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Deformações integráveis de teoria de cordas

Laura Raquel Rado Dı́az

Orientador: Prof. Dr. Victor de Oliveira Rivelles

Tese de doutorado apresentada ao Instituto de Fı́sica da

Universidade de São Paulo, como requisito parcial para a

obtenção do tı́tulo de Doutor em Ciências.

Banca Examinadora:

Prof. Dr. Victor de Oliveira Rivelles - Orientador (IF-USP)

Prof. Dr. Fernando Tadeu Caldeira Brandt (IF-USP)

Prof. Dr. Aleksandr Nikolaievich Pinzul (IF-UnB)

Prof. Dr. Horatiu Stefan Nastase (IFT-UNESP)

Prof. Dr. Fernando David Marmolejo Schmidtt (IF-UFSCar)

São Paulo

2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 

FICHA CATALOGRÁFICA 

Preparada pelo Serviço de Biblioteca e Informação 

do Instituto de Física da Universidade de São Paulo  

         
   
 
            Rado Diaz, Laura Raquel 
 
    Deformações integráveis de teoria de cordas / On integrable 
 deformations of string theory.   São Paulo, 2020. 
 
              Tese (Doutorado) – Universidade de São Paulo. Instituto de  
 Física. Depto. de Física Matemática 
         
            Orientador: Prof. Dr. Victor de Oliveira Rivelles 
    
            Área de Concentração: Física Matemática. 
 

Unitermos: 1. Teoria de cordas;  2. Supersimetria;  
 3. Supergravidade. 
 
USP/IF/SBI-048/2020 

 

 
        

 



University of São Paulo

Physics Institute

On integrable deformations of string theory

Laura Raquel Rado Dı́az

Supervisor: Prof. Dr. Victor de Oliveira Rivelles

Thesis submitted to the Physics Institute of the University of São

Paulo in partial fulfillment of the requirements for the degree of

Doctor of Science.

Examining Committee:

Prof. Dr. Victor de Oliveira Rivelles - Orientador (IF-USP)

Prof. Dr. Fernando Tadeu Caldeira Brandt (IF-USP)

Prof. Dr. Aleksandr Nikolaievich Pinzul (IF-UnB)

Prof. Dr. Horatiu Stefan Nastase (IFT-UNESP)

Prof. Dr. Fernando David Marmolejo Schmidtt (IF-UFSCar)

São Paulo

2020





A mis padres, Romualdo y Dulia, que me dieron todo en la vida y más allá de ella. A
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O glaube, mein Herz, o glaube:

Es geht dir nichts verloren!

Dein ist, ja dein, was du gesehnt!

Dein, was du geliebt,

Was du gestritten!

O glaube

Du wardst nicht umsonst geboren!

Hast nicht umsonst gelebt, gelitten!

Was entstanden ist

Das muss vergehen!

Was vergangen, auferstehen!

Hör’ auf zu beben!

Bereite dich zu leben!

O Schmerz! Du Alldurchdringer!

Dir bin ich entrungen!

O Tod! Du Allbezwinger!

Nun bist du bezwungen!

Mit Flügeln, die ich mir errungen,

In heißem Liebesstreben,

Werd’ ich entschweben

Zum Licht, zu dem kein Aug’ gedrungen!

Sterben werd’ ich, um zu leben!

Aufersteh’n, ja aufersteh’n

wirst du, mein Herz, in einem Nu!

Was du geschlagen

zu Gott wird es dich tragen!

-Gustav Mahler, Die 2. Sinfonie-





Resumo

O nosso objetivo é estudar as deformações integráveis da teoria de supercordas em AdS4ˆ

CP3 formulada como um modelo sigma não-linear no supercoset UOSpp2,2|6q
SOp1,3qˆUp3q

. Estudamos

a deformação de Yang-Baxter deste modelo e determinamos os backgrounds deformados

nos quais a supercorda se propaga para algumas escolhas da matriz r. Para isto propomos

algumas matrizes r que satisfazem a equação clássica de Yang-Baxter (CYBE) e deter-

minamos os duais gravitacionáis da teoria ABJM não comutativa, da sua deformação de

dipolo com um parâmetro e o seu limite não relativı́stico, que corresponde ao espaço-tempo

de Schrödinger.

Palavras-chave: Supercordas; Modelo sigma não-linear; Integrabilidade; Deformações

integráveis; Matriz r.
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Abstract
Our aim is to study integrable deformations for the superstring theory inAdS4ˆCP3 formu-

lated as a σ-model on the supercoset UOSpp2,2|6q
SOp1,3qˆUp3q

. We study the Yang-Baxter deformation

of this model and determine the deformed backgrounds on which the string propagates for

some choices of r-matrix. To this end we propose some r-matrices that satisfy the classical

Yang-Baxter equation and show the gravity duals of the non-commutative ABJM theory,

its one-parameter dipole deformation and its non-relativistic limit which corresponds to the

so-called Schrödinger spacetime.

Keywords: Superstrings; Nonlinear sigma model; Integrability; Integrable deformations;

r-matrix.
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Chapter 1

Introduction

The AdS/CFT correspondence conjectures that certain gauge theories have a dual descrip-

tion in terms of string theories. The first case of the AdS/CFT correspondence states that

N “ 4 supersymmetric Yang-Mills theory on a four-dimensional flat spacetime is dual to

type IIB superstring theory propagating in AdS5 ˆ S
5 [1].

Many features of the AdS/CFT correspondence have been studied along the time in-

cluding its integrability properties. On the string theory side, since it is formulated as

two-dimensional field theory, the notion of integrability is associated to the existence of a

Lax connection which ensures the existence of an infinite number of conserved charges.

In the case of AdS5 ˆ S5 superstrings the theory is described as a σ-model on the super-

coset PSUp2,2|4q
SOp1,4qˆSOp5q

[2]. The Z4-grading of the psup2, 2|4q superalgebra is a fundamental

ingredient to obtain the Lax connection and thus to prove its integrability [3].

Recently, techniques to deform integrable theories keeping their integrability have been

developed. One of them is based on r-matrices that satisfy the Yang-Baxter equation.

These deformations were proposed by Klimcik as a way to obtain an integrable deforma-

tion of the Principal Chiral Model (PCM) [4, 5]. In this case, the type of r-matrix that

was considered is called Drinfeld-Jimbo r-matrix [6,7] and satisfies the modified classical

Yang-Baxter equation. These deformations were also applied for the case of a symmetric

coset σ-model [8], and furthermore to the AdS5 ˆ S5 σ-model [9, 10]. The supercoset

construction was made in [11,12] whose background is called η-deformed AdS5ˆS
5. The

important feature of this deformed background is that it does not satisfy the type IIB super-

gravity field equations. This fact led to postulate the existence of generalized supergravity

1



CHAPTER 1. INTRODUCTION 2

equations [13,14]. In a recent work [15], it was shown that the stardard supergravity equa-

tions are satisfied by an η-deformed background if the Drinfeld-Jimbo r-matrix associated

to this deformation is constructed in a specific form. Furthermore, Yang-Baxter deforma-

tion of the AdS5 ˆ S
5 in the pure spinor formulation was developed recently in [16].

It is possible to consider also an r-matrix that is solution of the classical Yang-Baxter

equation (CYBE). In this case, the deformation of the symmetric coset σ-model was ob-

tained in [17]. Moreover, this was studied for superstrings in AdS5 ˆ S5 in [18]. The

interesting property of these deformations is that they lead to several known backgrounds

of type IIB supergravity [19–22]: Lunin-Maldacena-Frolov [23, 24], Hashimoto-Itzhaki-

Maldacena-Russo [25, 26] and Schrödinger spacetimes [27–29], which can be also ob-

tained via TsT transformations [30]. In these cases, the r-matrices are all abelian. These

results were extended to the nonabelian case [31] and it was conjectured in [32] that defor-

mations using solutions of the CYBE are equivalent to nonabelian T-duality transforma-

tions [33, 34].

There is another type of integrable deformation known as λ-deformation, which was

first introduced by gauging a combination of a PCM and a Wess-Zumino-Witten (WZW)

model [35], and extended to string theory in symmetric spaces [36] and AdS5 ˆ S5 [37],

as well as to the pure spinor formulation in [38]. Due to a work by Klimcik [39–42], it

is conjectured that the η- and λ-deformations are related by an extension of nonabelian

T-duality known as Poison-Lie T-duality [43, 44].

Another well-known example of the AdS/CFT correspondence is the duality between

N “ 6 superconformal Chern-Simons theory in three dimensions (ABJM theory) and type

IIA superstrings inAdS4ˆCP3 [45]. The string theory is partially described by a nonlinear

σ-model on the supercoset UOSpp2, 2|6q{ pSOp1, 3q ˆ Up3qq [46, 47]. The superalgebra

uospp2, 2|6q has a Z4-grading which allows to show the integrability of the model [46].

Only recently Yang-Baxter deformations of the nonlinear σ-model on this supercoset

were considered. In [48], a solution of the CYBE for an abelian r-matrix, in which only

the CP3 subspace was deformed, was found. This deformation leads to a three-parameter

deformation of the AdS4 ˆ CP3 background that can be obtained also by using TsT trans-

formation [49]. Thus, inspired by that work, our aim is to study other possible integrable
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deformations of this background. The r-matrices associated to this deformation are con-

structed in terms of combinations of generators of the superalgebra uospp2, 2|6q. We pro-

pose a Drinfeld-Jimbo (DJ) r-matrix which involves only the Cartan basis of the superal-

gebra. In this case, the DJ r-matrix has only bosonic generators of the Cartan basis, which

is the first step to construct the η-deformed AdS4 ˆ CP3 background. In addition to this,

we also provide some unimodular nonabelian r-matrices based on the classification given

in [50].

Besides that, we provide the r-matrices that lead to the gravity duals of noncommutative

ABJM theory as well as its one-parameter dipole deformation. These backgrounds were

found initially by performing TsT transformations on the AdS4 ˆ CP3 background [49].

In addition to this, we also present the r-matrix that leads to the gravity dual of the non-

relativistic limit of ABJM which corresponds to the Schrödinger spacetime. We expect this

result is compatible with the one obtained via a certain class of TsT transformations called

null Melvin twists [51].

This thesis is organized as follows. In Chapter 2, we review the Green-Schwarz for-

malism for superstrings. We start with the case of flat space and present the symmetries of

the theory. Then, we generalize it to curved backgrounds and present the Green-Schwarz

action as a nonlinear σ-model. We focus on the case of superstrings in AdS5 ˆ S5 and

examine in detail its psup2, 2|4q superalgebra. We derive the corresponding Lax pair to

show that the type IIB superstring theory in AdS5 ˆ S5 is integrable. In the Chapter 3 we

review Yang-Baxter deformations and explain the relation between r-matrices and integra-

bility. We present the Lagrangian of the Yang-Baxter deformed σ-model in terms of the R

operator associated to the r-matrix. For models with Z4-grading we compute in detail its

equations of motion and symmetries. We review the construction of different r-matrices

leading to integrable deformations of the AdS5ˆS
5 background. In Chapter 4, we discuss

the Yang-Baxter deformation of the AdS4 ˆ CP3 σ-model. We review the supermatrix

realization of the uospp2, 2|6q and its Z4-grading. Then, we discuss a nonlinear σ-model

describing superstrings inAdS4ˆCP3. After that we present the Yang-Baxter deformation

of AdS4 ˆ CP3 and discuss in detail its κ-symmetry. Finally, we compute some deformed

backgrounds generated by r-matrices: the gravity dual of noncommutative ABJM theory

as well as the gravity dual of the one-parameter dipole deformation and the non-relativistic
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limit of ABJM theory. In Chapter 5 we discuss some future perspectives along the lines of

our work.



Chapter 2

The σ-model description of superstrings

This chapter is dedicated to the study of superstring theory as a nonlinear σ-model. First,

we review superstrings on a flat space and its generalization to curved spaces. Then, we

introduce the supercoset formulation of the superspace in order to write the Green-Schwarz

action as a nonlinear σ-model. In this context we study the Green-Schwarz formalism for

AdS5 ˆ S5 along the lines of [52]. We start by describing the AdS5 ˆ S5 background

and the Green-Schwarz-Metsaev-Tseytlin action based on the supercoset formulation of

the psup2, 2|4q superalgebra. Finally, we discuss its integrability properties.

2.1 Type II superstrings in flat space

In order to have a supersymmetric theory fermionic fields must be introduced, either as

worldsheet fermions, giving rise to the Ramond-Neveu-Schwarz (RNS) superstring theory,

or as spacetime fermions, corresponding to the Green-Schwarz (GS) superstring theory.

The GS formalism is more convenient since it can be applied to any curved background so

let us start describing briefly this formalism in flat spacetime.

Supersymmetry can be introduced by generalizing the bosonic string action [53, 54],

S1 “ ´
1

2π

ż

M
d2 σ

?
´ggabΠm

a Πn
b ηmn, (2.1)

where

Πm
a “ BaX

m
´ iδAB θ̄

Aα
pγmqαβ Baθ

Bβ, (2.2)

Xm are bosonic coordinates with m “ 0, 1, ..., 9 , pγmqαβ are the 16ˆ 16 gamma matrices

5
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and M is the two-dimensional worldsheet with metric gab. The Grassmann coordinates are

Majorana-Weyl fermions θAα with spinor indices A,B “ 1, 2 and α, β “ 1, ..., 16. These

fermionic coordinates may have chiralities chosen independently. If θ1 and θ2 have oppo-

site chirality, the theory is called type IIA, otherwise we refer it as type IIB superstrings.

In order to have the correct number of physical fermionic degrees of freedom we need

to implement a local fermionic symmetry called κ-symmetry by adding to (2.1) an extra

supersymmetric term known as the Wess-Zumino (WZ) term,

S2 “ ´
1

π

ż

M
d2 σt´εabpθ̄1γmBaθ

1
qpθ̄2γmBbθ

2
q ` iεabBaXmpθ̄

1γmBbθ
1
´ θ̄2γmBbθ

2
qu,

(2.3)

where εab is the Levi-Civita tensor. Thus, the supersymmetric action invariant under κ-

symmetry is

SGS “ S1 ` S2. (2.4)

The WZ term S2 is independent of gab, therefore it does not contribute to the energy-

momentum tensor.

2.2 Type II superstrings in a curved background

In this section we study the GS superstrings action as a nonlinear σ-model on a coset

superspace [55–57].

2.2.1 Green-Schwarz σ-model

In a curved background, the Green-Schwarz σ-model is

SGS “ ´
1

2

ż

M
d2 σp

?
´ggabGMNpZq ` ε

abBNMpZqqBaZ
M
BbZ

N , (2.5)

where ZM “

!

Xµ, θα, θ̂α̂
)

1 are N “ 2, D “ 10 curved supercoordinates, with µ “

0, ..., 9 and α, α̂ “ 1, ..., 16, and GMN and BMN are the background superfields. The first

term in (2.5) corresponds to the kinetic term and the second one is the WZ term.

1A little change of notation was made here with respect to the previous section, we use hats instead of

bars to discriminate the chirality of the spinorial coordinates.
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At each point of this curved superspace we can define the supervielbein EA
MpZq, where

A “ tm,α, α̂u are the flat indices with m “ 0, ..., 9. Then, GMN and BMN can be written

as

GMNpZq “ Em
MpZqE

n
NpZqηmn, BMNpZq “ EA

MpZqE
B
NpZqBABpZq, (2.6)

where ηmn is a flat metric on each point Z of the superspace. Also, an orthonormal basis

can be defined as

JA “ EA
M dZM , JAa “ EA

MBaZ
M , (2.7)

where a “ t0, 1u are the indices of worldsheet coordinates σa “ pτ, σq such that we can

write on the worldsheet,

JA “ JAa dσa. (2.8)

In this terms we write the GS action (2.5) as

SGS “ ´
1

2

ż

d2 σ
`?
´ggabJma J

n
b ηmn ` ε

abBABJ
A
a J

B
b

˘

. (2.9)

In particular, the WZ term can be expressed as

SWZ “ ´

ż

BAB J
A
^ JB “ ´

ż

M
B, (2.10)

which represents the integral of a two-form.

The type II GS action in flat space (2.4) can be recovered by taking

Jma “ Πm
a , Jαa “ Baθ

α, J α̂a “ Baθ
α̂, (2.11)

Bmα “ pθγmqα, Bmα̂ “ ´pθ̂γmqα̂, Bαα̂ “ pθγmqα pθ̂γ
m
qα̂. (2.12)

2.2.2 Supercoset formulation

One of the main motivations to study the GS superstring as nonlinear σ-model on a su-

percoset is that it allows us to manage algebraically the symmetries and properties of the

theory as well as the demonstration of its integrability.

Coset spaces

This section introduces some notions about cosets and it is based on references [58–60].

A space M is said to be homogeneous if it admits as an isometry the transitive action of
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a group G, i.e. any point of the space can be reached from any other by the group action.

Thus, it is natural to label a point X on M by parameters describing elements of G which

move X to X 1. The subgroup H Ă G which leaves a point X on M fixed is called the

isometry subgroup. Hence, there exists a redundancy when labelling M in terms of G.

In order to describe M correctly we must identify those elements of the group that leave

a point X on M fixed, which means to describe M in terms of the coset G{H . This

equivalence is defined by the right action of G{H : g „ gh, with g P G but not in H , and

with h P H .

If G is a Lie group we say that M is a coset manifold, then M has a Riemannian

structure parametrized by coordinates.

The Lie algebra g of G can be split as

g “ k‘ h, (2.13)

where h is the Lie algebra of H and k “ g { h contains the coset generators that remain in

G{H . Thus, any element g P G can be expressed in the following form,

g “ exp pymKmq exp
`

xiHi

˘

, Hi P h, Km P k, (2.14)

where ym are the coordinates on the coset with m “ 1, ..., dimG ´ dimH and xi are

parameters of H with i “ 1, ..., dimH .

This suggests a natural parametrization of the coset space by choosing the representative

exp pymKmq P G{H, (2.15)

which corresponds to xi “ 0.

The Lie algebra-valued one-form

Jpyq “ g´1
pyq d gpyq, gpyq P G (2.16)

can be spanned in terms of the generators of g,

Jpyq “ JmpyqKm ` ω
i
pyqHi. (2.17)

Here Jmpyq “ Jma pyq dσa is a vielbein on G{H and ωipyq “ ωiapyq dσa is the spin-

connection in terms of another set of coordinates σa. This one-form J satisfies the zero-

curvature condition,

d J ` J ^ J “ 0 (2.18)
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by construction.

The simplest coset is the S2 sphere. It can be written as the coset space SOp3q
SOp2q

, where

SOp3q is the global symmetry group and SOp2q is its local isometry. In general, an n-

sphere is described as

Sn ”
SOpn` 1q

SOpnq
. (2.19)

Another useful and important construction is the coset for AdS spaces,

AdSn ”
SOp2, n´ 1q

SOp1, n´ 1q
, (2.20)

and the n-dimensional complex projective space CPn

CPn ”
SUpn` 1q

Upnq
. (2.21)

Green-Schwarz supercoset σ-model

The generalization to a supercoset consists in extending the numerator of the coset G{H to

a supergroup such that it contains G as its bosonic subgroup. There exists a classification

of Lie superalgebras, given in [61, 62], in which we can identify the bosonic subalgebras.

The Maurer-Cartan one-form J , in the case of a supercoset G{H 2, can be written in

the same way as in (2.17),

J “ JAKA ` J
IHI , (2.22)

where KA P g { h and HI P h with A “ 1, ..., dimG ´ dimH and I “ 1, ..., dimH . We

can write (2.22) as

J “ JAM dZMKA ` J
I
M dZMHI . (2.23)

By taking dZM “ BaZ
M dσa where a “ t0, 1u are the indices of worldsheet coordinates

σa “ pτ, σq such that we can write

JAa “ JAMBaZ
M , (2.24)

Then, if the target space is a supercoset the kinetic term for the GS superstring (2.9) can be

constructed.
2Henceforth G refers to a supergroup with superalgebra g.
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A σ-model on a superspace contains a term that can be constructed from a closed

three-form Ωp3q, i.e. d Ωp3q “ 0, whose pullback on the worldsheet is built in terms of the

Maurer-Cartan one-form [55, 63],

Ωp3q “ Str J ^ J ^ J “ fABCJ
A
^ JB ^ JC , (2.25)

where fABC are constants. This three-form is closed by construction due to the zero-

curvature condition and the Jacobi identity. We can define Ωp3q “ dBp2q. The WZ term is

the integral of Ωp3q on a three-dimensional manifold whose boundary is the string world-

sheet,

SWZ “ ´

ż

M
B, (2.26)

which has the same form as in (2.10) for GS superstring.

It was shown that this approach reproduces the type II GS superstrings on flat spacetime

as a nonlinear σ model on the SUSY pN“2q
SOp1,9q

coset, being SOp1, 9q the Lorentz subgroup of

the N “ 2 super Poincaré group ten dimensional flat space.

Lie superalgebra

A superalgebra V is defined as a Z2-graded vector space. It can be written as V “ Vp0q ‘

Vp1q where dimpVp0qq “ m, and dimpVp1qq “ n, for m,n ě 0. The subalgebra Vp0q is

called even or bosonic and Vp1q is called odd or fermionic.

A Z2-graded superalgebra g “ gp0q‘ gp1q is a Lie superalgebra if it is equipped with a

graded commutator defined as

rA,Bs “ AB ´ p´1qrαsrβsBA, (2.27)

that satisfies the Jacobi identity,

p´1qrαsrγsrA, rB,Css ` p´1qrαsrβsrB, rC,Ass ` p´1qrβsrγsrC, rA,Bss “ 0, (2.28)

where rαs, rβs, rγs correspond to the gradings of A,B,C P gpαq for α “ 0, 1

rαs “

$

’

&

’

%

0 if α is even,

1 if α is odd.
(2.29)
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Symmetric coset space

A Lie superalgebra g with an automorphism Ω of order two, i.e. Ω : g ÞÑ g with Ω2 “ I is

split in the same way as in (2.13),

g “ k‘ h, (2.30)

such that

rh, hs Ă h, rh, ks Ă k, rk, ks Ă h . (2.31)

From the first relation in (2.31) h is a subalgebra of g; the second one indicates that g is

reductive, and the third one that it is symmetric [59]. A superalgebra g with these properties

defines a symmetric space with Z2-grading.

There are superalgebras with an automorphism of order four, such that Ω4 “ I , which is

induced by a Z4-grading instead of a Z2. This defines semi-symmetric spaces like AdS5 ˆ

S5 andAdS4ˆCP3 cases which we will consider in the following section and in Chapter 4.

2.3 Superstrings in AdS5 ˆ S
5

The AdS5 ˆ S5 background is a solution of the type IIB supergravity equations together

with a constant dilaton and aF5 flux. This background plays a crucial role in theAdS{CFT

correspondence since it is dual to N “ 4 SYM theory in four-dimensions [1, 64].

2.3.1 The AdS5 ˆ S
5 background

From (2.20) and (2.19), for n “ 5, we have

AdS5 ”
SOp2, 4q

SOp1, 4q
, S5

”
SOp6q

SOp5q
. (2.32)

Thus, AdS5 ˆ S
5 is written as the coset

AdS5 ˆ S
5
”
SOp2, 4q

SOp1, 4q
ˆ
SOp6q

SOp5q
. (2.33)

We need to look for a supergroup having SOp2, 4qˆSOp6q as its bosonic subgroup in order

to describe superstrings in this background. Indeed, from the Nahm classification [62] we

find that this bosonic group is part of the supergroup PSUp2, 2|4q.
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2.3.2 The Green-Schwarz-Metsaev-Tseytlin action

Metsaev and Tseylin constructed the type IIB Green-Schwarz superstring in AdS5 ˆ S
5 as

a nonlinear σ-model with target space given by the supercoset [2]

PSUp2, 2|4q

SOp1, 4q ˆ SOp5q
. (2.34)

The psup2, 2|4q superalgebra

In order to introduce the supermatrix realization of the psup2, 2|4q superalgebra let us con-

sider the general linear Lie superalgebra glpm|nq. It is defined as the set of supermatrices

M “

¨

˝

X θ

η Y

˛

‚, (2.35)

where X is an m ˆm-matrix and Y is an n ˆ n-matrix, both of even grading, and θ is an

mˆn-matrix and η is an nˆm-matrix, both of odd grading. The operations of supertrace

and supertranspose are defined as

StrM ” trX ´ trY, M st
“

¨

˝

XT ´ηT

θT Y T

˛

‚. (2.36)

The special linear Lie superalgebra slpm|nq is defined as

slpm|nq “ tM P glpm|nq; StrM “ 0u . (2.37)

In particular, the slp4|4q superalgebra is defined by p4|4q ˆ p4|4q supermatrices M as in

(2.35) with vanishing supertrace which are constructed in terms of 4 ˆ 4 blocks. Then, in

order to define the sup2, 2|4q Lie superalgebra M must also satisfy the following condition

[52],

MH `HM :
“ 0, (2.38)

where the Hermitian matrix H is defined as

H “

¨

˝

Σ 0

0 I4ˆ4

˛

‚ with Σ “

¨

˝

I2ˆ2 0

0 ´I2ˆ2

˛

‚. (2.39)

The condition (2.38) acts on M as follows
¨

˝

XΣ θ

ηΣ Y

˛

‚“

¨

˝

´ΣX: ´Ση:

´θ: ´Y :

˛

‚, (2.40)
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which implies that

X:
“ ´ΣXΣ, Y : “ ´Y, η: “ ´Σθ. (2.41)

From these conditions, the matrix blocks X and Y span the unitary algebras sup2, 2q and

sup4q, respectively. The bosonic superalgebra of sup2, 2|4q is then given by

sup2, 2q ‘ sup4q ‘ up1q, (2.42)

where up1q is the center factor 3. By definition, the projective psup2, 2|4q superalgebra

corresponds to the quotient algebra of sup2, 2|4q over up1q.

The most important property of psup2, 2|4q is that it has a fourth-order automorphism

Ω : M ÞÑ ΩpMq defined as

ΩpMq “

¨

˝

JX:J ´Jθ:J

Jη:J JY :J

˛

‚; J “

¨

˝

0 ´I2ˆ2

I2ˆ2 0

˛

‚. (2.43)

This definition satisfies Ω4pMq “ M , that is Ω4 “ I . So the linear map Ω has eigenvalues

˘1,˘i. Thus, if we denote Apkq as the eigenspace associated to the eigenvalue ik pk “

0, 1, 2, 3q, we can write

Apkq “
 

M P psup2, 2|4q, ΩpMq “ ikM
(

. (2.44)

This automorphism allows to decompose psup2, 2|4q in a direct sum of four subspaces,

implying that this superalgebra has a Z4-grading

psup2, 2|4q “ Ap0q ‘Ap1q ‘Ap2q ‘Ap3q, (2.45)

where the subspaces satisfy

“

Apkq,Apmq
‰

Ď Apk`mq modulo Z4. (2.46)

This happens because

Ω
`

rApkq,Apmqs
˘

“ ik`mrApkq,Apmqs. (2.47)

For a supermatrix M P psup2, 2|4q its projection M pkq P Apkq is given by

M pkq
“

1

4
pM ` i3kΩpMq ` i2kΩ2

pMq ` ikΩ3
pMqq. (2.48)

Here the projections M p0q and M p2q are even, while M p1q and M p3q are odd.
3The center of a group is defined as ZpGq “ tz P G|@g P G, zg “ gzu
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Constructing the action

The Maurer-Cartan one-form is defined as A “ ´g´1 d g, where gpτ, σq is an element of

the supergroup PSUp2, 2|4q and A takes values in psup2, 2|4q. Due to the Z4-grading, A

splits as

A “ ´g´1 d g “ Ap0q ` Ap1q ` Ap2q ` Ap3q, (2.49)

and satisfies the zero-curvature condition dA´A^A “ 0, which is written in components

as

Z ” BαAβ ´ BβAα ´ rAα, Aβs “ 0. (2.50)

Also there is a local symmetry which corresponds to right-multiplication of the coset rep-

resentative g by hpτ, σq P SOp1, 4q ˆ SOp5q (2.34)

g Ñ gh, (2.51)

under which the projections of the currents transform as

Ap0q Ñ h´1Ap0qh´ h´1 dh,

Apiq Ñ h´1Apiqh, i “ 1, 2, 3,
(2.52)

where the componentAp0q transforms as a gauge field so we can interpret it as the SOp1, 4qˆ

SOp5q gauge sector 4, while the components Ap1q, Ap2q and Ap3q transform according to the

adjoint representation of SOp1, 4qˆSOp5q. Then, any gauge invariant action in the super-

coset cannot contain Ap0q, but depends exclusively on the coset elements.

The action for the sigma-model of type IIB superstrings in AdS5 ˆ S
5 is

S “

ż

d2 σL, (2.53)

and the density Lagrangian L in terms of Aα is then

L “ ´1

2

”

γαβ Str
´

Ap2qα A
p2q
β

¯

` κεαβ Str
´

Ap1qα A
p3q
β

¯ı

, (2.54)

where γαβ is related to worldsheet metric gαβ as γαβ “ gαβ
?
´g such that det γ “ 1 and

εαβ is the Levi-Civita tensor 5.
4Since rAp0q, Ap0qs Ă Ap0q in (2.46).
5Here α and β denote worldsheet coordinates, so you should not confuse them with spinorial indices.
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The first term in (2.54) corresponds to the bosonic kinetic term and the second term is

the WZ term, which has contributions from the odd components of Aα, and thus it contains

the fermionic degrees of freedom of the theory. The parameter κ must be a real constant

number to guarantee the reality of the Lagrangian.

Equations of motion

By taking the variation of the Lagrangian (2.54) we obtain

δL “ ´1

2

”

2γαβ Str
´

δAp2qα A
p2q
β

¯

` κεαβ Str
´

δAp1qα A
p3q
β ` Ap1qα δA

p3q
β

¯ı

. (2.55)

From equation (2.48) and the following property

StrpΩk
pM1qM2q “ StrpM1Ω4´k

pM2qq, (2.56)

we can write the first term of (2.55) as follows

StrpδAp2qα A
p2q
β q “

1

4
Str

´

δAαA
p2q
β ´ ΩpδAαqA

p2q
β ` Ω2

pδAαqA
p2q
β ´ Ω3

pδAαqA
p2q
β

¯

“ Str
´

δAαA
p2q
β

¯

. (2.57)

In a similar way the second term is

εαβ Str
´

δAp1qα A
p3q
β ` Ap1qα δA

p3q
β

¯

“
εαβ

4
Str

´

δAα

´

A
p1q
β ´ A

p3q
β

¯¯

. (2.58)

Thus, we write the variation of the Lagrangian (2.54) as follows

δL “ ´Str pδAαΛα
q , (2.59)

where

Λα
“ γαβA

p2q
β ´

1

2
κεαβ

´

A
p1q
β ´ A

p3q
β

¯

. (2.60)

If we consider the variation of Aα,

δAα “ ´δ
`

g´1
Bαg

˘

“ ´g´1δgAα ´ g
´1
Bαpδgq, (2.61)

we can write the variation for the Lagrangian in (2.59) as

δL “ ´Str
“

g´1δg pBαΛα
´ rAα,Λ

α
sq
‰

, (2.62)
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such that the equations of motions are

E ” BαΛα
´ rAα,Λ

α
s “ 0. (2.63)

The grading 2 component of (2.63) is

E p2q ” Bα
´

γαβA
p2q
β

¯

´ γαβ
”

Ap0qα , A
p2q
β

ı

`
1

2
κεαβ

´”

Ap1qα , A
p1q
β

ı

´

”

Ap3qα , A
p3q
β

ı¯

“ 0,

(2.64)

while the grading 1 and grading 3 components of (2.63) are given, respectively, by

E p1q ” γαβ
”

Ap3qα , A
p2q
β

ı

` κεαβ
”

Ap2qα , A
p3q
β

ı

“0, (2.65)

E p3q ” γαβ
”

Ap1qα , A
p2q
β

ı

´ κεαβ
”

Ap2qα , A
p1q
β

ı

“0. (2.66)

Let us define

Pαβ
˘ “

1

2

`

γαβ ˘ κεαβ
˘

, (2.67)

such that the equations of motion (2.65) and (2.66) can be written as

E p1q ” Pαβ
´

”

Ap2qα , A
p3q
β

ı

“0, (2.68)

E p3q ” Pαβ
`

”

Ap2qα , A
p1q
β

ı

“0. (2.69)

By varying the Lagrangian (2.54) with respect to γαβ gives rise to the Virasoro con-

straint

Str
´

Ap2qα A
p2q
β

¯

´
1

2
γαβγ

ρδ Str
´

Ap2qρ A
p2q
δ

¯

“ 0. (2.70)

These constraints represent the reparameterization invariance of the string action with re-

spect to worldsheet diffeomorphisms.

κ-symmetry

Since the global symmetry acts from the left we construct the κ-symmetry as a transforma-

tion from the right on g [65]

gG, G “ exp ε, (2.71)

where ε “ εpτ, σq is a local fermionic infinitesimal parameter taking values in psup2, 2|4q.

Unlike the global symmetry case, the string action is not invariant for an arbitrary form of
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the ε parameter. Then, we have to find the conditions on ε which guarantee the invariance

of the action.

The transformation of the Maurer-Cartan one-form under the κ-symmetry transforma-

tions (2.71) is given by

A “ ´g´1 d g Ñ ´pgeεq´1 dpgeεq

“ e´εAeε ´ d ε, (2.72)

so we write the transformation of A as 6

δεA “ ´ d ε` rA, εs . (2.73)

Let us consider ε “ εp1q ` εp3q, in the fermionic sector, such that the above transformation

is written as

δεA
p0q
“
“

Ap3q, εp1q
‰

`
“

Ap1q, εp3q
‰

, (2.74)

δεA
p2q
“
“

Ap1q, εp1q
‰

`
“

Ap3q, εp3q
‰

, (2.75)

δεA
p1q
“´ d εp1q `

“

Ap0q, εp1q
‰

`
“

Ap2q, εp3q
‰

, (2.76)

δεA
p3q
“´ d εp3q `

“

Ap2q, εp1q
‰

`
“

Ap0q, εp3q
‰

. (2.77)

The variation of the Lagrangian (2.54) with respect to ε reads

δεL “δεγαβ Str
´

Ap2qα A
p2q
β

¯

` 2γαβ Str
´

δεA
p2q
α A

p2q
β

¯

` κεαβ Str
´

δεA
p1q
α A

p3q
β ´ δεA

p3q
α A

p1q
β

¯

. (2.78)

By using (2.75), we express the second term in (2.78) as

Str
´

δεA
p2q
α A

p2q
β

¯

“Str
´

“

Ap1qα , εp1q
‰

A
p2q
β `

“

Ap3qα , εp3q
‰

A
p2q
β

¯

“Str
´”

A
p2q
β , Ap1qα

ı

εp1q `
”

A
p2q
β , A

p3q
β

ı

εp3q
¯

. (2.79)

Similarly, by using (2.76) and (2.77), the third and fourth terms become

Str
´

δεA
p1q
α A

p3q
β

¯

“Str
´

´Bαε
p1qA

p3q
β `

”

A
p3q
β , Ap0qα

ı

εp1q `
”

A
p3q
β , Ap2qα

ı

εp3q
¯

, (2.80)

Str
´

δεA
p3q
α A

p1q
β

¯

“Str
´

´Bαε
p3qA

p1q
β `

”

A
p1q
β , Ap2qα

ı

εp1q `
”

A
p1q
β , Ap0qα

ı

εp3q
¯

. (2.81)

6We use here the Baker-Hausdorff formula

eXY e´X “ Y ` rX,Y s `
1

2
rX, rX,Y ss ` ...
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Putting (2.79), (2.80) and (2.81) into (2.78) we find the variation of the Lagrangian (2.54)

under ε

δεL “´
1

2

”

δεγ
αβ Str

´

Ap2qα A
p2q
β

¯

` 2γαβ Str
´

δεA
p2q
α A

p2q
β

¯

` κεαβ Str
´

δεA
p1q
α A

p3q
β ´ δεA

p3q
α A

p1q
β

¯ ı

“´
1

2

”

δεγ
αβ Str

´

Ap2qα A
p2q
β

¯

´ 2γαβ Str
´ ”

Ap1qα , A
p2q
β

ı

εp1q `
”

Ap3qα , A
p2q
β

ı

εp3q
¯

` κεαβ Str
´

BαA
p3q
β εp1q ´ BαA

p1q
β εp3q `

”

A
p3q
β , Ap0qα

ı

εp1q `
”

A
p3q
β , Ap2qα

ı

εp3q

`

”

A
p1q
β , Ap2qα

ı

εp1q `
”

A
p1q
β , Ap0qα

ı

εp3q
¯ı

. (2.82)

In order to reduce this expression we use the zero-curvature condition (2.50) and the Z4

decomposition to compare the terms of grading 1 and 3 which gives

εαβBαA
p1q
β “ εαβ

”

Ap0qα , A
p1q
β

ı

` εαβ
”

Ap2qα , A
p3q
β

ı

, (2.83)

εαβBαA
p3q
β “ εαβ

”

Ap0qα , A
p3q
β

ı

` εαβ
”

Ap1qα , A
p2q
β

ı

. (2.84)

By using these identities, the variation of the Lagrangian (2.82) is

δεL “ ´
1

2
δεγ

αβ Str
´

Ap2qα A
p2q
β

¯

` 2 Str
´

Pαβ
`

”

A
p1q
β , Ap2qα

ı

εp1q ` Pαβ
´

”

A
p3q
β , Ap2qα

ı

εp3q
¯

,

(2.85)

where Pαβ
˘ are defined in (2.67).

If we consider the Virasoro constraint (2.70), the first term in (2.85) is zero, whereas the

last two terms vanish due to the equations of motion (2.68) and (2.69). This is an on-shell

cancellation. In order to (2.85) be zero off-shell, and then represent a symmetry of (2.54),

we need to find an appropriate form for δεγαβ .

The orthogonality of Pαβ
˘ implies that κ “ ˘1, satisfying the following relations

Pαβ
` ` Pαβ

´ “ γαβ, Pαδ
˘ P β

˘δ “ Pαβ
˘ , Pαδ

˘ P β
¯δ “ 0. (2.86)

By defining the projectionAα˘ of any vectorAα asAα˘ “ Pαβ
˘ Aβ , the variation in (2.85)

can be written as

δεL “ ´
1

2
δεγ

αβ Str
´

Ap2qα A
p2q
β

¯

` 2 Str
´ ”

A
p1qα
` , A

p2q
α´

ı

εp1q `
”

A
p3qα
´ , A

p2q
α`

ı

εp3q
¯

. (2.87)

Now, we consider the following ansatz for the components of the fermionic parameter ε

εp1q “A
p2q
´ακ

p1qα
` ` κ

p1qα
` A

p2q
´α, (2.88)

εp3q “A
p2q
`ακ

p3qα
´ ` κ

p3qα
´ A

p2q
`α, (2.89)
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where κpkqα˘ are new independent parameters of the κ-symmetry transformations. The even

traceless component Ap2q can be expressed as a supermatrix

Ap2q “

¨

˝

miγi 0

0 niγi

˛

‚, (2.90)

in terms of the SOp5q Dirac matrices γi. The coefficients ni are chosen to be purely

imaginary, while mi are real for i “ 1, ..., 4 and imaginary for i “ 5. After using the

projector, we write the following product,

A
p2q
α˘A

p2q
β˘ “

¨

˝

mi
α˘m

j
β˘

1
2
tγi, γju 0

0 niα˘n
j
β˘

1
2
tγi, γju

˛

‚. (2.91)

Since Pαβ
˘ Aβ¯ “ 0, Aτ˘ and Aσ˘ must be proportional to each other. This allows us to

write

A
p2q
α˘A

p2q
β˘ “

¨

˝

mi
α˘m

i
β˘ 0

0 niα˘n
i
β˘

˛

‚

“
1

8
Υ Str

´

A
p2q
α˘A

p2q
β˘

¯

`
1

2

`

mi
α˘m

i
β˘ ` n

i
α˘n

i
β˘

˘

I8, (2.92)

where I8 is the identity matrix and Υ is the diagonal matrix defined as Υ “ diagpI4,´I4q.

The product (2.92) appears in (2.87) after substituting the ansatz given in (2.88) and (2.89).

It allows us to write the variation (2.87) as

δεL “´
1

2
δεγ

αβ Str
´

Ap2qα A
p2q
β

¯

`
1

4
Str

´

A
p2q
α´A

p2q
β´

¯

Str
´

Υ
”

κ
p1qβ
` , A

p1qα
`

ı¯

`
1

4
Str

´

A
p2q
α`A

p2q
β`

¯

Str
´

Υ
”

κ
p3qβ
´ , A

p3qα
´

ı¯

. (2.93)

Then, it is possible to deduce the transformation of the worldsheet metric γαβ under the

κ-symmetry,

δεγ
αβ
“

1

4
Str

´

Υ
´ ”

κ
p1qα
` , A

p1qβ
`

ı

`

”

κ
p1qβ
` , A

p1qα
`

ı

`

”

κ
p3qα
´ , A

p3qβ
´

ı

`

”

κ
p3qβ
´ , A

p3qα
´

ı ¯¯

. (2.94)

By using the fact that the supertrace become a regular trace with an insertion of Υ and the

identity Pαγ
˘ P βδ

˘ “ P βγ
˘ Pαδ

˘ , we finally obtain

δεγ
αβ
“

1

2
tr
´”

κ
p1qα
` , A

p1qβ
`

ı

`

”

κ
p3qα
´ , A

p3qβ
´

ı¯

. (2.95)
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2.3.3 Integrability of AdS5 ˆ S
5 superstrings

In this section we review some notions on integrability before introducing it for super-

strings in AdS5 ˆ S
5.

Lax pair and conserved quantities

The central object to study integrable systems is the Lax pair defined by a pair of matrices

L and M , built in such a way that

dL

dt
“ rM,Ls , (2.96)

is equivalent to the equations of motion of the system. The equation (2.96) is called the Lax

equation and rM,Ls denotes the commutator of the matrices M and L. The importance

of the Lax representation is that, once found, it allows us to construct the set of conserved

quantities of the system [66],

Ik “ trLk, k “ 1, ..., n , (2.97)

which are in involution, i.e. their Poisson bracket vanishes, tIk, Iju “ 0.

Integrability of two-dimensional field theory

A field theory has an infinite number of degrees of freedom, thus in order to guarantee

its integrability we need to have an infinite number of conserved quantities which leads to

an infinite set of powers (2.97) of the Lax matrix L. To this end we introduce a spectral

parameter, λ. It allows us to have families of matrices Mpτ, λq and Lpτ, λq, satisfying

BτLpτ, λq “ rMpτ, λq, Lpτ, λqs . (2.98)

In this case the invariants are

Ikpλq “ trLkpτ, λq, k P Z . (2.99)

In two dimensions, with coordinates pτ, σq, the equations of motion of Ψ “ Ψpτ, σ, λq for

an integrable field theory can be written as

BτΨ “ Lτ pτ, σ, λqΨ,

BσΨ “ Lσpτ, σ, λqΨ,
(2.100)
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which implies, for consistency, the zero-curvature condition,

BσLτ ´ BτLσ ` rLσ, Lτ s “ 0 (2.101)

for all values of the spectral parameter λ. A matrix Lα with α “ tτ, σu satisfying (2.101)

is called Lax connection. This allows to define the monodromy matrix,

T pτ, λq “ ÐÝexp

ż 2π

0

dσLσpτ, σ, λq, (2.102)

whereÐÝexp denotes path-ordered exponentiation in which it was assumed that the fields are

periodic in σ with period 2π. Then, the invariants can be constructed as the trace of powers

of the monodromy matrix,

Ikpλq “ trT kpτ, λq, (2.103)

since it satisfies

BτT pτ, λq “ rLτ pτ, 0, λq, T pτ, λqs . (2.104)

This equation has a structure similar to (2.98). Expanding in λ we obtain an infinite set of

conserved quantities, as required for integrability in field theory. Then, it is the monodromy

matrix which plays the role of the Lax matrix in the field theory framework.

Classical integrability of AdS5 ˆ S
5 superstrings

In 2003, Bena, Polchinski and Roiban showed that the Green-Schwarz superstring on

AdS5 ˆ S5, described by a nonlinear σ-model on PSUp2,2|4q
SOp1,4qˆSOp5q

supercoset, is classically

integrable [3]. Due to the Z4-grading of this supercoset the structure of the Lax connection

in terms of the components of the Maurer-Cartan one-form (2.49) can be assumed to have

the following form

Lα “ `0A
p0q
α ` `1A

p2q
α ` `2γαβε

βρAp2qρ ` `3A
p1q
α ` `4A

p3q
α , (2.105)

where `i are constants to be determined by requiring that (2.105) satisfies (2.101).

Let us write the zero-curvature condition of Lα for each grading. First, for Lp0qα ,

2`0ε
αβ
BαA

p0q
β ´ εαβ

´

`2
0

”

Ap0qα , A
p0q
β

ı

` p`2
1 ´ `

2
2q

”

Ap2qα , A
p2q
β

ı

` 2`3`4

”

Ap1qα , A
p3q
β

ı¯

“ 0.

(2.106)
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This condition gives

`0 “ 1, `2
1 ´ `

2
2,“ 1 `3`4 “ 1. (2.107)

For Lp2qα we have

`1ε
αβ
BαA

p2q
β ` `2Bαpγ

αβA
p2q
β q

´pεαβ`0`1 ` γ
αβ`0`2q

”

Ap0qα , A
p2q
β

ı

´
1

2
εαβ`2

3

”

Ap1qα , A
p1q
β

ı

´
1

2
εαβ`2

4

”

Ap3qα , A
p3q
β

ı

“ 0.

(2.108)

The equation (2.108) can be put into the form of the equations of motion (2.64) if the

following relations hold

`2
3 ´ `1

`2

“ ´κ,
`2

4 ´ `1

`2

“ κ. (2.109)

For Lp1qα and Lp3qα we have

`3ε
αβ
BαA

p1q
β ´ εαβ`0`3

”

Ap0qα , A
p1q
β

ı

´ εαβ`1`4

”

Ap2qα , A
p3q
β

ı

` γαβ`2`4

”

Ap2qα , A
p3q
β

ı

“ 0,

`4ε
αβ
BαA

p3q
β ´ εαβ`0`4

”

Ap0qα , A
p3q
β

ı

´ εαβ`1`3

”

Ap2qα , A
p1q
β

ı

` γαβ`2`3

”

Ap2qα , A
p1q
β

ı

“ 0.

(2.110)

The zero-curvature condition (2.50) of Ap1q and Ap3q allows to write (2.110) as
ˆ

γαβ ´
`1`4 ´ `3

`2`4

εαβ
˙

”

Ap2qα , A
p3q
β

ı

“ 0, (2.111)
ˆ

γαβ `
`4 ´ `1`3

`2`3

εαβ
˙

”

Ap2qα , A
p1q
β

ı

“ 0. (2.112)

These equations will be equal to the equations of motion for Ap1q (2.65) and Ap3q (2.66)

provided

`1`4 ´ `3

`2`4

“ κ,
`4 ´ `1`3

`2`3

“ κ. (2.113)

From (2.109) we find

2`1 “ `2
3 ` `

2
4. (2.114)

This equation also follows from (2.113) if `3`4 “ 1. From (2.107), (2.109) and (2.113), we

get

κ2
“ 1, (2.115)
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which is the condition for κ-symmetry. This is an important result because the integrability

of the equations of motion implies κ-symmetry.

Finally, we can write the coefficients `i in terms of a spectral parameter z as

`0 “ 1, `1 “
1

2

ˆ

z2
`

1

z2

˙

, `2 “ ´
1

2κ

ˆ

z2
´

1

z2

˙

, `3 “ z, `4 “
1

z
, (2.116)

which allows write the Lax connection (2.105) in terms of z.



Chapter 3

Yang-Baxter deformations of

semisymmetric σ-models

In this chapter we study a family of integrable deformations known as Yang-Baxter de-

formations. The main characteristic of this type of deformations is that integrability is

preserved from the outset. This is due to the algebraic procedure which relies on the pos-

sibility of defining a r-matrix.

To start we introduce some brief comments on how these deformations emerged. Then,

we discuss the connection between the r-matrix and the integrability of the Yang-Baxter

deformed models and give a short classification of r-matrices for the case of AdS5 ˆ S5

background. After that, we present the Lagrangian for an Yang-Baxter deformed σ-model

with Z4-grading and discuss its main properties. Finally, we show some examples of de-

formed backgrounds obtained by using particular choices of r-matrices which are equiva-

lent to those computed via TsT transformation of the AdS5 ˆ S
5 solution.

The first evidence for integrable deformations was found in the SUp2q Principal Chiral

Model (PCM) [67] which is known to be integrable. Klimcik generalized this for any

compact Lie group in [4] and showed its integrability in [5]. This model is called Yang-

Baxter σ-model. Delduc, Magro and Vicedo considered the extension to a symmetric coset

space in [8] and to a semisymmetric coset in [9, 10].

24
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3.1 The r-matrix and integrability

Along the lines of [68–72] let us define a Poisson-Lie group as a Lie group G equipped

with a Poisson structure. A Lie algebra g is defined by the operation r¨, ¨s : gb g ÞÑ g

known as the Lie bracket where b denotes the tensor product. The Poisson structure, i.e.

the Poisson bracket t¨, ¨u, can be defined on the dual g˚, but it is not necessarily a Lie

algebra. If a map r : g ÞÑ gb g is defined, an algebra with this map is called bialgebra,

and it is a Lie bialgebra if also g˚ is a Lie algebra. This is because tr : g˚b g˚ ÞÑ g˚ plays

the role as the Lie bracket on g˚, which in turn allows us to identify g˚ with g by means of

its scalar product. So, given r, it is possible to define a Lie bialgebra pg, rq with a Poisson

structure. The requirement that this r-map connects with the Poisson bracket leads to [71]

tL b, Lu
r
” rLb 1` 1b L, rs P gb g, (3.1)

where r is the r-matrix. Let us consider the following expression

tL b, Lu
r
“ tL1, L2u , (3.2)

where L1 “ Lb 1 and L2 “ 1b L. Since

tr tL1, L2u “ ttrL, trLu , (3.3)

it is possible to write

tr
 

Lk1, L
`
2

(

“
 

trLk, trL`
(

, k, ` P Z`. (3.4)

Then we find

 

trLk, trL`
(

“ tr
 

Lk1, L
`
2

(

“ k` tr
`

Lk´1
1 L`´1

2 tL1, L2u
˘

“k` tr
`

Lk´1
1 L`´1

2 rL1 ` L2, rs
˘

“ 0. (3.5)

The latter result allows us to identify L as the Lax matrix and to establish that all the

invariant we can construct from it are in involution.

r-matrix

The r-matrix is defined in terms of wedge product of Ti P g as

r “
1

2
rijTi ^ Tj, (3.6)
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which belongs to gb g. The wedge operation is defined as

Ti ^ Tj ” Ti b Tj ´ Tj b Ti P gb g . (3.7)

Due to its definition (3.6), the r-matrix is skew-symmetric.

A new operator R : g ÞÑ g exists due to the presence of the r-map and can be under-

stood as R : g
r
ÞÑ gb g

tr
ÞÑ g. It is defined as

R pMq ” tr2 pr p1bMqq , M P g, (3.8)

where tr2 is the trace on the second subspace.

The existence of the r-matrix in a Poisson-Lie bialgebra allows to define a Lie bracket on

g in terms of the R operator,

rM,N sR ” rRpMq, N s ` rM,RpNqs , M,N P g, (3.9)

which must satisfy the Jacobi identity to be well-defined. The Jacobi identity for (3.9)

leads to the so-called Yang-Baxter equation (YBE) [68]

rRpMq, RpNqs ´R prRpMq, N s ` rM,RpNqsq “ c rM,N s ,

$

&

%

c “ 0 CYBE

c “ ˘1 mCYBE
(3.10)

where M,N P g. In (3.10), CYBE refers to classical Yang-Baxter equation and mCYBE

to modified classical Yang-Baxter equation.

3.2 r-matrices of the Yang-Baxter equation

Let g be any Lie algebra, then g “ n` ‘ h ‘ n´, where n˘ are maximal nilpotent sub-

algebras of g and h is a Cartan subalgebra. The subalgebras n` and n´ are generated by

the positive and negative root vectors. The subalgebra of g is b` :“ h ‘ n` is called

Borel subalgebra. To identify the roots of g we introduce a Cartan-Weyl basis, composed

of the Cartan generators hi P h, positive ej P n` and negative fj P n´ roots. The Cartan

generators and the simple roots satisfy the defining relations

rhi, ejs “ aijej, rhi, fjs “ ´aijfj, rei, fjs “ δijhj, (3.11)
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where aij are the elements that compose the Cartan matrix paijq. We now define the non-

simple roots such that if ea and eb are two positive roots commuting to give a further

positive root ec, then

rea, ebs “ Nabcec, rfa, fbs “ ´Nabcfc, (3.12)

where Nabc are constants.

A typical solution of the mCYBE is the Drinfeld-Jimbo type solution [68],

rDJ “ i ej ^ fj. (3.13)

The associated linear R-operator is defined by its action on the Cartan generators and the

positive and negative roots

R peaq “ iea, R pfaq “ ´ifa, R phiq “ 0, (3.14)

and satisfies the mCYBE (3.10) with c “ 1.

On the other hand, some solutions of the CYBE are

• abelian r-matrices

rAb “ hi ^ hj, rhi, hjs “ 0, (3.15)

otherwise r-matrices construced by non-commuting generators are called nonabelian.

• Jordanian r-matrices

rJor “ hi ^ ej, r3
Jor “ 0, (3.16)

• abelian Jordanian r-matrices

rAJ “ ei ^ ej, r2
AJ “ 0. (3.17)

3.3 Yang-Baxter deformed σ-model

The action of the Yang-Baxter deformed σ-model with Z4-grading is [9, 18, 50],

S “ ´
p1` cη2q2

2p1´ cη2q

ż

d2 σPαβ
´ Str

ˆ

Aα d ˝
1

1´ ηRg ˝ d
Aβ

˙

, (3.18)

where Pαβ
˘ “ 1

2
pγαβ ˘ κεαβq, γαβ is the worldsheet metric with detγ “ ´1, ε01 “ 1, c is

the constant in the YBE (3.10) and Aα “ g´1Bαg are the components of the Maurer-Cartan
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one-form which take values on g. The operators d and d̃ correspond to projections on the

Z4 grading, given by

d “ P1 ` 2η̂´2P2 ´ P3, d̃ “ ´P1 ` 2η̂´2P2 ` P3, (3.19)

with the property StrpM dNq “ Strpd̃M Nq where η̂ “
a

1´ cη2 and η is the deformation

parameter. In equation (3.18), ˝ denotes the function composition 1 and Rg is defined as

RgpMq ” Ad´1
g ˝R ˝ AdgpMq “ g´1RpgMg´1

qg, (3.20)

with

RpMq “Str2prp1bMqq “ rij Str2

`

Ti b TjM ´ p´1qrαsrβsTj b TiM
˘

“rij
`

Ti Str pTjMq ´ p´1qrisrjsTj Str pTiMq
˘

, (3.21)

where ris and rjs represent the gradings of Ti and Tj , respectively. The R operator satisfies

StrpM RpNqq “ ´StrpRpMqNq. (3.22)

It is also convenient to define the following currents:

Jα ”
1

1´ ηRg ˝ d
Aα ” O´1Aα, Jα˘ ” Pαβ

˘ Jβ,

J̃α ”
1

1` ηRg ˝ d̃
Aα ” Õ´1Aα, J̃α˘ ” Pαβ

˘ J̃β. (3.23)

where the operators O and Õ are

O “ 1´ ηRg ˝ d, Õ “ 1` ηRg ˝ d̃. (3.24)

Undeformed action

The undeformed action corresponds to taking η “ 0 in (3.18). Indeed, when η vanishes,

the Lagrangian becomes

L “ ´1

2
Pαβ
´ Str pAα d|η“0 ˝ Aβq , (3.25)

with d|η“0 “ P1` 2P2´P3. When applying each projector on Aβ and taking into account

the Z4-grading we get

L “ ´1

2

”

γαβ Str
´

Ap2qα A
p2q
β

¯

` κεαβ Str
´

Ap1qα A
p3q
β

¯ı

, (3.26)

which is precisely the Lagrangian (2.54).
1The function composition is defined as f ˝ gpxq “ fpgpxqq
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Derivation of the equations of motion

In order to find the equations of motion let us vary the Lagrangian of the action (3.18)

δL “ ´1

2

p1` cη2q2

p1´ cη2q
Pαβ
´ tStr pδAα, d ˝ Jβq ` Str pAα, d ˝ δJβqu . (3.27)

The variation of δAα is

δAα “ ´g´1δgJ̃α ` g
´1δgpηRg ˝ d̃J̃αq ` g

´1
Bαpgg

´1δgq,

“ ´g´1δgJ̃α ` g
´1δgpηRg ˝ d̃J̃αq ` J̃αpg

´1δgq ´ pηRg ˝ d̃J̃αqg
´1δg ` Bαpg

´1δgq,

“

”

J̃α, g
´1δg

ı

´

”

ηRg ˝ d̃J̃α, g
´1δg

ı

` Bαpg
´1δgq. (3.28)

In order to calculate the δJβ in (3.27), we can use the properties of the R operator, so by

using (3.20) the variation of Rg is

δRgpMq “ RgpδMq `
“

RgpMq, g
´1δg

‰

´Rg

`“

M, g´1δg
‰˘

. (3.29)

For M “ d̃Aβ in (3.29) we get

δ
´´

Rg ˝ d̃
¯

pAβq
¯

“

´

Rg ˝ d̃
¯

pδAβq `
”´

Rg ˝ d̃
¯

Aβ, g
´1δg

ı

´Rg

´”

d̃Aβ, g
´1δg

ı¯

,

(3.30)

and using this relation repeatedly we get

δ
´´

Rg ˝ d̃
¯n

pAβq
¯

“

´

Rg ˝ d̃
¯n

pδAβq `
n´1
ÿ

k“0

´

Rg ˝ d̃
¯k

„

´

Rg ˝ d̃
¯n´k

pAβq, g
´1δg



´

n´1
ÿ

k“0

´

Rg ˝ d̃
¯k

Rg

´”

d̃ ˝ pRg ˝ d̃q
n´1´k

pAβq, g
´1δg

ı¯

, (3.31)

for n ě 0. By multiplying by ηn on both sides of the above equation and summing in n

from 0 to8, we obtain

δ

˜

1

1´ ηRg ˝ d̃
Aβ

¸

“

“
1

1´ ηRg ˝ d̃

˜

δAβ `

«

ηRg ˝ d̃

1´ ηRg ˝ d̃
Aβ, g

´1δg

ff

´ ηRg

«

d̃
1

1´ ηRg ˝ d̃
Aβ, g

´1δg

ff¸

,

(3.32)

then we find the variation of Jβ ,

δJβ “
1

1´ ηRg ˝ d̃

´

δAβ `
”

ηRg ˝ d̃Jβ, g
´1δg

ı

´ ηRg ˝

”

d̃Jβ, g
´1δg

ı¯

. (3.33)
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By replacing (3.28) into (3.33) we obtain

δJβ “
1

1´ ηRg ˝ d̃

´

Bβpg
´1δgq `

“

Jβ, g
´1δg

‰

´ ηRg ˝

”

d̃Jβ, g
´1δg

ı¯

. (3.34)

Then, by plugging (3.28) and (3.34) into (3.27), we obtain

δL “´ 1

2

p1` cη2q2

p1´ cη2q

!

Pαβ
´ Str

`

Bαpg
´1δg

˘

, dJβq ` P
αβ
´ Str

´”

J̃α ` ηRg ˝ d̃J̃α, g
´1δg

ı

, dJβ

¯

` Pαβ
´ Str

´

d̃J̃α, Bβpg
´1δgq `

“

Jβ, g
´1δg

‰

´ ηRg ˝
“

dJβ, g
´1δg

‰

¯)

. (3.35)

Now, by using the properties of the projectors Pαβ
´ Jβ “ Jα´ in the first term and using

(2.86) in the second and third terms, and neglecting the total derivative terms, we have

δL “ ´
1

4

p1` cη2q2

p1´ cη2q

!

´ Str
`

g´1δg, dBαJ
α
´

˘

` Str
´”

J̃σ`, g
´1δg

ı

, dJσ´

¯

`Str
´”

dJσ´, ηRg ˝ d̃J̃
σ
`

ı

, g´1δg
¯

´ Str
´

d̃BαJ̃
α
`, g

´1δg
¯

`Str
´

d̃J̃σ`,
“

Jσ´, g
´1δg

‰

¯

` Str
´

ηRgd̃J̃
σ
`,
“

dJσ´, g
´1δg

‰

¯)

, (3.36)

where in the last term we used the skew-symmetry of the Rg operator (3.22). Then after

some simplifications we get

δL „
!

Str
´

g´1δg
´

d
`

BαJ
α
´

˘

` d̃
´

BαJ̃
α
`

¯

`

”

J̃`α, d
`

Jα´
˘

ı

`

”

J´α, d̃
´

J̃α`

¯ı¯¯)

.(3.37)

The equation of motion is then given by

E ” d
`

BαJ
α
´

˘

` d̃
´

BαJ̃
α
`

¯

`

”

J̃`α, d
`

Jα´
˘

ı

`

”

J´α, d̃
´

J̃α`

¯ı

“ 0. (3.38)

Zero-curvature condition

By definition the left-invariant one-form A “ g´1 d g satisfies the zero-curvature condition

Z which, in components, is

Z ”
1

2
εαβpBαAβ ´ BβAα ` rAα, Aβsq “ 0. (3.39)

Plugging the relation (3.23) into the above expression one can recast it into the following

form,

Z ” Pαβ
´

!

BαJβ ´ BβJ̃α ´ ηRgBαdJβ ´ ηRgBβd̃J̃α `
”

J̃α, Jβ

ı

´

”

J̃α, ηRgdJβ

ı

`

”

ηRgd̃J̃α, Jβ

ı

´

”

ηRgd̃J̃α, ηRgdJβ

ı )

,

“ BαJ
α
´ ´ BαJ̃

α
` ´ ηRgBαdJ

α
´ ´ ηRgBαd̃J̃

α
` `

”

J̃α`, J´α

ı

´

”

J̃`α, ηRgdJ
α
´

ı

´

”

J´α, ηRgd̃J̃
α
`

ı

´

”

ηRgd̃J̃`α, ηRgdJ
α
´

ı

“ 0, (3.40)
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and by using (3.10) for the operator Rg, because it is also a skew-symmetric solution of the

YBE, and (3.38) the zero-curvature condition becomes

Z ” BαJ̃
α
` ´ BαJ

α
´ `

”

J´α, J̃
α
`

ı

` ηRgpEq ´ η2c
”

dJα´, d̃J̃`α

ı

“ 0. (3.41)

Let us remark that the field equations on the odd sector E p1q “ 0 and E p3q “ 0 simplify if

we consider the following combinations:

P1 ˝ p1´ ηRgqpEq ` P1pZq “ ´4
”

J̃
p2q
`α, J

αp3q
´

ı

,

P3 ˝ p1` ηRgqpEq ´ P3pZq “ ´4
”

J
p2q
´α, J̃

αp1q
`

ı

. (3.42)

And, as a consequence, one can write the field equations in the odd sector as

E p1q ”
”

J̃
p2q
`α, J

αp3q
´

ı

“ 0, E p3q ”
”

J
p2q
´α, J̃

αp1q
`

ı

“ 0, (3.43)

which have the same form as those of the undeformed model written in terms of unde-

formed currents (2.63).

Virasoro constraints

The action (3.18) in terms of the deformed currents (3.23) gives

S “ ´
1

4

p1` cη2q2

p1´ cη2q

ż

dσ2
pγαβ ´ κεαβqtStrpJα, d ˝ Jβqq ´ Str pηRg ˝ dJα, d ˝ Jβqu.

By using (3.19) the part of the action proportional to the metric takes the form,

Sγ “ ´
1

2

p1` cη2q2

p1´ cη2q

1

η̂2

ż

dσ2γαβ Str
´

J p2qα J
p2q
β

¯

. (3.44)

The Virasoro constraint is

Tαβ “ ´2
δS

δγαβ
“ 0, (3.45)

where Tαβ is the energy-momentum tensor, implies that

StrpJ p2qα J
p2q
β q ´

1

2
γαβγ

γδ StrpJ p2qγ J
p2q
δ q “ 0. (3.46)

Finally, taking the projector on (3.46) we get

StrpJαp2q´ J
βp2q
´ q “ 0, StrpJ̃αp2q` J̃

βp2q
` q “ 0. (3.47)
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The Lax connection

From (3.38) and (3.41) we find the deformed Lax pair

Lα` “ J̃
p0qα
` ` λ

a

1` cη2J̃
αp1q
` ` λ´2 1` cη2

1´ cη2
J̃
αp2q
` ` λ´1

a

1` cη2J̃
αp3q
` (3.48)

Mα
´ “ J

p0qα
´ ` λ

a

1` cη2J
αp1q
´ ` λ2 1` cη2

1´ cη2
J
αp2q
´ ` λ´1

a

1` cη2J
αp3q
´ (3.49)

where λ is the spectral parameter. So the Lax connection is constructed by the linear

combination of these equations,

Lα “ L`α `M´α, (3.50)

and it satisfies the zero-curvature condition.

The results above are valid for any σ-model with Z4-grading.

3.4 Yang-Baxter deformations of AdS5 ˆ S
5

The deformed action to describe type IIB superstring theory in AdS5 ˆ S5 is (3.18) since

it possesses a Z4-grading; thus, we apply the same formulae we computed in Section 3.3.

The equations of motion arising from the Lagrangian of the action (3.18) are given by

(3.38), the zero curvature condition Z “ 0 in terms of J̃α` and Jα´ is (3.41), the Virasoro

constraint is (3.47) and the Lax connection is (3.50).

κ-symmetry

In this case, let us consider the following infinitesimal right translation of the coset repe-

sentative g,

δg “ g
“

p1´ ηRgq ε
p1q
` p1` ηRgq ε

p3q
‰

. (3.51)

The variation of the action (3.18) it, is given by

δgS “
p1` cη2q2

2p1´ cη2q

ż

dσ2 Str pεEq ,

“
p1` cη2q2

2p1´ cη2q

ż

dσ2 Str
`

εp1qP3 ˝ p1` ηRgqE ` εp3qP1 ˝ p1´ ηRgq E
˘

. (3.52)
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Using the identities (3.42) and the zero curvature condition in terms of the deformed current

P1pZq “ P3pZq “ 0, the variation of the action can be written as follows

δgS “ ´2
p1` cη2q2

p1´ cη2q

ż

dσ2 Str
´

εp1q
”

J
p2q
´α, J̃

αp1q
`

ı

` εp3q
”

J̃
p2q
`α, J

αp3q
´

ı¯

. (3.53)

In a very similar to the undeformed case (2.88) and (2.89), an ansatz for the transformation

parameters εp1q and εp3q can be taken as,

εp1q “
´

J
p2qα
´ κ

p1q
`α ` κ

p1q
`αJ

p2qα
´

¯

, (3.54)

εp3q “
´

J̃
p2qα
` κ

p3q
´α ` κ

p3q
´αJ̃

p2qα
`

¯

, (3.55)

where κp1q` and κp3q´ are the vectors corresponding to 1 and 3 grading. From now on, the

computation is totally parallel to the procedure leading to equation (2.92) and (2.93). We

obtain

δgS “
p1` cη2q2

4p1´ cη2q

ż

dσ2
!

Str
´

J
αp2q
´ J

βp2q
´

¯

Str
´

Υ
”

J̃
p1q
α`, iκ

p1q
`β

ı¯

` Str
´

J̃
αp2q
` J̃

βp2q
`

¯

Str
´

Υ
”

J
p3q
´α, iκ

p3q
´β

ı¯)

, (3.56)

where Υ is the diagonal matrix defined as Υ “ diagpI4,´I4q. The vanishing of the total

variation of the action off-shell, with respect to g and γαβ gives the following condition:

δγαβ “
1´ cη2

2
Str

´

Υ
”

κ
p1qα
` , J̃

p1qβ
`

ı

`Υ
”

κ
p3qα
´ , J

p3qβ
´

ı¯

, (3.57)

for the transformation of the metric γαβ in order to ensure κ-symmetry, .

3.4.1 r-matrices for AdS5 ˆ S
5

The construction of the r-matrices can be done in terms of a basis of glp4|4q since it is

possible to write the generators of psup2, 2|4q in terms of combinations of the generators

of glp4|4q. This is developed in Appendix A.

Drinfeld-Jimbo r-matrix

The DJ r-matrix (3.13) can be written as

rDJ “ i
ÿ

1ďiăjď8

Eij ^ Eji p´1qrisrjs , (3.58)
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where ris is the grading associated to the index i, such that ris “ 0 for i “ 1, ..., 4 and

ris “ 1 for i “ 5, ..., 8. In this basis is easy to see that the positive and negative roots

are Eij with i ă j and Eji with i ą j, respectively, and the R operator associated to this

r-matrix in (3.14) is

R pEijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

`iEij if i ă j

0 if i “ j

´iEij if i ą j

. (3.59)

Abelian r-matrix

An abelian r-matrix (3.15) can be written in terms of diagonal elements

rAb “ Eii ^ Ejj with i ‰ j, (3.60)

such that any linear combination of them also satisfies the CYBE. In terms of the associated

linear R-operator it only acts on the Cartan generators

RAbpEiiq “ ´Ejj, RAbpEjjq “ Eii. (3.61)

Jordanian r-matrix

The Jordanian r-matrix (3.16) can be written in general as [18]

rJor “ Eij ^ pαEii ´ βEjjq ´ γ
ÿ

iăkăj

Eik ^ Ekj, (3.62)

for 1 ď i ă j ď m with γ “ α ` β or γ “ 0. The action of the linear R-operator is

RJorpEjiq “ ´αEii ` βEjj, RJorpEjkq “ ´γEik, (3.63)

RJorpEkkq “ pαδki ´ βδkjqEij, RJorpEkiq “ γEkj, (3.64)

where i ă j ă k and the nilpotency is pRJorq
n “ 0 for n ě 3.

When α “ β “ c and γ “ 2c, the Jordanian bosonic r-matrix is obtained from the

Drinfeld-Jimbo r-matrix (3.13) through a twisting [18, 73]. Moreover, unimodular Jorda-

nian r-matrices including fermionic generators were obtained recently in [74].
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Abelian-Jordanian r-matrix

Another type of r-matrix can be constructed from bosonic commutating positive or nega-

tive roots generators. These matrices are referred as abelian-Jordanian type (3.17)

rAJ “ Eij ^ Ekl with i ă j, k ă l, j ‰ k, i ‰ l. (3.65)

The associated linear R-operator is given by

RAJpElkq “ Eij, RAJpEjiq “ ´Ekl. (3.66)

In this case, the nilpotency is pRAJq
n “ 0 for n ě 2.

Unimodular nonabelian r-matrix

It is possible to construct several nonabelian r-matrices but, as was remarked in [50], based

on a classification in [75] only a subset of the possible r-matrices satisfy the unimodularity

condition,

rij rTi, Tjs “ 0, Ti P g . (3.67)

Notice that this condition is trivially satisfied for abelian r-matrices. For the nonabelian

case, however, unimodularity is a more subtle issue. In [50] it is given a list of the unimod-

ular nonabelian bosonic r-matrices that solve the CYBE. These r-matrices have the form

r “ a^ b` c^ d (3.68)

and are called rank four r-matrices. In (3.68) a, b, c and d are linear combinations of the

generators Ti such that ra, bs “ rc, ds “ 0. The list of r-matrices in terms of the sop2, 4q

generators pµ, kµ, mµν and D with µ, ν “ 0, ..., 3 given in Appendix B is

r1 “ p1 ^ p2 ` pp0 ` p3q ^ pm01 ´m13q,

r2 “ p1 ^ p2 ` pp0 ` p3q ^ pp3 `m01 ´m13q,

r3 “ p1 ^ pm02 ´m23q ` pp0 ` p3q ^ pp2 `m01 ´m13q,

r4 “ pp1 ´m02 `m23q ^ pk0 ` k3 ` 2p3 ´ 2m12q ` 2pp0 ` p3q ^ pp2 `m01 ´m13q,

r5 “ p1 ^ pm02 ´m23q ` pp0 ` p3q ^ pD `m03q,

r6 “ p1 ^m03 ` 2p0 ^ p3,
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r7 “ m03 ^m12 ` 2p0 ^ p3,

r8 “ p1 ^ p2 ` pp0 ` p3q ^m12,

r9 “ p1 ^ p2 ` pp0 ` p3q ^ pp3 `m12q,

r10 “ p1 ^ p2 ` p3 ^ pp0 `m12q,

r11 “ p1 ^ p2 ` p3 ^m12,

r12 “ p1 ^ p2 ` p0 ^ pp3 `m12q,

r13 “ p1 ^ p2 ` p0 ^m12,

r14 “ p1 ^ p2 `m12 ^m03,

r15 “ p1 ^ p3 ` pm01 ´m13q ^ pp0 ` p3q,

r16 “ p1 ^ p3 ` pp2 `m01 ´m13q ^ pp0 ` p3q,

r17 “ p1 ^ pp3 `m02 ´m23q ` pp0 ` p3q ^ pp2 `m01 ´m13q. (3.69)

However, unimodular nonabelian r-matrices cannot be constructed for the compact algebra

sup4q of S5, thus we cannot define this type of r-matrix in this subspace [76].

3.4.2 Deformed Backgrounds generated by r-matrices

Here we list some backgrounds that can be obtained by deforming AdS5ˆS
5. They result

from the choice of different types of r-matrices we presented above.

Yang-Baxter deformation of AdS5 ˆ S
5

For c “ 0 and switching off the fermionic degrees of freedom, so that d “ 2P2, the

deformed Yang-Baxter σ-model Lagrangian of the action (3.18) can be written as

L “ ´1

2
pγαβ ´ εαβqStr

`

AαP2 ˝O´1Aβ
˘

, (3.70)

where the operator O´1 depending on the deformation parameter η is given by

O´1
“

1

1´ 2ηRg ˝ P2

, (3.71)

andRg was defined in (3.20). In order to extract the background fields from the Lagrangian

(3.70) we need to define a basis for the coset (2.33),

sop2, 4q ‘ sop6q

sop1, 4q ‘ sop5q
“ spanR tKmu , m “ 1, ..., 10, (3.72)
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With this, the action of the projector P2 on the components of the Maurer-Cartan one-form

is

P2 pAαq “ E m
α Km, (3.73)

and

P2 pRgpKmqq “ Λ n
m Kn. (3.74)

Moreover, the projected action of the operator (3.71) can be computed in a similar way

P2

`

O´1
pKmq

˘

“ C n
m Kn, (3.75)

where the projector on the coset is

P2 pXq “
ÿ

m

Str pKmXq

Str pKmKmq
. (3.76)

Combining equations (3.71), (3.74) and (3.75) we can find the relation between the coeffi-

cients Λ n
m and C n

m

Km “ pC
n

m Kn ´ 2η C n
m Λ p

n Kpq , (3.77)

or in matrix notation,

C “ pI´ 2ηΛq´1 , (3.78)

which can be solved for C.

We can rewrite the deformed Lagrangian (3.70) as

L “ ´1

2

`

γαβ ´ εαβ
˘

E m
α E n

β C
p
n Str pKmKpq , (3.79)

or

L “ ´N
2

`

γαβCpmnqE
m
α E n

β ´ ε
αβCrmnsE

m
α E n

β

˘

, (3.80)

where N is a constant due to the supertrace in (3.79), the coefficients Cpmnq and Crmns are

the symmetric and antisymmetric parts of the matrix (3.78) and Em
α represent the coeffi-

cients in front of each of generators in (3.73).

Gravity dual of SYM on non-commutative spacetime

To evaluate the Lagrangian (3.70), let us take the following coset parametrization,

g “ exp
“

p0x
0
` p1x

1
` p2x

2
` p3x

3
‰

exp r´D log zs P SOp2, 4q{SOp1, 4q. (3.81)
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The abelian Jordanian r-matrix [20]

rAJ “ µp2 ^ p3 ` νp0 ^ p1, (3.82)

where pµ is defined in Appendix B and µ, ν are constant parameters.

The procedure to compute the deformed background is the following. First, we com-

pute the Maurer-Cartan one-form A “ g´1 d g and the coefficients E m
α from (3.73) by

using the projector P2 on the components of A. Then, we compute the coefficients Λ n
m by

applying the projector P2 on the action of the operator Rg (3.20) on the generators of the

coset Km. The coefficients Cpmnq and Crmns can be identified from the matrix C in (3.78).

Finally, we can compute the deformed Lagrangian (3.80) explicitly and extract the metric

from the symmetric part and B-field from the antisymmetric part.

In this case, the metric and B-field are

d s2
“

z2

z4 ` a14
pdx2

0 ` dx2
1q `

z2

z4 ` a4
pdx2

2 ` dx2
3q `

d z2

z2
` d Ω2

5, (3.83)

B “
a12

z4 ` a14
dx0 ^ dx1 `

a2

z4 ` a4
dx2 ^ dx3, (3.84)

with 2ηµ “ a2, 2ην “ a12. This background was first obtained via TsT transformations of

AdS5 ˆ S
5 [49].

In the following, the procedure to compute the metric andB-field will be the same only

with different choices of coset parametrization and r-matrix.

γ-deformed AdS5 ˆ S
5 with three parameters

To evaluate the deformed Lagrangian (3.70), let us adopt the following coset parametriza-

tion

g “ Λpφ1, φ2, φ3qΞpζqǧrprq P SUp4q{SOp5q. (3.85)

where the matrices Λ, Ξ and ǧρ are defined as

Λpφ1, φ2, φ3q ” exp

„

i

2
pφ1h1 ` φ2h2 ` φ3h3q



, (3.86)
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Ξpζq ”

¨

˚

˚

˚

˚

˚

˚

˝

cos ζ
2

sin ζ
2

0 0

´ sin ζ
2

cos ζ
2

0 0

0 0 cos ζ
2
´ sin ζ

2

0 0 sin ζ
2

cos ζ
2

˛

‹

‹

‹

‹

‹

‹

‚

, ǧrprq ”

¨

˚

˚

˚

˚

˚

˚

˝

cosh r
2

0 0 sinh r
2

0 cosh r
2

´ sinh r
2

0

0 ´ sinh r
2

cosh r
2

0

sinh r
2

0 0 cosh r
2

˛

‹

‹

‹

‹

‹

‹

‚

.

(3.87)

The abelian r-matrix [19]

rAb “ µ3h1 ^ h2 ` µ1h2 ^ h3 ` µ2h3 ^ h1, (3.88)

where µi are constant parameters, and hi pi “ 1, 2, 3q are the Cartan generators of sup4q.

With the following coordinate transformation

ρ1 “ sin r cos ζ, ρ2 “ sin r sin ζ, ρ3 “ cos r, (3.89)

the metric and B-field are

ds2
“ ds2

AdS5
`

3
ÿ

i“1

pd ρ2
i `Mρ2

i dφ2
i q `Mρ2

1ρ
2
2ρ

2
3

˜

3
ÿ

i“1

γ̂i dφi

¸2

, (3.90)

B “Mpγ̂3ρ
2
1ρ

2
2 dφ1 ^ dφ2 ` γ̂1ρ

2
2ρ

2
3 dφ2 ^ dφ3 ` γ̂2ρ

2
3ρ

2
1 dφ3 ^ dφ1q, (3.91)

where

M´1
” 1` γ̂2

3ρ
2
1ρ

2
2 ` γ̂

2
1ρ

2
2ρ

2
3 ` γ̂

2
2ρ

2
3ρ

2
1, (3.92)

and the relation between parameters is: 8ηµ1 “ γ̂1, 8ηµ2 “ γ̂2 and 8ηµ3 “ γ̂3.

If we consider γ̂1 “ γ̂2 “ γ̂3 ” γ̂ in (3.90) and (3.91) we get the Lunin-Maldacena

background. This background was first obtained via TsT transformations ofAdS5ˆS
5 [49]

Gravity dual of the non-relativistic limit of SYM: Schrödinger spacetime

We are now ready to parametrize bosonic group elements of PSUp2, 2|4q. The group ele-

ments of SOp2, 4q and SOp6q are parametrized as

ga “ exp
`

x1p1 ` x
2p2 ` x

3p3 ` x
0p0

˘

exp p´D log zq

“ exp
`

x1p1 ` x
2p2 ` x

`p` ` x
´p´

˘

expp´D log zq P SOp2, 4q, (3.93)
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gs “ exp pφ1h4 ` φ2h5 ` φ3h6q exp p´ζn13q exp

ˆ

´
i

2
rγs1

˙

P SOp6q. (3.94)

The light-cone coordinates and the associated generators are given by

x˘ “
x0 ˘ x3

?
2

, p˘ “
p0 ˘ p3
?

2
. (3.95)

Thus, a bosonic element g of PSUp2, 2|4q is represented by

g “ gags P SOp2, 4q ˆ SOp6q Ă PSUp2, 2|4q. (3.96)

The abelian r-matrix [21]

rAb “ ´
iβ

4η
p´ ^ ph4 ` h5 ` h6q, (3.97)

where p´ “ p0´p3 is defined for a particular representation of sop2, 4q and β is a constant

parameter.

In order to write the metric and B-field in a convenient form we make the following

change of coordinates

φ1 “ χ`
1

2
pψ ` φq , r “ µ, (3.98)

φ2 “ χ`
1

2
pψ ´ φq , ζ “

1

2
θ, (3.99)

φ3 “ χ, (3.100)

and then we get

d s2
“
´2 dx` dx´ ` pdx1q2 ` pdx2q2 ` d z2

z2
´ β2 pdx

`q2

z4
` d s2

S5 , (3.101)

B “
β

z2
dx` ^ pdχ` wq. (3.102)

Here, the S5 space is written in terms of the coordinates pχ, µ, ψ, θ, φq

d s2
S5 “ pdχ` ωq2 ` d s2

CP2 ,

d s2
CP2 “ dµ2

` sin2 µ
`

σ2
1 ` σ

2
2 ` cos2 µσ2

3

˘

, (3.103)

where

σ1 “
1

2
pcosψ d θ ` sinψ sin θ dφq ,
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σ2 “
1

2
pcosψ d θ ´ sinψ sin θ dφq ,

σ3 “
1

2
pdψ ` cos θ dφq , ω “ sin2 µσ3. (3.104)

This background was first obtained via a TsT transformations called null Melvin twist of

AdS5 ˆ S
5 [51].

Until now we have obtained backgrounds by using only abelian r-matrices which sat-

isfy trivially the unimodularity condition, and then the backgrounds derived above are stan-

dard supergravity backgrounds since they coincide with those obtained via TsT transfor-

mation.

On the other hand, nonabelian r-matrices do not lead, in general, to standard supergrav-

ity backgrounds [50]. The classification of nonabelian r-matrices given in (3.69), which

satisfy the unimodularity condition, leads to standard supergravity backgrounds, some of

them were computed in [50]. In [76], non-unimodular r-matrices were considered, leading

to deformed backgrounds which are solutions to the generalized supergravity and some of

them reduce to the original AdS5 ˆ S5 background after performing a generalized TsT

transformation.

The Drinfeld-Jimbo r-matrix including fermionic roots can be constructed by using

Dynkin diagrams associated to a Cartan-Weyl basis [10]. Choosing different configurations

of Dynkin diagrams lead to different deformed backgrounds . For some particular example

of DJ r-matrix, the metric and B-field were constructed in [11] and the Ramond-Ramond

fluxes in [12]. These background fields do not solve the standard supergravity equations

but a set of generalized type supergravity equations [13, 14]. For the AdS5 ˆ S5 and

AdS2 ˆ S2 ˆ T 6, Seilbold and Hoare found in [15] that the unimodularity condition is

satisfied if and only if all the simple roots are fermionic.



Chapter 4

Yang-Baxter deformations of the

AdS4 ˆ CP3 σ-model

In this chapter we consider deformations of superstrings in the AdS4 ˆ CP3 background.

The σ-model admits a supercoset description with Z4-grading and it is integrable. Then we

can apply the same procedures described in Chapter 3 to study its integrable deformations.

We start describing the AdS4 ˆ CP3 background as a supercoset and the Z4-grading

of the superalgebra uospp2, 2|6q. Then, we review the supercoset description of type IIA

superstrings in AdS4 ˆ CP3. In the following, we discuss this in the context of the Yang-

Baxter deformation. We propose some r-matrices for AdS4 ˆ CP3 which include the

bosonic DJ r-matrix as well as one abelian Jordanian r-matrix, two mixed r-matrices and

some examples of nonabelian r-matrices based on the classification in [50]. Finally, we

calculate some deformed backgrounds associated to the gravity dual of ABJM theory.

4.1 Superstrings in AdS4 ˆ CP3

The AdS4 ˆ CP3 background is a solution of Type IIA supergravity equations of motion

together with a constant dilaton, an F2 and an F4 flux. Due to the AdS/CFT correspon-

dence this background is dual to N “ 6 SUpNq ˆ SUpNq Chern-Simons theory in three

dimensions withN, k Ñ 8 andN{k large, whereN is the rank of the gauge group SUpNq

and k is the level of the Chern-Simons action [45].

42
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4.1.1 The AdS4 ˆ CP3 background

For this background, from (2.20), for n “ 4, and (2.21), for n “ 3, we get

AdS4 ”
SOp2, 3q

SOp1, 3q
»

Spp4q

SOp1, 3q
, CP3

”
SUp4q

Up3q
»
SOp6q

Up3q
, (4.1)

so the bosonic background is

AdS4 ˆ CP3
”

Spp4q ˆ SOp6q

SOp1, 3q ˆ Up3q
. (4.2)

When adding fermions we need to extend the numerator of the coset (4.2) to a supergroup

that contains it as its bosonic subgroup. In this case, due to the isomorphism Spp4q »

USpp2, 2q, the supergroup UOSpp2, 2|6q allows us to write the supercoset as [77]

UOSpp2, 2|6q

SOp1, 3q ˆ Up3q
. (4.3)

4.1.2 The Arutyunov-Frolov-Stefanski action

Arutyunov and Frolov [46] and, in parallel, Stefanski [47] proposed a way to investigate

the dynamics of type IIA superstrings in AdS4 ˆ CP3. The main idea was to follow the

Green-Schwarz-Metsaev-Tseytlin approach for type IIB superstrings in AdS5ˆ S
5, where

the supercoset σ-model formulation gives an alternative to the GS formalism. Thus, type

IIA superstring theory in AdS4 ˆ CP3 can be described as a σ-model on the supercoset

UOSpp2, 2|6q{ pSOp1, 3q ˆ Up3qq. In ten dimensions, superstring theory requires spinors

with 32 components in total. This supercoset description lacks 8 fermionic components and

then does not describe the full superstring. It was shown that these components have been

gauged away in this σ-model so the coset description has partially fixed κ-symmetry [46].

The uospp2, 2|6q superalgebra and its Z4-grading

The ospp4|6q superalgebra can be realized in terms of 10ˆ 10 supermatrices. Such super-

matrices are of the form

M “

¨

˝

X θ

η Y

˛

‚, (4.4)

where X and Y are 4 ˆ 4 and 6 ˆ 6 bosonic matrices, and η and θ are 6 ˆ 4 and 4 ˆ 6

fermionic matrices. The supermatricesM belong to uospp2, 2|6q if they obey the following
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conditions [77]

M st

¨

˝

C4 0

0 I6ˆ6

˛

‚ `

¨

˝

C4 0

0 I6ˆ6

˛

‚M “ 0,

M :

¨

˝

γ0 0

0 ´I6ˆ6

˛

‚`

¨

˝

γ0 0

0 ´I6ˆ6

˛

‚M “ 0,

(4.5)

where the supertranspose of a matrix M is defined as

M st
“

¨

˝

X t ´ηt

θt Y t

˛

‚. (4.6)

In condition (4.5), C4 and γ0 are

C4 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1

0 0 ´1 0

0 1 0 0

´1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, γ0
“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 ´1 0

0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

, (4.7)

C4 denotes the real skew-symmetric matrix satisfying C2
4 “ ´I4ˆ4 while γ0 is part of

the SOp1, 3q Clifford algebra. The first condition in (4.5) defines the algebra osp p4|6q,

whereas the second gives a real section of osp p4|6q denoted by uospp2, 2|6q. From the first

condition in (4.5) we get,

X t
“ ´C4XC

´1
4 , Y t

“ ´Y, θt “ ´ηC´1
4 , ηt “ C4θ, (4.8)

and from the second one,

X˚
“ pγ0C4qXpγ

0C4q
´1, Y ˚ “ Y, θ˚ “ pγ0C4qθ, η˚ “ ´ηpγ0C4q. (4.9)

The conditions on the bosonic matrix X show that it belongs to uspp2, 2q, the unitary form

of spp4q. For Y , these are the conditions for the sop6q algebra. We also notice that the

generic matrix M contains 96 real fermionic components but the condition on θ and η

reduce this number to 24.

The superalgebra uospp2, 2|6q admits a fourth order automorphism [46] with stationary

subalgebra sop1, 3q ‘ up3q. This automorphism can be used to define a Z4-grading such

that uospp2, 2|6q decomposes as a direct sum of four subalgebras,

uospp2, 2|6q “ Ap0q ‘Ap1q ‘Ap2q ‘Ap3q, (4.10)
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where each subspace is an eigenspace of Ω

Ω
`

Apkq
˘

“ ikApkq,
“

Apkq,Apmq
‰

Ď Apk`mq mod Z4, (4.11)

similar to the AdS5 ˆ S
5 case.

Constructing the action

Let g be an element of the supercoset (4.3) belonging to the supergroup UOSpp2, 2|6q. We

use g to build the Maurer-Cartan one-form A defined as follows,

A “ ´g´1 d g “ Ap0q ` Ap1q ` Ap2q ` Ap3q, A P uospp2, 2|6q, Apkq P Apkq.(4.12)

By construction A satisfy the zero-curvature condition

Z ” BαAβ ´ BβAα ´ rAα, Aβs “ 0. (4.13)

The supercoset description of type IIA superstring theory inAdS4ˆCP3 has the action [46]

S “

ż

d2 σL, (4.14)

with Lagrangian density

L “ ´1

2

”

γαβ Str
´

Ap2qα A
p2q
β

¯

` κεαβ Str
´

Ap1qα A
p3q
β

¯ı

, (4.15)

where γαβ is related to worldsheet metric gαβ as γαβ “ gαβ
?
´g such that detγ “ 1. The

first term of (4.15) corresponds to the kinetic term. The second term, proportional to the

parameter κ, is the WZ term and has contributions only from the odd components of Aα

and thus it contains the fermionic degrees of freedom of the theory.

The equations of motion derived from this Lagrangian are

E ” BαΛα
´ rAα,Λ

α
s “ 0, (4.16)

where

Λα
“ γαβA

p2q
β ´

1

2
κεαβ

´

A
p1q
β ´ A

p3q
β

¯

. (4.17)

The equations of motion E in (4.16) can be projected on the subspaces of the Z4 automor-

phism. The grading 2 component of (4.16) is

E p2q ” Bα
´

γαβA
p2q
β

¯

´ γαβ
”

Ap0qα , A
p2q
β

ı

`
1

2
κεαβ

´”

Ap1qα , A
p1q
β

ı

´

”

Ap3qα , A
p3q
β

ı¯

“ 0,

(4.18)
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while the grading 1 and grading 3 components of (4.16) are given, respectively, by

E p1q ” γαβ
”

Ap3qα , A
p2q
β

ı

` κεαβ
”

Ap2qα , A
p3q
β

ı

“0, (4.19)

E p3q ” γαβ
”

Ap1qα , A
p2q
β

ı

´ κεαβ
”

Ap2qα , A
p1q
β

ı

“0. (4.20)

Using the tensor Pαβ
˘ defined in (2.67), the equations of motion (4.19) and (4.20) can be

written as

E p1q ” Pαβ
´

”

Ap2qα , A
p3q
β

ı

“0, (4.21)

E p3q ” Pαβ
`

”

Ap2qα , A
p1q
β

ı

“0. (4.22)

By varying the Lagrangian (4.15) with respect to γαβ gives rise to the Virasoro constraint

Str
´

Ap2qα A
p2q
β

¯

´
1

2
γαβγ

ρδ Str
´

Ap2qρ A
p2q
δ

¯

“ 0. (4.23)

So the construction of the coset sigma model goes along similar lines as for theAdS5ˆ

S5 superstrings Section 2.3.2. The next step is to study the κ-symmetry in the action (4.14).

κ symmetry

The κ- symmetry transformations can be understood as the infinitesimal right local action

of a element G “ exp ε from UOSpp2, 2|6q on a coset representative g,

δg “ g
`

εp1q ` εp3q
˘

, ε “ εp1q ` εp3q. (4.24)

The variation of the action (4.14) it, is given by

δgS “

ż

dσ2 Str pεEq ,

Using the identities (4.21), (4.22) and the zero curvature condition P1pZq “ P3pZq “ 0,

the variation of the action can be written as follows

δgS “

ż

dσ2
!

δgγ
αβ Str

´

Ap2qα A
p2q
β

¯

´ 4 Str
´

εp1q
”

A
p1qα
` , A

p2q
α´

ı

` εp3q
”

A
p3qα
´ , A

p2q
α`

ı¯)

.

(4.25)

Under κ-symmetry transformations the action should remain invariant off-shell. The cru-

cial point of this construction is the ansatz for the transformation parameters εp1q and

εp3q [46],

εp1q “ A
p2q
α´A

p2q
β´κ

αβ
`` ` κ

αβ
``A

p2q
α´A

p2q
β´ ` A

p2q
α´κ

αβ
``A

p2q
β´ ´

1

8
Str

´

ΣA
p2q
α´A

p2q
β´

¯

καβ``, (4.26)
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εp3q “ A
p2q
α`A

p2q
β`κ

αβ
´´ ` κ

αβ
´´A

p2q
α`A

p2q
β` ` A

p2q
α`κ

αβ
´´A

p2q
β` ´

1

8
Str

´

ΣA
p2q
α`A

p2q
β`

¯

καβ´´, (4.27)

where Σ “ diagpI4,´I6q and κp1q` , κp3q´ are the vectors corresponding to 1 and 3 grading.

From now on, the computation is similar to the procedure leading to equation (2.92) and

(2.93). The vanishing of the total variation off-shell of the action , with respect to g and

γαβ , gives the transformation of the metric γαβ in order to ensure κ-symmetry,

δγαβ “
1

2
Str

´

ΣA
p2q
δ´

”

καβ``, A
p1qδ
`

ı¯

`
1

2
Str

´

ΣA
p2q
δ`

”

καβ´´, A
p3qδ
´

ı¯

. (4.28)

It is worth to mention that for the derivation of the κ-symmetry we used the fact that

Pαβ
˘ is an orthogonal projector, and then, the realization of this symmetry required that

κ “ ˘1.

4.1.3 Integrability of AdS4 ˆ CP3 superstring

The equations of motion (4.16) admit the Lax connection,

Lα “ `0A
p0q
α ` `1A

p2q
α ` `2γαβε

βρAp2qρ ` `3A
p1q
α ` `4A

p3q
α , (4.29)

where `i are constants to be determined by requiring that (4.29) satisfies (2.101). The pro-

cedure to find the Lax connection explicitly in terms of a spectral parameter z is completely

analogous to the one discussed for the superstring in AdS5 ˆ S5 (2.105) and requires that

κ “ ˘1. Thus, the Lax connection is

Lα “ Ap0qα `
1

2

ˆ

z2
`

1

z2

˙

Ap2qα ´
1

2κ

ˆ

z2
´

1

z2

˙

γαβε
βρAp2qρ ` zAp1qα `

1

z
Ap3qα . (4.30)

However, as we mentioned before, the σ-model for AdS4 ˆ CP3 does not contemplate

all the fermions of type IIA superstrings. The analysis of the Lax pair for the complete

theory, which includes the non-coset fermions, i.e. fermions that are not in the supercoset

σ-model, was done in [78–81].

4.2 Yang-Baxter deformations of AdS4 ˆ CP3

All the results presented in Section 3.3 can be applied to AdS4 ˆ CP3. The Lagrangian

density of the Yang-Baxter deformed σ-model with Z4-grading (3.18) gives the action

S “ ´
p1` cη2q2

2p1´ cη2q

ż

d2 σ Pαβ
´ Str

ˆ

Aα d ˝
1

1´ ηRg ˝ d
Aβ

˙

, (4.31)
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where Pαβ
˘ “ 1

2
pγαβ ˘ κεαβq and c is the constant in the YBE (3.10). The operators d and

d̃ are defined by the combination of projectors

d “ P1 ` 2η̂´2P2 ´ P3, d̃ “ ´P1 ` 2η̂´2P2 ` P3, (4.32)

satisfying StrpM,dNq “ Strpd̃M,Nq where η̂ “
a

1´ cη2 and η is a deformation param-

eter. We define the currents as

Jα ”
1

1´ ηRg ˝ d
Aα ” O´1Aα, Jα˘ ” Pαβ

˘ Jβ,

J̃α ”
1

1` ηRg ˝ d̃
Aα ” Õ´1Aα, J̃α˘ ” Pαβ

˘ J̃β, (4.33)

where the operators O and Õ are

O “ 1´ ηRg ˝ d, Õ “ 1` ηRg ˝ d̃. (4.34)

Thus, the equation of motion becomes

E ” d
`

BαJ
α
´

˘

` d̃
´

BαJ̃
α
`

¯

`

”

J̃α`, d
`

Jα´
˘

ı

`

”

Jα´, d̃
´

J̃α`

¯ı

“ 0, (4.35)

and the zero curvature condition is now

Z ” BαJ̃
α
` ´ BαJ

α
´ `

”

Jα´, J̃
α
`

ı

` ηRgpEq ´ η2c
”

dJα´, d̃J̃α`

ı

“ 0, (4.36)

while the Virasoro constraint is

StrpJαp2q´ J
βp2q
´ q “ 0, StrpJ̃αp2q` J̃

βp2q
` q “ 0. (4.37)

These results reduce to the ones for the undeformed case [46] when η “ 0 .

Due to the Z4-grading of this σ-model the Lax pair can be constructed in the same way

as was done for the deformed AdS5 ˆ S
5 (3.48).

κ-symmetry

To show that the deformed action (4.31) is invariant under κ-symmetry let us consider an

infinitesimal right translation, δg “ gε, with

ε “ p1´ ηRgqε
p1q
` p1` ηRgqε

p3q. (4.38)
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εp1q and εp3q, whose expressions will be determined below, take values in Ap1q and Ap3q

respectively. Then, the variation of the action (4.31) with respect to g reads

δgS “
p1` cη2q2

2p1´ cη2q

ż

d2 σ
“

Str
`

p1´ ηRgqε
p1q, E p3q

˘

` Str
`

p1` ηRgqε
p3q, E p1q

˘‰

. (4.39)

By using the following property of the R operator StrpM,RpNqq “ ´StrpRpMq, Nq, we

can write (4.39) as

δgS “
p1` cη2q2

2p1´ cη2q

ż

d2 σ
“

Str
`

εp1q, P3 ˝ p1` ηRgqE
˘

` Str
`

εp3q, P1 ˝ p1´ ηRgqE
˘‰

,(4.40)

where E is given in (4.35). By considering the combinations given in (3.42)

P1 ˝ p1´ ηRgqpEq ` P1pZq “ ´4
”

J̃
p2q
α`, J

αp3q
´

ı

,

P3 ˝ p1` ηRgqpEq ´ P3pZq “ ´4
”

J
p2q
α´, J̃

αp1q
`

ı

, (4.41)

and the zero curvature condition P1pZq “ P3pZq “ 0, we get

δgS “ ´2
p1` cη2q2

p1´ cη2q

ż

d2 σ Str
´

εp1q
”

J
p2q
α´, J̃

αp1q
`

ı¯

` Str
´

εp3q,
”

J̃
p2q
α`, J

αp3q
´

ı¯

,

“ 2
p1` cη2q2

p1´ cη2q

ż

d2 σ
!

Str
´”

J
p2q
α´, ε

p1q
ı

, J̃
αp1q
`

¯

` Str
´”

J
p2q
α`, ε

p3q
ı

, J
αp3q
´

¯)

. (4.42)

Now, we propose the following ansatz for εp1q and εp3q, inspired by the form they take in

the undeformed case (4.26) and (4.27),

εp1q “ J
p2q
α´J

p2q
β´κ

αβ
`` ` κ

αβ
``J

p2q
α´J

p2q
β´ ` J

p2q
α´κ

αβ
``J

p2q
β´ ´

1

8
Str

´

ΣJ
p2q
α´J

p2q
β´

¯

καβ``,

εp3q “ J̃
p2q
α`J̃

p2q
β`κ

αβ
´´ ` κ

αβ
´´J̃

p2q
α`J̃

p2q
β` ` J̃

p2q
α`κ

αβ
´´J̃

p2q
β` ´

1

8
Str

´

ΣJ̃
p2q
α`J̃

p2q
β`

¯

καβ´´, (4.43)

where Σ is a diagonal matrix Σ “ diagpI4,´I6q. The καβ`` and καβ´´ are the κ-symmetry

parameters which are assumed to be independent of the dynamical fields of the model. The

automorphism Ω4 acts on εp1q and εp3q above, and in order to εp1q P Ap1q and εp3q P Ap3q we

need καβ`` P Ap1q and καβ´´ P Ap3q. Then, the commutators in (4.42) can be written as
”

J
p2q
α´, ε

p1q
ı

“

„

J
p2q
α´J

p2q
β´J

p2q
δ´ ´

1

8
Str

´

ΣJ
p2q
β´J

p2q
δ´

¯

J
p2q
α´, κ

βδ
``



,

”

J
p2q
α`, ε

p3q
ı

“

„

J
p2q
α`J̃

p2q
β`J̃

p2q
δ` ´

1

8
Str

´

ΣJ̃
p2q
β`J̃

p2q
δ`

¯

J
p2q
α`, κ

βδ
´´



. (4.44)

Here some terms cancel each other due to the cyclicity of the indices α, β and δ. Using the

following identity

A3
“

1

8
StrpΣA2

qA`
1

8
StrpA2

qΣA, (4.45)
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we can write

J
p2q
α´J

p2q
β´J

p2q
δ´ ´

1

8
Str

´

ΣJ
p2q
β´J

p2q
δ´

¯

J
p2q
α´ “

1

8
Str

´

J
p2q
β´J

p2q
δ´

¯

ΣJ
p2q
α´,

J
p2q
α`J̃

p2q
β`J̃

p2q
δ` ´

1

8
Str

´

ΣJ̃
p2q
β`J̃

p2q
δ´

¯

J
p2q
α` “

1

8
Str

´

J̃
p2q
β`J̃

p2q
δ`

¯

ΣJ
p2q
α`. (4.46)

so the commutators (4.44) reduce to
”

J
p2q
α´, ε

p1q
ı

“

„

1

8
StrpJ p2qβ´J

p2q
δ´ qΣJ

p2q
α´, κ

βδ
``



“
1

8
StrpJ p2qβ´J

p2q
δ´ q

”

ΣJ
p2q
α´, κ

βδ
``

ı

,

”

J
p2q
α`, ε

p3q
ı

“
1

8
StrpJ̃ p2qβ`J̃

p2q
δ` q

”

ΣJ
p2q
α`, κ

βδ
´´

ı

. (4.47)

Then, the variation of the action (4.42) under κ-symmetry becomes

δgS “ ´2
p1` cη2q2

p1´ cη2q

ż

d2 σ
!

´
1

8
Str

´

J
p2q
β´J

p2q
δ´

¯

ˆ Str
´”

ΣJ
p2q
α´, κ

βδ
``

ı

J̃
αp1q
`

¯

´
1

8
Str

´

J̃
p2q
β`J̃

p2q
δ`

¯

ˆ Str
´”

ΣJ
p2q
α`, κ

βδ
´´

ı

J
αp3q
´

¯)

,

“
p1` cη2q2

4p1´ cη2q

ż

d2 σ
!

Str
´

ΣJ
p2q
α´

”

κβδ``, J̃
αp1q
`

ı¯

Str
´

J
p2q
β´J

p2q
δ´

¯

`Str
´

ΣJ
p2q
α`

”

κβδ´´, J
αp3q
´

ı¯

Str
´

J̃
p2q
β`J̃

p2q
δ`

¯)

. (4.48)

On the other hand, the variation of the action (4.31) with respect to γαβ is

δγS “ ´
1

2

p1` cη2q2

p1´ cη2q2

ż

d2 σδγαβ
!

Str
´

J p2qα J
p2q
β

¯

` Str
´

J̃ p2qα J̃
p2q
β

¯)

. (4.49)

By adding (4.48) and (4.49) and requiring that the total variation of the deformed action

(4.31) vanishes off-shell we can deduce the transformation of the worldsheet metric γαβ

under κ-symmetry,

δγαβ “
1

2
p1´ cη2

qStr
´

ΣJ
p2q
δ´

”

καβ``, J̃
δp1q
`

ı

` ΣJ
p2q
δ`

”

καβ´´, J
δp3q
´

ı¯

. (4.50)

4.3 r-matrices for AdS4 ˆ CP3

Based on the classification shown in Section 3.2 we present here some solutions of the

YBE for AdS4 ˆ CP3.

Drinfeld-Jimbo r-matrix

A typical solution of the mCYBE is the Drinfeld-Jimbo type solution which is constructed

in terms of the positive and negative roots of the superalgebra. The DJ r-matrix of uospp2, 2|6q
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at the bosonic level is just the sum of the uspp2, 2q and sop6q DJ r-matrices, respectively.

The DJ r-matrix associated to uspp2, 2q is

rDJ “ e1 ^ f1 ` e2 ^ f2, (4.51)

and for sop6q is

r̃DJ “ ẽ1 ^ f̃1 ` ẽ2 ^ f̃2 ` ẽ3 ^ f̃3, (4.52)

where ei, fi, ẽi and f̃i are the bosonic roots of uspp2, 2q and sop6q defined in Appendix D.

The R operator corresponding to this DJ r-matrix is defined by its action on the Cartan

generators, the positive and the negative roots,

Rei “ iei, Rfi “ ´ifi, Rhi “ 0, (4.53)

Rẽi “ iẽi, Rf̃i “ ´if̃i, Rh̃i “ 0, (4.54)

which satisfies the mCYBE with c “ 1.

Abelian r-matrix

An r-matrix of this type is constructed by commuting generators and satisfy the unimodu-

larity condition trivially. It can be built in terms of the Cartan generators L, L3 and M3 of

CP3 [48]

r “ µ1L^M3 ` µ2L3 ^M3 ` µ3L3 ^ L, (4.55)

where the µi’s are constant parameters.

Abelian-Jordanian and mixed r-matrix

Abelian-Jordanian r-matrices are abelian and nilpotent and one example for AdS4 is

r “ P1 ^ P2, (4.56)

where P1 and P2 are the AdS4 generators given in Appendix E.

Two examples of r-matrices which are composed by generators of isometries of both

subspaces, AdS4 and CP3, are

r “
α

η
P2 ^M3, (4.57)
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r “
1

η
P´ ^ pβ1L` β2L3 ` β3M3q , (4.58)

where α, βi are constants and P2 and P´ “ P0 ´ P2 are AdS4 generators given in Ap-

pendix E and L,L3,M3 are Cartan generators of CP3.

Unimodular nonabelian r-matrix

A list of unimodular nonabelian r-matrices for sop2, 4q is given in (3.69). From it, r6, r13

and r15 are written in terms of a subset of generators that can be embedded in sop2, 3q and

thus be used to construct deformations of AdS4, 1,

r6 “P2 ^M01 ` 2P0 ^ P1, (4.59)

r13 “P1 ^ P2 ` P0 ^M12, (4.60)

r15 “P1 ^ P2 ` pM01 ´M12q ^ pP0 ` P2q . (4.61)

Also, we could consider generators of isometries of CP3, which obviously commute with

those of sop2, 4q, in order to construct unimodular nonabelian deformations ofAdS4ˆCP3,

r1 “P1 ^ SA ` pP0 ` P2q ^ pM01 ´M12q , (4.62)

r2 “P1 ^ SA ` pP0 ` P2q ^ pP2 `M01 ´M12q (4.63)

r7 “M02 ^ SA ` 2P0 ^ P2, (4.64)

where SA is any standard generator of isometries of CP3.

The complete classification of this type of r-matrices has not been done yet. The r-

matrices we considered above are some examples of those that can be used to deform

AdS4.

4.4 Deformed Backgrounds generated by r-matrices

In this section we will compute the backgrounds of some of the r-matrices we proposed.

1As was mentioned at the end of Section 3.4.1, it is not possible to construct unimodular nonabelian

r-matrices for compact Lie algebras [76]
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4.4.1 Gravity dual of ABJM on non-commutative spacetime

The non-commutative deformation of the ABJM three-dimensional theory corresponds, on

the string theory side, to a deformation of the AdS4 space.

Coset construction of AdS4

The corresponding coset for AdS4 is

AdS4 ”
USP p2, 2q

SOp1, 3q
»
SOp2, 3q

SOp1, 3q
. (4.65)

In terms of its algebra the coset for AdS4 can be written as

sop2, 3q “
sop2, 3q

sop1, 3q
‘ sop1, 3q, (4.66)

where sop1, 3q corresponds to the local isometries. In order to write an appropriate coset

parametrization of (4.65), we consider the following basis

sop2, 3q

sop1, 3q
“ spanR tKmu , m “ 1, ..., 4 (4.67)

where we have renaming the generators using the notation in Appendix E:

K1 “M04, K2 “M14, K3 “M24, K4 “ iM34. (4.68)

The sop1, 3q generators are tHau “ tM01,M02,M03,M12,M13,M23u. We will use (4.68)

to parametrize AdS4. An appropriate representative coset, which will allow us to get the

desired AdS4 metric, is [82]

g “ exp rx0P0 ` x1P1 ` x2P2s exp r´ log zDs P SOp2, 3q{SOp1, 3q, (4.69)

where Pa and D are the translation and dilation generators respectively, defined in Ap-

pendix E. Then, we can write a Lie algebra element of sop2, 3q by using the Maurer-Cartan

one-form.

Any X P sop2, 3q can be written as

X “
ÿ

m

tr pKmXq

tr pKmKmq
Km `

ÿ

a

tr pHaXq

tr pHaHaq
Ha, (4.70)

withKm P sop2, 3q{ sop1, 3q andHa P sop1, 3q. The projector into the coset can be defined

as

P pXq “ X ´
ÿ

a

tr pHaXq

tr pHaHaq
Ha “

ÿ

m

tr pKmXq

tr pKmKmq
Km. (4.71)
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The Maurer-Cartan one-form A has generators that are out of the coset so we need to

project them back into those of the coset by using (4.71)

P pAq “ A´
trpM01Aq

trpM01M01q
M01 ´

trpM02Aq

trpM02M02q
M02 ´

trpM03Aq

trpM03M03q
M03

´
trpM12Aq

trpM12M12q
M12 ´

trpM13Aq

trpM13M13q
M13 ´

trpM23Aq

trpM23M23q
M23

“
dx0

z
K1 `

dx1

z
K2 `

dx2

z
K3 ´

dz

z
K4 “ EmKm. (4.72)

The metric for AdS4 is obtained from the symmetric part of the Lagrangian (4.15) with

fermionic degrees of freedom switched off,

L “ ´1

2
γαβ tr rAαP pAβqs , (4.73)

which gives

ds2
AdS4

“
1

z2

`

dz2
` dx2

0 ´ dx
2
1 ´ dx

2
2

˘

, (4.74)

where z ą 0 and xa (a “ 0, 1, 2) parametrize a three-dimensional Minkowski space with

signature p` ´ ´q.

Yang-Baxter deformation of AdS4

The deformed Yang-Baxter σ-model Lagrangian of the action (4.31), with c “ 0, κ “ 1

and the fermionic degrees of freedom switched-off, can be written as

L “ ´1

2
pγαβ ´ εαβq tr

`

AαP ˝O´1Aβ
˘

, (4.75)

where the operator O depending on the deformation parameter η is given by

O´1
“

1

1´ 2ηRg ˝ P
. (4.76)

In order to extract the background fields from the Lagrangian (4.75), we need to find the

projected action of Rg on each generator of the basis (4.67), such that

P pRgpKmqq “ Λ n
m Kn, (4.77)

where Km are defined in (4.68). Moreover, the projected action of the operator (4.76) can

be computed in a similar way

P
`

O´1
pKmq

˘

“ C n
m Kn. (4.78)
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Combining equations (4.76), (4.77) and (4.78) we can find the relation between the coeffi-

cients Λ n
m and C n

m

Km “ pC
n

m Kn ´ 2η C n
m Λ p

n Kpq , (4.79)

or in matrix notation,

C “ pI´ 2ηΛq´1 , (4.80)

which can be solved for C.

We can rewrite the deformed Lagrangian (4.75) as

L “ ´N
2

`

γαβCpmnqE
m
α E

n
β ´ ε

αβCrmnsE
m
α E

n
β

˘

, (4.81)

whereN is a constant, the coefficients Cpmnq and Crmns are the symmetric and antisymmet-

ric parts of the matrix (4.80) andEm
α represent the coefficients in front of each of generators

in (4.72).

The r-matrix to be used is built by taking abelian generators as in (4.56),

r “ P1 ^ P2. (4.82)

This matrix is of abelian-Jordanian type. From the coset parametrization (4.69) together

with the definitions (3.20) and (3.21) for theR operator, we find that the only non-vanishing

components (4.77) of the matrix Λ are

Λ 3
2 “ ´Λ 2

3 “
1

z2
, (4.83)

and those of C (4.80) are

C 1
1 “ C 4

4 “ 1, C 2
2 “ C 3

3 “
z4

z4 ` 4η2
, C 3

2 “ ´C 2
3 “

z4

z4 ` 4η2
. (4.84)

Then, we can identify the symmetric and antisymmetric part of the deformed Lagrangian

as

Lsym “
1

4
γαβ

ˆ

1

z2
pBαx0Bβx0 ` BαzBβzq `M pBαx1Bβx1 ` Bαx2Bβx2q

˙

, (4.85)

Lantisym “ ´
1

4
εαβM pBαx2Bβx1 ´ Bαx1Bβx2q , (4.86)

where

M´1
“ z2

`
4η2

z2
. (4.87)
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The metric and the antisymmetric field can easily be read off

ds2
AdS4

“
1

z2

`

dx2
0 ` dz

2
˘

`M
`

dx2
1 ` dx

2
2

˘

, (4.88)

B “
η

z2
M dx1 ^ dx2. (4.89)

This background agrees with the gravity dual of non-commutative ABJM theory presented

in [49] up to a Wick rotation x0 Ñ ix0. This result shows that the gravity dual of a non-

commutative ABJM theory is an integrable deformation of AdS4 ˆ CP3 string theory.

4.4.2 Gravity dual of one-parameter dipole deformation of ABJM

In this section, we construct the deformation for both spaces AdS4 and CP3. We will

choose an r-matrix with one parameter constructed in terms of one generator of AdS4 and

one of the three Cartan generators of the CP3.

Coset construction of AdS4 ˆ CP3

In [48] it was used an extension of the coset describing the CP3 space in order to get

the standard Fubini-Study metric. To obtain the full AdS4 ˆ CP3 metric we consider the

extended coset

AdS4 ˆ CP3
”
SOp2, 3q

SOp1, 3q
ˆ
SUp4q ˆ SUp2q

Up3q ˆ SUp2q
. (4.90)

To this end we need to choose a suitable supermatrix realization for the generators of this

extended supercoset. As explained in [83] we can write a algebra valued p6|4q ˆ p6|4q

supermatrix as

M “

¨

˚

˚

˚

˝

sop2, 3q 0 Q̄

0 sup2q 0

Q 0 sup4q

˛

‹

‹

‹

‚

, (4.91)

where we extended sop2, 3q ‘ sup4q to sop2, 3q ‘ sup2q ‘ sup4q and Q, Q̄ are fermionic

generators. In terms of algebras we now have

sop2, 3q‘sup2q‘sup4q “

ˆ

sop2, 3q ‘ sup2q ‘ sup4q

sop1, 3q ‘ sup2q ‘ up3q

˙

‘sop1, 3q‘sup2q‘up3q. (4.92)
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Notice that in (4.91), in the form of (4.4), we put the extra sup2q in the X-block of the

supermatrix and the sup4q in the 4ˆ 4 Y -block, such that the supertrace is

M st
“ trX1 ` ptrX2 ´ trY q , (4.93)

where X1 P sop2, 3q, X2 P sup2q and Y P sup4q and the fermionic blocks are preserved.

The basis of sop2, 3q ‘ sup2q ‘ sup4q that we will consider is composed of sop2, 3q

generators denoted by FA (A “ 1, ..., 10), sup2q generators denoted by Ma (a “ 1, 2, 3)

and sup4q generators denoted by Lm (m “ 1, ...15),

FA “

¨

˚

˚

˚

˝

fA

0

0

˛

‹

‹

‹

‚

, Ma “ ´
i

2

¨

˚

˚

˚

˝

0

σa

0

˛

‹

‹

‹

‚

, Lm “ ´
i

2

¨

˚

˚

˚

˝

0

0

λm

˛

‹

‹

‹

‚

, (4.94)

where fA are the 4ˆ 4 matrices representing the generators of isometries of AdS4, σa and

λm are the conventional 2 ˆ 2 Pauli and 4 ˆ 4 Gell-Mann matrices of sup2q and sup4q,

respectively. All these generators are defined in Appendix E.

The commutation relations and the supertraces are 2

rLm, Lns “ f p
mn Lp, rMa,Mbs “ ε c

ab Mc, (4.95)

Str pLmLnq “
1

2
δmn, Str pMaMbq “ ´

1

2
δab. (4.96)

The Cartan generators of sup2q ‘ sup4q are given by L3, L8, L15 and M3. The following

combination of generators will be useful,

T1 “ L6 ´ L9, T2 “ L6 ` L9 ` 2M1. (4.97)

The basis for sup2q ‘ sup4q can be chosen as

sup2q ‘ sup4q “ spanR tLm1 ,M2,M3, T1, T2, Hu , (4.98)

where Lm1 is the set of generators of sup4q except for L6, L9 and

H “ L6 ` L9 `M1, (4.99)
2We have denoted the 10 generators of sop2, 3q as fA “ tD,M01,M02,M12, P0, P1, P2,K0,K1,K2u.

FA is simply the extension to a supermatrix of these generators and the algebra they satisfy is given in (E.10)

of Appendix E.
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satisfying

Str pHHq “
1

2
. (4.100)

The basis for the coset is this,

sup2q ‘ sup4q

up3q ‘ sup2q
“ spanR tKmu , m “ 1, ..., 6, (4.101)

where

K1 “ L11, K2 “ L12, K3 “ L13

K4 “ L14, K5 “ H, K6 “ L10, (4.102)

with

Str pKmKnq “
1

2
. (4.103)

The generators of up3q ‘ sup2q are

up3q ‘ sup2q “ spanR tHau “ spanR tL1, L2, L3, L4, L5, L7, L8, L15, T1, T2,M2,M3u .

(4.104)

An appropriate coset representative which will allows us to get the desired AdS4ˆCP3 is

g “ gAdS4gCP3 , (4.105)

where

gAdS4 “exp rx0P0 ` x1P1 ` x2P2s exp rlog rDs , (4.106)

gCP3 “ exp rpϕ1L3 ` ϕ2L´ ψM3qs exp rpθ1L2 ` pθ2 ` πqL14qsˆ

ˆ exp rp2ξ ` πq pL10 `M2qs , (4.107)

where

L “ ´
1
?

3
L8 `

c

2

3
L15. (4.108)

We can get the AdS4ˆCP3 background by following the same steps as in the previous

section. The projection P pAq allows us to define,

P pAq “ EmKm, m “ 0, ..., 9, (4.109)

in terms of all the coset generators

tKmu “ tP0, P1, P2, D, L11, L12, L13, L14, H, L10u . (4.110)
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In this case, the projector is defined as in (4.71) but extended to supermatrices,

P pAq “ A´
ÿ

a

Str pHaAq

Str pHaHaq
Ha “

ÿ

m

Str pKmAq

Str pKmKmq
Km. (4.111)

Then we find

E1
“ r dx0, E2

“ r dx1, E3
“ r dx2, E4

“
d r
r
,

E5
“ cos ξ sin θ1 dϕ1, E6

“ cos ξ d θ1, E7
“ ´ sin θ2 sin ξ dϕ2

E8
“ ´ sin ξ d θ2, E9

“
1

2
pcos θ1 dϕ1 ´ cos θ2 dϕ2 ` 2 dψq sin 2ξ, E10

“ 2 d ξ.
(4.112)

The metric can be computed from

L “ ´1

2
γαβ Str rAαP pAβqs , (4.113)

where d s2
AdS4

was given in (4.74) and d s2
CP3 is

d s2
CP3 “ d ξ2

`
1

4
cos2 ξ

`

d θ2
1 ` sin2 θ1 dϕ2

1

˘

`
1

4
sin2 ξ

`

d θ2
2 ` sin2 θ2 dϕ2

2

˘

` cos2 ξ sin2 ξ

ˆ

1

2
cos θ1 d θ1 ´

1

2
cos θ2 d θ2 ` dψ

˙2

, (4.114)

where pθ1, ϕ1q and pθ2, ϕ2q parametrize two spheres, the angle 0 ď ξ ď π{2 determines

their radii and 0 ď ψ ď 2π.

Yang-Baxter deformation of AdS4 ˆ CP3

Let us consider the r-matrix in (4.57),

r “
α

η
P2 ^M3. (4.115)

From (3.21), the R operator associated to this r-matrix is

R pXq “
α

η
pP2 Str pXM3q ´M3 Str pXP2qq . (4.116)

The projected action of Rg and O´1 on the supercoset bosonic generators Km, (4.77) and

(4.78), give the matrices Λ and C, whose non-vanishing terms are

Λ 10
4 “ ´Λ 4

10 “ ´
αr sin 2ξ

2η
, (4.117)
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and for (4.80)

C 1
1 “ C 2

2 “ C 4
4 “ C 5

5 “ C 6
6 “ C 7

7 “ C 8
8 “ C 10

10 “ 1,

C 3
3 “ C 9

9 “
1

1` α2r2 sin2 2ξ
, C 9

3 “ ´C 3
9 “ ´

αr sin 2ξ

1` α2r2 sin2 2ξ
.

(4.118)

The metric and the antisymmetric field for the deformed case are

ds2
“

1

4

ˆ

r2
`

dx2
0 ` dx2

1 `M dx2
2

˘

`
d r2

r2

˙

` d ξ2
`M cos2 ξ sin2 ξ

ˆ

1

2
cos θ1 dϕ1 ´

1

2
cos θ2 dϕ2 ` dψ

˙2

`
1

4
cos2 ξ

`

d θ2
1 ` sin2 θ1 dϕ2

1

˘

`
1

4
sin2 ξ

`

d θ2
2 ` sin2 θ2 dϕ2

2

˘

, (4.119)

B “ ´αMr2 sin2 2ξ dx2 ^

ˆ

1

2
cos θ1 dϕ1 ´

1

2
cos θ2 dϕ2 ` dψ

˙

, (4.120)

where

M´1
“ 1` α2r2 sin2 2ξ. (4.121)

The deformed background (4.119) and (4.120) agree with the gravity dual of the one-

parameter dipole deformation of ABJM theory found in [49]. We then have an integrable

deformation of superstring in AdS4 ˆ CP3.

4.4.3 Gravity dual of the non-relativistic limit of ABJM:

Schrödinger spacetime

As in the last section, we will use the extended supercoset with supermatrices (4.94) and

AdS4 ˆ CP3 parametrized by the coset representatives (4.106) and (4.107).

Yang-Baxter deformation of AdS4 ˆ CP3

We consider the r-matrix in (4.58),

r “
1

η
P´ ^ pβ1L` β2L3 ` β3M3q . (4.122)

For simplicity we will choose β1 “ β3 “ 0. Then, the non-vanishing elements (4.77) and

(4.78) of the Λ and C matrices, respectively, are

Λ 5
1 “ ´Λ 1

5 “ Λ 5
3 “ Λ 3

5 “ ´
β2r cos ξ sin θ1

2
?

2
,

Λ 9
1 “ Λ 9

3 “ ´Λ 1
9 “ Λ 3

9 “ ´
β2r sin 2ξ cos θ1

4
?

2
.

(4.123)
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and

C 2
2 “ C 4

4 “ C 5
5 “ C 6

6 “ C 7
7 “ C 8

8 “ C 9
9 “ C 10

10 ,

C 1
1 “ 1´

1

8
β2

2

`

4 cos2 ξ sin2 θ1 ` sin2 2ξ cos2 θ1

˘

,

C 3
3 “ 1`

1

8
β2

2

`

4 cos2 ξ sin2 θ1 ` sin2 2ξ cos2 θ1

˘

,

C 3
1 “ ´C 1

3 “
1

8
β2

2

`

4 cos2 ξ sin2 θ1 ` sin2 2ξ cos2 θ1

˘

,

C 5
1 “ ´C 1

5 “ ´
β2r cos ξ sin θ1

?
2

, C 9
1 “ ´C 1

9 “ ´
β2r sin 2ξ sin θ1

2
?

2
,

C 5
3 “ C 3

5 “ ´
β2r cos ξ sin θ1

?
2

, C 9
3 “ C 3

9 “ ´
β2r sin 2ξ sin θ1

2
?

2
.

(4.124)

From (4.111) we find that the components proportional to the coset generators are

E1
“

r
?

2
pdx` ` dx´q , E2

“ r dx1, E3
“

r
?

2
pdx` ´ dx´q , E4

“
d r
r
,

E5
“ cos ξ sin θ1 dϕ1, E6

“ cos ξ d θ1, E7
“ ´ sin θ2 sin ξ dϕ2

E8
“ ´ sin ξ d θ2, E9

“
1

2
pcos θ1 dϕ1 ´ cos θ2 dϕ2 ` 2 dψq sin 2ξ, E10

“ 2 d ξ.
(4.125)

From the symmetric part of C in (4.124) we can compute the deformed metric

d s2
“

d r2

r2
` r2 dx2

1 ` 2r2β2M dx` dx´ ` r2
`

dx2
` ` dx2

´

˘

`

ˆ

2M dφ1 ´
1

4
β2r

2 sin2 2ξ cos θ1 p´ cos θ2 dφ2 ` 2 dψq
˙

pdx` ´ dx´q

` 4ds2
CP3 , (4.126)

and from the antisymmetric part of C in (4.124) we can compute of the antisymmetric field

B “
1

2
Mβ2r

2 dx` ^ dx´ ´
β2r

2 cos2 ξ sin2 θ1

4
pdx` ` dx´q ^ dϕ1

´
β2r

2 sin2 2ξ cos θ1

8
pdx` ` dx´q ^ pcos θ1 dϕ1 ´ cos θ2 dϕ2 ` 2 dψq , (4.127)

with

M “ ´
1

8
β2r

2
`

4 cos2 ξ sin2 θ1 ` sin2 2ξ cos2 θ1

˘

. (4.128)

This space should be obtained via a certain class of TsT transformations called null Melvin

twist [21, 51].



Chapter 5

Concluding remarks

In this thesis we studied Yang-Baxter integrable deformations of the nonlinear σ-model

describing string theories in AdS4 ˆ CP3.

We presented some solutions of the YBE for AdS4 ˆ CP3, like a DJ r-matrix in terms

of only bosonic roots of the uospp2, 2|6q. An abelian Jordanian and two mixed r-matrices

were discussed. Also, some unimodular nonabelian r-matrices were provided.

We computed explicitly the backgrounds generated by some of the r-matrices we pro-

posed. By considering an abelian Jordanian r-matrix in terms of the generators of AdS4,

we computed the metric and B-field of the gravity dual of the non-commutative ABJM

theory. This deformation involved only the AdS4 part of the spacetime, and thus we only

needed to consider the usual parametrization of AdS spaces. On the other hand, in or-

der to reproduce the full undeformed AdS4 ˆ CP3 Fubini-Study metric, we enlarged the

supercoset as was done in [48] in a consistent way. We took a coset representative that

included the generators of AdS4 and those that give the correct form of CP3. Along this

line we computed the deformed metric and B-field corresponding to the gravity dual of

the one-parameter dipole deformed ABJM theory by using an r-matrix in terms of mixed

generators, one of AdS4 and one Cartan generator of CP3. These backgrounds coincide

with those obtained via TsT transformations in [49]. We also considered an r-matrix con-

structed in terms of another combination of mixed generators, one of AdS4 and one of the

three Cartan generators of CP3. The deformed background we obtained in this case corre-

sponds to the gravity dual of the non-relativistic limit of ABJM theory which is known as

the Schrödinger spacetime. This background is expected to be obtained by an appropriate
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null Melvin twist [51]. These deformations of AdS4ˆCP3 can be regarded as an evidence

of the relation between TsT transformations and solutions of the CYBE which is called the

gravity/CYBE correspondence [19].

Let us now discuss some open problems that arise from this work. First, the DJ r-

matrix we wrote was in terms of only bosonic generators. In Appendix D, it was shown the

algebra of the fermionic generators of uospp2, 2|4q, from which it is possible to identify the

full Cartan decomposition, and thus to write the full DJ r-matrix including also fermionic

simple roots. This would allows to construct the η-deformed AdS4ˆCP3 background and

to investigate the generalized supergravity in this framework. Along this route, we expect

that, as in AdS5 ˆ S5 and AdS2 ˆ S2 ˆ T 6, a DJ r-matrix constructed in terms of only

fermionic simple roots leads to a standard supergravity backgrounds [15].

Furthermore, as conjectured by Klimcik [42], it would be interesting to pursue the

relation between the η- and λ-deformed AdS4 ˆ CP3 by Poisson-Lie T-duality [84,85]. In

order to obtain the Poisson-Lie T-dual η-deformed we need to construct the Drinfeld double

which is the complexified superalgebra uospp2, 2|6qC. This superalgebra can be split into

uospp2, 2|6q and the Borel subsuperalgebra pbp2, 2|6q. This is possible to do by taking

our Cartan decomposition. Once we have identified the Drinfeld double, it is possible to

construct the action of the Poisson-Lie σ-model.

An immediate step to complete our result of the gravity dual of the non-relativistic

limit of ABJM is to compute the corresponding TsT null Melvin twist of the undeformed

AdS4ˆCP3 background. This should give the same Yang-Baxter deformed background we

calculated. A direct generalization of our results for the cases of the gravity duals of the

dipole deformed ABJM theory and Schrödinger spacetime from one to three parameters

can be done if we now consider r-matrices with three constant parameters.

Finally, we can consider the unimodular nonabelian r-matrices we found in Section 4.3

and compute the corresponding deformed backgrounds which would be standard super-

gravity solutions.



Appendix A

Supermatrix realization of sup2, 2|4q

The glpm|nq superalgebra can be generated by the following basis

pEijqk` “ δikδj`, i, j, k, ` “ 1, ...,m` n, (A.1)

satisfying

rEij, Ek`s “ δjkEi` ´ p´1qri`jsrk``s δi`Ejk, (A.2)

where r¨s is the grading of each generator. This basis can be expressed by pm|nq ˆ pm|nq

supermatrices,

M “

¨

˝

Xmˆm θmˆn

ηnˆm Ynˆn

˛

‚. (A.3)

The special linear Lie superalgebra slpm|nq is defined as

slpm|nq “ tM P glpm|nq, StrM “ trX ´ trY “ 0u . (A.4)

By using this condition for the generators of glp4|4q, we obtain the following bosonic

generators of slp4|4q,

E11 ´ E22, E22 ´ E33, E33 ´ E44, E12, E13, E14, E23,

E24, E34, E21, E32, E43, E31, E42, E41,
(A.5)

E55 ´ E66, E66 ´ E77, E77 ´ E88, E56, E57, E58, E67,

E68, E78, E65, E76, E87, E75, E86, E85.
(A.6)

In addition to these generators, we also have

E44 ` E55, (A.7)
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which represents the up1q algebra. Then, by using the condition

MH `HM :
“ 0, (A.8)

where the Hermitian matrix H is defined as

H “

¨

˝

Σ 0

0 I4ˆ4

˛

‚, with Σ “

¨

˝

I2ˆ2 0

0 ´I2ˆ2

˛

‚, (A.9)

we obtain the real form of sup2, 2|4q.

By imposing (A.8) on (A.5) and (A.6) we get the 15 generators of sup2, 2q

E13 ` E31, ipE13 ´ E31q, E14 ` E41, ipE14 ´ E41q

E23 ` E32, ipE23 ´ E32q, E24 ` E42, ipE24 ´ E42q

ipE12 ` E21q, E12 ´ E21, ipE34 ` E43q, E34 ´ E43

ipE11 ´ E22q, ipE22 ´ E33q, ipE33 ´ E44q,

(A.10)

and the 15 generators of sup4q,

E56 ´ E65, ipE56 ` E65q, E57 ´ E75, ipE57 ` E75q

E58 ´ E85, ipE58 ` E85q, E67 ´ E76, ipE67 ` E76q

E68 ´ E86, ipE68 ` E86q, E78 ´ E87, ipE78 ` E87q

ipE55 ´ E66q, ipE66 ´ E77q, ipE77 ´ E88q.

(A.11)



Appendix B

sop2, 4q and sop6q algebras

We summarize here the notation and conventions of the sop2, 4q and sop6q generators.

The gamma matrices

We use the gamma matrices represented by

γ1 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 ´1

0 0 1 0

0 1 0 0

´1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, γ2 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 i

0 0 i 0

0 ´i 0 0

´i 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, γ3 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, (B.1)

γ0 “ iγ4 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 0

0 0 0 ´1

´1 0 0 0

0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, γ5 “ iγ1γ2γ3γ0 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 ´1 0

0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

. (B.2)

To describe the sop2, 4q and sop6q subalgebras of the psup2, 2|4q superalgebra, it is neces-

sary to introduce the following 8ˆ 8 gamma matrices

γaµ “

¨

˝

γµ 0

0 0

˛

‚, γa5 “

¨

˝

γ5 0

0 0

˛

‚ with µ “ 0, 1, 2, 3, (B.3)

γsi “

¨

˝

0 0

0 γi

˛

‚, γs5 “

¨

˝

0 0

0 γ5

˛

‚ with i “ 1, 2, 3, 4. (B.4)

Here each block of the matrices is a 4ˆ 4 matrix.
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The bosonic generators

Then, the Lie algebras sop2, 4q and sop6q are spanned by the bases:

sop2, 4q “ spanR

"

γaµ, γ
a
5 ,mµν “

1

4

“

γaµ, γ
a
ν

‰

,mµ5 “
1

4

“

γaµ, γ
a
5

‰

| µ, ν “ 0, 1, 2, 3

*

,

(B.5)

sop6q “ spanR

"

γsi , γ
s
5, nij “

1

4

“

γsi , γ
s
j

‰

, ni5 “
1

4
rγsi , γ

s
5s | i, j “ 1, 2, 3, 4

*

. (B.6)

The subalgebras sop1, 4q and sop5q are generated by

sop1, 4q “ spanR tmµν ,mµ5| µ, ν “ 0, 1, 2, 3u , (B.7)

sop5q “ spanR tnij, ni5| i, j “ 1, 2, 3, 4u . (B.8)

For the coset construction of AdS5 with the Poincare coordinates, the following basis of

sop2, 4q is convenient;

sop2, 4q “ spanR tpµ, kµ, h1, h2, h3,m13,m10,m23,m20| µ “ 0, 1, 2, 3u , (B.9)

where the Cartan generators h1, h2, h3 and pµ, kµ are given by

h1 “ 2im12 “ diagp´1, 1,´1, 1, 0, 0, 0, 0q, pµ “
1

2
γaµ ´mµ5,

h2 “ 2m30 “ diagp´1, 1, 1,´1, 0, 0, 0, 0q, kµ “
1

2
γaµ `mµ5, (B.10)

h3 “ γa5 “ diagp1, 1,´1,´1, 0, 0, 0, 0q, D “
γa5
2
.

Notice that the generators pµ and kµ commute each other,

rpµ, pνs “ rkµ, kνs “ rpµ, kνs “ 0 for µ, ν “ 0, 1, 2, 3. (B.11)

On the other hand, the Cartan generators of sop6q read

h4 “ 2in12 “ diagp0, 0, 0, 0,´1, 1,´1, 1q,

h5 “ 2in34 “ diagp0, 0, 0, 0,´1, 1, 1,´1q,

h6 “ γs5 “ diagp0, 0, 0, 0, 1, 1,´1,´1q. (B.12)



Appendix C

Supermatrix realization of uospp2, 2|6q

We can consider the glp4|6q superalgebra generated by the basis defined in (A.1) in terms

of p4|6q ˆ p4|6q supermatrices M (A.3). Let us define the conditions for M

M st

¨

˝

C4 0

0 I6ˆ6

˛

‚ `

¨

˝

C4 0

0 I6ˆ6

˛

‚M “ 0, (C.1)

M :

¨

˝

γ0 0

0 ´I6ˆ6

˛

‚`

¨

˝

γ0 0

0 ´I6ˆ6

˛

‚M “ 0, (C.2)

where

C4 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1

0 0 ´1 0

0 1 0 0

´1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, γ0
“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 ´1 0

0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

. (C.3)

The supertranspose of M is defined as

M st
“

¨

˝

X t ´ηt

θt Y t

˛

‚. (C.4)

From (C.1) we get the 10 generators of spp4q

E14, E41, E23, E32, E12 ` E34, E21 ` E43,

E11 ´ E44, E13 ´ E24, E22 ´ E33, E31 ´ E42,
(C.5)

and the 15 generators of sop6q,

Eı̄̄ ´ E̄̄ı, ı̄, ̄ “ 1̄, ..., 6̄. (C.6)
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For the fermionic generators we have the following relations (4.8),

θi̄ “ ´pC4η
t
qi̄ “ ´pC4qik pη

t
qk̄, (C.7)

so we can define θ in terms of η. Then, let us fix η as

ηı̄j “ Eı̄j, (C.8)

where i, j “ 1, ..., 4 and ı̄, ̄ “ 1̄, ..., 6̄.

By using (C.2) we obtain the real form of ospp4|6q denoted by uospp2, 2|6q. We can

thus compute the 10 generators of the uspp2, 2q,

X1 “E14 ` E41, X5 “E13 ´ E24 ` pE31 ´ E42q,

X2 “ipE14 ´ E41q, X6 “ipE13 ´ E24 ´ pE31 ´ E42qq,

X3 “E23 ` E32, X7 “E12 ` E34 ´ pE21 ` E43q,

X4 “ipE23 ´ E32q, X8 “ipE12 ` E34 ` pE21 ` E43qq,

X9 “ipE11 ´ E44q, X10 “ipE22 ´ E33q. (C.9)

The commutation relations of these generators is given in Table C.1.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 ´2X9 0 0 ´X7 X8 ´X5 X6 ´2X2 0

X2 2X9 0 0 0 ´X8 ´X7 ´X6 ´X5 2X1 0

X3 0 0 0 ´2X10 ´X7 ´X8 ´X5 ´X6 0 ´2X4

X4 0 0 2X10 0 X8 ´X7 ´X6 X5 0 2X3

X5 X7 X8 X7 ´X8 0 ´2pX9 `X10q 2pX1 `X3q 2pX2 ´X4q ´X6 ´X6

X6 ´X8 X7 X8 X7 2pX9 `X10q 0 2pX2 `X4q ´2pX1 ´X3q X5 X5

X7 X5 X6 X5 X6 ´2pX1 `X3q ´2pX2 `X4q 0 2pX9 ´X10q ´X8 X8

X8 ´X6 X5 X6 ´X5 ´2pX2 ´X4q 2pX1 ´X3q ´2pX9 ´X10q 0 X7 ´X7

X9 2X2 ´2X1 0 0 X6 ´X5 X8 ´X7 0 0

X10 0 0 2X4 ´2X3 X6 ´X5 ´X8 X7 0 0

Table C.1: Algebra uspp2, 2q.
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The 15 generators of sop6q are

Y1 “E1̄2̄ ´ E2̄1̄, Y6 “E2̄3̄ ´ E3̄2̄, Y11 “E3̄5̄ ´ E5̄3̄,

Y2 “E1̄3̄ ´ E3̄1̄, Y7 “E2̄4̄ ´ E4̄2̄, Y12 “E3̄6̄ ´ E6̄3̄,

Y3 “E1̄4̄ ´ E4̄1̄, Y8 “E2̄5̄ ´ E5̄2̄, Y13 “E4̄5̄ ´ E5̄4̄,

Y4 “E1̄5̄ ´ E5̄1̄, Y9 “E2̄6̄ ´ E6̄2̄, Y14 “E4̄6̄ ´ E6̄4̄,

Y5 “E1̄6̄ ´ E6̄1̄, Y10 “E3̄4̄ ´ E4̄3̄, Y15 “E5̄6̄ ´ E6̄5̄, (C.10)

whose commutation relations are given in Table C.2.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

Y1 0 ´Y6 ´Y7 ´Y8 ´Y9 Y2 Y3 Y4 Y5 0 0 0 0 0 0

Y2 Y6 0 ´Y10 ´Y11 ´Y12 ´Y1 0 0 0 Y3 Y4 Y5 0 0 0

Y3 Y7 Y10 0 ´Y13 ´Y14 0 ´Y1 0 0 ´Y2 0 0 Y4 Y5 0

Y4 Y8 Y11 Y13 0 ´Y15 0 0 ´Y1 0 0 ´Y2 0 ´Y3 0 Y5

Y5 Y9 Y12 Y14 Y15 0 0 0 0 ´Y1 0 0 ´Y2 0 ´Y3 ´Y4

Y6 ´Y2 Y1 0 0 0 0 ´Y10 ´Y11 ´Y12 Y7 Y8 Y9 0 0 0

Y7 ´Y3 0 Y1 0 0 Y10 0 ´Y13 ´Y14 ´Y6 0 0 Y8 Y9 0

Y8 ´Y4 0 0 Y1 0 Y11 Y13 0 ´Y15 0 ´Y6 0 ´Y7 0 Y9

Y9 ´Y5 0 0 0 Y1 Y12 Y14 Y15 0 0 0 ´Y6 0 ´Y7 ´Y8

Y10 0 ´Y3 Y2 0 0 ´Y7 Y6 0 0 0 ´Y13 ´Y14 Y11 Y12 0

Y11 0 ´Y4 0 Y2 0 ´Y8 0 Y6 0 Y13 0 ´Y15 ´Y10 0 Y12

Y12 0 ´Y5 0 0 Y2 ´Y9 0 0 Y6 Y14 Y15 0 0 ´Y10 ´Y11

Y13 0 0 ´Y4 Y3 0 0 ´Y8 Y7 0 ´Y11 Y10 0 0 ´Y15 Y14

Y14 0 0 ´Y5 0 Y3 0 ´Y9 0 Y7 ´Y12 0 Y10 Y15 0 ´Y13

Y15 0 0 0 ´Y5 Y4 0 0 ´Y9 Y8 0 ´Y12 Y11 ´Y14 Y13 0

Table C.2: Algebra sop6q.

The 24 fermionic generators are

Q1ı̄ “E1ı̄ ` Eı̄1 ` E4ı̄ ´ Eı̄4

Q2ı̄ “E2ı̄ ` Eı̄2 ´ E3ı̄ ` Eı̄3

Q3ı̄ “ip´E2ı̄ ` Eı̄2 ´ E3ı̄ ´ Eı̄3q

Q4ı̄ “ip´E1ı̄ ` Eı̄1 ` E4ı̄ ` Eı̄4q (C.11)

where ı̄ “ 1̄, ..., 6̄. The anticommutation relations of these fermionic generators are given in Ta-

ble C.3 and Table C.4.
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Appendix D

Cartan-Weyl basis of uspp2, 2q and sop6q

In Section 3.2 we presented a brief introduction on the Cartan-Weyl basis whose algebra was given

in (3.11). In particular, for SOp2, 3q ˆSOp6q » Spp2, 2q ˆSOp6q, we computed the Cartan-Weyl

decomposition. The Cartan matrices for Spp4q and SOp6q are respectively,

paijqSpp4q “

¨

˝

2 ´2

´1 2

˛

‚, paijqSOp6q “

¨

˚

˚

˚

˝

2 ´1 ´1

´1 2 0

´1 0 2

˛

‹

‹

‹

‚

. (D.1)

whose orthogonal root systems are

Spp4q : α1 “ p1,´1q, α2 “ p0, 2q, (D.2)

SOp6q : α1 “ p1,´1, 0q, α2 “ p0, 1,´1q, α3 “ p0, 1, 1q, (D.3)

such that aij “ 2
αi ¨ αj
αi ¨ αi

for both groups.

D.1 Cartan decomposition of uspp2, 2q

The Cartan generators hj with j “ 1, 2, the positive simple roots ej , and the negative simple roots

fj are given by

e1 “ E12 ` E34, e2 “
1
?

2
E23,

f1 “ E21 ` E43, f2 “
1
?

2
E32,

h1 “ E11 ´ E44 ´ E22 ` E33, h2 “ E22 ´ E33.

(D.4)
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The non simple roots follow from the commutators

e3 “ re1, e2s “
1
?

2
pE13 ´ E24q , e4 “ re1, re1, e2ss “ ´

2
?

2
E14,

f3 “ rf1, f2s “ ´
1
?

2
pE31 ´ E42q , f4 “ rf1, rf1, f2ss “ ´

2
?

2
E41.

(D.5)

The basis for the Lie algebra uspp2, 2q is then

X1 “ ´
1
?

2
pe4 ` f4q , X2 “ ´

i
?

2
pe4 ´ f4q ,

X3 “
2
?

2
pe2 ` f2q , X4 “

2i
?

2
pe2 ´ f2q ,

X5 “
2
?

2
pe3 ´ f3q , X6 “

2i
?

2
pe3 ` f3q ,

X7 “ e1 ´ f1, X8 “ i pe1 ` f1q ,

X9 “ i ph1 ` h2q , X10 “ ih2.

(D.6)

D.2 Cartan decomposition of sop6q

The roots of SOp6q can be found in [86] (page 308),

Hi “ Tp2i´1qp2iq,

E
p1q
ij “

1

2

“

Tp2iqp2j´1q ´ iTp2i´1qp2j´1q ´ iTp2iqp2jq ´ Tp2i´1qp2jq

‰

,

E
p2q
ij “

1

2

“

Tp2iqp2j´1q ` iTp2i´1qp2j´1q ` iTp2iqp2jq ´ Tp2i´1qp2jq

‰

,

E
p3q
ij “

1

2

“

Tp2iqp2j´1q ´ iTp2i´1qp2j´1q ` iTp2iqp2jq ` Tp2i´1qp2jq

‰

,

E
p4q
ij “

1

2

“

Tp2iqp2j´1q ` iTp2i´1qp2j´1q ´ iTp2iqp2jq ´ Tp2i´1qp2jq

‰

.

(D.7)

with i, j “ 1, 2, 3 and pTijqkm “ ´i pδikδjm ´ δimδjkq. Here the generators labelled by p1q and p3q

correspond to the positive roots and satisfy

rHk, Eαis “ pαiqk Eαi , rEαi , E´αis “ pαiqkHk. (D.8)

Then, we find that the simple positive roots are

Eα1 “ E
p1q
12 , Eα2 “ E

p1q
23 , Eα3 “ E

p3q
23 , (D.9)

and the simple negative roots are

E´α1 “ E
p2q
12 , E´α2 “ E

p2q
23 , E´α3 “ E

p4q
23 . (D.10)

Under the redefinitions

ẽi “

ˆ

2

αi ¨ αi

˙1{2

Eαi , f̃i “

ˆ

2

αi ¨ αi

˙1{2

E´αi , h̃i “ 2
αi ¨H

αi ¨ αi
, (D.11)
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they satisfy the Cartan-Weyl algebra. Explicitly, we have

ẽ1 “ Eα1 “
1

2
p´iY6 ´ Y2 ´ Y7 ` iY3q , ẽ2 “ Eα2 “

1

2
p´iY13 ´ Y11 ´ Y14 ` iY12q ,

ẽ3 “ Eα3 “
1

2
p´iY13 ´ Y11 ` Y14 ´ iY12q “,

f̃1 “ E´α1 “
1

2
p´iY6 ` Y2 ` Y7 ` iY3q , f̃2 “ E´α2 “

1

2
p´iY13 ` Y11 ` Y14 ` iY12q ,

f̃3 “ E´α3 “
1

2
p´iY13 ` Y11 ´ Y14 ` iY12q ,

h̃1 “ H1 ´H2 “ ´iY1 ´ Y10, h̃1 “ H2 ´H3 “ ´iY10 ´ Y15,

h̃3 “ H2 `H3 “ ´iY10 ` Y15,

(D.12)

where Yi with i “ 1, ..., 15 are the generators of sop6q defined in (C.10).



Appendix E

sop2, 3q and sup4q algebras

A basis for sop2, 3q

The 10 generators of SOp2, 3q can be written as

MAB “
i

4
rΓA,ΓBs , (E.1)

and satisfy

rMAB,MCDs “ i pηADMBC ` ηBCMAD ´ ηBDMAC ´ ηACMBDq , A “ 0, ..., 4, (E.2)

where A,B “ 0, 1, 2, 3, 4. We choose the following representation for the SOp2, 3q ΓA matrices,

tΓA,ΓBu “ 2ηAB (E.3)

ΓA “

$

&

%

iγ5γµ A “ µ “ 0, 1, 2, 3

γ5 “ iγ0γ1γ2γ3 A “ 4
, (E.4)

with ηAB “ diagp` ´ ´ ´`q, and γµ are the gamma matrices in a Dirac representation SOp1, 3q

[77] (see [46] for a different choice),

γ0 “

¨

˝

12 0

0 ´12

˛

‚, γ1 “

¨

˝

0 σ3

´σ3 0

˛

‚,

γ2 “

¨

˝

0 σ1

´σ1 0

˛

‚, γ3 “

¨

˝

0 σ2

´σ2 0

˛

‚.

(E.5)

And,

γ5 “

¨

˝

0 ´12

´12 0

˛

‚. (E.6)
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From (E.1), we get

Mµν “
i

4
rγµ, γνs , Mµ4 “

1

2
γµ, µ, ν “ 0, 1, 2, 3. (E.7)

In order to explicit the conformal group, let us split the indices as

MAB “ tMab,Ma3,Ma4,M34u , a, b “ 0, 1, 2, (E.8)

such that ηab “ diagp`,´,´q 1. Let us define [77]

Pa “Ma4 `Ma3

Ka “Ma4 ´Ma3

D “ iM34 (E.9)

The conformal algebra SOp2, 3q is then

rMab,Mcds “ ipηadMbc ` ηbcMad ´ ηacMbd ´ ηbdMacq

rMab, Ds “ 0

rD,Pas “ iPa

rD,Kas “ ´iKa (E.10)

rKa, Pas “ 2iηabD ´ 2iMab

rMab, Pcs “ ´ipηacPb ´ ηbcPaq

rMab,Kcs “ ´ipηacKb ´ ηbcKaq.

A basis for sup4q

A basis for sup4q can be constructed in terms of anti-Hermitian 4ˆ4 matrices known as Gell-Mann

matrices,

λ1 “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ2 “

¨

˚

˚

˚

˚

˚

˚

˝

0 ´i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ3 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 ´1 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

λ4 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ5 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 ´i 0

0 0 0 0

i 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ6 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

1This is going to be the signature on the Minkowskian boundary of AdS4.
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λ7 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 ´i 0

0 i 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ8 “
1
?

3

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 ´2 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ9 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

λ10 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 ´i

0 0 0 0

0 0 0 0

i 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ11 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ12 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 0 ´i

0 0 0 0

0 i 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

λ13 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ14 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 0 ´i

0 0 i 0

˛

‹

‹

‹

‹

‹

‹

‚

, λ15 “
1
?

6

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ´3

˛

‹

‹

‹

‹

‹

‹

‚

. (E.11)

The first 8 matrices form a basis for sup3q Ă sup4q. Furthermore, these matrices are orthogonal and

satisfy

Tr pλmλnq “ 2δmn, m “ 1, ..., 15, (E.12)

and commutation relations

rλm, λns “ 2ifpmnλp. (E.13)

A list of non-vanishing structure constants can be found in [87]. In this representation the Cartan

generators are given by λ3, λ8 and λ15.
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En el principio era el Verbo, y el Verbo era con Dios, y el Verbo era Dios. Este era en el principio

con Dios. Todas las cosas por él fueron hechas, y sin él nada de lo que ha sido hecho, fue hecho.

Soli Deo gloria


	Acknowledgments
	Resumo
	Abstract
	Index
	Introduction 
	The sigma-model description of superstrings 
	Type II superstrings in flat space
	Type II superstrings in a curved background 
	Green-Schwarz sigma-model
	Supercoset formulation

	Superstrings in AdS5xS5
	The AdS5xS5 background
	The Green-Schwarz-Metsaev-Tseytlin action  
	Integrability of AdS5xS5 superstrings 


	YB deformations of semisymmetric sigma-models
	The r-matrix and integrability 
	r-matrices of the Yang-Baxter equation 
	Yang-Baxter deformed sigma-model 
	Yang-Baxter deformations of AdS5xS5 
	r-matrices for AdS5xS5 
	Deformed Backgrounds generated by r-matrices


	YB deformations of the AdS4xCP3 sigma-model
	Superstrings in AdS4xCP3
	The AdS4xCP3 background
	The Arutyunov-Frolov-Stefanski action
	Integrability of AdS4xCP3 superstring

	Yang-Baxter deformations of AdS4xCP3
	r-matrices for AdS4xCP3 
	Deformed Backgrounds generated by r-matrices
	Gravity dual of ABJM on non-commutative spacetime 
	Gravity dual of one-parameter dipole deformation of ABJM
	Gravity dual of the non-relativistic limit of ABJM: Schrödinger spacetime


	Concluding remarks 
	Supermatrix realization of su(2,2|4) 
	so(2,4) and so(6) algebras
	Supermatrix realization of uosp(2,2|6) 
	Cartan-Weyl basis of usp(2,2) and so(6) 
	Cartan decomposition of usp(2,2)
	Cartan decomposition of so(6)

	so(2,3) and su(4) algebras 
	Bibliography

