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Resumo

No que se segue, o leitor encontrará uma dissertação de doutorado no uso de métodos
e abordagens computacionais para o estudo de contextualidade e outros fenômenos não
clássicos. O capítulo 1 introduz o tópico de foco maior, isto é, contextualidade, com
a linguagem matemática necessária para seu entendimento, enquanto o capítulo 2 dá
a estrutura necessária para qualquer investigação sistemática a ser feita ao longo deste
manuscrito, incluindo apresentação de problemas de otimização e usos típicos em prob-
lemas relacionados e a construção de quantificadores de contextualidade, além de uma
pequena contribuição do autor nesse sentido. Esses dois capítulos resumem o conteúdo
que o autor precisou aprender para se inserir na área. Os capítulos seguintes compõem
outros dois resultados encontrados em colaboração com colegas durante o programa. O
primeiro deles está relacionado com a construção de quantificadores de não-localidade
para estados quânticos a partir de quantificadores similares para comportamentos em
cenários de medição; nós apresentamos uma nova medida daquele recurso, iluminando de-
bates conhecidos na literatura. Já no segundo deles, investigamos conjuntos de correlações
típicos em redes causais de interesse, a fim de entender melhor a estrutura desses conjun-
tos dentro do universo de correlações possíveis para tais redes; em particular mostramos
vantagens em utilizar programação quadrática ao invés de outra estratégia mais comum
na literatura e também o impacto de intervenções para a detecção de não classicalidade.
Conhecimento muito avançado em matemática não é presumido para os primeiros dois
capítulos. Entretanto, um certo conhecimento em física quântica é desejável para apreciar
melhor todo o trabalho.

Palavras-chaves: Contextualidade; Não-localidade; Não-classicalidade; Quantifi-
cadores; Causalidade





Abstract

In what follows, the reader is going to find a doctoral dissertation on the use of compu-
tational methods and approaches to the study of contextuality and other non-classical
phenomena. Chapter 1 introduces the topic of main attention, that is, contextuality, with
the appropriate required mathematical language to its understanding. Chapter 2 gives
the necessary structure to any systematic investigation to appear along this manuscript,
including the presentation of optimization problems and typical uses in cases related to
the main topic, and also the construction of contextuality quantifiers and a small con-
tribution of the author to this. These first two chapters summarize the content that the
author had to learn in order to insert himself into the area of research. Succeeding chap-
ters compose other two results found in collaboration with colleagues along the program.
The first of them is related to the construction of non-locality quantifiers for quantum
states from similar quantifiers for behaviors in measurement scenarios; we present a new
measure of the resource, shedding some light in some debates in the literature. In the
second of them, we investigate typical correlation sets in causal networks of interest, with
the end of improving our understanding the structure of such sets within the universe
of possible correlations in such networks; in particular, we show advantages of quadratic
programming over another common strategy in the literature as well as the impact of
interventions on the detection of non-classicality. Advanced mathematical knowledge is
not presumed for the first two chapters. However, some knowledge in quantum physics is
desirable to appreciate the work completely.

Keywords: Contextuality; Non-locality; Non-classicality; Quantifiers; Causality
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Introduction

Quantum physics is a subject intriguing physicists since its discovery at the beginning of
the past century. Throughout the years of scientific research on it, revolutionary knowl-
edge has been developed, however several aspects of its impact, be on science or on our
lives, are yet to be discovered. The crucial lesson being that it is powerful and worth our
effort towards fully understanding it.

In its youngest face, we have quantum computing. This topic, that has already reached
regular newspapers, breaking the usually hard barriers of the academic bubble, sees on
growing attention day after day, under the promise/hope to provide technological changes
able to solve problems and to promote developments like never seen before.

Although, from the eyes of this author, we are still at the embryonic stage of a future
like this, it is undeniable that recent advances make it clearer more and more. At the
heart of such progress, however, lies not only practical questions as those aiming the final
goal of having a workable quantum computer, but also problems that drive us into a well
established theory, with comprehensible phenomena and complete control over them.

Of particular importance to the present manuscript, quantum contextuality is one of
these phenomena, which concerns to the possibility of accessing properties of a quantum
system simultaneously and the dependency of such access on the context of realization,
meaning which ones are being measured together.

Despite the simple informal statement of such phenomenon, it is remarkable to notice
that its study has allowed scientists to uncover various facets of long standing debates
in Physics, including for example the completeness of quantum mechanics and the chal-
lenging non-local nature of it. This last one, in particular, has led (so far) to one recent
(2022) Nobel Prize, overcoming a loophole free experimental violation of a Bell inequality
for local theories.

As it might not seem evident at a first sight, it turns out there is a lot one can do
using computational approaches and techniques to investigate, learn and contribute to
that end. And this is precisely the viewpoint we are going to adopt in this manuscript
and discuss about. By the end of this reading we want the reader to feel comfortable
with usual formulations of contextuality mainly, but hopefully of related non-classical
phenomena too.

However, and to clarify a bit more the paragraph just above, this thesis is not intended
to be a first reading on the mentioned topics. It assumes the presence of an already
interested reader, previously exposed to some ideas, and was planned to work as a roadmap
in the study of contextuality for them. As such, one will find a main line of reasoning
around the traditional approach to the phenomenon and several paths for exploration
from it, and relations between them.

In that sense, it is our intention to provide some basic understanding on the typical
structures arising on such aspects of the research. As well as making the best we can to
review and therefore to make of this thesis the shortcut for whichever path of interest one
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2 Introduction

may find on the subject. Because of this, the details will be more on the surveying of
ideas and less on a full discussion/analysis of them.

Here, therefore, the reader is going to encounter every thought that the author found it
could be useful to share when learning about the theme. Especially from someone coming
from an almost totally unrelated area of specialization for his Master’s degree. And
as novelty in the connected literature, some very small contributions from this author
elaborated along his graduate program.

The first chapter clarifies most of the concepts, math, and frameworks fundamental to
the topic. Particular attention being given to the traditional Kochen-Specker approach
to contextuality and possible extensions and alternatives to it. It is supposed the least
technical as possible, while capable of aiming the reader with the required material to
understand and criticize succeeding chapters and to introduce oneself into any connected
discussion.

Following it, in contrast, one will find the most technical chapter, containing most of
the computational tools underlying the contributions to be presented in this dissertation.
"Most" because, as it is going to be clear later, the author has managed to use the
knowledge acquired during the program to collaborate with a group focused on a different
line of research of non-classicality.

His first work appears in the third chapter, a primarily mathematical result, but with
interesting consequences to the resource theory of contextuality. This important side of the
phenomenon is in fact what motivates the focus on quantifiers of the resource throughout
the chapter, which constitute a if not the typical use depending on computers.

Next chapters are then just working examples of the content preceding them. Each
one within the respective context, the problems are specified along their reading and
any additional concept and/or mathematical requirement is fulfilled when necessary. Our
choice on this is to not distract the reader from the narrative constructed in this work.
Namely, that contextuality has guided and motivated the author to pursue challenges
even outside its immediate surrounding.

In the first of them, one will find a work on the idea of quantifying non-locality (a
special instance of contextuality) for quantum states, which is mainly motivated by the
idea of extracting a resource from such systems for practical purposes. Now, the second
employs a different, though related and comprehensible, framework, that goes by the
name of causal networks, to explore the idea of multiple sources of common cause among
the variables of interest in a physical scenario, particularly focused on tripartite networks.
Networks beyond those present in the paradigmatic Bell’s theorem can lead to new kinds
and applications of non-classical behavior.

For ease if necessary, sections and subsections have been marked with an asterisk in
the table of contents in the case of containing contributed work.



Chapter 1

Contextuality

This chapter focuses on introducing the key topic within which the present contribution
is situated. In addition to providing the necessary foundational knowledge for a better
understanding of the issues and main aspects involved, we aim to keep the information
on each problem up to date.

While a historical introduction may have been a fitting choice for this purpose, we
have opted for a different yet closely related perspective. In the following sections, one
will discover what can be regarded as a recap of previously explored areas. Our aim is to
present well-established concepts and notable alternatives from the literature while offer-
ing a glimpse of their potential future implications, with [Bud+21] proving instrumental
in this regard.

As mentioned in the introduction, this dissertation has not been planned to work as a
first reading in the topic, but just as a general roadmap containing specific contributions
of this author around the implied main line of presentation of the area that we follow.
Having this in mind, we assume the reader already has a motivation for studying contex-
tuality. However, to record a bit about its importance, firstly we notice its fundamental
consequence that statistical predictions of quantum theory can not be explained by mod-
els in which measurements reveal properties determined prior to the knowledge of what
other compatible measurements are being made together [BEL66; KS75]; an intrinsically
non-classical feature, fruit of incompatibility between measurements. Secondly, we refer
the reader to [Naw+13; Cab13; CSW14; ACC14] for its role in the understanding of more
essential aspects of quantum theory. And lastly, we mention the fact that contextuality
has been recognized as a potential resource for quantum computing, particularly in the
scheme of Measurement-based quantum computing [Rau13; How+14; Del+15], and has
been employed for random number generation [Um+13] and other information processing
tasks considering space-like separated systems [Bru+14].

Our preferred approach to introducing the phenomenon (and, to some extent, the
mathematical concept) of interest is through an illustrative example, particularly one
drawn from the realm of quantum physics – the birthplace and central theme of this
thesis. This choice allows us to acquaint readers with fundamental terms that will be
indispensable in the chapters to come.

1.1 The Peres-Mermin magic square

Asher Peres and David Mermin provided in some of their works a beautiful and simple
example to illustrate the non-intuitive nature of quantum predictions ([Mer90; Mer93;

3



4 CHAPTER 1. CONTEXTUALITY

Per90; Per91; Per92; Per02]). It consists in nine dichotomic1 measurements arranged in
a square prescribing compatibility among them:

A a α

B b β

C c γ

Measurements in the same row or column are said to be compatible (or commuting).
In more tangible terms, this implies that their results can be accessed simultaneously.
Intuitively, this leads us to believe that a measurement procedure unveils preexisting
properties, a perspective we embrace in the upcoming discussion. However, in contrast
to this intuition, one could argue that the measurement procedure is, in fact, attributing
outcomes when it occurs. In other words, prior to the measurement, it may not be possible
to make any definitive claims about whether the system possesses a specific property.
This is a longstanding debate, which, while beyond the scope of this manuscript, is well-
documented in references such as [EPR35], [PBR12], and [Spe07].

In this scenario, let us consider assigning values to these properties before any mea-
surements occur. Each of them must attain one out of two possibilities. We will use +1 if
the property exhibits a given form and -1 otherwise. This approach not only provides def-
inite values for the expectation values of individual measurements but also yields definite
values for the expectations of products involving those measurements . This notion holds
significance for properties that share a row or a column, such as ⟨Aaα⟩, ⟨Bbβ⟩, ⟨Ccγ⟩,
⟨ABC⟩, ⟨abc⟩, and ⟨αβγ⟩. It is worth noting that while it is possible to assign a value to
expectation values like ⟨Ab⟩, this value exists only counterfactually, meaning it cannot be
experimentally accessible. This is because, a priori, A and b are not compatible.

The magic of this square is that each measurement takes place in both a specific row
and column. So, when you alter the value assigned to one of these measurements, it affects
the sign of the product involving that particular row and column. For instance, imagine
that initially, all properties are assumed to reveal +1, and then you reset one of them to
-1. In such cases, one can always verify the following relationship holds true

⟨Aaα⟩+ ⟨Bbβ⟩+ ⟨ABC⟩+ ⟨abc⟩+ ⟨αβγ⟩ − ⟨Ccγ⟩ ≤ 4 . (1.1)

With that settled, let us see a quantum realization of that system. As in the original
works ([Mer90; Mer93; Per90; Per91; Per92; Per02]), that can be achieved through a
quantum set up of two spin 1/2 particles and the following measurements:

σz ⊗ 1 1⊗ σz σz ⊗ σz

1⊗ σx σx ⊗ 1 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy

.

The sigmas stand for the usual Pauli matrices and 1 for the identity:

σx =

0 1

1 0

 , σy =

0 -i

i 0

 , σz =

1 0

0 −1

 , 1 =

1 0

0 1

 , (1.2)

1With only two possible outcomes.



1.2. GENERALITIES 5

and their eigenvalues (+1 or -1) are the property values revealed by the measurement
associated, i.e. the spin orientation: up or down in the given direction.

One can confirm that, in this scenario, the expectation value of the product of mea-
surements within the same row or column equals 1, except for the last column, where it
amounts to -1, just notice that:

σjσj = 1, σzσx = iσy, and σjσk = −σkσj, for j ̸= k ∈ {x, y, z}. (1.3)

As a result, regardless of the expectation value assigned to each measurement, the quan-
tum prediction for the left-hand side of inequality (1.1) is 6, clearly violating it.

Now, we are faced with two possible interpretations of this observation. It could be
that the entire notion of assigning pre-existing values to properties of physical systems is
flawed, or perhaps the way we are going about it is not quite right. The first situation
brings to the forefront a discussion about the nature of the state of a (quantum) physical
system, where questions about whether their properties are truly being unveiled through
experiments arise. The second introduces an alternative perspective: the value assigned
to a measurement may depend on the other measurements being performed alongside it,
which we will refer to as a context2. With that in mind, look again at the magic square,
and imagine that, for example, the value of γ is equal to −1 when in ⟨Ccγ⟩, but 1 when
in ⟨αβγ⟩; the dependence on the context leads us to the violation of the inequality.

In light of this second possibility, we can then describe the phenomenon we have
outlined as quantum contextuality. The reason we have dropped the word "quantum"
from the chapter title is that, as we will soon see, contextuality is a phenomenon that
also manifests in probabilistic systems outside the realm of (quantum) physics.

Given the fundamental nature of this subject, there is a vast body of literature that
we can’t cover comprehensively here. However, in the upcoming sections, we will present
common ideas, different formulations, and various approaches as a guide. Along the way,
we will aim to highlight the advantages and disadvantages of each approach and their
practical applicability.

1.2 Generalities

As demonstrated in the previous section, regardless of the approach chosen to describe
contextuality, certain fundamental aspects of it inherently lend themselves to the language
of probabilistic theories. These aspects encompass the use of concepts like expectation
values and the assignment of values to properties, among others. Therefore, a crucial
prerequisite for what follows is a belief in the description of physical systems through the
lens of random variables. While advocating for this perspective lies outside the scope of
this work, it is worth noting that the countless successful experimental results that rely
on this treatment speak for themselves.

In this section, our aim is to provide an introduction to the foundational framework of
probabilistic theories, drawing upon [Apo69], and its essential components, which will be
pivotal in the discussions to come. Furthermore, we will formalize and imbue mathemati-
cal rigor into certain aspects highlighted in the previous example. Despite the significance
of these concepts, we will maintain the mathematical level necessary for comprehension.

2Although this debate is out of the scope of this dissertation, notice that these alternatives are not
completely exclusive, after all it seems plausible to have both the reality of state and the dependence of
our knowledge about them on the context questioned at the same time
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Our starting point is random variables. These are among the elementary objects of a
probabilistic theory. To avoid unnecessary complications, here we are going to consider
discrete real random variables only. However, before going into its formal definition,
we need some brief words on the mathematical structures behind it. This will give an
intuition on the relations among random variables later.

Let S be a non-empty set with finite number of elements (our sample space) and let
Σ be the power set of S. The pair (S,Σ) is a measurable space, because:

0) ∅ ∈ Σ

1) if A ∈ Σ then Ac ∈ Σ, and

2) if Ai ∈ Σ for each i in a countable index set I, then
⋃
i∈I

Ai ∈ Σ.
(1.4)

Each element of Σ is called an event or a measurable set.
Take then p some function from Σ to the interval [0, 1], called a probability measure.

As such, it satisfies
p(S) = 1

p
(
•
⋃

j=1,2,...
Sj

)
=

∑
j=1,2,...

p(Sj),
(1.5)

where {Sj} is a countable collection of pairwise disjoint sets in Σ.
A discrete real random variable X on S can then be defined as follows.

Definition 1.2.1. A real random variable X is a function3 X : S → R from a sample
space (S,Σ) like above into the reals, such that S belongs to the probability space (S,Σ, p).

The probability of each outcome in S determines the function p, which in turn can be
used to find pX(x) (or just p(x)), the probability distribution of X (sometimes also called
its mass function), by pushing-forward the measure p into a probability measure on the
image of X, that is,

pX(x) ≡ p(X−1(x)) ≡ p(X = x). (1.6)

Clearly then, the probability distribution pX(x) satisfies the following properties:

(I) pX(x) ≥ 0 ∀x,

(II)
∑
x

pX(x) = 1, (1.7)

that is to say, it is (I) non-negative and (II) normalized. However, as we will see through-
out this work, it can be useful sometimes to relax such conditions, in order to consider (if
not I) quasi, (if not II) sub or over -normalized probabilities.

A robust foundation for probabilistic physical theories is provided by the so- called "op-
erational" formulation of generalized probabilistic theories (for an example, see [DCP17]).
In this framework, every component of the operational process, namely preparation, trans-
formation and measurement, is endowed with physical significance, ultimately leading
to the establishment of a meaningful association with a probability distribution for each
operation that can be applied to the system. Nevertheless, for our purposes here, we will
focus on only two fundamental concepts introduced within this framework: observables

3For those familiar with the mathematical formalism, we record that any such function will me mea-
surable when the σ-algebra is the power set.
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and effects. In the terms mentioned before, the latter concept falls under the scope of
an event, while the former should be viewed as an assembly of mutually exclusive events
(read effects), the union of which results in X. In this context, the collection of output
values in a measurement aligns with our representation of X, while the effects constitute
the elements of Σ. The probabilities associated with these effects can be derived from the
probability distribution prescribed by the measurement process. In this sense, somewhat
informally, we could consider measurements themselves as random variables.

Before delving into the topic of contextuality, we must introduce two crucial concepts
related to random variables: expectation value and compatibility. Given a real random
variable A, its expectation value ⟨A⟩ is defined as

⟨A⟩ =
∑
a∈O

a p(a), (1.8)

where a denotes an output from the set O ⊂ R of possible outputs and p(a) the probability
it occurs in a run, i.e. experimental realization, of A.

Two random variables A and B can be said to be compatible if they are defined on
the same probability space. In such case we can define their joint probability distribution,
corresponding to the probability distribution on all possible pair (a, b) of output values:
p(a, b) ≡ p(A = a and B = b). This allows us also to define the expectation value of the
product of those random variables AB as

⟨AB⟩ =
∑
a∈OA

∑
b∈OB

a b p(a, b), (1.9)

where OA and OB are the respective sets of possible outputs for A and B. It also encodes
the marginal distributions, i.e., the distribution of each individual random variable, that
can be obtained by summing up the joint probabilities for a fixed output of the desired
marginal over all outputs of the other, e.g:

p(a) =
∑
b∈OB

p(a, b).

Finally, the idea can be extended to more compatible variables in the same fashion.
From a physics perspective, compatibility is typically expressed in terms of what is

known as joint measurability of measurements (as discussed in [BLW14], [BLM96], and
[Bus+16]). In this context, two measurements, denoted as A and B with corresponding
effects Aj and Bk, are considered to be jointly measurable if there exists a third measure-
ment, represented as C , with effects Cjk such that

Aj =
∑
k

Cjk and Bk =
∑
j

Cjk. (1.10)

Connecting to previously mentioned operational terms just to fix ideas, for a quantum
physicist, that approximately perform projective measurements (PVM’s for short) in the
lab, Aj and Bk will be projectors, while A and B the observables themselves. Equivalently,
one may also see compatibility being stated in terms of the commutator between A and
B, namely

[A,B] ≡ AB −BA, (1.11)

when the product is defined, for example if these elements can be just matrices - which
is the case of quantum theory in textbooks -, resulting in zero for compatibility.
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To relate all these notions, in a very non-rigorous manner, notice that (a) If two
observables A and B can be written as functions of a common observable X, then their
commutator vanishes, because [X,X] = 0; (b) If their commutator vanishes, then there
exists a common basis that diagonalizes them, which, with the appropriate treatment,
relates to the common probability space; (c) If they are defined in the same probability
space, therefore existing a joint probability distribution, by treating the pair of outputs
as referring to a single random variable, A and B as functions of it could be found by
inspecting their marginal probabilities.

With this clarification in place and considering the example discussed in the previous
section, it is evident that our focus lies in the examination of systems of random variables
that exhibit non-trivial relationships of compatibility among them as we delve into the
properties of expectation values associated with these variables.

In this sense, the central definition to what follows is that of a context :

Definition 1.2.2. A context is a maximal set of compatible random variables.

The inclusion of the maximal condition is typically warranted to prevent redundancies.
For example, if A, B, and C are compatible, there exists a joint probability distribution for
them, from which the marginals for AB, BC, and AC can be derived. These marginals
would represent the joint distribution for the possible contexts formed by those pairs,
eliminating the need to consider them separately.

In the subsequent sections, this will be the definition we adopt. However, it is impor-
tant to mention that alternative definitions exist. In fact, as we will explore in the next
section, extensions to the concept of contextuality aim to accommodate features such as
imperfect or non-ideal measurements within the description of a physical system. This
can be addressed through an alternative definition in which a context is constructed by a
single observable, with the primary focus placed on the effects and their relationships as
components of the same observable (as discussed in [Spe05] and [Spe14]).

To comprehensively address the manifested phenomenon we observed in the magic
square with the quantum realization, it is imperative to introduce the concept of hidden
variable models, originally known as local hidden variable models, due to spatial separation
between parties in the analyzed situation at the time (as discussed in [Bel64]), although
such separation was not inherently there in the example we have discussed before. These
models offer an appropriate framework for the idea of revealing pre-existing property
values in physical systems.

The core principle underlying hidden variable models is the recognition that the con-
sidered variables within a system may not fully disclose all the information needed. There-
fore, properties described by hidden (read inaccessible) variables are introduced, typically
through a parameter denoted as λ. These hidden variables introduce a probabilistic di-
mension into the description, configuring our system to be described by a hypothetical
state where all properties have pre-determined values. Therefore, presuming that those
values can be accessed simultaneously, i.e. considering the hypothesis that every random
variable in the system is compatible.

In more objective terms, notice that, for two compatible random variables in the
system, say A and B, with outputs a ∈ OA and b ∈ OB, the relationship between their
joint probability distribution p(a, b) and the hidden variables is described by

p(a, b) =
∑
λ

p(a, b|λ) p(λ), (1.12)
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where λ represents a state with determinate properties, occurring with a certain proba-
bility p(λ) among all possible states. The term p(a, b|λ) corresponds to the probability
distribution of the outputs a and b within a specific hidden state identified by λ. This is
the usual notation for conditional probability, in which we have

p(x, y) = p(x|y) p(y), (1.13)

given that p(y) ̸= 0. The conditioning value y that occurs with probability p(y) restricts
and redefines the probability space of interest for obtaining x given that y has been
observed, assigning the probability p(x|y) to it.

Since these random variables were assumed to be compatible, we can write

p(a, b|λ) = p(a|λ) p(b|λ). (1.14)

Now, the decision of assigning values to random variables within a system without taking
into account the other random variables and the specific contexts in which they appears
corresponds to imposing the above relation between any two A, B. Or equivalently, to
apply the split to all the variables in the system at once. This amounts to a reality
in which only the states λ’s are important to describe what happens to each random
variable independently, whatever is the involved context. Or yet, that for determining the
probabilities of individual random variables, factors beyond the hidden variables become
irrelevant. This leads us to the following definition.

Definition 1.2.3. For any set of probabilities and corresponding random variables, or
just system, if there can be found a set of hidden variables grouped into the random
variable Λ with probabilities p(λ) such that the probability distribution of every pair of
random variables A and B in that set satisfies

p(a, b) =
∑
λ

p(a|λ) p(b|λ) p(λ), (1.15)

then the system is said to be non-contextual, and such description a non-contextual hidden
variable (NCHV) model for the system.

This motivates the qualitative definition of our phenomenon.

Definition 1.2.4. Any probabilistic system incompatible with definition 1.2.3 is said to
be contextual.

It is also common to make those assertions in terms of behaviours, which just stands
for the set of joint probabilities prescribed by a system within each context. A given
behaviour is thus said to be contextual or non-contextual.

It is worth emphasizing that, despite the definitions provided in the preceding para-
graphs, contextuality (or non-contextuality) was assessed through a distinct approach in
our example. Rather than relying on the probabilities resulting from a proper quantum
realization, we employed the algebra of Pauli matrices to calculate the expectation values
of their products, which appeared in inequality (1.1). The conclusion drawn from this
analysis was that the quantum value for the left-hand side of the inequality exceeded the
value predicted by non-contextual hidden variable models. To be more precise in future
collocations, consider the definition below:
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Definition 1.2.5. A non-contextuality inequality is a linear function of joint probabilities
that adheres to the resulting bound when applied to non-contextual systems. If the appli-
cation of this function yields a value beyond the bound, we conclude that the inequality
has been violated by that system.

In more contemporary terms, the quantum system we discussed earlier has, in fact,
violated the non-contextuality inequality. This is another way of stating that the system
cannot be described by a non-contextual hidden variable model. The emphasis here is on
the modern perspective. Testing the contextuality of probabilistic systems through in-
equalities is a relatively recent approach, with notable examples being the CHSH scenario
[Cla+69] and the KCBS scenario [Kly+08].

Originally, the first proof of this phenomenon was presented through the lens of logical
assignments to propositions and the identification of the so-called KS -sets of vectors that
satisfy certain functional conditions imposed by the system’s structure [KS75]. In essence,
a proposition was associated with a rank-1 projector in a d-dimensional Hilbert space, and
a set of mutually exclusive propositions constituted a context. Assigning "true" or "false"
values to these propositions was done in such a way that only one "true" value could be
assigned within each context.

Kochen and Specker provided a physical interpretation for a system with d = 3,
involving spins, and established a relationship between a context of three orthogonal
projectors (essentially, a basis for measurement) and the three directions that defined
them. Naturally, the same vector could appear in different sets. The proof revealed that
there existed a finite set known as the KS-set, composed of vectors in R3 for which "true"
or "false" values could not be consistently assigned to all of them while adhering to the
logical constraints mentioned earlier within all sets of three orthogonal vectors. In the
original work, this KS-set consisted of a total of 117 vectors [KS75].

For this reason, the way we have been approaching contextuality and also some exten-
sions to it are generally referred to as Kochen-Specker contextuality; the principle behind
them is the same (that is, hidden variable models, value assignments to properties and
compatibility between them), what changes is the interpretation of the random variables
in relation to the definition of contexts, as we will see. It should be pointed also that the
perspective of the aforementioned proof should not be understood as outdated though,
after all recent works still investigate details on it, for example the possibility of reducing
the number of vectors required in such a proof (see[CEG96; XCG20; Lis+14]).

Now, the differences highlighted in the previous paragraph become more pronounced
when confronted with actual experiments. The reason is that, within an experiment,
there is no predefined recipe for realizing a specific context, as provided by the theoretical
framework presented earlier. One key challenge is how to interpret the simultaneous
implementation of two measurements.

In systems like those in physics, where a real physical state exists to convey information
to be extracted, conducting measurements often requires interaction with the state itself.
This suggests that addressing the issue mentioned above must encompass the concept of
non-disturbance to the system.

A widely employed approach to address this issue begins with the fundamental prin-
ciple that measurements are conducted in a sequential manner. This implies that the
outcome of one measurement serves as the input for the subsequent one. Compatibility
between measurements is then defined in terms of their mutual non-detectability when
performed in sequence. In other words, if one measurement cannot be detected between
two realizations of the other on the same system, which means that they produce the
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same response in spite of the intermediate realization of the other, they are considered to
be compatible. This feature is often referred to as outcome repeatability, where compat-
ible measurements do not interfere with each other’s outcomes in any sequential realiza-
tion. For more detailed insights into this concept, consult references such as [HW10] and
[UVB19].

Besides, it is important to recognize that, in practice, ideal measurements are essen-
tially non-existent, after all we are always subjected to the imprecision on the position or
settings of our detectors and also the unreachable requirement of infinite repetitions for
perfect characterization of a given measurement.

Consequently, it becomes necessary to quantify the level of disturbance introduced
during an experiment and to understand the adjustments required to ensure a reliable
verification process. This aspect is examined within the contemporary perspective we
are discussing here in references like [Kir+09] and [Jer+16], which explore how non-
contextuality inequalities are adapted to accommodate experimentally accessible prob-
abilities, i.e. those corresponding to compatible observables, along with proper error
correction procedures. References such as [Sza15] and [SKG13] delve into the potential
impact of time evolution on the hidden states between subsequent measurements instead.

We now grasp the pivotal role that non-contextuality inequalities play in the contem-
porary study of this subject. As we contemplate the violations of these inequalities, an
intriguing idea naturally emerges: the extent to which the bounds are exceeded might
carry profound meaning. This opens up an entirely new realm of possibilities, paving the
way for substantial advances in our understanding of the subject. In particular towards
ways of characterizing and quantifying contextuality properly, which will be the driving
topic of the next chapter.

For further motivation, within the realm of non-locality, a form of non-contextuality in
which compatibility is enforced by spatial separation among the components conducting
measurements in different parts of a multipartite physical system, a remarkable discovery
revealed non-locality as a foundational element for secure communication, as elucidated
in works such as [Eke91] and [BHK05].

1.3 Extended notions of KS-Contextuality

In the earlier section, we observed that addressing contextuality in practical scenarios
requires careful consideration of crucial subtleties, namely possible disturbance on our
systems and limitations of experiments. More specifically, there we discussed a method
to tackle the challenge of performing simultaneous measurements, or more broadly, real-
izing random variables concurrently. Simultaneity was replaced by a sequential approach
without inducing disturbance.

Nevertheless, this is not the sole available approach. In fact, it is precisely a distinct
perspective that paves the way for alternative pathways to a concept of contextuality
more aligned with experimental considerations — especially from a physicist’s standpoint.
However, it should be pointed out, following the discussion addressed on [Tez+22; DK23a;
DK23b], that so far we have not accomplished such a construction that can completely
handle the principle of post-processing (see [Tez+22] for example), which in a few words
can be understood as the principle stating that any manipulation of measured data can
not bring more contextuality into your system. Beyond physics, the rationale supporting
such formulations are more compelling though.
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The underlying concept behind these notions hinges on the idea of a context within the
realm of real-life experiences. Let us consider a simple experiment as an example: imagine
a beam of polarized light, and its polarization and color are intended to be determined
by two distinct apparatus, denoted as X and Y respectively, in a sequential manner.
One could argue that measuring X before Y is fundamentally different from the reverse
order. This is due to the fact that it would necessitate an entirely new configuration of
the experimental setup, despite the apparent compatibility of properties. Following this
line of reasoning, one might even question whether each apparatus remains the same in
the two situations.

In this sense, different setups give rise to distinct contexts in which compatible mea-
surements are conducted. Measurements designed to unveil the same property in various
contexts are then regarded not as inherently equal but rather as interconnected in some
manner, taking into account the restrictions imposed by their individual probability dis-
tributions.

Up to this point, our discussion has been quite pragmatic. However, in order to delve
into a theoretical understanding of the previously mentioned aspects, we need to introduce
the necessary mathematical framework. To accomplish this, we will formally present some
concepts elucidated in the preceding section.

Irrespective of the nature of a system, the random variables that underlie it can be
encapsulated within a structure termed a compatibility scenario, or simply a scenario.

Definition 1.3.1. A scenario is a triple (R, C,O): a set R comprising random variables, a
family C consisting of subsets of R that delineate our contexts, and a set O encompassing
possible outputs for our random variables4.

The joint probability distribution of random variables (R1, ..., R|C|) belonging to a
given context C ∈ C with respective outputs (a1, ..., a|C|) is represented by

p(a1, ..., a|C||R1, ..., R|C|) = p(R1 = a1 and R2 = a2 ...and R|C| = a|C|), (1.16)

in harmony with our previous notation by having in mind the following: the choice of
random variables to be realized is itself subject to some process that is usually random,
therefore the expression should be seen as conditioning the outputs on the input random
variables forming that context. The set of all such joint probabilities is called a behaviour
B for the scenario.

Recalling our previous definition 1.2.3 of non-contextuality, it can be rephrased now
in terms of a global probability distribution

p(a1, ..., a|R||R1, ..., R|R|) (1.17)

for all random variables in R5.

Definition 1.3.2. A behaviour B of a scenario (R, C,O) is non-contextual if and only
if there exists a global probability distribution (1.17) producing the correct marginal
distributions (1.16) for every context C ∈ C .

That is to say there is a description in which all the random variables could be com-
patible and simultaneously realizable while generating the observed behaviour.

4As before, all these sets are presumed to be finite.
5By taking the outputs of Λ to be every possible combination (i.e. |R|-tuple) of outputs for the |R|

random variables in the scenario.
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Now, aside from some specialized terminology, the rationale outlined above is applica-
ble across all approaches to Kochen-Specker contextuality6. What the expanded notions
introduce as innovation is the departure from a feature known in the traditional formula-
tion as the non-disturbance condition. A behavior satisfies this condition if any random
variable appearing in two different contexts maintains the same marginal distribution,
independent of the joint probability distribution from which it is marginalized. For in-
stance, let A, B, and C be three random variables with outputs a, b, and c, respectively,
and suppose {A,B} and {A,C} are contexts. In this case, the condition implies:∑

b

p(a, b|A,B) =
∑
c

p(a, c|A,C) ≡ p(a|A) . (1.18)

Discarding this condition allows a random variable to exhibit different marginals depend-
ing on the context. If two random variables do not have the same marginal probability
distribution, it follows that they should not be treated as equal in the first place. This
prompts the introduction of a new label for each random variable, indicating the context
to which it belongs. In other words, each original random variable is split into m new
ones, with one for each of the m contexts in which it appears.

However, instead of adhering to the "split" terminology and reasoning, we opt to treat
the modified scenario as an independent scenario. A random variable Rc

q is then associated
with the property (or general content) q it informs us about in the context c where it is
observed. While variables sharing a q are not considered identical, we anticipate there to
be some relation between them. Therefore, we designate them as a special set of random
variables in our scenario, termed a connection. Different contexts from which the random
variables originate render them mutually exclusive; technically, they are referred to as
stochastic unrelated (refer to [Dzh16]), indicating that they lack a joint distribution.

These notations were introduced in the development of approaches known as Con-
textuality by Default (refer to[DK16a] and [DK16b] for an updated version) or Extended
Contextuality ([AD19a]); contexts are also referred to as bunches in [DK16a].

In these formulations, assertions about contextuality (non-contextuality) gravitate to-
wards the non-existence (existence) of the so-called couplings, which exhibit special fea-
tures. To comprehend this, let us first define these objects.

Definition 1.3.3. A coupling for a set {Xj : j ∈ I} of random variables is a set {Tj : j ∈
I} of jointly distributed random variables where each Xj has the same distribution as Tj.

Definition 1.3.4. The set {T c
q : ∀q,∀c, s.t. q is measured in c} is a coupling for a be-

haviour B if for every context c the set {T c
q : ∀q, s.t. q is measured in c} is a coupling for

it.

The distinctiveness arises from having different random variables responding to the
same question q. The idea is that, if they share a content q, they should be as equal
as possible to approach a non-contextual description. In the literature, two paths are
typically followed: the use of either maximal or multi-maximal couplings.

Definition 1.3.5. A maximal coupling for a given behaviour B is a coupling {T c
q } for

which the probability that all random variables answering the same question q are equal
is the maximum allowed by the probabilities for each Rc

q in the behaviour.

6The reader might explore an alternative mathematical construction using Sheaf-theory ([AB11]), for
instance.
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Maximal coupling always exists [ADO18], but are not necessarily unique.
Similarly, a multi-maximal coupling satisfies the maximum condition for any pair of

random variables sharing a content q. In other words, the coupling is maximal for any
pair of such random variables.

Definition 1.3.6. A multi-maximal coupling for a given behaviour B is a coupling {T c
q }

for which the probability that any two random variables Rc
q and Rc′

q answering the same
question q are equal is the maximum allowed by the individual probabilities.

Then we can define non-contextuality in the extended formulation.

Definition 1.3.7. A behaviour, in an extended formulation, is said to be multi-maximally
or maximally non-contextual if there is a multi-maximal or a maximal coupling, respec-
tively, yielding all the correct marginals in the behaviour.

Otherwise, it is considered contextual.
The first path was characterized in [ADO18] and further exploration can be found on

[AD19a; AD19b; AC18] for example. The second path, has seen significant progress in
recent works. It is known (see [KD22], for example) that for a non-contextual system of
dichotomic (or binary) random variables, there exists a unique multi-maximal coupling
for it. This is a robust result, particularly when combined with the dichotomization pro-
cedure for a system of random variables (also [KD22]). Broadly speaking, dichotomization
involves exchanging each random variable in the system for an equivalent set of dichotomic
random variables.

As a generalization of the original formulation of KS-contextuality, the extended ver-
sion must be reducible to that one in some way. The way of achieving this is through
a specific instance of coupling called the identity coupling, where the random variables
are identical. A behavior is non-contextual in that sense if there exists a multi-maximal
(or maximal) coupling for it such that it is an identity coupling for all variables shar-
ing a content, for any content. In the other direction, by considering systems in which
the probability of random variables sharing a content being equal is 1, we are essentially
in the traditional construction. In fact, such systems are termed consistently connected
in the terms of these extended formulations. In other words, the extended approaches
incorporate instances that are inconsistently connected into the analysis.

It turns out that this incorporation also expands the fields to which contextuality
analysis can be significant. Indeed, it has been shown that probabilistic systems of human
choices, for example, exhibit contextuality ([CD18]). Moreover, works like [Bru+15] have
inspired the search for contextuality in the subject of natural language as well as [Wan+21;
Wan21]. These are the reasons why the title of this chapter does not carry the adjective
"quantum" in it.

To illustrate this, and also to emphasize the multidisciplinary aspect of such ap-
proaches, we expose now an example given in [Dzh22], which has personal value for this
manuscript, fruit of studies in a pandemic epoch. Suppose we ask to a random person
two questions:

q1- Would you like to take an overseas vacation this summer?

q2- Are you wary of contracting COVID-19?

The person can answer YES or NO. And suppose also that we ask in two different orders:
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c1- q1 then q2;

c2- q2 then q1.

We cannot determine the answer in advance because the person was randomly chosen, so
the answers are assumed to be random variables. The following scheme synthesizes the
scenario:

R1
1 R1

2 c1

R2
1 R2

2 c2

q1 q2 C2

Table 1.1: Cyclic scenario of rank 2.
.

Answers to the same question in different contexts are associated to different random
variables in accordance with our previous construction. C2 is just a special label to our
scenario: the C stands for the family of cyclic scenarios that we will come across again
at some point and, therefore, it will be properly explained later; the number 2 denotes its
rank, the amount of contexts and/or connections in the scenario.

The temptation is to assume that the same question has equal distribution independent
on the context it is. Considering that +1 stands for YES and -1 for NO, we would have
then in this case, for a > 0 and b > 0 and any context:

p(R1 = +1) = a, p(R1 = −1) = 1− a and p(R2 = +1) = b, p(R2 = −1) = 1− b. (1.19)

Now, denoting the following joint probabilities:

p(R1
1 = +1 and R1

2 = +1) = r1 and p(R2
1 = +1 and R2

2 = +1) = r2, (1.20)

the assumption of the existence of a maximal (or equivalently in this case, multi-maximal)
coupling would amount to say that the following tables are equal. Noticing that there

c1 R1
2 = +1 R1

2 = −1

R1
1 = +1 r1 a− r1 a

R1
1 = −1 b− r1 1− a− b+ r1 1− a

b 1− b

,

c2 R2
2 = +1 R2

2 = −1

R2
1 = +1 r2 a− r2 a

R2
1 = −1 b− r2 1− a− b+ r2 1− a

b 1− b

.

is only one degree of freedom in each table, their equality would boil down to requiring
that r1 = r2. Therefore, if r1 ̸= r2 we clearly have a context dependence on the joint
distributions. This is the same as stating that the order in which questions are answered
is important. It turns out this was already shown to be true in [Moo02]. Therefore the
system is contextual. In fact this is the simplest scenario able to exhibit contextuality.

As a final comment on this section, it is worth noting that more recently, Contextuality
by Default (or just CbD) has been linked to causal approaches to contextuality (see
[Jon19]). At this point, it is clear that in this dissertation, we are exclusively dealing
with random variables with non-trivial compatibility relations among them, but different



16 CHAPTER 1. CONTEXTUALITY

perspectives do exist, especially physics-inspired ones. The so-called M-Contextuality,
short for Model-based Contextuality, describes systems through probabilistic causal models
that require stronger (hidden) direct influences. The equivalence between them, as shown
in the aforementioned reference, provides a new interpretation of CbD in terms of such
models, i.e., as the impossibility of modeling a system without hidden direct influences
among the random variables; in contrast to the interpretation we have been using, in
which the phenomenon is related to different distributions in different contexts.

1.4 Further comments

To conclude this chapter, we present approaches to contextuality that differ somewhat
from the reasoning we have been developing in the previous sections. After doing so, we
believe that one should have a first roadmap of current methods to explore the impossi-
bility of describing data from a (quantum) experiment using a single classical probability
space. This section offers alternative perspectives on the same phenomenon with fewer
details, allowing the reader to contemplate and critique the main line of reasoning in
this work through different well-established frameworks. Questions regarding numerical
results will be addressed in the next chapter with the necessary background.

There are approaches to be mentioned yet. One of them is distinct in a more fun-
damental sense: compatibility among random variables is abandoned, and the entire
construction is based on equivalence relations among procedures. For this reason, we
reserve it for the end. The other one shifts the focus, while maintaining the compatibility
intuition we developed behind the scenes.

To comprehend this, let us first translate what we know into the language of graph
theory. A graph is a pair G = (V,E), where V is a set of vertices and E is a set of edges
linking two vertices, i.e., a set of unordered pairs {j, k}, with j and k in V ; two vertices
not connected are said to be independent. A hypergraph H is defined similarly, with the
difference being that edges are allowed to connect more than two vertices, forming subsets
of the power set of V .

As detailed in [AC18], considering vertices as measurements (i.e., random variables)
and representing compatibility between them using edges, scenarios naturally gain a de-
scription through the use of graphs. Contexts become hyperedges. We refer to them as
compatibility hypergraphs7. For instance, in the traditional notion of KS-contextuality,
for simplicity, the (hyper) graph representation of the famous CHSH scenario is shown in
figure 1.1 (see also the next section for more).

Also, notice that the measurements were separated into two different sets: A or B
with subscripts, or equivalently red and blue. This is to highlight the physical motivation
behind the scenario, where two distant parts possess two measurements each, and the
compatibility between them is implied by the long distance8, which prohibits disturbance
in one side by the performance of a measurement on the other.

Now, this framework is already proving useful as it stands. Indeed, investigations into

7According to the principle in [Cab12], the story is simpler when involving sharp measurements: graphs
can be used, and we can stick with compatibility graphs instead; roughly speaking, the principle states
that for such kinds of measurements, i.e. ideal or error free, pairwise compatibility is equivalent to global
compatibility.

8In the relativistic sense that if some action is performed in one part of the shared system, the
information takes at least the time required for the light to travel all the distance to reach the other part.
Acting on the other side during this interval prevents the perturbation.
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A1 B1

B2 A2

Figure 1.1: Compatibility (hyper-)graph of the CHSH scenario. Four measurements com-
pose it: A1, A2, B1 and B2. Contexts are represented by edges.

the connections between graph-theoretic properties and the existence of NCHV have been
explored in several works (such as [BM10], [KRK12], and [Ram+12]). However, it is not
drastically different from what we were doing before; essentially, we have redefined the
concepts using a different set of objects, equipped with new tools that might come in
handy. Nonetheless, what truly captures our interest is a divergence in the approach.

This innovative idea, initially introduced in [CSW10] and [CSW14], shifts our focus to
the compatibility relation between events rather than measurements. Given n events pro-
duced by a set of measurements and an initial state, the exclusivity relation among these
events can be graphically represented by an n-vertex graph, where edges connect mutu-
ally exclusive events. Two outputs in a experimental realization are considered exclusive
if there exists a measurement that produces them following respective two orthogonal
effects.

Investigations then shifted their focus to exclusivity graphs rather than compatibility
ones, opening the door to studies that do not assume specific scenarios from the start,
driving conclusions about them as a consequence when the compatibility structure con-
tains such events as possible outputs in their description. This change is particularly
crucial in the pursuit of principles that can elucidate the correlations observed in nature
([Fri+13] and [ACC14] on local orthogonality, and [Paw+09] on information causality,
to name a few). This endeavor has also led to the development of refined concepts of
classicality, as well as an enhanced understanding of entanglement (as seen in [DEP20a]
and [DEP20b]).

The essence of this shift lies in the fact that graph properties are extensively under-
stood in the existing literature. Once established, this formulation automatically brought
forth a wealth of information. Notably, graph-theoretic quantities like the independence
number and the Lovász number promptly became relevant to the discussion [CSW14].
The former provides non-contextual bounds for defined inequalities, while the latter sets
a limit on the violation of quantum correlations subjected to the linear functions that
define such inequalities (recall definition 1.2.5). Figure 1.2 illustrates the case for the
KCBS scenario. In this scenario, we have five dichotomic measurements {A0, ..., A4} with
outputs either +1 or −1. Contexts are created by pairs of measurements with labels dif-
fering by 19. Non-contextual systems adhere to probabilities for these events that satisfy

9Modulo 5, i.e., 4+1=0, so {A0, A4} is included as a context.
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(−1,+1|A4, A0)

(−1,+1|A3, A4)

(−1,+1|A2, A3)

(−1,+1|A1, A2)

(−1,+1|A0, A1)

Figure 1.2: Exclusivity graph associated to the inequality SKCBS defined by five events
in the KCBS scenario with associated probabilities p(aj, ak|AjAk), i.e. the probability of
having the pair of outputs (aj, ak) given that (Aj, Ak) have been decided as inputs. The
maximum number of independent vertices is 2, exemplified through the blue ones.

the inequality:

SKCBS =
4∑

j=0

p(−1,+1|Aj, Aj+1) ≤ 2, (1.21)

for which we already have reports in the literature for experimental realization of quantum
violations [Lap+11; Ahr+13].

Towards the conclusion of this chapter, we introduce the last remaining approach to
contextuality. While different lines of research deviate from the one we intend to follow
in the next chapters, it is precisely this diversity that makes it worth mentioning, offering
readers a taste of the various flavors within the field. It is known in the literature by
Generalized Contextuality or Contextuality by Spekkens, and it reduces to the Kochen-
Specker’s traditional notion under some conditions [KS15].

The fundamental components here are preparations and measurements (and also trans-
formations, but we won’t delve into them for simplicity). These are specialized instances
of the effects we mentioned earlier. In simpler terms, the former requires no income sys-
tem; it prepares outgoing states, while the latter lacks an outcome system; it measures
incoming states. Additionally, we need rules for calculating probabilities p(k|P,M), indi-
cating the likelihood of obtaining output k given a preparation P and a measurement M
setup.

In this operational perspective, non-contextuality is constructed based on the indis-
tinguishability of these procedures, mathematically expressed as two procedures being
equivalent (and thus represented by the same elements of the theory, forming an equiva-
lence class) if they yield the same statistics.

Explorations within this approach delve far beyond the reasoning we have developed
so far, so we conclude our discussion here. However, for those keenly interested, we
recommend [Spe05] for an in-depth presentation. it is worth noting that experimental
tests have been conducted ([Spe+09] and [Maz+16], for instance), underscoring the central
role of non-contextuality inequalities from this viewpoint too.
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1.5 A nobel winner example

This section is in certain way optional and has been included in the work to highlight
the importance of the field by contemplating the awarded works of Alain Aspect, John F.
Clauser and Anton Zeilinger, "for experiments with entangled photons, establishing the
violation of Bell inequalities and pioneering quantum information science". It is based
on the scientific report on the Nobel Prize in Physics of 2022 provided by the Nobel
Committee for Physics [Phy22].

The path leading to the results of these scientists refers to the seminal work by Al-
bert Einstein, Boris Podolski and Nathan Rosen (EPR) in 1935 [EPR35] and the puzzle
presented by a thought experiment on it. Consider two distant parts, traditionally Alice
and Bob, sharing a pair of spin one-half entangled particles. Each party can measure
their piece with spin operators that do not commute. If both parties happen to perform a
measurement of the same direction of the spin, their results will be completely correlated
or anti-correlated depending on the entangled state. However, even when they do not
use the same direction, they seem to obtain sharp values for the component of the spin
measured. And the problem relies in the fact that quantum mechanics does not allow us
to assign sharp values simultaneously for quantum numbers referring to non-commuting
observables. Either then, the description provided by the theory is incomplete or non-
commuting operators make the simultaneous reality of the physical properties associated
to them impossible.

While the negation of the second possibility has led to the appearance of different
interpretations of quantum mechanics [Eve57; Boh52] with the passing of the years, its
acceptance originated John Bell’s work "On the einstein-podolsky-rosen paradox" [Bel64].
By making use of a special form of the previous thought experiment, he showed the im-
possibility of reproducing the results prescribed by quantum mechanics by means of local
hidden variable models. To do that, Bell derived an inequality as the ones we described
before, and then showed that for some experimental conditions quantum mechanics vio-
lates it. However, some unjustifiable assumptions on the detectors for real experiments
made it not suitable for tests.

John Clauser, Michael Horne, Abner Shimony and Richard Holt (CHSH) then removed
this obstacle in 1969 [Cla+69] by proposing a modified scenario, illustrated in figure 1.1,
in which each party could now perform two different experiments. It can now be realized
many times, and in each instance, Alice and Bob choose the setup to be used in their
side. Figure 1.3 below illustrates the experimental setup required. Local hidden variable
models should then obey the following inequality:

SCHSH = |⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩| ≤ 2, (1.22)

which can be violated by quantum mechanics using particular orientations for the detec-
tors, producing the optimal value of S = 2

√
2. Recalling that local refers to the idea of

locality implied by special relativity and the existence of a common past.
Then Clauser, together with Stuart Freedman, conducted the first test in 1972 by

leveraging previously available setup of the research of Carl Kocher on the time correlation
of photons originated from the same source [FC72]. The apparatus employed a hydrogen
arc lamp to excite calcium atoms out of their ground states to produce entangled photons
from subsequent decays. However the polarizers available initially hadbeen identified by
them as inefficient for the purposes they had, specially because of angle controlling, so
they rebuilt the experiment and after two years of preparation finally recorded the data.
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Figure 1.3: Generic experimental apparatus for realizing a CHSH test. A source emits
entangled photons in opposite directions. Each of them encounters an adjustable polarizer,
and the signals of the respective channels are detected by single photon detectors (D+ and
D− in the picture). Their coincidence is counted by a separated unit. The expectation
values of interest can then be computed by recording the numbers of coincidence events
corresponding to simultaneous detection by Alice and Bob.

Using a slightly modified version of the inequality above, they have found a violation
of it within six standard deviations, the value δ = 0.050± 0.008 for the inequality:

δCHSH =

∣∣∣∣∣R(22.5◦)R0

− R(67.5◦)

R0

∣∣∣∣∣− 1

4
≤ 0, (1.23)

where R(ϕ) is the coincidence rate at an angle ϕ between the polarizers, and R0 the value
when they are not present.

Nevertheless, there was still room for criticism about it. An important step to obtain
(1.22) is the assumption of independent choice of measurements for Alice and Bob in each
run, which is doubtful to be the case in this realization. Alain Aspect was the first one to
find a way around this problem (also called the locality loophole), by using polarization
settings that randomly changed while the photons were still travelling [AGR81; AGR82;
ADR82]. In a series of three experiments, he and collaborators first improved the method
of exciting calcium atoms, then employed two-channel polarizers that allowed to obtain
the largest violation at the time, and finally made use of optical switchers to get rid of
the aforementioned challenge by allowing photons to switch between two paths in shorter
timescales than those required to travel to the detectors.

Almost two decades after this, Anton Zeilinger’s group repeated the test now under
much more strict (locality) conditions and with other technical improvements [Wei+98],
including 400m of distance between the parties. The addressed issues were mainly related
to the challenging task of performing loophole-free tests, which require among other things
a separation of 300m at least [Bru+14]. Zeilinger’s experiments managed to close the
locality and the detection loopholes simultaneously. This last one has to do with the
fact that no detector is completely efficient, which may cause unfair violation of such
inequalities.



Chapter 2

Computational tools

The potential of contexuality in the realm of quantum computation has garnered recent
attention, both in terms of practical applications (as explored in [How+14], [Rau13], and
[Del+15]), as well as its role in the pursuit of computational advantages (refer to [Kle+11];
additionally, consider [Gup+22] with respect to communication complexity advantages).
The utilization of contextuality in communication and computational tasks as valuable
resources ([Ber+17; Rau+17]) has also led to the development of a dedicated resource
theory to effectively address this aspect, as detailed in [Ama19].

An integral element within resource theories is, without a doubt, the concept of quan-
tifiers. Quantifiers play a crucial role in measuring the quantity of the resource of interest
within a given system. Hence, it becomes evident that special attention must be devoted
to assessing the degree of contextuality a system may possess.

This chapter is reserved for presenting the systematic line of investigation regarding
contextuality quantifiers while placing it within the computational aspects related to the
topic, including an overview of optimization problems and important tasks that appear
in (quantum) foundational research. That is because, since the way to characterize it
derives from a more general approach, it makes sense and seems natural to look for the
usability of these "general" problems in the characterization of quantum or non-classical
phenomena themselves.

Each quantifier has its own interpretation and specific applications, but there exists
shared reasoning underlying the definition of all of them. As mentioned earlier, the goal is
to establish criteria that rank our behaviours as "more" or "less" contextual, attributing
to them a classification through a numerical value whenever possible.

As we progress through this chapter, the comments and references not only offer de-
tailed sources for interested readers but also demonstrate that quantifiers themselves con-
stitute an important and active area of research. Indeed, the final sections are dedicated
to exemplifying this with recent advancements.

2.1 Linear programming

The preceding words are quite suggestive. A computational procedure is unavoidable
to our purposes, specially when one notices how large the space of parameters defining
our behaviours can be; for example the simplest Bell scenario with two inputs and two
outputs, leading to sixteen degrees of freedom. Therefore, we start with the exposition
of the structure that our computational tasks will share under the translation of the
classification and quantification problems into the language of computers, i.e. algorithms.

21
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Such structure is known as Linear Programming and it is as simple as the reason for its
name: all its defining pieces carry the form of a mathematical linear (or affine) functions.
It is an instance of a family of computational problems that we call optimization problems.
A member of it has an objective function (sometimes called cost function), say f(x), whose
values we want to explore in order to maximize (or minimize) it over a given domain of
allowed values for our variables organized in a vector x. Details beyond what is about to
be presented here can be found in [GO11].

As we have just discussed, a linear programming (LP from now on) task will aim to
optimize an affine function. Labelling {xj}j∈I , with I set of indices, the set of variables
of the program, any such function can be written as f(x) =

∑
j ajxj + k for a set of given

coefficients {aj} and a constant k, all real.
The allowed region of the variables are the real vectors delimited by linear constraints.

A constraint is an equality or inequality involving the variables of the program. By a
linear constraint we will mean an inequality (or equality, when it is the case) of the form∑

j mjxj ≤ bj, j ∈ I. And since it is common to have more than one such restriction, the
coefficients are grouped into a matrix M and a vector b, so that the constraints can be
stated in the form Mx ≤ b. In what follows we consider finite regions only.

Therefore, the LP task we will cross throughout this work can be summarized in the
following way:

Maximize f(x)
such that Mx ≤ b .

(2.1)

Any x satisfying the constraints is called a feasible solution to the LP task. An optimal
solution accomplishes the demanded maximization.

The reason for looking to linear formulations of computational problems, besides their
simplicity, has to do with the speed of the computations and also the well-known properties
they have. To mention the ones of special significance in what follows, we note the fact that
graphs of linear functions are just hyper-planes within the real vector space that contains
x, therefore the intersection of their implied hyper-spaces delimit a convex region (when
finite) of allowed vectors, called a polytope1; unbounded regions can give raise to unsolvable
problems. Moreover, the existence of solutions is well established in the literature, the
reference to which we again indicate [GO11]. The most important feature is that optimal
solutions are located at one (or some) of the vertices of the defining feasibility polytope,
i.e. the polytope of solutions to (2.1).

The implementation of this kind of task in a computer can be easily achieved using
any programming language, provided the appropriate packages are utilized. In this work,
any result regarding LP’s will come from simulations written in Julia ([Bez+17]), apply-
ing JuMP as model builder for optimization problems ([DHL17]) and the CLP package
([For+22]) to provide the body ((2.1) in computer terms) of the LP’s, which we fulfill
with a proper soul (the defining coefficients) then make it run after an optimal solution.
For other optimization problems, as the ones to be introduced in the next section, we
mostly make use of Python and a series of packages supported by it, to be mentioned
when convenient later on.

2.1.1 A simple non-locality test

To illustrate this section and give a working example on the use of this tool, we are going
to revisit the CHSH scenario of the first chapter (see figure 1.3) to provide a way of testing

1These objects are generalizations of 3d-polyhedra in higher dimensions.
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whether a given behaviour or (set of) correlations is in agreement or not with a local (i.e.
classical) description. That is to say, the LP task to be constructed here is a test for
non-locality of the joint probability distributions p∗(a, b|A,B) that Alice and Bob may
have in hands after their experiment.

As a particular instance of contextuality, the exhibition of non-locality by their cor-
relations amounts to the non-existence of a probability distribution p(λ), the hidden
variable model, determining their joint distributions, while also in accordance with the
no-signalling (or no-disturbing) condition if necessary.

Explicitly, since we know that λ encodes all possible deterministic strategies, indexing
them by the corresponding outputs values a1, a2 for measurements A1, A2 of Alice and
b1, b2 of Bob, giving the correct marginal amounts to have

∑
a2,b2

p(a1, a2, b1, b2) = p∗(a, b|A1, B1),∑
a2,b1

p(a1, a2, b1, b2) = p∗(a, b|A1, B2),∑
a1,b2

p(a1, a2, b1, b2) = p∗(a, b|A2, B1),∑
a1,b1

p(a1, a2, b1, b2) = p∗(a, b|A2, B2).

(2.2)

Therefore, the task of testing non-locality of a given p∗(a, b|A,B) can be stated as the
following LP.

max
p

1

such that
∑
a2,b2

p(a1, a2, b1, b2) = p∗(a, b|A1, B1),∑
a2,b1

p(a1, a2, b1, b2) = p∗(a, b|A1, B2),∑
a1,b2

p(a1, a2, b1, b2) = p∗(a, b|A2, B1),∑
a1,b1

p(a1, a2, b1, b2) = p∗(a, b|A2, B2).

pj ≥ 0 ∀j,∑
j

pj = 1.

(2.3)

That is, it is equivalent to find a feasible point for the linear programming task above,
which is also referred to as a feasibility problem, after all any feasible point would provide
the same value for the objective function. And the same idea can be extended to more
complicated scenarios of non-locality. Adding details, or a degree of non-locality, to the
objective function is exactly the role of quantifiers, as we are going to see later on. And
to finish, if for some reason signalling needs to be tested or taken into account for further
exploration too (for example include tolerated errors and so on), this can done by adding
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the extra conditions∑
b

p∗(a, b|A,B) =
∑
b

p∗(a, b|A,B′), ∀a,A,B,B′,∑
a

p∗(a, b|A,B) =
∑
a

p∗(a, b|A′, B), ∀b, B,A,A′
(2.4)

which, of course, could be verified previous to the LP test, after all it depends on p∗ only.

2.2 Semi-definite programming

With this section we want to generalize the set of optimization problems that are known to
be efficiently solvable in a computer, in the sense of the time efficiency of the algorithms
involved. Besides, we want to show a natural path to approach further problems in
quantum physics research once one is aware of linear programming. More specifically, they
are a particular case of the broader family described as semi-definite programs (SDP). As
such, one would expect to find useful tools on it that could fit well on tackling optimization
tasks raising in quantum foundations and applications . The reason for their efficiency
relies on interior points methods [Kar84; KK92; KK93; NN94], providing polynomial
time implementation. In what follows, after making the connection just mentioned, we
point out typical uses of it that one can find in research on quantum (or more generally
non-classical) physics, highlighting those that are going to be useful for us in succeeding
chapters. In order to do so we follow [Tav+23]. See also the recent book [SC23] for a
focus in quantum applications.

While keeping a linear objective function, SDP’s aim to optimize it over a domain for
the variables now restricted to be part of a set of positive semi-definite (PSD) matrices.
That is to say, we want to extremize a linear function over a set of matrices lying in the
intersection of the PSD cone with hyperplanes and/or hyperspaces. Generically, this can
be phrased as:

Maximize Tr (CX)

such that Tr (AjX) = bj, ∀j,
X ≥ 0,

(2.5)

where C (the coefficients for the objective function), X and Aj are hermitian matrices
and bj a real vector. Inequalities can be included as before in addition to or as substitutes
for the equality ones above, performing the logical operation component-wisely.

Notice now that by demanding X to be diagonal with each element non-negative, we
arrive at the equation (2.1). More important is to note that to every SDP (and therefore
LP) we can associate another SDP of the form2:

Minimize b · y

such that
∑
j

Aj yj ≥ C, (2.6)

where the minimization is over real vectors y and the dot is to denote the inner product
between vectors. This is called the dual problem associated to equation (2.5), which would
then be the primal problem. And the importance of it has to do with two known results
in their theory, called weak and strong dualities, which we just enunciate in the form of a
non-rigorous theorem here as follows.

2For the interested reader, it is obtained via Lagrange multipliers. See [SC23] for example.
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Theorem 2.2.1. (weak and strong dualities) A feasible solution to the dual problem pro-
vides an upper bound on the optimal value of the primal, while a feasible solution to the
primal provides a lower bound on the optimal value of the dual. The strong duality holds
when we have the equality of these bounds, i.e. when the optimal values coincide.

The equality of the bounds are known to always be the case for LP’s. In the case of
SDP’s, strict feasibility (X∗ > 0 feasible or equivalently y∗ feasible with

∑
j

Aj yj > C)

is sufficient [Sla13].

2.2.1 Quantum applications

The form of the objective function in equation (2.5) is then quite suggestive on the appli-
cations for quantum mechanics when one recall the Born rule that assigns the probability
of obtaining the outcome j associated to the element Ej of a generic (i.e. not necessarily
projective) measurement, also known as POVM 3 , when measured on a state ρ. That
means, for {Ej} with j ∈ O finite, such that∑

j

Ej = 1,

Ej ≥ 0 ∀j ∈ O,

(2.7)

i.e. with {Ej} a set of positive semi-definite matrices summing up to the identity, quantum
mechanics postulates that the outcome j occurs with probability pj(ρ) given by

pj(ρ) ≡ Tr (ρEj) , (2.8)

where ρ is the quantum state being measured.
Immediately we see then that one could use this with the following purpose, for ex-

ample. For a fixed finite set of incoming quantum states {ρj}, with characteristics pre-
determined by the application, one can optimize for the best POVM {E∗

j } choice that
maximizes the chance pguess of guessing correctly the incoming state in successive runs:

pguess ≡
∑
j

Tr (ρjEj) , (2.9)

that is to say, pguess would be our objective function. This is of particular importance
in protocols of quantum Bit Commitment [BC91], in which one wants to check potential
risks of cheating by the receiving part. The protocol is to make a party commit to a
bit that will then be sent secretly ("within" a safe) to a second party, with subsequent
disclosure of its value by mediation of a key.

In a similar fashion, one can employ a simple heuristic that goes by the name of seesaw
[PV10; WW01b] in which now one optimizes for states and measurements, each one in a
separated step while keeping the others fixed, in order for example to look for the largest
quantum violation of a Bell inequality. The candidate would be the one to which the
procedure converges to. There is a caveat, however, that one could fall into a local and
not a global extreme.

In the examples above there are at least other two other important features playing
important roles behind the scenes: steering and entanglement. And because of the central

3It is short for positive-operator-valued measurement.
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role they can have among other applications, it becomes crucial then to be able to certify
their presence (for entanglement) and absence (for the steering). This is where semi-
definite programming comes in again.

To understand how we provide such certificates, let us briefly review what is the
meaning of those terms, by considering the typical scenario (recall figure 1.3) with Alice
and Bob sharing a quantum system ρ. Starting with the simplest one, entanglement,
which is just a mathematical feature at the end of the day.

Definition 2.2.1. (entanglement) An entangled state ρ in a Hilbert space H resulting
of the product between two Hilbert spaces H1 and H2 stands for a state that cannot be
written as a probabilistic mixture p(λ) of some states ρ1λ and ρ2λ respectively prepared by
each party separately, that means

ρ ̸=
∑
λ

p(λ) ρ1λ ⊗ ρ2λ, (2.10)

where ⊗ is the usual tensor product.

The crucial aspect of entanglement is that the state correlates the subsystems. And
because of this, by making use of the same well characterized measurement in each party
individually, one party can infer (however, not change) the result of the other on the
realization of that measurement4.

Now, steering has to do with a different aspect of correlation between parties. More
specifically, it is understood under the scope of only one of Alice and Bob. Say Bob,
trusting only on the measurements he possess and the subsystem he holds, wants to answer
the question whether his state can be correlated or not to the realized measurements and
revealed outputs by Alice. In other words, he wishes to rule out or not the possibility that
the information of inputs and outputs from the other side can change the description of
his state (not his actual state) and therefore his results, in the sense of not being able to
describe his state by local pieces only.

With the partial information that Alice is supposed to select among possible inputs
X, corresponding to realizing measurements AX , providing an output a to it, Bob knows
that in his hands lies what we call an assemblage of states ("prepared" by Alice), namely

ρa|X = TrA ((Aa
X ⊗ 1) ρ) , (2.11)

where TrA denotes the partial trace over part A. In a quantum system composed of parts
1 and 2, with respective basis {|ϕ1

j⟩} and {|ϕ2
k⟩} , tracing out 1 or taking the partial trace

over 1 of an operator with matrix elements T jk, for example, i.e

T =
∑
j,k

T jk|ϕ1
j⟩⟨ϕ2

k|, (2.12)

means to define an operator on party 2, with elements say T k
2 , such that

T k
2 ≡ Tr1 (T )

k =
∑
j

T jk, (2.13)

which is usually referred to, in the case of quantum states, as the reduced state to the
party.

The point is that, if there is no correlation between Alice’s action at her side and the
description that Bob gives to the subsystem in his side, then he should be able to model
it by using local hidden states only [WJD07], which leads us to the following definition.

4This inference is perfect for maximally entangled states only.
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Definition 2.2.2. (steering) An assemblage ρa|X is local or unsteerable if

ρa|X =
∑
λ

p(λ) p(a|X,λ) σ∗
λ, (2.14)

where {σ∗
λ} is some set of local states at Bob’s side, and p(a|X,λ) is some probability

of having the output a as conditioned by hidden a variable λ and the input X only.
Otherwise we say it is steerable.

Checking agreement with this definition amounts to test the strict feasibility of the
following SDP task, which demands non-negativity of t [Tav+23].

max
{σλ},t

t

such that ρa|X =
∑
λ

D(a|X,λ) σλ, and

σλ ≥ t 1 ∀λ,

(2.15)

where D(a|X,λ) = δrλ(X),a stands for the finite set of deterministic functions rλ(X) in-
dexed by λ mapping the inputs X into fixed output values; the last condition should be
seen as between the eigenvalues of σλ and t. In the case of reaching optimal solution with
the desired condition on t, the dual SDP provides what we call a certificate of no steering.
To see this, let us explicit the dual form of the task above.

min
{Wa|X}

∑
a,X

Tr
(
Wa|X ρa|X

)
such that

∑
a,X,λ

Tr
(
Wa|X

)
D(a|X,λ) = 1, and∑

a,X

Wa|X D(a|X,λ) ≥ 0 ∀λ.

(2.16)

The dual then looks for objects {Wa|X} that add up to form positive semi-definite matrices,
as some kind of (pseudo-)element of a (sub-normalized) POVM, because individually there
is no need for being PSD and they not necessarily add up to the identity. Strict feasibility
in this case, however, means that the objective function needs to be strictly greater than
zero, which means that a feasible {W ∗

a|X} provides an inequality that is violated by any
steerable assemblage, namely: ∑

a,X

Tr
(
W ∗

a|X ρa|X
)
≥ 0, (2.17)

which we call a witness of steering.
Certifying entanglement using this approach follows a similar reasoning. In this case

we want to certify that a given state ρ is in accordance with equation (2.10). Let Alice
and Bob be our experimenters again and call their shared state ρAB. Then assume they
have known quantum measurements {AX} and {BY }, respectively, with corresponding
inputs {X} and {Y }. Now, by determining the correlations

p(a, b|X, Y ) = Tr
((
Aa

X ⊗Bb
Y

)
ρAB

)
, (2.18)

they can reconstruct the density matrix ρAB and decide separability by means of some
analytical criterion. However, the problem is that, a necessary and sufficient criterion only
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exists for qubit-qubit or qubit-qutrit systems, known as PPT criterion [HHH96; Per96],
enunciated but not proved below, which is only necessary condition in higher dimensions.
Moreover, this decision problem is known to be NP-hard [Gha10; Gur03].

The criterion is stated in terms of the partial transposition operation, defined in the
following equation for Alice for example.

ρTA
AB ≡ (T ⊗ 1) ρAB =

∑
j,k,l,m

ρjk,lmAB T (|j⟩⟨k|)⊗ |l⟩⟨m|

=
∑
j,k,l,m

ρjk,lmAB |k⟩⟨j| ⊗ |l⟩⟨m|

=
∑
j,k,l,m

ρkj,lmAB |j⟩⟨k| ⊗ |l⟩⟨m|,

(2.19)

where T stands for the transposition operator (exchange of row and column indices).

Theorem 2.2.2. (PPT) If ρAB is separable then all the eigenvalues of ρTA
AB are non-

negative.

A typical use of such criterion is not only to detect, but also to quantify the robustness
of the entanglement, by computing how much of the maximally mixed state (read the
identity) needs to be mixed with ρAB to make it PPT, that is to say, with positive partial
transposition. It can be computed by means of the following SDP [Tav+23].

max
t

t

such that ρTA
AB ≥ t 1,

(2.20)

providing a lower bound to that quantity since we are taking in consideration only a
necessary condition. This is sometimes referred to as taking a relaxed version of the
actual problem.

And as before, the dual SDP associated to this problem provides a witness of entan-
glement, namely

min
W

Tr (WρAB)

such that Tr (W ) = 1, and
W TA ≥ 0,

(2.21)

which is very useful considering the difficulty of realizing full tomography of a given state.
By violating an inequality defined by a solution of the task above we already certify the
presence of the property in the target state.

Wrapping all about this two components up then, we see that different aspects of
correlations, more specifically non-classical ones, can be assessed and leveraged by the
same computational approach. And following the reasoning we have used here, naturally
the reader could wonder about the situation in which parties are interested in investigating
the case in which only information of inputs and outputs to each one is available. However,
this aligns precisely with the challenge addressed by non-locality that we have already
seen, therefore a "third" form of correlation between Alice and Bob, irrespective of the
internal mechanisms of the apparatus on each side.

This does not exhaust all the interesting lines within quantum physics though. The
final section of this chapter will deal with another (but not the only remaining) crucial
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question on the foundations of correlations that can be also addressed by a similar ap-
proach. The reason for having a separate part for it is because it incorporates some more
ideas that could make its presentation cumbersome to follow if we not put aside the last
paragraphs. Besides, at some point later in this thesis the reader might find useful to
have this topic in quick access.

2.3 NPA hierarchy

For the last example of how to apply optimisation tasks to quantum information, which
is though the most important for a later chapter, we will also work on a modified version
of an actual problem, in the sense of considering formulations of it that can be addressed
computationally in a efficient manner. The approach now, instead of considering only
relaxed constraints as we have just seen, explores also the idea of approximating the
desired result in some limit; convergence and its speed becoming the most interesting
aspects of it then. More specifically, we address the challenge of characterizing quantum
correlations.

Such challenge is a particular instance of a family of problems that can be approached
in a similar fashion. The idea behind is to approximate an optimization task that is not
SDP by a series of SDP with increasing degree of complexity, or level. That is, a hierarchy
of SDP, each level in the hierarchy providing tighter bounds to the solution than the
previous. And the class of problems in question is called non-commutative polynomial
optimization, which is known to be NP-hard [Nes00]. It can be stated as below.

max
ρ,{Xj}

Tr (ρ f (X1, ..., Xn))

such that Tr (ρ hl (X1, ..., Xn)) ≥ 0 ∀l,
gm (X1, ..., Xn) ≥ 0 ∀m,
Tr (ρ) = 1, and
ρ ≥ 0,

(2.22)

where the maximization is over all states ρ and bounded operators {Xj}j∈{1,...,n} on a
Hilbert space H, and the polynomials f , hl and gm are all hermitian5.

The approach we are going to consider for the hierarchy procedure of the task above
makes use of what is called moment-matrices. To understand it, we first make an useful
definition.

Definition 2.3.1. A monomial is any composition of the operators {Xj} and its length
is the number of elements in the composition. The identity operator has length 0.

Let us denote as Sk the set of monomials with length smaller or equal to k ∈ N. If Xi

is not hermitian, for some i, then we also include its adjoint X†
i in the generating set of

Sk. Then, for any feasible point (H, ρ,X1, ..., Xn), that is any state ρ and set of operators
{X1, ..., Xn} in H satisfying the constraints in (2.22), we can define a moment matrix Γk,
of level k, with elements given by

Γk(M,N) = Tr
(
ρ M †N

)
, (2.23)

5Since they are functions of operators, they are operators themselves. Therefore the "hermitian"
adjective here has the same meaning as that for operators, which are just matrices in finite dimensions.
That is to say, an hermitian polynomial (operator) is a polynomial which is equal to its (i.e. the resulting
operator’s) conjugate transpose.
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with M,N ∈ Sk. These matrices are positive semi-definite, as follows from

⟨ϕ|Γk|ϕ⟩ =
∑
M,N

Tr
(
ρ M †N

)
⟨ϕ|M⟩⟨N |ϕ⟩

= Tr

(∑
M,N

ρ M †N⟨ϕ|M⟩⟨N |ϕ⟩

)
= Tr

(
ρ R†R

)
, with R =

∑
N

⟨N |ϕ⟩N

≥ 0,

(2.24)

for any state |ϕ⟩.
The fundamental step that prescribes the hierarchy appears when one notice that

for any polynomial p (X1, ..., Xn) of degree smaller or equal than 2k ∈ N, the quantity
Tr (ρ p (X1, ..., Xn)) becomes a linear combination of the elements of Γk. Notice that the
products M †N in (2.23) include any term that could appear in p (X1, ..., Xn), therefore
forming a basis for those polynomials; the linear combination in question follows then
from linearity of the trace.

And keeping a similar reasoning, we can also introduce localizing moment matrices
Γkm
gm as follows

Γkm
gm (M,N) = Tr

(
ρ M †gm (X1, ..., Xn)N

)
, (2.25)

which helps with the relaxation of the polynomial constraints gm, where now M and N
are monomials in Skm , km being the level of the matrix. The choice of level km is tied to
the level k of the moment matrix Γk, in order to be able to express the elements above
in terms of the previous ones. Naturally, choosing km = k − (degree of gm)/2 guarantees
that is the case. Moreover, once gm is required to be positive semi-definite, it can be
shown that so will be Γkm

gm .
With that in hands, we can now define the level k relaxation of the task (2.22) to be

the SDP
max
Γk,Γkm

gm

∑
M,N∈Sk

fM,N Γk(M,N)

such that
∑

M,N∈Sk

hlM,N Γk(M,N) ≥ 0 ∀l,

Γkm
gm ≥ 0 ∀m, and

Γk ≥ 0,

(2.26)

provided the degrees of f and gm are not larger then 2k; fM,N and hlM,N being just
the coefficients of the expansions of the polynomials mentioned before. The optimization
above looks for PSD matrices of level k as above that, while working as basis for expanding
the functions on it, also respects constraints from the original problem. And to recall,
this is a relaxation because the quantities above are formulated as dependent on a feasible
point of (2.22), therefore it provides an upper bound to that maximization only.

The problem of testing whether a given behaviour is quantum or not can then be cast
in these terms as following. For simplicity, and to contemplate the origin of the method,
we assume the system of interest is bipartite, as in the scenario with Alice and Bob in
section 1.5. Just to recall, for a given set of inputs {X} and {Y }, respectively for Alice
and Bob, a fully characterization of their correlations is given by the set of distributions
p(a, b|X, Y ), for every pair of inputs (X, Y ). And if it accepts a quantum description, we
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should be able to find a state ρ and quantum measurements {AX} and {BY } such that
equation (2.18) holds.

While membership of p on the associated quantum set Q is known to be an undecidable
task [Ji+21], it is also known that Q may be approximated by a sequence of sets {Qk}k∈N
such that

Q1 ⊇ Q2 ⊇ ... ⊇ Q∞ ⊇ Q, (2.27)

that it to say, it is a sequence of tighter outer approximations of Q. And testing mem-
bership of p on Qk is a SDP. This hierarchy of SDP carries the name of its creators:
Navascués-Pironio-Acín (NPA) [NPA07]. The convergence to Q is true for finite dimen-
sions [NPA07].

To make it more explicit, first define the set of operators that needs to be taken into
consideration for the scenario. In this case they are the measurements {AX}, {BY } and
the identity 1. Let Sk be the set of monomials with length not greater than k. For an
unknown state ρ we associate then the moment matrix

Γk (M,N) = Tr
(
ρ M †N

)
, (2.28)

which encodes constraints from quantum theory, namely Γk (1,1) = 1 (normalization),
Γk (M,N) = Γk (M ′, N ′) if M †N = M ′†N ′ and Γk (M,N) = 0 whenever M †N = 0
(orthogonal projective measurements, for example). In addition, we want it to produce
the correct marginal probabilities under test, which means Γk (AX , BY ) = p(a, b|X, Y ),
Γk (AX ,1) = p(a|X) and Γk (1, BY ) = p(b|Y ). The other variables just need to be such
that Γk ≥ 0 (PSD). In summary then, it amounts to optimize the SDP

max
Γk

1

such that Γk (AX , BY ) = p(a, b|X, Y ),

Γk (AX ,1) = p(a|X),

Γk (1, BY ) = p(b|Y ), and
Γk ≥ 0,

(2.29)

the objective function 1 is because it is a feasibility test, that is, we only want to find a
valid Γk. Notice also that Γk can be taken to be real, after all if Γk is a solution, so is Γk∗

and therefore (Γk + Γk∗)/2.
As one may have noticed, extension to more parties is straightforward and it will be

made explicit in future chapters if it turns out to be necessary. Besides, it should also
be pointed out that the dual of such SDP is as important as before: by formulating in
terms of optimization of a function defining non-contextuality inequality (in this case Bell
inequality), it provides an optimal bound on the quantum violation.

Finally, by considering only commuting operators in the formulation of (2.22), we
arrive in a SDP hierarchy with a finite sequence of outer approximations {Lk} that can
be used instead to test compatibility with a classical description L, i.e with local hidden
variable models. The finiteness of the sequence occurring because increasing the number of
elements in a monomial after some point becomes redundant in view of the commutation
relations.
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Chapter 3

Contextuality quantifiers

We are now well-prepared to delve into the process of characterizing and quantifying
behaviours with respect to contextuality. The upcoming sections should be regarded as
working examples, stemming from the initial one. Quantifiers will be presented mostly
within the framework of CbD. However, as mentioned earlier, instances within the tra-
ditional approach can be derived by imposing additional constraints. Consequently, the
quantifiers should maintain their form in that perspective as well. The rationale behind
this choice will become more apparent as we progress through the section. The key idea
is to encompass a broader set of systems. Furthermore, our goal here is not to establish
their validity as quantifiers within a resource theory ([Ama19] covers this aspect), pri-
marily because it is not the main focus we want to have on the subject. Secondly, these
quantifiers are well-established entities in the literature, and our references will guide the
reader in that direction if desired.

We are going to warm up in the topic without initially making use of the structure
from the last section. The intention is to fix the qualitative part of the process in our
heads before going into computations that can become rather abstract and non-sense once
not performed with pen and paper.

We call our first example of contextuality quantifier CNT0. It is the straightforward
one that the reader would have in mind at this point after the first chapter. With a non-
contextuality inequality S ≤ BNC in hands, where BNC stands for the non-contextual
bound, the criterion (known as Bell criterion [Bel64]) for having a contextual behaviour
is, of course, S > BNC .

Surpassed the bound, the amount exceeding it is then a natural manner to quantify
our resource. We have then:

CNT0 = max(S −BNC , 0) , (3.1)

where the maximum is used to give a proper characterization of non-contextual systems
too, i.e. zero degree of contextuality in such cases. One could even change the last step
and normalize the final quantity, for example by dividing it by the greatest algebraic
value S could reach, to get a normalized result; in [ABM17] some properties of CNT0 are
studied under this standpoint.

Let us see an explicit example, while it is simple enough so we can compute using paper
and pen. Consider the CHSH scenario illustrated in figure 1.1. It is in the traditional
approach to contextuality, but there is no need to complicate things reformulating it in
the CbD view; we would only have a different non-contextuality inequality and a greater
set of joint probabilities to deal with, which would simplify to this one under the added

33
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exigence of consistent connectedness. We have four dichotomic random variables A1, A2,
B1 and B2, with outcomes ±1, and four contexts (A1B1), (A1B2), (A2B1) and (A2B2).
Our analysis of a given behavior consists in taking the joint probabilities and inserting
them into the following inequality:

SCHSH ≡ |⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩| ≤ 2 . (3.2)

The modulus is there to deal with the dance of signs underlying the choice of labels to
the random variables.

Consider then the following behaviour p, obtained from a simulation of the statistics
of a quantum measurement process:

Context p(-1,-1) p(-1,1) p(1,-1) p(1,1)

(A1B1) 0.42 0.08 0.08 0.42

(A1B2) 0.38 0.12 0.12 0.38

(A2B1) 0.28 0.22 0.22 0.28

(A2B2) 0.04 0.46 0.46 0.04

Table 3.1: CHSH contextual example.

For this behavior, each expectation value (recall (1.8)) appearing in SCHSH can be
computed by summing up the probabilities at the beginning and end of the corresponding
line above, and then subtracting the probabilities in the middle of the same line. We have
then:

SCHSH(p) = |0.68 + 0.52 + 0.12 + 0.84| = 2.16. (3.3)

Hence CNT0(p) = 0.16.
This quantifier is rather instructive. However, it can be very problematic depending

on the scenario. That is because, in general, there are non-equivalent non-contextuality
inequalities associated to the same scenario1. It can be the case of having a behaviour
that violates one inequality but not another. One could argue then that a manner to
bypass this problem is by considering all those inequalities. Nevertheless, determining all
of them is known to be a hard problem (see [Pit08] for example).

The next quantifiers are options to avoid such struggle. The cost we pay for it,
nonetheless, is having to appeal to computers to do the job. With the current technology,
this is, on the contrary to what may sound, "happy news". We follow the nomenclature
adopted in [KD19] for them.

Before delving into it, however, we need to establish a useful vectorial representation
of behaviours. This is a common procedure found in the literature ([KD19] and [AB11],
for example). Recall that in CbD, a system R is represented by a set of random variables
labeled by the bunch (context) c ∈ C and the connection q ∈ Q they appear in, i.e. Rc

q.
A complete description of the system is given by a vector p made of two other vectors

concatenated:

p(.) =

p(b)

p(c)

 , (3.4)

1By equivalence in this case we mean having quantities that can be obtained from the other by
permuting the random variables appearing on it or exchanging their subscripts.
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where p(b) and p(c) stand for all the joint probabilities for each context and any coupling
for the connections, respectively. For each bunch c, we can construct a vector p(c) by
stacking the joint probabilities; see it as a column vector constructed by piling/stacking
its entries. If we now stack all such p(c)’s we get p(b). In the same fashion, for each
connection q, we write an analogous p(q) from a coupling and stack them to form p(c).
Notice that, for a consistently connected system, the information about connections could
be dropped, and the description is just as simple as the example we have seen above in
table 3.1.

For example, for the simplest scenario in table 1.1, in which we have only four bi-
nary variables R1

1, R
2
1, R

1
2, R

2
2, with two contexts c1 = {R1

1, R
1
2}, c2 = {R2

1, R
2
2} and two

connections q1 = {R1
1, R

2
1}, q2 = {R1

2, R
2
2}, we would have

p(c1)⊺ =
[
p(0, 0|R1

1, R
1
2), p(0, 1|R1

1, R
1
2), p(1, 0|R1

1, R
1
2), p(1, 1|R1

1, R
1
2)
]
,

p(c2)⊺ =
[
p(0, 0|R2

1, R
2
2), p(0, 1|R2

1, R
2
2), p(1, 0|R2

1, R
2
2), p(1, 1|R2

1, R
2
2)
]
,

p(q1)⊺ =
[
p(0, 0|R1

1, R
2
1), p(0, 1|R1

1, R
2
1), p(1, 0|R1

1, R
2
1), p(1, 1|R1

1, R
2
1)
]
,

p(q2)⊺ =
[
p(0, 0|R1

2, R
2
2), p(0, 1|R1

2, R
2
2), p(1, 0|R1

2, R
2
2), p(1, 1|R1

2, R
2
2)
]
,

(3.5)

where the probabilities appearing in p(q1) and p(q2) are determined from those in p(c1) and
p(c2) depending on the adopted notion of coupling. The vector p(b) in this case would
then be a concatenation of p(c1) and p(c2), and p(c) a concatenation of p(q1) and p(q2). And
therefore, p(.) in this example would be a concatenation of the vectors in the expressions
above, from top to bottom.

Nonetheless, this is not the most convenient representation to work with yet, because
it does not allow to change one component without affecting others. For this reason, we
are going to reduce the description excluding redundancies ([DK16a]). In view of the
uniqueness of multi-maximal couplings for systems of binary random variables and the
dichotomization procedure, we assume from now on that all Rc

q are binary, with outcomes
say 0 and 1.

Within each bunch c, replace p(c) with a stack of

Pr(Rc
q = 1 and Rc

q′ = 1) =
〈
Rc

qR
c
q′

〉
, (3.6)

for all q and q′ appearing in c, with q ̸= q′. And do the analogous within each connection.
Notice we are grouping expectation values of marginals of pairs of random variables up
to now. Let’s call those new vectors pb, the bunches marginals, and pc, the connections
marginals.

In the example just above, those vectors amount to

pb
⊺ =

[
p(1, 1|R1

1, R
1
2), p(1, 1|R2

1, R
2
2)
]
,

pc
⊺ =

[
p(1, 1|R1

1, R
2
1), p(1, 1|R1

2, R
2
2)
]
.

(3.7)

Now, a sufficient description for the system in this reduced perspective will also require
the consideration of lower marginals, i.e. expectation values containing a smaller number
of random variables within the brackets. The missing parts are the normalization of the
probabilities2, under the convention to it always be the first entry (i.e. topmost) in the
reduced representation, and the expectation value of each variable alone, ⟨Rc

q⟩. We stack

2In the literature usually represented by the symbol ⟨⟩.
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them into a vector that we call pl. The resulting vector for the whole system will then
be:

p =


pl

pb

pc

 . (3.8)

In our working example, we would have

pl
⊺ =

[
1, ⟨R1

1⟩, ⟨R2
1⟩, ⟨R1

2⟩, ⟨R2
2⟩
]
, (3.9)

and therefore

p⊺ =
[
1, ⟨R1

1⟩, ⟨R2
1⟩, ⟨R1

2⟩, ⟨R2
2⟩, ⟨R1

1, R
1
2⟩, ⟨R2

1, R
2
2⟩, ⟨R1

1, R
2
1⟩, ⟨R1

2, R
2
2⟩
]
, (3.10)

where the 1 is for an assumption of normalized probabilities, and the expectation values
of single variables are obtained from previous p(c)’s, for instance ⟨R1

1⟩ = p(1, 0|R1
1, R

1
2) +

p(1, 1|R1
1, R

1
2).

We can go a step further. Notice that, for a scenario with N binary random variables,
there is a total of 2N possible deterministic behaviours, corresponding each to fixed outputs
for all of them, to which we can assign probabilities. Indeed, in the previous chapter we
called the vector x of assigned probabilities (summing up to 1) to each of these events a
coupling for a given behaviour.

For each expectation value appearing in p there is a conjunction of events in which the
random variables within it assume the outcome 1. A natural manner to express p in terms
of couplings then emerges: consider a matrix M, in which the entry Mij assumes the value
1 if the event j has outcome 1 for the random variables appearing in the component i of p
and 0 otherwise; the first line of M is filled with 1’s, in accordance with its normalization.
Therefore, we also have:

p = Mx .

We may also use pl = Mlx, pb = Mbx and pc = Mcx for the lines of M restricted to
the corresponding vectors in p. This construction can be related to equations (1.12) and
(1.15) directly as well.

To specify a system p starting from this reduced representation directly, we need to
provide pl and pb either estimated by an experiment or predicted by a model. With that
in hands, pc is filled with the connections probabilities for multi-maximal couplings; for
binary random variables, each entry in pc is obtained by taking the smallest expectation
value in pl among the ones of the random variables involved on it (see [AD19a] and
[DK16b] for example).

The reader should be guessing by now what is the point of this short digression.

Definition 3.0.1. A system p is non-contextual if there is a non-negative x, component
wise, such that

p = Mx, with |x|1 = 1. (3.11)

Otherwise the system is contextual.

This definition is in accordance with chapter 1 and |.|1 denotes the L1 norm of a vector
(the sum of the absolute value of its entries).

We have found a criterion for characterizing a system as contextual or not through this
representation. In particular, it should be noted that it is given by a linear restriction.
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And this is not surprising, because our next measures of contextuality explores it to
construct a manner of quantifying the resource through linear programming.

In on hand, if there is no multi-maximal coupling for a given data (i.e. pb and pl),
we could find a coupling x∗ that produces a p∗ that is the closest (with respect to some
norm, we choose L1) to pc, while giving the correct lower and bunches marginals. That
is to say, for a given system p as before, define the following polytope

Pc = {p̄c : Mcx = p̄c, for some x ≥ 0, Mlx = pl, Mbx = pb} , (3.12)

where the non-negativity is component wise as before. It corresponds to the set of all
possible couplings for our system p. Then find p∗

c in Pc that minimizes the L1-distance
between p and the polytope (first appeared in [KDL15] and [KD16]):

CNT1(p) = min
p̄c∈Pc

∣∣pc − p̄c

∣∣
1
= |pc|1 − max

p̄c∈Pc

|p̄c|1. (3.13)

Noticing that we have:

max
p̄c∈Pc

|p̄c|1 = max
x≥0,Mlx=pl,Mbx=pb

∣∣Mcx
∣∣
1
, (3.14)

a solution to the task can be found via the LP program in table 3.2.

Find x

maximizing
∣∣Mcx

∣∣
1

such that x ≥ 0, Mlx = pl, Mbx = pb

Table 3.2: CNT1 LP task.

Optimal condition is reached for x∗. Therefore, according to this measure, our system
p has the following amount of contextuality:

CNT1(p) =
∣∣p−Mx∗∣∣

1
. (3.15)

One the other hand, the same reasoning can be reproduced in terms of bunch marginals
instead. In this case, we look for a multi-maximal coupling x∗∗ that yields a p∗∗ the closest
to pb as possible, in L1 norm, while p∗∗

l = pl and p∗∗
c = pc. Or, repeating the previous

idea, define the polytope

Pb = {p̄b : Mbx = p̄b, for some x ≥ 0, Mlx = pl, Mcx = pc} . (3.16)

This polytope corresponds to the set of all non-contextual systems that align with the
individual expectation values for the random variables encoded in pl and with the dis-
tributions for each context pc. In simpler terms, the elements of this set are reduced
vectors containing information about joint probabilities within contexts that could have
generated the expectation values for each random variable observed in pl. This is done
while adhering to the multi-maximal condition required in constructing pc. Our measure
reads (as first introduced in [KD19])

CNT2(p) = min
p̄b∈Pb

∣∣pb − p̄b

∣∣
1
= min

x≥0,Mlx=pl,Mcx=pc

∣∣pb −Mbx
∣∣
1
. (3.17)
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Find x

minimizing |d|1
such that x ≥ 0, d ≥ 0,

Mlx = pl, Mcx = pc,

−d ≤ pb −Mbx ≤ d

Table 3.3: CNT2 LP task.

The minimum is attained by the optimal solution x∗∗ of the LP in table 3.3. The
additional vector d is there to deal with the L1 norm appearing in equation (3.17); it
should be interpreted as a vector of differences (component wise) between pb and Mbx,
which we want to minimize.

After this measure, options seem to be exhausted. However, as we will see along
the rest of this section, there are alternative ways of thinking that still allow for the
construction of valid quantifiers. These possibilities show up when one decides to explore
subtle mathematical aspects of equation (3.11).

Notice, to start, that x must be non-negative on it. It could be argued then that a
contextual system p, inconsistent by construction with equation (3.11), could satisfy it if
we abandoned the non-negativity condition. Indeed, this idea has been already explored
([DK16a]) and has given birth to a measure that we will call CNT3. In the spirit of the
previous paragraphs, start considering the polytope

Y =

{
y : My = p,

∑
i

yi = 1

}
, (3.18)

which was shown in [DK16a] to be non-empty.
Since there is no x ≥ 0 included in the set, any element y on it satisfy

|y|1 > 1. (3.19)

The natural measure elapsing from it is then:

CNT3(p) = min
y∈Y

(|y|1 − 1). (3.20)

It quantifies how much the sum of the absolute values of the entries in y can be made
close to 1, while generating the desired p; 1 because proper couplings sum up to this value
as we have seen. In fact, an appropriate manner to refer to a y ∈ Y at this point is as
a quasi-coupling to the vector p. This quantifier can be seen as connected to the debate
involving negativity and contextuality as equivalent notions of non-classicality in Physics
(for a synthesis see [Spe08]).

An optimal quasi-coupling for equation (3.20) can be found through the optimization
of the LP task in table 3.4. We write y = y+−y−, a difference between two non-negative
vectors, and minimize the norm of the one carrying the negative entries in y.

The last measure we are going to present here follows the same steps above in its
formalization. The only difference relies in the need of using "complete" vectors as in
(3.4) in replacement of p in (3.11); notice that this also implies the need of substituting
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Find y+ and y−

minimizing |y−|1
such that M (y+ − y−) = p,

y+ ≥ 0, y− ≥ 0

Table 3.4: CNT3 LP task.

M by a similar M(.) acting in a coupling, say z, for the system3. That is because it
requires a look at probabilities themselves instead of expectation values, as we will see.
Consider then the following polytope

Z =
{
z : M(.)z ≤ p(.), z ≥ 0, |z|1 ≤ 1

}
, (3.21)

where the inequalities are imposed component wise as always. We see that this set stands
for all couplings and sub-normalized couplings (i.e. couplings with |z|1 < 1) yielding
marginal probabilities below the respective component in p(.), for all of them. It is always
a non-empty set: z = 0 (zero for all entries) is always there. Nonetheless, the important
situation occurs when there is a z for which |z|1 = 1. This implies that M(.)z = p(.),
because within every p(c) and p(b) the probabilities sum to 1. In other words, it means
p(.) is non-contextual.

Contextual instances do not manifest this last feature. More specifically, any z in the
polytope defined for it is sub-normalized. It is natural then to define a new quantifier (see
[AB11], [ABM17] and again [KD19]) of contextuality as below

CNTF (p(.)) = 1−max
z∈Z

(|z|1), (3.22)

where the maximum is achieved by an optimal solution to the LP task in table 3.5. There
is no reason for it to be unique a priori.

Find z

maximizing |z|1
such that M(.)z ≤ p(.),

z ≥ 0, |z|1 ≤ 1

Table 3.5: CNTF LP task.

Observe that the idea of this measure is to find a behavior M(.)z that approximates p(.)

from below the best it can for all joint probabilities at the same time by moving z as close
as possible to a proper coupling. In fact, as presented in the original work [AB11], this
optimizer could be seen as the maximal non-contextual fraction in a convex combination
of behaviors summing up to p(.); CNTF would then represent the minimum contextual

3It is constructed in the same way, just abandon the brackets and look at the joint probabilities
defined by the deterministic outcomes for the random variables involved. The matrix M(.) at the end
of the day performs the marginalization of the coupling z onto all the joint probabilities within bunches
and connections.
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fraction required in such decomposition. That is to say, our contextual behavior could be
written as

p(.) = CNTFpc
(.) + (1− CNTF )pnc

(.), (3.23)

for two behaviors pc
(.), contextual, and pnc

(.), non-contextual. Recall that a convex combina-
tion of two vectors is a linear combination of them with the two non-negative coefficients
summing up to 1.

We conclude this section with a comment on the utilization of the L1-norm in our
definitions. The primary reason lies in the fact that for non-negative vectors (component
wise), it represents the simple sum of its coordinates. Secondly, for CNT2, it is known
to have an operational meaning of how well the two distributions can be distinguished
considering an optimal event [BAC18]. And a third reason stems from the ease with which
it lends itself to linear programming (LP) constructions. In fact, the non-linearity of
geometric distances poses more challenging optimization problems, particularly quadratic
ones where the objective functions involve second powers of the variables. These quadratic
problems are generally impractical due to the complexity reflected in the time required
for optimization.

Lastly, while normalization constants can be introduced before the linear objective
functions employed in our programs, their introduction, despite any potential physical
meaning (as exemplified in [BAC18] where CNT2 assumes the significance of the trace
distance between a behavior and the set of non-contextual polytope), serves as mere
artifacts for practical purposes.

3.1 Relations between measures of contextuality

We have seen throughout the last section different manners to locate contextual examples
within the whole universe of existing systems for a scenario by means of notions of closeness
to convex sets determined by non-contextual features. In view of that, at this point the
reader must be wondering why the existence and the consideration of so many quantifiers.

The main reason behind it is that this subarea is rather recent, all the aforementioned
works (except those related to CNT0) date less than ten years ago; that is, it is still
under development. And also, a priori different quantifiers are expected to produce non-
equivalent catalogs of the resource for the same scenario. In the sense that, provided two
quantifiers are proportional to each other, the knowledge of the catalog produced by one
would be sufficient to produce the other, as rulers using distinct marks.

Therefore, the rest of this chapter is dedicated to uncover what we know about the
relations among them, a natural line of progress one would expect, and about a deeper
feature carried by some of them: extendability to measures of non-contextuality.

Nevertheless, up to the knowledge of this author, relations between quantifiers of
contextuality have been explored (in parts) only for a specific, but important family
of scenarios. Known as cyclic scenarios, the already mentioned CHSH ([Cla+69]) and
KCBS ([Kly+08]) are members of particular importance as they are recurrent figures in
the literature; we add to the pile of references we already have on this the works [DKC20]
and [Abr13], which shows that systems without cyclic subsystems (i.e. obtained by taking
a subset of the set of random variables) are necessarily non-contextual. For this reason,
we reserve some lines to a proper presentation before going into the point of interest.

As exhibited in [Cer23], a system R is cyclic if:

1) Each of its contexts are composed of two jointly distributed binary random variables,
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2) Each content q appears in two contexts, and

3) There is no proper subsystem of R satisfying 1 and 2.

A cyclic system of rank n refers to a cyclic system with n contexts. Table 1.1 shows
a cyclic scenario of rank 2, the simplest one. Contexts and connections can be arranged
and labelled so that

Rn =
{
{Ri

i, R
i
i⊕1} : i = 1, ..., n

}
, (3.24)

where ⊕ denotes cyclic shift: 1 → 2, ..., n − 1 → n, n → 1. These arrangement allows
then a graphical disposition, similar to figure 1.1, with vertices and edges. The vertices
representing random variables and the edges bunches and connections; two edges are
linked to each vertex, one for the context the random variable appears in and another for
the connection. Figure 3.1 shows the same rank 2 scenario through this layout.

R1
1 R1

2

R2
1 R2

2

Figure 3.1: Rank 2 cyclic scenario: c ∈ {1, 2} and q ∈ {1, 2}. In this case, horizontal
(blue) edges are contexts, vertical (red) ones are connections.

Going back to the topic, in [DKC20] it has been shown that for such systems we have

CNT1(p) = CNT2(p). (3.25)

The proof is a consequence of properties of the polytopes defined by (3.12) and (3.16).
It can be shown that the L1-distance of p from them is single-coordinate (i.e. can be
computed along a single coordinate), the same in any of the coordinates of pb or pc. The
equality is then immediate from this fact. In parallel to the proof, a measure like CNT0
is shown to be four times the value of them.

Succeeding this result, in [KD19] has been conjectured that for these scenarios we may
have

CNT3(p) =
2CNT1(p)

n− 1
=

2CNT2(p)

n− 1
, (3.26)

with n denoting the rank of the cyclic system p.
A recent work on the subject ([Cer23]) managed to include CNTF into the picture.

It has been proved that the following equality also holds for those scenarios, namely that

CNTF (p(.)) = 2CNT2(p). (3.27)

It would be of great importance to put an end in this conjecture by proving or disproving
it. In particular to Physics, in which the possible veracity of the conjecture would lead to
the unavoidable conclusion that all these measures provide the same information about
the resource, despite their rather different formulations. At least within this class of
scenarios. And the next subsection is dedicated exactly to this end.
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3.1.1 Closing the conjecture

The content of this section is the first presentation of an academic contribution of this
author, fruit of an international collaboration (with my colleague Víctor H. Cervantes).
For this reason, in order to contemplate the original work, it is going to be presented in
a form very close to the pre-print version [CC23], therefore potentially overlapping with
what we have seen up to this point in this manuscript.

Our main result relates the measures CNT3 and CNTF , proving their proportionality
and thereby closing the aforementioned conjecture. To relate them in a cyclic system Rn,
we consider the set of its defective quasi-couplings, those that fail to be a coupling, but
still obey some conditions, explicit in the expression below. Let

Qn =
{
x ∈ R22n : M(.)x ≤ p∗

(.) and 1⊺x ≤ 1
}
, (3.28)

the convex pyramid obtained by the intersection of the convex polyhedral cone4 defined
by the half-spaces M(.)x ≤ p∗

(.) and the half-space 1⊺x ≤ 1. Figure 3.2 schematically
illustrates the set Qn. We see that the intersection of hyperplane 1⊺y = 1 and Qn defines
the face of the pyramid on which all solutions to task 3.4 used to compute CNT3 lie.
Similarly, the intersection of hyperplane 1⊺z = 1 − CNTF , Qn, and the nonnegative
orthant of R22n , defines a slice on whose surface lie all solutions to task 3.5 used to
compute CNTF.

Figure 3.2: Scheme of the pyramid of defective quasi-couplings Qn. The intersection of Qn

and the nonnegative orthant of R22n is illustrated via the blue lines on the two depicted
slices cutting through Qn. Quasi-couplings y∗ lie on the slice 1⊺y = 1 and defective
couplings z∗ that are solutions to task (3.5) lie within the closed region delimited by blue
edges on the slice 1⊺z = 1− CNTF .

Lemma 3.1.1. If a cyclic system Rn is contextual, there exists some solution y∗ of
task 3.4 with a single negative component.

4that is, a space closed under addition and multiplication by non-negative scalars generated by the
intersection of a finite number of half- spaces which have 0 on their boundary [LP86; Wey52]



3.1. RELATIONS BETWEEN MEASURES OF CONTEXTUALITY 43

Proof. Fix i ∈ {1, . . . , n}, and choose an event S =
{
Si
i = 1, Si⊖1

i = 0
}

such that a multi-
maximal coupling of Ri has, without loss of generality, Pr

(
T i
i = 1, T i⊖1

i = 0
)
= 0.5 Look

at the row u of M(.) corresponding to Pr
(
T i
i = 1, T i⊖1

i = 0
)
= 0 and let V be the set of

indices j ∈ {1, . . . , 22n} such that M(.),u,j = 1. Choose any v ∈ V , and let sv be the vth
component of S. Define q∗

(.) component-wise by taking q∗
(.),i = p∗

(.),i +
1
2
CNT3 if the event

s′ whose probability is the ith component of p∗
(.) is contained in sv, and q∗

(.),i = p∗
(.),i,

otherwise. Lastly, let

Hv =

{
x ∈ R22n : 1⊺(x− ev) = 1 +

1

2
CNT3 and M(.)(x− ev) = q∗

(.)

}
, (3.29)

where ev is the unit vector with a 1 on its vth component, and choose a point w∗ with zero
vth component in the intersection of H and the nonnegative orhtant of R22n . Clearly, the
point y∗ = w∗ − 1

2
CNT3ev is a solution of task 3.4 with y∗

v = −1
2
CNT3 its sole negative

component.

Lemma 3.1.2. Let Rn be a contextual cyclic system. Given a solution y∗ of task 3.4
as in Lemma 3.1.1, a solution z∗ of task 3.5 can be constructed such that |y∗

i | ≥ z∗i ,
i = 1, . . . , 22n, and ||y∗ − z∗||1 = nCNT3.

Proof. Choose a solution y∗ in accordance to Lemma 3.1.1. Let x̂1 = y∗
vev where v

is the index of the only negative component of y∗. Using this v, let sv and q∗
(.) be

defined as in Lemma 3.1.1, and let U be the set of indices u ∈ {1, . . . , 12n} such that
M(.),u,v = 1. Note that |U | = 4n, where there are n indices such that p(.),u corresponds
to Pr(Ri

i = rii, R
i
i⊕i = rii⊕1), one for each of the n contexts of Rn; another n correspond

to Pr(T i
i = rii, T

i⊖1
i = ri⊖1

i ), one per content; and 2n correspond to one probability
Pr(Ri

j = rij) for each random variable in the system.
Let MU be the submatrix of M(.) whose rows are indexed by U , and MU ′ the ma-

trix with the remaining rows of M(.). (Note that matrix MU is a reduction of ma-
trix M(.) in the same manner as M, with the event sv taking the place of the event{
Si
i = 1, Si

i⊕1 = 1
}
i=1,...,n

for its construction, see Ref. [DK16a].) Define p∗
U and p∗

U ′ anal-
ogously. We can then rewrite Qn as the intersection of

QU =
{
x ∈ R22n : MUx ≤ p∗

U and 1⊺x ≤ 1
}
, (3.30)

and

QU ′ =
{
x ∈ R22n : MU ′x ≤ p∗

U ′ and 1⊺x ≤ 1
}
. (3.31)

From the definition of M (see Ref.[DK16a]), we have that the dimension of Qn is 4n+ 1.
Similarly, the dimension of QU is 4n+ 1 because it is constructed by a minimal subset of
defining inequalities of Qn.

Define w∗ = y∗− x̂1. Since M(.)w
∗ = q∗

(.), w
∗ /∈ Qn. Clearly, w∗ /∈ QU and w∗ ∈ QU ′ .

5If for no Ri, Pr
(
T i
i = 1, T i⊖1

i = 0
)
= 0, replace Rc

i in the system with 1−Rc
i for some i.
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Let us next consider the task

find minimizing subject to

x 1⊺x MU(w
∗ − x) ≤ p∗

U

MU ′(w∗ − x) ≤ p∗
U ′

x ≥ 0

1⊺(w∗ − x) ≤ 1

e⊺vx = 0

. (3.32)

This task must have a solution, since x∗ = w∗ satisfies all its constraints. Additionally, it
is evident that the second set of restrictions (those associated with p∗

U ′) place no restric-
tion to finding the solution because, by construction, MU ′w∗ = p∗

U ′ ; hence, any vector
x ≥ 0 will satisfy that set of inequalities. Further examination of the constraints shows
immediately that for any solution x∗, 1⊺x∗ ≥ −2y∗

v. Similarly, inspecting the constraints
associated with p∗

U reveals that whenever a vector x′ satisfies M⊺
U,u(w

∗−x′) ≤ p∗
Uu, where

p∗
Uu is a probability Pr(Ri

i = rii, R
i
i⊕i = rii⊕1), then M⊺

U,t(w
∗ − x′) ≤ p∗

U t, where p∗
U t is

a probability Pr(Ri
i = rii) or Pr(Ri

i⊕1 = rii⊕1) —for the same i in the event correspond-
ing to Pr(Ri

i = rii, R
i
i⊕i = rii⊕1)—, will also be satisfied. An analogous observation can

be made when p∗
Uu is a probability Pr(T i

i = rii, T
i⊖1
i = ri⊖1

i ). Therefore, at most 2n of
the constraints imposed via matrix MU are active in determining the solution space of
task (3.32).

Let Mw and p∗
w contain the rows and probabilities of MU and p∗

U , respectively, cor-
responding to bunch and connection probabilities. Since the rows of MU are linearly
independent, so are the rows of Mw, and the latter has full row rank 2n. Given the
considerations in the above paragraph, task (3.32) is equivalent to task

find minimizing subject to

x 1⊺x Mw(w
∗ − x) ≤ p∗

w

x ≥ 0

e⊺vx = 0

. (3.33)

Now, the constraint e⊺vx = 0 can be replaced by a modification of column v of matrix
Mw in which the column is replaced by a vector of zeros. This effectively reduces its
rank to 2n − 1. We further note that, in standard form, the constraints for task (3.33)
are Mwx ≥ Mww

∗ − p∗
w, and the deficiency in rank just introduced implies that there

is some row of Mw that may be safely removed for purposes of finding a solution x∗.
Since (assuming the modified matrix) Mwx ≥ Mww

∗−p∗
w is an underdetermined system

with 2n − 1 inequalities, there exists a solution x∗ such that all components of x∗ but
2n − 1 are zero. Therefore, we see that for a solution x∗, Mwx

∗ = Mww
∗ − p∗

w, and
that 1⊺x∗ = 1⊺(Mww

∗ − p∗
w) = −(2n − 1)y∗

v. The statement is obtained by noting that
task (3.32) is equivalent to maximizing 1⊺(w∗ − x) under the same constraints, which is
essentially task 3.5. In other words, z∗ ≡ y∗ − x̂1 − x∗ is an optimal solution to task 3.5.

Lemma 3.1.3. ∥y∗ − z∗∥1 = CNTF + CNT3
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Proof. Choose solutions y∗ and z∗ in accordance to Lemmas 3.1.1 and 3.1.2. Then

∥y∗∥1 = ∥y∗ − z∗ + z∗∥1
= ∥y∗ − z∗∥1 + ∥z∗∥1
= ∥y∗ − z∗∥1 + 1− CNTF

where the second line follows by the choice of y∗ and z∗. The statement follows immedi-
ately by noting that ∥y∗∥1 = 1 + CNT3.

Theorem 3.1.1. If Rn is a cyclic system of rank n, then CNTF (Rn) = (n−1)CNT3(Rn)

Proof. The relation in the statement is trivially true for any noncontextual system; hence,
assume that Rn is a contextual cyclic system of rank n. Choose solutions y∗ and z∗ in
accordance to Lemmas 3.1.1 and 3.1.2. By Lemma 3.1.2,

∥y∗ − z∗∥1 = nCNT3.

And from Lemma 3.1.3, it follows that

CNTF = (n− 1)CNT3. (3.34)

Below we illustrate the results of Theorem 3.1.1 and the application of Lemmas 3.1.1
and 3.1.2 in two example cyclic systems of rank 3, illustrated in table 3.6.

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
1 R3

3 c3

q1 q2 q3 R3

Table 3.6: Cyclic system of rank 3.

Example 3.1.1 (Consistently connected system). Consider a cyclic system R3 with joint
distributions of bunches i ∈ {1, 2, 3} given by

Ri
i = 0 Ri

i = 1

Ri
i⊕1 = 0 1/8 3/8

Ri
i⊕1 = 1 3/8 1/8

. (3.35)

The system R3 is consistently connected and can be represented by the vector:

p∗⊺ = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/8, 1/8, 1/8, 1/2, 1/2, 1/2).

Let {ej}j=1,...,64 be the standard basis of R64, then we can write a solution to task 3.4
with a single negative mass (as in Lemma 3.1.1) in its 14th component:

y∗ =
1

16
(3e7 − e14 + 2e25 + e26 + 3e31 + 2e34 + e38 + 2e40 + e42 + 2e58) .
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To highlight the dimension of the solution space of task (3.32), this solution can be
further re- expressed as a linear combination of the following L1-orthonormal vectors
{x̂j}j=1,...,6:

x̂1 = −e14, x̂4 = (e26 + e38 + e42)/3,

x̂2 = e7, x̂5 = e31,

x̂3 = (e25 + e40)/2, x̂6 = (e34 + e58)/2.

In terms of these vectors, we have

y∗ =
1

16
(x̂1 + 3x̂2 + 4x̂3 + 3x̂4 + 3x̂5 + 4x̂6) .

Now, we can use the construction in Lemma 3.1.2 to find the point

z∗ =
1

16
(0x̂1 + 2x̂2 + 3x̂3 + 2x̂4 + 2x̂5 + 3x̂6) ,

which is a solution to task 3.5 to compute CNTF . For this system CNT3 = 1/8 and

CNTF =
1

4
= (3− 1)CNT3.

Example 3.1.2 (Inconsistently connected system). Consider the system R′
3 in which the

distribution of the third bunch of system R3 from Example 3.1.1 is replaced by

R3
3 = 0 R3

3 = 1

R3
1 = 0 1/8 7/16

R3
1 = 1 3/8 1/16

. (3.36)

The system R′
3 is inconsistently connected and the following vector can represent it—

with the entries that differ from the corresponding vector representing system R3 from
Example 3.1.1 in bold:

p∗⊺ = (1/2, 1/2, 1/2, 1/2, 7/16, 1/2, 1/8, 1/8, 1/16, 1/2, 1/2, 7/16).

One possible solution y∗ of task 3.4 for system R′
3 can be written as a linear combination

of the following L1-orthonormal vectors {x̂j}j=1,...,6:

x̂1 = −e49, x̂4 = (e23 + e39)/2,

x̂2 = (e7 + e31 + e40)/3, x̂5 = e25,

x̂3 = e27, x̂6 = (e34 + e58)/2,

with
y∗ =

1

16
(x̂1 + 6x̂2 + x̂3 + 2x̂4 + 2x̂5 + 6x̂6) .

Similarly to the previous example, use the construction in Lemma 3.1.2 to find the
point

z∗ =
1

16
(0x̂1 + 6x̂2 + x̂3 + 0x̂4 + x̂5 + 4x̂6) ,

which is a solution to task 3.5 to compute CNTF . For this system CNT3 = 1/8 and

CNTF =
1

4
= (3− 1)CNT3.
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3.1.2 Discussion

We can now claim that all the fundamentally different approaches to quantify contex-
tuality applicable to general cyclic systems of random variables currently found in the
literature are proportional to each other within the class of cyclic systems. The propor-
tionality relations among the measures are:

2CNT0 = 2CNT1 = 2CNT2 = CNTF = (n− 1)CNT3. (3.37)

The equality of the first three measures was shown in Ref. [DKC20], the third equality
was proved in Ref. [Cer23], and the last equality, in the paper behind the last subsec-
tion. It should also be noticed that the hierarchical measure of contextuality proposed
in Ref. [CD20] (see also next section) reduces to CNT2 for cyclic systems; thus, it also
satisfies the proportionality to the other measures.

However, as noted in Refs.[DKC20; CD23; Cer23], the relations among these measures
are not as simple in other classes of systems of random variables. In Ref. [DKC20], one
can find examples of non-cyclic systems for which CNT1 and CNT2 are not functions
of each other, in the sense that pairs of systems can be found such that one measure
obtains different values while another measure remains constant. A class of examples is
considered in Ref. [Cer23; CD20] to show the same lack of functional relation between
CNT2 and CNTF outside of cyclic systems. Lastly, in Ref. [CD23], some examples of
hypercyclic systems of order higher than 2 — cyclic systems are a special case of this
class where order equals 2 — show that in general there is no functional relation among
any of the measures here considered.

Note also that the chain of equalities in expression (3.37) involves only measures of
degree of contextuality proposed so far in the literature which can be applied to general
systems of random variables and that can be described as relaxing at least one of the
three constraints required for a system to be noncontextual in CbD: i) That a joint
probability distribution can be found; ii) that such joint distribution agrees with the
distributions observed within each context; iii) that such joint distribution agrees with the
equality across contexts (recalls multi-maximality). Our result completes the theoretical
description of the interrelations of those measures in cyclic systems. However, this set
of measures does not necessarily exhaust the possible ways to quantify the degree of
contextuality; additional measures can always be proposed.

We conclude with some considerations regarding other possible measures, as well as
a few immediate — not necessarily complete — observations on how they could relate
to the ones discussed previously. We look into two possible avenues. On one hand, we
may try to find new measures of contextuality by considering additional aspects of the
couplings that could be imposed on the system; on the other hand we may approach the
difference between such couplings using a variety of distance functions.

Regarding the first approach, let us recall that CNT3 deals with quasi-couplings, and
that CNTF is associated with sub-normalized couplings. Hence, a possibility that may
appear yet to be explored lies in using over-normalized couplings of the system, which
means that we deal with a finite mass function with entries summing up to more than
1. Clearly, it should equal 1 for a non-contextual system, and one should aim therefore
for the minimization of the excess above 1. However, such a quantity is already found as
part of solving task 3.4; it is y∗

+ and a measure of degree of contextuality defined as its
excess above 1 equals 1

2
CNT3.

CNT2 is instead computed from the deviations of the bunches to the corresponding
marginals of couplings S, subject to matching the multi-maximal couplings. CNT1, on
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the other hand, is computed from the deviation of the multi-maximal couplings of the
connections to the bunches. CNT0 is computed from the deviations of both bunches
and couplings of connections to the corresponding marginals of couplings S, subject to
matching both as much as possible. On this front, as shown in Ref. [DK16a], multi-
maximal couplings are entirely characterized by pairwise joint distributions of the binary
random variables in the system, whereas bunches admit a hierarchical description of joint
distributions of k-tuples of random variables, as explained in Ref. [CD20]. This property
is exploited to define the hierarchical version of CNT2. It appears to us that hierarchical
analogues of CNT3 and CNTF could readily be defined by modifying mutatis mutandis
the sets of tasks presented in Ref. [CD20]6. Naturally, such new hierarchical measures
coincide with the regular measures when applied to cyclic systems; hence satisfying the
same relations already outlined above.

Another possibility is to consider additional measures that capitalize on features of
contextuality different to those afforded within the Contextuality-by-Default framework.
For instance, Contextual Fraction was originally proposed in the Sheaf-Theoretic ap-
proach to contextuality. Its translation into the framework of CbD is straightforward
(see Ref. [Dzh23; AD19a]) and produces a generally applicable measure. Other measures
within alternative frameworks may be available or could be proposed such that their
translation is different to any of the measures discussed here.

As for the second approach, note that the distance used in the definition of all the
discussed measures is defined using the L1 norm. As discussed in Ref. [KD19], L1 may
be preferable given the additivity of probabilities; however, different distances can always
be chosen. If a different p-norm is used to define a distance, the measures analogous
to CNT0, CNT1, and CNT2, are also equal to each other and proportional to the L1

based measures with constants n
p−1
p as presented in Ref. [DKC20]. Similarly, families of

measures associated with CNT3 and CNTF could be derived by using other p-norms. By
properties of p-norms, the same constants will bound the respective measures. It remains
to be seen, however, if equality would also be attained for these measures.

In addition to using p-norm derived distances, there are several alternative distances, as
well as several functions satisfying fewer requirements than that of a metric, that have been
proposed to compare probability distributions and that could be used to define further
analogous measures by relaxing some of the three defining constraints. For instance, in
Ref. [Gru+14], the Kullback–Leibler divergence is used to define measures wherein the
requirement to agree with the distributions within each context is relaxed. Future work
should address in what manner these relative entropy measures could be translated to
the CbD framework and generalized to systems with disturbance, and whether they are
functionally related to the measures here considered for some class of systems, including
cyclic systems.

Recently, contextuality has been regarded as a quantum resource (see e.g., Ref. [Ama19]).
Moreover, within the framework of resource theory, some measures of degree of contex-
tuality have been identified as quantifiers of such resource; that is, the measures satisfy
certain properties of interest, such as monotonicity, with respect to some transformations
of the systems of random variables. The fact that measures of contextuality are not
generally functions of each other, as exemplified by the measures considered in our re-
sult, highlights that the relations between different systems with respect to contextuality
is complex and that each measure may only reveal partial information about it which
gets complemented by other quantifiers. On the other hand, the existence of functional

6Without number on page 4 between expressions (17) and (18).
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relations among these quantifiers within the class of cyclic scenarios suggests that the
structure of (non)contextual resources may be simple for those scenarios. This reinforces
and motivates the need for better understanding the patterns of contextuality within dif-
ferent scenarios to shed light into their structure and how they partition into contextual
and non- contextual systems.

3.2 Non-contextuality quantifiers

The intention behind this final section of the chapter is to address the question of also
being able to quantify the degree of non-contextuality of a given system. We have been
focusing on characterizing the protagonist phenomenon in this writing, but it should be
fair and natural to consider a similar treatment of non- contextual systems as well. Not
with the goal of exploring their peculiarities, of course; after all, they constitute the
standards that contextual instances seem to challenge. Instead, the aim is to extend
known quantifiers to refine them or even filter them by checking their agreement and
consistency with the standards.

In this sense, still in [KD19] it has been suggested that CNT2 can achieve this. We
will call its non-contextuality counterpart as NCNT2, following the same reference. It is
defined as:

NCNT2(p) = inf
p̄b /∈Pb

∣∣pb − p̄b

∣∣
1
= min

p̄b∈∂Pb

∣∣pb − p̄b

∣∣
1
, (3.38)

where inf stands for the infimum7 of the set of values accessed by the expression and ∂Pb

stands for the boundary of the convex polytope Pb (recall (3.16)).
As stated in [KD19], the measure is well defined, in the sense of satisfying the con-

ditions to be a proper quantifier. Noticing that, for p non-contextual, it lies within the
polytope Pb by construction, the quantifier can be interpreted as how far the bunches of
this behavior are from those not compatible with the multi-maximal coupling (s, maybe,
if for non binary random variables) of its connections. To compute it, a similar result
(see [DKC20]) to the one leading the authors to the relation (3.25) is applied. That is,
for a pb interior to Pb, its distance to the boundary of the polytope is a single coordinate
L1-distance too. So we just need to increase or decrease the probabilities in each p(c) one
by one as far as we can without leaving the polytope, and to choose the smallest change
at the end.

So, enumerating each element of pb from i =1, to say, K, for each i one computes the
LP tasks shown in table 3.7 and saves the results of d+i (the positive change required for
i to reach the boundary) and d−i (the analogous negative change). The vector ei is the
unitary one with entry 1 in the ith component8. The measure is then expressed through
the equation below:

NCNT2(p) = min
i=1,...,K

{
min

(
d+i , d

−
i

)}
. (3.39)

7The infimum a of a subset S of a partially ordered set P is the greatest lower bound in P to all the
elements of S, i.e. a ≤ s ∀s ∈ S with a ∈ P . A partially ordered set P is a set aimed with a binary
operation (i.e. with two inputs) ≤ that tells us that, for some pairs of elements in P , one element comes
before the other in the order. In this case P can be seen as the non-negative real numbers and S as the
set of values of the expression determined by all p̄b outside the polytope Pb.

8It could be formulated with vectors d+
i and di− instead, but this would mean more variables within

the program, which for larger systems can make the computation harder.
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Find x, d+i
maximizing d+i

such that pb + d+i ei = Mx,

x ≥ 0, d+i ≥ 0,

pl = Mlx, pc = Mcx

,

Find x, d−i
maximizing d−i

such that pb − d−i ei = Mx,

x ≥ 0, d−i ≥ 0,

pl = Mlx, pc = Mcx

.

Table 3.7: NCNT2 LP tasks

In spite of the intuitive connection between those quantities, we see that equations
(3.17) and (3.38) do not have the same structure. However, both CNT2 and its coun-
terpart NCNT2 have been glued in a more recent work through the elaboration of a
more sophisticated quantifier; the term "glued" is insightful and very suitable, since the
distances will share a common surface as reference. The new measure that goes by the
name of Hierarchic Measure of Contextuality9 (first appeared in [CD20]) not only link the
previous quantities, but also provides a hierarchy to catalog probabilistic systems beyond
cyclic ones. For details we refer the reader to the previous citation in this paragraph, but
a general idea can be given here. The reduced vector representation we have seen some
sections behind can be modified to include marginals of higher orders for systems contain-
ing contexts with more than two random variables on them. And in the same reasoning
as before, vectors ps and matrices Ms can then be defined for marginals of order s > 2
for bunches and connections besides the older ones. Non-contextual systems will keep
satisfying equation (3.11), but with different degrees of non-contextuality depending on
the order of the bunch marginals considered. Conversely, contextual systems will violate
that equation for some marginals; more specifically for all s ≤ s∗ for some s∗. This allow
us to establish levels s of degree of contextuality and non-contextuality for all systems,
or their hierarchic positions.

To conclude this enriching section and the chapter, we address the unsettling question
in the mind of the reader: What about the other measures? The exposition we have
just seen was planned in this way because, in fact, none of the other candidates we have
discussed before can be explored using similar ideas.

Starting with CNT1, an analogous construction as in equation (3.38) is possible, but
useless. This is the case because, if pc was in the interior of P, it would mean that
the collection of p(q)’s was not a probability distribution of a multi-maximal coupling for
the connections in the first place, after all they could be increased without leaving the
polytope delimited by the non-contextual relation (3.11) (for fixed pl and pb).

For CNT3 the reason is simpler. A system is non-contextual under the existence of
a coupling x such that Mx = p. It follows then that CNT3(p) = |x|1 − 1 = 0, for all
non-contextual systems; as pointed in [KD19], it seems impossible to extend it without
altering its logic. This is also the case for CNTF . Notice that it does not provide a way
for distinguishing between non-contextual instances, since all those systems have zero for
it. In comparison to the previous measures, the problem with these ones relies in the fact
that the distances involve couplings and quasi-couplings alone, without comparing them
with similar objects. Or yet, they look for objects always within a polytope, regardless
they position in relation to that set.

9The hierarchy here has nothing to do with SDP hierarchies previously presented.



Chapter 4

Non-locality quantifiers for states

In this chapter we apply some of the ideas that we have seen before to the field of quan-
tum Physics and its applications. More precisely, the work to be presented deals with
the extension of quantifiers for the phenomenon we have been talking about within prob-
abilistic systems to measures of the same resource in a different object in that theory:
states. Most of what one is going to see below was taken from the article that contains
results obtained by the author of this thesis in collaboration with his advisor (Bárbara)
and colleagues (Ari and Fernando); it can be accessed online through [Pat+22].

Our starting point is the clarification of a strange word in the title: non-locality.
We have come across this term in the first chapter, but now we are going to give the
proper attention it deserves. For all intents and purposes, it is just a special name for
special cases of contextuality used by physicists. It applies to physical situations in which
signalling between parties is not allowed or can not influence the other party on time,
because for example the distance between them1, therefore becoming the reason behind
the compatibility of measurements realized in each of their partial systems. Scenarios
carrying such interpretation go by the generic name of Bell scenarios; it is common to
label them by the number m of parties, the amount of measurements l each party has
and also how many outcomes d each measurement has: (m, l, d).

Going a little bit further in this qualitative perspective, quantum non-locality, from
now on, is a manifestation of the eccentric nature of quantum theory as seen by a classical
viewer, which means an observer used to the dynamic of the macroscopic world it lives
in. Also known as Bell non-locality (after [Bel64]), this phenomenon is seen as a conse-
quence of entanglement. In plain language, it means that the statistics provided by some
distant measurements performed in sides of a shared entangled quantum state can not be
explained by local hidden variable models.

Although entanglement is a necessary ingredient for having non-locality, they refer to
different resources2([Bru+14]). That is because there are entangled states that can only
produce local correlations ([Wer89]), i.e. joint probabilities in accordance with such local
models. This motivates an independent study of non-locality as a resource.

We will consider a bipartite Bell scenario where two distant parts, Alice and Bob,
share a possibly correlated pair of physical systems, in which they perform measure-
ments, obtaining measurement outcomes. Alice and Bob are not allowed to communicate
and the choices of inputs are assumed to be independent. Moreover, measurements will

1Following a relativistic point of view and the limitation of the light velocity, as we have discussed in
section 1.4.

2In the sense of resource theory we have already commented about in the first chapter.
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not receive different labels for different contexts they are measured in, i.e. we assume con-
sistent connectedness. The reader should then expect to see the traditional groundwork
of contextuality in what follows.

Preceding chapters taught us how to look at the behaviors generated by systems like
these. However, it is also interesting to focus on the state shared by Alice and Bob. This
is related to the idea of how much non-locality can be "extracted" from that state. In this
sense, in what follows we want to investigate how non-locality quantifiers for behaviors
can be used to build non-locality quantifiers for states, ending with the proposition of a
new one. We also give attention to the phenomenon known as anomaly of non-locality
([Aci+02]), in special the weak anomaly observed in [Ros+17].

In order to do this, we first give a geometric overview of the sets of correlations of
interest. Besides giving intuition, this also motivates the quantifier defined in our work.
We show how such object can be constructed and what are the properties it has. Then
we apply it to the study of the aforementioned anomalies.

4.1 Geometry of the set of Bell correlations

We consider a bipartite Bell scenario in which Alice and Bob perform measurements
labeled by variables Ax and By, obtaining measurement outcomes described by variables
a and b, respectively, as shown in fig. 4.1. The description of Alice and Bob’s outcomes is
given by a set of probability distributions p(a, b|x, y), or behavior, that gives the probability
of outcomes a and b given inputs x and y. The set of behaviors under consideration
depends on the physical assumptions we make about the system Alice and Bob share.

x y

ba

Figure 4.1: Alice and Bob have each a measurement device with inputs x and y and
outputs a and b. The device is described by the set of probability distributions p (a, b|x, y),
that gives the probability of outcomes a and b given inputs x and y.

The fact that Alice and Bob are spatially separated and cannot communicate with
each other implies that the statistics of a measurement on one part is independent of the
measurement choice of the other. We recognize these assumptions as the non-disturbance
conditions described in the first chapter (see (1.18)), but here we will give it a more
suitable name due to the circumstances: non-signalling conditions. It implies a set of
linear constraints as below:

p(a|x) =
∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′)

p(b|y) =
∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y)
. (4.1)
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A stronger constraint on the description of the experiment is that the statistics of Alice
and Bob be consistent with the assumption of local causality. This can be understood in
two steps. First we assume that there is a common past of configurations of the system
for the events occurring at the distant parties, encoded in the form of a probability
distribution for deterministic states parameterized by λ. This means we should write:

p(a, b|x, y) =
∑
λ

p(a, b|x, y, λ) .

Now, the second step is a consequence of the distance between the parties. For the same
reason that motivates the introduction of a common cause in the past, i.e. a relativistic
point of view of the physical situation, local causality here means that outcomes from one
side cannot cause any change in the data of the other. This implies that the quantities in
the r.h.s of the equation above can be decomposed:

p(a, b|x, y, λ) = p(λ)p(a|x, λ)p(b|y, λ) .

Such that the joint probabilities we are interested in read:

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, λ)p(b|y, λ) . (4.2)

It should be noted the resemblance between this equation and (1.15) we have seen before.
For this type of behavior, correlations between Alice and Bob are mediated by the

variable λ that thus suffices to compute the probabilities of each of the outcomes, that
is, p(a|x, y, b, λ) = p(a|x, λ), and similarly for b. The behaviors that can be decomposed
in this way are called local behaviors. And, in accordance with our first chapter, models
describing systems like these are also called local hidden variable models.

The result known as Bell’s theorem (see [Bel64], also source of the nomenclature just
above) states that Alice and Bob can perform measurements in a entangled quantum state
to generate behaviors that cannot be decomposed in the form of equation (4.2). These
can be obtained by local measurements Mx

a and My
b on distant parts of a bipartite state

ρ that, according to quantum theory, can be described by

p(a, b|x, y) = Tr [(Mx
a ⊗My

b ) ρ] , (4.3)

the famous Bohr’s rule for quantum predictions.
In general, the set of local behaviors L is a strict subset of the set of quantum behaviors

Q that, in turn, is a strict subset of the set of non-signaling behaviors NS, as shown in
figure 4.2.

The local set is a polytope, whose vertices are deterministic systems labeled by λ,
and hence any local behavior can be written as a convex sum of a finite set of points at
the boundary. If we represent our behavior p as a vector with |x||y||a||b| components,
where |.| indicates cardinality of the collection of possible values, so condition (4.2) can
be written succinctly as

p = A · λ ,

with λ being a probability vector over the set of variables λ, with components λi = p(λ =
i), and A being a matrix indexed by i and the multi-index variable j = (x, y, a, b) with
Aj,i = δa,fa(x,λ=i)δb,fb(y,λ=i), where fa and fb are deterministic functions that give the values
of measurements x and y when λ = i.
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L
NS
Q

Figure 4.2: Typical structure of sets of behaviors of interest.

Notice that, in the language of our last chapter, p is the complete description of a
probabilistic system (see equation (3.4)) in which information about connections can be
ignored, because they are not necessary as pointed before.

It is now clear how the content of chapter 2 will be useful to us here. Checking
membership of a given behavior in the local polytope L is part of the work of the quantifiers
we have seen. Of particular importance to what we are going to see in the following
sections are the measures we have called CNT0 and CNT2 before.

The first one, see equation (3.1), made use of non-contextuality inequalities (now Bell
inequalities) and looked at violations of them as criterion. The great problem with it
was the fact that different inequalities in the same scenario provide different quantifiers
and a proper characterization should then take into account all of them. Now, CNT2
(equation (3.17)) was one of those that made use of linear programming to find the best
L1-approximating local member of L to the target behavior.

Instead of using equation (3.17) directly, however, we modify it a little bit into a
style more appropriate to the physical situation here. In essence, we are going to put a
normalization constant in front of the objective function of the LP task in 3.3 to give it a
meaningful interpretation in terms of an existent definition in physics: the trace distance
(see [BAC18]) D(q,p) between two probability distributions q and p:

D(q,p) =
1

2

∑
x

|q(x)− p(x)| , (4.4)

where |.| stands for absolute value of the number inside and x labels the entries of the
vectors in question.

For the systems we are interested in, the vectors are joint probabilities with entries
labeled by the values of inputs x and y and outputs a and b, as described some paragraphs
above. Under the consideration of uniform distribution of the inputs, i.e.

p(x, y) =
1

|x||y|
,

with |.| the cardinality again, the objective function of the mentioned LP task can be
modified in order to the optimal condition be achieved by the local behavior that mini-
mizes the trace distance to the target behavior. That is, we have a non-locality quantifier
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for behaviors similar to equation (3.17):

NL(q) =
1

|x||y|
min
p∈L

D(q,p)

=
1

2|x||y|
min
p∈L

∑
x,y,a,b

∣∣q(a, b|x, y)− p(a, b|x, y)
∣∣ . (4.5)

This can be implemented either by changing the task 3.3 to have the correct normalization
or with the expression above if the packages in your favourite code language offers support
for objective functions containing L1-norms of vectors with possible negative entries. The
visual aspect of this procedure is illustrated in figure 4.3

q

p∗

d

L

NS

Figure 4.3: Schematic drawing of a distribution q ∈ NS and d = NL (q), the trace
distance from q to the closest local distribution p∗ ∈ L.

4.2 Quantifying non-locality of a quantum state

We now address the problem of quantifying non-locality of a quantum state ρ. Since
from ρ we can generate many different non-local behaviors by varying the measurements
applied to it, this is not a trivial problem.

One way of defining a non-locality quantifier for quantum states is to maximize the de-
gree of violation of a Bell inequality over all possible measurements for Alice and Bob and
to associate a greater numerical violation with a greater degree of non-locality. This asso-
ciation has generated some debatable conclusions. For example, using the usual measure,
the so called anomaly of non-locality appears ([MS06],[Aci+02]). Consider the Collins-
Gisin-Linden-Massar-Popescu (CGLMP) inequality in the (2, 2, 3) scenario ([Col+02]):

SCGLMP = p (a = b|0, 0) + p (a = b|0, 1) + p (a = b|1, 0) + p (a = b+ 2|1, 1)
− p (a = b+ 1|0, 0)− p (a = b+ 2|0, 1)− p (a = b+ 2|1, 0)− p (a = b|1, 1)
≤ 2

(4.6)

and a two qutrit system in state

|ψ (γ)⟩ = 1√
2 + γ2

(|00⟩+ γ|11⟩+ |22⟩) . (4.7)

For the maximally entangled state γ = 1, the best choice of measurements gives
SCGLMP = 4(2

√
3+3)
9

≃ 2.873 [Col+02]. However, the authors in [Aci+02] found that, for
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the very same choice of settings, another state gives a higher violation. Specifically, the
violation SCGLMP = 1 +

√
11
3
≃ 2.915 is obtained for the non-maximally entangled state

with γ =
√
11−

√
3

2
≃ 0.792. This fact is known as anomaly of non-locality.

Besides the non-expected feature of anomaly of non-locality, a quantifier like that
clearly inherits the problem of choice of an inequality in its definition. Now, although
keeping the same problem, in reference [FP15], the authors present an alternative mea-
sure to quantify non-locality, called volume of violation, that is an important step into the
investigation. While the previous measure takes only the settings that lead to the max-
imum violation, the volume of violation takes into account all the settings that produce
violation of a Bell inequality. For the calculation of this new quantity, for a particular
state, we make an integration in the region that leads to the violation of a fixed Bell
inequality [MS06]. In general, we can write

VI(ρ) =
1

VT

∫
Γ

dnx ,

where Γ is the set of measurement choices for Alice and Bob that lead to a violation of
the inequality I for state ρ and

VT =

∫
Λ

dnx ,

is the volume of the set Λ of all possible measurement choices for Alice and Bob. Note
that dnx will display the format that gives equal weights to any setting. Thus, state ρ is
more non-local than state σ if and only if VI(ρ) > VI(σ). Also, if for state ρ the volume
of violation is VI(ρ) = 0, we say that state ρ is local with respect to the given inequality.
Following the same reasoning, VI(ρ) = 1 indicates that ρ is maximally non-local with
respect to that inequality.

This measure uses the relative volume of measurement choices that lead to violation
of a particular Bell inequality to quantify non-locality. Hence, VI(ρ) has a direct inter-
pretation: it corresponds to the probability of violating a particular Bell inequality with
state ρ when the measurement configuration is chosen randomly.

The volume of violation is a measure of non-locality for quantum states with many
good properties, as already reported in reference [FP15]. Nevertheless, VI(ρ) does not take
into account all the measurement configurations that lead to non-local behaviors, but only
the ones that lead to non-local behaviors that violate a particular Bell inequality. Except
for the simplest scenario (2, 2, 2), there are many non-equivalent families of Bell inequal-
ities and hence VI(ρ) gives only a lower bound to the relative volume of measurement
choices that lead to non-locality.

In reference [Ros+17] the authors consider a modification of the volume of violation,
called non-local volume, replacing the violation of a Bell inequality by membership of
the corresponding behavior in the polytope of local correlations. Hence, the non-local
volume takes into account all the settings that produce a non-local behavior, which is
in general strictly larger than the set of behaviors violating a single Bell inequality. For
the calculation of this new quantity, for a particular state, we make an integration in the
region ∆ of the set of measurement setups that lead to a non-local behavior. In general,
we can write

V (ρ) =
1

VT

∫
∆

dnx ,

where VT is defined as before. Again we consider an integration that gives equal weights
to any setting.
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In this contribution we consider another option in which we integrate over the set of
measurement choices that give a non-local behavior but using a non-locality quantifier Q
defined in the set of behaviors as a weight in the integral:

VQ(ρ) =
1

VT

∫
∆

Q(x)dnx , (4.8)

where Q(x) is the quantifier Q for the behavior generated by the state and measurement
settings x and ∆ and VT are defined as before. We consider only faithful quantifiers:
Q(p) > 0 if and only if p /∈ L.

This new quantifier, that we call Q-weighted non-local volume, can be interpreted in a
similar way. As the non-local volume, it takes into account all the settings that produce
a non-local behavior for state ρ, but it sums with a higher weight the behaviors that
are more non-local according to the quantifier Q. In particular, we are interested in the
non-locality quantifier for states obtained when we choose Q = NL:

VNL(ρ) =
1

VT

∫
∆

NL(x)dnx , (4.9)

where NL(x) is the trace distance for the behavior generated by the state and measure-
ment settings x and ∆ and VT are defined as before. We call this quantifier trace-weighted
non-local volume.

4.3 Properties of the trace-weighted non-local volume

In reference [Lip+18], the authors show that the non-local volume is invariant under local
unitaries and that it is strictly positive for pure entangled bipartite states. The proofs
can be slightly modified to show that these properties are also true for VQ.

Theorem 4.3.1. VQ is invariant under local unitaries.

Proof. Let ρ′ = U1 ⊗ U2ρU
†
1 ⊗ U †

2 where U1 and U2 are local unitaries for subsystems 1
and 2, respectively. The behavior generated with measurements {Mi} and {Ni} and state
ρ is equal to the behavior generated with measurements

{
U †
1MiU1

}
and

{
U †
2NiU2

}
and

state ρ′. Hence, the sets ∆ are the same for ρ and ρ′, which implies VQ(ρ) = VQ(ρ
′).

Theorem 4.3.2. If Q is a continuous function, for all pure bipartite entangled states, in
a scenario with at least two choices of two-outcome measurements, VQ is strictly positive.
That is, VQ (|ψ⟩) = 0 if and only if |ψ⟩ is a product state.

Proof. Since |ψ⟩ is entangled, we know from [Gis91], that there exist measurements {Mi},
{Nj} in the simplest scenario (2, 2, 2) such that the corresponding behavior is non-local.
By continuity of the probabilities p (a, b|x, y) as a function of the measurements, and
continuity of Q as a function of p, there is a ball around {Mi} , {Nj} such that, for any
choice of measurements inside this ball, Q is strictly positive. Since we are integrating a
strictly positive function over a set that is of measure larger than zero, this implies that
VQ (|ψ⟩) > 0.

On the other hand, if |ψ⟩ is separable, every behavior generated with |ψ⟩ is local, and
hence Q(x) = 0 for every x and VQ (|ψ⟩) = 0.
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It is also easy to see that the Q-weighted non-local volume is always smaller than the
non-weighted version for any faithful quantifier Q that is normalized such that 0 ≤ Q ≤ 1.
In fact, if Q is faithful, we can write

VQ(ρ) =
1

VT

∫
Λ

Q(x)dnx ,

and
V (ρ) =

1

VT

∫
Λ

χ(x)dnx ,

where χ is the characteristic function of the non-local set, that is:

χ(p) =

{
1, if p /∈ L,
0, if p ∈ L

.

If p is local and Q is faithful, Q(p) = χ(p) = 0. If p is non-local, Q(p) ≤ 1 = χ(p),
which implies that Q(p) ≤ χ(p) for all p and hence VQ(ρ) ≤ V (ρ) for all ρ.

Reference [Lip+18] also shows that the non-local volume goes to 1 in the limit where
both parties have an infinite number of measurements. The proof in this case can not
be modified to show that this is also true for VQ. Numerical results in the figure 4.4
indicate that if we choose Q = NL, VNL seems to increase monotonically with the number
of measurements n, which would be the desired behavior. However, it is not possible to
claim its limit as n goes to infinity is 1 based on this evidence only. Since VQ is always
smaller than the non-local volume, we can not discard the possibility that VQ goes to a
as n goes to infinity, with 0 < a < 1. Whether or not this property holds for VNL is an
open problem.

Figure 4.4: Trace-weighted non-local volume in percentage for the maximally entangled
two-qubit state as function of the number of measurements detained by each part in the
Bell scenario, i.e scenarios of the type (2, n, 2).

4.4 Anomalies through new lens

In this section we want to revisit known scenarios in order not only to check the function-
ality of our quantifier VNL, but mainly to show its usefulness to scrutinize the anomalies.
Behaviors are decided to be non-local in our simulations for trace distances with magni-
tude smaller than 10−8.
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To start, we check the effect of the weight on the non-local volume for the simplest
scenario, the (2, 2, 2) scenario, also known as the CHSH scenario ([Cla+69]). The local
set in this case has a simple structure, since there is only one family of Bell inequalities,
and we expect that the plots for the entropy of entanglement, the non-local volume, and
the Q-weighted non-local volume all have the same comportment if Q is a continuous
faithful non-locality quantifier for behaviors. To test that we consider the family of states
parameterized by:

|ψ(α)⟩ = α|00⟩+
√
1− α2|11⟩

and plot the non-local volume (red) and the trace-weighted non-local volume (blue) in
figure 4.5a. Both for the non-local volume and the trace-weighted non-local volume the
maximum non-locality is attained at the maximally entangled state. We can also see that
the weighted version is smaller or equal the non-weighted version considering a normal-
ization using the maximum value for each curve.

(a) (b)

Figure 4.5: In blue our quantifier lies below its non-weighted version in red, as expected,
while maintaining the point of maximum, which coincides with the maximum of the
dashed curve representing the entanglement entropy. In (a) for the CHSH scenario and
in (b) for the 3322 scenario.

The next interesting scenario, the (2, 3, 2) scenario, is not as trivial as the CHSH
scenario. In figure 4.5b the weighted and the non-weighted version are compared for the
qubits states with parameters in the same way.

We also compared VNL and the entropy of entanglement for the family of states given
in (4.7), see figure 4.6. That is, for the scenario of qutrits. For this family of states, we
see that the maximum non-locality is achieved by the maximally entangled state, as in
the previous scenarios with qubits. The same behavior is observed for the non-weighted
version, as shown in reference [Ros+17]. But in general VNL is not a monotonic function
of the entropy of entanglement. This property is known as weak anomaly of non-locality.

Still in the same system of qutrits, for the GHZ(α) states parameterized as:

GHZ(α) = sin(α)|00⟩+ cos(α)√
2

(|11⟩+ |22⟩) , (4.10)

non-locality does not increase monotonically with α. As in the previous cases, it reaches
the peak at the maximally entangled state, but it has a local minimum around 6 degrees,
similar to what is observed in the non-weighted version. Figure 4.7a shows the weighted
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Figure 4.6: The maximum of the trace-weighted non-local volume (in blue) is reached at
the state exhibiting the maximum entanglement entropy (in black).

and non-weighted versions of non-local volume as a function of α; figure 4.7b gives a zoom
on what is happening very close to the local minimum, emphasizing the different behavior
of the quantifiers.

(a) (b)

Figure 4.7: Weak anomaly from the perspective of the trace-weighted non-local volume. In
(a) we see how the weight compresses the normalized curve slightly, while in (b) a zoomed
view of the region containing the local minimum shows that each quantifier attains the
minimum at a different angle (bold ticks).

It is interesting to observe that the local minima are reached for different values of α
for the weighted and non-weighted version. This shows that the weak anomaly is not an
intrinsic characteristic of the scenario, but is dependent on the choice of quantifier.

To investigate further how entanglement and non-locality can have different forms,
we study how these quantities change when we go from a lower rank state to a full rank
state. Recall that multi-partite quantum states can be decomposed into the so called
Schmidt decomposition3; the number of coefficients in the decomposition defines the rank
of Schmidt of the state, which is the one we are referring to here. We first show that

3For a bipartite system with Hilbert spaces H1 and H2, a state |ψ⟩ in H1 ⊗ H2 can be written as
|ψ⟩ =

∑
i

αi|ϕi⟩ ⊗ |ϕ′i⟩⟩, where {αi} are the Schmidt coefficients and {|ϕi} and {|ϕ′i⟩} are orthonormal basis

in H1 and H2, respectively. The procedure can be recursively repeated for defining the decomposition of
multi-partite states.
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entanglement never decreases in this situation.

Theorem 4.4.1. Entanglement always increases when making a continuous transition
from a lower rank state |ψ⟩ to a full rank state |ψ′⟩.

Proof. Let |ψ⟩ ∈ H = H(A) ⊗H(B), with dimH = D. That is, we have a Hilbert space H
composed of two Hilbert spaces H(A) and H(B). Suppose that the rank of |ψ⟩ is smaller
than

√
D, so that its Schmidt decomposition reads:

|ψ⟩ =
d−1∑
i=0

αi|ii⟩ ,

where
∑d−1

i=0 |αi|2 = 1 and d <
√
D, leading to the entropy of entanglement:

E = −
d−1∑
i=0

|αi|2 log2 |αi|2 .

Consider now another state |ψ′⟩ which is full rank, that is, its rank equals
√
D:

|ψ′⟩ = 1√
1 + |δ|2

(δ|ϕ⟩+ |ψ⟩) ,

whose entropy of entanglement is given by:

E ′ = − |δ|2

1 + |δ|2

√
D∑

i=d

|βi|2 log
(
|δ|2|βi|2

1 + |δ|2

)
− 1

1 + |δ|2
d−1∑
i=0

|αi|2 log
(

|αi|2

1 + |δ|2

)
,

which, after massaging the logarithms, simplifies to:

E ′ =
1

1 + |δ|2
[
− |δ|2 log |δ|2 + |δ|2Eϕ + |δ|2 log(1 + |δ|2) + E + log(1 + |δ|2)

]
,

where Eϕ is defined for |ϕ⟩ in the same way as E was for |ψ⟩.
In the limit of δ → 0 the quantity above has no Taylor expansion due to the presence

of logarithms. However, for positive values of δ in that limit we can write:

E ′ = E + δ2 (1− E + Eϕ − 2 log δ) +O(δ4) .

The second term goes to zero (as all other higher order terms), but it is always positive.
Not only in view of log δ, but also because the entanglement entropy is finite and always
smaller than 1.

So, entanglement always increases when we make a continuous change from a lower
rank state |ψ⟩ to a full rank state |ψ′⟩, although dependent of the “direction" by which
the new subspace in penetrated (dependent of |ϕ⟩ and of E).

On the other hand, non-locality can behave very differently when changing from a
low rank to a full rank state. Figure 4.8 shows an investigation within regions of states
with partial entanglement between states |11⟩ and |22⟩ in the GHZ state with an extra
parameter:

GHZ(α, β) = sin(α)|00⟩+ cos(α)√
2

(
β|11⟩+

√
1− β2|22⟩

)
. (4.11)
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(a) (b)

Figure 4.8: Trace-weighted non-local volume for different families of states in function of
α; a family in this case is labeled by the value of its β parameter in GHZ(α, β). Lighter
curves stand for greater entanglement among states |11⟩ and |22⟩.

Notice in figure 4.8a that the minimum of the anomaly moves towards zero degree as
we increase the value of β, i.e. as we consider a starting point closer to a rank-1 state
(|11⟩). This suggests that the minimum not only depends on the quantifier for behaviors
that we extend to quantify non-locality of states, but also on the region of parameters
at which we are looking at. Around the neighborhood of states with different ranks the
anomaly shows its unsteadiness.

Figure 4.8b reinforces this observation, while also showing that there is a family of
states (with β = 0.975) for which the quantifier is monotonic as a function of α. Increasing
that value would lead to other monotonic curves too. This shows that the relation between
entanglement and non-locality is not simple, depending on many aspects of the scenario
and the tools we use to quantify these properties. Although this may appear counter
intuitive at first sight, since non-locality is a consequence of entanglement, it is already
known that entanglement and non-locality are indeed different resources, and the fact that
non-locality is not a monotonic function of entanglement is another feature that supports
this claim.

4.5 Discussion

We have seen an alternative way for quantifying non-locality of states based on Bell non-
locality of a behavior. The key difference from preceding candidates was the introduction
of a quantifier of non-locality to weight each contribution from behaviors in the non-local
volume.

A new degree of freedom has then been brought to the topic. Here we explored it by
considering the simplest possibility among the ones at disposal in the literature when the
question is how to compare two quantum probability distributions: the trace distance.
We proved that this quantifier has several good properties, including its formulation in
terms of a linear programming, but our simulations have shown that it is not a monotonic
function of entanglement. More specifically, the weak anomaly of non-locality persists.
Nevertheless, the local minimum for non-locality with the trace-weighted non-local volume
occurs in a different state than the minimum for the non-weighted version, showing that
the weak anomaly is not an intrinsic characteristic of the scenario, but is dependent
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on the choice of the quantifier. We conjecture that this non-monotonicity, despite the
coincidence of the maxima, is a unavoidable manifestation of the intrinsic inequivalence
between entanglement and non-locality. It is a topic to further investigation how the
behavior of the weighted version would be for different quantifiers Q and whether we
can prove that every non-locality quantifier for states exhibits some kind of anomaly.
Moreover, its robustness against noisy systems also remains to be tested.

It should be noted, however, that in the integral defining the non-local volume we
considered projective measurements only. The next natural generalization would be to
consider the set of POVM’s, but two difficulties appear. First, there is no natural definition
of uniform measure for POVM’s, which makes the quantifier strongly dependent on the
choice of measure we choose to sample the measurements. Second, numerical results
show that the probability of finding a non-local behavior when sampling over the set of
POVM’s is very small. In fact, in a first attempt we have made using Neumark’s dilation
theorem and the Haar measure in the set of unitaries in the larger Hilbert space, typically
a non-local behavior is observed in one out of ten million settings for the (2, 2, 2) scenario
(even for the maximally entangled state), a simulation which, in addition, takes much
more time to be finished than the previous one.

This general idea has come with the seeming necessity for refining known quantifiers
in order to extinguish such anomalies against the monotonic relation expected between
non-locality and entanglement of states. An interesting venue for further research would
be to find out a quantifier of non-locality for behavior that implies monotonicity of the
weighted non-local volume and/or presents the desired property at least for projective
measurements, and preferably is computationally friendly. However, we conjecture that
this is not possible. If no anomaly remains, that is, if non-locality increases monotonically
with entanglement in any circumstances, we would conclude that non-locality and entan-
glement are equivalent resources, which we know not to be true. Moreover, we know that
different non-locality quantifiers give different orderings in the set of behaviors, which
makes non-locality heavily dependent on the function we use to quantify it. For instance,
maximal violation of an inequality given a state and resistance against noise before be-
coming local are two non-locality quantifiers for state that can be inversely related by the
fact that the resistance against detection inefficiency increases as the entanglement of the
states decrease [Ebe93].
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Chapter 5

Volumes of correlation sets in causal
networks

This final chapter is devoted to the presentation of the last contribution made by this
author during its PhD. It can be seen as a working example of the content in the first
two chapters of this manuscript, but it also represents exploration beyond the main topic
towards different aspects of non-classical phenomena. And that is the case especially
because it is the product of a collaboration started in a technical visit to Rafael’s group
at the International Institute of Physics - UFRN (Brazil). To access the online version of
the paper, see [Cam+23].

As we are going to see, the work underlying the next sections demands additional
frameworks and ideas to those the reader might be aware of from this dissertation at
this point. And the reason why we have decided not to cover them in details in previous
sections is just to highlight the fact that contextuality has been guiding this author along
his studies mostly, and that by studying it one can have the tools and the ability to tackle
problems a priori unrelated.

The key to understand the relation of this chapter to the initial ones is to notice that
the idea passing through the notion of a model describable by means of a common hidden
variable λ (see (4.2)) refers to the possibility of having a past classical common cause
that determines the outcomes. Causality by itself then becomes central in some lines of
investigations of non-classical phenomena. And looking at contextuality through its eyes
is the precise reason that motivated this author into this work. To understand it, however,
we first start presenting causal models.

5.1 Causal models

Defining the causal structure for observed phenomena is among the basic goals of scientific
research. By using the mathematical formalism of causality, we can formulate causal
hypothesis by means of experimental data that can then be tested by new observations
[Pea09]. And its application go beyond quantum physics, in which the quantum internet
[Kim08; WEH18] and quantum repeaters [Bri+98] are the seminal examples, besides
Bell’s theorem, that can be seen as a particular case of a causal inference problem [Bel64].
Examples can be found also in economics [Che08; AK01] and in biology and medicine
[Fri04; KH11].

The causal modeling framework [Pea09; SGS00] offers a powerful language to describe
causal constraints in terms of directed acyclic graphs (DAG). In this formalism, each node

65
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A ∈ N(G) of the DAG G is associated with a random variable and causal relationships
are defined by the directed edges E(G) ⊆ N(G)×N(G) between these nodes. In any real
situation, we do not have access to every relevant cause that can influence our system,
we then ought to distinguish between nodes that are associated with observable variables
OG ⊆ N(G) and unobserved, or latent, ones LG ⊆ N(G). Graphically, we will use
circles and Latin letters for the former and triangles and Greek letters for the latter (see
for example Fig. 5.1). Moreover, the random variables and the nodes will be represented
with uppercase letters A,B, . . . while we will use the corresponding lowercase ones a, b, . . .
to denote their outcomes.

Given a DAG G, we can define the concept of causal parents Pa(A) (or children Ch(A))
of a given variable A in G, as the set of nodes sharing incoming (or outgoing) edges with
A. This notion immediately give us a way to define what it means, for a classical joint
distribution p({ai}i) on the random variables associated with observable nodes Ai ∈ OG,
to be compatible with a causal DAG G.

Definition 5.1.1 (Classical compatibility). A distribution p({ai}i) on the random vari-
able associated with the nodes O(G), is compatible with G if it satisfies the following
decomposition:

p({ai}i) =
∑
λ∈LG

∏
X∈NG

p(x| pa(X)) (5.1)

where LG ⊂ NG is the set of latent variables in G and pa(X) the set of outcomes of all
the parents of X.

The above decomposition is also called global Markov condition. We will use C(G) to
represent the set of distributions compatible in this sense with a DAG G.

The compatibility notion defined above is valid only if we consider that our distribution
p arises from models where latent variables can be considered classical systems. If instead,
we allow them to be quantum systems, in general, we obtain a strictly larger set of
compatible distributions, which we can denote by Q(G) and for which generalizations of
the global Markov condition and the concept of a causal structure have been proposed
[CMG15; PB15; CS16; BLO19]

In some cases, it might be interesting to consider post-quantum resources distributed
in the network [HLP14]. The distributions that may arise from these models must respect
some basic conditions that reflect the natural assumptions of no-signaling and indepen-
dence of the sources (NSI). The core of the notion of the no-signaling (or no-disturbing,
see (1.18)) principle to network scenarios is that the outcomes of one party should be
insensitive to whatever the remaining parties do, including any local modifications in the
particular arrangement of the topology of their part of the network. The set of correla-
tions that arise from NSI has been explicitly studied primarily in the triangle scenario
[Gis+20] and in the Evans scenario [Lau+23]. We denote the set of correlations that is
compatible with the principles of no-signaling and independence as N (G). We remark
that the resulting constraints derived from NSI will be valid for all general probabilistic
theories [CDP10] (GPTs).

5.1.1 Single-source Bell scenario

Bell’s paradigmatic causal structure (and multipartite generalization thereof) is composed
by a number of parties, sharing classical correlations described by a random variable Λ,
locally measuring different observables parametrized by X, Y, Z, . . . with corresponding
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Figure 5.1: Causal DAGs a) Multipartite Bell scenario where the correlations between
the distant parties are mediated by a single source of correlations. b) Bilocality scenario,
akin to an entanglement swapping experiment [Pan+98], where two independent sources
establish the correlations between three spatially separated parties. c) The Evans scenario
with two independent sources of correlations but with a crucial difference to the bilocality
case: the inputs for two of the parties are the measurement outputs of the central node,
that is, the correlations are time-like and not space-like separated. d) The triangle sce-
nario, where every party shares a bipartite and independent source of correlations with
every other party.

measurement outcomes A,B,C, . . .. This classical description is encoded in the class of
DAGs Ln represented in Fig. 5.1a, implying that the observed distributions should follow
the Markov condition given by

p(a, b, c, · · · |x, y, z, · · · ) =
∑
λ

p(λ)p(a|x, λ)p(b|y, λ)p(c|z, λ) . . . . (5.2)

In a quantum description, this probability distribution is given by the Born rule

p(a, b, c, · · · |x, y, z, · · · ) = Tr
[(
Aa

x ⊗Bb
y ⊗ Cc

z ⊗ · · ·
)
ρΛ
]
, (5.3)

where the measurement inputs and outputs are associated with POVMs (positive operator
valued measurements) and the classical node Λ is replaced by a multipartite (potentially
entangled) state ρΛ.

Due to the absence of a causal link between nodes associated with different parties,
we also expect any compatible distribution to respect some general linear constraints,
expressing their independence in terms of the observable distribution, which are called
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no-signaling constraints [PR94] defining a set Nn:

p(a|x, y, z, . . .) = p(a|x, y′, z′, . . .) ∀a, y, y′, z, z′, . . .
p(b|x, y, z, . . .) = p(b|x′, y, z′, . . .) ∀b, x, x′, z, z′, . . .

... (5.4)

for each party A,B,C, . . ., where p(a|x, y, z, . . .) is the marginalization of the distribution
over all the other variables different from A.

In the case of a single source of correlations, C(Ln),Q(Ln),N (Ln) are all convex sets,
and, in particular, C(Ln) and N (Ln) can be described by a finite number of constraints,
making them convex polytopes. Moreover, it is known that C(Ln) ⊂ Q(Ln) ⊂ N (Ln).
More recently, the connection between causal modeling and Bell inequalities prompted
the study of the relationships between these correlation sets in more complex causal
scenarios that can also include independence between latent variables. In this case, the
geometry of the correlation sets becomes considerably more complicated, making them
even non-convex in general. In our work, we focused on three such models, the bilocality
scenario [BGP10], the triangle scenario [Fri12; Ren+19a] and the Evans Scenario [Eva16;
Lau+23], which we will now describe in more detail.

5.1.2 Bilocality scenario

The bilocality scenario [BGP10], represented by the DAG B in figure 5.1b, presents two
independent sources Λ and Γ which distribute correlations to three nodes, A, B, and C
that can perform measurements chosen by the settings X and Y for A and C respectively,
while the central node B has no external settings. As in the Bell case, we can distinguish
different sets of compatible distributions associated with such a model. The Markov
condition (5.1) for this structure is given by

p(a, b, c|x, z) =
∑
λ,γ

p(λ) p(γ) p(a|x, λ) p(c|z, γ) p(b|λ, γ). (5.5)

As anticipated such a condition complicates considerably the characterization of the set
of allowed correlation C(B), which is known to be non-convex, as proved by the existence
of polynomial Bell inequalities [Cha16].

Quantum distributions in this scenario p ∈ Q(B) are instead defined by

p(a, b, c|x, z) = Tr
[(
Aa

x ⊗Bb ⊗ Cc
z

)
(ρΛ ⊗ ρΓ)

]
, (5.6)

for any couple of bipartite quantum states ρΛ, ρΓ and any set of POVMs with operators
Aa

x, B
b, Cc

z .
Similarly to the multipartite Bell scenarios, here we have that some of the correlations

in the quantum set Q(B) are incompatible with a classical description (5.5), even when
some of them are still compatible with the one in the tripartite Bell scenario C(L3),
showing how the assumption of independence between Λ and Γ increases the possibility
to detect non-classicality.

Also in this scenario, we expect correlations to respect some basic constraints given
in terms of their observable distribution. But differently from the standard multipartite
Bell case, besides the linear constraints (5.4), here we have some additional nonlinear
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ones due to the conditional independence between the two sources. More specifically, it
follows that

p(a, c|x, z) =
∑
b

p(a, b, c|x, z) = p(a|x) p(c|z), (5.7)

making this set strictly included in the set of non-signaling correlations in the tripartite
Bell scenario N3. We will denote this set of non-signaling bilocal correlations by N (B) ⊂
N3.

5.1.3 Triangle scenario

The triangle scenario [Fri12] is represented by the DAG in Fig. 5.1d, where three bipartite
sources distribute systems to three separate parties forming a triangle-shaped structure.
The reason why this network is of particular interest to the community is that it allows
for novel non-classical phenomena [Ren+19a; Sup+22; CWR21]. In particular, it allows
for non-classicality even in the absence of measurement choices for the parties, that is,
when they perform a fixed measurement [Fri12; Cha+21].

Classically, triangle correlations admit models given by

p(a, b, c) =
∑
λ,γ,µ

p(λ) p(γ) p(µ) p(a|λ, µ) p(b|λ, γ) p(c|γ, µ), (5.8)

while the quantum description is given by 1

p(a, b, c) = Tr
[(
Aa ⊗Bb ⊗ Cc

)
(ρΛ ⊗ ρΓ ⊗ ρM)

]
. (5.9)

Differently from the standard Bell or the bilocality cases, the triangle does not have
a simple NSI description, even though a few approximations have already been proposed
[Gis+20; HLP14; CMG15; BR21; WSF19].

Furthermore, the case where all parts have binary outputs is particularly interesting.
Recently, [Poz+23a] has shown that this minimal case supports post-quantum advantage,
i.e. the local set and the non-signaling set do not coincide, and also that the set of triangle
non-signaling correlations lies outside the quantum set. Strikingly, the conjecture that
the local and quantum sets are identical [Tav+22] remains open for this minimal case.

5.1.4 Evans scenario

The last causal structure we will consider is the so-called Evans scenario [Eva16], which
was only recently considered from a quantum perspective [Lau+23]. The DAG E for this
structure is represented in Fig. 5.1c. Just like in the bilocality scenario, we have three
observable nodes A,B,C and two latent ones Λ,Γ, with the difference that now there are
no external inputs present, and B can communicate directly its value to both A and C.

Equation (5.1) in this case becomes

p(a, b, c) =
∑
λ,γ

p(λ) p(γ) p(a|b, λ) p(c|b, γ) p(b|λ, γ), (5.10)

and the quantum distribution is given by

p(a, b, c) = Tr
[(
Aa

b ⊗Bb ⊗ Cc
b

)
(ρΛ ⊗ ρΓ)

]
, (5.11)

1Note that when evaluating p, one should be attentive to which Hilbert space supports each state and
measurements.
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for quantum states ρΛ, ρΓ and POVMs Aa
b , B

b, Cc
b .

Despite apparent similarities with the bilocal scenario, the characterization of the
classical and quantum sets C(E),Q(E) turns out to be much more complex [Lau+23],
and whether the inclusion of the former in the latter is strict or not is still an open
problem.

The set of non-signaling correlations of the Evans scenario is also poorly understood.
Although a general route for deriving such theory-independent constraints for this causal
structure has been proposed in [Lau+23], it relies on Fourier-Motzkin elimination which
can be very costly and out of computational reach even for seemingly simple scenarios. It
is known that the non-signaling set is strictly larger than the classical set of correlations
C(E) ⊂ N (E), at least for |A| = 3 and |B| = |C| = 2.

Furthermore, because there is communication between the parts, Evans’s scenario
allows us to go beyond passive observations of the experiment and ask what would hap-
pen if the system is intervened upon [GMC20]. We use do-conditionals p(a|do(b)) (and
p(c|do(b))) to denote the probability of Alice’s (Charlie’s) outcome a (c) when variable B
is set by force to be b. For classical correlations, this can be formalized with the constraint

p(a|do(b)) =
∑
λ

p(λ) p(a|λ, b) (5.12)

and similarly for p(c|do(b)). Analogously, we can define what the do-conditionals would
look like in terms of a quantum strategy

p(a|do(b)) = Tr [(Aa
b ⊗ I) ρΛ] (5.13)

and the same can be done for p(c|do(b)).
One might be interested in exploring interventions for post-quantum theories in the

Evans scenario. In order to do so, notice that the do-conditionals can be expressed in
terms of a marginal probability distribution of a particular interruption of the original
graph, which consists in introducing new independent variables that each inherits one
outcoming edge of the original variable, see section IX of [Wol+21] for details. This
procedure allows us to map the restrictions due to no-signaling involving do-conditionals
of the Evans scenario to the no-signaling conditions on the bilocality scenario and identify
the do-conditionals p(a|do(b)) and p(c|do(b)) with the marginals p(a|x = b) and p(c|z = b).

5.2 The problem

The violation of Bell inequalities [Bru+14] represents the strongest signature of non-
classical behavior, as it can be observed in a device-independent context [PSV16]. Specif-
ically, it demonstrates the incompatibility between quantum correlations and classical
concepts of cause and effect, without relying on any assumptions about the internal
mechanisms involved in the preparation and measurement of the physical system being
analyzed.

In the simplest Bell scenario, two distant parties measure two distinct dichotomic
observables. However, this scenario has been extended and generalized in various ways.
These extensions include incorporating additional measurements [CG04] or expanding the
number of possible outcomes [Col+02]. Furthermore, the framework has been expanded to
involve multiple parties [WW01a] and relaxations of locality assumptions [Pir03; BC17], as
well as measurement independence [Hal10; Cha+15]. Of particular significance are recent
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advancements that draw inspiration from causality theory [Pea09]. These generalizations
explore networks with diverse topologies, growing in size and complexity, revealing a
number of novel non-classical phenomena [BGP10; Fri12; Ren+19a; WC20; Ren+21;
Cha+21; Sup+22; Pol+23].

In the context of a specific causal structure, a central inquiry arises: does it exhibit
a classical-quantum gap? In other words, if the sources within the network are described
by entangled quantum states, can measurements on them produce correlations that lack
a classical interpretation? When considering networks with a single source, a classical
depiction involves the characterization of a polytope [Pit91]: a convex set defined by a
finite number of extremal points or, equivalently, a finite set of linear Bell inequalities.
However, even in such cases, the problem is recognized as intrinsically challenging, re-
siding in the NP-hard complexity class [Pit91]. This difficulty is further amplified when
independent sources of correlations exist, as is often the case in paradigmatic quantum
networks. In such scenarios, the correlations compatible with a given causal structure
result in non-convex sets, necessitating computationally intensive algorithms rooted in
algebraic geometry [GSS05] or various forms of approximation [Cha+14; Cha16; Kel+19;
Åbe+20; Poz+19; WSF19] proposed throughout the years. Not surprisingly, given these
difficulties, there is still a very fragmented picture of the set of correlations causal networks
can give rise to.

Here we propose an alternative route to gather further insights into the classical de-
scription of causal networks and their potential incompatibility with quantum correla-
tions. Using quadratic optimization techniques (leveraging the Gurobi optimizer [Gur22]),
already employed to address non-convex constraints originating from causal networks
in [Lau+23], as well as other tools such as the inflation technique [WSF19], the covariance
approach [Åbe+20] and Finner inequality [Ren+19b], we calculate the volumes [Cab05;
WY12] of classical and non-classical probability distributions that various causal struc-
tures can yield.

5.2.1 Tools for detecting non-classicality

The compatibility problem consists of answering the question: Are the statistics over
the observed variables compatible with the causal structure under scrutiny? For causal
structures with a single latent common cause, e.g. the Bell scenario, this amounts to a
linear feasibility problem. Indeed, it is known that if we consider a decomposition of the
form (5.2) we can, without loss of generality, incorporate any local randomness present
in the response functions – i.e. p(a|x, λ), p(b|y, λ), p(c|z, λ) and so on – to the source λ
and define a deterministic model. In a deterministic model, each value of λ defines an
assignment of one of the possible outputs to each input. The model is a probabilistic
mixture of these deterministic assignments of outputs to inputs, with λ specifying which
particular assignment is chosen in each run of the experiment. For each assignment, there
is a corresponding local deterministic behavior dλ(a, b, c..|x, y, z, ..) and p(a, b, c...|x, y, z...)
is compatible with the standard Bell scenario if, and only if it can be expressed as a convex
combination of deterministic local points. That is,

p is local ⇐⇒ ∃q(λ) s.t. q(λ) ≥ 0,
∑
λ

q(λ) = 1 and

p(a, ...|x, ...) =
∑
λ

q(λ) dλ(a, ...|x, ...).
(5.14)
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Indeed, determining whether there exist weights q(λ) satisfying the linear constraints in
Eq. (5.14) is a typical instance of a linear programming problem (LP) [BV06].

For a generic causal structure, i.e. more than one source, we can use the inflation
technique. Intuitively, the method works by considering the hypothetical situation where
one has access to multiple copies of the sources and measurement devices that compose
the network and can rearrange them in different configurations. Its core idea is to explore
simple (linear) conditions of this inflated network that ultimately translate to polynomial
inequalities on the observable probabilities. It has been proven in [NPA08] the existence
of a hierarchy of inflations that asymptotically converges to the classical set of correlations
of any network and a test of compatibility of a given level of this hierarchy can be done via
Linear Programming (LP) or Semi-Definite Programming (SDP) [BV06]. However, for
each level n of this hierarchy the memory resources required are superexponential on n.
Notably, this hierarchy relies on information broadcasting, a primitive that is not allowed
in quantum information.

The inflation technique can constrain not only the set of classical correlations but also
the set of quantum correlations a network may give rise to. Quantum inflation [Wol+21]
can be seen as a quantum analog of the classical inflation technique which avoids the
latter’s reliance on information broadcasting. This is done by adapting the Navascues-
Pironio-Acin (NPA) hierarchy [NPA07], originally developed to characterize quantum cor-
relations in Bell scenarios, in the inflated scenario which can be tackled via noncommuta-
tive polynomial optimization (NPO) theory [NPA08]. The general goal of NPO theory is
to optimize the expectation value of a polynomial over operators subject to a number of
polynomial operators and statistical constraints. This optimization is achieved by means
of a hierarchy of SDP tests 2. The types of inflations we have used in our work are shown
in Fig. 5.2. For each inflation level, we then study the set varying the NPA levels, and we
will denote by Qn,m(G) the corresponding relaxation associated with n-th order inflation
and level m of the NPA hierarchy.

At the core of our numerical approach is the use of quadratic programming (QP)
techniques, like the branch and bound method, that allows us to extend our optimization
problems to include non-linear constraints with reasonable efficiency [Gur22]. These tech-
niques work by iteratively breaking the variables domain down into smaller problems that
can each be approximated by a corresponding convex program. This branching subrou-
tine enables primal and dual tasks to define upper and lower bounds that converge, up to
computational precision (10−9), to the global optimal solution.

Using this we can assess classicality for the bilocal and the Evans networks by directly
imposing the independence of the sources p(λ, γ) = p(λ)p(γ). Notice that in both scenarios
we can, without loss of generality, make λ determine the outcome a for every x and,
similarly, γ determine c for every z, while B has a stochastic response function p(b|λ, γ).
Therefore, we can take λ = {a0, ..., a|x|−1}, γ = {c0, ..., c|z|−1} and p(a, b, c|x, z) is bilocal
if and only if,

∃q(λ, b, γ) s.t. q ≥ 0,
∑
λ,bγ

q(λ, b, γ) = 1,

q(ax = a, b, cz = c) = p(a, b, c|x, z),
and q(λ, γ) = q(λ)q(γ).

(5.15)

which can be cast as a QP. For compatibility with the Evans scenario, it is sufficient to
look at the same conditions but only for x = z = b. We also use the arguments given

2These tests were implemented using [BWP23].
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(a) 2nd order quantum in-
flation for the Triangle sce-
nario.

(b) 3rd order quantum in-
flation for the Triangle sce-
nario.

(c) 2nd order quantum in-
flation for the Bilocality sce-
nario.

(d) 3rd order quantum in-
flation for the Bilocality sce-
nario.

Figure 5.2: The DAGs for the orders used in our analysis for quantum inflation. Here
we, similarly to the classical case, considered the first two levels of standard quantum
inflation hierarchy [Wol+21], generated by using n copies of each latent variable. As in
the other figures, latent nodes are represented by triangles while observable nodes with
circles.

in [Lau+23] to extract tailored infeasibility certificates from these quadratic programs.

5.2.2 Sampling non-signaling distributions

The starting point for the analysis of the volumes is generating the data sets to be an-
alyzed. These points must satisfy NSI restrictions, which will be polynomial in the case
of the bilocal scenario. For this, we sample separately each coordinate of the behavior
vector (or its equivalent representation by correlators) followed by a rejection step to han-
dle the constraints 3. Specifically, we sampled points uniformly within a hypercube and
then selected the subset of interest. We employed the results in [DFM92] to determine
how many data points were necessary to sample the whole space of distributions in each
situation, that is, at least (∼ 2.1)d points uniformly generated in a hypercube of dimen-
sion d are required to estimate a volume close to the hypercube itself. For example, for
a hypercube of dimension eight (the simplest triangle scenario in this work), one should
consider data sets containing more than four hundred points to start approximating well
the corresponding set of correlations. In view of such uniform distribution, the fraction
of points represented by a target subset can be associated with the volume it occupies
within the set containing it. More than one data set was used in what follows, therefore
we are going to mention them according to their specific uses.

3Other ways of sampling were tested, e.g. the Monte Carlo method, which is able to include more
complicated constraints to sample from. However, the rejection method was the best in terms of numerical
performance; the reason for that being the cardinality of the variables and the number of constraints.
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In all these cases, however, the idea behind them is the same: test membership of the
generated points in a set of interest via LP, SDP, or QP tests. Such tests can be phrased
in terms of feasibility or optimization problems. In what follows, we also investigate
how these points are distributed inside the set. To this end, we consider a corresponding
optimization in which the objective function to be minimized is the trace distance between
the sampled distribution and some distribution inside the set (see [BAC18]).

The trace distance between two probability distributions p(x) and q(x), recalling from
(4.4), is given by

D(p,q) :=
1

2

∑
x

|p(x)− q(x)|, (5.16)

and the trace distance-based quantifier QX (p) of the distance of a probability distribution
p(a, b, c|x, y, z) to a set X in a tripartite scenario is computed through

QX (p) =
1

|x||y||z|
min

q(a,b,c|x,y,z)∈X
D(p, q), (5.17)

and |x|, |y|, and |z| stand for the cardinality of the set of measurements for Alice, Bob,
and Charlie, respectively. If X is the local set, then we have a non-local distance, while if
it is the bilocal set, we have a non-bilocal distance, and similarly to any other set. Finally,
we compare the performance of the aforementioned techniques for different cases.

5.3 Results

As we show, in spite of its wide applicability and convergence in the asymptotic limit [NW20],
in computational practice the inflation technique might offer relatively poor performance,
since it is unable to reveal a significant portion of non-classical behaviors. Interestingly,
similarly to what happens in the standard Bell scenario [Dua+18], we observe a concen-
tration effect where most non-classical points concentrate an average distance from the
classical set, the probability of finding points far away decaying exponentially. Finally,
we show that the use of interventions [Cha+18; GMC20] can significantly enhance our
ability to detect non-classical behaviors.

5.3.1 Bilocality scenario

In the case of the bilocality scenario, we estimated the relative volume among the different
sets of correlation C(B), Q(B) and C(L3) with respect to randomly sampled points inside
N (B) for the case where all variables are binary. Fig. 5.3 schematically illustrates these
sets.

For doing so, we parametrize the conditional probability distribution p(a, b, c|x, z) in
terms of the single-, two- and three-party correlators ⟨Ax⟩, ⟨B⟩, ⟨Cz⟩, ⟨AxB⟩, ⟨BCz⟩,
⟨AxCz⟩ = ⟨Ax⟩⟨Cz⟩ and ⟨AxBCz⟩ for all x, z ∈ {0, 1},

⟨AxBCz⟩ =
∑
a,b,c

(−1)a+b+cp(a, b, c|x, z), (5.18)

and similiarly for the other correlators. This yields a total of 13 parameters in the interval
[−1, 1]. We generated a set of uniformly distributed points in the 13-dimensional hyper-
cube and, naturally, considered only the ones inside the region of non-negative probability
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N (B)

C(B)
C(L3)

Q(B)

FGHIMNOPQRST

Figure 5.3: Illustration of the different sets of correlations in the bilocal scenario; propor-
tions are not supposed to be faithful. Solid black lines delimit the part of the no-signalling
set compatible with the bilocal conditions, while the blue region with a dashed border
determines the local set and solid blue lines delimit the bilocal subset within it. The
hashed yellow region encompasses quantum behaviors.

distributions, i.e. we excluded the points that do not respect

p(a, b, c|x, z) = 1

8

(
1 + (−1)a⟨Ax⟩+ (−1)b⟨B⟩+ (−1)c⟨Cz⟩+ (−1)a+b⟨AxB⟩+

+ (−1)b+c⟨BCz⟩+ (−1)a+c⟨Ax⟩⟨Cz⟩+ (−1)a+b+c⟨AxBCz⟩
)
≥ 0,

(5.19)

which gives us a set of uniformly distributed points in N (B). We remark that this can
be done without loss of generality for all non-signaling behaviors, i.e. one can always
choose some minimal representation or (for the case of binary outcomes) correlators,
i.e. expectation values, representation to isolate the free parameters and eliminate all
equality constraints and, if necessary, use inequality constraints to filter valid probability
distributions from the data set that are uniformly distributed in the region under scrutiny.

First, we analyze which points in our data set violate the standard tripartite Bell
locality by computing their trace distance to the local set of distributions C(L3). Then,
for the remaining points, which have an explicit local decomposition, we analyze different
levels of the classical inflation hierarchy Cn(B) to compute their distances from the bilocal
set C(B), obtained by solving directly the QP problem, and, from them, estimate the
relative volumes of these sets. The results for the volumes are presented in Table 5.1.
Interestingly, while the set of non-local distributions C(L3) = N (B) \ C(L3) amounts to
approximately only 2.39%, the non-bilocal set C(B) = N (B) \ C(B) occupies 32.6% of
the correlation space, a clear signature of the advantage of considering the independence
of the sources when testing the non-classicality of the data.

Regarding the use of inflation, the best witness of non-classicality is represented by C3,
i.e. 3rd order inflation, showing that 13.3% of its volume is non-bilocal, still a significantly
smaller value than that obtained by QP. Besides being less accurate in detecting non-
classicality, the inflation technique is computationally more demanding (around fifty times
more as compared with the QP approach), which is the reason why we analyzed two
independently generated samples of different sizes: N = 104 for the inflation and N = 106

in the QP case.
Additionally, considering Q2,3, i.e. 2nd order of inflation together with the 3rd level

of the NPA hierarchy, we estimated the ratio of the quantum volume with respect to
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Set Volume

C(L3) (Non-local) 0.0239

C(B) (Non-bilocal) 0.326

C1(B) (Inflation 1st order) 0.0233

C2(B) (Inflation 2nd order) 0.0999

C3(B) (Inflation 3rd order) 0.133

Table 5.1: Volumes of different correlation sets in the bilocality scenario. In the first two
rows we have the results provided by QP on a data set with 106 samples, while in the
last three, we have the volume associated with the set of non-bilocal behaviors Cn(B)
computed for different orders of inflation n, on a data set with only 104 instances. Order
n = 3 was the highest configuration analyzed. Which is still considerably far from the
value obtained by the QP approach.

the other sets. As can be seen in Table 5.2, while the quantum volume (with the NPA
level considered) within the non-local correlations is 43%, it increases to about 86% when
considering the set of non-bilocal correlations.

Set Volume of Q2,3(B)

N (B) (Non-signaling) 0.952

C(L3) (Non-local) 0.43

C(L3) Local 0.942

C(B) (Non-bilocal) 0.856

C(B) (Bilocal) 1.0

Table 5.2: Volumes of the behaviors that are compatible with a quantum description,
evaluated considering the relaxation Q2,3(B), i.e. the 2nd order of quantum inflation and
NPA level 3. The results were obtained with a data set containing 104 behaviors.

To gather more information about the structure of different correlation sets, beyond
their relative volumes, we can also estimate how these points are distributed relative to
their trace distances inside N (B). From Fig. 5.4 we can see how the points in N (B)
have their distances from the local C(L3) and bilocal C(B) set distributed according to a
Poissonian-like distribution. An interesting observation here is the presence of a concen-
tration of the distances for behaviors that are non-classical, i.e. the distribution is peaked
at a small distance from the local and bilocal sets, which can be seen as an instance of
the concentration phenomena reported in [Dua+18].

5.3.2 Triangle scenario

Differently from the bilocality and Evans scenarios, for which there is a natural set of NSI
correlations to sample from, in the triangle scenario there is no simple way to enforce the
no-signaling and independence conditions [Gis+20]. For this reason, we analyze different
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(a) Non-local distances (b) Non-bilocal set.

(c) Non-bilocal within non-local set. (d) Non-bilocal within local set.

Figure 5.4: Distributions of distances in the bilocal scenario. In (a) we have non-local
distances for around 2 × 104 behaviors with a gap precision between primal and dual
LP tasks equal to 0%. In (b) one can see how non-bilocal distances are distributed
considering points within the whole non-bilocal set, while in (c) and (d) we split such set
between non-local and local, respectively, to offer a different perspective and highlight the
concentration observed in (c); results for around 4× 104 behaviors using precision of 10%
for the gap between primal and dual solutions in this case.

volumes of sets of correlations relative to points sampled inside the 8-dimensional simplex,
that is, sampling over all well-defined probability distributions p(a, b, c) with a, b, c = 0, 1
being dichotomic variables. Also, given that the triangle scenario imposes non-quadratic
constraints there is no direct manner to use quadratic optimizers, for this reason we rely
on the inflation technique [WSF19; Wol+21] as well as the covariance approach [Kel+19;
Åbe+20] and the Finner [Ren+19b] and Shannon-type [FC12; CMG15] inequalities.

First, we compare the set of classical and quantum correlations using the inflation
technique on our data points. Table 5.3b shows the results for different orders of classical
inflations Cm(T ) with m = 1, 2, 3, and for different quantum inflations Qm,n(T ) with m =
1, 2 and up to level n = 5 of the NPA hierarchy. Notice how we are unable to detect non-
quantum behaviors without considering one extra copy of each source at least. Moreover,
we have found points that are incompatible with a classical description but are quantum-
compatible with Q2,4, i.e. up to the 2nd order inflation and NPA level 4. These points
offer good candidates to resolve a still open question: whether quantum non-classical
correlations can emerge in the triangle scenario with all variables dichotomic [Poz+23b].

Then, we consider the covariance decomposition test — which can only test the net-
work topology and as such are valid for all GPTs [BR21] — and the volume delimited by
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the Finner and the Shannon-type entropic inequalities found in [FC12; CMG15]; the first
of them are proven to follow for all quantum distributions and conjectured to be satisfied
for all non-signaling distributions [Ren+19b] while the entropic ones, as the covariance
test, tell us about the topology only. Table 5.3a summarizes these results. Among them,
we can see that the covariance test managed to exclude the largest number of behaviors.

Method Incompatible volume

Covariance 0.0369

Finner 0.0191

Entropic 0.00095

(a) Comparison of other methods to detect in-
compatibility with the triangle network.

Set Volume

C1(T ) 0.0

C2(T ) 0.09592

C3(T ) 0.113*

Q1,5(T ) 0.0

Q2,3(T ) 0.1098

(b) Volumes of behaviors incompatible with a
classical or quantum description. *Here we use
about 10% of the data set due to the computa-
tional cost.

Table 5.3: (a) Volume of incompatible distributions calculated with other known meth-
ods, specifically the Finner and the entropic inequalities [FC12] and the covariance
method [BR21]. (b) Volumes of points incompatible with classical Cn(T ) and quantum
inflations Qm,n(T ) for the triangle scenario using different configurations of n,m, on a
data set of around 105 instances.

5.3.3 Evans scenario

Now we move our attention to the Evans scenario. We start by pointing out that the
relationship between the Evans and the bilocality scenario, which was first noticed for
classical and quantum correlations [Lau+23], indeed holds to all GPTs. In fact, if one
has access to GPT states and measurements one can uniquely define a mapping between
Evans and the bilocal scenario by making an identification of the measurement effects
of the variables A and C in each scenario, analogously to what was argued in [Lau+23].
Therefore, the probability distribution p(a, b, c) in the Evans scenario is compatible with
any GPT if and only if there exists a bilocal distribution pB(a, b, c|x, z) compatible with
the same GPT which satisfies pB(a, b, c|x = z = b) = p(a, b, c). Using this mapping, we
can explore the set of non-signaling correlations in the Evans scenario by virtue of the
non-signaling conditions of the bilocality scenario.
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(a) Non-Evans with passive observations. (b) Non-Evans under intervention.

Figure 5.5: The distribution of the trace-distances of non-classical behaviors to the set of
those compatible with a classical description when (a) only passive observations are made
and (b) interventional data is also taken into account. While in (a) all the non-classical
instances have been used in the plot, in (b) only 10% has been considered.

We can formalize this with the following statement:

p(a, b, c) is NSI-compatible ⇐⇒ ∃ pB(a, b, c|x, z) non-signaling distribution,
s.t. pB(a, b, c|x = z = b) = p(a, b, c)

and pB(a, c|x, z) = pB(a|x)pB(c|z).
(5.20)

This tells us how to explore the set of NSI-compatible correlations in the Evans scenario
using a single quadratic program. Furthermore, this fact allows our test to be conclusive,
i.e. if one can prove that the conditions from (5.20) do not hold for some candidate distri-
bution p(a, b, c) then we can conclude the distribution is NSI-incompatible and, conversely,
if one can find a solution then there exists a no-signaling distribution pB(a, b, c|x, z) that
respects the NSI requirements, such that recovers p(a, b, c) by setting x = z = b, leav-
ing no ambiguity up to a small (∼ 10−9) computational precision. We remark that this
is not the case for the inflation tests, as they constitute only necessary conditions for
compatibility.

We can, thus, estimate the volume of the Evans non-signaling set N (E) inside the
simplex of probability distributions, see Table 5.4, which includes also results using dif-
ferent numbers of outputs for each party. Naively, one might believe that non-signaling is
not relevant in the presence of signals between parties of the network and in the absence
of inputs, but this is indeed not true as we can see that, approximately, the non-signaling
set represents 84.94% of the volume relative to the simplex of all probability distributions.
Notice also how the volume increases as we increase the number of outputs on Bob’s side,
whilst a similar change on the other parties causes the opposite effect.

Naturally, we also investigated the volume of the classically compatible distribution
in the Evans scenario C(E) and, remarkably, found a very small gap (≈ 0.12%) of NSI-
compatible non-classical distributions in the minimal case where all variables are bits.
Fig. 5.5a shows the distribution of the distances to the classical set. All non-classical
distributions that we have found cannot be ruled out by quantum inflation up to 2nd
order inflation and NPA level 3, therefore we cannot tell that these points are truly post-
quantum with our current techniques. Even the classical version of the inflation technique
is unable to exclude any of the non-classical points we found. This opens the interesting
possibility (with actual candidate probability distributions) that a classical-quantum gap
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|A| |B| |C| Volume

2 2 2 0.8494

2 3 2 0.9823

3 2 3 0.7475

Table 5.4: Volume of the non-signaling set N (E) within the simplex of valid probability
distributions in the Evans scenario for different numbers of outputs for each party. The
number of samples considered in each case was of the order of 105.

exists in the Evans scenario, a question that remains open [Lau+23].
In particular, starting from these points, we can propose the candidate distribution

PNS(1, 0, 0) = 2/81, PNS(0, 0, 1) = 1/55

PNS(0, 1, 0) = 1/11, PNS(1, 0, 1) = 1/5

PNS(1, 1, 0) = PNS(0, 1, 1) = 1/81,

PNS(1, 1, 1) = 1/2
√
2,

PNS(0, 0, 0) = 1−
∑

a,b,c ̸=0,0,0

PNS(a, b, c)

(5.21)

which satisfies the NSI test (5.20) and can be certified to be non-classical with QP with
a corresponding witness given by

W :=
∑
a,b,c

(p(a, b, c)− PNS(a, b, c))
2 ≥ 1

36.853
. (5.22)

Moreover, we analyzed what happens if one considers additional interventional data
p(a, c|do(b)). For the particular case of the Evans causal structure, it is sufficient to
provide only p(a|do(b)) and p(c|do(b)), since p(a, c|do(b)) = p(a|do(b))p(c|do(b)). To do
so, we use the interruption technique to map valid non-signaling probability distributions
in the bilocal scenario to valid hybrid data tables in the Evans scenario. This is done by
considering only pB(a, b, c|x = z = b) and the marginals pB(a|x),pB(c|z) and identifying
them with p(a, b, c), p(a|do(b = x)) and p(c|do(b = z)) respectively.

Similar to the observable case, we can ask what portion of these valid non-signaling
hybrid data tables are classically achievable. Remarkably, we found that interventions
increase the power to detect non-classicality by two orders of magnitude. Indeed, the
non-classical volume, in the case where all variables are binary, increases to 14.6% relative
to the number of non-signaling distributions sampled, as opposed to 0.12% using only
passive observations. We also look at how these points are distributed relative to their
trace distances inside the NSI set, see Fig. 5.5b.

5.4 Discussion

From a modern viewpoint, Bell’s theorem can be seen as an instance of a causal inference
problem, more precisely causal compatibility where we impose a given causal structure on
a quantum experiment and ask whether a classical causal model can explain the observed
correlations. This simple yet powerful realization led to a number of generalizations
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of Bell’s theorem for causal networks of growing size and complexity, showing, for in-
stance, the emergence of non-classical behavior even without the need for measurement
choices [Fri12; Ren+19a; Pol+23; Cha+21] or by allowing time-like rather than space-like
correlation scenarios [Cha+18]. Of particular relevance, are causal networks composed
of independent sources of correlations, scenarios that unveiled new features such as the
possibility of self-testing all entangled quantum states [Šup+23] and quantum theory it-
self [WC20], activation of non-classical behaviour [Poz+19; Pod+20], refined notions of
multipartite non-classicality [PGT22; Sup+22] and novel tests of the role of complex
numbers in quantum mechanics [Ren+21].

A basic problem within this context is that of characterizing the sets of correlations
allowed by each causal structure according to classical, quantum, and non-signaling the-
ories. A problem that, differently from the standard Bell scenario, relies on polynomial
causal constraints that impose a non-convex structure to the set of allowed probability
distributions compatible with a given causal network. Recently a number of different tools
have been proposed to approach this problem but even simple causal networks still have a
very fragmented and partial characterization. Moreover, it is unclear how effective those
different methods are in witnessing non-classicality. To obtain a more coherent and global
picture of both the sets of correlations as well as the tools designed to address them, we
analyzed the volumes of such different sets of correlations.

Considering the simplest bilocality scenario and using QP we obtained that only 2.4%
of the NSI correlations are non-local while 32.6% are non-bilocal, thus showing that
the ability to witness non-classicality is significantly enhanced if we take into account
the independence of the sources. Furthermore, the distribution of distances of the non-
classical points to the local and bilocal sets show an exponential decay, meaning that
most of them are concentrated close to the classical sets. In comparison, the best results
we obtained with the inflation technique – corresponding to a 3rd order inflation level –
provide a lower bound of 13.3% for the volume of the non-bilocal set, meaning that more
than half of the non-bilocal points are not detected by this method.

In the Evans scenario, we have shown that NSI correlations occupy a significant volume
of the simplex set (the set of all probability distributions), in some cases surpassing
98%. Surprisingly, only 0.12% of those NSI correlations are actually non-classical. In
comparison, the inflation technique again shows relatively poor performance, being unable
to detect any of these non-classical points (up to the level of the hierarchy we could handle
numerically). Remarkably, however, the volume of non-classical correlations is increased
to 14.6% when we consider also the effect of interventions in the Evans scenario, a clear
signature that interventional data can enhance significantly our ability to witness non-
classicality.

For the triangle network, since it involves third-order polynomial constraints, we can-
not directly use QP and, for this reason, we have employed and compared four specific
tools: the inflation technique, the covariance test, the Finner inequality, and Shannon-
type entropic inequalities. Once more, the 3rd inflation level was the best approximation
we achieved with the inflation technique, lower bounding the volume of non-classical cor-
relations to 11.3∗% of the total set of tripartite probability distributions. Interestingly,
the lower bound on the volume of post-quantum correlations is 10.98%, pointing out that
only a small fraction of the non-classical correlations in the triangle scenario might have
a quantum description. In comparison, the Finner inequality detects a volume of 1.91%
of non-classical correlations while the covariance approach and the entropic inequalities
lead to 3.69% and 0.095%, respectively.
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In summary, our approach unveils a few interesting features of the non-convex sets
of correlations of causal networks of relevance in the literature. On the positive side, it
shows that taking into account the independence of the sources as well as interventional
data can greatly improve the volume of non-classical correlations, enhancing our ability
to witness them. In turn, the inflation technique, the most general tool at the disposal,
cannot detect a significant portion of non-classical correlations, at least the approximation
level that was computationally accessible.

This shows that new tools might be needed to advance our understanding of such
networks and the non-classical features they entail. One interesting possibility is to adapt
the inflation method to generate quadratic constraints only, which could then be efficiently
handled by a quadratic optimizer. Another relevant direction is to use these results as
the starting point to solve open questions. For instance, we have detected non-classical
points in the simplest Evans and triangle scenarios that nonetheless pass the test of
quantum inflation. Those are good candidates for possible quantum violations of the
causal constraints imposed by such networks and we hope our work motivates further
research in those directions.

We provide the codes to reproduce our results at the link [CLP23].



Final Remarks

This dissertation summarizes the results and the learning process of the author along his
graduate’s program. As it might be clear at this point, the main idea was to present the
basic knowledge underlying the research conducted throughout these years and the main
contributions derived from it. But not only, while doing so we have made the effort to
provide most of the possible connections to the topic that can be found in the literature.
In this way, we hope to have provided what could be used by the reader to construct a
mental map of contextuality.

Having that in mind, throughout these pages we have tried to cover from the basics
aspects of contextuality, including its origins and typical approaches and related debates,
as well as the more technical aspects of it, namely mathematical subtleties, experimen-
tal challenges, but mainly the characterization side of the phenomenon and the use of
computers to approach it.

Moreover, we have discussed three contributions made by this author along the pro-
gram. One of them, a mostly mathematical result concerning the relation between quan-
tifiers of contextuality for a specific class of scenarios, but that could help with the un-
derstanding of the structure of the quantum resource in the future. In the second of
these works, we explored the idea of using quantifiers for non-locality of quantum states,
following the typical construction from quantifiers for behaviours, to address important
questions on the relation between entanglement and non-locality. And the last work,
on the volume of correlations sets in causal networks, we addressed the problem of un-
derstanding the relative volume among typical sets of correlations in scenarios of great
importance in the study of quantum causality nowadays, showing that by considering in-
dependent sources and interventions we can improve our ability to detect non-classicality.

To finish, we remark one more time that this dissertation has not been planned to
work as a first reading for someone unfamiliar with the subject. On the contrary, we
expect that previously motivated readers (probably students) find themselves even more
motivated by now, hopefully with a roadmap that could guide them to whatever be the
approach or technique of interest they wish to learn more about.
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