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Resumo 

Neste trabalho apresento um estudo do magnetotransporte (MT) em poços quânticos de 

amostras de GaAs em baixos campos magnéticos. A ideia de estudar MT em GaAs poços 

quânticos veio dos resultados das medições de amostras de HgTe. Alguns desses resultados são 

apresentados no Apêndice I. Medi a magnetorresistência em configurações locais, não locais e 

Hall. Além disso, estudei uma resposta do sistema de amostras de GaAs à irradiação de 

microondas (MR). 

A tese está composta por três capítulos, cinco anexos e cinco apêndices. No capítulo primeiro 

é dada a base teórica do magnetotransporte em 2DES. No final do primeiro capítulo, são 

descritos brevemente diferentes regimes de transporte que podem ser observados no 2DES. 

Amostras e configurações experimentais são descritas no capítulo segundo. Este capítulo 

fornece uma descrição da preparação da amostra, padrões que foram usados durante a 

fotolitografia para fazer a estrutura 2D, e a configuração experimental que foi empregada neste 

trabalho. 

No capítulo terceiro, medições de MT de GaAs são apresentadas, e é a parte principal da tese. 

Primeiro, o modelo balístico foi comparado com os resultados experimentais, reveleando que o 

transporte de elétrons tem um caráter complicado e não pode ser descrito por apenas um 

modelo. Supomos que o transporte de elétrons em nossas amostras tenha transporte 

hidrodinâmico além de balístico. Assim, o experimento foi continuado para esclarecer a 

natureza do transporte de elétrons em nossas amostras. Realizamos medições nas configurações 

local, não local e Hall, com diferentes direções de fluxo de corrente e arranjos para sondas de 

tensão. Observamos a contribuição dinâmica para o transporte de elétrons. Também 

confirmamos o efeito Gurzhi previsto teoricamente em nossas amostras. 

Os apêndices consistem no trabalho experimental e teórico que não foi incluído no texto 

principal. O primeiro, são medições de MR de amostras de HgTe e comparação dos resultados 

experimentais com a teoria. O segundo apêndice é sobre as medidas de MR de amostras de 

Ge:P. Este trabalho foi feito em colaboração com outro laboratório. Terceiro, consistem em 

medidas de MR de amostras de GaAs sob excitação de MW. Nos dois últimos apêndices são 

discutidas algumas questões que apareceram durante o trabalho teórico e análise de resultados. 

Os anexos consistem em artigos e uma apresentação de pôster. Primeiro, são as medidas de MR 

do germânio dopado. Em segundo lugar, é o poster sobre as medidas de MR no GaAs e a 



 
 

comparação teórica. Os últimos três anexos são sobre medidas de MR de amostras de GaAs e 

a comparação com a teoria. 

Palavra-chave: medições de magnetoresistência, preparação de amostras de GaAs, 

fotolitografia, transporte balístico, transporte hidrodinâmico. 

  



 
 

Abstract 

In this thesis, I present a study of the magnetotransport (MT) in the quantum wells of GaAs 

samples in the low magnetic fields. The idea of studying MT in the GaAs quantum wells (QWs) 

appeared as a result of measurements of HgTe samples. The effects of MT observed in the 

HgTe samples required strong numerical analysis. Some of the results are presented in 

Appendix I. We have measured magnetoresistance in local, non-local and Hall configurations 

during the Ph.D. In addition, I have studied a system response of GaAs samples to microwave 

(MR) irradiation. 

The thesis consists of three chapters, five attachments, and five appendixes. In the first chapter, 

I give a theoretical basis of the magnetotransport in two dimensional electron system (2DES). 

At the end of the first chapter, I describe different transport regimes which can be observed in 

2DES. 

Samples and experimental setup are described in the second chapter. This chapter provides a 

description of samples processing, patterns that I used in photolithography, and experimental 

setup used for this work. 

In the third chapter of the thesis, I explain MT measurements of GaAs. It is the main part of 

this work. First, we compared a ballistic model with the experiment. It revealed that electron 

transport has complicated character, and it is necessary more than one model for be described. 

We supposed that the electron transport in our samples has hydrodynamic transport besides 

ballistic. Thus, the experiment was continued to clarify the nature of electron transport in the 

structures. We performed measurements at local, non-local, and Hall configurations with 

different current flow directions and arrangements for voltage probes. We observed the 

dynamic contribution to the electron transport. We also confirmed theoretically predicted 

Gurzhi effect in our samples. 

Appendixes consist of supplementary experimental and theoretical. First, consist of MR 

measurements of HgTe samples and comparison experimental results with theory. Second 

appendix is about MR measurements of GeP samples. This work was done in collaboration 

with another laboratory. Third appendix consist of MR measurements of GaAs samples under 

MW excitation. In the last two appendixes are discussed some questions which appeared during 

the theoretical work and results analysis. 

Attachments consist of four articles and one poster presentation. First, is the MR measurements 

of doped germanium. Second, is the poster about MR measurements in the GaAs with 



 
 

theoretical comparison. Last three attachments are MR measurements of GaAs samples with 

analysis of the results. 

Key words: magnetoresistance measurements, GaAs samples processing, photolithography, 

ballistic transport, Hydrodynamic transport 
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Introduction 

First anisotropic magnetoresistance (AMR) effects were observed in the experiments by W. 

Thomson in 1857. In his experiments, he discovered that magnetoresistance depends on the 

direction of the applied magnetic field to sample. His experiments were starting point in 

transport measurements. In 1879 E. Hall discovered the effect that later took his name. He 

observed that, if put sample with a current in the magnetic field it is possible to observe the 

difference in the perpendicular voltage. Going deeply in condensed matter physics, H. K. Onnes 

discovered superconductivity in 1911. Super fluidity in 4He was discovered by P. Kapitsa in 

1938, in 1947 J. Bardeen made bipolar junction transistor. In 1972, super fluidity was 

discovered in 3He. Then, in the 1980s when nanofabrication technology began, was discovered 

giant magnetoresistance (GMR). GMR is a quantum mechanical phenomena that can be 

observed in thin films with alternate ferromagnetic and conducted nonmagnetic layers. This 

phenomenon consists of a change in magnetoresistance with a change in the direction of 

magnetization of neighboring layers. By changing the applied magnetic field is possible to 

control the direction of magnetization. The basic principle of this phenomena is electrons 

scattering what depends on the spin direction. At this time, there were many other discoveries 

that were observed in 2DES. Such as integer quantum Hall effect (IQHE). The related effect, 

which called the Shubnikov-de Haas oscillations. And fractional quantum Hall effect (FQHE) 

what can be observed in the higher magnetic fields. 

Since the 1980s, significant progress has been made in understanding the electron transfer in 

micro and nanometer systems. Successful fabrication of modern electronic components, for 

example ballistic field-effect transistors, requires a fundamental understanding of the 

mechanism of charge carrier transport. The commonly accepted mechanism for the transport 

properties is described by semi classically or by the Landauer-Buttiker formalism. These 

models are based on the assumption that the rate of momentum conserving scattering exceeds 

that of momentum relaxation scattering. In this thesis I worked with two different transport 

models. 

First, is the semi classical approach. Magnetoresistance is a perfect tool for experimental studies 

of electronic systems. Magnetoresistance is a change in the resistivity of a material in an applied 

magnetic field. Which depends on the strength of the magnetic field and it relative direction to 

the current. 
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Second, is the hydrodynamic approach. There has been increasing interest in the fabrication of 

devices with new types of functionality whose operation is determined by new principles. The 

hydrodynamic regime of a Fermi liquid of electrons in a 2D system is reachable when the mean 

free path for electron-electron collisions lee is smaller than the mean free path with static defects 

and phonons l, and transport resembles a viscous electron flow. 

This thesis is dedicated to the study of transport phenomena in low dimensional systems in the 

presence of external fields. The main part of the thesis is devoted to the measurenments of 

longitudinal and Hall resistance. In addition, non-local resistance measurements are presented. 

These measurements helped to characterize electronic transport such as electron-electron, 

electron-hole scattering times. Also, I present in this thesis an electron transport in a certain 

temperature range with a constant magnetic field. Moreover, the electron transport in the 

samples at the MW irradiation have been studied. 

The research started with the MR measurements of GaAs QWs. Measurements were carried out 

to study the local, Hall, and non-local electron transport. We observed features related to 

ballistic regime of electron transport. It had a significant effect on resistance, which 

demonstrates power and frequency dependence. The next step was to compare the theoretical 

calculations from the ballistic model with experimental data to interpret this effect. I 

participated in developing a numerical simulation tool to calculate the contribution of the 

ballistic conduction effect, which facilitated analyzes. Results of this work I presented on 18th 

Brazilian workshop on semiconductor physics which was at August of 2017. The poster is 

attached in [II]. 

Further measurements revealed more interesting features of the samples. During the 

experiments were found that the probe configuration and sample geometry strongly affects the 

temperature evolution of local resistance. These transport properties can be attributed to the 

presence of hydrodynamic effects. Experimental results confirmed the theoretically predicted 

significance of viscous flow in mesoscopic devices. This work is publication in 

AipAdv.8.025318 (2018) and is presented in the attachment [III]. 

Another important finding was an observation of the negative nonlocal resistance. It was 

supposed what whirlpools are formed in the electron flow. To clarify this effect I participated 

in different measurements using different samples with different geometries of nonlocal 

transport. Then experimental data was compared with the simulation’s results based on the 
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hydrodynamic model. This work is publication in PhysRevB.97.245308 (2018) and is presented 

in attachment [IV]. 

Also, a negative Hall resistivity was observed in the experiments. For experiments, we used 

mesoscopic size samples at the low magnetic field. The observed effect was attributed to Hall 

viscosity in the inhomogeneous charge flow. Hall viscosity is a nondissipative response 

function describing momentum transport in 2D systems with broken time-reversal symmetry. 

In the classical regime, Hall viscosity contributes to the viscous flow of 2D electrons in the 

presence of a magnetic field. Experimental results supported by a theoretical analysis confirmed 

that the conditions for observation of Hall viscosity are correlated with predictions. This work 

is publication in PhysRevBRapidComm..98.161303 (2018) and is presented in attachment [V]. 

Additionally I helped to measure the longitudinal magnetoresistance on heavily P-doped 

germanium samples. The experimental results have compared to those from a many-body 

theory where the donor-electrons are assumed to reside at the bottom of the many-valley 

conduction band of the host. Good qualitative agreement between theory and experiment was 

obtained. This work is attached in [I]. 
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Chapter 1 

1 The basis of 2-dimensional electron systems 

1.1 Magnetotransport in 2DES 

Description of electronic transport in a solid is a very interesting and competitive task. It can 

be described by a many-body quantum mechanical approach. A many-body approach includes 

a total number of particles and interactions between them and with the external environment. 

Without simplification, such type of approach has too many variables for computational 

methods. Below, in the Fig. 1 is presented the hierarchy of the models from the simplest which 

gives approximate solution to the complicated which gives more precise solution. 

 

Fig. 1 Connection of different approaches which describe MT. 
Adapted from [1]. 

Also, the characteristic length scale of samples can change the transport behaviour from 

classical to quantum. Depending on it, the transport can be purely classical, purely quantum or, 

under certain conditions, a mixture of both. 
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1.1.1 Semiclassical model 

First I want to start from the Drude theory. This is a classical theory that explains electron 

transport in metals. Drude suggested this theory at the 1900 one year after the electron was 

discovered. In this theory, electrons are treated as an electron gas which can be described by 

applying the kinetic theory of gases. In this case, electrons are same solid spheres that move 

straight before they collide. It is assumed that the collision time is infinitely short and there are 

no forces between particles other than the moment of collision. There are some general proposes 

of Drude theory. First, there is no electron-electron interaction between collisions, this means 

that without external electromagnetic fields electrons move straight with constant speed. In the 

presence of an external electromagnetic field, electrons move according to Newton’s law. 

Additional fields generated by interaction with other particles don’t take into consideration. 

Second, all collisions occur instantaneously, which means that the speed and direction of 

electron change immediately. Third, the probability of collision for an electron for infinitely 

small time dt has this form: P = dt
𝜏𝜏

, where 𝜏𝜏 is a relaxation time. 

Based on these assumptions, the general equation of motion in the semiclassical model can be 

written as: 

 𝑚𝑚𝑑𝑑𝑣𝑣�⃗
𝑑𝑑𝑑𝑑

= −𝑚𝑚 𝑣𝑣�⃗
𝜏𝜏
− 𝑒𝑒(𝐸𝐸�⃗ + �⃗�𝑣 × 𝐵𝐵�⃗ ), (1.1) 

where 𝑚𝑚𝑣𝑣�⃗
τ
 is a scattering force due to disorder. The constant drift velocity can be find from the 

eq. (1.1) under the steady state conditions. It has the following form v�⃗ D = −𝑒𝑒𝜏𝜏
𝑚𝑚
𝐸𝐸�⃗ , where 𝑒𝑒𝜏𝜏

𝑚𝑚
 is a 

mobility µ. Also conductivity and resistivity for the case without magnetic field are 𝜎𝜎0 = n𝑒𝑒µ 

and 𝜌𝜌0 = 1 𝜎𝜎0�  respectively. 

In the presence of a magnetic field perpendicular to 2DES, the electric field generated by the 

current has the form: 

 �
𝐸𝐸𝑥𝑥
𝐸𝐸𝑦𝑦
� = �

𝜌𝜌𝑥𝑥𝑥𝑥 𝜌𝜌𝑥𝑥𝑦𝑦
𝜌𝜌𝑦𝑦𝑥𝑥 𝜌𝜌𝑦𝑦𝑦𝑦� �

𝑗𝑗𝑥𝑥
𝑗𝑗𝑦𝑦
� = �

1 𝑛𝑛𝑒𝑒µ� 𝐵𝐵 𝑛𝑛𝑒𝑒�

−𝐵𝐵 𝑛𝑛𝑒𝑒� 1 𝑛𝑛𝑒𝑒µ�
��

𝑗𝑗𝑥𝑥
𝑗𝑗𝑦𝑦
� = �

𝜌𝜌𝐿𝐿 𝜌𝜌𝐻𝐻
−𝜌𝜌𝐻𝐻 𝜌𝜌𝐿𝐿� �

𝑗𝑗𝑥𝑥
𝑗𝑗𝑦𝑦
�,(1.2) 

where for the isotropic system the longitudinal resistivity 𝜌𝜌L is equal to the 𝜌𝜌0 and 𝜌𝜌H is a Hall 

resistivity. Negative sign significates different polarity of the Hall electric filed. The resistivity 

tensor is the inverse of the conductivity tensor, finally, components of the resistivity tensor are: 
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 𝜌𝜌𝐿𝐿 = 𝜎𝜎𝐿𝐿
𝜎𝜎𝐿𝐿
2+𝜎𝜎𝐻𝐻

2  and 𝜌𝜌𝐻𝐻 = 𝜎𝜎𝐻𝐻
𝜎𝜎𝐿𝐿
2+𝜎𝜎𝐻𝐻

2 . (1.3) 

To measure resistivity from the experiment it is necessary to know the current flow and sample 

geometry. For example, for Hall bar structure (Fig. 2) the longitudinal and Hall resistivity can 

be written as 𝜌𝜌L = RL
W
L

 and 𝜌𝜌H = RH, respectively. Hall bar geometry excludes the influence 

of contact resistance. 

 

Fig. 2 Schematic of the Hall bar structure. 

1.2 2D electron system 

In a 2DES, electrons are free to move in a plane and in the direction perpendicular to the plane 

electrons are confined in the energetic potential well. A typical realization of 2DES are 

semiconductor heterojunctions. As an example, the 2DES is located in the quantum well, 

formed by 2 layers of AlGaAs on the sides and GaAs inside is schematically presented below 

in the Fig. 3. 
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Fig. 3 Probability density of 2 lowest wave functions in a quantum potential well. 

The total energy of electrons can be found from the Shcrödinger equation: 

 (− ℏ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉(𝑧𝑧))𝜓𝜓 = 𝐸𝐸𝜓𝜓. (1.4) 

Due to the fact that the potential depends only on z-direction the electron states are quantized 

but also they have free motion in x – y plane. Taking into account previous assumptions the 

electron wave function can be written as 𝜓𝜓(𝜌𝜌,𝜌𝜌, 𝑧𝑧) = 𝜑𝜑𝑛𝑛(𝑧𝑧)𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥+𝑖𝑖𝑘𝑘𝑦𝑦. Then, the next step is the 

separation of Shcrödinger equation. Thus the solution for the total energy of electrons has the 

following form: 

 𝐸𝐸𝑛𝑛 = 𝜀𝜀𝑛𝑛 + ℏ2(𝑘𝑘𝑥𝑥2+𝑘𝑘𝑦𝑦2)
2𝑚𝑚

, (1.5) 

where the total energy E is a sum of quantized energy 𝜀𝜀𝑛𝑛 in z direction and energy in the x – y 

plane. 

For the case when the 2DES placed in magnetic field the eq. (1.4) is modified: 

 ( 1
2𝑚𝑚

(𝑃𝑃�⃗ − 𝑒𝑒
𝑐𝑐
𝐴𝐴)2 + 𝑉𝑉(𝑧𝑧))𝜓𝜓 = 𝐸𝐸𝜓𝜓, (1.6) 

where 𝑃𝑃�⃗ = −𝑖𝑖ℏ𝛻𝛻 and 𝐴𝐴 is a vector potential. Thus, the total energy of the system is: 

 𝐸𝐸𝑛𝑛,𝑖𝑖 = 𝜀𝜀𝑛𝑛 + (𝑖𝑖 + 1
2
)ℏ𝜔𝜔𝑐𝑐, (1.7) 
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where 𝜔𝜔𝑐𝑐 = 𝑒𝑒𝑒𝑒
𝑚𝑚

 is the cyclotron frequency. 

1.3 Transport regimes in 2DES 

The behavior of electron transport in a low dimensional system, depends on the characteristic 

lengths in the active region of a sample. In the Fig. 4 is presented the active region of a sample 

with a length L, and a width W of the conducting channel. The electronic mean free path 

between collisions is labeled as 𝜌𝜌𝑒𝑒. Collisions occur due to the samples inperfections such as 

impurities or irregularities in a device. The mean free path 𝜌𝜌𝑒𝑒 is possible to express as: 𝜌𝜌𝑒𝑒 =

𝜏𝜏𝑒𝑒𝑣𝑣𝐹𝐹. Where 𝜏𝜏𝑒𝑒 is the electron scattering time and 𝑣𝑣𝐹𝐹 = 𝑝𝑝𝐹𝐹
𝑚𝑚

 is the Fermi velocity with the 

momentum 𝑝𝑝𝐹𝐹 = (2𝜋𝜋𝑛𝑛)1/2. 

Also, the phase breaking length 𝜌𝜌Ψ appears in the Fig. 4 as the addition scale parameter. This 

is the length scale at which quantum coherence is maintained. The latter is often associated with 

environmental issues and results in quantum mechanical phase breaking. At low temperatures 

the phase braking length can be much larger than the mean free path 𝜌𝜌𝑒𝑒. In this thesis the electron 

transport was described by classical or semi classical models. In this case, the phase breaking 

length have to satisfy the following condition: 𝜌𝜌Ψ < 𝜌𝜌𝑒𝑒. 

The different mean free path 𝜌𝜌𝑒𝑒 in comparison with the dimensions of a device can reveal 

different transport regimes. Fig. 4 (a) illustrates the case when the L and W are much larger 

than the electron  mean free path 𝜌𝜌𝑒𝑒 ≪ L, W. This is a purely diffusive transport, and the system 

behaves like a semiclassical metal or semiconductor. 

 

Fig. 4 Transport in nanostructures for diffusive (a), quasi-ballistic (b), and ballistic (c) regimes. 
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In the Fig. 4 (b), the width, W, is much smaller than the characteristic mean free path, and the 

length, L, is much longer than W: W ≪ 𝜌𝜌𝑒𝑒 ≪ L. This regime can be observed in a quantum-

confined system where the carrier's motion is quantized in one dimension however has diffusive 

motion in others. In the last Fig. 4 (c) the system is purely ballistic, which means that L and W 

are shorter than the elastic and inelastic mean free paths L, W ≪ 𝜌𝜌𝑒𝑒. The motion of charge in 

this system is determined by the wave-like behavior of the particle and its reflective and 

transmitting properties through the structure. 

Above I described transport regimes which are based on the diffusibe and ballistic models. Also 

electrons in a conductor, under some conditions, can exhibit hydrodynamic flow. Thus, 

equations of hydrodynamic can be applied to explain the electron transport. 

Such flow of the electrons can be observed in so-called pipe geometry and exhibit Poiseuelle-

type flow. It is usually considered that the Poiseuelle-type flow is the axisymmetric flow in an 

infinitely long, circular pipe. The flow is caused by a pressure gradient in the axial direction. 

The difference between the motion of molecules in a liquid and the motion of electrons in a 

crystal lattice creates additional difficulties in applying the equations of hydrodynamics. 

Electrons have collisions between themselves and also with phonons and impurities. The way 

to observe the hydrodynamic regime in a conductor is to create a condition when the electron-

electron interaction time will be smallest in comparison with another characteristic times such 

as electron-phonon and electron-impurity scattering times. For the small temperatures the 

electron-impurity scattering is dominating while the electron-phonon scattering is dominating 

at high temperatures. Thus, biggest contribution from hydrodynamic regime in the electron 

transport lies in the temperature window when electron-impurity and electron-phonon 

scattering are dominating less. 

The way to describe hydrodynamic processes in the electron liquid is to solve the Navier-

Stockes and continuity equations. In general form these equations for the one-component 

systems have the following form: 

 𝜕𝜕𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑑𝑑

+ 𝛻𝛻 ∙ 𝚥𝚥 = 0, (1.8) 

where δne is the deviation of the carrier density and ȷ⃗ are the carrier’s current. 

 

 𝜕𝜕𝑣𝑣�⃗
𝜕𝜕𝑑𝑑

= 𝜂𝜂𝛻𝛻2�⃗�𝑣 − (�⃗�𝑣 ∙ 𝛻𝛻)�⃗�𝑣 − 𝛻𝛻𝛻𝛻 + �⃗�𝑔, (1.9) 
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where 𝜂𝜂 is the kinematic viscosity tensor, 𝛻𝛻 is the specific thermodynamic work and g�⃗  is a sum 

of forces that can be applied to the system. 
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Chapter 2 

2 Samples and experimental setup 

2.1 Samples 

In the experiments, we studied high mobility electron gas in the GaAs/AlGaAs mesoscopic size 

samples with narrow QW of 14 nm. These samples were fabricated by molecular beam epitaxy 

technique (MBE). MBE is a process when one or more thermal evaporated beams of atoms or 

molecules react with a crystalline surface under ultrahigh vacuum. A schematic representation 

of the MBE for studied sampels is presented in the Fig. 5. 

 

Fig. 5 The scheme of the MBE growth chamber. 

The substrate, a GaAs wafer, is placed on the substrate holder in the upper part of the vacuum 

chamber. Molecular beams are generated from effusion cells that are located at the bottom of 

the chamber. Individual opening or closing of a shutters for effusion cells allows to grow 

samples with different thikness of the deposited elements. Growing process is controlled by 

reflection high-energy diffraction (RHEED). This control allows to grow layers with different 

composition and atomic level thickness. 

The samples which were studied consist of narrow 14 nm quantum well with an electron density 

of 𝑛𝑛𝑠𝑠 ≅ 1.0 × 1012 cm−2 and mobility of 𝜇𝜇 ≈ 1.7 − 3.2 × 106  cm2 V⁄  s. QW is a potential 

well with discrete energy levels. For the samples we studied, the QWs were formed as a 
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sandwich between GaAs and AlGaAs, which have a different bandgaps. The samples structure 

we studied in the experiments is presented in the Fig. 6. 

 

Fig. 6 Schematic of layer structures of GaAs/AlGaAs QWs. 

It is possible to describe QW as a one-dimensional potential barrier for the quantum particle. 

Motion in this barrier bounded by two dimensions. The main property of movement of a 

quantum particle in the potential barrier is discrete energy levels. The QW has a discrete energy 

levels E1…En as possible to see in the Fig. 7. 

 

Fig. 7 Schematic representation of a quantum well. 

2.1.1 Sample processing 

To carry out MT measurements it was necessary to make samples with various patterns. Also, 

pattern scale can affect on electronic transport in the samples. 
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Fig. 8 Principal geometries to measure non-local transport. 

We used H-bar and Hall-bar geometries in my experiments. Schematically these geometries are 

presented in Fig. 8. There are some important procedures that had to be performed before raw 

samples were ready for measurements. First one was the samples processing in a clean room. 

Some of the steps I have completed are listed below: 

1. Samples processing – it is the first step for the samples processing. Samples must 

be free of any type of contamination. Acetone and alcohol must be used for 

cleaning samples. Then it is necessary to dry samples with N2. 

2. Spin-Coating – then the samples should be completely covered with a drop of 

photoresist. For different types of photoresist, the rotational speed of spinor and 

the rotation time can be different. It is necessary to check carefully and prepare test 

samples before, to find optimal parameters of the speed and the time to obtain good 

resolution. 

3. Softbake – this step is necessary for better adhesion of the photoresist to the sample 

surface. Optimal results should be by using the hot plate at T=100°C for 50 

seconds. 

4. Exposure and development- the exposure time and energy requirements can vary 

depending on coating thickness, baking conditions, sample reflectivity and the 

developer concentration. After the exposure, the sample should be placed in the 

developer. Usual time in the developer is about 50 seconds. Then it is 

recommended to check the made structure under the microscope for quality. 

Sometimes it is recommended to place the sample in the developer for a few 

seconds to remove the residual photoresist. 
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5. Postbake – postbake is a step that improves image stability, adhesion and chemical 

resistance. For most samples, it is recommended to use a temperature of about 

150°C during 50 seconds. 

6. Chemical etching – this step is intended to improve the separation of the layers in 

the samples after photolithography. Solutions with different chemical activity can 

be used. For my samples, I used a chemical solution based on orthophosphoric 

acid. Etching speed depends on concentration and applicable time. Good results 

should be obtained for 15-20 seconds of etching. 

Another important step includes good ohmic contacts. I used indium to deposit metal contacts 

on GaAs / AlGaAs samples. Then contacts were annealed at 4100C for 20 min. Annealing 

improves indium diffusion into the sample volume, which improves contact and reduces 

parasitic resistance. 

Two photographs of samples with different structures are presented in the Fig. 9. The H-bar 

structure before etching is presented on the left side. The Hall-bar structure after the etching is 

presented on the right side. As it possible to see, both structures have good resolution. Also, 

chemical etching improves the structure and makes it more distinct.  

   

Fig. 9 Photo of a sample with two H-Shaped structures (left) and 10 contact Hall bar( right) obtained with 
microscopic resolution. The width of the narrow current channels is about 5 µm. 
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2.2 Experimental setup 

The study of electron transport in low dimensional structures requires the use some specific 

equipment. The experimental setup we used included an OXFORD cryostat, a superconducting 

magnet, and peripheral equipment to control the measurements. 

The measurements were carried out in the variable temperature insert (VTI) cryostat. This 

cryostat allows to reach temperatures up to 4.2K, and 1.5 K with the help of a pump. Such low 

temperatures are achievable due to a special cryostat device. Thermical isolation of VTI cryostat 

consists of 3 main volumes. External chamber with liquid N2 inside, then a vacuum chamber 

and an internal the chamber with liquid 4He. 

 

Fig. 10 Measurement setup consists of VTI (Variable Temperature Insert) cryostat with the superconductive 
magnet, Lock-In amplifier, and pump. Sample has 4 In contacts arranged in Van der Paw geometry located at 
the corners of 5 mm × 5mm square. MT measurements are done by the conventional Lock-In technique with 

SIGNAL RECOVERY (Model 7280) DSP dual phase amplifier, which has a high input impedance of 100 MΩ. 
For the measurements, we used frequency range from 0.5 Hz to 13 Hz. The sample was located in the 

superconductive magnet (Oxford) with the perpendicular to its surface magnetic field up to 5 Tesla. Mechanical 
pump allowed us to rich temperatures down to 1.5 K (copied from Attachment I). 
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A typical measurement arrangement that we used for experiments is presented in the Fig. 10. 

A sample is placed in a liquid 4He bath that allows it to cool down up to 4.2K. A needle valve 

allows to control the flow of liquid 4He from the main bath with a sample inside to the VTI. In 

this case, temperature measurements depend by controlling the flow of fluid of liquid 4He. Also, 

the experimental setup allows to measure MT at low temperatures up to 1.5K by using a pump 

that can draw out 4He vapor from VTI. For the measurements under MW excitation, we used 

the MW generator. It generates and transmits MW through a rectangular waveguide to a sample. 

 

We used generator with frequency ranging from 110GHz to 170GHz. Also, we used an 

attenuator that permits to control MW power. Samples are usually placed at a distance of 1mm 

from the waveguide output. Maximum achievable power from the MW generator was 1 mW 

on the sample surface. MW generator and attenuator, which we used, are presented in the Fig. 

11. 

 

Fig. 11 Elmika G4402E Sweep Generator and attenuator. 

For voltage measurements, we used DSP dual phase Lock-In amplifier SIGNAL RECOVERY 

(Model 7280). Lock-In amplifier is a type of electronic amplifier that uses the principle of 

synchronous signal detection. The main part of Lock-In amplifier is the phase-sensitive detector 

(PSD). Lock-In amplifier makes it possible to detect periodic signals with a previously known 

frequency against a background of very large interference. This reference frequency Lock-In 

amplifier takes from the signal generator. Then the Lock-In amplifier generating its own 

internal reference and multiplication by signal at the base frequency that Lock-In amplifier 

takes from the signal generator. Reference is usually a sine signal: 

 𝑉𝑉𝑝𝑝𝑠𝑠𝑑𝑑 = 𝑉𝑉𝑠𝑠𝑖𝑖𝑠𝑠𝑉𝑉𝐿𝐿 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝑟𝑟𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑖𝑖𝑠𝑠) 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝐿𝐿𝑡𝑡 + 𝜃𝜃𝑟𝑟𝑒𝑒𝑓𝑓), (2.1) 

where 𝑉𝑉𝑝𝑝𝑠𝑠𝑑𝑑 is the output signal, 𝑉𝑉𝑠𝑠𝑖𝑖𝑠𝑠 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝑟𝑟𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑖𝑖𝑠𝑠) is the detecting signal, 𝑉𝑉𝐿𝐿 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝐿𝐿𝑡𝑡 + 𝜃𝜃𝑟𝑟𝑒𝑒𝑓𝑓) 

is the internal reference signal, 𝜔𝜔𝑟𝑟 and 𝜔𝜔𝐿𝐿 is the signal frequency for detecting and reference 

signal respectively, 𝜃𝜃𝑠𝑠𝑖𝑖𝑠𝑠 and 𝜃𝜃𝑟𝑟𝑒𝑒𝑓𝑓 is the signal phase for detecting and reference signal 
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respectively. Then, if use the trigonometric formula for 𝑐𝑐𝑐𝑐𝑠𝑠 difference and pass signal 𝑉𝑉𝑝𝑝𝑠𝑠𝑑𝑑 

through low pass (LP) filter it will remove the AC component. Finally, the output signal which 

passed through the low pass filter has the following form: 

 𝑉𝑉𝑝𝑝𝑠𝑠𝑑𝑑 = 1
2
𝑉𝑉𝑠𝑠𝑖𝑖𝑠𝑠𝑉𝑉𝐿𝐿 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝑠𝑠𝑖𝑖𝑠𝑠 − 𝜃𝜃𝑟𝑟𝑒𝑒𝑓𝑓) (2.2) 

Schematically Lock-In amplification is presented in the Fig. 12. Input signal Vs(t) divides into 

two components X and Y. Then each of them multiplies with reference and pass through (LP) 

filter. 

LP filter rejects the noise and the second harmonic of the output signal. Components of the 

output signal are possible to convert to the polar coordinates. 

 

Fig. 12 Schematic of Lock-In amplification. 

  



 
 

27 
 

Chapter 3 

3 Magnetoresistance measurements of GaAs QW 

This section has the aim to describe MT of 2D structures with two patterns used in the 

experiments. We studied different devices in the experiments with two structure patterns. First 

was the commonly called Hall bar pattern to perform local and non-local measurements. Second 

was the H bar pattern that mostly used to measure non-local transport. 

The samples we studied have the high electron density 𝑛𝑛𝑠𝑠 ≈ 1012cm−2 and mobility 𝜇𝜇 ≈

2.5 × 106 cm2 V⁄  s. I helped to develop a numerical simulation tools to analyze experimental 

results related to dynamics in 2DES under MW excitation. First, I simulated ballistic transport 

in studied samples. Ballistic transport occurs when the electron mean free path is bigger than 

sample dimensions. Second, the electron transport was simulated at hydrodynamic regime. One 

of the way to achieve this regime is to create 2DES with high electron density. This contributes 

to the fact that electrons interact between each other. Finally, the comparison between 

simulations of two models with experimental results are presented. 

3.1  Ballistic regime in GaAs QW 

The ballistic regime occurs when the mean free path between electron-electron collisions lee is 

much longer than the sample width W. In other words, electrons don’t interact between them 

and/or with impurities. In this situation, geometry defines transport properties (Fig. 13). 

 

Fig. 13 Schematically representation of ballistic transport in a sample channel. 

In the ballistic regime, electron transport through a 2D sample occurs without scattering from 

defects in the crystal cell, at the interface, or in self-scattering. This regime was described by 

Shepelianskii’s model [31]. The starting point was Newton’s equation, which took into account 

the reflection from the walls of sample, MW electric field interaction, and Lorentz force: 

 �⃗�𝑣 = −𝜌𝜌∆𝑟𝑟 + 𝑒𝑒𝐸𝐸�⃗ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡) + 𝑒𝑒[�⃗�𝑣 × 𝐵𝐵�⃗ ]. (3.1) 
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The next step was to solve Newton’s equation: 

𝑚𝑚𝑑𝑑𝑣𝑣�⃗
𝑑𝑑𝑑𝑑

= −𝜌𝜌∆𝑟𝑟 + 𝑒𝑒𝐸𝐸�⃗ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡) + 𝑒𝑒[�⃗�𝑣 × 𝜔𝜔��⃗ 𝑐𝑐]𝑚𝑚
𝑒𝑒

, 

where 𝜔𝜔��⃗ c = B��⃗ 𝑒𝑒
m

 is the cyclotron motion and −𝜌𝜌∆𝑟𝑟 is the soft wall potential. I simplified 

Newton’s equation and it came to the following form: 

 𝑑𝑑𝑣𝑣�⃗
𝑑𝑑𝑑𝑑

= − 𝑘𝑘
𝑚𝑚
∆𝑟𝑟 +  𝑒𝑒𝐸𝐸�⃗ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑑𝑑)

𝑚𝑚
+ [�⃗�𝑣 × 𝜔𝜔��⃗ 𝑐𝑐]. (3.2) 

After some mathematical procedures, the eq. (3.2) became similar to the equation from [31]. I 

used this equation in the numerical calculations. However, it was important to simplify the 

equation for use in numerical simulations. First, velocity in the eq. (3.2) was normalized by 𝑣𝑣𝐹𝐹 

to obtain dimensionless velocity V��⃗ = v��⃗
𝑣𝑣𝐹𝐹

 and introduced new quantity for 𝜖𝜖: 

 𝑑𝑑𝑉𝑉��⃗

𝑑𝑑𝑑𝑑
=  − 𝑘𝑘

𝑚𝑚𝑣𝑣𝐹𝐹
∆𝑟𝑟 + 𝜖𝜖𝜔𝜔𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡) + [𝑉𝑉�⃗ × 𝜔𝜔��⃗ 𝑐𝑐], (3.3) 

where 𝜖𝜖𝜔𝜔 = 𝐸𝐸�⃗ 𝑒𝑒
m𝑣𝑣𝐹𝐹

. 

To simplify simulations of the eq. (3.3) some new variables were introduced: 𝑇𝑇 = 𝑑𝑑
𝐶𝐶
→ 𝛺𝛺 =

𝜔𝜔𝜔𝜔. 

𝑑𝑑𝑉𝑉��⃗

𝐶𝐶𝑑𝑑𝐶𝐶
=  − 𝑘𝑘

𝑚𝑚𝑣𝑣𝐹𝐹
∆𝑟𝑟 + 𝜖𝜖𝜔𝜔𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺𝑇𝑇) + [𝑉𝑉�⃗ × 𝜔𝜔��⃗ 𝑐𝑐], 

Finally, eq. (3.3) in new variables has the following form: 

 𝑑𝑑𝑉𝑉��⃗

𝑑𝑑𝐶𝐶
= − 𝑘𝑘𝐶𝐶

𝑚𝑚𝑣𝑣𝐹𝐹
∆𝑟𝑟 + 𝜖𝜖𝛺𝛺 𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺𝑇𝑇) + [𝑉𝑉�⃗ × 𝛺𝛺�⃗ 𝑐𝑐], (3.4) 

where ϵ⃗Ω =  Ce𝐸𝐸�⃗

m𝑣𝑣𝐹𝐹
 and V��⃗  measures in a units of the Fermi velocity. 𝜔𝜔 = 10−11 is the normalization 

coefficient that was chosen to scale a time. 

The normalized velocity can be expressed thought derivative of position vector: 

 𝑑𝑑𝑉𝑉��⃗

𝑑𝑑𝐶𝐶
= 𝑑𝑑

𝑑𝑑𝐶𝐶
𝑣𝑣�⃗
𝑣𝑣𝐹𝐹

= 𝑑𝑑
𝑣𝑣𝐹𝐹𝑑𝑑𝐶𝐶

𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝑑𝑑2

𝐶𝐶𝑣𝑣𝐹𝐹𝑑𝑑𝐶𝐶2
𝑟𝑟 = 𝑑𝑑2

𝑑𝑑𝐶𝐶2
𝑅𝑅�⃗ , (3.5) 

where R��⃗ = r�⃗
𝐶𝐶𝑣𝑣𝐹𝐹

.  
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Transformation of 𝑉𝑉�⃗  has the following form: 

 𝑉𝑉�⃗ = 𝑣𝑣�⃗
𝑣𝑣𝐹𝐹

= 𝑑𝑑𝑟𝑟
𝑣𝑣𝐹𝐹𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑑𝑑𝑅𝑅�⃗

𝑑𝑑𝑑𝑑
= 𝐶𝐶𝑑𝑑𝑅𝑅�⃗

𝐶𝐶𝑑𝑑𝐶𝐶
= 𝑑𝑑𝑅𝑅�⃗

𝑑𝑑𝐶𝐶
. (3.6) 

After all of these transformations, the final equation for numerical simulations is: 

 
𝑑𝑑2

𝑑𝑑𝐶𝐶2
𝑅𝑅�⃗ = −𝑘𝑘𝐶𝐶2

𝑚𝑚
∆𝑅𝑅�⃗ + 𝜖𝜖𝛺𝛺 𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺𝑇𝑇) + [𝑑𝑑𝑅𝑅

�⃗

𝑑𝑑𝐶𝐶
× 𝛺𝛺�⃗ 𝑐𝑐]. (3.7) 

Fermi velocity in the samples was estimated using the following expression for 𝑣𝑣𝐹𝐹 = ℏkF
m

, where 

for 2DEG kF = (2𝜋𝜋𝑛𝑛)
1
2, [32]. 

For the ballistic model, the shape of the wall potential is considered to be parabolic. The 

potential is estimated to be steepness from the assumption that the width of the region where 

the potential increases from the bottom to the Fermi energy has of the same order as the Fermi 

wavelength for typical electron concentrations. Assuming confinement edge potential 𝑈𝑈 =
𝑘𝑘𝑥𝑥2

2
 (for coordinates outside the Hall bar geometry), 𝜌𝜌 is igual 0,008𝑚𝑚𝑒𝑒𝑉𝑉/𝐴𝐴2. 

The theoretical model to calculate conductance was based on work of Landauer and Büttiker 

[40]. Following it, the generalized formula of conductance has the following form: 

 𝐺𝐺 = �𝑒𝑒
2

𝜋𝜋ℎ
� 𝐶𝐶
𝑅𝑅
, (3.8) 

where T and R are transmission and refraction coefficients respectively. 

First, start with the simplest case of a single channel. Current I⃗ injects into the lead 1. 

 

Fig. 14 Single channel transmission 

μ1 μ2I T
R



 
 

30 
 

So, injected current into the lead 1 is I1 = 𝑒𝑒𝑣𝑣F �
𝑑𝑑𝑛𝑛1
𝑑𝑑𝐸𝐸
� 𝜇𝜇1, where 𝑣𝑣F is the velocity at the Fermi 

level and 𝑑𝑑𝑛𝑛1
𝑑𝑑𝐸𝐸

= 1
2𝜋𝜋ℏ𝑣𝑣F

. Thus I1 = 𝑒𝑒
ℎ

(𝜇𝜇1 − T12𝜇𝜇2) is the current injected into the lead 1 and T21 

is the transmission probability. Generalized formula for single channel has the following form: 

 𝐼𝐼𝑑𝑑𝑐𝑐𝑖𝑖 = 𝑒𝑒
ℎ

(𝜇𝜇𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖). (3.9) 

Now it is possible to write the equation for current Idc into the lead i. For the H-Shape structure, 

I used the formula for 4 terminals from the work of Buttiker [41], which later Beenakker [62] 

used for 6 terminals: 

 𝐼𝐼𝑑𝑑𝑐𝑐𝑖𝑖 = 𝑒𝑒
ℎ
�(1 − 𝑅𝑅𝑖𝑖𝑖𝑖)𝜇𝜇𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖≠𝑖𝑖 �, (3.10) 

where Tij is a probability for carriers incident in lead j to be transmitted into lead i; Rjj is a 

probability for carrier incident in lead j to be reflected back in the same lead. 

 

Fig. 15 H Shape geometry presented in original Buttiker paper [40] 

Potential measured in the experiment is 𝑉𝑉 = 𝜇𝜇/𝑒𝑒, thus the equation for current can be modified 

as: 

 𝐼𝐼𝑑𝑑𝑐𝑐𝑖𝑖 = 𝑒𝑒2

ℎ
�(1 − 𝑅𝑅𝑖𝑖𝑖𝑖)𝑉𝑉𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖≠𝑖𝑖 �. (3.11) 

In H bar geometry for currents  is possible to write the following expressions: 

𝐼𝐼1 =
𝑒𝑒2

ℎ
[(1 − 𝑅𝑅11)𝑉𝑉1 − (𝑇𝑇12𝑉𝑉2 + 𝑇𝑇13𝑉𝑉3 + 𝑇𝑇14𝑉𝑉4)] 

𝐼𝐼2 =
𝑒𝑒2

ℎ
[(1 − 𝑅𝑅22)𝑉𝑉2 − (𝑇𝑇21𝑉𝑉1 + 𝑇𝑇23𝑉𝑉3 + 𝑇𝑇24𝑉𝑉4)] 

𝐼𝐼1 = −𝐼𝐼3 



 
 

31 
 

𝐼𝐼2 = −𝐼𝐼4, 

where 𝐼𝐼1 = −𝐼𝐼3 and 𝐼𝐼2 = −𝐼𝐼4. After analytical calculations [41] for any 4 terminal geometry 

resistance is given by the following expression: 

 ℛ𝑚𝑚𝑛𝑛,𝑘𝑘𝑘𝑘 = ℎ
𝑒𝑒2

(𝐶𝐶𝑘𝑘𝑘𝑘𝐶𝐶𝑙𝑙𝑙𝑙−𝐶𝐶𝑘𝑘𝑙𝑙𝐶𝐶𝑙𝑙𝑘𝑘)
𝐷𝐷

 (3.12) 

For local and non-local resistances in the experiment with H bar geometry the local and non-

local resistances can be written as: 

ℛ𝐿𝐿 = ℛ21,34 = ℎ
𝑒𝑒2

(𝐶𝐶32𝐶𝐶41−𝐶𝐶31𝐶𝐶42)
𝐷𝐷

,ℛ𝑁𝑁𝐿𝐿 = ℛ41,32 = ℎ
𝑒𝑒2

(𝐶𝐶34𝐶𝐶21−𝐶𝐶31𝐶𝐶24)
𝐷𝐷

, 

where 𝐷𝐷 has the following form: 

D = � h
e2
�
2

(α11α22 − α12α21)S 

𝛼𝛼11 = �
ℎ
𝑒𝑒2�

−1

[(1 − 𝑇𝑇11)𝑆𝑆 − (𝑇𝑇32 + 𝑇𝑇12)(𝑇𝑇41 + 𝑇𝑇21)]/𝑆𝑆 

𝛼𝛼22 = �
ℎ
𝑒𝑒2�

−1

[(1 − 𝑇𝑇22)𝑆𝑆 − (𝑇𝑇21 + 𝑇𝑇41)(𝑇𝑇32 + 𝑇𝑇12)]/𝑆𝑆 

𝛼𝛼12 = �
ℎ
𝑒𝑒2�

−1

[𝑇𝑇12𝑇𝑇12 − 𝑇𝑇32𝑇𝑇32]/𝑆𝑆 

𝛼𝛼21 = �
ℎ
𝑒𝑒2�

−1

[𝑇𝑇21𝑇𝑇21 − 𝑇𝑇41𝑇𝑇41]/𝑆𝑆 

𝑆𝑆 = 2(𝑇𝑇12 + 𝑇𝑇32) 

  (3.13) 

In the matrix form after symmetrization the transmission matrix [see Appendix I] has the 

following form: 

 

𝑇𝑇 = �

𝑇𝑇11 𝑇𝑇12 𝑇𝑇31 𝑇𝑇32
𝑇𝑇21 𝑇𝑇22 𝑇𝑇41 𝑇𝑇42
𝑇𝑇31 𝑇𝑇32 𝑇𝑇11 𝑇𝑇12
𝑇𝑇41 𝑇𝑇42 𝑇𝑇21 𝑇𝑇22

� 

  (3.14) 
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Fig. 16 Rotational symmetry for H bar pattern. 

For the Hall bar geometry with 6 contacts, by using the same approach as for H bar geometry, 

currents are possible to write as follows: 

𝐼𝐼1 =
𝑒𝑒2

ℎ
[(1 − 𝑅𝑅11)𝑉𝑉1 − (𝑇𝑇12𝑉𝑉2 + 𝑇𝑇13𝑉𝑉3 + 𝑇𝑇14𝑉𝑉4 + 𝑇𝑇15𝑉𝑉5 + 𝑇𝑇16𝑉𝑉6)] 

𝐼𝐼2 =
𝑒𝑒2

ℎ
[(1 − 𝑅𝑅22)𝑉𝑉2 − (𝑇𝑇21𝑉𝑉1 + 𝑇𝑇23𝑉𝑉3 + 𝑇𝑇24𝑉𝑉4 + 𝑇𝑇25𝑉𝑉5 + 𝑇𝑇26𝑉𝑉6)] 

𝐼𝐼3 =
𝑒𝑒2

ℎ
[(1 − 𝑅𝑅33)𝑉𝑉3 − (𝑇𝑇31𝑉𝑉1 + 𝑇𝑇32𝑉𝑉2 + 𝑇𝑇34𝑉𝑉4 + 𝑇𝑇35𝑉𝑉5 + 𝑇𝑇36𝑉𝑉6)] 

𝐼𝐼1 = −𝐼𝐼4 

𝐼𝐼2 = −𝐼𝐼5 

𝐼𝐼3 = −𝐼𝐼6, 

where 𝐼𝐼1 = −𝐼𝐼4, 𝐼𝐼2 = −𝐼𝐼5 and 𝐼𝐼3 = −𝐼𝐼6 by symmetry. 

Hall bar geometry was treated extensively in Beenakker paper. I kept terminal numbering 

consistent with Beenakker’s work [62]. Buttiker system of equations [41] can be written as in 

matrix form as: 

 𝐼𝐼𝑑𝑑𝑐𝑐 = 𝑒𝑒2

ℎ
𝑆𝑆𝑉𝑉, where (3.15) 

3

2 1

4

T41T31

T21

1

4 3

2

T23T13

T43
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𝐼𝐼𝑑𝑑𝑐𝑐 = �
𝐼𝐼𝑑𝑑𝑐𝑐1
⋮

𝐼𝐼𝑑𝑑𝑐𝑐𝑙𝑙
� ,𝑉𝑉 = �

𝑉𝑉1
⋮
𝑉𝑉𝑛𝑛
� , 𝑆𝑆 = 𝕀𝕀 − 𝑇𝑇,𝑇𝑇 = �

𝑇𝑇11 ⋯ 𝑇𝑇1𝑚𝑚
⋮ ⋱ ⋮
𝑇𝑇𝑛𝑛1 ⋯ 𝑇𝑇𝑛𝑛𝑚𝑚

� 

To calculate resistance between terminals k and l (see eq. (3.12)), in case of current leaving 

terminal m and entering terminal n (𝐼𝐼𝑚𝑚 = −𝐼𝐼𝑛𝑛, electrons are injected in n and are transmitted in 

all the other terminals) the following expression procedure was used: 

1. Define current vector as 1 in position m and -1 in position n, the rest of elements are 

zeros. 

𝐼𝐼𝑑𝑑𝑐𝑐 = (0, … ,1, … ,0, … ,−1, … ,0)𝐶𝐶. 

2. Solve the equation in matrix form 

𝐼𝐼𝑑𝑑𝑐𝑐 = 𝑒𝑒2

ℎ
𝑆𝑆𝑉𝑉. 

3. Calculate 

ℛ𝑚𝑚𝑛𝑛,𝑘𝑘𝑘𝑘 = 𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑘𝑘 . 

In particular, for comparison with published results and experiments, I focused on the following 

cases: 

𝐼𝐼𝑑𝑑𝑐𝑐(1) = 1, 𝐼𝐼𝑑𝑑𝑐𝑐(2) = −1,ℛ12,53 = 𝑉𝑉5 − 𝑉𝑉3 

𝐼𝐼𝑑𝑑𝑐𝑐(2) = 1, 𝐼𝐼𝑑𝑑𝑐𝑐(5) = −1,ℛ25,16 = 𝑉𝑉1 − 𝑉𝑉6 

𝐼𝐼𝑑𝑑𝑐𝑐(4) = 1, 𝐼𝐼𝑑𝑑𝑐𝑐(6) = −1,ℛ46,31 = 𝑉𝑉1 − 𝑉𝑉3 

𝐼𝐼𝑑𝑑𝑐𝑐(6) = 1, 𝐼𝐼𝑑𝑑𝑐𝑐(3) = −1,ℛ63,41 = 𝑉𝑉4 − 𝑉𝑉1 
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If suppose what electrons are injected into terminal 2. Using symmetry [see Appendix I]: 

Fig. 17 Hall-bar with 6 leads 

Based on this approach it is possible to determine transition for a long structure with two cross-

sections depicted in the figure. The product of probabilities to pass through two cross-sections 

can be used. Also, it is nesessary to take into account probability of being reflected by neighbor 

cross section. 

For the symmetry consideration, a complete transmission matrix has the following form: 

T6 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇611 𝑇𝑇612 𝑇𝑇613 𝑇𝑇614 𝑇𝑇615 𝑇𝑇616
𝑇𝑇621 𝑇𝑇622 𝑇𝑇623 𝑇𝑇624 𝑇𝑇625 𝑇𝑇626
𝑇𝑇631 𝑇𝑇632 𝑇𝑇633 𝑇𝑇634 𝑇𝑇635 𝑇𝑇636
𝑇𝑇641 𝑇𝑇642 𝑇𝑇643 𝑇𝑇644 𝑇𝑇645 𝑇𝑇646
𝑇𝑇651 𝑇𝑇652 𝑇𝑇653 𝑇𝑇654 𝑇𝑇655 𝑇𝑇656
𝑇𝑇661 𝑇𝑇662 𝑇𝑇663 𝑇𝑇664 𝑇𝑇665 𝑇𝑇666⎦

⎥
⎥
⎥
⎥
⎤

 

Carriers injected into terminal 1 

𝑇𝑇611 = 𝑇𝑇22 + 𝑇𝑇41𝑇𝑇22𝑇𝑇14, 𝑇𝑇621 = 𝑇𝑇21 + 𝑇𝑇41𝑇𝑇22𝑇𝑇24, 𝑇𝑇631 = 𝑇𝑇31 + 𝑇𝑇41𝑇𝑇22𝑇𝑇34, 

𝑇𝑇641 = 𝑇𝑇41𝑇𝑇32, 𝑇𝑇651 = 𝑇𝑇41𝑇𝑇42, 𝑇𝑇661 = 𝑇𝑇41𝑇𝑇12, 

Carriers injected into terminal 2 

𝑇𝑇612 = 𝑇𝑇12 + 𝑇𝑇42𝑇𝑇22𝑇𝑇14, 𝑇𝑇622 = 𝑇𝑇22 + 𝑇𝑇42𝑇𝑇22𝑇𝑇24, 𝑇𝑇632 = 𝑇𝑇32 + 𝑇𝑇42𝑇𝑇22𝑇𝑇34, 

𝑇𝑇642 = 𝑇𝑇42𝑇𝑇32, 𝑇𝑇652 = 𝑇𝑇42𝑇𝑇42, 𝑇𝑇662 = 𝑇𝑇42𝑇𝑇12, 

Carriers injected into terminal 3 

2

1

3 4

6

5
T42

T12 T14 T44
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𝑇𝑇613 = 𝑇𝑇13 + 𝑇𝑇43𝑇𝑇22𝑇𝑇14, 𝑇𝑇623 = 𝑇𝑇23 + 𝑇𝑇43𝑇𝑇22𝑇𝑇24, 𝑇𝑇633 = 𝑇𝑇22 + 𝑇𝑇43𝑇𝑇22𝑇𝑇34, 

 𝑇𝑇643 = 𝑇𝑇43𝑇𝑇32, 𝑇𝑇653 = 𝑇𝑇43𝑇𝑇42, 𝑇𝑇663 = 𝑇𝑇43𝑇𝑇12, 

Carriers injected into terminal 4 

𝑇𝑇614 = 𝑇𝑇23𝑇𝑇14, 𝑇𝑇624 = 𝑇𝑇23𝑇𝑇24, 𝑇𝑇634 = 𝑇𝑇23𝑇𝑇34, 

𝑇𝑇644 = 𝑇𝑇22 + 𝑇𝑇23𝑇𝑇22𝑇𝑇32, 𝑇𝑇654 = 𝑇𝑇43 + 𝑇𝑇23𝑇𝑇22𝑇𝑇42, 𝑇𝑇664 = 𝑇𝑇13 + 𝑇𝑇23𝑇𝑇22𝑇𝑇12, 

Carriers injected into terminal 5 

𝑇𝑇615 = 𝑇𝑇24𝑇𝑇14, 𝑇𝑇625 = 𝑇𝑇24𝑇𝑇24, 𝑇𝑇635 = 𝑇𝑇24𝑇𝑇34, 

𝑇𝑇645 = 𝑇𝑇34 + 𝑇𝑇24𝑇𝑇22𝑇𝑇32, 𝑇𝑇655 = 𝑇𝑇22 + 𝑇𝑇24𝑇𝑇22𝑇𝑇42, 𝑇𝑇665 = 𝑇𝑇14 + 𝑇𝑇24𝑇𝑇22𝑇𝑇12, 

Carriers injected into terminal 6 

𝑇𝑇616 = 𝑇𝑇21𝑇𝑇14, 𝑇𝑇626 = 𝑇𝑇21𝑇𝑇24, 𝑇𝑇636 = 𝑇𝑇21𝑇𝑇34, 

𝑇𝑇646 = 𝑇𝑇31 + 𝑇𝑇21𝑇𝑇22𝑇𝑇32, 𝑇𝑇656 = 𝑇𝑇41 + 𝑇𝑇21𝑇𝑇22𝑇𝑇42, 𝑇𝑇666 = 𝑇𝑇22 + 𝑇𝑇21𝑇𝑇22𝑇𝑇12 

3.2 Physical parameters for simulations 

In the simulations, I used the following physical parameters: 

 𝑚𝑚0 = 9.1 × 10−31(𝜌𝜌𝑔𝑔), 𝑚𝑚 = 0.065𝑚𝑚0(𝜌𝜌𝑔𝑔), 𝑛𝑛 = 1012(𝑐𝑐𝑚𝑚−2) (3.16) 

Fermi velocity in the samples was estimated from the following expression: 

 𝑣𝑣𝐹𝐹 = ℏ𝑘𝑘𝐹𝐹
𝑚𝑚

, (3.17) 

where ℏ is Planck constant, 𝑚𝑚 is the effective mass of electron and 𝜌𝜌𝐹𝐹  is Fermi constant. For 

the 2DES Fermi constant has the following form 𝜌𝜌𝐹𝐹 = (2𝜋𝜋𝑛𝑛)
1
2 [32]. Thus, after put the physical 

parameters from eq. 3.16 into the expression for Fermi velocity (3.17), it can be expressed as: 

 𝑣𝑣𝐹𝐹 = 1.1×10−34∙(2∙3.14×1016)
1
2

0.065∙9.1×10−31
≈ 4,5 ∙ 105(𝑚𝑚 𝑠𝑠⁄ ). (3.18) 

To estimate soft wall parabolic potential it was assumed that electrons with Fermi energy are 

able to approach the edge of the sample to around d = 0.37μm, then k was calculated as: 
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𝜌𝜌 = 2𝐸𝐸𝐹𝐹
𝑑𝑑2

, 𝑘𝑘𝐶𝐶
2

𝑚𝑚
= 146𝑠𝑠−2. 

To verify that the simulations were correct, the results obtained for Hall geometry were 

compared with those published by Beenakker. Good agreement in the shape of curves was 

found. In the Fig. 18 is presented a comparison with Beenaker’s calculations for several 

geometrical parameters. 



 
 

37 
 

 

Fig. 18 (a) Comparison of local and non-local resistances calculated for several dimentions of a Hall bar. The 
negative magnetic field has curves published by Beenakker. Positive magnetic field has simulated results. (b) 
Examples of electron trajectories inside Hall bar presented for five different injection angles. Electrons are 

injected from the right lead with Fermi velocity 𝑣𝑣𝐹𝐹  =  4,1 × 105𝑚𝑚/𝑠𝑠, magnetic field is maintained fixed at 𝐵𝐵 =
 0.01𝑇𝑇. Gray areas are Hall bar walls modeled as repulsive parabolic potential for electrons. 
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3.3 Comparison of the ballistic model with experiment 

The next step was to compare experiment with theory. we measured the longitudinal and 

nonlocal resistance of samples with an H-shaped pattern at low temperatures. In measurements, 

we used the generally accepted Lock-In measuring technique. The results are presented in the 

figures below. 

 

Fig. 19 Comparison of local resistance for the H bar structure 
with numerical simulations (dashed). 

 

Fig. 20 Comparison of non local resistance for the H bar structure 
with numerical simulations (dashed). 

As possible to see the ballistic model can be useful as a first approximation. Therefore this 

theory can’t reproduce maxima or minima close to the zero magnetic field. This indicates that 
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the samples we studied had more complex electron dynamics. Thus was taken a decision to try 

to explain effects in the sample by using other theory. It was supposed that due to big electron 

density and high electron mobility the electrons in the samples can act like a viscous flow. This 

means that hydrodynamic model may be applied. 

3.4 Temperature dependence 

Before explaining the theoretical model and the results of the experiments, I want to present 

some configurations of measurements that were used in the experiment. Configurations are 

presented in the Fig. 21. The four terminal, H bar pattern consists of a 4 µm width central 

channel located between 5µm wide legs. The 8 terminal Hall bar pattern consists of three, 5µm 

wide consecutive segments of different length (10, 20, 10µm). Also, it is possible to see a 

different connection scheme to the Hall bar patterned samples. The first type of measurement 

was performed for local configurations. 

 

Fig. 21 Different measurement configurations for H bar geometry, 
conventional (L1) and modified (L2, L3) configurations for Hall bar geometry. 

The ballistic contribution to electron transport depends on the temperature due to the thermal 

broadening of the Fermi distribution function and scattering by the phonons. A rough estimate 

of the nonlocal ballistic resistance may be obtained using the formula 𝑅𝑅𝑁𝑁𝐿𝐿~𝑒𝑒𝜌𝜌𝑝𝑝(−𝐿𝐿/𝜌𝜌), where 
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L is the distance between probes and mean free path 𝜌𝜌 =  𝑣𝑣𝐹𝐹𝜏𝜏 [33]. In experiments, a more 

complicated situation was observed. The electron-electron interaction was considered. 

It is generally believed that, in the absence of disorder, a many-body electron system may 

resemble a viscous flow. Hydrodynamic characteristics can be specially enhanced in a pipe 

flow setup, where the mean free path for electron-electron collision lee is much shorter than the 

sample width W, while the mean free path due to impurity and phonon scattering l is larger 

than W. Viscosity is characterized by momentum relaxation in the fluid and, in marrow samples, 

occurs at the sample boundary. When fluid flows along a pipe, a quadratic velocity profile is 

formed, which leads to the Gurzhi effect (𝜌𝜌~𝑇𝑇−2) [56, 57, 58] and can be detected from the 

anomalous temperature and sample width dependence, as is mentioned above. For illustration, 

we modeled the Poiseuille flow for a 2D neutral fluid. 

Fig. 22 shows the longitudinal magnetoresistivity ρxx measured in local configuration for a H-

bar sample as a function of magnetic field and temperature. It is possible to see two 

characteristic features: a giant negative magnetoresistance (∼ 400−1000%) and a pronounced 

temperature dependence of the zero field resistance. In Fig. 23 is presented the longitudinal 

magnetoresistivity ρxx measured in local configuration for a Hall-bar sample as a function of 

magnetic field and temperature. It is possible to see the same behavior of magnetoresistance (∼ 

400−1000%) and the temperature dependence of the zero field resistance. The 

magnetoresistance feature is qualitatively similar, although the decrease is not so rapid as in the 

H-bar. 
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Fig. 22 Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used 
 in this study. Temperature-dependent magnetoresistance of a GaAs quantum well in an H-bar sample. Thick 

 curves are examples illustrating magnetoresistance calculated from theory (eq. (3.22)) for different 
temperatures: 1.5 K (red), 27.2 K(blue) and 43.7 K (magenta). 
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Fig. 23 Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used 
 in this study. Temperature-dependent magnetoresistance of a GaAs quantum well in a Hall bar sample. Thick 

 curves are examples illustrating magnetoresistance calculated from theory (eq. (3.22)) for different 
temperatures: 4.2 K (red), 19.2 K(blue) and 37.1 K(magenta). 
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Fig. 24 Temperature dependent resistivity of a GaAs quantum well in a Hall bar and H-bar for 
 different configurations in zero magnetic field. Circles show calculations from the theory (eq. (3.22)). 

Im Fig. 24 is presented the dependence of the normalized resistivity of GaAs for Hall bar and 

H bar samples for different configurations from the temperature at a zero magnetic field. It is 

possible to see that resistance in the L1 setup is increasing while the resistance for L3 and H-

Shape setups is decreasing. 

To observe the hydrodynamic effect and Hall viscosity in a 2D electron system and present 

experimental results, I participated in measurements of resistance in the Hall configuration. For 

this purpose, GaAs mesoscopic samples with high mobility 2D electron gas were used. In 

addition, the magnetoresistance measurements were performed in nonlocal and Hall 

configurations to characterize electron shear viscosity, electron-electron scattering time, and to 

reexamine electron transport over a certain temperature range of 1.5-40 K. We observed 

negative corrections to the Hall effect near zero magnetic fields, which can be attributed to 

classical Hall viscosity. 

Hall resistance measurements were performed in two configurations. Conventional H1 

configuration and modified configuration H2 (Fig. 25). 
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Fig. 25 Conventional configuration (H1) and modified configuration (H2) 

Fig. 26 (a) shows deviations from Hall resistivity ∆𝜌𝜌𝑥𝑥𝑦𝑦(𝑇𝑇) = 𝜌𝜌𝑥𝑥𝑦𝑦(𝑇𝑇) − 𝜌𝜌𝑥𝑥𝑦𝑦𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘 as a function of 

temperature. Fig. 26 (b) shows the ratio ∆𝜌𝜌xy(T)/𝜌𝜌xybulk for different temperatures. It is possible 

to see a strong (~ 10 - 20%) deviation from the linear slope. The slope is opposite to the bulk 

Hall slope at low fields and has the same sign (negative for electrons) at large positive magnetic 

field and low temperatures. 



 
 

45 
 

 

Fig. 26 (a) Temperature dependentdeviations from the Hall resistivity ∆𝜌𝜌𝑥𝑥𝑦𝑦(𝑇𝑇) of a mesoscopic GaAs sample. 
(b) The ratio ∆𝜌𝜌𝑥𝑥𝑦𝑦(𝑇𝑇)/𝜌𝜌𝑥𝑥𝑦𝑦𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘 for different temperatures. Dashes line represents theory (eq. (3.25)). 

In Fig. 27 (a) shows a comparison of Hall effect in the H1 configuration with the H2 

configuration. It is possible to see that Hall resistivity is wider for the H2 configuration at low 

magnetic fields. Therefore, the ratio ∆𝜌𝜌xy(T)/𝜌𝜌xybulk has wide negative peak near the zero 

magnetic field. In Fig. 27 (b) shows the results of measurements in comparison with the 

hydrodynamic model. As possible to see, the H2 configuration has a wider negative peak around 

zero magnetic fields. This is explained by the fact that in the H2 configuration the 

hydrodynamic effect is manifested more strongly than in the H1 configuration. And the 

measurement results have better match for this configuration with the hydrodynamic model. 
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Fig. 27 (a) The Hall effect for two configurations at T=4.2K. 

(b) The ratio ∆𝜌𝜌𝑥𝑥𝑦𝑦(𝑇𝑇)/𝜌𝜌𝑥𝑥𝑦𝑦𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘 for configurations H1 and H2. 

Dashes line represents theoretical calculation (eq. (3.25)). 
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The third type of measurement was performed at a non-local configuration. For this case two 

different configurations were chosen. 

 

 

Fig. 28 Configuration C1 and a sketch of the velocity flow profile (top) and 
configuration C2 and a sketch of the velocity flow profile (bottom). 

These configurations permit non-local measurements with the easier observation of current 

whirlpools. The NL1 transport measurement setup was proposed in [59]. The NL2 transport 

measurement setup, also known as “vicinity”, was proposed in [55 - 60]. 

First, the electron transport was measured in the NL1 configuration. (Fig. 29). 
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Fig. 29 Non-local transport signal vc magnetic field for different temperatures. 
The dots represent result for the ballistic model. 

It is possible to see a strong oscillation in the weak magnetic fields due to geometrical resonance 

effects considered in the semiclassical billiard model. Numerical simulations have helped to 

better understand the results obtained experimentally. The results of these simulations (black 

dots) were compared to the experimental data. Agreement with experimental data was observed 

only at the low magnetic fields. Although, as it presented in Fig. 29, the position of resistance 

peaks at higher magnetic field coincides with calculations, the negative peak has a much smaller 

value and the positive peak is wider than that obtained from the billiard model. Fig. 29 also 

shows the evolution of the nonlocal magnetoresistance with temperature. All oscillations are 

smeared out by temperature and magnetoresistance at high temperature has a parabolic shape. 

Remarkably, the nonlocal resistance at B = 0 is positive at low temperatures, in accordance with 

the ballistic model calculations, and then it changes sign and becomes negative at higher 

temperatures. 
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Then, the non-local transport was measured in NL2 configuration. Thr result of the 

measurements (Fig. 30) was qualitatively different from the result of the measurements in NL1 

configuration. 

 

Fig. 30 Non-local transport signal vc magnetic field for different temperatures. 
The dots represent result for the ballistic model. 

As in configuration NL1, configuration NL2 has strong oscillations due to the geometrical 

resonance effect. Note that the ballistic transport in this configuration is very well established 

and studied previously in numerous publications. In cross junction geometry, it was 

denominated as bend resistance. Also the classical simulations were performed for the transport 

in the NL2 configuration. However, that in contrast to configuration NL1, the bend resistance 

reveals a strong negative resistance peak near zero magnetic fields. This peak may mask the 

negative nonlocal signal due to viscosity, and a detailed comparison is required to examine the 

significance of the hydrodynamic effect at low and high temperatures. 
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3.5 Model for a hydrodynamic regime in 2DES 

In the GaAs samples with high electron density 𝑛𝑛𝑠𝑠 ≈ 1012cm−2 it is possible to consider 

electrons like a viscous flow in so called hydrodynamic regime. Hydrodynamic regime is 

possible to reach when the mean free path of electron-electron collisions lee is much smaller 

than sample width W that leads to electron-electron interactions and interactions between 

electrons and impurities [42 - 49]. Also, if apply the magnetic field it is possible to consider 

that the hydrodynamic regime can be obtained with lee > W but cyclotron radius rc need to be 

much smaller than sample width W. In this case, it is possible to use the Navier-Stokes 

hydrodynamic equation for an incompressible liquid to describe the processes observed in the 

samples (eq. 1.9). 

The first assumption that the flow of electrons in the samples does not have a convective 

acceleration (�⃗�𝑣 ∙ ∇)�⃗�𝑣 = 0 and the internal thermodynamic work ∇𝛻𝛻 = 0. The force g�⃗  here is 

the electromagnetic force which is equal g�⃗ = 𝑒𝑒E��⃗ + e[v�⃗ × B��⃗ ]. It is possible to rewrite eq. (1.9) 

in vector form as follows: 

 𝜕𝜕𝑣𝑣�⃗
𝜕𝜕𝑑𝑑

= 𝜂𝜂𝛻𝛻2�⃗�𝑣 + 𝑒𝑒𝐸𝐸�⃗

𝑚𝑚
+ 𝑒𝑒

𝑚𝑚
��⃗�𝑣 × 𝐵𝐵�⃗ �, (3.19) 

where 𝜏𝜏 it is the momentum relaxation time due to interaction with defects and η is the electron 

viscosity tensor that has two components: symmetric 𝜂𝜂𝑖𝑖𝑖𝑖
(𝑠𝑠) = 1

2
(𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

) and antisymmetric 

𝜂𝜂𝑖𝑖𝑖𝑖
(𝑎𝑎) = 1

2
(𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

). 

It is necessary to solve eq. (3.19) in the stationary regime without applying external magnetic 

field [52, 54]. 

 𝜂𝜂𝛻𝛻2�⃗�𝑣 + 𝑒𝑒𝐸𝐸�⃗

𝑚𝑚
= 0 (3.20) 

The hydrodynamic regime can be observed in the pipe flow setup. Thus the boundary conditions 

are the follows 𝑣𝑣𝑖𝑖(𝜌𝜌,𝜌𝜌) = (𝑣𝑣𝑥𝑥(𝜌𝜌), 0) (if supposed that current flows in x direction). Then, the 

solution for velocity profile can be used (eq. 3.20) to write resistivity ρ: 

 𝜌𝜌 = 𝑚𝑚
𝑒𝑒2𝑛𝑛𝜏𝜏∗

, (3.21) 



 
 

51 
 

where 𝜏𝜏∗ = W(W+6𝑘𝑘𝑠𝑠)
12𝜂𝜂

 is the effective relaxation time and 𝜂𝜂 = 1
4
𝑣𝑣𝐹𝐹2𝜏𝜏2 is the diffusion constant, 

𝜏𝜏2 is the electron-electron scattering time.  

Solution of the eq. (3.20) can be modified if momentum relaxation time 𝜏𝜏 due to interaction 

with phonons and static defects is close to the 𝜏𝜏∗ [52, 53]. For this case in the eq. (3.20) is 

necessary to put additional bulk friction term −𝑣𝑣/𝜏𝜏. Therefore, for interpolation, it is possible 

to use formula, which gives an expression for  resistance ρ for any value of 𝜏𝜏/𝜏𝜏∗: 

 𝜌𝜌 = 𝜌𝜌0(1 + 𝜏𝜏
𝜏𝜏∗

), (3.22) 

where ρ0 = m
e2nτ

 is the bulk resistivity. 

Next step is to solve eq. (3.19) in the presence of magnetic field. If rewrite eq. (3.19) by 

component representation, two additional parameters appear. The 𝜂𝜂xx and 𝜂𝜂xy which are regular 

and Hall components of the kinematic viscosity tensor: 

 𝜂𝜂𝑥𝑥𝑥𝑥 = 𝜂𝜂
1+(2𝜔𝜔𝑐𝑐𝜏𝜏2)2

 and 𝜂𝜂𝑥𝑥𝑦𝑦 = 2𝜔𝜔𝑐𝑐𝜏𝜏2𝜂𝜂𝑥𝑥𝑥𝑥. (3.23) 

Also, incompressibility of the electron fluid was supposed, so div�⃗�𝑣 = 0. Finally, the 

hydrodynamic equation in the stationary regime has the following form: 

 𝜂𝜂𝑥𝑥𝑥𝑥
𝑑𝑑2𝑣𝑣𝑥𝑥
𝑑𝑑𝑦𝑦2

+ 𝑒𝑒
𝑚𝑚
𝐸𝐸𝑥𝑥 −

𝑣𝑣𝑥𝑥
𝜏𝜏

= 0 and 𝜂𝜂𝑥𝑥𝑦𝑦
𝑑𝑑2𝑣𝑣𝑥𝑥
𝑑𝑑𝑦𝑦2

+ 𝜔𝜔𝑐𝑐𝑣𝑣𝑥𝑥 + 𝑒𝑒
𝑚𝑚
𝐸𝐸𝑦𝑦 = 0. (3.24) 

Now eq. (3.24) can be solved by applying the previous boundary conditions, which were used 

for the case with the absence of a magnetic field. The following solutions were used to compare 

theoretical calculations with experimental results [53]: 

 𝜌𝜌𝑥𝑥𝑥𝑥 = 𝜌𝜌0(1 + 𝜏𝜏
𝜏𝜏∗

1
1+(2𝜔𝜔𝑐𝑐𝜏𝜏2)2

) and 𝜌𝜌𝑥𝑥𝑦𝑦 = 𝜌𝜌0(1 − 𝑟𝑟𝐻𝐻
2𝜏𝜏2
𝜏𝜏∗

1
1+(2𝜔𝜔𝑐𝑐𝜏𝜏2)2

), (3.25) 

where 𝜌𝜌0 = 𝑚𝑚
𝑛𝑛𝑒𝑒2𝜏𝜏

, τ is the momentum relaxation time due to interactions with defects, τ∗ =

W(W+6𝑘𝑘𝑠𝑠)
12𝜂𝜂

 is the effective relaxation time, τ2 is the electron-electron scattering time and rH is a 

numerical coefficient in order 1. 

Resistance was also measured at the non-local and vicinity configurations. For the case of the 

non-local measurements resistance R has the following expression [61]: 
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 𝑅𝑅𝑁𝑁𝐿𝐿1 = −𝜌𝜌0 �
𝑘𝑘𝑛𝑛 (𝑑𝑑𝑎𝑎𝑛𝑛ℎ2(�̅�𝑥 2⁄ ))

𝜋𝜋
+ 4𝜋𝜋(𝐷𝐷𝜂𝜂

𝑊𝑊
)2 𝑐𝑐𝑐𝑐𝑠𝑠ℎ (�̅�𝑥)

𝑠𝑠𝑖𝑖𝑛𝑛ℎ2(�̅�𝑥)
�, (3.26) 

where �̅�𝜌 = 𝜋𝜋x
W�  is a distance from the main current path where negative non-local resistance 

can be observed [55 - 60] and 𝐷𝐷η = �𝜂𝜂𝜏𝜏 is the vorticity diffusion length. 

The expression for the non-local resistance in vicinity geometry [61] has the following form: 

 𝑅𝑅𝑁𝑁𝐿𝐿2 = −𝜌𝜌0
2
�𝑘𝑘𝑛𝑛 (4𝑠𝑠𝑖𝑖𝑛𝑛ℎ2(�̅�𝑥 2⁄ ))

𝜋𝜋
− �̅�𝑥

𝑊𝑊
+ 𝜋𝜋(𝐷𝐷𝜂𝜂

𝑊𝑊
)2 1

𝑠𝑠𝑖𝑖𝑛𝑛ℎ2(�̅�𝑥)
�. (3.27) 

These results were used to compare with the experimentally obtained data and extract system 

physical parameters. In the figures below is presented the comparison between theory and 

experiment. 

 
Fig. 31 (a) The relaxation time 𝜏𝜏2 as a function of the temperature obtained by fitting the theory with 

experimental results. The solid line is theory. (b) The relaxation time 𝜏𝜏∗ as a function of the temperature 
obtained by fitting the theory with experimental results. The solid line is theory. 

The scattering time dependencies are presented in Fig. 31. The effective relaxation time 𝜏𝜏∗ is 

proportional to the second moment relaxation rate 1
𝜏𝜏2

 (not a time) and can be also compared with 

the theory. It contains additional parameter - boundary slip length, which depends on the 

viscous flow conditions. It is possible to reproduce the evolution of characteristic time with 

temperature in the experimets, assuming that ls depends on probe configuration. Some 
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simulations were done with modelling of the Poiseuille flow for two dimensional situations 

depicted in Fig. 22 and Fig. 23. It is possible to see that the velocity profile is strongly depends 

on the geometry and liquid flow injections. 

In Fig. 32 is presented the temperature dependence of characteristic lengths of interaction with 

defects 𝜌𝜌 = 𝑣𝑣𝐹𝐹𝜏𝜏, the mean free path of electron-electron scattering 𝜌𝜌2 = 𝑣𝑣𝐹𝐹𝜏𝜏2, and the vorticity 

diffusion length  𝐷𝐷𝜂𝜂 = �𝜂𝜂𝜏𝜏 in a W = 5 μm sample. The study shows that developed current 

whirlpools are sensitive to the geometry and confinement effect [50, 55, 60]. However, the 

careful inspection of theoretical results [55] reveals that geometry NL1 exhibits the occurrence 

of whirlpools only above the threshold value of Dη = 0.225W (Fig. 32). The vicinity geometry 

NL2, by contrast, allows the formation of current whirlpools for arbitrary small values of Dη. 

However, the value of Dη effects the spatial extension of the whirlpools, therefore, a high 

viscosity system facilitates observation of the negative vicinity resistance for a voltage detector 

placed at a large distance from the current injection probe. Moreover, the ballistic effect may 

induce the negative vicinity signal [51] and, therefore, requires more careful qualitative 

analysis. 

 

Fig. 32 The characteristic parameters as a function of the temperature for the sample with width W = 5 μm. The 
whirlpool threshold is indicated by the dashes. 
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3.6 Conclusion 

In the conclusion, it is necessary to note that in the ballistic regime resistance has a strong 

dependence on device geometry and size effects. The magnitude of the ballistic effect depends 

on the ratio between sample width (W) and the Larmor radius (RL). Analyze of ballistic samples 

were done to better-understanding MT effects that can take place in different geometries. 

We have measured the evolution of several magnetotransport characteristics in high quality 

GaAs quantum wells with temperature at different configuration. In order to fulfill requirements 

for a hydrodynamic regime, we use mesoscopic samples, where very recently numerous 

different predictions have been made. These results open possibilities to control the current 

flow in microstructures by variation of the viscosity and manipulation of the fluids at a micro 

and nanoscale, developing new microtechnologies. 

The Poiseuille flow was modelled for local, Hall and non-local configurations. Results of the 

modelling showed that the velocity profile strongly depends on the geometry and liquid flow 

injections. Also, the contribution from the ballistic and hydrodynamic effects in the varying 

magnetic field 𝐵𝐵�⃗  can obscure each other. In addition the relative ballistic contribution 

𝜌𝜌xxball/𝜌𝜌0bulk exhibits strong variation with W=RL, where RL is the Larmor radius, because the 

resistivity directly depends on the relaxation time τ through the boundary scattering, while 

relative contribution to the Hall effect 𝜌𝜌xyball/𝜌𝜌xybulk is almost independent of it, since the Hall 

effect does not depend on the relaxation time. 

We have measured the evolution of the longitudinal and Hall resistivities with temperature in 

high-quality GaAs quantum wells. Our observations are correlated with the predictions of 

classical Hall viscosity for electron flow. 

Also, we have studied nonlocal transport in a mesoscopic two-dimensional electron system in 

terms of viscosity of the fluids. In contrast to the Ohmic flow of the particles, viscous flow can 

result in a backflow of the current and negative nonlocal voltage. We have measured voltage in 

different arrangements of current and voltage contacts and found a negative response, which 

we attributed to the formation of current whirlpools. Nonlocal viscosity-induced transport is 

strongly correlated with observations of the Gurzhi effect and low magnetic field transport 

described by hydrodynamic theory. 
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Appendix I Magnetoresistance measurements of HgTe 

In Appendix I, I would like to describe the initial measurements of MR of HgTe QWs in which 

I participated, which gave motivation for the main work. The mercury telluride is one of the 

compound which can be used to make a two-component system with a small band gap. Controll 

of the carriers concentration by adding externally positively or negatively charge quasiparticles 

allow to put this system at charge neutrality. 

In a two-component systems near the charge neutrality Hall voltage is suppressed. This means 

that the quasiparticles have a strong drift in the direction perpendicular to the electric current 

and magnetic field. It is responsible for a strong geometrical increase of resistance in weak 

magnetic fields. Also, in such types of the systems, electron-hole recombination near the sample 

edges is present. As the result, classical edge currents may dominate the resistance in the 

vicinity of charge compensation. This leads to linear magnetoresistance (LMR) in two 

dimensions. 

Phenomenological model 

In this paragraph I describe the first model that was used to fit the experimental data. In this 

model supposed that the momentum relaxation time is much smaller than another typical 

scattering times. It is possible to write this as 𝜏𝜏𝑖𝑖𝑚𝑚𝑝𝑝 ≪ 𝜏𝜏𝑒𝑒𝑒𝑒, 𝜏𝜏𝑝𝑝ℎ, where time is related to the 

impurity, electron-electron, and electron-phonon scattering. Previous assumptions lead to 

diffusive motion of carriers. 

In my work I studied HgTe samples at charge neutrality. To fit experimental data, I used theory 

suggested by Alekseev in his work [87] for the situation of symmetric parabolic spectrum at 

charge neutrality. 

The LMR is derived from the Boltzmann kinetic equation and continuity equation. First one it 

is possible to write as: 

 �⃗�𝑣 𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

+ 𝑒𝑒�𝐸𝐸�⃗ + �⃗�𝑣 × 𝐵𝐵�⃗ � 𝜕𝜕𝑓𝑓
𝜕𝜕�⃗�𝑝

= 𝑆𝑆𝑡𝑡[𝑓𝑓]. (1) 

Where for the case of charge neutrality is used Fermi distribution function 𝑓𝑓 = 1
𝑒𝑒𝜀𝜀/𝑇𝑇 . 𝜀𝜀 is the 

symmetric parabolic spectrum which has the following form:  𝜀𝜀= ∆
2 + p2

2m. Right side of the 
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equation consists of the collision integral which includes contributions from the impurity, 

electron-phonon, and electron-electron scattering. 

In the presence of an external magnetic field, the system is going out of equilibrium. This 

deviates the quasiparticle densities from their equilibrium values. The nonequlibrium densities 

and currents are connected by the continuity equation: 

 𝑑𝑑𝑖𝑖𝑣𝑣𝑗𝑗𝑒𝑒(ℎ) = −𝜕𝜕𝑛𝑛𝑒𝑒+𝜕𝜕𝑛𝑛ℎ
2𝜏𝜏𝑅𝑅

 , (2) 

where 𝜏𝜏𝑅𝑅 is the quasiparticle recombination time. 

 

Fig. 33 Typical semi classical trajectories for oppositely charged quasiparticles in two-component systems at 
charge neutrality. (copied from [87]). 

In the Fig. 33 schematically presents the situation of a two-particle system at charge neutrality 

in the presence of external fields. Compensated Hall effect leads that quasiparticle currents flow 

in the same direction in the bulk of the sample. It is possible to write the quasiparticle flow as 

a sum of quasiparticle currents for electrons and holes, 𝐽𝐽  =  𝚥𝚥𝑒𝑒   +  𝚥𝚥��⃗ ℎ. For the case when the 

system is symmetric, the quasiparticle flow is orthogonal to external field. The quasiparticles 

can be accumulated near the boundaries with a width of the order of the recombination length 

𝜌𝜌𝑅𝑅. 

As was mentioned before, the motion of quasiparticles has the diffusive character. To simplify, 

the diffusion coefficient is assumed to be the same for electrons and holes and has the form: 

 𝐷𝐷 = 𝐶𝐶𝜏𝜏
𝑚𝑚

, (3) 

where the momentum relaxation time 𝜏𝜏 is constant. 
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Then it is necessary to introduce recombination rates for electrons and holes. For my case, the 

recombination rates are the same: 

 𝛤𝛤 = 2𝛾𝛾𝑛𝑛𝑒𝑒,ℎ, (4) 

where the coefficient γ(T) depends on a particular model of electron-hole recombination. 

Diffusion coefficient and recombination rate are included for the expression of recombination 

length: 

 𝜌𝜌𝑅𝑅 = �
2𝑒𝑒𝐷𝐷

𝛤𝛤�1+𝜔𝜔𝑐𝑐
2𝜏𝜏2�

. (5) 

Also, I used expression for the resistance obtained by Alekseev in his work [87]. It has the 

following form: 

 𝑅𝑅𝑥𝑥𝑥𝑥 = 𝑚𝑚
𝑒𝑒2𝜏𝜏𝜌𝜌0

1+𝜔𝜔𝑐𝑐
2𝜏𝜏2

1+𝜔𝜔𝑐𝑐
2𝜏𝜏2𝐹𝐹�𝑊𝑊𝑙𝑙𝑅𝑅

�
,𝑣𝑣(𝜌𝜌) = 𝑑𝑑𝑎𝑎𝑛𝑛ℎ(𝑥𝑥)

𝑥𝑥
, (6) 

where 𝜌𝜌0 = 𝑛𝑛0,𝑒𝑒 + 𝑛𝑛0,ℎ is the quasiparticle density. 

Hydrodynamic model 

Previously, I described the phenomenological model that was used. However, the particle 

dynamics in the measured samples was more complex and could not be explained by only one 

model. The second model which I used in my simulations was the hydrodynamic model. This 

model is applicable when the mean free path of electron-electron interactions is much smaller 

than other characteristically lengths. In this case particles have collective motion that can affect 

the resistance. 

For the two-component systems is characteristic that particle flow depends from the 

quasiparticle recombination near the edges of the sample and impurity, electron-electron, and 

electron-phonon scattering. Viscous effect starts to play a role when the mean free path between 

electron-electron interactions is bigger than the sample dimensions. In the hydrodynamic 

regime particles accumulated near the sample edges can form a small layer along the sample 

edge which is characterized by Gurzhy length. In this case the hydrodynamic regime can 

include particle recombination near the edge regions of the sample and viscous flow along the 

edges. For my samples I calculated that the sample width and recombination length lR is much 

longer than the Gurzhy length lG. 
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To describe particle motion in the hydrodynamic regime, it is necessary to solve two equations. 

Navier-Stokes equation: 

  𝜕𝜕𝚥𝚥𝛼𝛼
𝜕𝜕𝑑𝑑

+ �𝑣𝑣2�
2
𝛻𝛻𝛻𝛻𝑛𝑛𝛼𝛼 −

𝑒𝑒𝛼𝛼𝑛𝑛𝛼𝛼0

𝑚𝑚
𝐸𝐸�⃗ − 𝜔𝜔𝛼𝛼[𝚥𝚥𝛼𝛼 × 𝑒𝑒𝑧𝑧]  

 = − 𝚥𝚥𝛼𝛼
𝜏𝜏
− 𝚥𝚥𝛼𝛼−𝚥𝚥𝛼𝛼´

2𝜏𝜏3
+ 𝜂𝜂𝑥𝑥𝑥𝑥∆𝚥𝚥𝛼𝛼 + 𝜂𝜂𝑥𝑥𝑦𝑦[∆𝚥𝚥𝛼𝛼 × 𝑒𝑒𝑧𝑧] + 𝜉𝜉𝛻𝛻(𝛻𝛻𝚥𝚥𝛼𝛼), (7) 

where eα is the electron or hole charge, ωα is the cyclotron frequency, τ3 is the electron-hole 

scattering time, ηxx and ηxy are the are regular and Hall components of the kinematic viscosity 

tensor: 𝜂𝜂𝑥𝑥𝑥𝑥 = 𝜂𝜂
1+(2𝜔𝜔𝑐𝑐𝜏𝜏2)2

 and 𝜂𝜂𝑥𝑥𝑦𝑦 = 2𝜔𝜔𝑐𝑐𝜏𝜏2𝜂𝜂𝑥𝑥𝑥𝑥, and ξ is the coefficitent which includes linear 

combination of the bulk and shear viscosities. 

And, the continuity equation: 

 𝜕𝜕𝜕𝜕𝑛𝑛𝛼𝛼
𝜕𝜕𝑑𝑑

+ 𝛻𝛻 ∙ 𝚥𝚥𝛼𝛼 = −𝜕𝜕𝑛𝑛𝑒𝑒+𝜕𝜕𝑛𝑛ℎ
2𝜏𝜏𝑅𝑅

, (8) 

where α is the electron or hole, δnα are the deviations of the carrier densities, ȷ⃗α are the carrier 

currents, and the τR is the electron-hole recombination time. 

It was necessary to solve these equations for the system at charge neutrality. As for 

phenomenological model for the hydrodynamic model the quasiparticle density 𝜌𝜌0 = 𝑛𝑛0,𝑒𝑒 +

𝑛𝑛0,ℎ and quasiparticle currents 𝐽𝐽  =  𝚥𝚥𝑒𝑒   +  𝚥𝚥��⃗ ℎ are introduced. 

In my comparison of the experimental results with theoretical data I used the solution of the eq. 

7 and eq. 8. I assumed that the samples have electron-hole recombination. For the finite samples 

with electron-hole recombination, the finall expression for the resistance has the following 

form: 

 𝑅𝑅 = 𝑅𝑅0 ��1 − 2𝑘𝑘𝐺𝐺(𝑒𝑒)
𝑊𝑊

𝑡𝑡ℎ 𝑊𝑊
2𝑘𝑘𝐺𝐺(𝑒𝑒)

� − �1 − 2𝑘𝑘𝑅𝑅
𝑊𝑊
𝑡𝑡ℎ 𝑊𝑊

2𝑘𝑘𝑅𝑅
� 𝜔𝜔𝑐𝑐

2𝜏𝜏𝜏𝜏∗
1+𝜔𝜔𝑐𝑐

2𝜏𝜏𝜏𝜏∗
�
−1

, (9) 

where 𝜌𝜌G is the Gurzhy length and 𝜌𝜌R is the recombination length. I used the following 

expressions for Gurzhy and recombination length respectively: 

 𝜌𝜌𝑅𝑅 = �〈𝑣𝑣2〉𝜏𝜏𝑅𝑅𝜏𝜏
2

 𝑎𝑎𝑛𝑛𝑑𝑑 𝜌𝜌𝐺𝐺(𝐵𝐵) = �
𝜂𝜂0𝜏𝜏∗

1+(2𝜔𝜔𝑐𝑐𝜏𝜏𝑒𝑒𝑒𝑒)2
, (10) 

where 𝜏𝜏, 𝜏𝜏𝑅𝑅 is disorder mean-free time and recombination time and 𝜏𝜏∗ = 𝜏𝜏𝜏𝜏𝑒𝑒ℎ
𝜏𝜏+𝜏𝜏𝑒𝑒ℎ

. η0 is the shear 

viscosity in the absence of the magnetic field. 
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Samples and experimental results 

In the experiments, I used the Cd0.65Hg0.35Te/HgTe quantum wells with (013) surface 

orientations and a width d of 8–8.3 nm. Samples were prepared by using molecular beam 

epitaxy. The structure of samples is shown in the Fig. 34. In these measurements, I used the 

nine-probe Hall bar samples. The gate was prepared in two steps. First, a dielectric layer 

containing 100 nm of SiO2 and 200 nm of Si3Ni4 was first grown on the structure. Then a TiAu 

gate was deposited. The ohmic contacts to the 2DES were formed by the in-burning of indium. 

The density variation with the gate voltage was 1.09 × 1015 m−2 V−1. 

 

Fig. 34 Schematic structure of HgTe QW used in our experiments. 

The MT measurements in the described structures were performed in the temperature range 

1.4–4.2 K and in magnetic fields up to 6 T with a small current of 0.1–10 nA through the sample, 

which is sufficiently low to avoid overheating effects. The applied gate voltage Vg can vary the 

charge carriers density in HgTe quantum wells. The gate voltage changes into charge density, 

converting the conductivity of a quantum well from n-type to p-type. 

The local magnetoresistance measurements were done on the several devices. The schematic 

view of the pattern that was used in the measurements is presented in the Fig. 35. 
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Fig. 35 Scheme of the 9 probes Hall-bar pattern with TiAu gate. 

 

Fig. 36 Control of the carriers density by applied gate voltage Vg (Adapted from [79]). 

Sweeping the gate voltage could allow to change the conductivity from n-type to p-type (Fig. 

36). As it presented in the figure above, local resistance Rxx moves from a low value on the 

electron side through a maximum at the bulk energy gap to another low value on the hole side. 

In the Fig. 37 is presented the result of magnetoresistance measurements for two different 

temperatures. It is possible to see the suppression of the peaks in magnetoresistance at the higher 

temperature. Also it is possible to see the evolution of the resistance in weak magnetic fields. 

The magnetoresistance has a parabolic dependence at weak magnetic fields. At the higher 

magnetic fields, the magnetoresistance decreases, marking a pronounced crossover to the 

quantum Hall effect regime. The resistance does not turn to zero, as would be expected for a 

conventional QHE state. 
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Fig. 37 Local magnetoresistance of HgTe for different temperatures at charge neutrality. 

The next step was an attempt to describe the experiment by two theoretical models which I 

described below. The main parameters that were used to calculate the fits are characteristically 

times τ, τR, 𝜏𝜏𝑒𝑒𝑒𝑒, 𝜏𝜏∗. Changing them, I did fits of the experiment. 

In the Fig. 38 are presented fits of the experimental results for the two models. I fitted the 

experimental results by phenomenological and hydrodynamic models. Fits were done for the 

resistance in the weak magnetic fields before 3T. The phenomenological model, red dotted line, 

has the parabolic dependence in all range of field. For the hydrodynamic model, green dashed 

line, it is possible to see more complicated dependence. 
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Fig. 38 Fits of the experimental results by phenomenological (red dot) 

and hydrodynamic (green dash) models at T=1.5K. 

In the Fig. 39 are presented fits for the higher temperature T=4.2K. For the phenomenological 

model it is possible to see the same parabolic dependence as in the Fig. 38. For the higher 

temperature the hydrodynamic model gives good agreement between applied theory and 

experiment. 

 
Fig. 39 Fits of the experimental results by phenomenological (red dot) 

and hydrodynamic (green dash) models at T=4.2K. 

Electron mean free path can be found by using this expression 𝜌𝜌 =  𝑣𝑣𝐹𝐹𝜏𝜏. For the samples I 

studied, it gave 𝜌𝜌 ~10−6. Thus, the samples had a width that was of the same order as the 
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electron mean free path. This is not a condition that could mean that the movement in the 

samples was purely diffusive. However, in the Fig. 39 it can be seen that the diffusion model 

can describe the experiment under certain conditions. Relatively small magnetic fields and 

temperature. With lowering temperature, the diffusion character of motion is not dominating 

anymore. The model can’t give a good representation of experiment at any range of magnetic 

field. The Fig. 38 and Fig. 39 show significant difference when model can’t be applied. As was 

mentioned by Alekseev [90] can exist a temperature limit when the electron-electron 

interactions can dominate. This leads to collective motion of particles and gives a permission 

to apply hydrodynamic model. 

For the hydrodynamic model is supposed that the electron-electron interaction length is much 

smaller than another characteristically lengths. In the hydrodynamic model like in the diffusive 

I took into account particle recombination. In the Fig. 38 and Fig. 39 is possible to see that the 

model can give better representation of experiment than the phenomenological model. From 

this model the recombination lengths for both temperatures 1.4K and 4.2K have the same order 

as sample width. And the Gurzhi length is much smaller than the recombination length. 

 

Fig. 40 Flow profile for different temperatures at magnetic field B=1T. 
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Fig. 41 Flow profile for different temperatures at magnetic field B=2T. 

In the Fig. 40 and Fig. 41 are presented flow profiles at two different temperatures and magnetic 

field. Sample width W is equal 5 × 106µm. Plateau is normalized at 1 for both profiles. Y axis 

is in the arbitrary units and show the amplitude range of profile. Dashed lines are separating the 

boundary region and bulk of the sample. Width of this region is characterized by Gurzhy length 

lG. For both temperatures and different magnetic fields Gurzhy length doesn’t change 

significantly and it is much smaller than the sample width W and recombination length l𝑅𝑅. As 

possible to see in the figures the recombination length l𝑅𝑅 is different for different temperatures. 

It has the same order that the sample width W and much longer than the Gurzhy length lG. 
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Appendix II Magnetoresistance measurements of GeP 

One of the extra work I did was measuring 3D GeP samples. It is a part of the ongoing 

collaboration with theoretical group. I took measurements on several samples at two different 

temperatures, 1.4K and 4.2K, to extract physical parameters. Then I plotted these results for 

different samples. 

For most conducting pure single crystals, it is experimentally found that the application of a 

magnetic induction 𝐵𝐵�⃗  results in an increase of the resistivity, i.e. the magnetoresistance is 

positive. However, in a number of heavily doped semiconductors, a negative magnetoresistance 

can be observed. There are many different models in the literature trying to explain this 

anomalous behavior. They are all related to a model by Toyozawa [21] where the conduction 

electrons scatter against localized spins. In a review article by Alexander and Holcomb [22] 

some of these models are discussed. Several mechanisms have been suggested to explain this 

behavior from geometrical, classical, quantum, ion implantation, and effective medium 

perspectives. 

The experimental results are compared to a model which includes three main features: above 

the critical donor concentration, nc, the electrons are delocalized; above a second critical donor 

concentration, ncb, the Fermi level passes into the conduction band of the host crystal; for nc < 

nd < ncb where nd is the donor density, the electrons exist in a poorly understood “impurity 

band” leading to anomalous properties. 

Theory 

The collaborators proposed an alternative model where the donor electrons end up in the 

conduction band of the host already at the critical concentration nc. This model suggests that 

the anomalous properties on the metallic side of and close to the transition point are caused by 

many-body effects. 

The first step, is to start with the relation between the Fermi wave vector k0 and the doping 

density: 

 𝜌𝜌0 = (3𝜋𝜋2𝑛𝑛 𝜈𝜈� )1 3⁄ , (1) 

where the ν is a filling factor. For Ge, it is equal to 4. 
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Then the relation for the Fermi energy is possible to write as follows: 

 𝐸𝐸0 = ℏ2𝜌𝜌02
2𝑚𝑚� = ℏ2𝜌𝜌02

2𝑚𝑚𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒
� , (2) 

where 𝑚𝑚e is the electron mass and 𝑚𝑚de is the density of states effective mass for a Fermi sphere. 

Not only kinetic energy gives a contribution. There are contributions from the electrons 

interactions and from the interactions with the ionized-donor potentials. With these additional 

contributions the theory can be improved. Now, continue with the density of states. The density 

of states (DOS) is a quantity that determines the number of energy levels in the energy interval 

per volume for this study. Now, it is possible to write DOS as follows: 

 𝐷𝐷(𝐸𝐸) = 𝐷𝐷(𝜌𝜌)
𝑑𝑑𝐸𝐸(𝑘𝑘)
𝑑𝑑𝑘𝑘

� = 2∙4𝜋𝜋𝑘𝑘2

(2𝜋𝜋)3𝑑𝑑𝑑𝑑(𝑘𝑘)
𝑑𝑑𝑘𝑘

= 𝑘𝑘2

𝜋𝜋2𝑑𝑑𝑑𝑑(𝑘𝑘)
𝑑𝑑𝑘𝑘

. (3) 

Without any interaction between electrons eq. 3 can be rewritten as: 

 𝐷𝐷0(𝐸𝐸) = 𝑘𝑘𝑚𝑚
𝜋𝜋2ℏ2

. (4) 

To introduce interactions between electrons it is necessary to substitute m to 𝑚𝑚∗. There the 𝑚𝑚∗ 

is the effective mass. The effective mass has this form: 𝑚𝑚∗(𝜌𝜌) = 𝑚𝑚/(1 − β(𝜌𝜌)). For this case 

β(k) = β𝑥𝑥𝑐𝑐(𝜌𝜌) + β𝑏𝑏(𝜌𝜌), where β𝑥𝑥𝑐𝑐(𝜌𝜌) is a contribution from the exchange and correlation 

energy and β𝑏𝑏(𝜌𝜌) is a contribution from the band structure energy. The β𝑥𝑥𝑐𝑐(𝜌𝜌) and β𝑏𝑏(𝜌𝜌) have 

the following form: 

 𝛽𝛽𝑥𝑥𝑐𝑐(𝜌𝜌) = − 𝑚𝑚
𝜋𝜋2𝑘𝑘

𝜕𝜕
𝜕𝜕𝑘𝑘

𝜕𝜕𝑁𝑁𝐸𝐸𝑥𝑥𝑐𝑐
𝜕𝜕𝑛𝑛(𝒌𝒌)

 and 𝛽𝛽𝑏𝑏(𝜌𝜌) = − 𝑚𝑚
𝜋𝜋2𝑘𝑘

𝜕𝜕
𝜕𝜕𝑘𝑘

𝜕𝜕𝑁𝑁𝐸𝐸𝑏𝑏
𝜕𝜕𝑛𝑛(𝒌𝒌)

, (5) 

where 𝐸𝐸xc and 𝐸𝐸b exchange and correlation energy and the band structure energy, respectively. 

The 𝑛𝑛(𝒌𝒌) is the occupation number of the state with wave-vector k, N is the total number of 

electrons. 

After the introducing initial conditions and quantities for the model, the resistivity ρ and 

relaxation time have the following form [24]: 

 𝜌𝜌 = 1
𝜎𝜎

= 𝑚𝑚∗

𝑛𝑛𝑒𝑒2𝜏𝜏
 and 1

𝜏𝜏
= 4

3
𝜈𝜈𝑒𝑒4𝑚𝑚
𝜋𝜋ℏ3𝜅𝜅2 ∫ 𝑑𝑑𝑑𝑑2𝑘𝑘0

0
1

𝑞𝑞𝜀𝜀2(𝑞𝑞,0)
, (6) 

where 𝜌𝜌,σ, τ, κ are the resistivity, conductivity, transport time and dielectric constant. 
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If turn on the magnetic field the bands with spin up electrons move up and bands with spin 

down electrons move down. Due to redistribution, electrons with spin down are more than with 

spin up. Redistribution cause difference in the effective mass at the Fermi level, conductivity 

and transport time. The spin-polarization parameter, s which can take values from 0 to 1 is 

defined as: 

 𝑠𝑠 = 𝑛𝑛↓−𝑛𝑛↑
𝑛𝑛

. (7) 

Now eq. (1) can be modified: 

 𝜌𝜌0↑ = 𝑘𝑘0
𝑎𝑎

 and 𝜌𝜌0↓ = 𝑘𝑘0
𝑏𝑏

, (8) 

where 𝑎𝑎 = (1 − 𝑠𝑠)−1/3 and b = (1 + 𝑠𝑠)−1/3. Using k0 from the eq. (8) in eq. (6), the resistance 

has the following form: 

 𝜌𝜌 = 𝑚𝑚/𝑒𝑒2

𝑛𝑛↑𝜏𝜏↑(1−𝛽𝛽↑)+𝑛𝑛↓𝜏𝜏↓(1−𝛽𝛽↓). (9) 

The experimental results for resistivity are not given in the terms of spin-polarization parameter 

s, but as the function of the magnetic field, 𝐵𝐵�⃗ . For the measurements that were performed at the 

small magnetic fields relation between s and B has linear character: 

 𝐵𝐵(𝑇𝑇) = 2.64262 ×
10−11�𝑙𝑙�𝑐𝑐𝑘𝑘

−3�
𝜈𝜈 �

2/3

𝑚𝑚𝑑𝑑𝑒𝑒(𝜒𝜒/𝜒𝜒0) 𝑠𝑠, where (10) 

the spin-susceptibility enhancement-factor (𝜒𝜒/𝜒𝜒0), used as a fitting parameter. 

Samples and experimental results 

I measured magnetoresistance of Ge samples with different doping concentration. Samples had 

the following characteristics, p-type, P doped (100)-oriented square of 7×7 mm2, Ge samples 

were implanted with phosphorus at room temperature. The implanted P doses were ranged from 

2×1013 cm-2 to 1.1×1012 cm-2. Annealing and electrical activation were performed at 600 0C for 

1 minute in the argon. Indium contacts were put at the corners of the samples to made Van der 

Pauw structure. Then, contacts were annealed to improved conductivity, for 1 minute at 80 0C. 

MT measurements were performed in VTI cryostat by using lock-in measurements technic (see 

Fig. 10). 
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Fig. 42 The magnetoresistance at the temperatures 4.2 K (red curve) and 1.5 K (blue curve) as a function of 
magnetic field B. 

GeP with doping concentrations: a) 2.96×1017 cm-3; b) 6.25×1017 cm-3; c) 1.17×1018 cm-3. 
The black solid curve is the theoretical result for 0 K. 

The results of measurements and their comparison with the theory for samples with different 

doping concentrations are presented in the Fig. 42. In the Fig. 42 (a) are presented results for 

the sample with lower doping concentration. It is possible to see good minimum that increases 

for lower temperature. In the Fig. 42 (b) are presented results for a sample with larger 

concentration. In the Fig. 42 (c) are presented results for the sample with the highest doping 

concentration. The theoretical result fits close to the obtained experimental results. In all of 

these figures (a), (b), (c) it is possible to see two effects. Lowering of the doping concentration 

gives higher minima but at the same time, increasing temperature gives shallower minima. 

Conclusion 

Magnetoresistance of phosphorous doped germanium was measured and compared with 

theoretical calculations. The resistance was calculated by using the generalized Drude 

approach. Measurements show good agreement with theoretical calculations. In the Fig. 42 for 

samples with different doping concentration it is possible to see negative magnetoresistance. 

Minima of the magnetoresistance are decreasing with increasing the doping concentration. The 

main contribution to negative magnetoresistance, in this case, comes from the many-body 

effect. 

The many-body effects related to the enhancement of negative magnetoresistance. When the 

magnetic field is off the density of states is enhanced at the Fermi level and consequently, the 

resistance is lowered. When a magnetic field is applied, the bands are splitting for two, with 
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movement down for a spin down and up for spin up. Due to redistribution of electrons with up 

and down spins the Fermi level is the same for all bands. After the apply magnetic field, the 

Fermi wave-number has two values for spin up k0↑  and spin down k0↓ . Magnetic field increases 

the density of states with spin up and down electrons. For electrons with spin up or down, only 

one remains at the Fermi level, other electrons move to an unoccupied part of the bands. Only 

the enhancement at the Fermi level can affect the resistivity. This is explaining negative 

magnetoresistance at the small magnetic fields. 
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Appendix III Microwave power dependence of GaAs samples 

in ballistic regime 

DEG interaction models with microwave 

The experimental discovery of the MW-induced resistance oscillations (MIRO) [6, 7] and the 

zero-resistance states (ZRS) [8, 9] have opened a new direction for research of non-equilibrium 

physics. 

Most importantly, the observed phenomena demonstrated that the combined effect of the 

Landau quantization in the weak magnetic fields and the relatively weak MW radiation can give 

rise to very strong changes of the transport properties of a 2DEG. These novel non-equilibrium 

phenomena revealed unexpected and conceptually interesting physics which has proven to be 

of interest in many areas of condensed-matter physics. 

As I mentioned before, in the main text, we used high quality GaAs samples in the experiments. 

In the Fig. 43 is presented the typical dependence of a resistance from the microwave. Also, in 

the figure below is possible to see the MIRO and ZRS effects. 

 

Fig. 43 Magneto resistance w/o and with MW irradiation in a narrow quantum well. Arrows indicate the regions 
of vanishing resistance. MIRO is observed below 0.5 T Copied from [11]. 

There are several theoretical models which can explain effects presented in the figure above. 

Basically they take into account interaction between low dimensional systems and MW 

radiation. The first is the displacement mechanism, which describes oscillations of conductivity 

(MIRO) and zero resistance states (ZRS) [10, 11] observed when 2DEG is illuminated by MW 

radiation. 
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Inelastic mechanism modeled by a change of the electron distribution function (see [12]). The 

correction to the distribution function has an oscillatory structure. The MW irradiation adds 

oscillations to the electronic distribution function and leads to a population inversion. In this 

case, it is possible to obtain states with negative conductivity. 

In microwave-driven orbit mechanism, the electron orbit centers of the Landau states perform 

a classical trajectory consisting of a harmonic motion along the direction of the current. Thus, 

the 2DES moves periodically at the presence of MW. This model based on the exact solution 

of the electronic wave function in the presence of a static 𝐵𝐵�⃗  interacting with MW radiation [34]. 

Ponderomotive forces model considers three types of electrons in 2DES samples: electrons far 

from edges, along the edge and near the contacts. Electrons in the bulk give the main 

contribution in the absorption experiments. In the near contact region observes an increase of 

the amplitude of electric field 𝐸𝐸�⃗ . This field 𝐸𝐸�⃗  has a big inhomogeneity on the cyclotron radius 

scale. This can explain why in the MIRO experiments it is possible to observe several cyclotron 

harmonics. Edge mechanisms have been discussed separately in [35]. 

During the main study which included measurements of magnetoresistance in the absence of 

MW, I also participated in the study of the electron transport under the MW excitation. The 

experimental technique was modified by adding MW generator. Numerical simulations I did 

by applying the ballistic model. 

As was mentioned before, electrons go through a sample without any interactions between them 

and defects. In the chapter 3.1 I presented a way how it is possible to describe electron motion 

in the presence of a magnetic field. If add MW electric field it is necessary to rewrite eq. 3.1 as 

follows: 

 �⃗�𝑣 = −𝜌𝜌∆𝑟𝑟 + 𝑒𝑒𝐸𝐸�⃗ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡) + 𝑒𝑒[�⃗�𝑣 × 𝐵𝐵�⃗ ]. (1) 

Then I followed the same procedure that was shown in the chapter 3.1. In the presence of MW 

radiation, the eq. 3.3 has the following form: 

 𝑑𝑑𝑉𝑉��⃗

𝑑𝑑𝑑𝑑
=  − 𝑘𝑘

𝑚𝑚𝑣𝑣𝐹𝐹
∆𝑟𝑟 + 𝜖𝜖𝜔𝜔𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡) + [𝑉𝑉�⃗ × 𝜔𝜔��⃗ 𝑐𝑐], (2) 

where 𝜖𝜖𝜔𝜔 = 𝐸𝐸�⃗ 𝑒𝑒
m𝑣𝑣𝐹𝐹

. 
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Finally, eq. (2) can be rewritten in new variables as follows: 

 𝑑𝑑𝑉𝑉��⃗

𝑑𝑑𝐶𝐶
= − 𝑘𝑘𝐶𝐶

𝑚𝑚𝑣𝑣𝐹𝐹
∆𝑟𝑟 + 𝜖𝜖𝛺𝛺 𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺𝑇𝑇) + [𝑉𝑉�⃗ × 𝛺𝛺�⃗ 𝑐𝑐], (3) 

where ϵ⃗Ω =  Ce𝐸𝐸�⃗

m𝑣𝑣𝐹𝐹
 and V��⃗  measures in a units of the Fermi velocity. 𝜔𝜔 = 10−11 is the normalization 

coefficient that was chosen to scale a time. 

Transformations of normalized velocity have the same form as in the chapter 3.1. Final equation 

has addition parameter which is responsible for the MW irradiation. 

 
𝑑𝑑2

𝑑𝑑𝐶𝐶2
𝑅𝑅�⃗ = −𝑘𝑘𝐶𝐶2

𝑚𝑚
∆𝑅𝑅�⃗ + 𝜖𝜖𝛺𝛺 𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺𝑇𝑇) + [𝑑𝑑𝑅𝑅

�⃗

𝑑𝑑𝐶𝐶
× 𝛺𝛺�⃗ 𝑐𝑐]. (4) 

Fermi velocity in the samples can be estimated using the following expression for 𝑣𝑣𝐹𝐹 = ℏkF
m

, 

where for 2DEG kF = (2𝜋𝜋𝑛𝑛)
1
2, [32]. 

In the model described above, the shape of the wall potential is considered to be parabolic. The 

potential is estimated to be steepness from the assumption that the width of the region where 

the potential increases from the bottom to the Fermi energy is of the same order as the Fermi 

wavelength for typical electron concentrations. Assuming that the confinement edge potential 

is equal 𝑈𝑈 = 𝑘𝑘𝑥𝑥2

2
 (for coordinates outside the Hall bar geometry), the k is estimated as follows, 

𝜌𝜌 =  0,008𝑚𝑚𝑒𝑒𝑉𝑉/𝐴𝐴2. 

Pointing’s vector and 𝐸𝐸�⃗  the amplitude in the experiment 

Pointing’s vector is defined as S = 1
2η

E2 = 𝑃𝑃
𝐴𝐴

, where 𝑃𝑃 is the power of the source and A is the 

area of waveguide cross-section, η is the characteristic impedance of the transmission medium. 

For the used MW source the impedance is equal η = 377Ω, 𝐴𝐴 = 1,33 × 10−6(𝑚𝑚2), 𝑃𝑃 =

10−3(𝛻𝛻𝑎𝑎𝑡𝑡𝑡𝑡). Amplitude of 𝐸𝐸�⃗  is: 

𝐸𝐸 = �2×𝜂𝜂×𝑃𝑃
𝐴𝐴

≈ 753�𝑉𝑉 𝑚𝑚� �. 

And, the ϵ coefficient is calculated from the relation: 

𝜖𝜖 = 𝐸𝐸𝑒𝑒
𝑚𝑚𝑣𝑣𝐹𝐹𝜔𝜔

, 
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where 𝐸𝐸 is the wave amplitude, 𝑚𝑚 is the effective mass of the electron and 𝜔𝜔 = 110 ÷ 170 

GHz is a frequency of MW. 

I simulated trajectories of electrons at various initial conditions in the H bar patteren samples 

for different geometries. Electrons were injected into channel 1 with and without MW 

excitation. The initial position of trajectories was 𝜌𝜌0 = L/2 − W/2 + 0.3, 𝜌𝜌0 = L/2. Where 

L = 18 × 10−6(m) is the length and W = 3 × 10−6(m) is the width of the “neck” of H bar 

pattern. Electrons were injected at the Fermi velocity, therefore the normalized velocity V��⃗ = 𝐯𝐯�⃗
𝑣𝑣𝐹𝐹

 

is equal to 1. The injection angle for trajectroties plotted in the Fig. 44 was 𝜃𝜃 = 𝜋𝜋
4.99

. In the Fig. 

44 it is possible to see an example of two trajectories for electrons without and with MW 

excitation. As possible to see the MW excitation can strongly change the electron trajectory 

and, as a consequence, the dependence of the measured resistance in the samples. 

 

Fig. 44 Trajectories of e- in the H bar pattern w/o MW and with MW. 

MW power dependence 

Also, I measured the resistance of H bar patterned samples under MW irradiation. The power 

dependence of local and non-local magnetoresistance was observed. The results of the 

experiments (solid) are presented in the Fig. 46 and Fig. 47. The ballistic model was able to 

closely reproduce the shape of the observed features. However, the most pronounced effect of 
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the almost complete disappearance (10 times reduction) of the non local peak at B=0,013T 

reproduced not very well. 

 

Fig. 45 Experimental setup to measure MT in 
the H-Shape structure under MW excitation. 
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Fig. 46 Comparison of local resistance for the H bar structure 
w/o and under MW irradiation (solid) with numerical simulations (dashed). 
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Fig. 47 Comparison of non local resistance for the H bar structure 
w/o and under MW irradiation (solid) with numerical simulations (dashed). 

A larger discrepancy between the ballistic model and the experiment occurred after reproducing 

measurements of frequency dependence. The results are presented in the Fig. 48. The 

geometrical parameters  were varied in a wide range and had poor reproduction of experimental 

data. 
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Fig. 48 Non-local resistance as a function of MW frequency. (Left) resistance measurements, (Right) the same 
measurements with several attempts to fit it to ballistic model. 
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Appendix IV  Transmission matrix for cross geometry 

It is possible to calculate only transmissions for one cross-section with terminal 1, 2, 3, 4 labeled 

clockwise (left half of the figure) T12, T22, T32, T42. 

From these quantities the rest of the matrix can be constracted. The symmentry gives that 𝑇𝑇22 =

𝑇𝑇11 = 𝑇𝑇33 = 𝑇𝑇44: 

𝑇𝑇 =

⎣
⎢
⎢
⎡𝑇𝑇22 𝑇𝑇12

𝑇𝑇22 𝑇𝑇12
𝑇𝑇32 𝑇𝑇22 𝑇𝑇12

𝑇𝑇12 𝑇𝑇42 𝑇𝑇22⎦
⎥
⎥
⎤
 

The straight pass is symmetric too, 𝑇𝑇42 = 𝑇𝑇13 = 𝑇𝑇24 = 𝑇𝑇31: 

𝑇𝑇 =

⎣
⎢
⎢
⎡𝑇𝑇22 𝑇𝑇12 𝑇𝑇42

𝑇𝑇22 𝑇𝑇12 𝑇𝑇42
𝑇𝑇42 𝑇𝑇32 𝑇𝑇22 𝑇𝑇12
𝑇𝑇12 𝑇𝑇42 𝑇𝑇22⎦

⎥
⎥
⎤
 

Finally, for transmission clockwise, 𝑇𝑇32 = 𝑇𝑇43 = 𝑇𝑇14 = 𝑇𝑇21: 

𝑇𝑇 = �

𝑇𝑇22 𝑇𝑇12 𝑇𝑇42 𝑇𝑇32
𝑇𝑇21 𝑇𝑇22 𝑇𝑇12 𝑇𝑇42
𝑇𝑇42 𝑇𝑇32 𝑇𝑇22 𝑇𝑇12
𝑇𝑇12 𝑇𝑇42 𝑇𝑇21 𝑇𝑇22

� 
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Appendix V Statistical anlyses 

For statistical analysis, the same modeling parameters were used with the exception of the 

number of trajectories, initial positions and time. Statistical analyze was the important step to 

optimize time of simulation. The plots are made on a logarithmic scale, where G is the 

conductivity GL(NL) = RL(NL)
−1 (Ω−1).  
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Fig. 49 GL vs number of points for an angle with different quantity of initial positions and Rc=W/2, 𝑊𝑊 = 3𝜇𝜇𝑚𝑚, 
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We have performed longitudinal magnetoresistance measurements on heavily n-doped germanium
for donor concentrations exceeding the critical value for the metal-non-metal transition. The results
are compared to those from a many-body theory where the donor-electrons are assumed to reside at
the bottom of the many-valley conduction band of the host. Good qualitative agreement between
theory and experiment is obtained.

I. INTRODUCTION

The magnetoresistance was first discovered by Lord
Kelvin [1] in the middle of the 19th century. Many spec-
tacular effects are found in either magnetic systems or
in special geometrical structures [2–8]. Also in ordinary
non-magnetic bulk materials there are interesting magne-
toresistance effects. For all conducting pure single crys-
tals it is experimentally found that the application of a
magnetic induction B results in an increase of the resis-
tivity ρ, i.e. the magnetoresistance is positive.

However, in a number of heavily doped semiconduc-
tors one observes a negative magnetoresistance. There
are many different models [9–16] in the literature trying
to explain this anomalous behavior. They are all related
to a model by Toyozawa [17] where the conduction elec-
trons scatter against localized spins. In a review arti-
cle by Alexander and Holcomb [18] some of these mod-
els are discussed. The discussion is organized around
a model which includes three main features: above the
critical donor concentration, nc, the electrons are delo-
calized; above a second critical donor concentration, ncb,
the Fermi level passes into the conduction band of the
host crystal; for nc < nd < ncb the electrons exist in
a poorly understood “impurity band” leading to anoma-
lous properties. We proposed a different description [19]
where the donor electrons end up in the conduction band
of the host already at the critical concentration nc. We
suggested that the anomalous properties on the metal-
lic side of and close to the transition point were caused
by many-body effects. Some examples of anomalous be-
havior are that the resistivity, the heat capacity, and the

∗
bos@ifm.liu.se

spin susceptibility are all enhanced close to nc. Another
example is the negative magnetoresistance treated in this
work.

Lately much research has been devoted to systems with
positive magnetoresistance showing a linear dependence
on the applied magnetic field [20–23]. Several mecha-
nisms have been suggested to explain this behavior from
geometrical [24], classical [25–27], quantum [28, 29], and
effective medium [30, 31] perspectives.

In this work we focus on the magnetoresistance of heav-
ily doped semiconductors near and on the metallic side
of the metal-non-metal transition. In Ref. [32] we pre-
sented the theory but did not present any experimental
results. Here we combine theory and experiment and can
make comparisons. In an earlier work [33] we studied n-
doped silicon and now we repeat the work for n-doped
germanium.

The material is arranged in the following way. In Sec.
II we present the experimental details. Sec. III is de-
voted to the theoretical model and derivations. Our ex-
perimental and theoretical results are compared in Sec.
IV. Finally, Sec. V is a brief summary and conclusion
section.

II. EXPERIMENTAL DETAILS

P-type, Ga doped (100)-oriented square, 7×7mm2, Ge
samples with resistivity in the range of 1-10 Ωcm were
implanted with phosphorus at room temperature. Five
implantations with energies of 240,140, 80, 40, and 20 keV
were accumulated in each sample with proper doses to re-
sult in a plateau like profile of P from the surface to the
depth of about 0.40 µm, according to TRIM code simula-
tion [34]. The implanted P doses were 2.0×1013 cm−2 (at
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240 keV), 6.0×1012 cm−2 (at 140 keV), 4.0×1012 cm−2 (at
80 keV), 2.0×1012 cm−2 (at 40 keV), and 1.1×1012 cm−2

(at 20 keV) in order to achieve a P atomic concentration
of 1 × 1018 cm−3. The doses in the other samples were
scaled to this sample, according to the ratio of the de-
sired P concentration. The damage annealing and the
electrical activation of P were performed at 600 C for 1
minute in argon atmosphere in a Rapid Thermal Anneal-
ing furnace to avoid high thermal budget. Van der Pauw
structures [35] were fabricated by manually applied In-
dium contacts at the corners of the samples. Annealing
at 80 C on a hot plate for 1 minute was performed to
improve the contacts. The implantation process is de-
scribed in Refs. [33, 36, 37].

We performed magneto-transport measurements on
the described structures with Van der Pauw geometries,
exploiting conventional lock-in technique with frequen-
cies 7-13 Hz, in the temperature range of 1.5-4.2 K and
bias current of 10 µA which is low enough to prevent
heating effect and at the same time provide a well de-
fined signal for our measurements. Both Hall and longi-
tudinal resistance measurements were done in an Oxford
cryostat with VTI (Variable Temperature Insert), in the
presence of perpendicular magnetic field provided by a
superconducting coil.

III. THEORY

We start with our approximations and notation. Most
of the material is identical to what we presented for Si
in Ref. [33]. To avoid duplication we just give parts that
are specific for Ge and limit the rest of the material as
much as possible.

Ge is a semiconductor with ν = 4 anisotropic conduc-
tion band valleys. There are actually 8 minima in the
(±1,±1,±1) /

√
3 directions but they all are on the zone

boundary so only half of each cigar shaped Fermi volume
is inside the Brillouin zone. For heavily n-type doped
germanium, on the metallic side of the metal-non-metal
transition (n > nc), the donor electrons are up in the
conduction band valleys. The anisotropy has some ef-
fects on the resistivity [38] but we neglect this here and
let the electrons be distributed in ν Fermi spheres. The
relation between the Fermi wave vector, k0, and the dop-
ing density, n, is given by

k0 =
(

3π2n/ν
)1/3

. (1)

The Fermi energy is

E0 = ~
2k20/ (2m) = ~

2k20/ (2mdeme) (2)

where me is the electron mass and the density of states

effective mass for a Fermi sphere is mde =
(

mlm
2
t

)1/3
=

.220. Apart from the kinetic energy there are contri-
butions from the interactions between the electrons (the
exchange and correlation energy, Exc) and from the in-
teractions with the ionized-donor potentials (the band-
structure energy, Eb). These interaction energies lead

to a deformation of the parabolic band dispersion and a
modification of the density of states. This modification
is important for the effects discussed in this work so we
discuss the density of states here.

The density of states is the number of states per energy
and volume. The density of states from one valley is

DE = Dk/ (dE (k) /dk) = 2·4πk2

(2π)3(dE(k)/dk)

= k2

π2(dE(k)/dk) ,
(3)

where we have taken into account that in each valley
there are two states for each k, one with spin up and
one with spin down. For non-interacting electrons the
corresponding density of states is

D0
E =

k2

π2 (dE0 (k) /dk)
=

km

π2~2
. (4)

We may express the density of states for interacting
electrons on an analogous form by introducing a wave-
number dependent effective mass,

DE =
km∗

π2~2
. (5)

The effective mass can be written as

m∗ (k) = m/ [1− β (k)] , (6)

where β (k) gets a contribution from each of the interac-
tion energies, β (k) = βxc (k) + βb (k), where

βxc (k) = − m
π2k

∂
∂k

δN ·Exc

δn(k)
,

βb (k) = − m
π2k

∂
∂k

δN ·Eb

δn(k)

(7)

The quantity n (k) is the occupation number of the state
with wave-vector k, and N is the total number of elec-
trons. One effect of the interactions, that turns out to
be very important for the present work, is that the effec-
tive mass and density of states are enhanced in a region
around the Fermi level (see Fig. 3 of Ref. [32]).

The resistivity we calculate by using the so-called gen-
eralized Drude approach [39–41]. In the static case which
is what we need here the results agree with the so-called
Ziman’s formula [42],

ρ = 1
σ = 1

ne2τ/m∗ ,

1
τ = 4

3
νe4m
π~3κ2

2k0
´

0

dq 1
qε̃2(q,0) ,

(8)

where ρ, σ, τ , and κ are the resistivity, conductivity,
transport time, and dielectric constant, respectively. For
Ge κ = 15.36.

When a static and spatially homogeneous magnetic
field (magnetic induction B) is applied the bands with
spin up electrons (spin parallel to B) move up in energy
and those with spin down electrons (spin antiparallel to
B) move down. There is a redistribution of the electrons
so that more electrons have spin down than have spin
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Figure 1. (Color online)The magnetoresistance at the temper-
atures 4.2 K (red curve) and 1.5 K (blue curve) as function
of magnetic induction, B, for a Ge:P sample with doping con-
centration 2.96 × 10

17 cm−3. The black solid curve is our
theoretical result for 0 K. See the text for details.

up. This has the effect that the density of states, the
effective mass at the Fermi level, the contribution to the
conductivity, and the transport time are no longer the
same for the two groups of electron. Let us introduce the
spin-polarization parameter, s, that varies from zero in
absence of B to 1 at full polarization (all electrons have
spin down),

s =
n↓ − n↑

n
. (9)

The density and Fermi wave-number of spin up and
down electrons are

n↑ = 1−s
2 n,

n↓ = 1+s
2 n,

k0
↑ = k0/a,

k0
↓ = k0/b,

(10)

where

a = (1− s)
−1/3

,

b = (1 + s)
−1/3

.
(11)

The resistivity is now

ρ = 1
n↑e2τ↑/m∗↑+n↓e2τ↓/m∗↓

= 1
n↑e2τ↑(1−β↑)

m
+

n↓e2τ↓(1−β↓)
m

= m/e2

n↑τ↑(1−β↑)+n↓τ↓(1−β↓)
.

(12)
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Figure 2. (Color online) The same as Fig. 1 but now for the
doping concentration 6.25 × 10

17 cm−3.

Now we have all formalism needed for the calculation of
the magnetoresistance, ∆ρ/ρ = [ρ (s)− ρ (0)] /ρ (0), as a
function of spin polarization s. The detailed expressions
for the quantities involved were given in Ref. [33]. The
experimental results are not given as functions of s but
as functions of B. If the fields are small enough we can
assume a linear relation between B and s. It can be
written as

B [T ] =
2.64262× 10−11

(

n
[

cm−3
]

/ν
)2/3

mde (χ/χ0)
s. (13)

IV. EXPERIMENTAL AND THEORETICAL

RESULTS

Our theoretical and experimental results are compared
in Figs. 1 - 3. We have adjusted the spin-susceptibility
enhancement-factor (χ/χ0) appearing in Eq. (13) to get
a reasonable fit between the theoretical and experimen-
tal curves. The adjustment only affects the theoreti-
cal curves in the horizontal direction. We have further-
more enhanced the effective mass, mde, characterizing
the Fermi spheres with a factor of 1.5, i.e. it has been
changed from .22 to .33.

In Fig. 1 we present the results for our sample with
lowest doping concentration, i.e. the sample that is clos-
est to the metal-non-metal transition. We find rather
deep minima, that increase with lowering of the temper-
ature. The experimental results are given as functions of
B. The theoretical result is obtained as a function of s,
the spin polarization parameter. The theoretical relation
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Figure 3. (Color online) The same as Fig. 1 but now for the
doping concentration 1.17× 10

18 cm−3.

between B and s is found in Eq. (13). In a rather ad hoc
manner we have given χ/χ0 the value 2.0.

In Fig. 2 we present the results for our sample with the
next lowest doping concentration. We find a more shal-
low minimum at 0 K, but the minima are a little deeper
for the finite temperature results compared to what we
found for the sample with lowest concentration. Here we
gave χ/χ0 the value 2.2.

Fig. 3 shows the results for our sample with the highest
doping concentration. Here we gave χ/χ0 the value 2.5.

There are two competing effects. Lowering of the dop-
ing density gives deeper minima; increasing the tempera-
ture gives shallower minima. This is clearly seen in Fig. 4
where the size of the minima as a function of doping con-
centration is presented for the zero temperature theoret-
ical result and for the experimental results performed at
finite temperatures.

The enhancement of the density of states at the Fermi
level increases when the density comes closer to nc (nc ≈
2.5× 1017cm−3 [43]) from the metallic side. It is further-
more well known that the spin susceptibility χ is more
and more enhanced the closer to nc one gets and that
the enhancement is reduced when the temperature goes
up [44–47].

Now, what causes the negative magnetoresistance? As
we mentioned above the density of states is enhanced
at the Fermi-level in absence of a magnetic field. This
leads to an enhancement of the resistivity. In absence
of a magnetic field the spin up and spin down bands are
degenerate and the Fermi wave-numbers are the same
for both spin types. When the magnetic field is intro-
duced the spin down bands move down in energy and
the spin up bands move up. There is a redistribution of
electrons from the spin up bands to the spin down bands
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Figure 4. (Color online) The depth of the magnetoresistance
minima as function of doping concentration. The red thick
solid straight line is the theoretical result for 0 K; the blue

open squares are the experimental results at 4.2 K; the green

filled triangles are the experimental results for 1.5 K; the thin
solid curves are just guides for the eye. See the text for details.

so that the Fermi-level is the same in all bands. The
Fermi wave-numbers are now different in the two band
types. See the inset of Fig. 2 of Ref. [33]. When the
magnetic field is introduced the density of states of both
electron types, i.e. spin up and spin down electrons, are
enhanced for states with wave-number k0

↑ and k0
↓. This

means that the peak in the density of states at the Fermi-
level is for each spin type split up into two. The states
involved in the enhancement of the density of states are
indicated by circles in the inset of Fig. 2 of Ref. [33]. For
spin up electrons one peak remains at the Fermi-level
while the other moves up into the unoccupied part of the
bands. For spin down electrons one peak remains at the
Fermi-level and one moves further down in the occupied
part of the bands. For both spin types the enhancement
at the Fermi-level is hence reduced. It is only the en-
hancement at the Fermi level that effects the resistivity.
This causes the initial negative magnetoresistance. The
enhancement of the density of states at the Fermi-level
for both spin types as function of magnetic induction is
shown in Fig. 5 for the sample with doping concentration
2.96× 1017 cm−3.

There is another effect that acts in the same direction.
There are Friedel oscillations [48] in the screening-charge
density centered around each impurity potential with
Fourier component q = 2k0. This leads to an enhanced
scattering rate in the back scattering direction across the
Fermi spheres and an enhancement of the resistivity. At
zero magnetic field the Friedel oscillations have the same
periodicity for spin up and spin down electrons; both
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Figure 5. (Color online) The enhancement of the density of
states at the Fermi level for both spin types as function of
magnetic induction B. The results are valid for the doping
concentration 2.96 × 10

17 cm−3

type of electrons scatter equally strongly against both
Friedel oscillations. When the magnetic field is turned
on the Friedel oscillations will split up into two; one with
Fourier component q = 2k0

↑; one with Fourier compo-
nent q = 2k0

↓. This means that the back-scattering rate
for an electron of a certain spin against the Friedel oscilla-
tions of the opposite spin is reduced. The enhancement
of the resistivity is thus reduced leading to a negative
magnetoresistance. However, this effect is expected to
give a much smaller contribution to the negative mag-
netoresistance than the density of states effect since the
electron can scatter with a wave number ranging from
zero up to two times the Fermi wave number.

All our calculations are for zero temperature. What
happens for non-zero temperatures? If we study classical
experiments [9] we find that the negative magnetoresis-
tance effect is gradually reduced when the temperature
is enhanced. This is consistent with our theory. The
peak at the Fermi-level of the density of states is ex-
pected to be broadened. Besides, at zero temperature
only states at the Fermi-level takes part in the conduc-
tivity. When the temperature goes up also states away
from the Fermi-level where the enhancement in the den-
sity of states is weaker take part. Both these effects are
expected to gradually remove the negative magnetoresis-

tance. The temperature effects are expected to be more
and more important the lower the density. This is also
what what was found experimentally here and in Ref. [9].

In Fig. 4 we see that the maximum negative magne-
toresistance increases linearly on a log-log plot when the
density is reduced. For finite temperature the maximum
is expected to start decreasing at a density that depends
on the temperature. The higher the temperature the
earlier the decrease is expected to set in. This is exactly
what we have found and what was observed in Fig. 8 of
Ref. [9].

V. SUMMARY AND CONCLUSIONS

We have performed magnetoresistance measurements
of heavily phosphorous doped germanium and compared
the results to theory. The resistance was calculated using
the so-called generalized Drude approach taking many-
body effects into account. We propose that the origin of
the negative magnetoresistance is a combination of two
effects. The many-body effects lead to an enhancement
of the density of states at the Fermi level which in turn
results in an enhancement of the resistivity. Friedel oscil-
lations in the screening charge density cause an enhanced
back-scattering rate across the Fermi volumes leading to
an additional enhancement of the resistivity.

When the magnetic field is turned on the enhancement
of the density of states for each spin type is split up into
two peaks, one at the Fermi-level and one that moves
away from the Fermi-level with enhanced magnetic field.
This reduces the resistivity. Also, the back-scattering
rate against the Friedel oscillations will be reduced in
the presence of a magnetic field. Both these effects act
towards a negative magnetoresistance. The first effect is
expected to be dominating.

We found good agreement between theory and exper-
iment. More experimental samples in the doping range
1018-1019 cm−3 would be helpful for further verification
of the theory.
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We report electrical and magneto transport measurements in mesoscopic size, two-
dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the
probe configuration and sample geometry strongly affects the temperature evolution of
local resistance. We attribute all transport properties to the presence of hydrodynamic
effects. Experimental results confirm the theoretically predicted significance of vis-
cous flow in mesoscopic devices. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5020763

In the last two decades, there has been considerable progress in the understanding of elec-
tron transport in micro and nanometer scaled systems. Successful fabrication of ballistic field-effect
transistors requires a fundamental understanding of the mechanism of charge carrier transport. The
commonly accepted mechanism for the transport properties is described semiclassically or by the
Landauer-Buttiker formalism. Note, however, that these models are based on the assumption that
the rate of momentum conserving scattering exceeds that of momentum relaxation scattering. It is
important to look at different principles for a theory of transport. There has been increasing inter-
est in the fabrication of devices with new types of functionality whose operation is determined by
new principles. A remarkable possibility is the hydrodynamic regime of a Fermi liquid of elec-
trons in a two-dimensional system, when the mean free path for electron-electron collisions lee is
smaller than the mean free path with static defects and phonons l, and transport resembles a viscous
electron fluid.1–8 The viscosity contribution to the transport can be specially enhanced in a pipe-
low set up, where the mean free path lee is much less than the sample width W, while l > > W.
In such a hydrodynamic regime, the theory makes a number of dramatic predictions, for example,
the resistivity is inversely proportional to the square of the temperature, ρ ∼ T�2, so-called “Gurzhi
effect”, and the square of the sample width ρ ∼ W�2.1,2 This effect has not been experimentally
observed until now, even where other signatures for hydrodynamics have been demonstrated. Con-
ventional liquid Fermi theory predicts ρ ∼ T2, since quasiparticles near the Fermi surface scatter at a
rate T2.

In experiments, the viscous 2D electron transport has been examined in electrostatically defined
GaAs wires using current heating technique.9,10 Recently large negative magnetoresistance has been
observed in high mobility 2D gas in GaAs macroscopic samples.11,12 However, a significant portion
of the attention in hydrodynamic effects has been dedicated to graphene for its very weak scattering
against acoustic phonons, which allows for the realization of hydrodynamic flow at high temperatures.
Indeed several theoretical predictions have been confirmed in high quality, encapsulated, single layer
graphene: negative vicinity13 resistances have been observed and successfully explained by vorticity
generated in viscous flows.14–17 Note, that such a dramatic experimental appearance of electron
viscosity in nonlocal transport has not been accompanied by effects in longitudinal resistance and
magnetotransport.
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A series of updated theoretical approaches has been published recently,18–21 providing additional
possibilities to determine the viscosity from local and magnetotransport measurements, which require
experimental verifications.

In the present paper, we have gathered all the requirements for observation of the hydrodynamic
effect in a 2D electron system and present experimental results accompanied with quantitative anal-
ysis. For this purpose, we have chosen GaAs mesoscopic samples with high mobility 2D electron
gas. The finding of previous studies9–12 and theoretical approaches,18–21 illustrate that it has become
necessary to revisit electron transport in high quality GaAs systems. We employ commonly used lon-
gitudinal resistance and magnetoresistance to characterize electron shear viscosity, electron-electron
scattering time, and reexamine electron transport over a certain temperature range 1.5-40 K. One
particularly striking observation is the change in the sign of the resistance temperature dependence
with changing current injection probe configuration. Moreover, we observe the “Gurzhi effect” in
devices with H-bar geometry. The electron-electron scattering time and viscosity are extracted from
transport measurements and its temperature dependence in a wide region of temperatures.

Our samples are high-quality, GaAs quantum wells with a width of 14 nm, high electron density
ns ' 9.1 × 1011 cm�2, and a mobility of µ ' 2 × 106 cm2/Vs at T = 1.4 K. We present experimental
results on two different types of mesoscopic size devices, refereed to as Hall-bar and H-shaped bar,
fabricated from the same wafer. The Hall bar is designed for multi-terminal measurements. The
sample consists of three, 5µm wide consecutive segments of different length (10, 20, 10µm), and 8
voltage probes. The four terminal, H-shaped bar consist of a 4 × 10µm2 central channel between
5µm wide legs. The measurements were carried out in a VTI cryostat, using a conventional lock-in
technique to measure the longitudinal Rxx resistance with an ac current of 0.1 � 1µA through the
sample, which is sufficiently low to avoid overheating effects. Two Hall bars and 4 H-shaped devices
from the same wafers have been studied. We also compare our results with transport properties of
2D electrons in a macroscopic sample.

Fig. 1 shows the longitudinal magnetoresistivity ρxx measured in local configuration for a H-bar
sample as a function of magnetic field and temperature. One can see two characteristic features: a
giant negative magnetoresistance (∼ 400 � 1000%) and a pronounced temperature dependence of the
zero field resistance. Surprisingly, the resistance decrease with temperature almost follows ρ ∼ T�2

dependence, as in the Gurzhi effect. Fig. 2 shows the longitudinal magnetoresistivity ρxx measured
in local configuration for a Hall-bar sample as a function of magnetic field and temperature. Note,
that we use a set up, where the current is injected through the system at a lateral contact (referred as
C1 configuration), which resembles current flow in a H-bar sample. The magnetoresistance feature
is qualitatively similar, although the decrease is not so rapid as in the H-bar. We also check the
conventional set up, where current is injected through probe 1 to 4, and the voltage is measured
between probes 2 and 3 (referred as C3 configuration) Strikingly, while in the viscous regime it is
expected that electro-electron scattering time τee behaves as∝T�2 in both set ups, resistance increases
with T in the conventional measurement set up C3 and decreases with T in the set up where the current
injection probes are positioned against the voltage probes C1. The results for the different schematic
set ups in zero magnetic field are shown in Fig. 3. One can see that the temperature coefficient of
resistance is strongly affected by probe configuration.

In mesoscopic samples, two transport regimes can be identified: ballistic and hydrodynamics. In
order to distinguish the ballistic and hydrodynamic regimes more in depth analysis of the problem
should be done. Significant temperature dependence of the value and shape of magnetoresistance and
dependence on the probe configurations is inconsistent with dominant ballistic contribution.

We compare our results with previously published models.18–20 A more advanced model, how-
ever, restricted by a zero magnetic field, consider both local and nonlocal transport in graphene.17

The model is generic and can be applied to other material with a parabolic spectrum such as GaAs
quantum wells. The resulting conductivity of 2D gas in constrained geometry is given by

σ =σ0(1 − F ), F= 2
D

W ξ
sinh

(
W
2D

)
, (1)

whereσ0 = e2nτ/m = 1/ρ0 is the Drude conductivity, τ is momentum relaxation time due to interaction
with phonons and static defects, D=

√
ητee, ξ = ls sinh (W /2D) + D cosh (W /2D) is characteristic
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FIG. 1. Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used in this study. Temperature
dependent magnetoresistance of a GaAs quantum well in an H-bar sample. Thick curves are examples illustrating magnetore-
sistance calculated from Eqs. 1,2 in main text for different temperatures: 1.5 K (red), 27,2 K (blue) and 43,7 K (magenta). The
schematics show how the current source and the voltmeter are connected for the measurements.

length which depends on the boundary slip length ls. The boundary no-slip conditions correspond
to the ideal hydrodynamic case of diffusive boundaries with ls = 0, while the opposite limit (free
surface boundary conditions) corresponds to the ideal ballistic case with ls = ∞. Asymptotic limit
(ideal hydrodynamic approach) ls = 0 has been considered in Refs. 18 and 19 and extended to nonzero
magnetic field. In this case, the conductivity (1) can be substituted by a simple interpolation formula

ρ= ρ0
1

1 − 2 W
D tanh( 2

W
D )
≈ ρ0

(
1
τ

+
1
τ∗

)
, (2)

where the effective relaxation time is given by:18–20

τ∗ =
W (W + 6ls)

12η
(3)

η =
1
4
3

2
Fτ2. (4)

1
τ2(T )

=AFL
ee

T2

[ln(EF/T )]2
+

1
τ2,0

(5)
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FIG. 2. Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used in this study. Temperature
dependent magnetoresistance of a GaAs quantum well in a Hall bar sample. Thick curves are examples illustrating magnetore-
sistance calculated from Eqs. 1,2 for different temperatures: 4.2 K (red), 19,2 K (blue) and 37,1 K (magenta). The schematics
show how the current source and the voltmeter are connected for the measurements.

where the coefficient AFL
ee be can expressed via the Landau interaction parameters (AFL

ee = 1.5
× 1010s−1K−2), and τ2, 0 is the scattering time from disorder.

Therefore, viscosity leads to incorporation of an extra relaxation mechanism, which contains the
contribution from the electron-electron scattering time τ2, ee(T ) and temperature independent electron

FIG. 3. Temperature dependent resistivity of a GaAs quantum well in a Hall bar and H-bar for different configurations in zero
magnetic field. Circles show calculations from theoretical formula (1) with numerical parameters described in the main text.

93



025318-5 Gusev et al. AIP Advances 8, 025318 (2018)

scattering from disorder τ2, 0.18,19 In other words, the small ratio between relaxation of the second
moment of electron distribution function and first moment τ∗/τ = l2, ee/l < < 1 corresponds to the
dominant viscous contribution to resistivity. Such separation of the conductivity in two independent
channels allows the introduction of the magnetic field dependent viscosity tensor and the derivation
of magnetoresistivity:18,19

ρxx = ρ0

(
1
τ

+
1
τ∗

1

1 + (2ωcτ2)2

)
. (6)

We fit the magnetoresistance curves in Figs. 1 and 2 and resistance in zero magnetic field, shown in
fig. 3, with the following fitting parameters: τ2, 0 = 0.8 × 10�11 s, τ0 = 10�9s, AFL

ee = 1.5×1010s−1K−2.
We also find that in both microscopic and macroscopic samples 1

τ(T ) =AphT + 1
τ0

Assuming that the
viscous effect is small in macroscopic samples, we can reduce the number of independent parameters
by measuring ρ0(T ) ∼ 1/τ(T ) and extract Aph independently. We find Aph = 109s�1K�1.

Fig. 4a shows the dependencies of τ2(T ) extracted from comparison with the theory. Indeed the
electron-electron scattering time follows expected behaviour described by equation 5. The effective
relaxation time τ∗ is proportional to the second moment relaxation rate τ

1
2

(not a time) and can be
also compared with the theory, as we can see from eqs. 3 and 4. Note, however, that τ∗ contains
additional parameter -boundary slip length, which depends on the viscous flow conditions. We are
able to reproduce the evolution of characteristic time with temperature, assuming that ls depends on
probe configuration. We find the value of ls for corresponding set ups and sample geometries: 19µm
(C1), 14, 6µm (C2), 6, 3µm (H-bar). Although it could have been expected that all dependencies merge
in a single curve, the curves show a tendency to collapse into one. The remaining misfitting may be
related to temperature dependence of ls. Therefore, the different sign of the temperature coefficient
for different set ups is explained by the viscous flow conditions because of the decreasing of τ∗ or
ls. It is worth noting that, the dependence of the boundary slip length on the probe configuration and

FIG. 4. (a) The relaxation time τ2 as a function of the temperature obtained by fitting the theory with experimental results. The
solid line is theory. (b) The relaxation time τ∗ as a function of the temperature obtained by fitting the theory with experimental
results. The solid line is theory with parameters presented in the main text.
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geometry still requires further investigation. We modeled the Poiseuille flow for two dimensional
situations depicted in Figs. 1 and 2 (top). We find that the velocity profile is strongly depends on
the geometry and liquid flow injections. Calculation of potential distribution in a viscous charged
liquid is a very challenging theoretical task and is out of the scope of the present experimental work.
Note, however, that more advanced consideration predicts that diffusive scattering on the rough edge
and inhomogeneity of the velocity field due to geometry may result in a similar effect.18 In this case
τ∗∼ d2/η, where d is the characteristic period of static defects or velocity inhomogeneity.18

In conclusion, we have measured the evolution of several magnetotransport characteristics in
high quality GaAs quantum wells with temperature. In order to fulfill requirements for a hydrody-
namic regime, we use mesoscopic samples, where very recently numerous different predictions have
been made.18–21 These results open up possibilities to control the current flow in microstructures by
variation of the viscosity and manipulation of the fluids at a micro and nanoscale, developing new
microtechnologies.

We thank Z. D. Kvon for helpful discussions. The financial support of this work by FAPESP,
CNPq (Brazilian agencies) is acknowledged.
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We report nonlocal electrical measurements in a mesoscopic size two-dimensional (2D) electron gas in a GaAs
quantum well in a hydrodynamic regime. Viscous electric flow is expected to be dominant when electron-electron
collisions occur more often than the impurity or phonon scattering events. We observe a negative nonlocal
resistance and attribute it to the formation of whirlpools in the electron flow. We use the different nonlocal
transport geometries and compare the results with a theory demonstrating the significance of hydrodynamics in
mesoscopic samples.

DOI: 10.1103/PhysRevB.97.245308

I. INTRODUCTION

It is generally believed that, in the absence of disorder,
a many-body electron system resembles the viscous flow.
Hydrodynamic characteristics can be specially enhanced in a
pipe flow setup, where the mean free path for electron-electron
collision lee is much shorter than the sample width W , while the
mean free path due to impurity and phonon scattering l is larger
than W . Viscosity is characterized by momentum relaxation in
the fluid and, in narrow samples, occurs at the sample boundary.
Calculation of the shear viscosity η is a difficult task because it
requires knowledge of particle interactions on the scale of l [1].

It has been predicted that the resistivity of metals in
the hydrodynamic regime is proportional to electron shear
viscosity η = 4

1vF
2 τee, where vF is the Fermi velocity and τee

is the electron-electron scattering time τee = lee/vF [2–6].
This dependency could lead to interesting properties. For
example, resistance decreases with the square of temperature
ρ ∼ η ∼ τee ∼ T −2, the so called Gurzhi effect, and with the
square of sample width ρ ∼ W−2. The negative differential
resistance has been observed previously in GaAs wires, which
has been interpreted as the Gurzhi effect due to heating by the
current [7]. A remarkable manifestation of the hydrodynamic
effect is a swirling feature in the flow field, referred to as a
vortex. The vorticity can drive the current against an applied
electric field and generate backflow near the current injection
region, which can be detected in the experiment as a negative
voltage drop [8]. A different transport measurement setup
has been proposed for the identification of viscosity related
features in the hydrodynamic regime [8–11].

When fluid flows along a pipe, a quadratical velocity profile
is formed, which leads to the Gurzhi effect, and can be detected
from the anomalous temperature and sample width depen-
dence, as is mentioned above. For illustration we modeled
the Poiseuille flow for a two-dimensional neutral fluid. Figure
1(a) shows the configuration, which has been proposed in [8],
and where the current is injected across the sample between
vertical probes. In this geometry, one can see the vortex or
whirlpools in the liquid flow outside of the main current path.

As a consequence, for an electronic fluid, a negative voltage
drop occurs across the strip in close proximity to the current
probes. Figure 1(b) illustrates the nonlocal, vicinity transport
geometry, where the current is injected in the left lateral and
bottom contacts, while the voltage drop occurs near the current
injection region. This geometry has been proposed in [9–11],
and the model clearly demonstrates the formation of whirlpools
in the hydrodynamic flow, yielding a negative nonlocal signal
in transport measurements [11]. Note that the swirling features
can be observed only in the nonlocal configuration.

The nonlocal vicinity effect has been studied experimentally
in an ultraclean graphene sheet [11]. It has been demonstrated
that the nonlocal signal undergoes a sign change from positive,
at low temperatures, to negative, above elevated temperatures,
that is associated with whirlpool emergence in the hydro-
dynamic regime. Near room temperature, the signal again
undergoes a sign change because the Ohmic contribution starts
to dominate the vicinity response at high T . Note that such
dramatic experimental appearance of hydrodynamic features
in nonlocal transport has not been accompanied by observation
of the Gurzhi effect in local transport. Moreover, the transversal
nonlocal geometry (Fig. 1) has not been studied experimentally
with respect to possible vorticity effects. Other materials, such
as GaAs quantum wells, have a particular interest because
they possess the highest mobility over wide temperature
ranges. It is also worthwhile to extend the theoretical approach
[8–11] to a two-dimensional electron in GaAs with a parabolic
energy spectrum, which is different from the linear spectrum
in graphene.

A series of updated theoretical approaches has been pub-
lished recently [12–15], providing additional possibilities to
determine the viscosity from magnetotransport measurements,
which can be used for comparison with nonlocal measure-
ments.

In this study we measure the nonlocal resistance in meso-
scopic GaAs quantum well systems. We determine all relevant
electron viscous parameters from the longitudinal magne-
toresistance in a wide temperature range, which provides an
estimate of the nonlocal signal, and compare it with

IV. Vorticity-induced negative nonlocal resistance in a viscous 2DES
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FIG. 1. Sketch of the different transport setup measurements,
showing a velocity flow profile. (a) Nonlocal transport setup, proposed
in [8]. (b) Nonlocal (vicinity) transport setup, proposed in [8–11].

experimental results. A good qualitative agreement between
experimental and simulated data has been obtained.

II. NEGATIVE GIANT MAGNETORESISTANCE,
EXPERIMENT, AND DISCUSSION

Our samples are high-quality, GaAs quantum wells with
a width of 14 nm. Parameters characterizing the electron
system are given in Table I. We present experimental results
on Hall-bar devices designed in two different configurations.
Design I consists of three 5 μm wide consecutive segments
of different length (10, 20, 10 μm), and eight voltage probes.
Figure 2(top) shows the image of a typical multiprobe Hall
device I. Design II is also a Hall bar with three 2 μm wide

TABLE I. Parameters of the electron system in a mesoscopic
samples at T = 1.4 K. Parameters are defined in the text.

W ns vF l l2 η

(μm) (1011 cm2) (107 cm/s) (μm) (μm) (m2/s)

5 9.1 4.1 40 2.8 0.3
2 6.0 3.3 20.6 1.4 0.12

FIG. 2. Top: Image of the Hall-bar device. Top right: Zoomed
Hall-bar bridge. Temperature dependent magnetoresistance of a GaAs
quantum well in a Hall bar sample W = 5 μm. Thick lines are
examples illustrating magnetoresistance calculated from Eqs. (1) and
(2) for different temperatures: 4.2 K (red), 14 K (green), 19 K (blue),
26 K (magenta), and 37.1 K (black).

consecutive segments of different length (2, 7, 2 μm), and
eight voltage probes. The measurements were carried out in
a VTI cryostat, using a conventional lock-in technique to
measure the longitudinal ρxx resistivity with an ac current of
0.1–1 μA through the sample, which is sufficiently low to avoid
overheating effects. Five Hall bars from two different wafers
were studied.

Longitudinal magnetoresistance has been studied in pre-
vious research for different configurations of the current and
voltage probes [16]. Before analyzing the nonlocal effect and
in order to make this analysis more complete, we present
the results of measurements of the longitudinal magnetore-
sistivity ρxx(B). Figure 2(a) shows ρxx(B) as a function of
magnetic field and temperature. One can see two characteristic
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features: a giant negative magnetoresistance (∼400%–600%)
with a Lorentzian-like shape, and a pronounced temperature
dependence on zero field resistance. In the hydrodynamic
approach, the semiclassical treatment of the transport describes
the motion of carriers when the higher order moments of the
distribution function are taken into account. The momentum
relaxation rate 1/τ is determined by electron interaction with
phonons and static defects (boundary). The second moment
relaxation rate 1/τ2,ee leads to the viscosity and contains
the contribution from the electron-electron scattering and
temperature independent scattering by disorder [12,13]. It has
been shown that conductivity obeys the additive relation and
is determined by two independent parallel channels: the first
is due to momentum relaxation time and the second due to
viscosity [12,13]. This approach allows the introduction of the
magnetic field dependent viscosity tensor and the derivation of
the magnetoresisivity tensor [12–15]:

ρxx = ρbulk
0

(
1 + τ

τ ∗
1

1 + (2ωcτ2,ee)2

)
, (1)

where ρbulk
0 = m/ne2τ , τ ∗ = W (W+6ls )

12η
, viscosity η =

1
4v2

F τ2,ee.
We also collect the equations for relaxation rates separately:

1

τ2,ee(T )
= AFL

ee

T 2

[ln(EF /T )]2
+ 1

τ2,0
, (2)

where EF is the Fermi energy, and the coefficient Ae
F
e
L be can

expressed via the Landau interaction parameter, however, it
is difficult to calculate quantitatively (see discussion in [12]).
The relaxation rate

τ2

1
,0

is not related to the electron-electron
collisions, since any process responsible for relaxation of the
second moment of the distribution function, even scattering by
static defect, gives rise to viscosity [12]. A logarithmic factor is
also present in the expression for quantum lifetime of weakly
interacting 2D gas due to electron-electron scattering [17]:

h̄

τ0,ee(T )
= A0

ee

T 2[ln(2EF /T )]

EF

+ h̄

τ2,0
, (3)

where A0
ee is a numerical constant of the order of unity. Note,

however, that since the relaxation time τ0,ee is related to the
kinematic of the electron-electron collisions, Expression (2)
is more convenient and it is preferable to use. Finally, it has
been shown that due to the disorder assisted contribution to
the relaxation rate of the second moment of the distribution
function, the expression is rewritten as

1

τ da
2,ee(T )

= Ada
ee T 2 + 1

τ2,0
, (4)

where the coefficient Ae
d
e
a depends on the disorder type and its

strength [12]. The moment relaxation rate is expressed as

1

τ
= AphT + 1

τ0
, (5)

where Aph is the term responsible for the phonon scattering
[18,19], and

τ
1
0

is the scattering rate due to static disorder (not

related to the second moment relaxation rate 1
τ2,0

).
We fit the magnetoresistance curves in Fig. 2 and

the resistance in zero magnetic field with the three

FIG. 3. Relaxation rate 1/τ2 as a function of the temperature
obtained by fitting the theory with experimental results W = 5 μm.
Thick black line is Eq. (2), thin black line is Eq. (3), dashes are
Eq. (4).

fitting parameters: τ (T ), τ ∗(T ), and τ2,ee(T ). Figure 3 shows
the dependencies of 1/τ2,ee(T ) extracted from the comparison
of the magnetoresistance shown in Fig. 2 and Eq. (1). We
compare the temperature dependence of

τ2,e

1
e(T ) with theoretical

predictions given by Eqs. (2)–(4) and present the results of such
comparison in Fig. 3. The following parameters are extracted:
1/τ2,0 = 1.45 × 1011 s, Ae

F
e
L = 0.9 × 109 s−1 K−2, Ae

0
e = 1.3,

Ae
d
e
a = 2.0 × 1010 s−1 K−2. All theoretical curves demonstrate

reasonable agreement within experimental uncertainty. Hence,
these mechanisms lead to nearly equivalent results and cannot
be unambiguously distinguished based only on the temperature
dependence of the relaxation time. Note that analysis of the
nonlocal effect, considered below, does not depend on the
relaxation mechanism.

In addition, we extract the temperature dependence of
the moment scattering rate and determine parameters Aph =
109 s K−1 and τ0 = 5 × 10−10 s, which are correlated with
previous studies [17,18]. Relaxation time τ ∗(T ) depends on
the τ2,ee(T ) and boundary slip length ls . Comparing these
values, we find that ls = 3.2 μm < L, and, therefore, in our
case, it is appropriate to use diffusive boundary conditions.
Table I shows the mean free paths l = vF τ , l2 = vF τ2,ee, and
viscosity, calculated with parameters extracted from the fit of
experimental data.

III. EXPERIMENT: NONLOCAL RESISTANCE

In this section we focus on the nonlocal configurations
because such geometry facilitates the observation of current
whirlpools. Figure 4 shows the transport in a nonlocal setup,
where the current is injected across the strip between probes
4 and 8. The voltage drop is measured between probes 5
and 7. Below we refer to it as C1 configuration. Poiseuille
flow for a two-dimensional liquid is presented in Fig. 1(a).
Note, however, that 2D charged liquid displays pronounced
ballistic transport behavior. One can see strong oscillations
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FIG. 4. Nonlocal transport signal versus magnetic field for
different temperatures W = 5 μm. The dots represent results for the
billiard model.

in weak magnetic fields due to geometrical resonance effects
considered in the semiclassical billiard model [20,21]. We
perform numerical simulations of the electron trajectories in
ballistic structures. The results of theses simulations (black
dots) are compared to the experimental data. We observe
an agreement with experimental data only at low magnetic
field. Although the position of the resistance peaks at higher
magnetic field coincide with calculations, the negative peak
has a much smaller value, and the positive peak is wider than
that obtained from the billiard model. Figure 4 also shows the
evolution of the nonlocal magnetoresistance with temperature.
One can see that all oscillations are smeared out by temperature
and magnetoresistance at high temperature has a parabolic
shape. Remarkably, the nonlocal resistance at B = 0 is positive
at low temperatures, in accordance with the billiard model
calculations, and then it changes sign and becomes negative
at higher temperatures (Fig. 5). Figure 6 shows the transport
in a nonlocal setup, where the current is injected between
probes 1 and 8 and the voltage is measured between probes
5 and 6 (referred to as configuration C2). The Poiseuille
flow for a two-dimensional liquid is presented in Fig. 1(b).
As in configuration C1, one can see strong oscillations due
to the geometrical resonance effect. Note that the ballistic
transport in this configuration is very well established and
studied previously in numerous publications [20,21]. In cross
junction geometry, it was denominated as bend resistance [21].
We also perform the classical simulations for the transport

FIG. 5. T dependence of the nonlocal signal for different sample
configuration. Solid lines show the calculations from Eq. (6) for
x = 10 μm (W = 5 μm) and x = 5 μm (W = 2 μm). Dashes: T

dependence of the ballistic peak at B = 0.017T .

in configuration C2, and the results are displayed in Fig. 6.
Note, however, that in contrast to configuration C1, the bend
resistance reveals a strong negative resistance peak near zero
magnetic field [21,22]. This peak may mask the negative
nonlocal signal due to viscosity, and detailed comparison is
required to examine the significance of the hydrodynamic
effect at low and high temperatures. Figure 7 presents the
results of the nonlocal resistance temperature measurements in
configuration C2 in zero magnetic field. One can see that the
signal dramatically drops to zero in the W = 5 μm sample, and
resistance changes sign at high temperature in the W = 2 μm
sample. We also used a similar voltage measurement setup,
where the current is injected between probes 1 and 8 and the
voltage is measured between probes 4 and 5 (referred to as
configuration C3). The nonlocal resistance in configuration
C3 at zero magnetic field is shown in Fig. 7 for both samples
designs.

IV. THEORY AND DISCUSSION

As has been shown in the previous section the viscosity
leads to the incorporation of an extra relaxation mechanism
[12–15] in zero magnetic field: ρ = ρ0

bulk(1 +
τ
τ
∗ ). The domi-

nant viscous contribution to resistivity corresponds to the small
ratio between relaxation of the second moment of the electron
distribution function and the first moment τ ∗/τ � 1.
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FIG. 6. Nonlocal transport signal versus magnetic field for differ-
ent temperatures W = 5 μm. The dots represent results for the billiard
model.

Comparative analysis between nonlocal geometries C1
and C2 demonstrates a qualitative difference. Crucially, the
experimental observation of swirling features depends on the
parameters that affect the spacial distribution of the two-
dimensional potential inside the viscous charge flow. The
first parameter is the boundary slip length ls . The boundary
no-slip conditions correspond to the ideal hydrodynamic case
of diffusive boundaries with ls = 0. It has been shown that
the negative nonlocal signal is robust to boundary conditions
[10]. For example, the Gurzhi effect disappears for free surface
boundary conditions (ls = ∞), while whirlpools in hydro-
dynamic electron flow, and the resulting negative nonlocal
response, do exist. The second parameter which drastically
affects whirlpool behavior is the vorticity diffusion length
Dη = √

ητ . Figure 8 represents the temperature dependence of
characteristic lengths in a W = 5 μm sample. Previous studies
have not investigated whether typically developed current
whirlpools show sensitivity to the geometry and confinement
effect [8–10]. However, the careful inspection of theoretical
results [9] reveals that geometry C1 exhibits the occurrence
of whirlpools only above the threshold value of Dη = 0.225W

(Fig. 8). The vicinity geometry C2, which is shown in Fig. 1(b),
by contrast, allows the formation of current whirlpools for
arbitrary small values of Dη, but only in very close proximity

FIG. 7. T dependence of the nonlocal signal for different sample
configurations. Thin solid lines show the calculations from Eq. (7) for
x = 3 μm (W = 5 μm) and x = 1.5 μm (W = 2 μm).

to the current injector probe [10]. However, the value of Dη

affects the spatial extension of the whirlpools, therefore, a high
viscosity system facilitates observation of the negative vicinity
resistance for a voltage detector placed at a large distance
from the current injection probe. Moreover, the ballistic effect
may induce the negative vicinity signal [19] and, therefore,
requires more careful qualitative analysis. In the previous
section we show the temperature dependence of low field
magnetoresistance as well as the electrical resistivity over a
temperature range extending from 1.7 to 40 K and obtain
variation of the viscosity time with temperature. We use this
data to estimate the nonlocal signal in our samples. The models
[8–10] predict negative nonlocal resistance in configuration C1
at the distance x = πx/W from the main current path in the
limits of free surface boundary conditions (ls = ∞) in zero
magnetic field:

RC1
NL = −ρ0

{
ln[tanh2(x/2)]

π
+ 4π

(
Dν

W

)2 cosh(x)

sinh2(x)

}
. (6)

In contrast to configuration C1, the results for vicinity
geometry can be simplified only in the limit where the distance
between the current injection probe is infinite:

RC2
NL = −ρ0

2

{
ln[4T ]

π
− x

W
+ π

(
Dν

W

)2 1

T

}
, (7)
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FIG. 8. The characteristic parameters as a function of the temper-
ature for the sample with width W = 5 μm. The whirlpool threshold
is indicated by the dashes.

where T = sinh2(x/2). Figure 9 shows the nonlocal resis-
tances in both configurations as a function of distance between
voltage probe and current injector x calculated from Eqs. (6)
and (7) with parameters independently extracted from the local
magnetoresistance measurements at T = 4.2 K. For visualiza-

NL is shown in Fig. 5 for x = 10 μm (W = 5 μm) and
x = 5 μm (W = 2 μm), which roughly correspond to the

where L is the distance between probes [23]. Figure 5 shows
the T dependence of the ballistic peak at B = 0.017T . One

tion of the data in the negative range, we used an absolute
log scale. We observe that the magnitudes of nonlocal signals
exhibit a universally exponential decay with distance from the
current injector. Note that the nonlocal resistance is much
stronger for geometry C1. The advantage of configuration
C1 is that the ballistic contribution is positive and, therefore,
it can be unambiguously discriminated from the negative
viscous contribution. The calculated temperature dependence
of RC1

distance between the center of the probes. Note that the ballistic
contribution to the transport also depends on the tempera-
ture due to the thermal broadening of the Fermi distribution
function and scattering by the phonons. A rough estimate of
the nonlocal ballistic resistance temperature dependence for
L < l may be obtained using the formula RNL ∼ exp(−L/l),

can see a rapid decrease of the peak with temperature.
Therefore, the negative nonlocal resistance in zero field and
at high temperature can be attributed only to hydrodynamic
effects.

We also compare predictions for configurations C2 and C3
with experimental results. Note that we normalized ballistic
resistance for the peak value at B = 0.008T (Fig. 6), which
we found more reliable, since this peak weakly depends on the
boundary conditions and sample geometry [20]. The residual
contribution at zero magnetic field could be due to viscous
effects. In general, the ballistic contribution alone can explain
the temperature dependence in zero field, below 20 K, without
taking into account the viscous term. Above T = 20 K, bal-
listic contribution should be exponentially small (see Fig. 5).

FIG. 9. The absolute value of the nonlocal resistance for two
configurations as a function of the distance from the injector electrode
T = 4.2 K, parameters are determined from local magnetoresistance
measurements.

Figure 7 shows the calculations from Eq. (7). Note that the
analytical formula has been derived under several assumptions
and we can apply the formula just for the evaluation of the
upper limits of the signal. Figure 7 presents the results of
such calculations. One can see that the predicted signal agrees
with experimental data for x = 3 μm (W = 5 μm) and x =
1.5 μm (W = 2 μm), which roughly correspond to the distance
between the centers of the probes. Note that, in a realistic
sample, the width of the probes is comparable with the sample
width W , while the theory considers x � W , also indicating
the approximate character of the calculation. We may conclude
here that geometry C1 exhibits a direct relation between the
negative signal and formation of the current whirlpools. In
geometries C2 and C3, negative nonlocal resistance follows
the hydrodynamic predictions up to 30 K, however, it is
very likely that the ballistic contribution is comparable or
bigger than the hydrodynamic one at low temperatures. Above
30 K we observe a positive signal, which disagrees with
both ballistic and hydrodynamic predictions. We attribute this
behavior to approaching the condition Dη = 0.225W . Note
that the observation of negative vicinity nonlocal resistance in
graphene [11] requires more careful inspection of the ballistic
contribution. Moreover, the condition Dη = 0.225W is not
fully completed (see also discussion in [10]), therefore, our
observation of the negative nonlocal resistance in geometry
C1 provides more clear evidence of current vortices. It is
important to note that the transport signatures of the viscosity
in the nonlocal effect are correlated in our samples with other
observations, such as a giant longitudinal magnetoresistance
and the Gurzhi effect [16].

V. SUMMARY AND CONCLUSIONS

In conclusion, we have studied nonlocal transport in a
mesoscopic two-dimensional electron system in terms of
viscosity of the fluids. In contrast to the Ohmic flow of the
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particles, viscous flow can result in a backflow of the current
and negative nonlocal voltage. We have measured voltage in
different arrangements of current and voltage contacts and
found a negative response, which we attributed to the formation
of current whirlpools. Nonlocal viscosity-induced transport
is strongly correlated with observations of the Gurzhi effect

and low magnetic field transport described by hydrodynamic
theory.
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Hall viscosity is a nondissipative response function describing momentum transport in two-dimensional (2D)
systems with broken time-reversal symmetry. In the classical regime, Hall viscosity contributes to the viscous
flow of 2D electrons in the presence of a magnetic field. We observe a pronounced, negative Hall resistivity at
low magnetic field in a mesoscopic size, two-dimensional electron system, which is attributed to Hall viscosity
in the inhomogeneous charge flow. Experimental results supported by a theoretical analysis confirm that the
conditions for the observation of Hall viscosity are correlated with predictions.

DOI: 10.1103/PhysRevB.98.161303

Considerable progress has been made recently in the
nonperturbative understanding of the interaction effects in
the electronic transport properties of metals within a hy-
drodynamic framework [1]. A hydrodynamic description is
valid when the electron-electron scattering time is much
shorter than the electron-impurity or electron-phonon scat-
tering times. The theory of the hydrodynamic regime, where
transport is dominated by a viscous effect, has been developed
in many theoretical studies [2–8]. It has been shown that the
shear viscosity contribution can be especially enhanced in the
case where the mean free path due to the electron-electron
interaction lee is much less than the sample width W , and the
transport mean free path l is in the order of or greater than
the width, l � W . In such a hydrodynamic regime, resistivity
is proportional to the electron shear viscosity η = 4

1vF
2 τee,

where vF is the Fermi velocity and τee is the electron-electron
scattering time τee = lee/vF [2]. It has been predicted that
resistance decreases with the square of temperature, ρ ∼ η ∼
τee ∼ T −2, and with the square of the sample width ρ ∼ W−2

[2–8].
Works demonstrating a feasible way to realize a hydrody-

namic regime, so far, have been achieved in experiments with
electrostatically defined GaAs wires [9,10] and graphene [11].
Until very recently, experimental studies have been carried out
in zero external magnetic field. In order to describe the large
negative magnetoresistance in GaAs with high-mobility elec-
trons [12], the theoretical approach has been extended to in-
clude the magnetohydrodynamic behavior of two-dimensional
(2D) systems [13]. Similar magnetoresistance has been ob-
served in previous studies [14–16], which could be interpreted
as a manifestation of the viscosity effects. Recently, it has
been demonstrated that palladium cobaltate wires [17] and
mesoscopic GaAs structures [18] allow for the study of the
underlying physical principles of the viscous system in a
magnetic field and the carrying out of experiments to confirm
theoretical predictions [13].

One interesting property of a 2D fluid is Hall viscosity,
which describes a nondissipative response function to an ex-
ternal magnetic field [12,14–29]. It is remarkable that, besides

the importance of Hall viscosity in the context of condensed
matter physics [19], it has been demonstrated that Hall viscos-
ity arises in many different and seemingly unconnected fields
such as hydrodynamics, plasma, and liquid crystals [30]. It
has been shown that classical Hall viscosity can be extracted
from transport measurements in the emergent magnetohydro-
dynamic regime in 2D electron systems [31–33]. Note that
such a possibility has been questioned in a paper [13], where
just the conventional Hall effect was found. However, one
must take into account the higher-order terms in the expansion
of the electron distribution function by the angular harmonics
of the electron velocity (related to inhomogeneities of a flow)
[34]. Therefore the experimental study of the Hall resistivity
in a viscous system may provide a useful platform for future
theoretical developments in Hall viscosity.

In the present Rapid Communication, we have gathered
all requirements for the observation of the hydrodynamic
effect and Hall viscosity in a 2D electron system and present
experimental results accompanied by a quantitative analysis.
For this purpose, we chose GaAs mesoscopic samples with
high-mobility 2D electrons. We employ commonly used lon-
gitudinal resistance, magnetoresistance, and the Hall effect to
characterize electron shear viscosity, electron-electron scat-
tering time, and reexamine electron transport over a certain
temperature range, 1.5–40 K. We observe negative correc-
tions to the Hall effect near zero magnetic field, which we
attribute to classical Hall viscosity.

Our samples are high-quality GaAs quantum wells with a
width of 14 nm and electron density n � 9.1 × 1011 cm−2 at
T = 1.4 K. Parameters characterizing the electron system are
given in Table I. The Hall bar is designed for multiterminal
measurements. The sample consists of three 5-μm-wide con-
secutive segments of different lengths (10, 20, and 10 μm),
and eight voltage probes. The measurements were carried out
in a VTI cryostat, using a conventional lock-in technique to
measure the longitudinal ρxx and Hall ρxy resistivities with
an ac current of 0.1–1 μA through the sample, which is
sufficiently low to avoid overheating effects. We also compare
our results with the transport properties of 2D electrons in a

V. Viscous transport and Hall viscosity in a 2DES
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TABLE I. Parameters of the electron system in a mesoscopic
sample at T = 1.4 K. Parameters are defined in the text.

ns μ vF EF l l2 η

(cm−2) (cm2/V s) (cm/s) (meV) (μm) (μm) (m2/s)

9.1 × 1011 2.5 × 106 4.1 × 107 32.5 40 2.8 0.3

macroscopic sample [34]. Three mesoscopic Hall bars from
the same wafer were studied.

Figure 1 shows deviations from conventional Hall resistiv-
ity �ρxy (T ) = ρxy (T ) − ρx

b
y
ulk (referred to as the H1 config-

uration) as a function of temperature. In order to determine
the bulk Hall resistivity ρx

b
y
ulk, we measured the Hall effect

in mesoscopic samples in a wider interval of the magnetic
field (−0.2 T < B < 0.2 T) and high T ∼ 40 K temperature.
Indeed, we found ρx

b
y
ulk = −B/ens , where e is the electron

charge. Figure 1(b) shows the ratio �ρxy (T )/ρx
b
y
ulk for dif-

ferent temperatures. One can see a strong (∼10%–20%) de-
viation from the linear slope. The slope is opposite to the
bulk Hall slope at low fields and has the same sign (neg-
ative for electrons) at large positive magnetic field and low
temperatures. Before analyzing the Hall effect quantitatively

FIG. 1. Top: Sketch of the velocity profile for viscous flow in
the experimental setup used in this study. (a) Temperature-dependent
deviations from the conventional Hall resistivity �ρxy (T ) of a
mesoscopic GaAs well. (b) The ratio �ρxy (T )/ρbulk

xy for different
temperatures. Dashes: Theory with parameters described in the main
text.

FIG. 2. (a) Temperature-dependent magnetoresistance of a
mesoscopic GaAs quantum well. Thick curves are examples illustrat-
ing magnetoresistance calculated from Eqs. (1) and (2) for different
temperatures: (a) 2.3 K (red), 21.1 K (blue), and 40 K (magenta);
(b) 4.2 K (red), 19.2 K (blue), and 37.1 K (magenta). (b) Comparison
of the magnetoresistance for different configurations. The schematics
show how the current source and the voltmeter are connected for
measurements.

and in order to make this analysis more complete, we also
measured the longitudinal magnetoresistivity ρxx (B ) in the
conventional configuration (referred to as R1). Note that the
longitudinal magnetoresistance has been studied previously
for different configurations of the current and voltage probes
[18]. Figure 2(a) shows ρxx (B ) as a function of magnetic
field and temperature. One can see two characteristic features:
a giant negative magnetoresistance (∼400%–600%) with a
Lorentzian-like shape (except for the small feature near the
zero field) and a pronounced temperature dependence of the
zero-field resistance. In general, we expect that the character
of the viscous flow strongly depends on the geometry and
probe configurations [11]. Figure 2(b) shows a comparison of
the magnetoresistance measurements in two configurations:
a conventional R1 configuration, and when the current is
injected between probes 9 and 7 and the voltage is measured
between probes 4 and 5 (referred to as the R2 configuration).
Strikingly, the resistance at zero magnetic field increases in
amplitude and the width of the Lorentzian magnetoresistance
is slightly reduced. The features near zero magnetic field are
also smeared out. Surprisingly, we found that the resistance at
B = 0 is independent of temperature for the R2 configuration
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FIG. 3. (a) Hall effect for two configurations, T = 4.2 K.
(b) The ratio �ρxy (T )/ρbulk

xy for different configurations. Dashes
(magenta) present calculations from ballistic+hydrodynamic theory
with parameters described in the main text.

[35]. We attribute these results to the enhancement of the
viscous contribution, and further, we prove it by a quantitative
comparison with theory. Furthermore, we check the Hall resis-
tance in a modified probe configuration [35]. Figure 3 shows
a comparison of the Hall effect in the H1 configuration with
the H2 configuration, where the current is injected between
probes 9 and 7 and the voltage is measured between probes 4
and 8. One can see that �ρxy at low magnetic field is wider in
the H2 configuration, and, therefore, the ratio �ρxy (T )/ρx

b
y
ulk

exhibits a wider negative peak near zero B.
Classical transport can be characterized on different length

scales: the ohmic case (l � W ), ballistic regime (W � l, lee),
and the hydrodynamic regime (lee � W � l). In real sam-
ples, electrons are scattered by static defects, phonons, and
the sample edge. All these processes can be expressed in
terms of the scattering relaxation time τ and the boundary
slip length ls . Boundary no-slip conditions correspond to the
ideal hydrodynamic case of diffusive boundaries with ls = 0,
while the opposite limit (free-surface boundary conditions)
corresponds to the ideal ballistic case with ls = ∞.

In the hydrodynamic approach, the semiclassical treat-
ment of the electron transport describes the motion of car-
riers, when the higher-order moments of the distribution
function are taken into account. The momentum relaxation
rate 1/τ is determined by an electron interaction with
phonons and static defects (boundary). The second moment
relaxation rate 1/τ2 leads to the viscosity and contains the con-

tribution from electron-electron scattering and temperature-
independent scattering by disorder [13]. It has been shown
that conductivity obeys the additive relation and is determined
by two independent parallel channels: The first is due to the
momentum relaxation time and the second is due to viscosity
[13,31]. This approach allows for the introduction of the
magnetic-field-dependent viscosity tensor and the derivation
of the magnetoresistivity tensor [13,31–33],

ρxx = ρ0
bulk

(
1 + τ

τ ∗
1

1 + (2ωcτ2)2

)
, (1)

ρxy = ρbulk
xy

(
1 − rH

2τ2

τ ∗
1

1 + (2ωcτ2)2

)
, (2)

where ρ0
bulk = m/ne2τ , τ ∗ = W (W

12
+
η

6ls ) , viscosity η = 4
1vF

2 τ2,
and rH is the numerical coefficient in the order of 1 [13]. At
the limit of zero magnetic field (B → 0), one obtains negative
corrections to Hall resistivity due to Hall viscosity in the limit
of small ls , ρxy = ρx

b
y
ulk[1 − 6rH (l2/W )2].

It is instructive to collect the equations for relaxation rates
separately,

τ2(
1
T ) = Ae

FL T 2

[ln(EF /T )]2 + 1
τ2,0

, and 1
τ (T ) = AphT +

1
τ0

, where EF is the Fermi energy, and the coefficient AFL
e can

be expressed via the Landau interaction parameter, however,
it is difficult to calculate quantitatively (see the discussion
in Ref. [13]). The term Aph is due to scattering electrons
by acoustic phonons [36,37], and

τ
1
0

is the scattering rate
due to static disorder. Note that the effective relaxation time
τ ∗ is proportional to the rate 1

τ2
(not time). We represent

the evolution of ρxx at B = 0 with temperature in Fig. 4(a)
for configurations R1 and R2. We fit the magnetoresistance
curves in Fig. 2 and the resistance in zero magnetic field
shown in Fig. 4(a) with the three fitting parameters τ (T ),
τ ∗(T ), and τ2(T ). Comparing the temperature dependencies,
we extract the following parameters, τ2,0 = 0.8 × 10−11 s,
Ae

FL = 0.9 × 109 s−1 K−2, ls = 3.2 μm, Aph = 109 s−1 K−1,
and τ0 = 5 × 10−10 s for configuration R1. For configuration
R2 all parameters are the same, except for ls = 2.8 μm.
Assuming that the viscous effect is small in a macroscopic
sample, we attempt to reduce the number of independent
parameters by measuring ρ0(T ) ∼ 1/τ (T ) and extracting
Aph independently [35]. However, we find a parameter in
the macroscopic sample Amacr

ph = 1.3 × 109 s−1 K−1, which is
slightly higher than in the mesoscopic sample [35]. Table I
shows the mean free paths l = vF τ , l2 = vF τ2, and viscosity,
calculated with the parameters, which we extracted from the
fit with experimental data. Figure 4(b) shows the dependen-
cies of 1/τ2(T ) and τ ∗(T ) extracted from the comparison with
theory. Note that τ ∗(T ) depends on the boundary conditions,
and the difference in its behavior for configurations R1 and R2
could be explained by the difference in the parameter ls . More
diffusive boundary conditions (smaller value of ls) correspond
to stronger hydrodynamic effects.

Now we return to the issue of Hall viscosity. Figure 3(b)
shows the dependence ρxy/ρx

b
y
ulk at B → 0 as a function

of temperature for configurations H1 and H2 with calcula-
tions obtained independently from magnetoresistance mea-
surements. From comparison with the experiment, we find
the adjustable parameter rH = 0.4. This value agrees with
numerical calculations performed in the model [31], where
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FIG. 4. (a) Temperature-dependent resistivity and the Hall effect
of a GaAs quantum well at (B → 0) for different configurations. The
solid lines and dashes show calculations based on theoretical Eqs. (1)
and (2) with numerical parameters described in the main text. (b)
Relaxation time τ2 as a function of temperature obtained by fitting
the theory with experimental results. The solid line is the theory.
(c) Relaxation time τ ∗ as a function of temperature. The solid lines
are the theory with parameters presented in the main text.

the parameter rH ≈ 0.35 was obtained. The existence of the
parameter rH < 1 simply reflects the fact that the viscous Hall
correction in Eq. (2) never exceeds 100%, which one expects
even for a small ratio l2/W [see, for example, l2/L = 0.04
and W/l = 0.1, considered in Fig. 2(b) of Ref. [31]].

Figure 1(b) shows the Hall curve as a function of B

calculated from Eq. (2). Note that the theory predicts a broad
Loreantzian-like peak, while a rapid change of the sign is
observed near B ≈ 0.01 T. The discrepancy could be related
to the higher-order expansion terms of the angular velocity
harmonics of the electron velocity, which are not considered
for longitudinal magnetoresistivity [13].

It is important to note that, in the ballistic regime, ρxx and
ρxy strongly depend on the magnetic field due to the size
effects [38–41]. Unfortunately the changing B scale is almost
the same ∼W/RL (RL = mVF /eB is the Larmor radius)
for both contributions [31], and ballistic and hydrodynamic
effects can obscure each other. The magnitude of the ballistic
contribution depends on the ratio W/l. In addition, the relative
ballistic contribution ρx

ball/ρbulk
0 exhibits a strong variation

with W/RL because the resistivity directly depends on the
relaxation time τ through the boundary scattering, while the
relative contribution to the Hall effect ρball

xy /ρbulk
xy is almost

independent of W/RL, since the Hall effect does not depend
on the relaxation time (but rather the size effect) [37–39].
Note that the sign of the effects is the same: The ballistic
contribution leads to an increase in boundary scattering, an
increase of ρxx , amplification of the classical Hall slope at
W/RL = 0.55, and quenching of the Hall effect near B = 0
[39,40]. From comparison with theory, at low temperatures,
we found that ρx

ball < ρ0 [see Fig. 2(a)]. We attempted to
fit the magnetoresistance curves with a smaller Lorentzian
amplitude, considering the features near W/RL = 0.55 due
to the ballistic contribution, and found the fitting parameters
τ
τ ∗ only 10% smaller. Note also that since the ballistic and
hydrodynamic contributions have the same sign, the B scale of
the magnetoresistance is almost the same, when ρx

ball is added
to the magnetoresistance. However, for the same parameters,
ρball

xy is comparable with the hydrodynamic contribution and
the ballistic corrections tend to counteract the hydrodynamic
corrections in the Hall effect. The ballistic model predicts the
quenching of ρball

x near B = 0 [40,41], therefore, ρxy/ρ
bulk
xy

is not affected by the ballistic effect in very close proximity
to zero field. However, the ballistic contribution leads to a
decrease in the B scale of the ρxy (B ), when ρball

x is added
to the Hall effect. We performed a calculation of the ballistic
transport in our sample geometry [35]. We confirmed that
the billiard model reproduces earlier numerical calculations.
Figure 3(b) shows our numerical results together with the
hydrodynamic model. Indeed, the ballistic contribution results
in a decrease of the width of the negative peak near B = 0.
One can see that, for the H2 configuration with stronger
hydrodynamic effects (smaller ls), the calculated curve could
be brought in better agreement with the measurements, indi-
cating the relevance of this explanation.

In conclusion, we have measured the evolution of the longi-
tudinal and Hall resistivities with temperature in high-quality
GaAs quantum wells. Our observations are correlated with the
predictions of classical Hall viscosity for electron flow.
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