr (K, X)
X)=X —;m]ia - ;—tr(Kme)Km‘ 4.71)
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The Maurer-Cartan one-form A has generators that are out of the coset so we need to

project them back into those of the coset by using

tI'(MOlA) tI'(MOQA) tI'(MogA)

P(A) = A— 0% ypoo R gy AR
( ) tI'(MOlMgl) 01 tI'(MOQMOQ) 02 tI'(MogMog)
_ tI'(MlgA) - tr(MlgA) _ tr(MggA)

tr( Mo Mio) . tr( M3 Mis) b tr( Moz Mas)

d d d d
= Mop g 2 Yk, - ErK 4.72)
y4 y4 y4 ya

MO3

Mys

The metric for AdS, is obtained from the symmetric part of the Lagrangian (4.13) with

fermionic degrees of freedom switched off,
]_ C!B
L= —57 tr [AaP(A45)], 4.73)

which gives

1
dsQAdS4 =2 (dz2 + dxp — dot — dx%) , (4.74)
where z > 0 and z, (a = 0,1, 2) parametrize a three-dimensional Minkowski space with
signature (+ — —).
Yang-Baxter deformation of AdS,

The deformed Yang-Baxter o-model Lagrangian of the action (4.31)), withc = 0, Kk = 1

and the fermionic degrees of freedom switched-off, can be written as
1
L=—5(0" =) (AP o O Ap), (4.75)

where the operator O depending on the deformation parameter 7 is given by

i 1

= 4.7
1-2nR,0 P (4.76)

In order to extract the background fields from the Lagrangian (4.75)), we need to find the
projected action of R, on each generator of the basis (4.67), such that

P (Ry(Kp)) = A, Ky, 4.77)

where K, are defined in (4.68)). Moreover, the projected action of the operator (4.76) can

be computed in a similar way

P (O Y Ky)) =C, K, (4.78)
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Combining equations (4.76)), 4.77) and (4.78) we can find the relation between the coeffi-

cients A, and C,"

K, = (C,'K, —2nC,"\,’K,) , (4.79)
or in matrix notation,
C=(I-27A)"", (4.80)

which can be solved for C.

We can rewrite the deformed Lagrangian (4.75) as

_ af m mn af m n
L= _5 (7 C(mn)Ea EB — € C[mn]Ea Eﬁ) s (481)

where N is a constant, the coefficients C;,,) and Cf,,,, are the symmetric and antisymmet-
ric parts of the matrix and £ represent the coefficients in front of each of generators
in (4.72).

The r-matrix to be used is built by taking abelian generators as in (4.56)),

T:P1/\P2. (482)

This matrix is of abelian-Jordanian type. From the coset parametrization (4.69) together
with the definitions (3.20) and (3.21]) for the R operator, we find that the only non-vanishing
components of the matrix A are

AP = —A2 = —, (4.83)

and those of C (4.80) are

4 4
1 4 2 3 < 3 2 <

Then, we can identify the symmetric and antisymmetric part of the deformed Lagrangian

as
1 (1
Liym = 77 = (Cao0pxo + 0nz02) + M (01051 + Onx20s12) | (4.85)
Lantisym = —%lea'BM (Oaa0pxy — Oa105%2) , (4.86)
where
2
ML= 2y A (4.87)
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The metric and the antisymmetric field can easily be read off

dsias, = é (dag + dz*) + M (daf + da3) (4.88)

B = L Mdz, A dus. (4.89)
VA

This background agrees with the gravity dual of non-commutative ABJM theory presented
in [49] up to a Wick rotation xy — 2xy. This result shows that the gravity dual of a non-

commutative ABJM theory is an integrable deformation of AdS; x CP? string theory.

4.4.2 Gravity dual of one-parameter dipole deformation of ABJM

In this section, we construct the deformation for both spaces AdS, and CP3. We will
choose an r-matrix with one parameter constructed in terms of one generator of AdS, and

one of the three Cartan generators of the CP?.

Coset construction of AdS, x CP?

In [48] it was used an extension of the coset describing the CP? space in order to get
the standard Fubini-Study metric. To obtain the full AdS, x CP? metric we consider the

extended coset

. SO(2,3)  SU(4) x SU(2)
AdSy < CP = 000.3) * TE) < SU@)

To this end we need to choose a suitable supermatrix realization for the generators of this

(4.90)

extended supercoset. As explained in [83] we can write a algebra valued (6/4) x (6[4)

supermatrix as

50(2,3) 0 Q
M = 0  su2| 0 | (4.91)
Q 0 |su)

where we extended s0(2,3) @ su(4) to s0(2,3) ® su(2) ® su(4) and Q, Q are fermionic

~—

generators. In terms of algebras we now have

50(2,3) @ su(2) @ su(4)
s50(1,3) ®su(2) ®u(3)

50(2,3)@su(2)@su(4) = < >@50(1,3)@5u(2)@u(3). (4.92)
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Notice that in (4.91)), in the form of (#.4), we put the extra su(2) in the X-block of the

supermatrix and the su(4) in the 4 x 4 Y-block, such that the supertrace is
M'=tuX,+ (r Xo —trY), (4.93)

where X7 € s0(2,3), X5 € su(2) and Y € su(4) and the fermionic blocks are preserved.

The basis of 50(2,3) @ su(2) @ su(4) that we will consider is composed of s0(2, 3)
generators denoted by Fy (A = 1, ...,10), su(2) generators denoted by M, (a = 1,2,3)
and su(4) generators denoted by L,, (m = 1,...15),

fa 0 0
FA = O ) Ma i Oq ) Lm = _5 O )
0 0 Am

(4.94)

where f, are the 4 x 4 matrices representing the generators of isometries of AdSy, o, and
Am are the conventional 2 x 2 Pauli and 4 x 4 Gell-Mann matrices of su(2) and su(4),
respectively. All these generators are defined in Appendix

The commutation relations and the supertraces are

[Lma Ln] = fmanp7 [Maa Mb] = € CMC) (495)

1 1
Str (L L) = 58mn, Str (M, My) = —5 0. (4.96)

The Cartan generators of su(2) @ su(4) are given by Ls, Lg, L5 and M;. The following

combination of generators will be useful,
Ty = Lg — Ly, Ty, = L¢ + Lo + 2M,. 4.97)
The basis for su(2) ® su(4) can be chosen as
su(2) @ su(4) = spang { Ly, My, M3, Ty, To, H} , (4.98)
where L, is the set of generators of su(4) except for Lg, Lo and

H = L¢+ Ly + M, (4.99)

2We have denoted the 10 generators of 50(2,3) as fa = {D, Moy, Moz, My2, Py, P, Py, Ko, K1, Ko}.

F4 is simply the extension to a supermatrix of these generators and the algebra they satisty is given in (E.10)

of Appendix F}
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satisfying
1
Str(HH) = 3 (4.100)
The basis for the coset is this,
su(2) ®su(4)
— = K.}, =1,...,6, 4.101
u(3) @511(2) SpanR { } m ( )
where
K, = L, Ky = Lo, K3 = L3
Ky = Ly, K5 =H, Ke = Lo, (4.102)
with
1
Str (K, K,,) = 5 (4.103)

The generators of u(3) @ su(2) are

u<3) ®5u(2) = SpanR {Ha} = SpanR {Lla L27 L3) L47 L57 L77 L87 L157 T17 T27 MQ) M3} .
(4.104)

An appropriate coset representative which will allows us to get the desired AdS,; x CP? is

g = gAdS4gCP37 (4105)
where
gads, =exp [zoFPy + x1 Py + zoPs]exp [logrD], (4.106)
geps = exp [(¢1Ls + oL — Y M3)|exp [(01 Ly + (02 + 7) L14)] x
x exp [(2§ + m) (L1o + M,)], (4.107)
where
L= 1 Lg + 2L (4.108)
\/g 8 3 15- .

We can get the AdS,; x CP? background by following the same steps as in the previous

section. The projection P (A) allows us to define,
P(A) = E"K,, m=0,..,9, (4.109)
in terms of all the coset generators

{Km} = {P(b P17 P27 -Da L117 L127 L137 L147 HJ LIO} . (4110)
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In this case, the projector is defined as in but extended to supermatrices,

B Str (H,A) B Str (K, A)
P(A)=A=) o () e = ; Str (K ) o @.11D

a

Then we find

d
E'=rdxy, E*=rdx;, E°=rdau,, E4:—T,
,

E° =cos€sinfydgy, E°=cosédf;, E" = —sinfysinédp,

1
E® = —sinédé,, E9=5(00501dg01—00892d902+2d¢)sin2§, E° = 2d¢.
4.112)

The metric can be computed from
1
L= —57‘*5 Str[A,P(Ap)], (4.113)

2 . . 2 .
where d 5%, Was given in and d s¢ s is

1 1
dS%Pg —de? + ZLCOS2§ (dé’f + sin? Hldgp%) + Zsin2§ (d@% + sin? nggog)
22 1 1 ?
+ cos” €sin” & 500861d91—§cosé’2d6’2+d¢ , (4.114)

where (01, ¢1) and (02, o) parametrize two spheres, the angle 0 < ¢ < 7/2 determines

their radii and 0 < ¢ < 27.

Yang-Baxter deformation of AdS, x CP?

Let us consider the r-matrix in (4.57)),
8}
r=—Py A M. (4.115)
n

From (3.21)), the R operator associated to this r-matrix is

«

R (X) »

(Py Str (X M;) — Ms Str (X Py)). (4.116)

The projected action of R, and O~ on the supercoset bosonic generators K, @.77) and

(@.78)), give the matrices A and C, whose non-vanishing terms are

arsin 2€

A4lO = _Alé = 2n

5 4.117)
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and for (4.80)
C'11 = 022 = C'44 = 055 = 066 = 077 = 088 = Cléo =1,
3 _ o _ 1 09 _ _os_ arsin 2€ (4.118)
3 P 14+ a2r2sin?2¢’ P ? 1 + a2r2sin® 26
The metric and the antisymmetric field for the deformed case are
ds? =~ ?(dag +daf + Mda3) ar
3—4 T To+dx] + x2+r2
2 2pw2e ] 1 ’
+d&° + Mcos” Esin” € 500801dg01—§cos€2d<p2+d¢
1 1
+ 1 cos® & (d 07 + sin® 0, dapf) + 1 sin? & (d 03 + sin® O, dgpg) , (4.119)
9 . 9 1 1
B = —aMrsin“2¢dxy A Ecoseldgpl—écos%d@gjtd@b , (4.120)
where
M =1+ o*r?sin? 2¢. (4.121)

The deformed background @.119) and (4.120) agree with the gravity dual of the one-

parameter dipole deformation of ABJM theory found in [49]. We then have an integrable

deformation of superstring in AdS, x CP?,

4.4.3 Gravity dual of the non-relativistic limit of ABJM:
Schrodinger spacetime

As in the last section, we will use the extended supercoset with supermatrices (4.94)) and

AdS, x CP? parametrized by the coset representatives (@.106) and @.107).

Yang-Baxter deformation of AdS, x CP?

We consider the r-matrix in (4.58)),
1
r= EP_ A (BLL + BoLs + B3 Ms3) . (4.122)

For simplicity we will choose 3; = 33 = 0. Then, the non-vanishing elements (4.77) and
(4.78) of the A and C matrices, respectively, are

Bar cos € sin 0,

24/2 ’

Bar sin 2€ cos 64

442

AP = =AM = AP = AP = —
(4.123)
A =AY = —A = AP = —
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and
022 = 044 = 055 = 066 = C?7 = 088 = 099 = 01(1)07
Clt=1- éﬁg (4 cos? € sin? 0 + sin? 2€ cos? 91) ,
033 =1+ %63 (4 cos? € sin? 61 + sin? 2€ cos? 91) ,
C)=-0y' = %ﬁg (4 cos® £ sin® ; + sin® 2€ cos® 6;) | (4.124)
CF——Cl = _ pPor co\s/fisin 017 o= —c, - _ Bor si;j%sin&?
Bar cos € sin 0, Bor sin 2€ sin 6y

Cy’ =y = —
\/5 ) 3 9 2\/5

From (@.1T1)) we find that the components proportional to the coset generators are

dr
do, +dz ), E*=rdz, E*=-_(de, —dz ), E'*=°%"
(day ) 1 \/§(+ ) .

E° = cos€sinf dgy, E°=cosédfh;, E" = —sinfysinédp,

ElzL

S

1
E® = —sinédé,, E9=é(cosﬁldgpl—00892d902+2d@/1)sin2§, E° —2d¢.
(4.125)

From the symmetric part of C in (#.124) we can compute the deformed metric

dr?
d s =7 +r7da + 2 oMday da_ +r? (do? +da?)

+ <2./\/ldq§1 — iﬂﬂz sin® 2¢ cos 0 (— cos By d ¢y + 2d1/1)) (dexy —dx_)

T ddsos, (4.126)

and from the antisymmetric part of C in (4.124)) we can compute of the antisymmetric field

Bor? cos® € sin? 6,
4

1
B =§M52r2dx+ Adxr_ —

2sin? 2 0
e Smg Lt (dzy +dx_) A (cosfidpy —cosfydps +2dep), (4.127)

(daey+dx_) Adyy

with
1
M = —§62r2 (4 cos? € sin® 1 + sin? 2€ cos? 01) ) (4.128)

This space should be obtained via a certain class of TsT transformations called null Melvin

twist [|21L/51]].



Chapter 5

Concluding remarks

In this thesis we studied Yang-Baxter integrable deformations of the nonlinear o-model
describing string theories in AdS; x CP?.

We presented some solutions of the YBE for AdS, x CP?, like a DJ r-matrix in terms
of only bosonic roots of the uosp(2,2|6). An abelian Jordanian and two mixed r-matrices
were discussed. Also, some unimodular nonabelian r-matrices were provided.

We computed explicitly the backgrounds generated by some of the r-matrices we pro-
posed. By considering an abelian Jordanian r-matrix in terms of the generators of AdS,,
we computed the metric and B-field of the gravity dual of the non-commutative ABJM
theory. This deformation involved only the AdS, part of the spacetime, and thus we only
needed to consider the usual parametrization of AdS spaces. On the other hand, in or-
der to reproduce the full undeformed AdS, x CP? Fubini-Study metric, we enlarged the
supercoset as was done in [48]] in a consistent way. We took a coset representative that
included the generators of AdS, and those that give the correct form of CP?. Along this
line we computed the deformed metric and B-field corresponding to the gravity dual of
the one-parameter dipole deformed ABJM theory by using an r-matrix in terms of mixed
generators, one of AdS, and one Cartan generator of CP?. These backgrounds coincide
with those obtained via TsT transformations in [49]]. We also considered an r-matrix con-
structed in terms of another combination of mixed generators, one of AdS, and one of the
three Cartan generators of CP?. The deformed background we obtained in this case corre-
sponds to the gravity dual of the non-relativistic limit of ABJM theory which is known as

the Schrodinger spacetime. This background is expected to be obtained by an appropriate
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null Melvin twist [51]. These deformations of AdS, x CP? can be regarded as an evidence
of the relation between TsT transformations and solutions of the CYBE which is called the
gravity/CYBE correspondence [|19].

Let us now discuss some open problems that arise from this work. First, the DJ r-
matrix we wrote was in terms of only bosonic generators. In Appendix [D} it was shown the
algebra of the fermionic generators of wosp(2, 2|4), from which it is possible to identify the
full Cartan decomposition, and thus to write the full DJ r-matrix including also fermionic
simple roots. This would allows to construct the 7-deformed AdS; x CP? background and
to investigate the generalized supergravity in this framework. Along this route, we expect
that, as in AdSs x S® and AdS, x S? x T*®, a DJ r-matrix constructed in terms of only
fermionic simple roots leads to a standard supergravity backgrounds [/15].

Furthermore, as conjectured by Klimcik [42], it would be interesting to pursue the
relation between the n- and A-deformed AdSy x cp3 by Poisson-Lie T-duality [|84.[85]]. In
order to obtain the Poisson-Lie T-dual 7-deformed we need to construct the Drinfeld double
which is the complexified superalgebra uosp(2,2|6)C. This superalgebra can be split into
uosp(2,2|6) and the Borel subsuperalgebra pb(2,2|6). This is possible to do by taking
our Cartan decomposition. Once we have identified the Drinfeld double, it is possible to
construct the action of the Poisson-Lie o-model.

An immediate step to complete our result of the gravity dual of the non-relativistic
limit of ABJM is to compute the corresponding TsT null Melvin twist of the undeformed
AdS, x CP? background. This should give the same Yang-Baxter deformed background we
calculated. A direct generalization of our results for the cases of the gravity duals of the
dipole deformed ABJM theory and Schrodinger spacetime from one to three parameters
can be done if we now consider r-matrices with three constant parameters.

Finally, we can consider the unimodular nonabelian r-matrices we found in Section 4.3
and compute the corresponding deformed backgrounds which would be standard super-

gravity solutions.



Appendix A

Supermatrix realization of su (2, 2|4)

The gl(m|n) superalgebra can be generated by the following basis
<EZ)I<:€ Z(Sikéjg, i,j,k,gz 1,...,m+n, (A])

satisfying
[Eij, Ere) = 05 By — ()W 6, By (A.2)

where [-] is the grading of each generator. This basis can be expressed by (m|n) x (mn)

supermatrices,
mem emxn
M = (A.3)
77n><m ‘ YTLX'!L
The special linear Lie superalgebra sl(m|n) is defined as
sl(m|n) ={M e gl(m|n), St M =tr X —trY =0} . (A4)

By using this condition for the generators of gl(4|4), we obtain the following bosonic

generators of s((4[4),

Evy — By, FEo — Es3, FEs3— FEyu, FEi2, Ei3, FEu, Eas,

(A.S)
E247 E347 E217 E327 E437 E317 E427 E417
E55 - E667 E66 - E777 E77 - E887 E567 E577 E587 E677
(A.6)
Ees, Ers, Egs, FEre, FEsr, Ers,  Ese,  LEss.
In addition to these generators, we also have
Ey4 + Ess, (A7)
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which represents the u(1) algebra. Then, by using the condition
MH+ HM' =0,

where the Hermitian matrix H is defined as

0 _ Ly 0
H = , with Y=

0 I4><4 O _IQ><2

Y

we obtain the real form of su(2, 2|4).

By imposing (A.8) on (A.5)) and (A.6) we get the 15 generators of su(2, 2)

Eig+ B3y, i(Ewz— Es1), FEu+ By, i(Ewy— En)
Eo3 + E3y,  i(Eys — Es3),  Eoy+ By, i(Ey — Eyp)
i(Evg + En), FEi— FEy, i(E3+ E), FEs— Eys
i(En — Ea),  i(Ex — Es3), i(Es3— Eu),
and the 15 generators of su(4),
Ess — Ees,  i(Es6 + Egs),  Esy — Ers,  i(Esy + Ers)
Ess — Egs,  i(Ess + Ess),  Eor — Er,  i(Eer + Erg)
Ees — Ess,  i(Fes + Ess), Ers— Egr,  i(Ers + Egy)

i(Es5 — Egs), i(Ees — Err), i(Er — Esg).
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(A.10)
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Appendix B
s0(2,4) and s0(6) algebras

We summarize here the notation and conventions of the so0(2,4) and s0(6) generators.

The gamma matrices

We use the gamma matrices represented by

0 00 —1 0O 0 0 i 0010
0 01 0 0 0 i 0 0001
Y1 = y Y2 = y V3= 3 (Bl)
0 10 0 0 —i 00 1000
-1 0 0 0 - 0 00 0100
0 01 0 10 0 O
, 0 00 —1 , 01 0
Yo =14 = , Y5 = 1Y17273% = (B.2)
-1 0 0 0 00 —1
0 10 0 00 0 -1

[\]

To describe the s0(2,4) and s0(6) subalgebras of the psu(2, 2|4) superalgebra, it is neces-

sary to introduce the following 8 x 8 gamma matrices

0

ST L R with 1 =0,1,2,3, (B.3)
0 0 0 0
0 0 00\

N = o= with i —1,2,3.4. (B.4)
0 v 0 7

Here each block of the matrices is a 4 x 4 matrix.
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The bosonic generators

Then, the Lie algebras s0(2,4) and s0(6) are spanned by the bases:

1
[’73773] y Mys = Z [72775?] ‘ w,v = 07 17273} )
(B.5)

PN

50(2,4) = spang {’V,‘j,vg,mw =

1 -
[75775]77115:1[7577;]’ 27]:1a27374} (B6)

A~ =

50(6) = spang {’Vf,vé?mj =
The subalgebras so(1,4) and so(5) are generated by

s0(1,4) = spang {my,, m,s| p,v=0,1,2,3}, (B.7)

s0(5) = spang {n;;,n| 0,7 =1,2,3,4}. (B.8)

For the coset construction of AdS; with the Poincare coordinates, the following basis of

50(2,4) is convenient;
50(2a 4) = SpanR {p,ua k;M h17 h?a h37 mi3, M1, M23, m20‘ B = 07 17 2a 3} 3 (B9)

where the Cartan generators hy, ho, h3 and p,, k, are given by

hy = 2imo = diag(—1,1,—1,1,0,0,0,0), Py = %vz — Mys,
hy = 2mgy = diag(—1,1,1,-1,0,0,0,0), k, = %fyﬁ + mys, (B.10)
hs = ~¢ = diag(1,1,—-1,-1,0,0,0,0), D= %g
Notice that the generators p,, and &, commute each other,
[Py, pv] = [ku, ko] = [pp, k] =0 for p,v=0,1,2,3. (B.11)

On the other hand, the Cartan generators of s0(6) read
ha = 2ings = diag(0,0,0,0, 1,1, —1,1),

hs = 2inss = diag(0,0,0,0,—1,1,1, —1),

hﬁ = fyg = diag(070707071717_17_1)- (B12)
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Supermatrix realization of uosp(2,2(6)

We can consider the gl(4|6) superalgebra generated by the basis defined in (A.T)) in terms
of (4]6) x (4|6) supermatrices M (A.3). Let us define the conditions for M

. Cy 0 Cy 0
M + M =0, (C.1)
0 ]6><6 0 ]6><6
0 0
el L M =0, (C.2)
0 _]6><6 0 _]6><6
where
0O 0 0 1 1 0 0 0
0O 0 -1 0 0 01 O 0
Cy = ; v = : (C.3)
0O 1 0 O 00 -1 0
-1 0 0 O 00 0 -1

The supertranspose of M is defined as

Xt _ant
M* = ! . (C.4)
et Yt
From (C.I)) we get the 10 generators of sp(4)

Ev, Egn, Ess, FEz, Ei+ By, FEo+ Eys,
(C.5)

Ell - E44, El3 - E247 E22 - E33> ESl - E42a

and the 15 generators of s0(6),

Efj——E]—” Z,j: 1,...76. (C6)
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For the fermionic generators we have the following relations (4.§)),

0i7 = —(Can')iz = — (Ca)y, ()17

so we can define 6 in terms of 7. Then, let us fix 7 as

Ty

wherei,j =1,...4and7,7=1,...,6.
By using (C.2)) we obtain the real form of osp(4/6) denoted by uosp(2,2(6). We can

=L

R

thus compute the 10 generators of the usp(2, 2),

X1 =Ei+ Ey,

Xy =i(Ey — Ep),

X3 =FEs3 + F3,

Xy =i(Ea3 — Es2),

X5 =FE13 — Eoy + (Es1 — Ey),

Xo =i(Eyg — By — (Es1 — Ey)),

X7 =F9 + E3y — (Eg1 + Ey3),

Xs =i(Ey2 + Esy + (Eo1 + Ey3)),
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(C.7)

(C.8)

Xg =i(En — Ey), X0 =i(Ey — Es3). (C.9)
The commutation relations of these generators is given in

Xy Xo X3 X4 X5 X6 X7 X3 Xy X0
X5 0 —2Xy 0 0 —X7 Xg — X5 Xe —2X, 0
Xy | 2Xy 0 0 0 —Xs - X7 — X — X5 2X5 0
X3 0 0 0 —2X30 — X7 —Xs — X5 — X 0 —2X,
Xy 0 0 2X50 0 Xs - X7 — X6 X5 0 2X3
X5 | X7 Xs X7 —Xs 0 —2(Xo+ X10) | 2(X1+ X3) 2(Xy — Xy) —X¢ | —Xg
X | —Xs | Xz Xs X 2(Xy + X10) 0 2(Xa+ Xy) | 2(X1—X3) | X5 X5
X7 | X5 Xe X5 Xe —2(X1 + X3) | —2(Xe + Xy) 0 2(Xo — X10) | —Xs Xs
Xg | X6 | Xs Xe X5 | 2(Xo—Xy) | 2(X;—X3) | —2(Xo — X10) 0 X5 — X7
Xo | 2X5 | —2X4 0 0 Xe —-X5 Xg —-X7 0 0
X0 0 0 2Xy | —2X;5 Xe - X5 —Xs X5 0 0

Table C.1: Algebra usp(2,2).




APPENDIX C. SUPERMATRIX REALIZATION OF u05p(2, 2\6) 70
The 15 generators of s0(6) are
Y1 =E73 — Esy, Ys =Es53 — Es3, Y11 =E35 — E33,
Y, =Eq3 — B3y, Y7 =E5; — Ej3, Yio =E35 — Egs,
Y3 =Eq; — By, Ys =FE35 — Es3, Yis =E35 — Ess,
Yy =Fi5 — Est, Yy =Es5; — Ejg3, Yi4a =E35 — Ega,
Ys =FEi5 — Egt, Yio =F53 — L33, Yi5 =F55 — g3, (C.10)
whose commutation relations are given in
i |V Y; Y, Ys Ys Yz Ys Yy Yio | Yiu | Yio | Yiz | Yiu | Y35
Yi| 0 |-Ys| -Yr | Y| =Yy | 1y Y3 Y, Ys 0 0 0 0 0 0
Y | Y 0 | Yy | -Yy | -Y |-V 0 0 0 Y; Y, Ys 0 0 0
Y | Yo | Yoo 0 |-Yi3|-Yyu| 0 | -1 0 0 =Y, 0 0 Y, Y; 0
Yy | Y | Yiu | Yi3 0 |-Yi5| O 0 | -1 ] O 0 | =Y, | 0 | =Y5| O Ys
Ys | Yo | Yio | Yiu | Yi5 0 0 0 0 -V 0 0 -Ys 0 -Y; | =Y,
Yo | -Yo | V) 0 0 0 0 | Y| -Yn|-Ys| Y7 Ys Yy 0 0 0
Yr | -Y5] 0 Yy 0 0 | Y| O |-Yi3| Y| -Ys| O 0 Ys Yy 0
Yg | =Y, | O 0 Y 0 Yii | Yis 0 |-Yi5| O —Ys 0 =Y 0 Yy
Yo | -Y5] O 0 0 i | Yo | Yiu | Y35 0 0 0 | =Y | 0 | -Y7 | —Y3
Yo| 0 |-Y3] Y5 0 0 |- | Y 0 0 0 | -Yi3| Y| Yiu | Yoo 0
Yu| 0 | =Y, 0 Y, 0 —Y3 0 Ys 0 Yi3 0 Y15 | —Yio 0 Yio
Yo| 0 |=Y5| O 0 Y, |-Yy| O 0 Ys Yiu | Yis 0 0 | =Yy | -Yn
Yis| 0 0 | =Y, | Y; 0 0 | Y| Yg 0 | =Y, | Yy 0 0 | -Yi5| Yy
Yia| O 0 | -Y; 0 Y3 0 | =Yy 0 Y; | -Y2| O Yio | Yis 0 | —Yi3
Yis| 0 0 0 | =Y | Y, 0 0 | =Yy | Y3 0 | Y| Yy | Y| Yig 0
Table C.2: Algebra so(6).
The 24 fermionic generators are
Qu=Eu+ En+ By — E;
Qo =E2; + Ep — E3; + Eig
Q37 =i(—Eo; + Exp — E3; — Ei3)
Q4§ Zi(—En + En + B + EM) (C.ll)

where 7 = 1, ...,6. The anticommutation relations of these fermionic generators are given in

[ble C3land [Table C.4l
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APPENDIX C. SUPERMATRIX REALIZATION OF uosp(2,2|6)

‘1 Med "eIQaS[e OIUOIWI] €' 9[qRL

(8% — 9x)1 0 0 0 0 0 (2 +<x)1— 0 0 0 0 0 Efo)
0 (8x — 2x)2 0 0 0 0 0 (X + <x)1— 0 0 0 0 IO
0 0 (8x — %) 0 0 0 0 0 (4 + &x)1— 0 0 0 e}
0 0 0 (8x —9x)e 0 0 0 0 0 (*x +x)e— 0 0 2lv)
0 0 0 0 (8% —9x ) 0 0 0 0 0 (*X + x)i— 0 &)
0 0 0 0 0 (8x —9x) 0 0 0 0 0 (I +5x)e— | 7O
("x = Tx)ie— 0 0 0 0 0 Ex 15— SLLg— e AR~ 6X1g— Xig— %¢)
0 ("x = OTx)ig— 0 0 0 0 141G EX1G— ETL1g— WA 8115~ X~ =0
0 0 ("x = OTx)ig— 0 0 0 Vigig % 4 EX 10— 0Tg— PUas X — Y0
0 0 0 ("x = 0x)ig— 0 0 eRg Tgg 02 Ex 15— 9815~ eRig— 0
0 0 0 0 ("x = 0tx)ig— 0 6xg 811g P 9X1G EX10— K15~ 29)
0 0 0 0 0 ("x — oty )ig— Kig TG EX1G 24 e EX15— 50
EX15— 141G igig gug 651g Ag ("X +0rx)ig— 0 0 0 0 0 %)
SR~ EXIg— 1408 g 811g X1 0 ("X + 01X )ig— 0 0 0 0 0
W FLRIg— Exig— 0L A1g Exug 0 0 ("x +01x)1g— 0 0 0 et
g — gz~ 0Lg1g—~ ExIg— 9X1g g 0 0 0 ("x + 01X )1~ 0 0 9]
6x1g— 8x1g— P 9X1g— EX 15— A1g 0 0 0 0 ("X + 01y — 0 229)
“A15— Y1~ 15— tRg— g — Ex - 0 0 0 0 0 ("X +01x)ig— | B0
(4 — °x)1— 0 0 0 0 0 (8X +9x)1— 0 0 0 0 0 o)
0 (*x = 5x)1— 0 0 0 0 0 (8x +9x)1— 0 0 0 0 10
0 0 (4 - 5x)e— 0 0 0 0 0 (8x +9x)1— 0 0 0 e}
0 0 0 (*x —x)e— 0 0 0 0 0 (8x +9x)1— 0 0 )
0 0 0 0 (*x —5x)1— 0 0 0 0 0 (3% +9x)1— 0 o)
0 0 0 0 0 (2x —x)1— 0 0 0 0 0 (Cx +9%x)i— | 1O

mx@ mn@ wm@ mn@ mmm,,v Hm@ 9C mmmu w~® MNNU mwa HNO
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0 0 0 0 (Bx +6x)ig— 0 611g 811g A1g 918 X1G e g
0 0 0 0 0 (ex + 5x)1e— Aig xg EX1g 2x1g P X1G Bte}
(8 — 9x ) 0 0 0 0 0 (4 — =)= 0 0 0 0 0 %0
0 (3% —2x) 0 0 0 0 0 (4 = ox)1— 0 0 0 0 §0)
0 0 (8x — 2x)2 0 0 0 0 0 (4 — X))~ 0 0 0 50
0 0 0 (8x — 9x)2 0 0 0 0 0 (*x —°x)e— 0 0 )
0 0 0 0 (3x —9x ) 0 0 0 0 0 (42X —x)1— 0 o)
0 0 0 0 0 (8x —9%x) 0 0 0 0 0 (*x —x)i— | 0
(2X +=x)1— 0 0 0 0 0 (8x +9x)1— 0 0 0 0 0 %e)
0 (4 + 9x)1— 0 0 0 0 0 (8X +9x)1— 0 0 0 0 §0)
0 0 (*x +x)e— 0 0 0 0 0 (8x +9x)1— 0 0 0 %)
0 0 0 (4 + &x)1— 0 0 0 0 0 (8x +9x)1— 0 0 )
0 0 0 0 (2 + x)1— 0 0 0 0 0 (3x +9x)1— 0 &gy
0 0 0 0 0 (4x + 5x)1— 0 0 0 0 0 (8x +9x)1— | 0
X% 151 VgL 4 651z 115 (ex — 5x)ie— 0 0 0 0 0 te)
TR 1g— g ETL1g g 8115 A1g 0 (ex = Ox)15— 0 0 0 0 €0
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Appendix D

Cartan-Weyl basis of usp(2,2) and s0(6)

In Section [3.2] we presented a brief introduction on the Cartan-Weyl basis whose algebra was given
in (3.T1). In particular, for SO(2,3) x SO(6) ~ Sp(2,2) x SO(6), we computed the Cartan-Weyl

decomposition. The Cartan matrices for Sp(4) and SO(6) are respectively,

2 -1 -1
2 =2
(aij) spa) = L (aij)soey=1-1 2 0 | (D.1)
-1 0 2
whose orthogonal root systems are
Sp(4) : a; = (1,-1), az = (0,2), (D.2)
SO(G) : a1 = (17 _170)7 Qg = (Oa 17 _1)7 a3 = (07 17 1)5 (D3)
such that a;; = paiiiar] for both groups.
(6707

D.1 Cartan decomposition of usp(2,2)

The Cartan generators h; with j = 1,2, the positive simple roots e;, and the negative simple roots

fj are given by

1
e1 = Fio+ F34, e3= EEQS’
1
fi=FExn+Es, fo= %E?,zy (D.4)

hi = E11 — B4y — E99 + FE33, hy = FEoy — E33.
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The non simple roots follow from the commutators

e3 = [e1,e2] = \}5 (13— E24), eq=[e1,[e1,e2]] = —\Q@Emﬂ
1 9 (D.5)
= 5 - —— E - E P = ) 9 = _7E *
fs = L1, f2] \/5( 51— Eg),  fa=L[f1,[f1, f]] o
The basis for the Lie algebra usp(2, 2) is then
1 )
X1=——F7(esa+ Xo=———(es— f1),
1= (es + fa), 2= 5 (€4 — fa)
Xy= leat ). Xi=n(es—fo)
= —=\€ ) = —=\€2 — )
3 2 2+ f2 4 NG 2 — Jo
2 21 D.6)
Xs=——(es—f3),  Xg= + (D.
5= 3 (e3 — f3) 6= 73 (es + f3),
X7 =e1— fi, Xg=i(e1+ f1),
=i(h1+h2), Xi0 = ths.
D.2 Cartan decomposition of s0(6)
The roots of SO(6) can be found in [86] (page 308),
H; = T(9i-1)(2);
1) .
Ei(j = T(2i)(2j71) - ZT(2z'71)(2j71) ZT(Q?,)(QJ 22 1)(25)] »
E? = Tiy2i-1) + T (2i-1)25-1) T T 20)25) — L2i—1)(2) | » (D.7)

&)

N
®
)
|

~
.

]
]
20)(2j—-1) — 1 T(2i-1)(2j-1) T iT(20)(25) + T2i-1)(2) ] »
I

| s B e S e R e |
ﬁ

S} d
= <
|
NI~ N RN RN

i = 5 [ Teiei-1) T Tei-1)2i-1) = T2i)e) = Tei-1)2)

with 4, j = 1,2,3 and (T}5),, . = —i (6;k0;m — dimJ;i). Here the generators labelled by (1) and @)

correspond to the positive roots and satisfy
[Hk??EOéi] = (ai)kan [ECYNE*O%] = (ai)k Hy,. (D.8)
Then, we find that the simple positive roots are
E., =EY, E.,,=EY, E,=EY, (D.9)
and the simple negative roots are
E o =E? E..=-EY E., -E}. (D.10)

Under the redefinitions

1/2 B 1/2 B .

[e7Ne 7
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they satisfy the Cartan-Weyl algebra. Explicitly, we have

61 = By = 5 (<Y~ Y2~ Vo +i%3), & = Bay = 5 (~i¥is — Yir — Yaa + i¥s),
65 = Fay = 3 (~i¥is — Vi1 + Yia — i¥ia) =
fi=E_q, = % (—iYs+ Yo+ Yr+iY3), fo=F_o, = % (—iY13 + Y11 4 Yig + Y1),
fs=FE o5 = % (—iY13 + Y11 — Y14 + iY12),

hy = Hy — Hy = —iY; — Y19, hy = Hy — H3 = —iYig — Y15,

ilg = Hy + H3 = —iY19 + Y75,
(D.12)

where Y; with ¢ = 1, ..., 15 are the generators of s0(6) defined in (C.10).



Appendix E
s0(2,3) and su(4) algebras

A basis for s0(2, 3)

The 10 generators of SO(2, 3) can be written as

7

MAB:4

[Ta,Ts], (E.1)
and satisfy

[Mag, Mcp| =i(napMpc +npcMap —nppMac — nacMpp), A=0,..,4, (E2)

where A, B = 0, 1,2, 3,4. We choose the following representation for the SO(2, 3) "4 matrices,

{T'a,I'p} =2naB (E.3)
i A=p=0,1,23
I, = V5 Vu H 7 (E.4)
Y5 = 10717273 A=4
with nap = diag(+ — — — +), and ~,, are the gamma matrices in a Dirac representation SO(1, 3)
[[77] (see [46] for a different choice),
12 0 0 g3
Yo = M= )
0 —1o —o3 0
(E.5)
0 o1 0 g2
T2 = VB
—op O —o9 0
And,
0 —1s
V5 = . (E.6)
-1 0
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From (E.)), we get

1

1
MHV == /Y;uf)/u] ) MM4 = §7M7 pv=0,1,2,3. (E.7)

1l
In order to explicit the conformal group, let us split the indices as
MAB - {Mab7 a3y Ma47 M34} ) a, b= 07 17 27 (ES)
such that 7, = diag(+, —, —)|'} Let us define [77]
Pzz = Ma4 + Ma3
Ka = Ma4 - Ma3
D = iMsy (E.9)

The conformal algebra SO(2, 3) is then

[Map, Mea] = i(naaMue + b Mad — NacMpa — noaMac)

[Map, D] =

(D, Fal

[D, Ko
[Ka, Pa]

[Map, Pe] = =i(NacPs — 1bc Pa)
K] =

(Uach chKa) .

(E.10)

2ingp D — 21 M yp

[ abs

A basis for su(4)

A basis for s1(4) can be constructed in terms of anti-Hermitian 4 x 4 matrices known as Gell-Mann

matrices,
01 0 0 0 —2 0 O 1 0 00
1 0 0O i 0 00 0 -1 0 O
)\1 = ) )\2 = I )\3 = I
0 0 0 O 0 0 0O 0O 0 0 O
0 00 O 0 0 0O 0O 0 0 O
0 01 O 00 — 0 0 0 0O
0 00 00 0 O 0 01 O
)\4 = ) )\5 - ) )\6 - )
1 0 0O i 0 0 O 01 0 0
0 0 0O 00 0 O 0 0 0O

I'This is going to be the signature on the Minkowskian boundary of AdS,.
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00 0 0 10 0 0 000 1
00 —i 0 1 lo1 0o o 0000
)\7: 5 )\8:7 3 )‘9_ 5
0 i 0 0 V310 0 -2 0 0000
00 0 0 00 0 0 1000
00 0 —i 0000 000 0
00 0 000 1 00 0 —i
Ao = ) A1l = ) A2 = ,
00 0 0000 000 0
i 00 0 0100 0 i 0 0
0000 000 0 100 0
0000 000 0 1 o 1
A3 = , A4 = , A5 = — . (E.11)
000 1 00 0 —i V6lo o1 o
0010 00 i 0 000 -3

The first 8 matrices form a basis for su(3) < su(4). Furthermore, these matrices are orthogonal and
satisfy

Tt AmAn) = 26mn,  m=1,...,15, (E.12)

and commutation relations

[Ams An] = 2ifE A, (E.13)

A list of non-vanishing structure constants can be found in [[87]]. In this representation the Cartan

generators are given by A3, Ag and \js.
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