• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.43.2007.tde-29022008-113939
Document
Auteur
Nom complet
Felipe Honorio dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2007
Directeur
Jury
Teotonio Sobrinho, Paulo (Président)
Carneiro, Carlos Eugenio Imbassahy
Vanhecke, Franciscus Josef
Titre en portugais
Cálculo da dimensão em um modelo de gravitação quântica euclidiana
Mots-clés en portugais
Geometria algébrica
Geometria estocastica
Teoria quântica de campos
Resumé en portugais
Este trabalho de mestrado teve o objetivo de calcular a dimensão de um modelo de gravitação quântica euclidiana baseado no formalismo da geometria não comutativa. Este cálculo é uma continuação do artigo [4]. Em [4], observa-se que utilizar uma tripla espectral comuttiva permite generalizar e tratar a geometria usual de maneira puramente algébrica. Do formalismo da Geometria Não Comutativa [2], observa-se que existe uma relação entre uma variedade e uma tripla espectral comutativa. Depois de definida a ação, as variáveis dinâmicas e o observável dimensão desta teoria em termo de tripla espectral, verificou-se que havia um analogia clara com a teoria das Matrizes Aleatórias [6], assim foi possível identificar uma maneira numerica de calcular a dimensão deste problema. O espaço estudado foi um conjunto infinito de pontos, cuja dimensão era uma variável estocástica, ou seja, partimos de um conjunto de pontos arbitrário que poderia ter qualquer dimensão real. Os resultados obtidos mostram que a dimensão do modelo é um número perto de 1. Neste trabalho de mestrado encontramos dois métodos distintos para calcular a dimensão, um baseando-se na definição de dimensão de dimensão oriunda da Geometria Não Comutativa e a outra baseada na lei de Weyl. Dadas estas duas alternativas, o trabalho consistiu em criar, construir, implementar e testar um algoritmo capaz de extrair a dimensão destas duas maneiras através de simulações de Monte Carlo. Este resultado é muito interessante devido as características muito gerais do espaço escolhido, dado que o limite superior da dimensão calculada em [4] foi 2, estávamos esperando qualquer valor no intervalo entre 0 e 2, e o que os resultados sugerem é que a dimensão é uma "variável termodinâmica", ou seja, uma distribuição delta com centro em 1
Titre en anglais
Calculating the dimension of a Euclidian Quantum Gravity model
Mots-clés en anglais
Quantun field theory
Resumé en anglais
This work had the intention of calculating the dimension of a Euclidian Quantum Gravity model which in based on the formalism of non commutative geometry. This work is a continuation of the article [4]. From [4] we know that using a commutative spectral triple allows us to generalize and treat ordinary geometry in a purely algebraic manner. From Non commutative Geometry [2] follows that manifolds and a spectral triples are related. After defining action, dynamical variables and observables in terms of the spectral triple, a relationship between Random Matrix Theory [6] came up. That relationship was used to evaluate the model dimension using numerical computation algorithms. We studied on particular manifold which is equivalent to an ordinary set of points. The dimension is a stochatic variable, for instance this model allow any possible value for dimension inside the interval [0;2] We found two distinct methods for calculating the dimension. One of them was based on the dimension defined by Alain Connes and the other is based on the dimension defined by Weyl. It is known thad both definitions are equivalent for the simple cases. Given these two methods we calculated the dimension through a Monte Carlo algorithm created and implemented during this work. The program simulated a finite approximation for the dimension and after running several simulations depending on the number of points we founds the asymptotic law for the dimension. We found that the dimension is a "thermodynamical variable" near the finite value 1, since we found that the estimator of this observable has variance thad goes to zero on the continuous case. This result is very interesting due to the broad characteristics of the space chosen. Given that the upper limit for the dimension calculated in [4] was 2, we were expecting any stochastic distribution in the interval between 0 and 2, and the results sugest that dimension is a delta
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
1594583.pdf (1.07 Mbytes)
Date de Publication
2008-03-24
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.