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Resumo
Nesta tese estudamos aspectos da termodinâmica, dinâmica de campos e transições
de fase de buracos negros assintoticamente não planos que são importantes no con-
texto das dualidades gauge/gravidade. Em geometrias Anti-Sitter são caracterizados
os processos de evaporação e transições de fase de buracos negros. Consideramos o
espaço-tempo Vaidya Anti-de Sitter como um modelo para evaporação ou colapso
gravitacional, onde é introduzida uma dependência temporal mediante uma função
de massa evoluindo no tempo. Para o estudo da termodinâmica de buracos negros
evoluindo no tempo seguimos um formalismo adaptado a espaço-tempos não esta-
cionários e com quantidades termodinâmicas associadas à propriedades geométri-
cas dos chamados horizontes atrapantes. Para geometrias Anti-de Sitter compara-
mos os resultados termodinâmicos com a teoria de gauge dual estabelecido na cor-
respondência AdS/CFT. Também é considerada a dinâmica de campos em certas
geometrias onde os resultados perturbativos podem ser associados com um grupo
de simetria não associado às isometrias do espaço-tempo de fundo.

Palavras chave: buracos negros, dualidade gauge/gravidade, transições de fase,
termodinâmica.





Abstract
In this thesis we study aspects of thermodynamics, field dynamics and phase tran-
sitions of non-asymptotically flat black holes that are important in the context of
gauge/gravity dualities. In Anti-de Sitter geometries the processes of black hole eva-
poration and phase transitions are characterized. We consider the Vaidya Anti-de
Sitter spacetime as a model for evaporation or gravitational collapse, in which a
time dependency is introduced by means of a mass function evolving in time. For
the study of thermodynamics of black holes evolving in time we follow a formalism
adapted to non-stationary spacetimes with thermodynamical quantities associated
to geometric properties of the so called trapping horizons. For Anti-de Sitter geome-
tries we compare the thermodynamical results with the corresponding dual gauge
theory established in the AdS/CFT correspondence. It is also considered the field
dynamics of certain geometries where perturbative results can be associated with a
symmetry group not associated to the isometries of the background spacetime.

Keywords: black holes, gauge/gravity duality, phase transitions,
thermodynamics.
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Chapter 1

Introduction

In our current understanding of the fundamental laws of nature, the theory of gene-
ral relativity still remains as the best classical description of the gravitational interac-
tion, with gravity interpreted not as a force but as a geometric property of spacetime.
Behind the formulation of this theory lies the equivalence principle, establishing the
impossibility for a local observer to distinguish between a gravitational field and
a uniformly accelerated frame in a sufficiently small region. The base behind this
principle is the equivalence between inertial and gravitational masses for all forms
of matter, with the consequence that all physical bodies experience the same free fall
in the presence of an external gravitational field. Gravity is unique in that it couples
to all forms of matter and energy, establishing the impossibility to define a genuine
inertial observer able to measure the physical properties of the gravitational field.

One of the most remarkable predictions of general relativity is the notion of a
black hole. A black hole is understood as a compact region of spacetime with a
gravitational pull of such magnitude that prevents infalling objects for ever escaping
from its interior. On the classical level, black holes are considered as behaving like
perfect absorbers, and if unable to radiate, devoid of properties such as temperature
or entropy. However, the work of Bardeen, Bekenstein, Carter and Hawking in the
early 1970s led to the realization that some properties of stationary black holes fol-
low a close analogy to the laws of thermodynamics [1, 2]. It was only until Hawking
showed that when quantum mechanical effects are taken into account in a semiclas-
sical treatment (quantized fields on a classical background geometry), black holes
could emit thermal radiation at a characteristic temperature, eventually leading the
black hole to evaporate completely [3]. This led to a surprising connection between
black hole physics and thermodynamics in which black holes are the systems with
the maximum possible amount of entropy, but also to some additional conceptual
problems regarding the laws of quantum mechanics and the nature of Hawking ra-
diation.

Even though its is regarded as one of the most significant results in theoretical
physics, black hole radiation has not been detected experimentally. If astrophysi-
cal black holes are able to evaporate not only would it be at very low temperatures
but also it could take an evaporation time greater than the age of the universe [4].
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On the order hand, for microscopical black holes, if they should exist, the evapo-
ration time would be too fast to be realistically detected [5]. The thermodynamical
behavior of black holes has some unique features when compared with what is ex-
pected from other thermodynamical systems. One of the main conclusions of black
hole thermodynamics is that black hole entropy scales with the area and not with
volume, as most usual thermodynamical systems do. Additionally, asymptotically
flat black holes are found to be thermodynamically unstable. Such black holes in-
crease temperature while losing mass eventually leading the black hole to evaporate
completely.

With general relativity and quantum mechanics as the two cornerstones of mod-
ern theoretical physics, among the efforts that have been developed in order to
bring both theories on the same level, a particular mention goes to the proposal of
gauge/gravity dualities. The idea behind is that for certain gravitational phenomena
it should be possible to find a description in terms of some gauge field theory which
does not include gravitational interaction [6, 7]. The most celebrated realization of
a gauge/gravity duality is the AdS/CFT correspondence, originally formulated by
Maldacena [8], in which a particular gravity theory on an Anti-de Sitter (AdS) ge-
ometry can be described in terms of a conformal field theory (CFT) living on the
boundary of the geometry. This conjecture has been the starting point of a vast re-
search initiative pursuing the description of gravitational phenomena in terms of a
quantum field theory.

The work presented in this thesis aims to explore aspects of thermodynamics and
field dynamics of certain black holes geometries that take an important role in the
study of gauge/gravity dualities. Even though the thermodynamical description
of black holes is widely accepted, it is not yet understood the underlying princi-
ples behind such prescription. The exploration of thermodynamical properties of
gravitational systems can provide insight on a more fundamental description of the
gravitational interaction.

Even without considering their relevance to the AdS/CFT correspondence, the
study of asymptotically flat black holes is very interesting on its own. Unlike asymp-
totically flat black holes asymptotically Anti-de Sitter black holes can be thermo-
dynamically stable, and the evaporation process of an Anti-de Sitter black hole is
heavily conditioned by the value of the black hole mass. Moreover, it is known
that Anti-de Sitter black holes can undergo phase transitions [9]. Hawking and Page
showed from a path integral formalism that although AdS black holes can be in ther-
mal equilibrium with radiation, they are not the preferred state below a certain criti-
cal temperature, At this temperature there will be phase transition between thermal
AdS and AdS black hole as the preferred state in the gravitational partition function.

In the study of thermodynamics of Anti-de Sitter black holes we are mostly in-
terested in the behavior of time dependent solutions in order to gain additional in-
sight in the details of the processes involved in the dynamics of black holes such as
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black hole evaporation and phase transitions. The original formulation of black hole
thermodynamics considered stationary black holes in asymptotically flat spacetimes
where the event horizon of a black hole can be readily identified as a Killing hori-
zon. If one is interested in study geometries beyond this kind of spacetimes, such as
dynamical black holes or asymptotically (anti-)de Sitter black holes, the thermody-
namic setting must be established with additional considerations.

In this work we follow the generalized thermodynamics introduced by Hay-
ward, which attempts to formulate thermodynamical properties of black holes in
terms of trapping horizons instead of event horizons [10, 11, 12]. In this formal-
ism, adapted to spherically symmetric spacetimes, it is always possible to find a
conserved quantity called the Misner-Sharp mass, interpreted as the gravitational
energy inside a closed spherical region [13, 14].

With the setting of the thermodynamics for trapping horizons we will provide
a description of evaporation and Hawking radiation of Anti-de Sitter black holes
using time dependent geometries. We have employed a Vaidya in order to provide
an specific model for the dynamical of Anti-de Sitter black holes. The Vaidya ge-
ometries are geometries describing massless null radiation [15, 16] and are used as
model of black hole evaporation [17] In this type of geometries a time dependent
black hole mass is introduced. In Anti-de Sitter geometries the black hole mass and
the cosmological constant, it is expected that the dynamics of an evolving black hole
depends on how the mass changes with respect to the cosmological constant.

Another incentive behind the formulation of gauge/gravity dualities is the pos-
sibility to relate properties of strongly coupled field theories in which a perturbative
expansion is not possible with properties of weakly coupled dual theory that are well
understood. In this sense the AdS/CFT correspondence is regarded as a promising
theoretical tool for the treatment of otherwise difficult to solve problems in field the-
ory. Even though the AdS/CFT is the most established example of a duality between
different theories, many efforts have been made to expand such prescription to ge-
ometries other than asymptotically Anti-de Sitter. In this thesis we study certain ge-
ometries where the perturbative dynamics of relativistic field can be approximated
by an effective potential such that the field equations of motion can be related to a
differential representations of an underlying algebra that is not directly related to
the isometries of the background geometry. As a result it is possible to obtain certain
perturbative quantities such as quasinormal modes and frequencies by means of an
algebra representation. The main appeal of gauge/gravity is to provide a quantum
description of gravitational theories in terms of lower dimensional field theories. It
is an open question if such equivalence only applies to a specific number of theories
or if such correspondence is a general feature nature.

The outline of this thesis is as follows: In chapter 2 we present a review of the ba-
sic aspects of the theory of general relativity that are used in the remainder of the the-
sis, where we focus on generalities of spherical symmetry geometries. We introduce
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the idea of trapping horizons as a characterization of the boundary non-stationary
black holes and the generalized thermodynamics that constitutes the main formal-
ism used in our work. In chapter 3 we present a review of some generalities of
asymptotically Anti-de Sitter spacetimes and their role in the formulation of the
AdS/CFT correspondence.

In chapter 4 we present results concerning field dynamics of near-extremal ge-
ometries and how elements of perturbative dynamics, namely quasinormal modes
and frequencies can be related to the representation theory of a gauge group. Quasi-
normal modes are solutions in dynamics of relativistic fields with boundary con-
ditions adapted to background geometries containing black holes and are expected
to play a role in the description of gravitational waves associated to black holes.
We specialize to geometries with dynamics that are approximated by Pöschl-Teller
potentials and present a method that allows to obtain solutions to the equations of
motions by a relation with a differential representation of the algebra sl(2).

In chapter 5 we study the thermodynamics of Anti-de Sitter black holes with
focus on a time-dependent generalization of the Schwarzchild Anti-de Sitter black
hole. In order to analyze the time evolution of the Hawking radiation and phase
transitions of Anti-de Sitter black holes we employ a Vaidya Anti-de Sitter solu-
tion where a time dependent mass function is introduced to model the evolution
of such processes. The time-dependent behaviour of thermodynamical quantities
such as temperature, free energy and heat capacity of the Vaidya-AdS black hole are
analyzed in order to provide a characterization of the phase transitions between dif-
ferent equilibrium configurations. The thermodynamical results are compared with
a semiclassical description of Hawking radiation. In particular, we study in detail
a model of Hawking radiation of Anti-de Sitter black holes as a tunneling process
and the time-dependent model for the evaporation process will provide additional
insight on the thermodynamical behaviour of the black hole during the radiation
process.

Finally, in chapter 6 we study the 5-dimensional Schwarzchild Anti-de Sitter
black hole as a dual to the N = 4 Super Yang-Mills theory in the AdS/CFT corre-
spondence. We focus on study the behaviour of the free energy of the 5-dimensional
Vaidya Anti-de Sitter black hole as an order parameter for the Hawking-Page phase
transition and the results obtained are then compared with the free energy of the
N = 4 Super Yang-Mills theory in the strong and weak coupling limit.

In the development of this thesis, the signature of the metric tensor is (−,+,+,+).
We take units where c = 1, G = 1 and ~ = 1.
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Chapter 2

Gravity in Spherically Symmetric
Spacetimes

In this chapter we introduce the generalized thermodynamics proposed by Hayward
et al [18], which constitutes an extension of the original laws of black hole thermo-
dynamics to non-stationary spacetimes. This formalism is applied for spherically
symmetric spacetimes; where it is always possible to define a conserved charge, the
Misner-Sharp mass and a conserved current, the Kodama vector field, that general-
ize the notions of static mass and Killing vector field to non-stationary spacetimes.

2.1 Elements of general relativity

The theory of general relativity is until now the most accepted description of the
gravitational interaction and is central to the understanding of a great array of as-
trophysical phenomena such as black holes, gravitational waves, and the expansion
of the universe [19]. Formulated by Albert Einstein in 1915 as an effort to reconcile
Newton’s gravitational theory with relativistic dynamics, general relativity treats
gravity not as a force but as a consequence of a curved spacetime in which matter
and radiation act as the source of curvature [20, 21].

The theory of general relativity is based upon two principles: the equivalence prin-
ciple stating the impossibility for an observer to distinguish locally between an ac-
celeration in his own reference frame and the effects of a gravitational field [21] and
the principle of general covariance, as the requirement for all physics laws to have the
same formulation in all reference frames, meaning that there is not such thing as a
preferred reference frame. Moreover, special relativity should hold at least locally.
The global Lorentz covariance of special relativity becomes a local Lorentz covari-
ance when gravity is introduced [22]. The main property that sets apart gravity
from the other known fundamental forces is that the gravitational field couples to
all forms of matter and energy. The gravitational interaction possesses a universal
character and every physical body or field will experience gravity. Because of that,
it is not possible to define a proper inertial observer in the same sense as in special
relativity, since every observer will experience the effects of gravity as well [23, 24].
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The central idea of general relativity is the association between gravity and ge-
ometry, in particular, the relation between spacetime curvature and the content of
energy-momentum of any form of matter and radiation present, which is described
by the energy-momentum tensor Tµν satisfying the conservation condition [21, 23],

∇µTµν = 0 . (2.1)

In the geometric description the classical gravitational field is associated with the
spacetime metric gµν on a Lorentzian manifoldM. The curvature is determined by
the Riemann tensor, a (1,3) rank tensor whose components are given by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνσΓλµσ . (2.2)

where {Γσµν} are the connection coefficients associated with the covariant deriva-

tive ∇µ. If the covariant derivative of the metric with respect to that connection
is zero at every point, ∇µgµν = 0, the associated connection coefficients are given
uniquely in terms of the metric components and their first order derivatives by

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (2.3)

and are known as Christoffel symbols. If a coordinate system exists such that the
components of the metric tensor are coordinate independent, the Riemann tensor
will vanish. Another important tensor, known as the Ricci tensor, is defined from
the Riemann tensor by contraction of indexes:

Rµν = Rλµλν . (2.4)

The trace of the Ricci tensor is called the Ricci scalar or curvature scalar and it is a
quantity that remains invariant under coordinate changes

R = Rµµ . (2.5)

In order to establish a mathematical relation between matter and curvature it is
necessary to obtain a second rank contravariant tensor built from the metric tensor
and its derivatives and satisfying the same conservation condition as the energy-
momentum tensor. Even though the Ricci tensor is a second rank tensor containing
information about curvature in general it does not have divergence zero. An ap-
propriated choice is found from both the Ricci tensor (2.4) and the curvature scalar
(2.5)

Gµν = Rµν −
1

2
Rgµν . (2.6)

The tensor Gµν is called the Einstein tensor and satisfies the requirement ∇µGµν =

0. The Einstein’s field equations of general relativity dictating the dynamics of the
metric tensor are established as a directly proportional relation between the tensors
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Gµν and Tµν :

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (2.7)

An additional term proportional to the metric can be added to the field equa-
tion (2.7) such that both sides of the equation continue to satisfy the conservation
condition,

Rµν −
1

2
Rgµν − Λ gµν =

8πG

c4
Tµν . (2.8)

The constant Λ is known as the cosmological constant. Solutions of Einstein’s field
equation with non-zero cosmological constant represent geometries with a energy
density associated to empty space.

Einstein’s field equations can be derived using a variational method from the
Einstein-Hilbert action:

SEH =
1

16πG

∫
d4x
√
−g(R− 2Λ) + Smatter , (2.9)

where Smatter represents the action of whatever form of matter is present. The Ein-
stein’s field equation (2.8) are obtained by variation of the action (2.9) with respect
to the metric tensor gµν , and the variation of the matter action with respect to the
metric defines the energy-momentum tensor:

Tµν = − 2√
−g

δSmatter
δgµν

. (2.10)

The Einstein-Hilbert action postulated in (2.9) is the only possible action if invari-
ance under general coordinate transformations is demanded and involving at most
second order derivatives of the metric tensor components [20]. Consider an infinites-
imal coordinate transformation from a coordinate system xµ to a new coordinate
system x̃µ of the form

δx̃µ = δxµ +
∂λµ

∂xν
dxν , (2.11)

where λµ is a variational parameter. Variation of the classical action under such
general coordinate transformations gives

− δλSEH =

∫
ddx
√
−gλν∇µTνµ , (2.12)

The principle of general covariance requires invariance of the action under such co-
ordinate transformation, that is δλSEH = 0, implying

λν∇µTνµ = 0 , (2.13)

which is nothing more than the requirement for the conservation of the energy-
momentum tensor.
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2.2 Spherically symmetric spacetimes

The non-linear character of Einstein’s field equations implies the impossibility to ob-
tain a general solution from an arbitrary energy-momentum tensor Tµν . The major-
ity of known solutions in general relativity assume a certain number of symmetries
and/or simplifications. A coordinate independent way to characterize a symmetry
of the metric tensor with respect to a transformation generated by a vector field K is
through the Lie derivative of the metric tensor:

LKgµν = Kσ∇σgµν + (∇νKλ)gλν + (∇νKλ)gµλ

= ∇µKν +∇νKµ ,
(2.14)

where ∇σgµν = 0 is the covariant derivative associated to the metric affine connec-
tion of gµν . If the metric gµν remains invariant under a transformation generated by
a vector field Kµ then the Lie derivative of the metric is zero

LKgµν = 0 , (2.15)

and the components of the vector field K satisfy

∇µKν +∇νKµ = 0 . (2.16)

An invariance of the metric tensor under such transformation is called an an isome-
try. The vector fieldK is called Killing vector and equation (2.16) is known as Killing
equation. If a spacetime has a Killing vector, it is always possible to find a coordinate
system in which the metric is independent of one of the coordinates [20].

In general relativity, solutions without explicit time dependence, or better put,
solutions in which there is a coordinate system in which the metric tensor is time-
independent, are called stationary geometries. A stationary spacetime is character-
ized by possessing a Killing vector field that is globally timelike. In a a coordi-
nate system (t, x1, x2, x3), with t representing a temporal coordinate, the associated
Killing vector is denoted ∂t with components {∂t}µ = (1, 0, 0, 0). A more general
constraint to stationarity is staticity, in which a a physical system does not evolve at
all over time. A spacetime is static if all of the metric components are time indepen-
dent and invariant under temporal reflection. Static spacetimes are characterized in
a coordinate independent way by the existence of a timelike Killing vector field or-
thogonal to a family of spatial hypersurfaces parameterized by t constant. A timelike
Killing vector xµ is orthogonal to a hypersurface if it satisfies the following equation

x[µ∇νxσ] = 0 , (2.17)

which is a result following from the well known Frobenius’s Theorem (the braces
are a notation indicating an antisymmetric, linear combinations of terms with index
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permutation) for details see for example appendix B of [23].

One of the most usual symmetries considered for solutions in general relativity is
spherical symmetry, meaning that there is no preferred spatial direction. A coordinate-
independent property of spherically symmetric spacetimes is the existence of three
spacelike, linearly independent Killing vector fields {Vi}3i=1 satisfying the algebra of
the group SO(3)

[Vi, Vj ] = εijkVk, i, j, k = 1, 2, 3 . (2.18)

where εijk is the Levi Civita symbol.

In a stationary, spherically symmetric spacetime the metric tensor can be de-
scribed by a coordinate system (t, r, θ, φ), where t is a temporal coordinate associated
with the timelike Killing vector defining staticity and (θ, φ) are the usual spherical
coordinates parameterizing surfaces invariant under rotations (surfaces with area
A = 4πr2). In this coordinate system the metric tensor can be expressed as

ds2 = −F (r)dt2 +
1

G(r)
dr2 + r2dΩ2 , (2.19)

where dΩ2 is the line element of the unit 2-sphere and F (r) and G(r) are positive
definite functions of the radial coordinate r when defined on Lorentzian manifolds.
The form of the metric tensor (2.19) considers the most general solution of Einstein’s
field equation satisfying the conditions of staticity and spherical symmetry [20].

2.3 Black hole thermodynamics

A black hole is formally understood as a spacetime region causally disconnected
from infinity. If (M, g) is an asymptotically flat manifold, a black hole B is a region
from which no null or timelike path can reach future null infinity I+, that is

B =M− J(I+) , (2.20)

where J(I+) is the causal past of I+. The boundary ∂B of the black hole is the
event horizon and is a null hypersurface separating spacetime points that cannot be
connected to infinity by a timelike path [23].

The first solution of Einstein’s field equation that would characterize a black hole
was found by Karl Schwarzschild in 1916, describing the spacetime geometry out-
side a spherical symmetric body of mass M [25] and that has come to be known as
the Schwarzschild metric:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 , (2.21)

In this solution the surface r = 2M is known as the Schwarzschild radius. If a
spherical object of mass M collapses under its Schwarzchild radius the surface r =
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2M demarcates what is known as the event horizon, representing the point past which
light can no longer escape the gravitational field. To locate the event horizon for any
given geometry would require to solve the geodesic equation and determine which
geodesics cannot reach future null infinity from the past.

In stationary spacetimes, a characterization of the boundary of a black hole is
possible from the notion of Killing horizons. A Killing horizon is a surface where
the norm of a timelike Killing vector is zero. If a Killing vector field Kµ is null
along some null hypersurface Σ, it is said that Σ is a Killing horizon of Kµ. In
stationary, asymptotically flat spacetimes every event horizon is a Killing horizon
for some Killing vector Kµ, but in general, not every Killing horizon is an event
horizon [20]. To every Killing horizon there is an associated quantity called surface
gravity κ. Since Kµ is normal to the Killing horizon, it obeys the geodesic equation
along the Killing horizon

Kµ∇µKν = −κKν . (2.22)

Using Killing’s equation (2.16) and Frobenius’s’ theorem (2.17), a formula that allows
to find the value of the surface gravity associated to the Killing horizon can be found
[23]

κ2 = −1

2
(∇µKν) (∇µKν) , (2.23)

and it is meant to be evaluated only at the Killing horizon.

In a static, asymptotically flat spacetime, the surface gravity κ is interpreted as
the acceleration (as seen by a static observer at infinity) needed to keep an object at
rest at the horizon of events [20]. In the coordinate system (t, r, θ, φ) the associated
Killing vector to the metric (2.19) has components

Kµ =
∂

∂t
= (1, 0, 0, 0) . (2.24)

such that the norm of the Killing vector is then given byKµK
µ = −F (r). The Killing

horizon will correspond to the surface r = r+ where F (r+) = 0. The surface gravity
can be obtained from the covariant derivative of Kµ, in this case the only relevant
Christoffel symbol is∇rKt, therefore

∇µKν = −1

2

dF (r)

dr
. (2.25)

With this the surface gravity in equation (2.23) reads

κ2 = lim
r→r+

1

4

G(r)

F (r)

(
d

dr
F (r)

)2

. (2.26)

We use to following equality√
G(r)

F (r)

(
d

dr
F (r)

)
=

d

dr

(√
F (r)G(r)

)
− F (r)

d

dr

(√
G(r)

F (r)

)
, (2.27)
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from which we can write

κ = lim
r→r+

1

2

∣∣∣∣∣ ddr (√F (r)G(r)
)
− F (r)

d

dr

(√
G(r)

F (r)

)∣∣∣∣∣ . (2.28)

Taking this into account makes the second term in (2.28) equal to zero, as long as
the fraction G(r)/F (r) is differentiable in r = r+. Then we obtain the following
expression for the surface gravity of the metric (2.19)

κ = lim
r→r+

1

2

∣∣∣∣ ddr√F (r)G(r)

∣∣∣∣ . (2.29)

For the Schwarzschild black hole the surface gravity is equal to κ = 1/4M .

The work of Bardeen, Bekenstein, Carter and Hawking in the early 1970s sug-
gested that some properties of stationary black holes follow a close analogy to the
laws of thermodynamics [1, 2]. For perturbations in stationary black holes, an in-
finitesimal change of the black hole massM is related with the variation of the event
horizon area A, the angular momentum J and the electric charge Q by

δM =
κ

8π
δA+ ΩδJ + ΦδQ , (2.30)

where Ω is the angular velocity of the black hole and Φ the electrostatic potential.
This relation mirrors the law of thermodynamics relating the change of internal en-
ergy U of a system with the change of entropy S between two equilibrium states,

δU = TδS + work terms , (2.31)

under the identifications M → U , T ∝ κ and S ∝ A. When quantum mechanical
effects are taken into account in a semiclassical treatment black holes are predicted to
radiate thermal radiation at a characteristic temperature proportional to the surface
gravity of the black hole [3]:

TBH =
κ

2π
, (2.32)

called Hawking temperature, and with an entropy proportional to the event horizon
area

SBH =
A

4
. (2.33)

This realization lead to the identification of black holes as thermodynamics objects.
For a Schwarzchild black hole in asymptotically flat space the heat capacity C =

∂M/∂ T turns out to be negative and inversely proportional to the squared mass,
making asymptotically flat black hole thermodynamically unstable. Such black holes
increase temperature while losing mass, eventually leading the black hole to evapo-
rate completely.
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2.4 Thermodynamics in non-stationary geometries

Albeit the characterization of a black hole in terms of an event horizon is a simple
and elegant definition, it is from a certain point of view unsatisfactory when realis-
tic black holes come into consideration. The location of the event horizon depends
on the global structure of the spacetime; in principle it is not possible to determine
from the geometry near the event horizon alone. Identifying the location of the event
horizon would in principle require knowledge of the whole story of the spacetime,
which is not possible for a local observer in a finite proper time. For a treatment
of black holes as ordinary physical objects, it would be desirable a prescription in
terms of local quantities. One such proposal comes from the idea of trapping hori-
zons, which are surfaces enclosing a region where outgoing light rays actually move
inwards, thus formalizing the intuitive idea of the boundary of a black hole as a
surface preventing light rays from escaping from the interior of the black hole.

2.4.1 Trapping horizons

Let S be a 2-dimensional, closed, spacelike surface. If every null congruence orthog-
onal to S has negative expansion, then such surface is said to be a trapping surface.
A 2-dimensional, closed, spacelike surface is said to be marginal if one of the null or-
thogonal congruences converges and the other either converges or diverges. Finally,
a trapping horizon is defined as the boundary of a 3-dimensional surface foliated by
a set of marginal surfaces [26]. For static and spherically symmetric vacuum solu-
tions the trapping horizon coincides with the event horizon, but in general they are
different. An important difference is that while the event horizon is always null, a
trapping horizon can be timelike, spacelike or null.

We will assume spacetimes with spherical symmetry. In a coordinate system
(x+, x−, θ, φ) adapted to the incoming and outgoing null congruences, the metric
can be expressed as:

ds2 = 2g+−(x+, x−)dx+dx− +R2(x+, x−)dΩ2 , (2.34)

where R(x+, x−) is the "aerial radius" of spheres with area A = 4πR2. The compo-
nents of the metric (2.34) in matrix notation read

gab =

[
0 −g+−

−g+− 0

]
, gab =

[
0 −g−1

+−
−g−1

+− 0

]
. (2.35)

In this coordinate system the radial null vectors tangent to radial null geodesics
are expanded by the basis {X+, X−}where

X± =
∂

∂x±
. (2.36)
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It is assumed that these vectors are future-oriented. The convergence or divergence
of these null vectors is characterized by the expansions θ± of the associated geodesic
congruences. In general, the expansion θ is a measure of the (fractional) rate of
change of the cross-sectional area of a geodesic congruence:

θ =
δA

A
. (2.37)

Since we are considering spherical symmetry, the (total) cross section of radial null
geodesics satisfies the area relation A = 4πR2, with the area A being an invariant
quantity under rotations for a surface of fixed R. From (2.36) we can obtain the
expansions θ± of the light rays congruences. In the coordinate system (x+, x−, θ, φ),
the expansion of vectors X± is [11]

θ± =
2

R

∂R

∂x±
. (2.38)

In general, if Xµ is a tangent vector to (an affinely parametrized) geodesic congru-
ence, then the expansion of said congruence is given by

θ = ∇µXµ =
1√
−g

∂µ(
√
−ggµνXν) . (2.39)

In terms of the light ray congruence expansions, a trapping surface satisfies θ+θ− > 0

and a marginal surface θ+θ− = 0. A (future exterior) trapping horizon is the bound-
ary of a 3-surface foliated by marginal surfaces satisfying

θ+ = 0 , (2.40)

θ− < 0 , (2.41)

L−θ+ < 0 . (2.42)

The last condition is used to define an outer future horizon. In this context, a black
hole is understood as the region closed by an outer future trapping horizon, where
ingoing light rays converge θ+ > 0, and outgoing light rays are parallel along the
horizon and diverging outside it.

2.4.2 Kodama vector and geometric surface gravity

In non-stationary spacetimes there are no Killing horizons that can be associated to
a timelike Killing vector field. In spherically symmetric spacetimes a generalization
comes from the Kodama vector [27]. Any spherically symmetric 4-dimensional man-
ifoldM can be decomposed asM = M2 × S2, where S2 is the unit 2-sphere. In a
general coordinate system the metric ofM is:

ds2 = habdx
adxb +R2(xa, xb)dΩ2 , a, b = 0, 1 , (2.43)
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with hab the induced metric onM2, the tangent space to the unit 2-sphere inM. The
Kodama vector is initially defined in the manifoldM2, with components [28]:

Ka =
1√
−h

εab∇bR, a, b = 0, 1 , (2.44)

where εab is the 2-dimensional Levi-Civita symbol. The 2-dimensional Kodama vec-
tor on M2 can be extended to the 4-dimensional manifold M with components
Kµ = (k0, k1, 0, 0). From the antisymmetric property of the Levi-Civita symbol, it
follows that the Kodama vector has divergence equal to zero: ∇aKa = 0. The Ko-
dama vector does not necessarily satisfy Killing’s equation and it is not necessarily
geodesic on the horizon. In non-stationary spacetimes, the Kodama vector defines a
privileged time direction.

In the coordinate system (x+, x−, θ, φ), the Kodama vector is given in terms of
the basis {X+, X−} as:

K = −g+−
(
∂R

∂x+

∂

∂x−
− ∂R

∂x−
∂

∂x+

)
, (2.45)

with norm:

K2 = KaK
a = −2g+− ∂R

∂x+

∂R

∂x−
=
R2g+−

2
θ+θ− , (2.46)

where in the last expression we have used the expansions θ± of the null geodesic
congruences equation (2.38). The Kodama vector is spacelike, timelike or null for
trapping, non-trapping and marginal surfaces respectively. From equation (2.46), it
can be seen that a trapping horizon is the hypersurface where the Kodama vector is
null.

In spacetimes admitting a Kodama vector, it is possible to generalize the con-
cept of surface gravity. The geometric surface gravity κg of a Kodama vector Ka

associated to a trapping horizon is defined by [12]:

1

2
habKc(∇cKa −∇aKc) = κgK

b , (2.47)

or, equivalently

κg =
1

2
�(h)R =

1

2
√
−h

∂a(
√
−hhab∂bR) . (2.48)

In the coordinate system (x+, x−, θ, φ) adapted to the light ray congruences

κg = g+−∂
2R(x+, x−)

∂x+∂x−
. (2.49)

In the formalism of generalized thermodynamics the geometric surface gravity κg is
proportional to the temperature and is constant only if the trapping horizon is static.
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2.4.3 Misner-Sharp mass

In a generalized formulation of thermodynamics for gravitational systems it is nec-
essary a general notion of energy associated with the gravitational field. Since the
Kodama vector has divergence zero it is always possible to define a conserved cur-
rent Ja = GabKb satisfying ∇aJa = 0. The Noether charge associated to the con-
served current Ja of the Kodama vector K is called the Misner-Sharp mass Mms

[11, 18]:

Mms = −
∫

Σ
dΣTabK

b , a, b = 0, 1 . (2.50)

In spherically symmetric geometries the Misner-Sharp mass is invariant for each
symmetric sphere of radiusR and represents the gravitational mass inside the sphere.
In terms of the gradient∇aR∇aR the Misner-Sharp mass is defined as [13, 14]:

Mms =
R

2

(
1− hab∇aR∇bR

)
. (2.51)

In the coordinate system (x+, x−, θ, φ) of metric (2.34) is possible to write the
Misner-Sharp mass in terms of the norm of the Kodama vector (2.46) as

Mms =
R

2

(
1− 2g+− ∂R

∂x+

∂R

∂x−

)
=
R

2
(1 +K2) . (2.52)

At a trapping horizon the norm of the Kodama vector is zero, therefore the trapping
horizon will be located at

R = 2Mms . (2.53)

The derivative of (2.52) with respect to x± gives us

∂Mms

∂x±
=

1

2

∂R

∂x±
(1 +K2) +

R

2

∂K2

∂x±
. (2.54)

At the horizon the norm of the Kodama vector is zero, therefore

∂Mms

∂x±
=

1

2

∂R

∂x±
, (2.55)

implying that at the trapping horizon the variation of the Misner-Sharp mass with
respect to the null coordinates is proportional to the expansions θ± of the respective
null vectors.
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2.4.4 Generalized first law

In usual thermodynamics the first law is defined from the variation of the internal
energy δU between different equilibrium states. For the generalized thermodynam-
ics of trapping horizons the corresponding first law is formulated from variations of
the Misner-Sharp mass. To define the generalized first law the following quantities
are introduced [12, 26]:

ω = −1

2
Tabh

ab , (2.56)

and
ψa = Ta

b∇bR+ ω∇aR , (2.57)

that can be interpreted as energy density and energy flux respectively. In terms of
the density (2.56) and flux (2.57), the generalized first law is formulated as [12]

∇aMms = Aψa + ω∇aV , (2.58)

with V the volume related to the area A of a sphere of symmetry with radius R by
∇aV = A∇aR. The generalized first law (2.58) is valid for any spherical region of ra-
diusR, not just the trapping horizon of a black hole. To develop how equation (2.58)
should apply to black holes we specialize to the coordinate system (x+, x−, θ, φ). In
this coordinate system we can write Einstein field equations in terms of the expan-
sions θ± and their derivatives as :

θ±
∂ln[(−g+−)]

∂x±
− ∂θ±
∂x±

− 1

2
(θ±)2 = 8πT±± , (2.59)

∂θ±
∂x∓

+ θ+θ− +

(
Λ− 1

r2

)
g+− = 8πT+− . (2.60)

In particular, since at a trapping horizon the condition θ+θ− = 0 holds, we get for
equation (2.60) the following result

∂θ±
∂x∓

+

(
Λ− 1

r2

)
g+− = 8πT+− . (2.61)

On the other hand, in the coordinate system (x+, x−, θ, φ), the energy density ω
and energy flux ψ defined in (2.56) and (2.57) read

ω = −g+−T+− , (2.62)

ψ = T++ ∂R

∂x+

∂

∂x+
+ T−−

∂R

∂x−
∂

∂x−
. (2.63)

With that, the generalized first law (2.58) reads

∂Mms

∂x±
= −Ag+−

(
T+−

∂R

∂x±
− T±±

∂R

∂x∓

)
. (2.64)
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We can associate the quantity ω defined in (2.56) with the expansions θ±

ω = −g+−T
+− = −g+−T+− =

−g+−

8π

[
∂θ±
∂x±

+

(
Λ− 1

r2

)
g+−

]
. (2.65)

We can write this in terms of the geometric surface gravity κg given by (2.49). Taking
into account the definitions for the expansions θ± in (2.38), we have

∂θ±
∂x∓

= − 2

R2

∂R

∂x+

∂R

∂x−
+

∂2R

∂x+∂x−
, (2.66)

or
∂θ±
∂x∓

= −1

2
θ+θ− + κg(g

+−)−1 . (2.67)

In particular, at a trapping horizon we have

∂θ±
∂x∓

= κg(g
+−)−1 . (2.68)

Thus, at the apparent horizon the derivative of the expansion is proportional to the
geometric surface gravity. With this result

8πT+− = κg(g
+−)−1 +

(
Λ− 1

r2

)
g+− . (2.69)

Then, the quantity ω at a trapping horizon is

ω = − κg
4π R

− 1

8π

(
Λ− 1

R2

)
, (2.70)

providing a useful form for the energy density ω at the trapping horizon in terms of
the geometrical surface gravity κg and the trapping horizon radius.

Now we can express the variation of the Misner-Sharp mass (2.58) in terms of the
geometric properties of the trapping horizon. It will be useful to rearrange equation
(2.58) as

Aψa = ∇aMms − ω∇aV . (2.71)

We can write the variation∇aMms as

∇aMms = R∇a
(
Mms

R

)
+
Mms

R
∇aR . (2.72)

Taking into account∇aA = 8πR∇aR eventually leads to

Aψa = R∇a
(
Mms

R

)
+

1

8π
∇aA

(
Mms

R2
− 4πωR

)
. (2.73)
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In the second term is identified from (2.70) the surface gravity in terms of the Misner-
Sharp mass (there is a slight subtlety in absorbing the term depending on the cos-
mological constant in (2.70) into ω):

κg =
Mms

R2
− 4π Rω . (2.74)

With that, the term Aψa becomes

Aψa =
κg
8π
∇aA+R∇a

(
Mms

R

)
. (2.75)

When this expression is evaluated at a trapping horizon, the quantity Mms/R is
constant and ∇aR is null, making the second term equal to zero. Then we have that
the variation of the Misner-Sharp mass in equation (2.58) at the trapping horizon is:

∇aMms =
κg
8π
∇aA+ ω∇aV , (2.76)

where the first term is the energy added to the black hole and the second term is in-
terpreted as the work performed by the black hole to maintain its configuration.
Comparing with the first law of usual thermodynamics (2.31), the Misner-Sharp
mass takes the role of internal energy (not just the black hole mass M ) and the tem-
perature and entropy of the trapping horizon are

T =
κg
2π

, S =
A

4
. (2.77)

These expressions share the same form as the temperature (2.32) and entropy (2.33)
of stationary back holes. One can take either the horizon radius r+ or the entropy/horizon
area as the independent thermodynamical variable and the Misner-Sharp mass and
volume as the dependent variables. Here it is important to remember that these new
quantities are associated with a trapping horizon and that unlike the case for Killing
horizons they are valid for time dependent surface gravity and horizon area.
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2.5 Field dynamics in spherically symmetric spacetimes

Solving Einstein’s equation means finding the metric tensor gµν associated to a cer-
tain matter-radiation distribution given by the energy-momentum tensor Tµν . Once
the background metric is established, a natural question is to determine its response
to variations of the matter content. This is a highly non-linear problem, as variations
in Tµν imply an alteration of spacetime geometry, which at the same time involves
a matter redistribution. Nevertheless, if one assumes small variations of the back-
ground metric one can treat the problem perturbatively, and in the lowest order, the
background reaction can be ignored, implying that only the matter fields are treated
dynamically in this approach [29].

2.5.1 Effective potential of scalar fields

In an approach where the backreaction of the metric is negligible, the dynamics of
matter fields is introduced by means of a relativistic motion equation that depends
on the spacetime metric. We will focus in developing the dynamics for a scalar field
propagating on a fixed background geometry. A scalar field is the simplest example
of a relativistic field and is often used in certain cosmology models or extensions to
general relativity. We introduce as a test field a massless scalar field Φ in a back-
ground spacetime satisfying the (massless) Klein-Gordon equation [30]

gµν∇µ∇νΦ = 0 , (2.78)

or equivalently
1√
−g

∂µ
(√
−ggµν∂νΦ

)
= 0 . (2.79)

Consider the general spherically symmetric and stationary geometry (2.19) with
a coordinate system (t, r, θ, φ). In such geometry the field Φ is given by a multipole
expansion of the form

Φ(t, r, θ, φ) =
∑
`,m

1

r
Ψ`(t, r)Yl.m(θ, φ) , (2.80)

where Y`.m are the spherical harmonics. Furthermore, if the background is station-
ary, the field equation for the function Ψ(t, r) is

− ∂2

∂t2
Ψ`(t, r) +

√
F (r)G(r)

∂

∂r

(√
F (r)G(r)

∂

∂r
Ψ`(t, r)

)
= Vsc(r)Ψ`(t, r), (2.81)

where we have defined the function Vsc(r) as

Vsc(r) =
`(`+ 1)

r2
F (r) +

1

2r

[
F ′(r)G(r) + F (r)G′(r)

]
. (2.82)
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Equation (2.81) can be expressed in a simpler way with the change of variables

∂

∂r
=
dx

dr

∂

∂x
=

1√
F (r)G(r)

∂

∂x
. (2.83)

where x is the tortoise coordinate. In the coordinate system (t, x, θ;φ) the (2.81)
reduces to

− ∂2

∂t2
Ψ`(t, x) +

∂2

∂x2
Ψ`(t, x) = Ṽsc(x)Ψ`(t, x), (2.84)

where we are using the notation

Ψ`(t, x) = Ψ`(t, r(x)), (2.85)

Ṽsc(x) = Vsc(r(x)). (2.86)

The functions Vsc(r) in (2.82) and Ṽsc(x) in (2.84) are effective potentials for the scalar
perturbations, which depends on the details of the geometry from metric coefficients
F (r) and G(r). Solutions of equation (2.84) are labeled by the integer `, and depend
on the explicit form of the effective potential Ṽsc(r). This development for the dy-
namics of a scalar field in a curved spacetime can be extended to more complex
perturbations, for example, electromagnetic or gravitational perturbations [31]. In
those scenarios the particular details of the dynamics are captured by other forms
for the effective potential in contrast with the scalar potential (2.82). Nevertheless,
many features of scalar dynamics are carried to the other scenarios.

2.5.2 Quasinormal modes

In scattering problems involving propagation of fields in background geometries
with a black hole, one is frequently interested in the solutions classified as quasi-
normal modes (QNMs), which are solutions to the relativistic field equations such as
(2.78) with particular boundary conditions. On the horizon of a black hole it is spec-
ified a purely ingoing field, with modes always propagating towards the interior of
the black hole, while, at spatial infinity it is imposed a purely outgoing boundary
condition. A solution satisfying both conditions represents a field configuration that
does not propagate from the interior of the black hole and is not reflected from spa-
tial infinity. Related to a given quasinormal mode, there is a quasinormal frequency
that is usually complex-valued. Quasinormal spectra are relevant since they do not
depend on the details of the initial conditions, but rather on the parameters of the
background geometry. They can be used in the construction of the Green function
associated to the relevant equations of motion, and therefore they determine at least
part of the dynamics in the considered systems [32].

In spherically symmetric and static spacetimes the perturbative dynamics of scalar,
electromagnetic and gravitational fields are found as solutions of equations of the
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form [32, 31]
∂2

∂t2
Ψ(t, x) +

(
− ∂2

∂2x
+ V (x)

)
Ψ(t, x) = 0 , (2.87)

with V (x) the effective potential, depending on the details of the (fixed) background
spacetime. If one is interested in the evolution of a certain initial perturbation, one
can write the problem as a Cauchy initial value problem of the form

Ψ(t = 0, x),
∂Ψ(t, x)

∂t

∣∣∣∣
t=0

. (2.88)

We will be interested in studying perturbations in spacetimes containing black
holes. The property that the inner region of a black hole is casually disconnected
from spatial infinity leads to impose the condition that near the event horizon pertur-
bations should behave as purely ingoing waves (only entering into the black hole).
Additionally, if perturbations coming from spatial infinity are disregarded, thus con-
sidering only localized perturbations, solutions at spatial infinity behave as purely
outgoing waves. If the event horizon is located at x → −∞ and spatial infinity at
x→∞ the boundary conditions for perturbations are

Ψ(x) ∼

{
e−iωx as x→ −∞
eiωx as x→∞

. (2.89)

Perturbations satisfying these conditions are called quasinormal modes and the com-
plex numbers {ωn}, for which both conditions are satisfied simultaneously are called
quasinormal frequencies. If a solution with boundary condition (2.89) does exist, then
an initial perturbation outside the event horizon of the black hole will be followed
by exponentially damped oscillations, given the complex character of the frequen-
cies [32, 31].

When the effective potentials V (x) are defined only on the domain
x ∈ (−∞, 0), it is usually introduced a modified version of the QNM boundary
conditions, which can be expressed as

ψ(x) ∼

{
e−iωx as x→ −∞
0 as x→ 0

. (2.90)

In general, quasinormal modes do not constitute a complete set, and it is not
possible to express a perturbation in terms of quasinormal modes only. For any
given perturbation, and depending on the nature of the effective potential, other
possible contributions may appear:

1. Tail contributions: These contributions appear for some potentials that decay
faster than exponentials, for example, with a power-tail law. In [33] it was
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found that for effective potentials of the form

V (r) =
`(`+ 1)

r2
+

1

rα
ln(r)β , β = 0, 1 , (2.91)

the Green function possesses singularities on the -Imω axis, and therefore a
branch cut. The predominant late time behavior are power-law tails of the
form

t−(2`+1) ln(t)β . (2.92)

The Schwarzschild black hole is a particular case of (2.91) with β = 0, and
normally, after an initial perturbation there is a quasinormal mode oscillation
followed by a power-tail law decaying behavior .

2. Prompt-contributions: This contribution corresponds from the integration over
the semicircle |ω| = R with R → ∞. These are large frequency |ω|, or equiva-
lent, short time contributions which vanishes after a certain time and does not
affect the late time behavior of the field evolution [32].



23

Chapter 3

Anti-de Sitter Geometries and
Gauge/Gravity Correspondence

3.1 Maximally symmetric spacetimes

An n-dimensional manifold with 1
2n(n+ 1) Killing vectors is said to be a maximally

symmetric space, that is, a space with the maximum number of possible isometries.
For a maximally symmetric space the curvature is constant everywhere, and the
Riemann tensor is [20]

Rµνρσ =
R

n(n− 1)
(gµρgνσ − gµσgνρ) . (3.1)

Maximally symmetric spaces are characterized locally by the value of the Ricci ten-
sor R, classified according to whether R is positive, negative or zero. For Euclidean
spaces R = 0 corresponds to Rn, R > 0 corresponds to Sn and R < 0 corresponds to
an n-dimensional hyperboloid.

For Lorentzian manifolds the maximally symmetric spacetime with R = 0 is
Minkowski space, which in addition to static and spherical symmetries possesses
Poincaré invariance under Lorentz boosts and translations. Likewise, the maximally
symmetric space with positive curvature is known as de Sitter spacetime (dS) and
the negative curvature spacetime is called Anti-de Sitter spacetime (AdS). These two
geometries are solutions to the Einstein’s equation with non-zero cosmological con-
stant (2.8).

The pure de Sitter geometry is the vacuum solution to Einstein’s field equation
with positive cosmological constant, Λ > 0. In four dimensions and in a coordinate
system (t, r, θ, φ), the metric tensor of de Sitter spacetime is [34]

ds2 = −
(

1− r2

a2

)
dt2 +

(
1− r2

a2

)−1

dr2 + r2dΩ2 , (3.2)

where a =
√

3/Λ is called the de Sitter radius. As a particular feature as a metric of
the form (2.19), the metric component grr = G(r)−1 becomes singular at r = a and
F (r), G(r) < 0 for r > a. The domain of validity of the radial coordinate is r ∈ [0, a),
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in which the functions F (r) and G(r) are positive defined. The surface r = a is said
to be a cosmological horizon, a surface surrounding any observer and delimiting the
space from which the observer can retrieve information.

Anti-de Sitter spacetime is the maximally symmetric solution of Einstein’s equa-
tion with negative cosmological constant Λ, corresponding to a negative vacuum
energy density and positive pressure. In the coordinate system (t, r, θ, φ) the AdS
metric is given by [9]

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dΩ . (3.3)

where Λ = −3/l2 < 0 defines the Anti-de Sitter radius l The metric tensor is well-
defined for r ∈ [0,∞). Anti-de Sitter resembles Minkowski spacetime for r � l but
has a different asymptotic behavior near l.

The Anti-de Sitter spacetime possesses very interesting features. Even though
there is a well defined limit r → ∞, AdS has the property that a light beam emitted
from any point can reach spatial infinity and bounce back in a finite proper time. In
that sense, it is said that Anti-de Sitter spacetime has a boundary at r → ∞ (more
formally, spatial infinity takes the form of a timelike hypersurface). The Anti-de
Sitter geometry is non-globally hyperbolic, meaning that knowledge of equations of
motion and of initial data in a Cauchy surface is not enough to uniquely determine
the time evolution of a physical system, since information can always flow in from
infinity. Additional boundary conditions in spatial infinity are required to determine
the dynamics of a relativistic field satisfying an hyperbolic equation of motion [35].
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3.2 Generalities of Anti-de Sitter spacetime

The Anti-de Sitter spacetime is a constant curvature solution of Einstein’s field equa-
tion with negative cosmological constant. It can be viewed as a submanifold of
R2,n−1, which is equipped with the metric:

ds2 = −(dx0)2 − (dxn)2 +
n−1∑
i=1

(dxi)2 . (3.4)

As a submanifold of R2,n−1, the n-dimensionalAdS space is defined by set of points:

{(x0, . . . , xn| − (x0)2 − (xn)2 +
n−1∑
i=1

(xi)2 = −L2} . (3.5)

Just as the Minkowski spacetime is the maximally symmetric spacetime of zero
curvature with isometry group SO(1, n), i.e, the Lorentz group, the corresponding
isometry group of AdS is SO(2, n− 1). Consider the following set of coordinates

x0 = L cosh(ρ) cos(τ) , xn = L cosh(ρ) sin(τ) , xi = R sinh(ρ) Ωi , (3.6)

where τ ∈ [0, 2π) and ρ ≥ 0. The coordinates Ωi with i = 1, . . . , n − 1 are the angles
parameterizing the (n − 1) unit-sphere, such that

∑
i Ω2

i = 1. In this coordinate
system the induced metric for the submanifold defined by set of points (3.5) becomes

ds2 = L2(− cosh2(ρ)dτ2 + dρ2 + sinh2(ρ) dΩ2
n−2) . (3.7)

The set of coordinates (τ, ρ,Ωi) are called global coordinates, because they cover the
entire space. Near ρ = 0 the metric (3.7) behaves as

ds2 = L2(−dτ2 + dρ2 + ρ2dΩ2
n−2) . (3.8)

with a topology S1 × Rn−1. Here S1 is associated to closed time-like curves in the
direction of the coordinate τ . Causality is recovered by going to the universal cover
where −∞ < τ <∞.

In the coordinate system (τ, ρ,Ωi) A conformal compactification of the metric
(3.7) is achieved by setting tan θ = cosh ρ, giving

ds2 =
L2

cos θ

(
−dτ2 + dθ2 + sinh2 θdΩ2

n−2

)
, (3.9)

It is concluded that the conformal boundary of AdSn is identical to the conformally
compactified Minkowski spacetime in (n−1) dimensions. This conclusion is relevant
to the formulation of the AdS/CFT correspondence, where field theories are defined
in the conformal boundary of the Anti-de Sitter geometry.
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A set of coordinates that is used regularly in the description of the Anti-de Sitter
space are the Poincaré coordinates (t, x̃i, z) with i = 1, . . . , n− 1, and defined by

x0 =
1

2z

(
z2 + L2 +

∑
i

(x̃i)2 − t2
)
, xi =

Rx̃i

z
,

xn−1 =
1

2z

(
z2 − L2 +

∑
i

(x̃i)2 − t2
)
, xn =

L t

z
.

(3.10)

In this coordinate system the metric is:

ds2 =
L2

z2

(
−dt2 +

∑
i

(dx̃i)2 + dz2

)
. (3.11)

From the metric (3.7) the metric of Anti-de Sitter space can be expressed in static
coordinates (t, r, θ, φ) by a coordinate change t = Lτ and r = L sinh(ρ):

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2 . (3.12)

Geometries that in the limit r →∞ approach the form (3.12) are said to be asymptot-
ically Anti-de Sitter. One particular feature from such geometries is that the energy
measured at asymptotic infinity is red-shifted from the locally measured energy.
Consider a particle with 4-momentum Pµ = (−E, p1, p2, p3) located at an arbitrary
spacetime point with coordinates (t0, r0, θ0, φ0). A static observer at infinity has four
velocity

Uµ =
kµ√
−k2

, k =
∂

∂ t
. (3.13)

Then the energy measured by the such observer is given in terms of the Tolman’s
law by

E∞ = −gµνUµP ν =
E√
−k2

=
E√
−g00

, −g00 = 1 +
r2

L2
. (3.14)

This means that the energy E of a particle when measured by an observer in the
spatial infinity of AdS is red-shifted by a factor

√
−g00. At infinity the behavior of

such factor is −g00 →∞, meaning that the energy is red-shifted to zero.
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3.3 Schwarzschild Anti-de Sitter black hole

Anti-de Sitter geometries are solutions to Einstein’s field equations with negative
cosmological constant. The simplest black hole solution with negative cosmologi-
cal constant is the Schwarzschild-Anti-de Sitter geometry. In four dimensions, the
metric of a Schwarzschild-Anti-de Sitter black hole of mass M is a static, spherically
symmetric spacetime of the form (2.19) with

ds2 = −
(

1− 2M

r
+
r2

l2

)
dt2 +

(
1− 2M

r
+
r2

l2

)−1

dr2 + r2dΩ2 . (3.15)

The metric (3.15) is static with a Killing horizon given by the surface r = r+ satisfy-
ing f(r+) = 0, identified as the event horizon of the Schwarzschild-AdS black hole.
The surface gravity for the Schwarzschild Anti-de Sitter black hole is

κg =
1

2

df(r)

dr


r=r+

=
3r2

+ + l2

2r+l2
, (3.16)

giving a corresponding temperature to the horizon of the SAdS black hole

T =
κg
2π

=
3r2

+ + l2

4π r+l2
. (3.17)

Unlike the temperature of a Schwarzschild black hole which is inversely propor-
tional to the black hole mass M , there is a minimum for the temperature (3.17) given
by

T0 =

√
3

2πl
, (3.18)

corresponding to an horizon r+ = l/
√

3. Anti-de Sitter black holes with horizons
r+ < l/

√
3 are referred to as small AdS black holes and their temperature is in-

versely proportional to the mass, much like in the case of a Schwarzschild black
hole, whereas a Schwarzschild Anti-de Sitter black hole with horizon r+ > l/

√
3 is

referred to as a large AdS black hole, with their temperature increasing for large mass
values.

Now we will concern ourselves with applying the thermodynamical formalism
introduced in section 2.4 to the particular case of the Schwarzschild Anti-de Sitter
black hole. The first step will be to determine an expression for the Misner-Sharp
mass from the metric (3.15). From (2.51), the Misner-Sharp mass of an arbitrary
sphere of radius r = R is:

Mms =
R

2

[
1−

(
1− 2M

R
+
R2

l2

)]
= M − R3

2l2
. (3.19)

With a cosmological constant equal to zero the Misner-Sharp mass is just the black
hole mass M , whereas for the Schwarzschild-Anti-de Sitter black hole there is an
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energy density associated with the cosmological constant. For vacuum Anti-de Sit-
ter geometries there is an (effective) energy-momentum tensor proportional to the
metric tensor. In the space orthogonal to S2 with induced metric hab the effective
energy-momentum tensor is:

Tab =
Λ

8π
hab , (3.20)

corresponding to the energy-momentum tensor of a perfect fluid of negative energy
density ρ; with a equation of state of the form ρ = −P = Λ/8π, where P is the
pressure of the perfect fluid. From this we have from equation (2.56)

ω = −1

2
habT

ab =
Λ

8π
, (3.21)

and ψa = 0. Evaluating the generalized first law (2.76) at the horizon, we have
for the variation of the area and volume ∇aA = 8πr+∇ar+ and ∇aV = 4πr2

+∇ar+

respectively. Together with (3.16) and (3.21), we obtain on the right-hand side of
(2.76)

κg
8π
∇aA+ ω∇aV =

1

2
∇ar+ , (3.22)

which is equal to the variation of the Misner-Sharp mass (3.19) evaluated at the trap-
ping horizon

∇aMms(r+) = ∇a
(
M −

r3
+

2l2

)
=

1

2
∇ar+ . (3.23)

Thus the generalized thermodynamics holds for Schwarzschild-Anti-de Sitter at the
horizon. This result reproduces what would be obtained from the usual formulation
of black hole thermodynamics, given that for a stationary geometry the trapping
horizon is equivalent to the Killing horizon. In chapter 5 we will elaborate on the
generalized thermodynamics of a non-stationary generalization of the Schwarzchild
Anti-de Sitter spacetime where the thermodynamical treatment for trapping hori-
zons becomes more relevant.

From the equation satisfied by the horizon, f(r+) = 0, follows that the mass M
can be expressed as:

M =
r+

2

(
1 +

r2
+

l2

)
. (3.24)

The Misner-Sharp mass (3.19) evaluated at the horizon is equal to Mms(r+) = r+/2.
With ρ = Λ/8π = −3/8πl2 we get from (3.24)

Mms(r+) = M + ρV . (3.25)

where V = 4πr3/3 is the "thermodynamical volume" of the horizon. With the en-
tropy as a function of the trapping horizon radius as S = πr2

+, we write (3.24) as a
function of entropy:

M =
1

2

(
S

π

)1/2

+ ρ
4π

3

(
S

π

)3/2

, (3.26)
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such that temperature is

T =
∂M

∂S
=

3r2
+ + `2

4πr+`2
=
κg
2π

. (3.27)

The heat capacity of the Schwarzschild-Anti-de Sitter black hole is:

C =
∂M

∂T
=

(
∂M

∂r+

)(
∂T

∂r+

)−1

=
1

4π

(
1

2
+

3r2
+

2l2

)(
3

l2
− 1

r2
+

)−1

. (3.28)

At r+ = l/
√

3, the heat capacity (3.28) diverges, with temperature

TC =

√
3

2πl
. (3.29)

The heat capacity is positive for black holes with r+ > l/
√

3 and negative for r+ <

l/
√

3, indicating that only Anti-de Sitter black holes at temperature T > TC are
thermodynamically stable. The free energy is obtained from the thermodynamical
potential F = M − TS as a function of either the entropy S or horizon r+:

F =
1

4

(
S

π

)1/2

− 1

4l2

(
S

π

)3/2

=
r+

4

(
l2 − r2

+

l2

)
, (3.30)

with a zero at an horizon radius of r+ = l, corresponding to a temperature:

T1 =
1

l
. (3.31)

Unlike the heat capacity, the free energy is continuous for every value of entropy S.

3.4 The Hawking-Page phase transition

In their study of the thermodynamics of Anti-de Sitter spacetime, Hawking and page
considered a path integral approach [9]. The partition function considers the propa-
gation of field with initial configuration φ1 on a hypersurface S1 with metric g1 to a
final field configuration φ2 on a hypersurface S2 with metric g2. The path integral is
carried over all configurations

Z =

∫
D[φ, g]eiI[φ] , (3.32)

where I is the gravitational action

I =
1

16π

∫
d4x
√
−g(R− 2Λ) . (3.33)
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In order to ensure convergence of the path integral (3.32) it is considered the Eu-
clidean integral by Wick rotation τ = it

Z =

∫
D[φ, g]e−I[φ] . (3.34)

The path integral is carried over all fields that are periodic in complex time with
period β; The dominant contribution to the partition function comes from the min-
ima of the action where δI = 0. Under approximation logZ = −I . Free energy
F = −T logZ = −T I . When multiple minima the partition function is dominated
by the one with the lowest free energy.

For asymptotically Anti-de Sitter geometries the integral (3.33) reduces to a vol-
ume integral given that R = 4Λ

I =
Λ

8π

∫
d4x
√
−g . (3.35)

This allows to compare the free energies of the pure AdS and Schwarzschild-AdS
geometries. This integral diverges over all space take a r = r′ For the pure Anti-de
Sitter geometry we have

IAdS =
Λ

8π

∫ β1

0
dt

∫ r′

0
r2

∫
S2

dΩ2 =
Λ

6
β1r
′3 . (3.36)

For the Schwarzschild-AdS black hole the radial integral starts at the horizon surface
r = r+:

ISAdS =
Λ

8π

∫ β0

0
dt

∫ r′

r+

r2

∫
S2

dΩ2 =
Λ

6
β1(r′

3 − r+
3) . (3.37)

The relation between β0 and β1 by matching of both metrics at the r = r′ surface:

β1

√
1 +

r′2

l2
= β0

√
1− 2M

r′
+
r′2

l2
. (3.38)

With that the difference between the two actions is:

I = ISAdS − IAdS =
πr2

+(l2 − r2
+)

3r2
+ + l2

. (3.39)

The Hawking Page transition determines which state between thermal AdS and an
AdS black hole will become the dominant contribution to the path integral (3.34)
For l < r+ the quantity (3.39) is positive, and the preferred state in the partition
function is thermal AdS. The horizon surface r+ = l marks the point of the phase
transition between the two geometries, and the corresponding temperature of the
Hawking-Page transition is

TH =
1

πl
. (3.40)

For temperatures below TH and greater than T0 in (3.18), an AdS black holes can be
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in stable thermal equilibrium with radiation but thermal AdS will be the the pre-
ferred state. For temperatures above TH the difference between actions in (3.39) will
be negative and the AdS black hole will become the dominant contribution to the
path integral (3.34). The Hawking-Page temperature corresponds to the tempera-
ture T1 obtained in equation (3.31) in which the free energy (3.30) of an Anti-de Sitter
black hole is zero. This means that the thermodynamical free energy can be taken as
a criterion to determine the occurrence of the Hawking-Page phase transition.

3.5 Overview of AdS/CFT correspondence

TheAdS/CFT correspondence is one of the most well-known realizations of a gauge-
gravity duality; a conjecture suggesting that certain gauge field theories can be de-
scribed in terms of a proper gravitational theory and vice versa. The AdS/CFT
correspondence suggests that a strongly coupled gauge theory in the d-dimensional
conformal boundary of an asymptotically Anti-de Sitter spacetime can be described
in terms of a low energy gravitational theory on the d+ 1-dimensional Anti-de Sitter
space.

In its initial formulation, the AdS/CFT correspondence establishes a duality be-
tween a N = 4 supersymmetric Yang-Mills theory (SYM) with gauge group SU(N)

in the large N limit and type IIB supergravity on AdS5 × S5, where N = 4 denotes
the number of supercharges and N is the color number of the gauge theory. As a
gravitational theory, supergravity is the low energy limit of string theory, in which
the coupling constant gs and string length ls of string theory are taken to zero. The
N = 4 SYM theory is a conformal field theory (CFT ) living in the 4-dimensional
boundary of AdS5 [8].

An element featured in the formulation of theAdS/CFT correspondence areDp-
branes. In string theory, a Dp-brane is a p + 1 dimensional hypersurface on which
endpoints of open strings can be attached given appropriated boundary conditions .
A feature ofDp-branes is that they can be used to define to gauge theories. Consider
N incidental extremal D3-branes; each end point of an open string can be attached
to one of the N branes. The open string states can be labeled by their endpoints,
thus constituting an N × N unitary U(N) matrix, with open string states living in
the adjoint representation of U(N). In the limit ls → 0 this construction gives rise
to a SU(N) Yang-Mills theory where the gauge fields are open string modes on the
Dp-branes.

A particular set of solutions to supergravity are called p-branes, which are given
by the metric:

ds2 = Hp(r)
−1/2

(
−f(r)dt2 +

p∑
i=1

(dxi)2

)
+Hp(r)

1/2

(
1

f(r)
dr2 + r2dΩ2

n−p−2

)
,

(3.41)
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where

f(r) = 1− r4
0

r4
, Hp(r) = 1 +

(rp
r

)n−p−3
. (3.42)

The p-brane solution represents a black hole with horizon r = r0 extending into p
spatial dimensions. In the AdS/CFT correspondence it is considered the near hori-
zon limit of extremal 3-branes. The extremal limit of 3-branes in n = 10 dimensions
is given by the limit r0 → 0 of (3.41), in which the metric reduces to:

ds2 = H(r)−1/2

(
−dt2 +

p∑
i=1

(dxi)2

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
, (3.43)

with

H(r) = 1 +
L4

r4
. (3.44)

In string theory Dp-branes are equivalent to extremal p-branes in supergravity.
In the low energy limit open and closed string modes decouple. Closed strings cor-
respond to free type IIB supergravity in the bulk and open strings on the D3-brane
give rise to the N = 4 SYM . In the near horizon limit, equivalent to the low energy
limit, the supergravity metric becomes:

ds2 =
r2

L2
(−dt2 + dx2) +

L2

r2
(dr2 + r2dΩ2

5) . (3.45)

Under a coordinate change z = L2/r it is obtained the metric

ds2 =
L2

z2
(−dt2 + dx2 + dz2) + L2dΩ2

5 , (3.46)

which is the metric of AdS5×S5 in Poincaré coordinates with L as the Anti-de Sitter
radius. Thus, the low energy limit of Dp-branes is simply asymptotic Anti-de Sitter
space.

The AdS/CFT correspondence establishes a relation between the coupling con-
stants that mediate the strength of the interaction in both theories. Equating the
gravitational tension of the extremal 3-brane to N times the tension of a single D3-
brane gives:

L4V ol(S5)

4πG10
=

N√
8G10

, (3.47)

where G10 = 8π6g2
s l

8
s is the 10 dimensional Newton constant in terms of the string

length ls and string coupling gs. What follows in terms of the parameters of the
theories is:

L4

l4s
= 4πgsN = g2

YMN = λ . (3.48)

The constant λ is called the t’Hooft coupling. In the low energy limit the Anti-de Sit-
ter radius is much larger than the string length, L� ls, implying λ� 1 . In the low
energy limit of string theory gs → 0, in order to keep λ large in (3.48), it is requires a
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large number of colors, that is N → ∞. Thus, the AdS/CFT correspondence estab-
lishes that both theories are equivalent in the limit N → ∞ and gYM → 0 while the
t’Hooft parameter λ = Ng2

YM remains fixed.

A further property behind the formulation of the AdS/CFT correspondence is
that the symmetries on both sides of the correspondence are coincident. The global
bosonic symmetry of the N = 4 SYM theory is generated by the conformal group
SO(2, 4), while the R-symmetry group is SU(4) ∼= SO(6). In the AdS5 × S5 back-
ground the isometry groups are SO(2, 4) for AdS5 and SO(6) for S5.

3.6 Temperature and entropy of N = 4 SYM theory

In the AdS/CFT correspondence an asymptotically Anti-de Sitter black hole on the
gravity theory is dual to a gauge theory at finite temperature in the AdS boundary.
Specifically, the dual to the five dimensional Schwarzchild Anti-de Sitter black hole
is the N = 4 supersymmetric Yang-Mills theory with gauge group SU(N) in the
large N limit living in the four dimensional boundary of AdS. In four dimensions,
the field content of the N = 4 SYM theory consists of a gauge field Aµ, six scalar
fields Φi and four Weyl fermions λi living in the adjoint representation of the gauge
group [36]. The Lagrangian of theory is

L =
1

g2
YM

tr

[
−1

2
FµνF

µν − (DµΦ)2 − iλ̄γµDµλ+ V (Φ)

]
, (3.49)

where g2
YM is the coupling constant of the supersymmetric Yang-Mills theory. With

a large number of colors N the perturbative theory of the Lagrangian (3.49) is con-
trolled by the t’Hooft parameter λ = g2

YMN . A perturbative series is only feasible in
the weak coupling regime λ� 1. In the zero coupling and high temperature the free
field limit of the Yang-Mills theory corresponds to 8N2 bosonic and 8N2 fermionic
degrees of freedom [36, 37].

In the AdS/CFT correspondence the thermodynamical quantities of an Anti-de
Sitter black hole are mapped to theN = 4 super Yang-Mills theory. The temperature
of the conformal field theory is taken as equivalent to the temperature of the AdS
black hole. As reviewed in chapter 3 the original formulation of the AdS/CFT cor-
respondence considers p-brane representing black hole solutions. Consider the near
extremal limit of a 3-brane (3.43) in Euclidean space

ds2 =
r2

L2

(
f(r)dτ2 +

3∑
i=1

(dxi)2

)
+

r2

L2f(r)
dr2 + L2dΩ2

5 . (3.50)

with

f(r) = 1− r4
0

r4
. (3.51)
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Taking the near horizon approximation r → r0 gives

r2

L2
f(r) =

r4 − r4
0

L2r2
=

(r2 + r2
0)(r2 − r2

0)

L2r2
=

2(r + r0)(r − r0)

L2
=

4r0(r − r0)

L2
. (3.52)

Define a coordinate r = r0 + ρ2. The (τ, r) part of the metric is

ds2 =
4r0(r − r0)

L2
dτ2 +

L2

4r0(r − r0)
dr2 =

L2

r0

(
4
r2

0

L4
ρ2dτ2 + dρ2

)
. (3.53)

To avoid a conical singularity at r0 the τ coordinate needs to be periodic with period
β = πL2/r0. Then, the Hawking temperature is given by the inverse of the period:

TH =
1

β
=

r0

πL2
. (3.54)

The entropy of the 10-dimensional 3-brane is S = A/4G10, where A is the eight-
dimensional area of the black 3-brane [36]

A =
(r0

L

)3
V3 L

5 V ol(S5) = π6L8 V3 T
3
H , (3.55)

with V ol(S5) = π3L3 and G10 = L8π4/2N2. The entropy is

SBH =
1

2
π2N2 V3 T

3
H . (3.56)

The black hole entropy (3.56) is identified as the entropy of the strongly cou-
pled N = 4 Yang-Mills theory. The entropy of the conformal theory in the large N
and weak coupling limit is equivalent to the entropy of 8N2 massless bosons and
fermions:

SCFT =
2

3
π2N2 V3 T

3
CFT . (3.57)

The temperature TCFT is the black hole temperature red-shifted to the conformal
boundary:

TCFT =
TH√
−gtt

=
TH
Lr0

. (3.58)

Using the volume VCFT = 2π2r3
0 and the relation between parameters L and N it is

obtained

SCFT =
1

12

π2

L6G5

(
1 + 2r2

+L
2

r+

)3

, (3.59)

which in the high temperature limit reduces to:

SCFT =
2

3

π2r3
+

G5
=

4

3
SBH (3.60)

The entropy of the conformal theory in the weak coupling limit agrees with the en-
tropy of the strong coupling limit obtained via the gravitational dual up to a factor
of 3/4. It is speculated that the entropy of the Yang-Mills theory is a function of the
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coupling λ of the form

SBH =
2

3
f(λ)π2N2 V3 T

3
H , (3.61)

with f(λ) = 1 for λ → 0 and f(λ) = 3/4 for λ → ∞. Whether the function f(λ) is a
continuous function of λ or if there exists a phase transition between the strong and
weak coupling limit for a certain value of λ is still an unresolved question.
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Chapter 4

Algebraic Description of
Perturbatively Dynamics

In this chapter we present work concerning a potential application of the concepts
behind the idea of gauge/gravity dualities to geometries aside from Anti-de Sitter.
We study geometries where the field dynamics can be approximated by effective
potentials in a way that a relation can be established between perturbative elements
such as quasinormal modes and representations of a Lie algebra. Results of this
chapter have been published in [38].

4.1 Near-extremal geometries

Spacetimes admitting a Killing horizon are said to be extremal geometries if the Killing
horizon has a surface gravity equal to zero. Following the same line, near-extremal
geometries are spacetimes admitting a Killing horizon with a surface gravity very
close but not exactly zero. We consider spherically symmetric and static metrics
of the form (2.19), where the functions F (r) and G(r) have one of the following
properties:

• F (r) and G(r) share two simple roots r1 and r2.

• F (r) has a single simple root r1 and G(r) has two simple roots r1 and r2.

The near-extremal limit will be given when both horizons r1 and r2 get arbitrarily
close. To characterize this limit it is useful to define a dimensionless parameter δ in
terms of r1 and r2

δ =
r2 − r1

r1
, (4.1)

such that the near-extremal limit is characterized by

0 < δ � 1 . (4.2)

In the following sections we will introduce some spacetimes with Killing horizons
admitting a near-extremal limit and we will get as a result that they can be described
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in the coordinate system (t, x, θ, φ) by a metric of the form

ds2 = F̃0 sech2 (κx)
[
−dt2 + (dx)2

]
+ [r(x)]2 dΩ2

2 . (4.3)

where the surface gravity κ of the black hole is proportional to the dimensionless
parameter δ. Spacetimes described by (4.3) can be seen as a region delimited by the
horizons r1 and r2, extended to the limit x→ ±∞.

4.1.1 Near-extremal Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter is a prime example of a geometry admitting a near-
extremal limit [39, 40]. In four dimensions, the metric of the Schwarzschild-de Sitter
black hole with positive cosmological constant Λ is of the form:

ds2 = −
(

1− 2M

r
− Λ

3
r2

)
dt2 +

(
1− 2M

r
− Λ

3
r2

)−1

dr2 + r2dΩ2 , (4.4)

where M is the black hole mass. Provided this condition the geometry (4.4) pos-
sesses two horizons r = r1 and r = r2 corresponding to the two positive solutions
of the polynomial

F (r) = 1− 2M

r
− Λ

3
r2 = 0 , (4.5)

along with a third negative solution rM = −r1 − r2. There is a maximum value the
cosmological constant can take for which the geometry actually admits a black hole,
given by Λext = 1/9M2. The surface r = r1 corresponds to a black hole horizon
while the surface r = r2 is the cosmological horizon of the spacetime. The black hole
temperature is given in terms of the surface gravity κ1 of the black hole horizon as:

T1 =
κ1

2π
=

1− Λr2
1

4πr1
. (4.6)

Likewise, it is possible to assign a temperature to the cosmological horizon

T2 = −κ2

2π
=
−1− Λr2

2

4πr2
. (4.7)

As Λ approaches Λext, the two horizons r1 and r2 become arbitrarily close and
the temperatures T1 and T2 approach the same value. Defining the following dimen-
sionless parameter δ

δ =
r2 − r1

r1
, (4.8)

allows to characterize the near-extremal limit of the Schwarzschild-de Sitter metric
(4.4), with δ → 0 as the horizons become arbitrarily close with Λ → Λext. Since r1

and r2 are simple roots, we can write F (r) as

F (r) = G(r) = R(r)(r2 − r)(r − r1) ; (4.9)
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We expand the function F (r) in a Taylor series around r0 = (r1 + r2)/2, the midpoint
of r1 and r2,

F (r) = F (r0)+r1
dF (r)

dr

∣∣∣∣
r=r0

(
r − r0

r1

)
+
r2

1

2

d2F (r)

d2r

∣∣∣∣
r=r0

(
r − r0

r1

)2

+O(δ3) . (4.10)

Now we develop each term we have. For the zeroth-order term we have

F (r0) = R(r0)(r2 − r0)(r0 − r1) = R(r0)

(
r2 − r1

2

)2

, (4.11)

whereas we obtain that the first order term is zero up to higher order in δ3

r1
dF (r)

dr

∣∣∣∣
r=r0

(
r − r0

r1

)
= 0 +O(δ3) , (4.12)

and for the second order term we get

r2
1

2

d2F (r)

d2r

∣∣∣∣
r=r0

(
r − r0

r1

)2

= −R(r0)(r − r0)2 +O(δ3) . (4.13)

With this we write

F (r) = R(r0)(r2 − r)(r − r1) +O(δ3) , (4.14)

where R(r0) is a constant given by

R(r0) =
2κ1

r2 − r1
. (4.15)

The near-extremal surface κ1 of r1, obtained from (4.14) is

κ1 =
1

2
R(r0)(r2 − r1) =

1

2
R(r0)r1δ +O(δ3) , (4.16)

which effectively approaches zero in the near-extremal limit. From the simplified
expression of F (r) in (4.14), the tortoise coordinate is found to be

x =
1

2κ1
ln

(
r − r1

r2 − r

)
+O(δ3) , (4.17)

and this allows us to obtain an explicit expression for the function r(x)

r(x) =
r1e
−κ1x + r2e

κ1x

e−κ1x + eκ1x
+O(δ3) . (4.18)

The form of (4.18) is illustrated in figure 4.1. It is to be noted that (4.18) is monotonic
increasing, implying that there are no additional horizons aside from r1 and r2. The
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FIGURE 4.1: Behavior of r(x) in near-extremal SdS geometry.

function F(x) = F (r(x)), with the result (4.18), is given by

F(x) =
2κ1

r2 − r1

(r2e
−κ1x − r1e

−κ1x) (r2e
κ1x − r1e

κ1x)

(e−κ1x + eκ1x)2 +O(δ3) , (4.19)

which can be simplified to

F(x) =
(r2 − r1)κ1

2
sech2(κx) +O(δ3) . (4.20)

4.1.2 Near-extremal wormholes

A second case of interest which admits a near-extremal limit are the geometries in-
troduced in [41] as near-extremal wormholes. Wormholes are compact spacetimes with
non trivial topological interiors and topologically simple boundaries, which can be
seen as connections between otherwise distant or disconnected parts of the universe
[42]. Near-extremal wormholes typically appear in spacetimes with a positive cos-
mological constant, analogous to the near-extremal Schwarzschild-de Sitter, and can
be interpreted as limits of static and spherically symmetric solutions in brane world
scenarios [41].

In the coordinate system (t, r, θ, φ) the near-extremal limit of this spacetimes is
given by

F (r) = F̃0(r2 − r) , (4.21)

G(r) = G̃0(r2 − r)(r − r0) , (4.22)

where F̃0 and G̃0 are positive constants which are defined explicitly in [41]. The
coordinate system (t, r, θ, φ) is only valid in the region r0 < r < r2, where r2 is
a Killing horizon assuming the role of a cosmological horizon. We define again a
dimensionless parameter δ in terms of r2 and r0

δ =
r2 − r0

r0
, (4.23)
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we have that the surface gravity at r = r2 is given by

κ =
1

2

√
F̃0G̃0(r2 − r0) =

1

2

√
F̃0G̃0r0 δ

1/2 . (4.24)

The near-extremal limit is obtained when r0 → r2, that is, 0 < δ � 1, and the surface
gravity κ at r2 approaches zero. Now we extend the coordinate system in the region
r0 < r < r2 by means of the tortoise coordinate (t, x, θ, φ), solving the following
integral

x(r) =
1√
F̃0G̃0

∫
dr

(r2 − r)
√

(r − r0)
. (4.25)

The solution of this integral is (based on [43])

x(r) =
1√

F̃0G̃0(r2 − r0)
ln

(√
r2 − r0 −

√
r − r0√

r2 − r0 +
√
r − r0

)
, (4.26)

which can be reformulated as

x(r) =
1

2κ
ln

[
(r2 − r0)− (r − r0)

r − r0 + (r2 − r0) + 2
√
r2 − r0

√
r − r0

]
, (4.27)

where the result (4.24) was used. The interval r0 < r < r2 is mapped to −∞ < x <

∞, with r = r0 corresponding to x = 0. In the near-extremal limit we can simplify
the denominator in equation (4.27) with the following assumption

√
r2 − r0

√
r − r0 ≈ r2 − r0 , (4.28)

since r is assumed to be smaller but close to r2 for any r in the interval r0 < r < r2.
With this consideration the tortoise coordinate takes a simpler form

x(r) =
1

2κ
ln

(
r2 − r

r + 3r2 − 4r0

)
. (4.29)

Expression (4.29) is invertible, and an analytic expression for r(x) is available

r(x) =
r2 − (3r2 − 4r0)e2κx

1 + e2κx
, (4.30)

which can be written as

r(x) =
4r2 cosh2(κx)− 4(r2 − r0)

(
1 + e2κx

)
4 cosh2(κx)

. (4.31)

Further simplification of (4.31) leads to

r(x) = r2 − r0 δ sech2 (κx) . (4.32)

The form of (4.32) is illustrated in figure 4.2. Reminding that in the near-extremal
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FIGURE 4.2: Behavior of r(x) in near-extremal wormhole geometry.

limit we have r0 → r2 we can write

r(x) = r0 − r0 δ sech2 (κx) , (4.33)

and this allows us to write the function F(x) as

F(x) = F̃0r0δsech2(κx) . (4.34)

In this extension of coordinates spacetime limited by two Killing horizons x→ ±∞,
both of them corresponding to r = r2. The surface x = 0 (r = r0) is a local minimum
of r(x), and corresponds to an outer trapping horizon [42], which can be seen as a
throat of a wormhole. Spacetimes described by (4.21) and (4.22) are interpreted as a
wormhole joining two regions delimited by cosmological horizons.
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4.2 Perturbative dynamics of the Schwarzschild-de Sitter space-
time

Now we proceed to discuss on the perturbative dynamics of the Schwarzschild-
de Sitter black hole. In a Schwarzschild-de Sitter spacetime, the effective potential
associated with a massless scalar field perturbation is of the form

V (r) = F (r)

[
`(`+ 1)

r2
+

2M

r3
− 2

a2

]
. (4.35)

where a =
√

3/Λ is the de Sitter radius and

F (r) = 1− 2M

r
− r2

a2
(4.36)

has two roots r1 and r2, with r1 corresponding to a black hole horizon and r2 to a
cosmological horizon. The effective potential (4.35) is zero at both r1 and r2 and it is
positive defined as long as ` > 0. As in section 4.1.1, the function F (r) is approxi-
mated by equation (4.14) in the near extremal limit. We define Ω(r) as the factor

Ω(r) =
`(`+ 1)

r2
+

1

r

dF (r)

dr
. (4.37)

We will expand the function Ω(r) around r0 at the lowest order

Ω(r) = Ω(r0) +O(δ) . (4.38)

From (4.12) we have that the first derivative of F (r) at r0 is zero at the leading order

dF (r)

dr

∣∣∣∣
r=r0

= 0 +O(δ2) , (4.39)

and the function Ω(r) reduces to

Ω(r) =
`(`+ 1)

r2
0

+O(δ) . (4.40)

Now, in the near-extremal limit we have the following relation between r0 and r1

r0 = r1 +O(δ) , (4.41)

and then, at the lowest order in δ, the effective potential in the near extremal limit
becomes

V (r) =

[
`(`+ 1)

r2
1

]
2κ1(r2 − r)(r − r1)

r2 − r1
+O(δ) , (4.42)

which we note is only meaningful for ` > 0. In the near-extremal approximation, in
terms of the tortoise coordinate x given in equation (4.17), the radial function r(x)

is of the form (4.18), and the effective potential in the tortoise coordinate obtains the
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FIGURE 4.3: (a) Effective potential for Schwarzschild-de Sitter spacetime as a function of
the radial coordinate. Parameters r1 = 1, r2 = 10. (b)Effective potential for near-extremal
Schwarzschild-de Sitter as a function of x. Parameters: r1 = 1, r2 = 1.05, ` = 1.

following form

V (x) =

[
`(`+ 1)

r2
1

]
2κ1

(e−κx + eκx)2 +O(δ) . (4.43)

We can write (4.43) in terms of an hyperbolic cosine function as,

V (x) =
V0

cosh2(κx)
, (4.44)

where the constant V0 is the peak of the potential, given by

V0 =

[
`(`+ 1)

r2
1

]
κ1

2
. (4.45)

Potential (4.44) is known in the literature as Pöschl-Teller potential. In the follow-
ing section we present a development in which perturbation of relativistic fields are
solved by exploiting the symmetries of the perturbative equations when considering
potentials of the form (4.44).
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4.3 Algebraic treatment of the Pöschl-Teller potential

The Pöschl-Teller potential was originally introduced as a potential for which the
Schrödinger equation is exactly solvable, but as seen in the example of perturba-
tions in the Schwarzschild-de Sitter spacetime, this potential also appears in the de-
scription of scattering problems in gravitational physics. We extend from (4.44) to
consider a generalized form for the Pöschl-Teller potentials

V (x) =
V0

cosh2(κx+ α)
. (4.46)

The parameter α is allowed to be complex. Naturally, a particular case of V (x) in
equation (4.46) is the usual Pöschl-Teller potential in equation (4.44), obtained by
setting κ > 0 and α = 0. Still, other interesting cases are possible if quasinormal
modes are to be considered. For example, with V0 = −V− < 0, κ > 0 and α = iπ/2

we have
V (x) =

V−

sinh2(κx)
, (4.47)

where the domain of V (x) in this case is defined to be the half real line,x ∈ (−∞, 0).
The modified form of Pöschl-Teller effective potential in equation (4.47) is relevant
when the gravitational perturbative dynamics on anti-de Sitter or de Sitter space-
times is treated [44, 45].

We are mainly interested in solutions of the scalar wave equation (2.87) with the
form

Ψ(t, x) = ψ(x)e−iωt , (4.48)

where ω is extended to the complex plane. With the sign convention in the argument
of the exponential stable solutions are those with Im(ω) < 0. Considering wave
functions with the time-dependence in equation (4.48), we obtain the so-called time-
independent version of the equation of motion:

dψ(x)

dx2
+
[
ω2 − V (x)

]
ψ(x) = 0 . (4.49)

It should be noticed that equation (4.49) has the same form of the time-independent
version of Schrödinger equation, a relevant point when the original work of Pöschl
and Teller is considered [46].
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4.3.1 Lie algebra representations and quasinormal modes

In our approach, we study the relation between the scalar field equation with gen-
eralized forms of the Pöschl-Teller potential and differential representations of the
Lie algebra sl(2). We find a direct relation between the equations of motion and an
invariant of the algebra, namely the Casimir element, allowing us to obtain solutions
in a closed form by means of a highest weight representation.

As we shall see, another symmetry described by the Lie algebra sl(2), the algebra
of 2 × 2 traceless matrices. We propose the following representation of sl(2) acting
on functions (4.48)

L̂0 =
2

κ

∂

∂t
, (4.50)

L̂+ =
1

κ
eκt
[
− sinh(κx+ α)

∂

∂t
− cosh(κx+ α)

∂

∂x

]
, (4.51)

L̂− =
1

κ
e−κt

[
− sinh(κx+ α)

∂

∂t
+ cosh(κx+ α)

∂

∂x

]
. (4.52)

preserving the Lie bracket structure

[L̂0, L̂+] = 2L̂+ , [L̂0, L̂−] = −2L̂− , [L̂+, L̂−] = L̂0 . (4.53)

Since quasinormal modes have the time dependence indicated in equation (4.48),
we select L̂0 as our diagonalizable operator. In representation theory language, L̂0

is chosen to be a Cartan operator. In this way, a quasinormal mode must be an
eigenvalue of L̂0,

L̂0

[
ψ(x)e−iωt

]
= −i2ω

κ

[
ψ(x)e−iωt

]
. (4.54)

The Casimir invariant of the representation will be important in the develop-
ment. The Casimir is an operator which commutes with all the operators associated
to the basis in equations(4.50)-(4.52), being given by

L̂2 =
1

2
L̂0 L̂0 + L̂− L̂+ + L̂+ L̂− . (4.55)

In the present case, from equation (4.55), the Casimir operator associated with the
representation in equations (4.50)-(4.52) is

L̂2 = − 2

κ2
cosh2(κx+ α)

(
− ∂2

∂t2
+

∂2

∂x2

)
. (4.56)

It follows from result (4.56) that the equation of motion (2.87) can be written as a
constraint in the proposed representation of the algebra sl(2):

L̂2Ψ(t, x) = −2
V0

κ2
Ψ(t, x) . (4.57)
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Thus, the value of the Casimir is directly related with the height of the potential.

To obtain the solution of the equations (4.54) and (4.57), we will consider what is
known as a highest weight representation [47, 48]. Having selected a diagonalizable
operator on the representation, our solutions will be eigenvalues of both L̂0 and
L̂2. With the highest weight representation technique, it is introduced a function
Ψ(0)(t, r) satisfying the highest weight conditions,

L̂0Ψ(0)(t, x) = hΨ(0)(t, x) , (4.58)

L̂+Ψ(0)(t, x) = 0 , (4.59)

where h is the highest weight. From this fundamental state, an infinite number of so-
lutions is obtained by successive applications of the lowering operator L̂−. Another
set of solutions could be found by applying the operator L+ on the fundamental
mode Ψ(0)(t, x) instead, but it is later verified that only the solutions obtained from
the action of the operator L̂− satisfy the boundary conditions (2.89) characterizing
quasinormal modes solutions.

Since the action of L̂0 on a quasinormal mode is given by equation (4.54), it fol-
lows that the quasinormal frequency ω0 associated to Ψ(0) is related to the constant
h as

ω0 = i
κh

2
. (4.60)

In terms of the highest weight h, the action of the Casimir L̂2 on Ψ(0)(t, r) is given by

L̂2Ψ(0)(t, x) =

(
h2

2
+ h

)
Ψ(0)(t, x) . (4.61)

Direct comparison between equations (4.57) and (4.61) allows one to solve h in terms
of V0 and κ,

h = −1± 2i

√
V0

κ2
− 1

4
. (4.62)

Using equations (4.60) and (4.62), the fundamental frequency ω0 can now be ex-
pressed in terms of the potential parameters κ and V0 as

ω0 = κ

(
−i1

2
±
√
V0

κ2
− 1

4

)
. (4.63)

To find the explicit form of the corresponding fundamental mode Ψ(0)(t, r) as-
sociated to ω0, we use the highest weight conditions in equations (4.58) and (4.59),
which are translated to the following differential equations:

2

κ

∂Ψ(0)(t, x)

∂t
= hΨ(0)(t, x) , (4.64)

− sinh(κx+ α)
∂Ψ(0)(t, x)

∂t
− cosh(κx+ α)

∂Ψ(0)(t, x)

∂x
= 0 . (4.65)
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The pair of equations (4.64) and (4.65) can be solved exactly, with

Ψ(0)(t, x) = Ce−iω0t cosh(κx+ α)iω0/κ , (4.66)

where C is an integration constant.

The complete spectrum {ωn} can be expressed in a closed form. For this purpose,
it is useful the following property,

[L̂0, (L̂±)n] = ±2n(L̂±)n , (4.67)

which can be proved by induction. In equation (4.67), n is a non-negative integer.
The frequency associated to the mode Ψ(n)(t, x) is given by the action of the operator
L̂0. Using equation (4.67), we obtain that

L̂0Ψ(n)(t, x) =
(

[L̂0, L̂
n
−] + L̂n−L̂0

)
Ψ(0)(t, x)

= (h− 2n) Ψ(n)(t, x) .
(4.68)

With equation (4.68), the fundamental and overtone frequencies are given by

ωn = i
κ

2
(h− 2n) = κ

[
−i
(
n+

1

2

)
±
√
V0

κ2
− 1

4

]
, n = 0, 1, 2 . . . . (4.69)

Higher order solutions can be obtained by the successive application of the op-
erator L̂− to the fundamental mode Ψ(0)(t, x),

Ψ(n)(t, x) = (L̂−)nΨ(0)(t, x) , (4.70)

and there will be an infinite number of them. For instance, considering the second
mode, one has

Ψ(1)(t, x) = Ce−iω1t sinh(κx+ α) cosh(κx+ α)i
ω0
κ . (4.71)

For the third mode, it is obtained that

Ψ(2)(t, x) = Ce−iω2t cosh(κx+α)i
ω0
κ
[
cosh(κx+ α) + (1 + h) sinh2(κx+ α)

]
, (4.72)

and so on.

4.3.2 Boundary conditions

A boundary condition analysis is essential in the characterization of quasinormal
modes. Besides being solutions of the wave equation (2.87), they must satisfy the
appropriate boundary conditions (2.89) or (2.90). Let us consider the case α = 0 and
V0 = V+ > 0 in the development from the previous section. This case corresponds
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to the usual Pöschl-Teller potential (4.44). For latter convenience, we will introduce
some new notation. We denote the wave functions with α = 0 as ψ(n)(t, x). The
basis operators will be denoted {P̂0, P̂+, P̂−} for α = 0. Explicitly, we have for the
fundamental mode

ψ(0)(t, x) = Ce−iω0t cosh(κx)iω0/κ , (4.73)

and for the higher overtones,

ψ(n)(t, x) = (P̂−)nψ(0)(t, x) . (4.74)

The frequencies have always non-null imaginary components:

ωn = κ

[
−i
(
n+

1

2

)
±
√
V+

κ2
− 1

4

]
, n = 0, 1, 2, . . . . (4.75)

Considering the limits x → ±∞ for the solutions in equation (4.73), one verifies
that the functions ψn(t, x) have the correct quasinormal mode asymptotic behavior

ψ(n)(t, x) ∼

{
eiωx as x→∞
e−iωx as x→ −∞

, (4.76)

matching the standard quasinormal mode boundary conditions (2.89).

For the case α = i π/2 and V0 = −V− < 0, we obtain the modified Pöschl-Teller
potential in equation (4.47), proportional to sinh−2(κx). Also for latter convenience,
we will denote the wave functions with α = iπ/2 as ϕn(t, x). The basis operators
will be denoted {M̂0, M̂+, M̂−} when α = iπ/2. For this particular representation
the Casimir operator is given by

M̂2 =
2

κ2
sinh2(κx)

(
− ∂2

∂t2
+

∂2

∂x2

)
. (4.77)

General results from previous subsection give us

ϕ(0)(t, x) = Cbe−iω0t sinh(κx)i
ω0
κ (4.78)

for the fundamental mode and

ϕ(n)(t, x) = (M̂−)nϕ(0)(t, x) (4.79)

for the higher overtones. As an important characteristic of this case, the spectrum
turns out to be purely imaginary. We have two non-equivalent sets of solutions of
the wave equation, (+) and (−), characterized by the frequencies

iκ

[
−
(
n+

1

2

)
±
√
V−
κ2

+
1

4

]
, n = 0, 1, 2, . . . . (4.80)
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The (−) solutions are necessarily stable. But the (+) solutions could describe un-
stable modes, with positive imaginary parts (for large enough values of V−/κ2). We
will show in the following that only stable solutions are quasinormal modes.

Let us consider the boundary conditions to be satisfied. Functions {ϕ(n)(t, x)} in
equations (4.78)-(4.79) are defined only on the half real line, x ∈ (−∞, 0), and there-
fore they cannot satisfy the standard quasinormal boundary condition (2.89). But
they could satisfy the modified quasinormal mode conditions in (2.90). On the other
hand, only the (−) solutions satisfy the Dirichlet boundary condition prescribed in
(2.90). That is, only for those solutions we have

lim
x→0−

ϕ(n)(t, x)→ 0 , (4.81)

as can be straightforwardly verified. Therefore, the unstable (+) solutions are not
quasinormal modes. The quasinormal frequencies associated to the modified Pöschl-
Teller potential are then given by

ωn = −iκ

[(
n+

1

2

)
+

√
V−
κ2

+
1

4

]
, n = 0, 1, 2, . . . . (4.82)

4.3.3 Further generalization of the Pöschl-Teller potential

We consider now a further generalization of the Pöschl-Teller potential, combining
both terms cosh−2(κx) and sinh−2(κx) as

V (x) =
V+

cosh2(κx)
+

V−

sinh2(κx)
, (4.83)

with V+ > 0 and V− > 0, and defined on the half real line, x ∈ (−∞, 0). Moti-
vations for considering this potential can be found in the study of the perturbative
dynamics of different types of fields [45, 35, 49]. Regarding the domain of the the
full Pöschl-Teller potential, V (x) diverges in the limit x → 0, since the term propor-
tional to sinh−2(κx) becomes dominant. It follows that the potential is defined on
x ∈ (−∞, 0).

In sections 4.3 and 4.3.2, we considered two particular representations of the al-
gebra sl(2): (Rep1), as the operators {P̂0, P̂+, P̂−}, obtained setting α = 0 in equa-
tions (4.50)-(4.52); and (Rep2), as the operators {M̂0, M̂+, M̂−}, obtained setting
α = iπ/2 in equations (4.50)-(4.52). Both representations (Rep1) and (Rep2) share
the same Cartan operator L̂0 = P̂0 = M̂0. However, their Casimir operators, denoted
by P̂ 2 and M̂2,

P̂ 2 =
1

2
P̂0 P̂0 + P̂− P̂+ + P̂+ P̂− , (4.84)

M̂2 =
1

2
M̂0 M̂0 + M̂− M̂+ + M̂+ M̂− , (4.85)
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and given explicitly by expressions (4.56) and (4.77), do not commute. Hence the
eigenvalues of one of the Casimir do not constitute solutions for the other case.
Nevertheless, a solution for the full Pöschl-Teller potential in equations (4.83) can
be constructed from the particular solutions ψ(n)(t, x) and ϕ(n)(t, x), associated to
the potentials in equations (4.44) and (4.47) respectively.

We will denote the product of the highest weight solution of both representations
in equations (4.73) and (4.78) by Ψ(0). One obtains that

Ψ(0)(t, x) = ψ(0)(t, x)ϕ(0)(t, x)

= A cosh(κx)−
1
2
h+ sinh(κx)−

1
2
h−e

κ
2

(h++h−)t , (4.86)

where h+ and h− are the highest weight constants of (Rep1) and (Rep2) respec-
tively:

P̂0ψ
(0)(t, x) = h+ψ

(0)(t, x) , (4.87)

M̂0ϕ
(0)(t, x) = h−ϕ

(0)(t, x) . (4.88)

In the following, it will be shown that Ψ(0)(t, x) is a solution of the wave equa-
tion with the full Pöschl-Teller (4.83) is considered. Acting with the D’Alambertian
operator (−∂2

t + ∂2
x) on Ψ(0)(t, x) and taking into account the relation between the

Casimir elements and the height of the potentials, one has(
− ∂2

∂t2
+

∂2

∂x2

)
Ψ(0)(t, x) = V (x)ϕ(0)ψ(0) + 2

[
ϕ′(0)ψ′(0) − ϕ̇(0)ψ̇(0)

]
. (4.89)

In equations (4.89), ϕ′ denotes derivative with respect to x, and ϕ̇ denotes derivative
with respect to t. Also, we can show that the additional term on the right hand side
of equations (4.89) is identically zero given the properties of the highest weight func-
tions. Indeed, from the highest weight conditions, we obtain the following equali-
ties,

tanh(κx)
∂

∂t
ψ(0)(t, x) =

∂

∂x
ψ(0)(t, x) , (4.90)

cotanh(κx)
∂

∂t
ϕ(0)(t, x) =

∂

∂x
ϕ(0)(t, x) . (4.91)

Taking the product of the expressions in equations (4.90) and (4.91), we have

ϕ′(0)ψ′(0) = ϕ̇(0)ψ̇(0) , (4.92)

from which the second term in the right-hand side of equations (4.89) is canceled.
Hence, [

− ∂2

∂t2
+

∂2

∂x2

]
Ψ(0)(t, x) = V (x)Ψ(0)(t, x) , (4.93)
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and therefore Ψ(0) = ϕ(0)ψ(0) solves the wave equation (2.87) with the potential
(4.83), as we wanted to show.

We can now obtain the fundamental quasinormal frequency for the mode Ψ(0)(t, x).
The action of the Cartan operator L̂0 = P̂0 = M̂0 on Ψ(0)(t, x) is

L̂0Ψ(0)(t, x) = (h+ + h−)Ψ(0)(t, x) . (4.94)

It follows that the fundamental frequency of Ψ(0)(t, x) is given by the sum of the
frequencies of the fundamental modes associated to P̂0 and M̂0:

∂

∂t
Ψ(0)(t, x) =

κ

2
(h+ + h−)Ψ(0)(t, x) = −iω0Ψ(0)(t, x) , (4.95)

with

ω0 = κ

[
±
√
V+

κ2
− 1

4
− i

(
1 +

√
V−
κ2

+
1

4

)]
. (4.96)

It can be readily verified that the function Ψ(0)(t, x) in equation (4.86) satisfies the
modified boundary conditions presented in equation (2.90). Therefore, Ψ(0)(t, x) and
the associated ω0 are proper quasinormal modes and frequencies of the full Pöschl-
Teller potential.
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4.3.4 Quasinormal modes in an initial value problem

Quasinormal solutions of the generalized Pöschl-Teller potentials can also be inves-
tigated through the analysis of an associated initial value problem. In fact, quasinor-
mal modes dominate the intermediate and (possibly) the late-time field evolution.
Let us consider the Cauchy initial value problem associated to the hyperbolic equa-
tion (2.87). In this formulation, initial data are given by two functions F and G,
where

Ψ(0, x) = F (x) ,
∂Ψ

∂t
(0, x) = G(x) . (4.97)

Since we are interested in a quasinormal mode evolution, we will consider initial
conditions with a sharp peak and fast decay [32, 31]. For most of the development
presented here, the initial data have the form

F (x) = A1 e
−σ1x2 , G(x) = A2 e

−σ2x2 . (4.98)

An issue to be considered is the eventual existence of a late-time tail. That tail,
if it exists, would dominate the field decay for the late-time regime, supplanting the
quasinormal mode phase. The problem can be analytically addressed considering
the asymptotic form of the effective potential. Asymptotically, with −x large, one
obtains that

V (x) = 4 (V+ + V−) e−2κx + o
(
e2κx

)
. (4.99)

That is, the potential decreases like an exponential. It is then shown in [50] that a
potential with this form do not generate tails.

Therefore, we arrive at a qualitative description of the time evolution of the field
at a fixed position. After an initial transient, which depends on the initial conditions,
follows the quasinormal mode phase. The late-time field evolution is then dom-
inated by the fundamental quasinormal mode. The field decay can be oscillatory
or non-oscillatory, depending on the existence of a non-null real part in the funda-
mental quasinormal frequency. The dynamics is always stable, that is, the function
Ψ(t, x) is bounded. These qualitative features of the field dynamics are illustrated in
Figs. 4.4 and 4.5.

For a quantitative comparison between the analytic expressions found for the
quasinormal frequencies and the results from the time evolution, we employ numer-
ical techniques. We use an explicit finite difference scheme to numerically integrate
the field equation (2.87). A discretized version of equation (2.87) is obtained with

t→ ti = t0 + i∆t , i = 0, 1, 2, . . . , (4.100)

x→ xj = x0 + j∆x , j = 0, 1, 2, . . . . (4.101)
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With this discretization, the wave equation is approximated by the difference equa-
tion

ψN =
(
2−∆t2 VC

)
ψC − ψS +

∆t2

∆x2
(ψE − 2ψC + ψW ) , (4.102)

where

ΨN = Ψ (ti+1, xj) , ΨE = Ψ (ti, xj+1) ,

ΨC = Ψ (ti, xj) , ΨW = Ψ (ti, xj−1) ,

ΨS = Ψ (ti−1, xj) , VC = V` (ti, xj) . (4.103)

The numerical evolution of the field is evaluated at a fixed point xi. With the de-
scribed method for the numerical treatment of the Cauchy problem, we performed
an extensive exploration on the parameter space of the generalized Pöschl-Teller po-
tentials.

We first consider the usual Pöschl-Teller potential (V+ > 0 and V− = 0) defined
on the whole real line. One characteristic of the time evolution generated by the
usual Pöschl-Teller potential is the existence of oscillatory and non-oscillatory late-
time field decay.1 From the results of section 4.3.2, if V+/κ

2 > 1/4 and V− = 0, the
real and imaginary parts of the fundamental frequencies are non-null, being given
by

Re
(
ω±0
)

= ±
√
V+

κ2
− 1

4
, (4.104)

Im
(
ω±0
)

= −κ
2
. (4.105)

In this case, the sign choice is not relevant. The late-time decay is oscillatory and
exponentially attenuated. This is the usual picture of the time evolution with the
usual Pöschl-Teller potential. But in the regime where 0 < V+/κ

2 ≤ 1/4 and V− = 0,
the fundamental quasinormal frequencies are purely imaginary:

Re
(
ω±0
)

= 0 , (4.106)

Im
(
ω+

0

)
= −κ

(
1

2
+

√
1

4
− V+

κ2

)
, (4.107)

Im
(
ω−0
)

= −κ

(
1

2
−
√

1

4
− V+

κ2

)
. (4.108)

Both (±) modes are stable, but the (−) mode has the lowest absolute value of its
imaginary part, and therefore dominates the late-time decay. The existence of oscil-
latory and non-oscillatory modes for the usual Pöschl-Teller potential can be readily
seen in the numerical evolution. We illustrate this point in Fig. 4.4.

Considering the modified Pöschl-Teller potential (V+ = 0 and V− > 0), it is

1In the analysis of near-extremal geometries, a non-oscillatory decay never appears because in those
scenarios V+/κ

2 > 1/4 [40, 39, 51, 52, 53, 41].
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FIGURE 4.4: Semi-log graphs for the field evolution with the usual Pöschl-Teller potential.
The oscillatory (V+/κ2 > 1/4) and non-oscillatory (0 < V+/κ

2 ≤ 1/4) regimes are shown.
We used V+ = 1 and V− = 0.

apparent from the results of section 4.3.2 that the late-time decay is always non-
oscillatory, with an exponential coefficient given by

Im (ω0) = −κ

(
1

2
+

√
V−
κ2

+
1

4

)
. (4.109)

We present typical results for the field evolution with the modified Pöschl-Teller
potential in Fig. 4.5. From the data, the numerical evaluation for the fundamental
frequency ωnum0 can be made. The comparison between the analytical and numerical
results are presented in Table 4.1. The concordance of the two approaches is very
good.
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FIGURE 4.5: Semi-log graphs for the field evolution with the modified Pöschl-Teller poten-
tial. The late-time decay is always exponential and non-oscillatory. We used V− = 1 and
V+ = 0.

The field evolution with the full Pöschl-Teller potential (V+ > 0 and
V− > 0) combines elements from the dynamics associated to the usual and mod-
ified Pöschl-Teller potentials. We observe oscillatory and non-oscillatory regimes.
Considering the results in section 4.3.3, we observe that if V+/κ

2 > 1/4 the late-time
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TABLE 4.1: Analytical and numerical results for the fundamental quasinormal frequencies
associated to the modified Pöschl-Teller potential. The relative differences ∆% between the
results are also indicated. We use V− = 1 and V+ = 0.

κ Im(ω0) Im(ωnum0 ) ∆%

0.25 -1.1328 -1.1607 2.46
0.50 -1.2808 -1.2965 1.23
1.00 -1.6180 -1.6196 0.10
1.50 -2.0000 -2.0018 0.09
2.00 -2.4142 -2.4174 0.13

decay is characterized by an oscillatory behavior,

Reω±0 = ±
√
V+

κ2
− 1

4
, (4.110)

Imω±0 = −κ

(
1 +

√
V−
κ2

+
1

4

)
. (4.111)

If 0 < V+/κ
2 ≤ 1/4, the field decays monotonically, with

Reω−0 = 0 , (4.112)

Imω−0 = −κ

(
1 +

√
V−
κ2

+
1

4
−
√

1

4
− V+

κ2

)
. (4.113)

The numerical results for the full Pöschl-Teller potential are compared with the ana-
lytical formulas in Table 4.2, showing very good agreement between the two meth-
ods.

TABLE 4.2: Analytical and numerical results for the fundamental quasinormal frequencies
associated to the full Pöschl-Teller potential. The relative differences ∆% between the results
are also indicated. We use V− = 1 and κ = 1.

V+ Re (ω0) Im (ω0) Re (ωnum0 ) (∆%) Im (ωnum0 ) (∆%)

0 0 -1.6180 0 -1.6204 (0.15)
0.05 0 -1.6708 0 -1.6750 (0.25)
0.1 0 -1.7307 0 -1.7386 (0.46)
0.2 0 -1.8944 0 -1.9352 (2.15)
0.5 0.5000 -2.1180 0.5061 (1.21) -2.1288 (0.51)
1.0 0.8660 -2.1180 0.8664 (0.05) -2.1190 (0.05)
2.0 1.3229 -2.1180 1.3243 (0.11) -2.1003 (0.84)
5.0 2.1794 -2.1180 2.1634 (0.74) -2.1139 (0.19)
10.0 3.1225 -2.1180 3.1145 (0.26) -2.1305 (0.59)
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Chapter 5

Thermodynamics of Anti-de Sitter
Black Holes

In this chapter we study the behavior of thermodynamical variables in the pro-
cesses of evaporation and phase transition of Anti-de Sitter black holes. We employ
the Vaidya Anti-de Sitter metric as non-stationary geometry with a time-dependent
mass function that can be used to characterize the radiation process of a black hole
and the phase transitions between different asymptotically Anti-de Sitter configura-
tions.

5.1 Vaidya spacetime

In general relativity, the Vaidya metric constitutes a non-stationary generalization of
the Schwarzschild metric (2.21) with a time dependent mass [15, 16]. The geome-
try no longer describes a vacuum solution of Einstein’s field equation; instead the
energy-momentum tensor corresponds to some form of null matter emitted from
or absorbed by a spherically symmetric body. For a general spherically symmetric
spacetime in (3 + 1) dimensions, the metric can always be specified in terms of only
two independent functions [20]. In Eddington-Finkelstein coordinates such specifi-
cation can be given by:

ds2 = −
(

1− 2M(v, r)

r

)
e2Ψdv2 ± 2 eΨ dvdr + r2dΩ2 , (5.1)

with ± indicating either the advanced or retarded Eddington-Finkelstein time (see
appendix A for a definition of the coordinate system). From the independent func-
tions ψ and M(v, r) the components of the energy-momentum tensor read [54]

∂M(v, r)

∂r
= 4πr2T vv ,

∂M(v, r)

∂v
= 4πr2T rv ,

∂Ψ

∂r
= 4πreΨT vr . (5.2)

The total energy-momentum tensor can be expressed as a superposition of the energy-
momentum tensors corresponding to a null fluid, that is, a fluid with a traceless
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energy-momentum tensor, and a perfect fluid [54]

Tµν = ulµlν + P gµν + (ρ+ P )(lµnν + lνnµ) , (5.3)

where lµ and nµ are the components of future-oriented null vectors. In this form
u is the energy density of a radial null fluid and ρ and P are the energy density
and pressure of a perfect fluid. These quantities depend on the derivatives of the
function M(v, r) in the following form:

u = ± 1

4πr2

∂M(v, r)

∂v
, ρ =

1

4πr2

∂M(v, r)

∂r
, P = − 1

8πr2

∂2M(v, r)

∂r2
. (5.4)

As a non-stationary geometry, a black hole in the spacetime (5.1) will be delim-
ited by a time evolving horizon that is not compatible with a Killing horizon. There-
fore, we characterize the boundary of the black hole as corresponding to a trapping
horizon, as it was discussed in section 2.4. In terms of the metric (5.1), the the future-
oriented null vectors read:

n = −1

2

(
1− 2M(v, r)

r

)
e2Ψdv + dr , l = −dv , (5.5)

and the product of the corresponding outgoing geodesic expansion θ+ and ingoing
geodesic expansion θ− is:

θ+θ− =
2

r

(
1− 2M(v, r)

r

)
e2Ψ . (5.6)

The metric (5.1) possesses a trapping horizon if the product θ+θ− is zero. From (5.6),
the trapping horizon of the metric (5.1) corresponds to the surface r = 2M(v, r). In
such case the surface gravity of the trapping horizon is:

κg =
M(v, r+)

r2
+

− M ′(v, r+)

r+
=

1

4M(v, r+)
− M ′(v, r+)

2M(v, r+)
(5.7)

where
M ′(v, r+) =

dM(v, r)

dr

∣∣∣∣
r=r+

. (5.8)
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5.1.1 Vaidya Anti-de Sitter black hole

The Vaidya Anti-de Sitter geometry is a a particular case of (5.1) with ψ = 0 and a
mass functionM(v) depending only on the Eddington–Finkelstein time. This geom-
etry is the non-stationary generalization of the Schwarzschild-Anti-de Sitter geom-
etry (3.15); in advanced Eddington–Finkelstein coordinates the components of the
Vaidya AdS metric read

ds2 = −
(

1− 2M(v)

r
+
r2

l2

)
dv2 + 2dvdr + r2dΩ2 , (5.9)

corresponding to a non-vacuum solution of Einstein’s field equations with negative
cosmological constant and an energy-momentum tensor Tµν describing a massless
null fluid given by

Tµν =
1

4πr2

∂M(v)

∂v
lµlν , (5.10)

where lµ = −∂µv is the 4-vector along the null fluid with normalization lµlµ = 0.

The metric (5.9) does not possess either a time-like Killing vector field or a Killing
horizon, therefore a more adequate characterization of the geometric and thermody-
namical quantities of the Vaidya-AdS black hole is given in terms of the correspond-
ing trapping horizon. Following (5.6), the trapping horizon of the Vaidya-AdS black
hole (5.9) is located at the surface r = r+(v) that is solution of the polynomial

r3 + l2r − 2M(v)l2 = 0 . (5.11)

In the formalism of the generalized thermodynamics the function M(v, r) in (5.1)
corresponds to the Misner-Sharp mass. At the trapping horizon r = r+(v) we have

Mms(v)r=r+ = M(v)−
r3

+

2l2
=
r+(v)

2
. (5.12)

The variation of the Misner-Sharp mass obeys the generalized first law (2.76). To
obtain the quantity ω in equation (2.56), we consider an effective energy-momentum
tensor with contributions from both the null radiation (5.10) and the cosmological
constant (3.20). We write

T ′ab = Tab −
Λ

8π
hab . (5.13)

Since the trace of the energy-momentum tensor (5.10) is null we get

ω = −1

2

(
T aa −

Λ

8π
haa

)
=

Λ

8π
, (5.14)

ω∇aV = − 3

8πl2
∇a
(

4πr3
+

3

)
= −

3r2
+

2l2
∇ar+ , (5.15)

giving a work term corresponding to the pressure associated with the cosmological
constant. From equation (2.57), the components of the vector ψ corresponding to the



60 Chapter 5. Thermodynamics of Anti-de Sitter Black Holes

energy flux are:

ψv = Tv
c∂cr + ω∂vr =

1

4πr2

dM(v)

dv
, (5.16)

ψr = Tr
c∂cr + ω∂rr = − Λ

8π
+ ω = 0 . (5.17)

None of these components depend on the cosmological constant Λ, since the energy
associated with the cosmological constant does not radiate. The radiative term in
equation (2.58) is:

Aψv = 4πr2

(
1

4πr2

dM(v)

dv

)
=
dM(v)

dv
, (5.18)

being equivalent with the derivative of the function M(v) respect to the advanced
time v. Differentiating on both sides of equation (5.11) and rearranging terms gives
us:

dM(v)

dv
=

(
3r2

+ + l2

2l2

)
dr+

dv
. (5.19)

The variation of the trapping horizon area is dA = 8πdr+, then we have(
3r2

+ + l2

2l2

)
dr

dv
=

(
3r2

+ + l2

2l2

)
1

8πr+

dA

dv
=
κg
8π

dA

dv
, (5.20)

then it follows that the term (5.18) is:

Aψv =
dM(v)

dv
=
κg
8π
∇aA = T∇aS . (5.21)

The quantity Aψv corresponds to the “heat” added to or subtracted from the
black hole, with temperature T = κg/2π proportional to the geometric surface grav-
ity of the trapping horizon. After adding both terms (5.21) and (5.15) we get:

∇aMms =
dM(v)

dv
−

3r2
+

2l2
dr+

dv
. (5.22)

which is equivalent to the derivative of equation (5.12). This result implies that in the
case of the Vaidya-Anti-de Sitter black hole the variation of the Misner-Sharp mass
corresponds not only to the variation of the function M(v) but also from the work
performed by the black hole to sustain an horizon of radius r+(v) when a vacuum
energy density is present.
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5.2 Mass functions for evaporation and phase transitions of
AdS black holes

In this section we employ specific mass functions M(v) in the (3 + 1) Vaidya-AdS
black hole in order to study the time dependency of the processes of evaporation
and phase transitions in Anti-de Sitter black holes. For a given mass function M(v),
the trapping horizon of the Vaidya-AdS black hole is given by the real solution r =

r+(v) of the polynomial (5.11). A polynomial of the form r3 + pr = q has three
solutions, one real and two complex conjugated. The real solution corresponding to
the horizon, can be expressed in terms of hyperbolic functions as [55]:

r+ =

√
4|p|
3

sinh

[
1

3
arcsinh

(
3q

2p

√
3

|p|

)]
if p > 0 . (5.23)

With p = l2 and q = 2M(v)l2 we have

r+ = r+(M(v)) =

√
4l2

3
sinh

[
1

3
arcsinh

(
3M(v)

√
3

l2

)]
. (5.24)

With an input mass function M(v) we can obtain the time evolution of thermody-
namical quantities such as temperature, entropy and heat capacity. The free energy
is defined as a thermodynamical potential. with respect to a given energy reference;
in this case we will work with the following forms for the free energy defined in
terms of the mass function M(v) and the Misner-Sharp mass Mms(v):

F = M(v)− TS, G = Mms(v)− TS . (5.25)

In an evaporating black hole the luminosity is the measure of radiated energy
emitted per unit time, and is equal to (minus) the mass loss rate. If the a black hole
is treated as a perfect blackbody the luminosity of a (d + 1) dimensional black hole
would be given in terms of the horizon area and the temperature by the Stefan-
Boltzmann’s law:

LSB = σ(d+1)Ad−1T
d+1 = −dM(v)

dv
, (5.26)

with σ(d+1) the (d+ 1)-dimensional Boltzmann constant

σ(d+1) = (2π)dAd−1 ζ(d− 1) d! (5.27)

where Ad−1 is the area of a (d− 1) sphere [56].
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5.2.1 Radiation of small and large Anti-de Sitter black holes

Small Anti-de Sitter black holes have negative heat capacity, therefore they are unsta-
ble under perturbation, they radiate away their mass just like a Schwarzschild black
hole in asymptotically flat spacetime. For small Anti-de Sitter black holes (M � l)

the temperature and entropy scale with the mass as:

T =
1

8πM
, S = 4πM2 . (5.28)

The thermodynamics of small Anti-de Sitter black holes is very similar to their asymp-
totically flat counterparts. From the Stefan-Boltzmann law (5.26) we have:

LSB = σ16πM2

(
1

8πM

)4

=
σ

256π3M2
. (5.29)

Solving for M(v) gives the following mass function:

M(v) =
[
M3

0 − b(v − v0)
]1/3

, (5.30)

with b = σ/256π3. This function describes a black hole of initial mass M0 at v =

v0, with evaporation time vevap = M3
0 /3b and mass loss rate of proportional to the

inverse of the square mass:
dM(v)

dv
= − b

M(v)2
. (5.31)

(A) (B)

FIGURE 5.1: (A) Function M(v) for different initial mass values. (B) Misner-Sharp mass for
M0 = 0.5.

The black hole evaporates faster for smaller masses and temperature increases as
the black hole radiates away its mass. In figure 5.2 we display the behavior of the
temperature and luminosity for different values of l, near vevap the temperature of
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the black hole diverges. The mass loss rate of the black hole deviates from the Stefan-
Boltzmann law for large values of the cosmological constant (equivalently for small
values of l).

(A)

(B)

FIGURE 5.2: (A) Temperature as a function of advanced time for M0 = 0.5. (B) Radiated
mass with M0 = 0.5.

On the other hand, large Anti-de Sitter black holes are thermodynamically stable.
A difficulty for the study of the evaporation process of Anti-de Sitter black holes fol-
lows from their non-globally hyperbolic property, meaning that is also dependends
on the boundary conditions imposed at infinity. If typical reflective boundary con-
ditions are imposed at the conformal boundary of the AdS space, a large AdS black
hole will tend to not evaporate but to reach thermal equilibrium with its Hawking
atmosphere [57]. However, if different boundary conditions are imposed there is the
possibility for large AdS black holes to evaporate.

For large Anti-de Sitter black holes the radius approximates as a function of the
mass as

r+ = (2l2M)1/3 , (5.32)
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and the temperature and entropy scale with the black holes mass M as

T =
3(2l2)1/3

4πl2
M1/3, S = π(2l2)2/3M2/3 . (5.33)

Following the arguments of [56, 58, 59, 60], for large black holes we can take an
effective area on the Stefan-Boltzmann law that does not correspond to the horizon
radius but to the Anti-de Sitter radius l instead. This implies an effective area A =

4πl2. The black hole luminosity is then:

dM(v)

dv
= σ4πl2

(
3(2l2)1/3

4πl2
M1/3

)4

= − σ3424/3

(4π)3l10/3
M4/3 . (5.34)

Solving gives a mass function of the form:

M(v) =

 3

a(v − v0) + 3M
− 1

3
0

3

, a =
σ34

26π3l10/3
. (5.35)

This establishes a difference between large black holes in AdS and asymptotically
flat. Whereas a large Schwarzschild black hole takes a time to evaporate of the order
of M3 ; the evaporation time for a large Anti-de Sitter black hole depends on the
cosmological constant and is of order l3
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(A)

(B)

FIGURE 5.3: (A) Mass function (5.35) for different initial masses. (B) Mass function (5.35) for
different values of L

5.2.2 Phase transitions

As a more general mass function M(v) that allows to characterize the change of a
black hole between two different mass values we consider the following

M(v) = M0 +
Mf −M0

2

[
1 + tanh

(
v − v0

b

)]
, (5.36)

representing a black hole with initial mass M0 and final mass Mf . The parameter
b will serve as a control parameter for how fast or how slow the change between
the two different mass values occurs . To study phase transitions of black holes we
consider Mf > M0. We can consider either Mf larger or smaller than l.
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(A)

(B)

FIGURE 5.4: (A) Mass for different values of b. (B) Mass function and Misner-Sharp mass for
different values of l.

In the numerical analysis we can, for a fixed value of b, either take a constant
Anti-de Sitter radius l and different initial values of masses Mf or choose a fixed
value for the initial mass and to different values of l. For a black hole with initial
mass smaller than l we have that the temperature decreases as the black hole in-
creases mass. If the mass function is such that the final mass becomes larger than l
then the temperature will increase as the black hole. If the black hole never transi-
tions from the small mass regime to the large mass regime the temperature will be
always decreasing (see figure 5.5).
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(A)

(B)

(C)

FIGURE 5.5: (A) Temperature as a function of advanced time for l = {0.1, 1, l = 5} with
M0 = 5 and Mf = 0.01. (B) Temperature for M0 = {1, 5, 10} with l = 1. (C) Temperature for
different values of b with M0 = {1, 5, 10}with l = 0.1.

In general, phase transitions and thermal instabilities can be identified by dis-
continuities of physical quantities or their derivatives with respect to certain ther-
modynamical variables [61]. In figure 5.6 we show the heat capacity as a function
of temperature and entropy. If the initial black hole mass is smaller than l and the
final mass is larger the heat capacity presents a discontinuity both as a function of
temperature and entropy
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(A) (B)

FIGURE 5.6: (A) Heat capacity as a function of temperature forM0 = 0.01, Mf = 5 and l = 1.
(B) M0 = 0.05, Mf = 5. Heat Capacity as a function of entropy for (C) M0 = 0.01, Mf = 5
and (C)l = 1.

In figure (5.7) we obtain the time dependency of the free energy for different
values of mass and AdS radius. When a phase transition occurs the free energy goes
from positive to negative values.

(A) (B)

FIGURE 5.7: Free energy as a function of advanced time. (A) Fixed masses M0 = 0.05,
Mf = 5. (B) Fixed radius l = 1.
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As illustrated in figure 5.8, the free energy F defined in (5.25) as as a function of
temperature has two branches representing the small and large mass regimes, with
the upper branch corresponding to the small mass regime; there is also a point when
the derivative of the free energy is discontinuous corresponding to the minimum
value of the temperature of the AdS black hole. This behaviour indicatates a first
order phase transition. The free energy as a function of entropy is always continu-
ous. The Hawking-page transition occurs when the free energy goes from positive
to negative as the entropy entropy increases.

(A) (B)

(C)

FIGURE 5.8: (A) Free energy as a function of temperature. (B) Free energy as a function of
temperature for different values of l. (C) Free energy as a function of entropy for different
values of l. Values M0 = 0.05, Mf = 5.
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5.3 Semiclassical description of Hawking atmosphere of Anti-
de Sitter black holes

In asymptotic Anti-de Sitter black holes, the Hawking radiation that escapes the
black hole is reflected back from spatial infinity and the evaporation process is con-
ditioned to the initial condition of the black hole as either a black hole of small or
large mass. A small AdS black hole radiates at a faster rate that it reabsorbs the radi-
ation reflected from infinity and eventually evaporates, much like an asymptotically
flat Schwarzschild black hole. On the contrary, a large AdS black hole is able to re-
absorb most of the reflected Hawking radiation and eventually reaches equilibrium
with the surrounding Hawking atmosphere [57]. In general, a full description of
the evaporation process of a black hole through emission of Hawking radiation is
a complex task, since a realistic scenario needs to consider the spacetime backreac-
tion, as the energy-momentum tensor of the radiation field modifies the background
geometry. A common approach to the backreaction problem is taken in the context
of semiclassical gravity, where the classic gravitational field couples to the expected
value of the energy-momentum tensor of quantized matter fields in the semiclassical
Einstein’s equations:

Gµν + Λ gµν = 8π〈Tµν〉. (5.37)

As an approximation, the Hawking radiation emitted by a black hole can be treated
as a atmosphere of particles with an energy-momentum tensor that acts as a source
on Einstein field equations [62, 54].

5.3.1 Renormalized energy-momentum tensor

A semiclassical treatment of the evolution of the Hawking atmosphere produced by
the radiation of an evaporating black hole considers a quantum field propagating
in a classical background from which a renormalized quantum energy-momentum
tensor is obtained [63]. In asymptotically Anti-de Sitter black holes massive particles
cannot reach infinity and fall into the black hole instead, meaning that only massless
particles need to be considered as contributing to the evaporation process. A simple
model of the Hawking atmosphere considers the dynamics of a massless scalar field
Φ satisfying the Klein-Gordon equation (2.79). Classically, the energy-momentum
tensor of a scalar field Φ is

Tµν = ∇µ∇νΦ− 1

2
gµνg

ρσ∇ρΦ∇σΦ . (5.38)

For a quantized field, the quantized energy-momentum tensor (5.38) is a divergent
quantity and a renormalization scheme must be implemented. Explicit expressions
for the renormalized energy-momentum tensor in 4 dimensions are hard to come
by. In spherically symmetric spacetimes it is possible to implement an optic geomet-
ric approximation, in which the renormalized 4-dimensional energy-momentum is
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related to the two-dimensional energy-momentum tensor of the induced metric tan-
gent to S2 as [63, 64]:

〈Tµν〉(4D) =
1

4πr2
〈Tµν〉(2D) . (5.39)

where the 4-dimensional energy-momentum tensor is:

〈Tµν〉(4D) = αR2 + βRµνR
µν + γRµνρσR

µνρσ . (5.40)

We follow the procedure outlined in [65]. Classically, the trace Tµµ of the energy-
momentum tensor of a massless scalar field is zero. For a quantized scalar field in
two dimensions the renormalized energy-momentum tensor is proportional to the
scalar curvature R of the background geometry:

〈Tµµ〉(2D) = αR , (5.41)

where α = 1/24π.

For the two-dimensional Vaidya-AdS metric the trace of the energy - momentum
tensor is then

Tv
v + Tr

r = α

(
4M

r3
− 2

l2

)
. (5.42)

Now we obtain the different components of the renormalized energy-momentum
tensor. From the conservation of the energy-momentum tensor∇µTνµ = 0 we have

∂vTv
v + ∂rTv

r + (Tr
r − Tvv)

(
M

r2
+
r

l2

)
−

[(
M

r2
+
r

l2

)(
1− 2M

r
+
r2

l2

)
+
Ṁ

r

]
Tr
v = 0 ,

(5.43)

∂vTr
v + ∂vTr

r + Tr
v

(
M

r2
+
r

l2

)
= 0 , (5.44)

where the non-trivial Christoffel coefficients are:

Γvvv =
M

r2
+
r

l2
, Γrvr = −M

r2
− r

l2
,

Γrvv =

[(
M

r2
+
r

l2

)(
1− 2M

r
+
r2

l2

)
+
Ṁ

r

]
, .

(5.45)

Symmetry of the energy-momentum tensor Tµν = Tνµ implies that

Tr
r − Tvv =

(
1− 2M

r
+
r2

l2

)
Tr
v . (5.46)

The time reversal invariance Ttr = Trt = 0 of the energy-momentum tensor in the
coordinates (v, r) is Tvr = 0. Replacing equations (5.46) and (5.42) in equation (5.43)
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we have

∂vTr
v = α

(
1− 2M

r
+
r2

l2

)−1

∂vR , (5.47)

and consequently we have from equation (5.44) a differential equation for the com-
ponent Trr:

∂rTr
r +

(
2M

r2
+

2r

l2

)(
1− 2M

r
+
r2

l2

)−1

Tr
r

= α

(
1− 2M

r
+
r2

l2

)−1
[

4Ṁ

r3
− 4M2

r5
− 2M

r2l2
+

2r

l4

]
.

(5.48)

The solution of equation (5.48) is

Tr
r = α

(
1− 2M

r
+
r2

l2

)−1

×[∫ r

r+

(
4Ṁ

r′3
− 4M2

r′5
+

2M

r′2l2
− 4M

r′2l2
+

2r′

l4

)
dr′ + C(v)

]
.

(5.49)

The integration constant C(v) can be taken to be equal to zero since it just shifts the
energy value, and the integral can be solved giving:

Tr
r = α

(
1− 2M

r
+
r2

l2

)−1

×[
−2Ṁ

r2
+

2Ṁ

r2
+

+
M2

r4
− M2

r4
+

+
2M

rl2
− 2M

r+l2
+
r2

l4
−
r2

+

l4

]
.

(5.50)

Now we obtain the remaining components of the energy-momentum tensor from
(5.42). The component Tvv is

Tv
v = α

(
1− 2M

r
+
r2

l2

)−1
[

2Ṁ

r2
− 2Ṁ

r2
+

+
7M2

r4
+
M2

r4
+

+
r2

l4
+
r2

+

l4

−10M

rl2
+

2M

r+l2
− 4M

r3
+

2

l2

]
.

(5.51)

The component Tvv is proportional to the mass density of the scalar field. In
(5.51) polarization terms proportional to M/r2 and radiation terms proportional to
Ṁ . The component Tvv in the limit r →∞ is given by:

Tv
v =

1

24π

(
−2Ṁ

r2
+

+
M2

r4
+

+
2M

r+l2
+
r2

+

l4
+

2

l2

)
. (5.52)

Since the Vaidya-Ads temperature can be expressed as:

T =
1

2π

(
M

r2
+

+
r+

l2

)
, (5.53)
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we can write

Tv
v =

π

6
T 2 − Ṁ

12πr2
+

+
1

12πl2
. (5.54)

We can compare the result (5.54) with the two-dimensional version of the Stefan-
Boltzmann law describing the the energy density of a boson gas propagating in the
radial direction: u = σπβT 2, where σ = π/12 is the Boltzmann constant in two
dimensions. In the Vaidya-Anti-de Sitter metric, from the energy-momentum tensor
(5.10) it is obtained the following energy density:

u =
1

4πr2

dM(v)

dv
. (5.55)

In figure 5.9 we compare the energy density (5.55) as a function of advanced time
with the component of the renormalized energy-momentum obtained in (5.54). For
large AdS radius (small cosmological constant) both quantities present the same be-
havior, whereas for small AdS radius the effect of the additional terms in (5.54) is
more evident.

(A) (B)

FIGURE 5.9: Two-dimensional energy density for the Vaidya-Anti-de Sitter (A) l = 0.1 and
(B) l = 5.



74 Chapter 5. Thermodynamics of Anti-de Sitter Black Holes

5.3.2 Hawking radiation as a trace anomaly

A more recent approach to the description of Hawking’s radiation of an evaporating
black hole is based in the work of Robinson and Wilczek [66]. In this approach the
Hawking radiation is interpreted as a flux that cancels the anomaly appearing in
the conservation condition of the energy-momentum tensor when a relativistic field
is quantized. Classically, variation of the gravitational action 2.9 under a general
coordinate transformation implies conservation of the energy-momentum tensor, as
it was developed in section 2.1. In a semiclassical theory when a quantized field is
considered the requirement of covariance under general coordinate transformations
is transferred to the effective action W [gµν ] [66, 67].

iW [gµν ] = ln

(∫
DgµνeiS[matter,gµν ]

)
, (5.56)

with variation
− δλW =

∫
d2x
√
−gλν∇µTνµ . (5.57)

General covariance of the quantum theory requires δλW = 0. In this variation the
energy-momentum tensor is decomposed in the following form

Tν
µ = Tν

µ
(in)Θ− + Tν

µ
(out)Θ+ + Tν

µ
(χ)H , (5.58)

where θ± = θ(±r ∓ rH − ε) is a step function inside/outside the black hole horizon
and H = 1 − θ+ − θ− is a hat function between −rH − ε and rH + ε. The tensors
Tν

µ
(in) and Tν

µ
(out) are conserved inside/outside the horizon respectively. It is in

the component Tνµ(χ) where the trace anomaly is manifested [66]

∇µTνµ(χ) ≡ Aν ≡
1√
−g

∂µN
µ
ν , Nµ

ν =
1

96π
εβµ∂αΓανβ . (5.59)

With this decomposition of the energy-momentum tensor equation (5.57) reads

− δλW =

∫
d2x
√
−g{λr

[(
T rr(out) − T

r
r(χ)

)
∂θ+ +

(
T rt(in) − T

r
r(χ)

)
∂θ−

]
+

λt[∂r(N
r
tH) +

(
T rt(out) − T

r
t(χ) +N r

t

)
∂θ+ +

(
T rt(in) − T

r
t(χ) +N r

t

)
∂θ−]} .

(5.60)

Consider initially a stationary spacetime of the form (2.19) with F (r) = G(r).
The requirement for general covariance δλW = 0 yields

T tt = −K +Q

F (r)
− B(r)

F (r)
− I(r)

F (r)
+ Tαα (r) , (5.61)

T rr =
K +Q

F (r)
+
B(r)

F (r)
+
I(r)

F (r)
, (5.62)

T rt = −K + C(r) , (5.63)
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where
C(r) =

∫ r

r+

At(x)dx , B(r) =

∫ r

r+

F (x)Ar(x)dx ,

I(r) =
1

2

∫ r

r+

TααF
′(x)dx ,

(5.64)

and K,Q are integration constants. Taking the limit ε→ 0 and using

∂µΘ± = δrµ

(
±1− ε∂r ±

1

2
ε2∂2

r − . . .
)
δ(r − rH) , (5.65)

equation (5.60) takes the form:

−δλW =

∫
d2xλt[(Kout −Kin)δ(r − rH)

− ε(Kout +Kin − 2Kχ − 2N r
t )∂δ(r − rH) + . . . ]

−
∫
d2xλr

[(
Kout +Qout +Kin +Qin − 2Kχ − 2Qχ

F

)
δ(r − rH)

−ε
(
Kout +Qout −Kin −Qin

F

)
∂δ(r − rH) + . . .

]
(5.66)

Conservation of the effective action W [gµν ] is satisfied with the following condi-
tions

Kout = Kin = Kχ + Φ , (5.67)

Qout = Qin = Qχ + Φ , (5.68)

where Φ = Nt
r|rH is the anomaly flux at the horizon. With this, the energy-momentum

tensor becomes
Tµ

ν = T νµ(C) + T νµ(Φ) , (5.69)

where T νµ(C) is the component of the energy-momentum tensor that is conserved
classically and T νµ(Φ) is the energy-momentum tensor associated with the flux Φ =

K = −Q.

For the Vaidya-Anti-de Sitter metric (5.9) we have for the component Nv
r:

Nv
r =

1

96π
εβr∂αΓαvβ

=
1

96π
εvr (∂rΓ

r
vv + ∂vΓ

v
vv)

=
1

96π

[(
−2M

r3
+

1

l2

)(
1− 2M

r
+
r2

l2

)
+

(
M

r2
+
r

l2

)(
2M

r2
+

2r

l2

)]
.

(5.70)

Terms depending on Ṁ are canceled. The gravitational anomaly on the trapping
horizon is

Φ = N r
v |r+ =

1

96π

[(
M(v)

r2
+

+
r+

l2

)(
2M(v)

r2
+

+
2r+

l2

)]
=

π

12
T 2 , (5.71)
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corresponding to the flux expected from the Hawking radiation in two dimensions,
implying that the trace anomaly is in fact canceled by emission of Hawking radi-
ation. A similar result is obtained for stationary and spherically symmetric space-
times [66, 67]. In reference [67] is concluded that if the anomaly is evaluated at the
event horizon and not at the trapping horizon additional correction terms to (5.71)
depending on the time variation of the horizon might appear.

5.3.3 Hawking radiation as tunneling

Another approach for the study of the Hawking radiation of a black hole considers
the tunneling effect of particles through a black hole horizon [68]. In the Eikonal ap-
proximation, solutions of the massless Klein-Gordon equation (2.79) are spherically
symmetric solutions of the form

Φ = Φ0e
(iS) , (5.72)

where S is the action of a massless particle associated with the scalar field and Φ0

is a term that varies slowly while S varies rapidly. Replacing (5.72) into the Klein
Gordon equation (2.79) gives the Hamilton- Jacobi equation:

gab
∂S

∂xa
∂S

∂xb
= 0 , (5.73)

which in has a general solution of the form

S =

∫
γ

∂S

∂xa
dxa , (5.74)

where γ is a null curve representing the trajectory of the massless particles. In a semi-
classical treatment S is allowed to be complex valued. The tunneling probability is
proportional to the amplitude of the field Φ∗Φ, which, considering the approxima-
tion (5.72) becomes

Γ ∼ e(−2ImS) . (5.75)

In order to solve (5.74) we consider the propagation of massless scalar particles
through the horizon. Particles associated with a massless scalar field propagating in
the radial direction obey the radial null geodesic equation, which for the Vaidya-Anti
de Sitter spacetime is given by:

dr

dv
=

1

2

(
1− 2M(v)

r
+
r2

l2

)
. (5.76)

Following the Hamilton-Jacobi formalism, the imaginary part of the action of a par-
ticle of frequency ω traveling from rin inside the horizon to rout outside the horizon
is given by

ImS = Im
∫ rout

rin

pr dr = Im
∫ rout

rin

∫ pr

0
dp′r dr . (5.77)
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Using Hamilton’s equation ṙ = dH/dpr, with H the Hamiltonian of the tunneled
particle, we have

ImS = Im
∫ rout

rin

∫ H

0

2

dr/dv
dH ′r dr . (5.78)

Now we substitute the radial null geodesic equation (5.76) and perform a change of
variables dH = d(M −ω) = −dω, since the change on the Hamiltonian H is equal to
minus the energy ω of the emitted particle. With this we have

ImS = −Im
∫ ω

0
dω

∫ rout

rin

4(
1− 2M(v)

r + r2

l2

) dr . (5.79)

A first approximation considers the near horizon limit of the geodesic equation at
equal times [69]. For the geodesic equation (5.76) that approximation is given by

dr

dv
= κg(v = cte)(r − r+) . (5.80)

and
ImS = −Im

∫ rout

rin

2ω

κg(v = cte)(r − r+)
dr . (5.81)

The complex integral has a pole in r = r+ In order to solve this integral it is used a
Feynman prescription and after complex integration we get:

ImS =
4πω

κg
=

2ω

T
. (5.82)

With the tunneling probability defined by (5.75) this gives the thermal Boltzmann
factor Γ ∼ exp(−ω/T ). This initial approximation ignores both the backreaction of
the metric and the time dependency of the temperature. We can take into account
the effect of the evaporation on the black hole by subtracting the particle energy ω
from the black hole mass. Considering a black hole of initial (Misner-Sharp) mass
Mms = M(v, r) and final mass Mms = M(v, r) − ω where ω is the energy of the
tunneled particle we have

ImS = Im
∫ r+δr

r−δr

2ω(
1− 2(M(v,r)−ω)

r

)dr . (5.83)

The complex integral has a pole when r is equal to the trapping horizon
r = 2(M(v, r)− ω). After complex integration we obtain the following result:

ImS = 8πω
[
M(v, r+)− ω

2

]
. (5.84)

If compared with the entropy variation of the process due to the emission of a parti-
cle with energy ω:

∆S = π(r2
f − r2

i ) = 4πω(ω − 2M) , (5.85)
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where ri = r+(M) and rf = r+(M − ω) correspond to the trapping horizon radius
before and after the tunneling of a particle of energy ω, we get for the tunneling prob-
ability (5.75) the following distribution depending on the entropy change ∆S(ω) of
the process:

Γ ∼ e−2ImS = e∆S(ω)/2 . (5.86)

For small ω the probability (5.86) approximates the Boltzmann distribution exp(ω/T )

[57].

To study the effects of tunneling and backreaction as the black hole radiates mass
we use the distribution (5.86) of the Vaidya-AdS metric to obtain the black hole lu-
minosity [70, 17]. The Planck distribution for an idealized blackbody considers radi-
ation at every frequency ω. However, when it comes to black holes, not only do they
lose mass as they evaporate but also the temperature changes during the process.
In order to account for energy conservation it is imposed that no quanta is emitted
with energy ω larger than the initial black hole mass, With this consideration the
black hole luminosity will be obtained as:

L(M) =
A

4π2

∫ M

0
dω

ω3

e2ImS − 1
. (5.87)

In figure 5.10 we illustrate the difference between the luminosity of a blackbody,
proportional to T d, and the luminosity of a black hole when energy conservation is
considered. The graphic refers to the integral in (5.87) with the Boltzmann distribu-
tion function

(A) (B)

FIGURE 5.10: Luminosity as a function of temperature. The blue line considers the Boltz-
mann distribution integrating over all values of frequency ω. In yellow we consider energy
conservation and integrate to the value of the initial mass of the black hole. (A) Large black
hole with M0 = 10 and l = 1. (B) Small black hole with M0 = 5 and l = 10.
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In order to characterize the time dependency of the black hole luminosity we use
the mass function M(v) given in (5.36) with M0 > Mf .

FIGURE 5.11: Black hole luminosity from tunneling process for different masses with l = 1.

For large black holes we will assume that the mass shrinks to a value Mf ≈
l, whereas for small black holes Mf → 0 We proceed to illustrate the difference
between the black hole luminosity for the usual Boltzmann distribution and for the
tunneling distribution (5.86) in figure 5.11. The tunneling probability accounts for
the mass and temperature loss of the black hole during the process.

(A) (B)

FIGURE 5.12: Comparison between luminosity for the Boltzmann distribution and the tun-
neling distribution for (A) Initial mass M0 = 10 (B) M0 = 0.55.

The time-dependent behaviour of the luminosity function will allow us to com-
pare the numerical results obtained for the tunneling process with the behaviour
expected of a idealized blackbody satisfying the Stefan-Boltzmann law. In figure
5.12 we study the tunneling process for the Vaidya-Anti de Sitter black hole with
mass function M(v) given in (5.36) with Mf → 0 for two different values of initial
black hole massM[0 representing the small and large black hole mass regimes. In the
graphic (A) of figure 5.12 we present the numerical results for the tunneling process
of a large AdS black hole. In this case the time-dependent behavior approximates
in a reasonable fashion the behaviour of the Stefan-Boltzmann law. For large AdS
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black holes both temperature and horizon area decrease as the black hole radiates
energy. On the contrary, in small Anti-de Sitter black holes the evaporation process
the temperature increases as the black hole radiate. In the graphic (B) of figure 5.12
we present the same analysis for the tunneling process of a small AdS black hole.
It is obtained that the luminosity from the luminosity process does not increase as
the temperature rises. This is a different behavior when compared with the Stefan-
Boltzmann law for idealized blackbodies, the luminosity obtained from the tunnel-
ing of particles through the horizon of a Vaidya black hole takes into consideration
the change of temperature as the black hole radiates.
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Chapter 6

Anti-de Sitter Black Holes and
Gauge Duals

Following the duality between gravitational and field theories suggested by the
AdS/CFT correspondence, we study the thermodynamics of five dimensional Anti-
de Sitter black holes and the corresponding dual field theory: the N = 4 supersym-
metric Yang-Mills theory. At finite temperature the dual to the N = 4 SYM theory
is a black hole in AdS5 × S5. From a time dependent black hole we characterize the
thermalization process of the field theory.

6.1 Phase Transitions of N = 4 super Yang-Mills theory

A characteristic of SU(N) gauge theories is the confinement/deconfinement phase
transition. The most familiar case is the gauge theory SU(3), better known as quan-
tum chromodynamics (QCD). In this theory the fundamental degrees of freedom are
quarks and gluons. At high energy quarks behave as free particles and become
strongly coupled at low energies. Thus SU(3) as a gauge theory is said to be con-
fining at low energy and deconfined at high energy. The N = 4 SYM theory as a
conformal theory has no bound states in R3 and the theory does not have a confin-
ing phase. In fact, since in conformal field theories the temperature can always be
rescaled, they cannot have phase transitions on R3, that is, on an infinite volume
[71, 72].

Phase transitions on N = 4 super-Yang Mills theory are only possible when
the theory is defined on R × S3 [71, 72]. Normally, phase transitions on a com-
pact space are not possible since there are only a finite number of degrees of free-
dom: on a sphere, charged physical states of a gauge theory are not allowed due
to the finite spatial volume. This is what is referred to as confinement in N = 4

SYM , in the sense that there are only O(1) physical states at low energies. The
confinement/deconfinement phase transition on N = 4 does not have the same in-
terpretation as it does in QCD. In the confining phase of a SU(N) gauge theory,
the physical states are color singlets, and the free energy is of order O(1). The con-
finement/deconfinement phase transition is only possible when the large N limit
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is taken. In the deconfined phase, the states are gauge bosons (gluons), with free
energy of order O(N2) [71, 72].

In the context of theAdS/CFT correspondence, the gravitational dual of the con-
finement/ deconfinement phase transition is the collapse of thermal Anti-de Sitter
to a Schwarzchild anti-de Sitter black hole [73]. This thermal phase transition of the
gauge theory resembles the Hawking-Page phase transition, therefore the confined
phase of the gauge theory is identified with thermal AdS space and the deconfined
phase with an AdS black hole.

A criterion to determine whether the dual field theory is in a confining phase
or a deconfining phase is based on taking the free energy of the black hole as an
order parameter [61]. When the theory is confining, the free energy is expected to
have a low temperature phase with a free energy of order O(1), meaning that the
contribution comes from the color singlet hadrons.

F

N2
→ 0 , N →∞ . (6.1)

On the other hand, the deconfining phase corresponds to a high temperature phase
with a free energy of order O(N2), since the contribution corresponds to that of
gauge fields, (i.e. gluons).

6.1.1 Free energy of N = 4 SYM theory

In the weak coupling limit of the N = 4 Super Yang Mills theory the free energy
can be obtained from perturbative calculations as a series of the t’Hooft coupling λ
in the large N limit of the gauge group SU(N). At leading order the free energy
corresponds to that of non-interactive massless degrees of freedom and is obtained
from one loop Feynman diagrams of each of the fields of the theory, that is, a gauge
bosons, a gaugino, three adjoint fermions, and three adjoint scalars, together with
the non-physical ghosts degrees of freedom that appear in the quantization of a
gauge field. The free energy is obtained from the sum of all such diagrams with
final result [74]

F0(T ) = −π
2

6
N2T 4 . (6.2)

The following contribution of order O(g2
YM ) is obtained from two-loop Feynman

diagrams [74, 75]

F (T ) = −π
2N2T 4

6

[
1− 3

2π2L2T 2
+O

(
1

L6T 6

)]
. (6.3)

At strong coupling λ a perturbative calculation of the free energy is not possible.
Following the AdS/CFT correspondence, the free energy of the N = 4 super Yang-
Mills theory at strong coupling is obtained from the gravitational dual. Following
references [75, 76] , the leading contribution to the free energy F for an Anti-de
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Sitter black hole can be obtained from the (euclidean) gravitational action I times
the temperature as I = βF , with β the inverse of the temperature.

The result obtained has the form

F (T ) = −π
2N2T 4

8
F
(

1

T 2L2

)
. (6.4)

where the function F(x) is

F(x) =
1

16

[
1 +

(
1− 2x

π

) 1
2

]2

[

1 +

(
1− 2x

π

) 1
2

]2

− 4x

π2

 , (6.5)

with the following expansion in the limit x� 1:

F(x) = 1− 3
( x
π2

)
+

3

2

( x
π2

)2
+

1

4

( x
π2

)4
+ . . . (6.6)

To compare the free energy obtained from the gravitational dual with the per-
turbative expansion in the weak coupling limit, given by (6.3), equation (6.4) is ex-
panded in the high temperature limit TL� 1

F (T ) = −π
2N2T 4

8

[
1− 3

π2L2T 2
+

3

2π4L4T 4
+O

(
1

L6T 6

)]
, (6.7)

with the leading term in the free energy is

F0(T ) = −π
2

8
N2V3T

4 . (6.8)

The leading order contribution to the free energy in the weak coupling limit (6.2)
and strong coupling limit (6.8) also hold a proportionality relation by a factor of
3/4. In general the free energy of the N = 4 SYM theory must have a form (at high
temperature) [75]:

F (T ) = −π
2N2

c T
4

6

∞∑
n=0

bn(λ)

(
1

L2T 2

)n
. (6.9)

with bn(λ) an unspecified function of λ.
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6.1.2 Gravitational dual to N = 4 SYM theory

In the context of the AdS/CFT correspondence, the AdS5 × S5 geometry is referred
as the bulk. The 5-dimensional Anti-de Sitter space is a solution of the 5-dimensional
Einstein-Hilbert action (obtained from the 10-dimensional type IIB supergravity
action compactifyied on S5):

I = − 1

16πG5

∫
ddx
√
−g (R− 2Λ) + boundary terms , (6.10)

where G5 is the 5-dimensional Newton constant, R is the Ricci scalar and
Λ = −6/L2 is the cosmological constant in five dimension. The Schwarzschild-Anti-
de-Sitter solution in five dimensions is

ds2 = −
(

1− µ

r2
+
r2

L2

)
dt2 +

(
1− µ

r2
+
r2

L2

)−1

dr2 + r2dΩ2
3 . (6.11)

The black hole horizon r = r+ satisfies r4
+ + r2

+L
2 = µL2, with solution

r2
+ =

L2

2

(
−1 +

√
1 +

4µ

L2

)
. (6.12)

The parameter µ in (6.11) is proportional to the ADM mass of the black hole:

M =
3V ol(S3)

16πG5
µ =

3V ol(S3)

16πG5
r2

+

(
1 +

r2
+

L2

)
. (6.13)

In the limit r →∞ the metric (6.11) reduces to the following conformal metric:

ds2 =
r2

L2

(
−dt2 + L2dΩ2

3

)
, (6.14)

meaning that the dual field theory is defined on S3 with radius L.

From the expression for the horizon radius (6.12) the thermodynamical quanti-
ties of the 5-dimensional Schwarzchild Anti-de Sitter black hole are readily obtain-
able. The horizon temperature is:

T =
2r2

+ + L2

2πr+L2
, (6.15)

with a minimum temperature T0 = L/
√

2. The black hole entropy and heat capacity
are respectively:

S =
A

4G5
=
π2r3

+

2G5
. (6.16)

C =
∂M

∂T
=

3V ol(S3)

16πG5

(
4r3

+

L2
+ 2r+

)(
1

πL2
− 1

2πr2
+

)−1

. (6.17)

The heat capacity is positive for r2
+ > L2/2, corresponding to the large black hole
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regime, and negative for black holes with r2
+ < L2/2, making them thermodynam-

ically unstable. The free energy of the black hole is defined by F = M − TS. From
the expressions of temperature (6.15) and entropy (6.16) we get

FBH =
πr2

+

8G5

(
1−

r2
+

L2

)
. (6.18)

The gravitational action is I = βF , where β is the inverse of the temperature

IBH =
π2r3

+

4G5

(
1− r2+

L2

)
(

1 +
2r2+
L2

) (6.19)

If r+ is less than r+ = L the free energy and the gravitational action are positive. The
temperature at which the free energy changes from positive to negative corresponds
to the temperature of the Hawking-Page transition

THP =
3

2πL
. (6.20)

For r+ > L the preferred state is a large black hole whereas for r+ < L the preferred
state is thermalAdS. The larger radius is therefore always a thermodynamical stable
configuration, but need not always be the most favorable.
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6.2 Non-equilibrium analysis on N = 4 super Yang-Mills

In the AdS/CFT correspondence, non-equilibrium states of the gauge theory can be
described by a time-dependent geometry on the gravity side, specifically, a time-
dependent Vaidya metric should describe a thermalization process on the dual field
theory [77, 78]. In asymptotically AdS5 × S5 the Vaidya AdS line element is:

ds2 = −F (v, r)dv2 + 2dvdr + r2dΩ2 + L2dω5 , (6.21)

where

F (v, r) = 1− 2M(v)

r2
+
r2

L2
. (6.22)

In certain occasions it will be useful to express (6.21) in the Poincaré coordinate
system introduced in section 3.2:

ds2 =
L2

z2

[
−(1−M(v)zd)dv2 − 2dzdv + dx2

]
. (6.23)

In this coordinate system the conformal boundary corresponds to z = 0. The metric
(6.23) corresponds to a non-vacuum solution of Einstein’s field equations with an
energy-momentum tensor Tµν describing a massless null fluid

8πG
(d+1)
N Tµν =

d− 1

4
zd−1dM(v)

dv
kµkν , (6.24)

with M(v) a function of the advanced time v. Since we are interested in comparing
the thermodynamical properties of the geometry with the large N limit of a gauge
theory, we take the entropy as the main thermodynamical variable and subsequent
thermodynamical quantities are to be expressed as functions of the entropy S and
gauge color N . According to the AdS/CFT correspondence the Anti-de Sitter L
radius and the number of gauge colors are related by

L4 =

√
2N`4p
π2

, (6.25)

where `p is the 10-dimensional Planck-length, related to the 10-dimensional Newton
constant by G10 = `8p. The compactification into five dimensions relates the grav-
itational constants by G5 = G10/(π

3L5) [79]. With that the black hole mass and
temperature are given as a function of S and N :

M(S,N) =
3mp

4

[
N

5
12

(
S

π

)2/3

+N
−11
12

(
S

π

)4/3
]
. (6.26)

T (S,N) =
∂M

∂S

∣∣∣∣
N

=
mp

2π

[
N

5
12

(
S

π

)−1/3

+ 2N
−11
12

(
S

π

)1/3
]
. (6.27)
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withmp =
√
π`7p/(2

1/8G10) the 10-dimensional Planck mass. For our numerical anal-
ysis we set mp = 1.

The trapping horizon of (6.21) is given by the condition F (v, rh) = 0. To study
the transition from thermal Anti-de Sitter to Anti-de Sitter black hole we use the
following mass function

M(v) = lim
M0→0

M0 +
Mf −M0

2

[
1 + tanh

(
v

v0

)]
. (6.28)
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FIGURE 6.1: (A) Temperature as a function of v (Mf = 50). (B) Temperature as a function of
S

The heat capacity is obtained from the temperature as a function of entropy (6.27)
while keeping N fixed, that is

C = T
∂S

∂T

∣∣∣∣
N

=
3S(N4/3π2/3 + 2S2/3)

2S2/3 −N4/3π2/3
. (6.29)
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FIGURE 6.2: (A) Heat capacity as a function of temperature (B) Heat capacity as a function
of entropy.

The behavior of the free energy of the Anti-de Sitter black hole and the Hawking
page phase transition will correspond to the process of deconfinement in the strong
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coupling limit of the gauge theory. The free energy of the Vaidya AdS black hole
(6.21) as a function of entropy and number of colors N is:

F (S,N) = M − TS =
mp

4

[
N

5
12

(
S

π

)2/3

−N
−11
12

(
S

π

)4/3
]
. (6.30)

In figure 6.3 we have the behavior of the free energy corresponding to the mass
function M(v) given in (6.28) as function of the time coordinate v for different val-
ues of Mf . The free energy becomes negative only when the final mass is large
enough that the temperature of the black hole reaches the value corresponding to
the Hawking-Page temperature (6.20).
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FIGURE 6.3: Free energy as a function of advanced time for various values ofN (A)Mf = 50,
(B) Mf = 200.

In figure 6.4 we have the free energy as a function of temperature and entropy
considering different values ofN . As a function of temperature there are two branches,
one with positive free energy and other with negative free energy, and the derivative
of the free energy with respect to temperature presents a discontinuity between the
branches of positive and negative free energy, indicating a first order phase transi-
tion. Only when the black undergoes the phase transition with a sufficiently large
black hole mass Mf the negative values of the free energy are reached.



6.2. Non-equilibrium analysis on N = 4 super Yang-Mills 89

N=1

N=5

N=10

1 2 3 4 5

0.0

0.5

1.0

T

F

(A)

N=1

N=5

N=10

1 2 3 4 5 6 7

0.0

0.5

1.0

S

F

(B)

FIGURE 6.4: (A) Free energy as a function of temperature. (B) Free energy as function of
entropy. Final value of mass Mf = 5.

The behavior of the free energy when varying N will quantify whether a phase
transition occurs in the strongly coupled theory or not at large N2. In figure 6.5 we
display the behavior of the free energy as a function of N for different scenarios of
final black hole mass. In the limit v → −∞, before the transition occurs, the free
energy is equal to zero. The final state corresponds to the curve v → +∞.
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FIGURE 6.5: Free energy as a function of N for different times. (A) Mf = 5 (B) Mf = 500.

In figure (6.6) we show how the free energy behaves as a function of Mf for
different values of N . Increasing the value of Mf implies that the phase transition
will require a greater value of N in order to occur. An important conclusion is that
for the free energy to be of order N2 the final mass value should both of order N2

and greater than MHP .
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FIGURE 6.6: Free energy as a function of Mf for different values of N .

We proceed to compare the free energy of the Vaidya-Anti-de Sitter black hole
for increasing values of N with the weakly coupled limit of a gauge theory, where
the free energy is given by (6.2). In the mass function (6.28), the limit M0 → 0 is
taken to replicate a initial state of thermal AdS. A caveat is that there is a time
lapse where the heat capacity is negative. As it was mentioned previously, Anti-
de Sitter black holes with negative heat capacity are unstable. In the AdS/CFT
correspondence such unstable states do not correspond to equilibrium states in the
CFT . Instead of the limitM0 → 0 in (6.28) we consider an initial mass corresponding
to the mass value where the heat capacity diverges (6.29) (Any value of mass such
that M∗ ≤M(v) < MHP should suffice)

M∗ =
3V ol(S3)

16πG5

3

4
L2 . (6.31)

Taking this restriction guarantees that (i) the heat capacity is always positive, (ii)
the temperature is monotonically increasing and (iii) the black hole undergoes the
Hawking-Page phase transition. In figure 6.7 we compare the free energy of the
Vaidya metric obtained from equation (6.30) with the corresponding result obtained
for the strong coupling limit in (6.4). Numerically, the results seem to agree better if
the mass is taken large but of the same order as N
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FIGURE 6.7: Comparison of the free energy of the Vaidya Anti-de Sitter metric (FBH ) and
the strong coupling limit of the N = 4 SYM denoted by (FSC). (A) Mf = 5 and N = 1 (B)
Mf = 50 and N = 5.

Finally, we compare the free energy results with the free energy of weak coupling
limit at the leading and first orders, given in (6.2) and (6.3) respectively. We obtain
confirmation that the free energy of the black hole is proportional to the free energy
of the weak coupling limit by a factor of 4/3.
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FIGURE 6.8: Comparison of the free energy of the Vaidya Anti-de Sitter metric (FBH ), the
free energy of free massless particles (FGAS) and the weak coupling limit of the N = 4 SYM
denoted by (FWC). (A) Mf = 5 and N = 1 (B) Mf = 50 and N = 5. The dashed line
corresponds to multiply FBH by a factor of 4/3.
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6.3 Boundary energy-momentum tensor

The AdS/CFT correspondence is usually used to study a strongly coupled gauge
theory by identifying the gravitational dual and relate the physical observables as-
sociated with the field theory, for example correlation functions, with the proper
geometric equivalent. The converse to this procedure would be, given an arbitrary
asymptotically Anti-de Sitter geometry, what can be said about a field theory on the
boundary. The answer to this question is a procedure known as holographic renor-
malization, and allows to obtain the energy-momentum tensor on the conformal
boundary from the metric of the gravitational.

Following the AdS/CFT the boundary energy-momentum tensor of asymptot-
ically Anti-de Sitter geometry is dual to vacuum expectation value of the energy-
momentum tensor of the CFT . Any asymptotically Anti-de Sitter spacetime can be
expressed in the so-called Fefferman-Graham coordinates (z, x) as

ds2 =
L2

z2

[
gµν(z, x)dxµdxν + dz2

]
, (6.32)

Near the boundary z = 0 the induced metric gµν(z, x) can be expanded in the fol-
lowing form:

gµν(z, x) = gµν(x) + z2 g(2)
µν (x) + zdg(d)

µν (x) . (6.33)

where gµν(x) = gµν(0, x) is the metric on the boundary Then the expected value of
the energy-momentum tensor is:

〈Tµν〉 =
dLd−1

16πG
(d+1)
N

[
gdµν(x) +X(d)

µν (x)
]
, (6.34)

where X(d)
µν (x) is equal to zero for d odd and for d even is given by

X(2)
µν (x)) = −gµνg(2)α

α , (6.35)

X(4)
µν (x)) = −1

8
µν
[
(g(2)α
α )2 − g(2)β

α g
(2)α
β

]
− 1

2
g(2)α
µ g(2)

αν +
1

4
g(2)
µν g

(2)α
α , (6.36)

To obtain the corresponding metric for the Schwarzschild-Anti-de Sitter black
hole in the Fefferman-Graham coordinates we follow the procedure outlined in [80,
81]. Even if the black hole is non-stationary it is possible to consider a static bound-
ary. Introduce coordinate [80]:

dz

z
= − 2

L

dr√
F (r)

, (6.37)

where F (r) is the function characterizing he Schwarzschild-AdS black hole in static
coordinates.

F (r) = 1− µ

r2
+
r2

L2
. (6.38)
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Integration of equation (6.37) gives

z4 =
16

4 + µ

r2 + 1
2 − r

√
f(r)

r2 + 1
2 + r

√
f(r)

, (6.39)

which can be inverted to yield r as a function of z:

r2 =
1− 1

2z
2 + γz4

z2
, γ =

1 + 4µ

16
. (6.40)

With this coordinate transformation the metric for the Schwarzchild- AdS metric is
put into the form (6.32) with

ds2 =
L2

z2

[
dz2 − (1− γz4)2

1− 1
2z

2 + γz4
dt2 + (1− 1

2
z2 + γz4)dΩ2

3

]
. (6.41)

Having the metric expressed in Fefferman-Graham coordinates allows to obtain
the obtain the expected value of the energy-momentum tensor from equation (6.34),
giving the following components:

〈Ttt〉 =
3γ

4πG5
, 〈Tii〉 = 3〈Ttt〉 . (6.42)

Corresponding to a fluid of density ρ = 〈Ttt〉. In the weakly coupled limit of the
gauge theory the relation between the components of the energy - momentum tensor
and temperature must have the form:

T (eq)
µν =

π2N2T 4

8
diag(3, 1, 1, 1) . (6.43)

In figure 6.9 we compare the component 〈Ttt〉 of the energy-momentum tensor
(6.42) with the energy density from the weak coupling limit of the gauge theory:

UWC =
π2N2T 4

8
. (6.44)



94 Chapter 6. Anti-de Sitter Black Holes and Gauge Duals

<Ttt>

UWC

-20 0 20 40 60

1

2

3

4

v

(A)

<Ttt>

UWC

-20 0 20 40 60

1

2

3

4

v

(B)

<Ttt>

UWC

-20 0 20 40 60

50

100

150

200

250

v

(C)

<Ttt>

UWC

-20 0 20 40 60

50

100

150

200

250

v

(D)

FIGURE 6.9: Energy densities obtained from the boundary energy-momentum tensor and
leading order of free energy of the Yang-Mills theory. (A) Mf = 5 and N = 1. (B) Mf = 200
and N = 1. (C) Mf = 5000 and N = 5. (D) Mf = 5000 and N = 10.

The discrepancy at early times in the first example corresponds to the fact that
since small Anti-de Sitter black holes are thermodynamically unstable they do not
correspond to equilibrium states in the boundary CFT. For latter times after the black
hole is sufficiently large the functions share a similar behavior. Regarding the nu-
merical evaluation, for increasing values of N it is necessary to increase in a large
proportion the value of the final mass in order to compare both functions, implying
that such comparison is only possible for large black holes with high temperature.
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Chapter 7

Final Remarks

One of the main motivations behind this thesis has been the study of aspects of the
AdS/CFT correspondence and gauge/gravity dualities focusing on the gravitational
side. For Anti-de Sitter black holes the main interest has been the description of the
processes of black hole radiation and phase transitions from the time evolution of
the relevant thermodynamical quantities. For that purpose we have implemented a
generalization of black hole thermodynamics introduced by Hayward as an exten-
sion of black hole to non-stationary and non-asymptotically flat spacetimes. In this
formalism the thermodynamical quantities are associated to a trapping horizon and
not to an event horizon.

The second line of work has been the investigation on the perturbative dynamics
of spacetimes where the dynamics can be approximated by potentials of the Pöschl-
Teller kind, where we have obtained that it is possible to associate an underlying
symmetry to the field equations of motion. The Pöschl-Teller-type potentials consid-
ered were shown to be associated to a representation of the algebra sl(2), allowing
us to to obtain quasinormal modes and frequencies, which are inherent elements of
the perturbative dynamics, by algebraic methods. Also we have discussed their role
in the associated Cauchy initial value problem.

In order to provide a specific model for the dynamical processes of Anti-de Sitter
black holes we have employed a Vaidya-AdS geometry. The Vaidya geometries are
null dust solution of general relativity associated to massless radiation and the black
hole solution is characterized by a time dependent mass, providing a useful setting
to characterize the thermodynamics involved in the process of black hole radiation
and transitions between different states. Whether the mass function is able to repli-
cate the phase transition of a black hole depends significantly on the range of the
mass function with respect to the value of the Anti-de Sitter radius and the rate of
change of the function.

A more involved description of black hole radiation is given by semiclassical
arguments, considering the Hawking radiation of a black hole as an atmosphere as-
sociated to a quantum field evolving in a fixed background. One of the main results
of this thesis concerns the semiclassical description of black hole radiation by tun-
neling methods, where the black hole radiation is explained as quanta of massless
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particles tunneling through the horizon. The probability of emission is found to be
dependent on the entropy change before and after emission of a particle, and cor-
rections are found compared with the Stefan-Boltzmann law describing blackbody
radiation. The study of the tunneling process on a time-dependent background ge-
ometry has provided us with additional insight on the behaviour of the black hole
during the evaporation process. We have found differences in the evolution of the
tunneling process between AdS black holes of small and large mass, and an initial
conclusion is that only the latter case seems to approximate the Stefan-Boltzmann
law.

In the context of the AdS/CFT correspondence, we have studied the thermody-
namical properties of the Schwarzschild Anti-de Sitter geometry in five dimensions
in order to compare with the thermodynamical behaviour of the the corresponding
gauge dual, the N = 4 super Yang-Mills theory. The confinement/deconfinement
phase transition of the gauge theory is related to the Hawking-Page phase transition
of the black hole. The free energy of the Anti-de Sitter black hole is taken as an or-
der parameter to characterize the phase transition. We have used a time-dependent
Vaidya Anti-de Sitter black hole as a dual to non-equilibrium configuration of a
strongly coupled field theory in order to evaluate the time evolution of the phase
transition in the gauge theory. A significant space of parameters was explored and
one of the main conclusions obtained was that with an increasing number of gauge
color N it is necessary to set up a larger black hole mass in the final state in order to
perceive a phase transition. Finally, from the Anti-de Sitter geometry it is obtained
the boundary energy-momentum tensor by methods of holographic renormalization
and the results are compared with the weak coupling limit of the dual gauge theory.
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Useful coordinate systems

In this appendix we will elaborate on some coordinate systems that are commonly
used in the description of the different spherically symmetric geometries that are
used in this work. The causal structure of a spacetime is dictated by the behavior of
light cones, which can be obtained from the set of radial null curves, that is, curves
for which ds2 = 0 and θ, φ are constant. For metrics of the form

ds2 = −F (r)dt2 +
1

G(r)
dr2 + r2dΩ2 , (A.1)

those curves are given by the condition

dt

dr
= ± 1√

F (r)G(r)
, (A.2)

which is equivalent to the geodesics of massless particles

dt

dτ
=

1√
F (r)G(r)

and
dr

dτ
= ±1 . (A.3)

In Minkowski spacetime dt/dr = ±1, that is, light cones form a angle of 45 degrees at
every point. However, equation (A.2) indicates that if the metric coefficients depend
on r the light cones slope will be different at each point of spacetime. Motivated
from this observation, it is convenient to define a new coordinate x, called tortoise
coordinate, by

dx

dr
=

1√
F (r)G(r)

, (A.4)

such that the temporal coordinate t and the new tortoise coordinate are related in
the form

dt = ±dx+ constant , (A.5)

implying that for radial null curves dt = ±dx. In the coordinate system (t, x, θ, φ)

the metric (A.1) becomes

ds2 = F(x)
(
−dt2 + dx2

)
+ r2(x)dΩ2 , (A.6)
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where F(x) = A(r(x)). In this particular coordinate system (t, x, θ, φ) the metric is
characterized by the functions F(x) and r(x).

Another important coordinate systems are based on the advanced time u and
retarded time v, defined as

du = dt− dx , (A.7)

dv = dt+ dx . (A.8)

Null geodesics with u constant satisfy dt = dx whereas null geodesics with v con-
stant satisfy dt = −dx. The coordinate systems (u, r, θ, φ) and (v, r, θ, φ) are called
ingoing and outgoing Eddington-Finkelstein coordinates respectively [82]. In the coordi-
nate system (v, r, θ, φ), the metric (2.19) adopts the following form

ds2 = −F (r)dv2 +

√
F (r)

G(r)
(dvdr + drdv)r2dΩ2 , (A.9)

while in the coordinate system (u, r, θ, φ) a similar expression is obtained

ds2 = −F (r)du2 −

√
F (r)

G(r)
(dudr + drdu) + r2dΩ2 , (A.10)

It is possible to define another coordinate system using both the retarded and ad-
vanced times u, v. From the form of the metric tensor in the coordinates (t, x, θ, φ)

given by (A.6) and the replacements

dt =
1

2
(du+ dv), dx =

1

2
(dv − du) . (A.11)

we get the following expression for the metric

ds2 = −F(x(u, v))dudv + r2(x(u, v))dΩ2 , (A.12)

with the particularity that there are no quadratic terms in du or dv. The coordinates
(u, v) are well suited to describe radial null geodesics, since the condition ds2 = 0

implies that massless particles propagate at either u constant or v constant, which
are null curves.
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Appendix B

Blackbody radiation

Starting from the concept of a black hole as a compact spacetime region able to ab-
sorb all forms of infalling matter, a black hole can be modelled of as a blackbody.
A blackbody is an idealized physical body that absorbs all incident electromagnetic
radiation, independent of frequency or angle of incidence. A blackbody in thermal
equilibrium emits electromagnetic radiation with a spectrum determined only by its
temperature.

A blackbody will spontaneously emit thermal radiation at a frequency ω with a
probability determined by Boltzmann’s distribution:

ρ(ω) = e~ω/kBT , (B.1)

where kB is the Boltzmann constant and T is the temperature of the blackbody. The
probability of emission of a photon with energy En = n~ω is then

p(n) =
e−En/kT∑∞

n=0 e−En/(kT )
. (B.2)

The average energy of a photon with frequency ω is

Ē(ω) =
∞∑
n=0

Enp(n) =

∑∞
n=0 n~ωe−n~ω/kT∑∞
n=0 e−n~ω/(kT )

. (B.3)

The result of this sum is:
Ē(ω) =

~ω
e~ω/(kT ) − 1

. (B.4)

The number of modes in the frequency interval ω to ω + dω is:

dN =
8πω2

c3
dω , (B.5)

and with that, the energy density of radiation per unit of frequency is

u(ω)dω =
8πω2

c3
Ēdω . (B.6)
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This results in the Planck’s distribution function:

I(ω, T ) =
~ω3

4π3c2

1

e~ω/(kT ) − 1
. (B.7)

The quantity I(ω, T )A dω dΩ is the power radiated by a surface of areaA through
a solid angle dΩ in the frequency range between ω and ω + dω. The total energy ra-
diated per unit area is obtained by integrating over angular frequency for all values
of frequency and over solid angle for the half-sphere due to blackbodies obeying
Lambert’s cosine law

P

A
=

∫ ∞
0

dω

∫
dΩ cos θ I(ω, T ) =

~
4π2c2

∫ ∞
0

ω3

e
hω
kT − 1

dω . (B.8)

The integral is solved by a change of variables x = ~ω/(kT ):

P

A
=

~
4π2c2

(
kT

~

)4 ∫ ∞
0

x3

ex − 1
du. (B.9)

The value of the integral is given by the Riemann zeta function ζ(4) = π4/15. With
this the total power emitted per unit area by a perfect blackbody surface is

P

A
= σT 4 , σ =

π2k4

60~3c2
. (B.10)

This is the Stefan-Boltzmann law for the luminosity of a blackbody.

The total energy density U can be similarly calculated from the Planck distribu-
tion (B.7) by integrating the solid angle over the whole sphere. The resulting energy
flux is divided by c to give the energy density U :

U =
1

c

∫ ∞
0

dω

∫
dΩI(ω, T ) . (B.11)

Integration over the whole sphere gives an extra factor of 4:

U =
4

c
σ T 4 . (B.12)

Both luminosity and energy density are proportional to T 4.
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Appendix C

Phase transitions in gauge theories

In a physical system that admits different equilibrium states, a phase transition is
essentialy a change between two states of a physical system in order to minimize
the action. The AdS/CFT correspondence establishes a relation between the ac-
tion/partition function of the CFT and the gravity theory [36]:

ZCFT (C) = Zgravity(M) , (C.1)

where C = ∂M is the boundary of the manifold M that is a solution of the grav-
itational action. Considering a saddle-point approximation this relation between
partition functions becomes

ZCFT (C) = eIgravity(M) , (C.2)

where Igravity(M) is the gravitational functional action of the manifold M. In the
large N limit Igravity(M) = N2F (M), where F (M) is a non-specified action defined
onM [36]. Then the partition function of the CFT will be given by a sum over all
geometriesMi with the same boundary C

ZCFT (∂M) =
∑
i

exp
[
N2F (Mi)

]
. (C.3)

In the large N limit the partition function will be dominated by the geometry with
the smallest F (Mi).

The phase transition of gauge theories can be observed from the behavior of the
Wilson-Polyakov loop [73]. For a gauge field Aµ this operator is defined as [83]:

WC = Tr
(
Pei

∫
C Aµdx

µ
)
. (C.4)

whereP is the path ordering operator,C denotes a closed curve in spacetime and the
trace is taken over the fundamental representation of the gauge group. Any combi-
nation of Polyakov loops with non-vanishing center-charge must have vanishing ex-
pectation value. The vanishing of the expected value of the Polyakov loop indicates
confinement, a non-vanishing Polyakov loop represents deconfinement [84, 83]. The
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expected value of the Wilson-Polyakov loop is related to the free energy F by [85]

e−βF = 〈Tr
(
Pei

∫
C Aµdx

µ
)
〉 . (C.5)

In the AdS/CFT correspondence the expected value of a Wilson loop is related to
the partition function of a string world sheet Σ in the bulk ending on a loop C on the
boundary [86]:

〈WC〉 =

∫
DΣe−A(Σ) . (C.6)

The functional integration is carried over all inequivalent worldsheets Σ with bound-
ary C. In the strongly coupled limit it is considered a saddle-point approximation,
where the partition function is dominated by the string world sheet Σ0 minimizing
the area surface A and whose whose endpoint constitute the Wilson loop C on the
AdS boundary

〈WC〉 = e−A(Σ0) . (C.7)

According to the AdS/CFT duality, the expectation value of the Wilson loop of the
boundary field theory, in the saddle approximation, is dual to the area of a two-
dimensional extremal surface in the bulk that is attached to the conformal boundary
by the loop.
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